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“  
For complex systems, locating boundaries between 
qualitatively similar regions in a space of 
alternatives can often be […] useful. 

(Bankes, 2011, p. 597) 

 
“  

Nothing in the world is as soft, as weak as water;  
nothing else can wear away the hard, the strong, 
and remain unaltered. 

(Lao Tzu, translated by Ursula K. Le Guin) 
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Executive Summary 
Tipping points are an active and growing interest in both the scientific and political study of climate 

change: what are they, how can we identify them, and how can we avoid them (negative tipping 

points) or encourage them (positive tipping points). As climate change worsens, scientists and 

policy analysts have turned to computer models of complex, interconnected, human-Earth 

systems to help understand and address both its physical and social aspects. As this field has 

matured, so too has the complexity of both the models being developed and the questions being 

asked with them.  Agent-based modeling (ABM) is one framework that has become popular for 

its ability to observe system-level behaviour without closed-form equations due to its encoding of 

heterogeneous individual-level behaviour.  

Analyzing the data generated by ABMs is not straightforward, as they tend to have many input 

and output dimensions, most outputs are either temporally or spatially distributed (or both) and 

can be sensitive to stochastic effects. When applying a exploratory modeling or deep uncertainty 

lens—a philosophy that seeks to explore the effects of assumptions made in a model’s 

development and parametrization, understanding more about the modeled system’s behaviour 

as opposed to attempting to predict it—the complexity of this analysis grows further. However, 

this complexity should not discourage analysts from bringing existing Decision-Making under 

Deep Uncertainty (DMDU) methods to ABMs. 

This study applies one such method (scenario discovery) to a complex ABM of household and 

firm climate adaptation in a coastal economy, attempting to uncover the existence of socio-

environmental tipping points in the system. Based on a previously developed analogy connecting 

the output space of an ABM to the traditional notion of a physical phase diagram, Scenario 

Discovery is used to generate such a phase diagram and infer tipping points at the boundaries 

between distinct system states. Ultimately, a set of possible population-change tipping points are 

generated.  

While this work demonstrates the fitness of scenario discovery as a tool for exploring the output 

spaces of ABMs and finding tipping points within them, it is very preliminary. The work should be 

repeated with several improvements. First, either the uncertain parameters varied in this study 

should be selected to be more policy-relevant, controllable system factors, or the system states 

and thus the tipping points should be expressed in terms of endogenous variables instead of input 

parameters. Second, this study demonstrates that the typical approach to processing stochastic 

replications in exploratory modeling—simply averaging all outcomes—is not fit for use with 

complex modeling like ABM. Despite the computational and cognitive load introduced by 

simultaneously handling both a wide uncertainty space and many stochastic replications, efforts 

must be made to ensure any dynamically distinct behaviour generated by the original model is 

not lost to averaging. Studies like this one that do not put in this effort risk enabling the extraction 

of incorrect political and policy lessons. 
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1 Introduction 
As climate change worsens, scientists, economists, and other practitioners of knowledge—

perhaps ironically—turn to computer models to understand the shifting dynamics of the Earth and 

our place in it: models of so-called coupled human-Earth systems or socio-environmental systems 

(SES) (e.g., Moallemi et al., 2022). These systems are large, often incomprehensibly complex, 

and usually riddled with interrelated components and feedback loops; their computational 

counterparts are similarly hard to grasp. Computer models of SES are intended to enable 

policymakers to make better-informed decisions in the face of their highly complex subjects 

(Castro et al., 2020; Filatova et al., 2013; Lippe et al., 2019). 

Agent-based modeling (ABM) is one such paradigm for modeling SES. ABMs are unique in 

several ways, most notably their ability to model detailed, heterogeneous, behaviourally rich 

agents (people, organizations, governments, environmental hazards, etc.) (Filatova et al., 2013). 

Thus, ABMs are generally considered to more closely resemble reality than closed-form 

alternatives like computable general equilibrium models. However, this comes at the cost of 

additional challenges in design, execution, and output analysis (Lee et al., 2015; Filatova et al., 

2013). ABMs are also often stochastic models, meaning there is an element of randomness in a 

model’s behaviour; they must be run several times—even with the same structure and parameter 

settings—to evaluate the range of its possible outcomes. 

