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Abstract
Historical aerial imagery provides valuable data from regions and periods with limited geospatial information. A common
method to utilize this data is through the generation of ortho-photos and 3D models using Structure-from-Motion (SfM)
techniques. However, many of these images were scanned decades after their acquisition and require geometric calibration,
along with internal and external camera parameter estimation, for accurate reconstruction. Manual identification of key
features, such as fiducial marks and text annotations, is labour-intensive, while existing automated methods struggle with
poor-quality datasets.
This paper presents an automated workflow that combines computer vision and machine learning techniques to detect and
extract these key features from historical aerial images. To address challenges related to image quality, we also introduce
estimation protocols that compensate for missing or unreliable detections by leveraging redundancy across multiple flight
paths. The methodology was evaluated on the TMA (Trimetrogon Aerial) archive, a collection of historical images from the
Antarctic Peninsula. Our test dataset comprised over 7000 images from 20 different flight paths. The workflow demonstrated
high success rates in detecting and extracting fiducial marks, image subsets, and textual annotations. Approximately 70%
of the images provided usable focal length data, while fiducial mark detection exhibited high accuracy except in cases
of severe scanning artifacts. Altitude data extraction proved to be the most challenging, with successful results in only
15% of images due to degraded altimeter readings. Despite these limitations, the automated workflow effectively estimated
missing parameters, ensuring robust image reconstruction across flight paths. The code for this workflow is open-source
and publicly available on GitHub at https://github.com/fdahle/hist_meta_extraction.

Keywords Historical imagery · Fiducial marks · Computer vision · Altimeter · Meta-data

1 Introduction

Historical aerial images are a valuable source of informa-
tion for a wide range of applications, from environmental
(Heisig and Simmen 2021), cryospheric (Pope et al. 2014)
to archaeological sciences (Cowley and Stichelbaut 2012),
but still remain under-exploited (Kostrzewa 2024). A partic-
ularly prominent application involves generating ortho-pho-
tos and 3D models through Structure-from-Motion (SfM)
techniques (Farella et al. 2022; Mestre-Runge et al. 2023;
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North and Barrows 2024). While SfM can estimate camera
parameters from image data alone, its accuracy and relia-
bility are significantly improved when internal parameters
(e.g., focal length) and external information (e.g., camera
height or position) are known (Stark et al. 2022; Zhang et al.
2021). Many of these images are scanned with photogram-
metric scanners at high resolution (Kostrzewa et al. 2024);
however, the scanning process itself often introduces subtle
distortions, which can affect the overall consistency of the
dataset (Schulz et al. 2021). Therefore, to perform reliable
geospatial analysis, scanned images must be normalized by
calibrating their geometry based on fiducial marks.

Fiducial marks are reference points embedded in the
original film to correct geometric distortions. While their
film-space coordinates are typically provided in camera cal-
ibration reports, the corresponding image-space coordinates
must be identified on each scanned image. Manual identifi-
cation of fiducial marks is straightforward but time-consum-
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ing and labour-intensive. Unfortunately, in many cases, the
original camera calibration reports have been lost over time,
leaving only the images themselves. Additionally, scanned
images often contain distortions, such as stretching and
skewing, introduced by the scanning process, further com-
plicating their use in precise geospatial applications.

Several automated methods have been proposed to ad-
dress these challenges. Early research by (Sun and Wu
2001) employed attribute-based mathematical morphology
to segment fiducial marks. Later, (Ye et al. 2016) introduced
a semi-automatic approach based on circle fitting, specif-
ically tailored for ARGON satellite imagery (Girod et al.
2018). proposed a shape-based method that identifies bright
circular blobs near the image frame as proxies for fiducial
mark locations. Other approaches, such as those by (Knuth
et al. 2023) and (Salach 2017), rely on template matching to
detect fiducial marks across image sets. These open-source
methods vary in robustness and typically require manual
correction, especially when applied to degraded or low-
quality scans. Commercial software packages, including for
example Agisoft Metashape (Agisoft o.J.), ArcGis Pro (Esri
o.J.), or Trimble Inpho (Trimble o.J.), offer powerful and
largely automated tools for fiducial mark detection that typ-
ically perform well, even on challenging imagery. However,
these tools are paid and closed-source, which limits accessi-
bility for some users. Their proprietary nature also reduces
transparency, as internal algorithms are not openly docu-
mented or modifiable. This makes it difficult to adapt or
extend their functionality, and complicates integration into
fully automated and reproducible processing workflows.