Tipping points are a hot topic in the world of climate policy, which means they are a hot topic in 

the world of SES modeling. In brief, tipping points are the thresholds whose crossing are 

associated with abrupt regime shifts in a system’s behaviour (Horan et al., 2011). The Global 

Tipping Points Report was released at last year’s COP28 (Lenton et al., 2023). Included in it was 

not just a review of the known Earth-system tipping points and their impacts, but also discussion 

on the governance of tipping points, science-policy engagement on the topic, and the possibility 

of identifying positive economic and social tipping points that could accelerate the fight against 

climate change (Lenton et al., 2023). 

The use and definition of the term tipping point is often disputed. Generally, it refers to a rapid 

(and often snowballing) change brought on by crossing a threshold; importantly, the change must 

be a large one, often to an entirely new state or dominant behaviour (van Nes et al., 2016). One 

research focus has been on identifying or anticipating tipping points in complex real-world 

systems (Scheffer et al., 2009; Scheffer et al., 2012). In 2016, Filatova et al. called for the pursuit 

of better statistical methods for searching for tipping points in complex SES using model output 

data, such as those gathered from ABMs. 

An important concept in the field of model-based policy analysis is that of a scenario. The most 

common example might be the SSP/RCP scenario framework, which is used in almost all large-

scale climate change studies (O'Neill et al., 2020). A scenario is a plausible future, drawing the 

link between an expected system behaviour and the conditions under which it occurs. There are 

numerous approaches to scenario development, with differing degrees of qualitative and 

quantitative influence (Wright et al., 2020). In essence, scenarios can be seen as an output of the 
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model analysis process and an input to the policymaking process: analysts equip policymakers 

with an understanding of the breadth of plausible futures (and their implications), and 

policymakers use this understanding to inform their decisions. It is important to remember, though, 

that scenarios can also be used as part of the model-based policy analysis process itself.  

If a scenario can be conceived as a possible future (or set of futures), it must inherently be 

characterized by some unifying condition or behaviour. Perhaps a terrible thing happens, like the 

economy in a region collapses due to frequent flooding, and people are forced to move away. 

Perhaps a good thing happens, like a breakthrough in battery technology leading to rapid 

transition towards electrification across several sectors and emissions dropping faster than 

otherwise anticipated.  

In this way we can see a connection between the concept of a scenario and the concept of a 

tipping point: a tipping point could be seen as the conditions at which a system transitions from 

one scenario to another. One’s instinct might be to think of this in terms of time passing, that is, 

as we move forward in time, conditions change, and we transition (perhaps rapidly and abruptly, 

like when crossing a tipping point) to a new state. However, it is more helpful to think of these 

transitions in terms of the changing conditions themselves: the frequency of flooding has 

increased, or the quality of battery technology has increased.  

Often, we do not have perfect knowledge of important quantities or conditions like these. Many 

quantities that characterize complex systems like SES are impossible to perfectly know or are 

subject to political or scientific disagreement. Even the structure of many SES can be similarly 

disputed. This unknowability is often termed deep uncertainty—situations where planners cannot 

perfectly know, precisely define, or agree upon how to characterize a system’s structure, 

behaviour, or present and future states (Lempert, 2003; Walker et al., 2013). When translating 

complex systems into models, deep uncertainty manifests as a range of unknowns surrounding 

variables and structures critical to the model (Kwakkel & Haasnoot, 2019; Moallemi et al., 2020). 

In 1993, the term exploratory modeling was introduced as a philosophy for modeling under such 

uncertainty (Bankes, 1993). Contrasted with traditional “consolidative” modeling where 

computational models are expected to predict how the real-world future unfolds, this is the use of 

models to explore the impact of the assumptions made in their construction, parametrization, and 

execution (Bankes, 1993). In the modern day, the field that has taken up Bankes’s mantle of using 

models to address policy questions under such conditions is known as Decision Making under 

Deep Uncertainty (DMDU).  

Thus, if scenarios map a set of conditions to an expected behaviour and SES are characterized 

by a deep uncertainty—an unknowability of their exact conditions—then we can conceive of a 

tipping point as the transition between possible scenarios, regardless of whether those are 

possible futures or possible presents. It is with this framing that this study will attempt to uncover 

tipping points in SES. 
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1.1 Research Gap 

Just as scenarios can be used by policymakers in decision-making, so too can they be used by 

policy analysts for model-based policy evaluation. Elsawah et al. (2020) call for further research 

addressing the challenges of using scenarios as both the processes and the products of SES 

modeling. Amongst others, they identify two key challenges: the need to improve the visual 

communication of scenarios and the need to better bridge the gap between scenario development 

and decision-making. Linking the concept of tipping points to scenario analysis is one way to 

address the latter. As with all things in model-based policy analysis, finding effective ways to 

visually communicate results aids their impact, and thus visually communicating scenarios and 

tipping points together will be important.  