In this study, we utilize the Trimetrogon Aerial (TMA)
archive, a collection of approximately 330,000 black-and-
white aerial photographs captured by the U.S. Navy be-
tween 1946 and 2000. Around 2012, the imagery has been
scanned at a resolution of 25 microns (1000 dpi) by the
U.S. Geological Survey (USGS) and the Antarctic Geospa-
tial Information Center (University of Minnesota) and is
publicly available at (Polar Geospatial Center 2023). An
example image from the archive is shown in Fig. 1. The fo-
cal lengths in this dataset range from 151.09 to 156.00mm,
while altitudes at the time of image acquisition vary be-
tween 8000 and 24,000 ft, depending on flight line and lo-
cation. Notably, many images lack accompanying metadata,
and approximate values for focal length or altitude are often
unavailable.

Our ultimate goal is to extract three-dimensional infor-
mation from these images using SfM. While in principle,
internal and external camera parameters can be estimated
during bundle adjustment (Mölg and Bolch 2017), the qual-
ity and reliability of the resulting 3D models can bene-
fit from some prior knowledge, especially in the case of
archival aerial imagery (AliAkbarpour et al. 2015; Knuth
et al. 2023; Sevara et al. 2018). Historical datasets like TMA

Fig. 1 Example image CA183332V0121 from the TMA dataset

often have near-parallel viewing geometries and limited im-
age overlap (around 60%), which can lead to unstable or de-
generate configurations with inaccurate approximated cam-
era parameters. This challenge is further increased by strong
variations in image quality, caused by improper storage, ex-
posure issues during acquisition, and distortions introduced
during scanning, as seen in (Maiwald et al. 2023).

Given the large volume of images, a key objective was to
automate the processing as much as possible for all param-
eters located in the images. Therefore, we have developed
a fully automated workflow for detecting fiducial marks
directly from the images. Our approach emphasizes robust-
ness, allowing to estimate positions even when detection
fails in degraded or incorrect scanned images. In addition to
fiducial mark detection, our workflow enhances the geospa-
tial use of the images by extracting height information from
three-pointer altimeters embedded in each image. Such al-
timeters indicate altitude using three separate hands, pro-
viding vertical data that can improve the accuracy of 3D
reconstructions. Finally, we extract metadata such as focal
length from typewritten annotations found on the images.

This paper presents our methodology for the automatic
extraction of fiducial marks and height information, with
a particular focus on the TMA archive. However, our work-
flow is designed to be adaptable and can be applied to
other historical aerial image collections. To the best of our
knowledge, no previous study has developed an automated
approach for extracting height data from three-pointer al-
timeters in historical imagery. By addressing this gap, our
work offers an important next step to the challenges of
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utilizing historical imagery for geospatial analysis and 3D
modelling.

2 Methodology

The main objective is recovering metadata from scanned
photos, whenever available. This metadata notably includes
focal length and image altitude, which can be estimated
through text extraction. Altitude information can also be
derived from embedded altimeter readings. Another goal is
to identify fiducial marks, which enable precise geometric
calibration. These tasks share similar techniques but are de-
signed to function independently. However, the inconsistent
quality of the historical images poses challenges, and the
methods may not always yield reliable results. To mitigate
this, an automatic estimation step follows each extraction,
serving as a fallback to ensure robustness and continuity
in subsequent processing stages. A detailed description of
these metadata recovery steps is presented in the following
subsections.

2.1 Text Extraction

Historical aerial images often contain hand-written or type-
written annotations directly on the photographs, such as
focal length or altitude values. These annotations are both
valuable and problematic: while they provide crucial meta-
data, they also introduce noise that can hinder automated
processing. To address this, we employ text recognition
software to both extract relevant information and mask the
regions containing text. Traditional optical character recog-
nition (OCR) methods, such as those based on TensorFlow,
were initially considered but yielded poor results in our
early trials, particularly when applied to typewritten anno-
tations in historical imagery. While no systematic bench-
mark was performed, we observed that these general-pur-
pose models, typically trained on modern machine-printed
text, struggled with the lower contrast and variability of
historical scans. In contrast, the OCR tool PP-OCR (Du
et al. 2020), originally developed for recognizing Chinese
characters, demonstrated significantly more robust perfor-
mance in our use case. It not only recognized typewritten
annotations more reliably but also provided bounding boxes
for each detected text region, enabling downstream filtering
and spatial reasoning.

Fig. 2 Example text from an image from the archive. Note that height (15,000) and focal length (153.xx mm) is included in the description

Given the large size of the images, applying text recogni-
tion to the entire image in one pass is computationally im-
practical. Instead, we focus on the four border regions (N, E,
S, W) where annotations are typically found. Each border
is divided into overlapping sub-regions, and text extraction
using PP-OCR is performed on each sub-region individu-
ally. To account for annotations that may be written upside
down, the process is repeated with a 180-degree image ro-
tation. This approach is sufficient for the current dataset,
where text annotations are only present along the top and
bottom edges. However, for other datasets where text may
also appear along the sides, additional rotations—such as
90 and 270 degrees—can be included with minimal com-
putational overhead. The extracted text and bounding boxes
from all sub-regions are then merged, aligning overlapping
text based on matching content at the start and end of adja-
cent regions. Finally, the separate bounding boxes are com-
bined into a single comprehensive bounding box for each
text region. This combined text data and bounding box in-
formation serves as input for further processing steps, such
as masking text regions to reduce noise in subsequent anal-
yses.

Despite successful localization of the text regions, ex-
traction of useful information remains a challenge due to
incomplete detections and false positives, as illustrated
in Fig. 2, where parts of the focal length annotation are
obscured. To improve reliability, we leverage prior domain
knowledge and statistical redundancy across all images
from the same flight path and camera orientation. For each
image, all detected text elements are concatenated into
a single string and stored for analysis. We then apply reg-
ular expressions to identify substrings that likely represent
focal lengths or altitudes: values containing a decimal point
or the unit “mm” for focal lengths, and numerical patterns
ending in “000” for altitudes. The identified strings are
standardized to a fixed format, such as a 7-character focal
length (e.g., XXX.XX) or a numeric altitude value, and
recorded per image as a text string in a database. Unrecog-
nized characters are replaced with a placeholder (e.g., “X”)
to mark uncertainty. To enhance reliability, all extracted
values from a given flight path are compared character by
character to determine the most frequently occurring digit
or symbol at each position. For example, if some images
yield 15X.3X mm and others give 154.X4 mm, the inferred
result may be 154.34mm. This voting-based approach
helps correcting OCR errors and fill in uncertain or missing
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Fig. 3 Example for a fiducial pattern (red box) together with the fidu-
cial mark (red circle)

characters. Since the OCR does not provide per-character
confidence scores, we treat any non-numeric characters
in focal length fields as invalid and exclude them from
voting. Finally, we incorporate domain-specific constraints,
for instance, focal lengths in this archive are always above
150mm, so any extracted value like for example 54.34mm
is automatically adjusted to 154.34. This structured and
knowledge-guided approach enhances metadata extraction
by reducing sensitivity to single-image OCR errors and
leveraging the redundancy of similar images within a flight
line.

2.2 Fiducial Mark Detection

Figure 3 illustrates how we identify fiducial marks on his-
torical images. A fiducial mark is a precise reference point,
often a small dot, crucial for image orientation and calibra-
tion. Surrounding this mark is a distinctive fiducial pattern,
which aids in accurately locating the mark. The pattern
is designed with lines converging precisely on the fiducial
mark to ensure accurate detection.

Fig. 4 Example for fiducial
marks in the dataset and the
equivalent schematics from
a camera calibration report

As shown in Fig. 4, the fiducial marks are located at eight
positions. However, only four of these marks (5–8) can be
directly detected, while the remaining four (1–4) must be
inferred. Once the positions of the first four fiducial marks
are established, the principal point of autocollimation (PPA)
(McGlone et al. 2013), can be estimated as the point of
intersection of the lines connecting them.

To detect fiducial marks automatically, we employ
a structured seven-step approach as shown in Fig. 5, ap-
plied separately for each fiducial mark. For the cardinal
directions (North, East, South, West), direct detection is
possible, while for the intercardinal directions (Northeast,
Southeast, Southwest, Northwest), fiducial marks must be
computed based on detected cardinal marks.

Fiducial Marks for N, E, S, W Fiducial marks in the four
main directions are detected through a machine-learning
and computer vision based approach, consisting of the
following steps:

1. Initial Cropping: Since fiducial marks are always posi-
tioned near the image borders, we extract a cropped re-
gion at each respective boundary. This preliminary step
enhances processing speed and accuracy by reducing the
search space for the fiducial pattern.