One DMDU method that uses the concept of scenarios is scenario discovery, which exploits a 

model’s uncertainty space (i.e., the range of parameter and structure options) to search for stand-

out scenarios that may be of interest, and the conditions under which they occur (Bryant & 

Lempert, 2010; Jafino & Kwakkel, 2021; Moallemi et al., 2020). Given that this method explores 

a system and defines a set of key scenarios, it is natural to expect that it can also be used to 

explore the system’s tipping points. 

Furthermore, ABMs are often used in a manner that resembles what Bankes called consolidative 

modeling (Bankes, 1993). Though many ABM studies do consider uncertainty, often in a model’s 

parameters, the full consideration of deep uncertainty is often missing from both model designs 

and the policy studies that use them. On the other hand, exploratory modeling approaches are 

often demonstrated on simpler deterministic models that lack the stochasticity and behavioural 

complexity of many ABMs. Thus, the two worlds do not meet as often as one would expect. 

This thesis intends to contribute to the social goal of identifying tipping points in SES with the two 

technical fields of ABM and DMDU by bringing recent advancements in scenario discovery to a 

complex ABM of a real-world, policy-relevant system. Both ABM and exploratory modeling studies 

are often critiqued (compared to their alternatives) due to the computational resources required 

to carry them out. Thus, marrying the two paradigms comes with several computational 

challenges and trade-offs.   

1.2 Research Question 

The above research gap motivates the following main research question: 

(RQ) How can scenario discovery be used in complex ABMs to uncover 
information about tipping points in human-Earth systems? 

This research question stands between two sub-fields of study. On the one hand, it must stand 

out from other recent advancements in scenario discovery methods. On the other, it must 

demonstrate that scenario discovery is both feasible in and adds a new element to ABM output 

analysis in a way other methods do not. This motivates the two sub-questions: 
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(SQ1) Which recent advancements in scenario discovery enable its use for 
exploring and discovering tipping points? 

(SQ2) How can scenario discovery enable effective communication of 
tipping points? 

(SQ3) How can scenario discovery be applied to the outputs of complex 
ABMs, which are often stochastic and can have many output variables, 
each with possible spatial and temporal dimensions? 

These sub-questions address the main research question from opposite sides. The first is about 

surveying recent progress on scenario discovery methods from the field of DMDU and using them 

to develop a method for tipping point identification. The second follows up and, assuming tipping 

points can be discovered, looks at how they can be communicated. It is inherently a visual 

question: scenario discovery visualizations are often suited for a technical audience who 

understands the underlying techniques and algorithms, but to bridge Elsawah et al.’s scenario-

decision making gap, these visualizations must be adapted to a more general audience (2020). 

The goal should be to create visuals that are clear enough for a non-technical decision-maker to 

look at and quickly enough grasp the conditions and/or implications of a tipping point. 

The third sub-question is about surveying the challenges of using scenario discovery with ABM 

data, including the spatio-temporal dimensions of ABM output data and the stochastic nature of 

ABMs themselves. Stochasticity increases model complexity and requires running (and thus 

analysing data from) many more model runs to extract salient information. It is difficult to assess 

the stopping point for adding more replications to an ABM with chaotic, non-linear outputs, and 

even more so under deep uncertainty, where the effect of stochasticity might change across 

different portions of the uncertainty space. 

1.3 Research Relevance 

1.3.1. EPA Relevance 

This research is highly relevant to the EPA curriculum. Both ABMs and DMDU methods are a 

core part of the modeling and simulation line of the curriculum, each having at least an entire 

module dedicated to their exploration. It is the uniquely prepared skillset of an EPA graduate to 

be able to understand and contribute to the literature in both fields. Methodologically, this thesis 

finds its home perfectly within TPM and EPA.  

Methods are not the whole picture, though. EPA is about solving complex, many-actor problems 

and addressing global grand challenges. Uncovering tipping points in human-Earth systems is 

critical to understanding our ability to protect both ourselves and the environment as climate 

change and its impacts worsen. Tipping points like the ones studied in this paper are of critical 

importance to policymakers. Uncovering the conditions under which populations are expected to 

rapidly retreat from coastal regions, or under which people stay in coastal regions but intra-
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regional inequality runs rampant, are key pieces of information that decision makers can use to 

protect those populations. To make the best policy decisions, we must understand as much as 

possible about the conditions and drivers of those possible futures.  