2. Subset Detection: Once the cropped region has been ex-
tracted, we use dlib, a versatile toolkit designed for ma-
chine learning and computer vision (King 2009), to rec-
ognize the fiducial patterns in that region. We employ the
so-called simple object detector to detect fiducial patterns
in the images. This efficient object detector is a trainable
model based on Histogram of Oriented Gradients (HOG)
and a linear Support Vector Machine (SVM) classifier.
To enable the detection, we created a training set of 100
fiducial patterns for each direction, enabling the model to
learn and generalize effectively. The HOG technique ef-
fectively extracts dominant image gradients, which in our
case point towards the fiducial marks. Extracted HOG
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gradients and corresponding fiducial patterns can be seen
in Fig. 6.

At this stage, precise localization is not necessary; rather,
we aim to isolate a smaller region as a subset for further re-
finement by only looking at the border regions of an image.
If no suitable subset is found, or if more than one subset is
detected, detection for this direction is halted. Figure 7 is
showing different stages of this extraction in panels A-G.

3. Pre-processing: To simplify subsequent operations, the
subset (panel A) is blurred and then binarized using a dy-
namic threshold (resulting in panel B). Instead of a fixed
threshold, we compute themost frequent pixel value (typ-
ically the background) and adjust the threshold dynami-
cally by adding a safety margin of 10 px.

4. Edge Detection and Line Filtering: Canny edge detec-
tion, (Xu et al. 2017), is applied to extract straight lines
in the subset (panel C), which serve as structural refer-
ences for fiducial mark localization. Only lines with the
correct orientation (vertical for N/S, horizontal for E/W)
are retained. Among these, the line closest to the centre
is selected (panel D). If multiple lines are detected, they
are merged by averaging their endpoints.

5. Refining the Region of Interest: Using the detected line as
a guide, we extract a smaller subset (panel E), expanding
the region along the fiducial direction while narrowing it
perpendicularly.

6. Noise Reduction and Circle Detection: At high zoom lev-
els, image artifacts are common. To mitigate this, we ap-
ply the morphological operations erosion and dilation to
remove small artifacts while preserving key structures.
We then search for circular features within a predefined
size range using the circle Hough transform. As a fall-
back, we detect image moments, which can also identify
non-perfect shapes (e.g., blurry or slightly oval ones),
but only with pixel-level accuracy. Image moments are
weighted averages of image intensities that describe the
shape’s geometry—such as its centre of mass, orienta-
tion, or area—and are useful for locating and character-
izing objects when perfect shapes are not present. If mul-
tiple circles are detected, the one nearest to the centre is
selected (panel F) If no circle is found, the subset is grad-
ually shifted outward until a fiducial mark is detected or
the image boundary is reached. If no mark is found, de-
tection for this direction remains incomplete.

7. Final Localization: Once the position of the fiducial mark
is determined within the subset, its absolute coordinates
in the full image are calculated (panel G).

Fiducial Marks for NE, SE, SW, NW The remaining four fidu-
cial marks cannot be directly detected, as they lack distinct
white dots marking their positions. Instead, their locations

are inferred based on the detected cardinal fiducial marks.
This process involves the following steps:

1. Resizing Subsets for Edge Detection: Prior to performing
Canny edge detection, the relevant subsets from the adja-
cent cardinal fiducial marks (e.g., North and East for the
Northeast fiducial mark) are resized. The subset is elon-
gated in the primary direction of interest while reducing
its width in the perpendicular direction.

2. Edge Detection and Line Extraction: Canny edge detec-
tion is applied to identify lines perpendicular to the ex-
pected fiducial mark location. Only the lines closest to
the centre of the subset are retained. If multiple lines are
detected due to interruptions in the fiducial pattern, they
are averaged to form a single representative line.

3. Intersection Calculation: The detected lines from the two
relevant subsets (e.g., North and East for the Northeast
fiducial mark) are used to calculate their intersection
point. This intersection is assigned as the inferred fidu-
cial mark position.

By combining direct detection for cardinal fiducial marks
with computed positions for intercardinal marks, this ap-
proach enables robust and accurate fiducial mark localiza-
tion across historical aerial images. This methodology en-
sures consistency across the dataset while accounting for
variations in image quality, exposure, and potential distor-
tions.

2.3 Height Detection

Height detection involves extracting the altitude data from
either text annotations or an altimeter display in the images.
In some cases, height is clearly visible as text, which can
be processed as described in section Sect. 2.1. However,
in many cases, text annotations are absent, and the height
must instead be derived from a three-pointer altimeter, as
shown in Fig. 8. This altimeter measures altitude through
air pressure and displays it using three clock-like pointers:
the longest pointer indicates increments of 100 feet, the
next pointer 1000 feet, and the shortest pointer 10,000 feet.
Similar to fiducial mark detection, height detection required
a multi-step approach, as depicted at the left side of the
workflow in Fig. 5.

The first step in this process is to localize the altimeter
within the image. Since it is typically found at the bot-
tom-left corner and has a distinct round shape with labelled
numbers, its position is easy to approximate. We use again
the object detection framework of dlib, trained on 100 man-
ually annotated images with various lighting conditions and
image qualities. This small training set suffices due to the
standardized design of the altimeter across the dataset.

Next, template matching is applied to refine the position.
Perfect scans would allow circle detection through methods
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Fig. 5 Steps required for obtain-
ing altitude, fiducial marks for
N, E, S, W and fiducial marks
for NE, NW, NS, NW. Each
step is colour coded to show
which steps are required for
each extraction
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like Hough transforms, but the digitization of these histori-
cal images often results in slight distortions. To address this,
template matching focuses on the detection of numeric la-
bels such as 3, 5, and 8, which are consistently present on
the altimeter face. This approach improves robustness, even
in cases where parts of the altimeter are cut off.

Once the position of the altimeter is identified, image en-
hancement is performed to compensate for inconsistencies
in brightness and clarity caused by reflections or poor light-
ing. We apply histogram equalization to the central area of
the altimeter, which improves contrast and prepares the im-
age for binarization. The outer areas, where reflections are
more prominent, are set to the median pixel value of the
circular region to avoid interference (Step A in Fig. 9).

After enhancement, edge detection is carried out on the
binarized image (Step B) using the Canny method to ex-
tract lines within the altimeter (Step C). Only lines oriented
towards the circle’s centre are retained, and additional fil-
tering is applied to distinguish each pointer based on its
characteristics. The 100 feet pointer is recognized by long,

parallel lines (Step D), while the 1000 feet pointer has in-
tersecting tip lines (Step E).

With the relevant lines detected, we calculate the angle
of each pointer relative to the zero position on the altime-
ter. The angles range from 0 to 360°, where 0° corresponds
to position zero and 180° to position five. From these an-
gles, the readings of the 100 and 1000 feet pointers are
determined directly.

Detecting the 10,000 feet pointer presents a unique chal-
lenge. Its small size and placement near the bottom of the
altimeter often result in poor visibility. However, since flight
heights rarely exceed 30,000 feet in the dataset, the pointer’s
position will always fall within the first few digits (0 to
3). Therefore we calculate three possible positions for the
10,000 feet pointer and search for it within these areas.
If detected, this final step confirms the complete altitude
reading.

By analysing the positions of all pointers relative to the
instrument’s centre, the altitude can be converted into a nu-
meric value. The angles of these pointers are measured rela-
tive to the north direction and mapped onto a circular scale,

K



PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science

Fig. 6 Example for fiducial
marks from different images
and their HOG filters for each
cardinal direction N, E, S, W

Fig. 7 Steps for fiducial mark
extraction: detected subset (a),
binarization (b), Edge detec-
tion (c), filtering for centre
line (d), blurred subset (e),
subset with detected point (f),
final absolute coordinates of
subset (g)

where a full rotation corresponds to 10,000 feet for the
shortest pointer, 1000 feet for the middle pointer, and 100
feet for the longest pointer. The final altitude is obtained by
summing these values. However, if the calculated altitude
falls below 8000 feet, an offset of 10,000 feet is added, as
for the considered dataset no planes flew below this alti-
tude. This correction accounts for cases where the 10,000-
feet pointer was not detected correctly. In some cases point-

ers can overlap, which happens most frequently with the
10,000-feet pointer. In these instances, the algorithm han-
dles the situation similarly to cases when the 10,000-feet
pointer could not be detected. Overlaps between the 100-
feet and 1000-feet pointers are very rare and were therefore
not explicitly addressed.
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Fig. 8 Example for a physical
altimeter and it’s equivalent
from a historical image of the
TMA archive. Adapted from

Fig. 9 Steps for altitude extrac-
tion using an altimeter: Original
image (a), binarization (b), Edge
detection (c), filtering for cen-
tre lines (d), filtering for tip
lines (e), final lines (f)

2.4 Estimation & Quality Control

Detection of fiducial marks and altimeter readings is not
always successful. Low contrast, excessive image artifacts,
or incorrect scanning can hinder automated recognition. In
some cases, fiducial marks or altimeter displays may have
been cut off partially or entirely during the scanning pro-
cess.