1.4 Research Pipeline 

Figure 1-1, below, breaks down the work done for this Thesis and indicates the structure of the 

document. In this section and the next one, initial research was performed to generate knowledge 

of the literature and identify the research gap to be addressed. Section 3 then covers the methods 

used in this research: first, a review of the CRAB model, the case study to which the scenario 

discovery method is applied; second, an explanation of the experimental design used in this study; 

and third, an explanation of the use of behaviour-based scenario discovery for identifying tipping 

points. Then, Section 4 covers analysis and results. Initially, results are inspected using Visual 

Analysis, in Section 4.1. Then Section 0 applied traditional sensitivity analysis to explore the input-

output relationships in the model and demonstrate the common use of uncertainty analysis in 

ABM studies. Then, Section 4.3 validates that the experimental design used is fit to adequately 

address the research questions. Finally, Section 4.44.3 comprises the meat of this study, the full 

behaviour-based scenario discovery pipeline and its results. Section 5 then reflects on the impact 

of the results and the promise of the presented methods, noting especially how these methods 

can be improved in future work. Finally, Section 6 concludes. 

 

Figure 1-1: A visualization of the full research pipeline taken in this document. Attached to each box is the section of 
this report in which it is written about. 
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2 Key Concepts 
2.1 Tipping Points and Regime Shifts in SES 

The history of tipping points research focuses on tipping points in physical systems, like the 

melting of polar ice. For example, Lenton et al. (2008) identified a list of policy-relevant tipping 

elements in climate systems, including several major forests and ice sheets. However, several 

researchers have also discussed the topic in association with both purely social systems and 

SES.  

Filatova et al. (2016) review approaches to using complex SES models to explore regime shifts— 

“significant, persistent changes” (p. 333) in a system, often due to a change in conditions enabling 

new dynamics in the system. They propose several criteria assessing how well a given modeling 

approach can capture these shifts and identify that many models do not consider these criteria, 

suggesting a need to develop capacity for considering regime shifts in modeling. Milkoreit et al. 

(2018) conduct a literature review to find and compare definitions of tipping points in SES 

scholarship. They ultimately propose 23 characteristics, including external causes, multiple 

causes, and multiple stable states. The characteristic of external causes is interesting, as some 

other research presents tipping points due to endogenous process and amplifying feedback (Dietz 

et al., 2021; Barnard et al., 2021; van Ginkel et al., 2020). This difference indicates the existence 

of two types of tipping point, one triggered by external forces and one in response to endogenous 

changes. 

Otto et al. (2020) study positive tipping points, seeking to uncover “social tipping interventions” 

that represent shifts towards rapid reductions in net emissions. In this light, tipping points are seen 

as just moments of major shift, not strictly moments of rapid collapse. van Ginkel et al. (2020) 

similarly look at climate change-induced tipping points in socio-economic systems (socio-

economic tipping points or SETPs) and identify 22 such tipping points that could be relevant to 

the policy arena in Europe. One such tipping point is migration induced by sea level rise (SLR). 

Based on expert opinion, they suggest that a transition to mass migration from coastal regions 

may be more likely to be triggered by a single extreme event than a gradual rise in SLR. They 

also comment on the complexity of such a system, noting that the adoption of private adaptation 

actions (i.e., household floodproofing) may cause the whole system to reconfigure and behave 

differently. They call for further research, including the development of dynamic models to study 

SETPs, a more tangible study of the impacts of crossing SETPs, and investigation into the role of 

mitigatory policy in dampening the likelihood and impacts of crossing SETPs. 

Though an inherent feature of regime shifts and crossings of tipping points is their rapid onset, 

Scheffer et al. (2009) propose that there are generalizable early-warning signals when a system 

is nearing a tipping point. One such indicator is a significant increase in the autocorrelation of a 

critical outcome just prior to its tipping. Another study Scheffer cites suggests that rapid flickering 

between overall states or regimes often precedes tipping. Some of these signals, such as state 

flickering, were found across systems with little similarity. The authors point out that one need not 

have a good understanding of a system’s mechanisms and dynamics to recognize these warning 
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signals. This suggests the possibility of algorithmically searching for these warning signals in 

model results. 