To handle these issues, we apply a correction strategy
based on redundancy of parameters within the same flight
line. Images captured along a flight path typically share
the same camera setup, calibration parameters, and flight
altitude, which allows for cross-validation between over-
lapping observations. On average, each flight path contains

approximately 54 images, providing in most cases sufficient
redundancy for correction. A value is flagged as missing if
no meaningful number could be extracted, and it is marked
as an outlier if it deviates by more than two standard de-
viations from the median of all valid values in the same
sequence. Only flight paths with at least three valid (non-
null) entries are considered for correction.

For the fiducial mark detection, if the initial subset con-
taining the mark is not detected, we first estimate its likely
position based on the average coordinates of subsets de-
tected in all other images from the same sequence. Once
this position is determined, the fiducial mark detection algo-
rithm is re-applied to the estimated region. If the extraction
is still unsuccessful, we calculate the final coordinates of
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Table 1 Summary of extracted,
estimated, missing and possible
manual values for text extrac-
tion, fiducial mark detection
and height detection for 7719
photos from 20 different flight
paths. (the values with n.e. were
not considered in the manual
extraction).

Field Extracted Estimated Missing Manual

Text position 7719 0 0 7719

Focal length 2145 3436 2138 n.e.

Subset N 5791 1706 222 n.e.

Subset E 6828 779 112 n.e.

Subset S 6813 794 112 n.e.

Subset W 6859 748 112 n.e.

Fid mark 1 (SW) 7064 543 112 n.e.

Fid mark 2 (NE) 6990 508 222 n.e.

Fid mark 3 (NW) 6950 529 239 n.e.

Fid mark 4 (SE) 7150 457 112 n.e.

Fid mark 5 (W) 6552 1055 112 7711

Fid mark 6 (E) 6858 749 112 7714

Fid mark 7 (N) 5192 1475 1054 6015

Fid mark 8 (S) 6488 1119 112 7662

Height (text) 12 312 7395 n.e.

Height (altimeter) 1279 6440 0 5237

the missing fiducial mark by averaging the coordinates of
matching marks from other images of the same flight path.

A similar procedure is applied for altimeter readings.
If the altimeter display is not detected in an image, we
begin by estimating its expected position. If the reading re-
mains missing, the altitude value is inferred by analysing the
heights recorded in other images within the same flight line.
Since the aircraft is assumed to fly along a stable trajectory,
any obvious outliers are removed using the interquartile
range (IQR) method. A weighted average of the remaining
altitude values is then calculated to estimate the missing
height. While this estimation is generally less precise than
that for fiducial marks due to potential fluctuations in alti-
tude, it provides a reasonable approximation that supports
subsequent processing steps.

3 Results & Discussion

To evaluate our methodology, we selected the 20 longest
flight paths1 from the Antarctic Peninsula section of the
TMA archive. This selection of 7719 images provides a di-
verse range of examples to thoroughly test our approach
while still allowing us to apply and validate our estimation
techniques across a large dataset. While this facilitates test-
ing the full potential of our method, it may lead to slightly
higher estimation success rates compared to shorter or less
continuous flight paths found elsewhere in the archive.

Table 1 provides an overview of the test results from
20 flight paths. It summarizes the extraction process for

1 Flight paths with the following id: 1684, 1813, 1816, 1821, 1822,
1824, 1825, 1826, 1827, 1833, 1846, 2073, 2075, 2136, 2137, 2139,
2140, 2141, 2142, 2143.

each key feature, including subsets used as a preliminary
step in fiducial mark detection. The table shows the num-
ber of entries that were successfully extracted automatically,
those estimated based on extracted features from other pho-
tos from the same flight path, and those that remained miss-
ing due to failed extraction or estimation. The final column
presents the results of a manual extraction of the computer
vision based parameters, indicating whether a human ob-
server could identify these patterns on the images. This
serves as a baseline for comparison with the automatic ex-
traction, with the exact values per flight path shown in the
Appendix.

Figure 10 illustrates examples of successful data extrac-
tion. For each identified text, bounding boxes are available
to determine the position of the text box. In the case of
fiducial marks, precise coordinates are marked at the exact
location of each fiducial spot. For height extraction using
altimeters, three lines extend from the centre of the circular
display to indicate the direction and position of the pointers.
The altitude value of these pointers corresponds to 22,800
feet.

The results of the data extraction process demonstrate
a high level of effectiveness in several areas. Text extrac-
tion performs exceptionally well, with no missing text boxes
across the dataset. As can be seen in Table 1, for approx-
imately 70% (5581 individual photos) of the images we
could successfully extract focal length values. For the re-
maining 30% of the images, extraction of focal length data
failed due to two primary factors. First, the complete ab-
sence of focal length information in the text. Second, poor
legibility of the written text, as illustrated in Fig. 2, where
the focal length is only partially discernible.

Subset extraction is similarly reliable, with only a small
number of images missing critical data. Failures in this area
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Fig. 10 Examples for successful
detections: Fiducial marks (top),
text extraction (bottom left)
and altitude based on altimeter
(bottom right)

are primarily the result of either portions of the image be-
ing cut off during scanning or images being scanned in
an inverted orientation, which disrupts the fiducial pattern
detection with dlib. This notably affects the left looking
direction of flight path 1822, which explains the identi-
cal number of missing values for the subsets. Nevertheless,
the overall success rate is sufficient to allow substitution
of missing subsets with data from successfully processed
images.

Fiducial mark extraction performs well overall but faces
specific difficulties with fiducial mark 7, located at the top
of the image. Investigations revealed that many of these
difficulties arise from scanning errors that result in parts of
the image, including this fiducial mark, being cut off. Not
enough to not find the subset, but so much that the fiducial
mark is missing. Figure 11, example A, illustrates such
a case. In other rare instances, low contrast between the
fiducial pattern and its surroundings complicates detection,
as demonstrated by example B in the same figure. In such
scenarios, even human observers struggle to pinpoint the
fiducial pattern.

When fiducial marks are successfully detected, their po-
sitions are generally accurate to within a few pixels, demon-
strating strong performance for correctly scanned images.
However, errors can occur when a fiducial mark is miss-
ing due to scanning issues, or when incorrect scanning in-
troduces artifacts, such as additional fiducial marks from
adjacent images, because multiple images were scanned to-
gether.

To further evaluate the performance of our fiducial mark
extraction, we compared it against the built-in detection
algorithm of Agisoft Metashape (see Table 2). Metashape

successfully recovers nearly all clearly visible markers and
slightly outperforms our method in three of the four cardinal
directions. In contrast, our approach, augmented with esti-
mation, matches or exceeds the performance of Metashape
for fiducial mark 7 and remains within a few percent for
the others. Both methods fail similarly when marks are
truncated by scanning errors (e.g., in the case of mark 7).
Overall, although Metashape achieves slightly higher detec-
tion rates on clean scans, our open-source, fully automated
pipeline delivers competitive performance.

Fig. 11 Examples for failed extractions: Fiducial mark detection with
cut-off or difficult data (a, b) and height detection (c) with missing
pointers
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Table 2 Comparison of fiducial mark detection results between our
method and Agisoft Metashape. The table lists the total number of im-
ages, the number of images where the fiducial mark is visible, and the
number of fid marks by each method. For Fiducial Mark 7, our method
detects more instances than the number of visible marks due to its es-
timation mechanism, which infers likely positions based on consistent
placements in neighbouring images.

Fid Mark Total Visible Our method Agisoft

Fid Mark 5 7719 7711 7607 7695

Fid Mark 6 7719 7714 7607 7701

Fid Mark 7 7719 6015 6667 6012

Fid Mark 8 7719 7662 7607 7659

The extraction of altitude data presents the most signifi-
cant challenge. Successful extractions based on the altime-
ter occur in only 15% of all cases (1279 images), often
hindered by factors such as inverted images, blurry or il-
legible altimeter readings, altimeters being cut off, or scan-
ning artifacts affecting the relevant areas. To a lesser extent,
these issues also impact manual extraction, which failed
in most cases due to altimeters cut off. Figure 11, exam-
ple C highlights one such problematic example. Addition-
ally, some incorrect altitude values are extracted, necessitat-
ing further quality control measures. Despite these issues,
the successful extractions provide enough data to estimate
missing altitudes along flight paths. This marks a consid-
erable improvement over the previous lack of altitude data
for most images. In the context of structure-from-motion
(SfM) workflows and workflows aiming at geo-referenc-
ing historical imagery lacking GNSS data, (Craciun and Le
Bris 2022; Dahle et al. 2024; Giordano et al. 2018), even
approximate altitude information can enhance the recon-
struction and localization process by providing a valuable
starting point.

The extraction of altitude information directly from text,
in contrast, is negligible due to the rarity of altitude refer-
ences within the text boxes. However, in cases where this
information is present, the text extraction process typically
identifies it correctly.