Many of the above studies fall prone to the trap of thinking about tipping as occurring 

intertemporally in a single timeline: i.e., within a single model execution. van Ginkel et al.’s (2022) 

study on identifying climate change-induced SETPs lays this out most clearly, by characterizing 

model runs using a meta-metric indicating whether an SETP occurred: for each timeseries 

outcome of interest in the modelled system, evaluate whether, during a single model run, there 

was ever an abrupt change from one stable state (i.e., level) to another. First, this paper supposes 

that system state is a function of a single endogenous variable, rather than a combination of 

several. Second, its conception of tipping points, while intuitively accessible, is not the only 

framing.  

An alternative way to conceive of tipping points in complex systems can be found in Gualdi et al. 

(2015). Here, the authors’ use of phases and borrow the notion of phase diagrams, phase 

transitions, and critical points from physics. Rather than searching for tipping within a time-series 

describing a single model run, they look for tipping within the model’s parameters. The example 

they provide defines two distinct system states—a “good” economy with low unemployment, and 

a “bad” economy with high unemployment. Figure 2-1(a), below, shows how the model transitions 

between states as a specific parameter varies. This framing of tipping as phase transition works 

well in a highly parametrized model, such as one designed for study under deep uncertainty. 

 
Figure 2-1: (a) Demonstration of a tipping point in a model's parameter space, showing unemployment (y-axis) as a 
function of the interest rate. (b) The physical concept of a phase diagram. Taken from Gualdi et al. (2015). 

The analogy of a phase diagram is important, as it enables the linking of scenario thinking to 

tipping points. Using this analogy, a scenario or model state stands in for the physical notion of a 

phase: instead of water being a gas at a high temperature provided pressure is not too high, a a 

city’s population might be in an acceptable state of steady growth if unemployment is low and 

local businesses are thriving. Gualdi et al.’s (2015) notion of phases in an ABM already closely 

mirrors that of a modelled scenario. 
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2.2 Scenario Discovery 

Scenario Discovery describes an approach to exploratory modelling that seeks to identify the 

conditions under which specific outcomes of interest occur (Moallemi et al., 2020). Broadly 

speaking, there are three steps involved in scenario discovery (Steinmann et al., 2020): 

(1) Measurement, i.e., collecting output data from a model-based experiment, running the 

model across enough samples to sufficiently cover its reasonable operating space. 

Samples here are usually points in the model’s parameter space but can cross multiple 

candidate structures as well. In the case of stochastic models, model replications are 

usually aggregated to a single measure per sample, for example by averaging. 

(2) Identification, i.e., using model output data to identify scenarios of interest. This is 

traditionally a binary classification—a scenario can either be of interest, or not (Kwakkel & 

Jaxa-Rozen, 2016). There is also multiclass scenario discovery, where scenarios are put 

into several groups according to their measured outcomes, and any number of those 

groups may be of interest to an analyst. In essence, this step compresses the full scope 

of outcomes measured for a given sample point into a single scalar value. 

(3) Rule Induction, i.e., using algorithmic methods to associate each identified class from 

Step 2 with “rules” in terms of the model’s parameter space. These are often expressed 

as ranges of values in some or all of the model’s input variables ranges. 

Analysts can then combine model outcomes covered by each identified class (Step 2) with their 

associated rules (Step 3) to create (“discover”) simplified, representative scenarios for use in 

policy analysis and decision making (Wang et al., 2013). In some cases, further translation of the 

numerical results (i.e., parameter ranges associated with outcome levels) to qualitative narratives 

could be considered a fourth step of scenario discovery (Lamontagne et al., 2018). By narrowing 

the full experiment set into a smaller set of qualitatively distinct scenarios, this brings the results 

of an exploratory modeling experiment more in line with the traditional qualitative process of 

scenario development (Carlsen et al., 2016; Greeven et al., 2016). 

There are several decisions analysts can make in each of the three steps that differentiate 

scenario discovery approaches. Bryant and Lempert’s (2010) original scenario discovery paper 

measured a single scalar-value outcome for each experiment and denoted scenarios of concern 

using a simple threshold—the 90th percentile of the outcome across their experimental design. 

This threshold approach is the traditional approach to binary class identification. As they discuss, 

some policy environments lend themselves well to such a threshold, for example due to a budget 

constraint. The choice of identification scheme—i.e., what makes an outcome of interest—has 

great influence on the results and meaning of an scenario discovery study. Finally, they use the 

Patient Rule-Induction Mechanism (PRIM) to algorithmically determine a “rule” defining which 

portions of the parameter space are associated with the scenario of interest. PRIM produces such 

a rule in the form of a many-dimensional box; for example, Parameter A might need to be in the 

lower half of its range for a scenario of interest to occur, while Parameters B and C can take on 

any value. In this case, the discovered box is a 3D cube comprising half the original parameter 

space. They propose two performance metrics for such a box: coverage, which is the proportion 

of cases of interest that are indeed in accordance with the rule (i.e., fall within the box); and 

density, which is the proportion of cases in accordance with the rule that are indeed of interest. A 



15 
 

density of 80% implies a 20% false positive rate, while a coverage of 80% implies a 20% false 

negative rate. Coverage and density typically come at a trade-off; an optimal rule tries to maximize 

both. The induced rule can be interpreted as the scenario in which the outcome of interest is most 

likely to occur. 

There have been two primary improvements on Bryant and Lempert’s method that are relevant 

to this work. First, several studies have achieved multiclass scenario discovery by clustering 

model runs according to similarities in their outcomes (Wang et al., 2013; Steinmann et al., 2020; 

Jafino & Kwakkel, 2021). This can help deepen analysis by differentiating several distinct 

outcomes of interest. For analysts, it shifts the responsibility of identification from an a priori 

measure like a threshold, which can be arbitrary (e.g. Bryant and Lempert’s choice of deeming 

the 90th percentile cost “unacceptably high (2010, p. 40)), to a statistical algorithm. The latter 

imposes the additional burden of analysing and explaining the outcomes associated with each 

cluster (Jafino & Kwakkel, 2021). Jafino & Kwakkel (2021) also explore how the choice of 

clustering algorithm affects results, deciding on the K-means method for their study, and explore 

the use of an algorithm that enables concurrent clustering and rule induction.  

For multiclass scenario discovery, several papers have discussed the performance metrics of 

input- and output-space separability (Jafino & Kwakkel, 2021; Steinmann et al., 2020). These 

refer, respectively, to the ability to distinguish between the parameter constraints of the induced 

rules for each cluster, and between the clusters themselves. Input-space separability can be 

evaluated by the number of input samples that fall within the input region associated with another 

cluster (Steinmann et al., 2020). Output-space separability can be quantified by the ratio of within-

cluster distances to between-cluster distances (Jafino & Kwakkel, 2021). A set of classifications 

and their associated rules (or scenarios) perform well when both types of separability are 

maximized.  

Second, (Steinmann et al., 2020) use scenario discovery methods to study the behaviour 

dynamics of a model outcome. That is, by clustering model runs according to a timeseries output, 

they switch from the notion of an outcome of interest to a behaviour of interest. As such, the 

induced rules (and thus scenarios) that result from the scenario discovery process are a collection 

of input parameter ranges each associated with certain classes of model behaviour. 

Other improvements to Bryant & Lempert’s original work include the exploration of alternative rule 

induction algorithms. Several authors, including (Jafino & Kwakkel, 2021), use some variation on 

Classification and Regression Trees (CART) as a means of inducing rules and defining scenarios. 

Other authors rely on visual tools like dimensional stacking (Suzuki et al., 2015). Indeed, there is 

an entire field of data science beyond the world of DMDU that studies rule induction algorithms 

(Grzymala-Busse, 2023).  
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3 Methods 
3.1 CRAB Model 

To demonstrate scenario discovery as a method for discovering, explaining, and communicating 

tippint points in complex SES, this study will use the CRAB model as a case study. The CRAB 

model, introduced by Taberna et al. across a series of papers (Taberna et al., 2021; Taberna et 

al., 2023; Taberna et al., 2023), captures a detailed regional economy with three economic 

sectors—capital goods, consumption goods, and services—and uses survey data to characterize 

household adaptation behaviours. It was developed as part of the European Research Council’s 

SCALAR project, which seeks to bring information about micro-level behaviours from social 

science to macro-level climate-economy simulations (ERC Scalar, 2020). Figure 3-1, adapted 

from (Taberna et al., 2023), illustrates the model’s structure. 

 

Figure 3-1: Visual summary of the CRAB model. Taken from Taberna et al. (2023) 

The left-side box in Figure 3-1 explains the economic activity present in the CRAB model. Capital-

good firms sell machines to consumption good and service firms. Over time, they also invest some 

of their revenue into R&D, producing better technology that firms then buy when they need to 

replenish, upgrade, or expand their capital goods stock. Households supply labour to all three 

types of firms, earning wages accordingly, and consume goods and services from those firms. 