4 Conclusion

However, some challenges remain, particularly in cases in-
volving image degradation, distortions, or non-standard ori-
entations. A notable limitation is the difficulty in reliably
detecting fiducial subsets when images are rotated or of
poor quality. While our current implementation relies on
dlib for object detection, future work could benefit from
more advanced methods such as convolutional neural net-
works (CNNs), which are more robust to variations in image
quality and orientation. Integrating a CNN-based approach

may further improve detection accuracy and ensure consis-
tent performance across a wider range of image conditions.

Altimeter readings, likewise, remain sensitive to edge
detection quality, with factors like noise, lighting artifacts,
or obstructions occasionally impairing pointer identifica-
tion. While altitude text annotations are rare, this rein-
forces the value of extracting altimeter readings directly
from the image. Even though some image collections may
include rough altitude metadata, this is not always reliable
or consistently available—especially for historical datasets.
In these cases, visual extraction of altimeter data offers
a valuable complement to existing metadata sources, espe-
cially for SfM workflows.

Our current altimeter reading method is based on tailored
image processing and known height ranges. While effective,
it could be further strengthened by leveraging methods de-
veloped for similar tasks. The challenge of reading multi-
pointer altimeters closely parallels the well-studied problem
of reading analogue clocks and mechanical gauges. Recent
work in these areas has employed both traditional vision
techniques and deep learning (Chavan et al. 2022; Yang
et al. 2022) with promising results. These strategies could
serve as a foundation for improving altimeter reading under
more variable conditions.

Finally, the methodology could be extended to extract
additional visual metadata from historical images, such as
analogue capture times or image numbers. Capture time
could support sun angle estimation, while image numbers
might help link scans to external catalogues. These addi-
tions would further enhance metadata completeness and
support more powerful, automated processing of historical
aerial image collections.
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5 Appendix

Table 3 Flight paths and the number of successful manual extractions for computer vision based parameters.

Flight Path Direction Nr. of images Altimeter Fid N Fid E Fid S Fid W

1684 L 110 1 110 110 110 110

R 110 102 0 110 110 110

V 110 77 110 110 110 110

1813 L 123 123 123 123 123 123

R 123 121 0 123 123 123

V 123 123 123 123 123 123

1816 L 182 118 182 182 182 182

R 182 179 182 182 182 182

V 182 161 159 182 169 182

1821 L 191 186 191 191 191 191

R 191 190 191 191 191 191

V 191 185 191 191 191 191

1822 L 114 112 114 114 114 114

R 114 103 114 114 114 114

V 114 1 1 114 114 114

1824 L 109 10 105 105 106 105

R 109 40 109 109 109 109

V 109 2 0 109 109 109

1825 L 142 30 142 142 142 142

R 142 142 0 142 142 142

V 142 142 142 142 142 142

1826 L 129 129 129 129 129 129

R 129 129 0 129 129 129

V 129 129 123 129 129 129

1827 L 111 0 109 111 111 111

R 111 78 0 111 111 111

V 111 90 111 107 111 110

1833 L 156 149 156 156 156 156

R 156 156 156 156 156 156

V 156 156 156 156 156 156

1846 L 107 72 107 107 107 107

R 107 107 107 107 107 107

V 107 107 107 107 107 107

2073 L 115 115 115 115 115 115

R 115 115 115 115 115 115

V 115 69 37 115 91 115

2075 L 107 73 107 107 107 107

R 107 21 107 107 107 107

V 107 1 18 107 90 107

2136 L 141 16 141 141 141 141

R 141 141 0 141 141 141

V 141 140 141 141 141 141

2137 L 145 46 145 145 145 145

R 145 144 145 145 145 145

V 145 70 86 145 145 145

2139 L 108 3 108 108 108 108

R 108 38 108 108 108 108

V 108 30 10 108 108 108
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Table 3 (Continued)

Flight Path Direction Nr. of images Altimeter Fid N Fid E Fid S Fid W

2140 L 116 7 116 116 116 116

R 116 37 116 116 116 116

V 116 47 116 116 116 116

2141 L 121 121 121 121 121 121

R 121 121 121 121 121 121

V 121 20 121 121 121 121

2142 L 108 104 108 108 108 108

R 108 104 108 108 108 108

V 108 10 108 108 108 108

2143 L 138 138 138 138 138 138

R 138 62 138 138 138 138

V 138 1 138 138 138 138
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