Households and firms both pay taxes to the government, which are used to subsidize household 

flood adaptation investments.  

Firms can dry-proof their facilities, choosing to do so based on a purely rational, discounted 

expected utility calculation. Households can choose to dry-proof, wet-proof, and/or elevate their 

homes, with their likelihood to do so determined according to their risk perception, worry, and 
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preferences between each intervention type. These traits are assigned according to distributions 

gathered from a survey of households in a real-world coastal region, though some change over 

the course of a model run. Households also interact with and learn from their neighbours, adopting 

some of their traits or being more likely to invest in adaptation if those in their social network also 

do so. The box on the right-hand side in Figure 3-1 explains these behavioural traits. 

The synthetic, heterogeneous population of households and firms are varyingly exposed to the 

risk of floods, emulating the effects of a spatial distribution of flood risk without incorporating an 

explicitly spatial element in the model. When a flood occurs, damages are calculated using 

calibrated data from a real-world region, and firms and households must commit savings towards 

repairs either by limiting their consumption or redirecting funds intended to be saved for 

investment in adaptation.  

For this initial experiment, it is assumed that one flood of a fixed intensity will occur at some point 

in the model’s execution, with variable timing. Thus, one could consider the underlying system to 

be that of a flood-exposed coastal region, not just one with rising flood risk.  

Finally, households can migrate in and out of the coastal region. This is done mostly according to 

changes in the region’s wages and employment prospects and is not tied to households’ 

behavioural traits. Firms enter the market when there is sufficient opportunity and exit when they 

go bankrupt. Thus, CRAB is effectively able to model coastal retreat, i.e., adapting to rising flood 

risk by choosing to leave a coastal area (Haasnoot et al., 2021). 

3.2 Exploratory Modeling 

All code used for the modelling and analysis in this report is available here and archived here 

(Sher, 2024a).  

3.2.1. Experimental Design 

To assess the relationship between model inputs or modelling choices on the outcomes of a 

model, exploratory modeling studies seek by nature to cover a wide range of model formulations. 

The differences between these formulations can be structural (a fundamental difference in the 

assumed behaviour of the underlying system), parametric (a difference in the level of a parameter 

used to calibrate or characterize the model, often considered an input to the model), or stochastic 

(all else held equal, the difference in outcomes is purely due to random effects inside the model’s 

behaviour). Thus, analysts and exploratory modelers must design experiments that effectively 

cover the range of uncertainties they wish to explore. 

The Exploratory Modeling & Analysis (EMA) Workbench provides a convenient environment in 

Python to generate intelligent experimental designs and iterate through many runs of a model 

(Kwakkel, 2013). The Workbench uses the XLRM framework for defining model structure: a model 

is defined by the eXogenous factors, policy Levers, and Relationships within the system it models, 

as well as the Measures of system performance. X and L could be considered model parameters: 

these are inputs that influence how the model performs. R could be considered model structure. 

M refers to the measured variables that serve as indicators for the outcome of a model run. Any 

https://github.com/ghsher/CRAB_EM
https://zenodo.org/doi/10.5281/zenodo.13365139
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model programmed in Python can be used with the Workbench if you explicitly identify X, L, and 

M (as R is the programmed model itself). For this study, X and L are taken together—it is of less 

importance whether the studied uncertainties are exogenous factors to be monitors or are levers 

controllable by meta-actors in the system (e.g., the coastal region’s government). 

The CRAB model was adapted for this study to expose several assumed values as input 

parameters. Table 3-1 describes these parameters and the ranges across which they were 

explored. The selection of relevant input parameters was informed by several factors, including 

prior observations of parameters influential to the model’s calibration as well as the identification 

of assumed or arbitrarily selected values in the existing codebase and in Taberna’s (2021) paper 

introducing the model. 

Table 3-1: CRAB model input parameters and their ranges used in this study 

Name Description Range 

Debt-to-sales Ratio 
The amount of debt a firm can take on, as 

a proportion of their total sales 
0.8-5.0 [dmnl] 

Wage Sensitivity 

(Productivity) 

The sensitivity of wages to firm 

productivity in the previous timestep 
0.0-1.0 [dmnl] 

Initial Markup 
The markup (pricing) rate for all firms at 

timestep 0 

0.05-0.50 

[dmnl] 

Capital-Output Ratio 
The size of the capital stock a firm 

requires as a ratio of its output 
0.2-0.6 [dmnl] 

Emigration Minimum 

Unemployment 

The minimum unemployment level 

required for people to emigrate from the 

coastal region 

2-8 [% empl.] 

Migration 

Unemployment 

Bounds Range 

The difference between Emigration 

minimum unemployment and the 

maximum unemployment level under 

which immigration to the region can occur  

10-25  

[% empl.] 

DEU Discount 

Factor 

The discount factor firms use in their 

discounted expected utility calculations for 

investing in flood adaptation 

0.8-1.0 [dmnl] 

Flood Timing 
The time after start of model execution at 

which the fixed-intensity flood occurs 

30-80 

[quarters] 

The parameters in Table 3-1 are sampled using a Latin Hypercube sampler, which is an 

alternative to random (Monte Carlo) sampling that enables effective uncertainty analysis using 

smaller sample sizes (Helton & Davis, 2003). For this study, 2000 sample points were taken 

across the parameter space. This number was selected to minimize compute time for an initial 

run while still providing sufficient coverage of the space. The model was run for 40 replications at 

each of the 2000 sample points, using consistent seeding values for the random processes across 

the sample points to ensure comparability. The number of replications for this experiment was 

chosen somewhat arbitrarily according to computational limits afforded me. Its impact will be 

evaluated later in this report, and future experiments should have more considered replication 

numbers. 
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Table 3-2 defines the outcomes that were measured as part of the model’s execution. Each 

outcome of interest is a timeseries, i.e., it is an endogenous system variable measured over the 

course of the model run. Many variables were measured, but for the sake of simplicity only 

Household Population, GDP, and the Gini Coefficient are carried forward for further analysis. In 

line with Milkoreit et al. (2018) and van Ginkel et al. (2020), these simple outcomes are the most 

meaningful ones in which to look for tipping in the economic system of a flood-exposed coastal 

region. 

Table 3-2: Four primary CRAB model outcomes measured in this study. 

Name Description 

Household 

Population 

The total number of households in the coastal 

region, as a time-series 

GDP 
The total productive output of the coastal region, 

as a time-series 

Median Wage 
The median wage across employed households in 

the coastal region, as a time-series 

Gini Coefficient 
A measure of income and wealth inequality across 

households in the coastal region, as a time-series 

A more thorough description of the CRAB model, its behaviours, and its possible parameters can 

be found in Taberna et al. (2021).  

The model is run with a time horizon of 120 quarters, or 30 years. The first five years are used as 

burn-in time, i.e., the data from this period is removed after model execution. This is because the 

model uses this period as a sort of calibration period. Also, not all effects are active during this 

period, as migration only turns on at timestep 20. Data is collected at each timestep—each 

quarter—though for some analysis, it may be resampled to every four timesteps (emulating yearly 

data). 

The high-performance computing cluster DelftBlue was used to carry out the experiments using 

the CRAB model (Delft High Performance Computing Centre, 2024). A single model run takes 

about two minutes to execute, so the 80000 model realizations in this experiment used roughly 

2600 hours of compute time, which ran across 320 cores for roughly 8 hours each. After 

experimentation, model runs were processed as follows: 

• Remove the first 20 timesteps from model execution, representing 5 years in real-world 

time. This acts as a burn-in time, as it is the period before all model functionality is online 

(notably, migration is not enabled until timestep 20). 

• The outcomes for each sample point were calculated by taking the mean across the 

outcomes from each individual replication. To study the effects of stochasticity on model 

performance, the variance and confidence intervals of each outcome at each sample point 

were also measured. 

3.2.2. Visual Analysis 

Once the model runs have been executed and thus the model outcomes measured for each 

sample point, it is time to explore the outcomes as they differ across the parameter space. For 
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this purpose, an interactive, browser-based dashboard was developed for on-demand generation 

of time-series plots, enabling the highlighting or exclusion of certain portions of the parameter 

space. A screenshot of the controls available in this dashboard is included below, as Figure 3-2.  

 
Figure 3-2: Screenshot of CRAB dashboard developed in Dash. The left-hand column allows users to select which 

outcomes to plot. The right-hand column allows users to select which samples to exclude or highlight within the plot. 

The dashboard was developed for visual analysis and open exploration of the output space, 

allowing me and other analysts to explore how changes in the parameters influence the outcomes 

before moving to statistical methods in further steps. It was built in Python using Plotly’s Dash 

package, which is free and open source. Dash provides a useful interface for developing both an 

HTML page and dynamic graphing objects using just Python code. This interface was then 

connected to the model output data generated by running the CRAB model using the EMA 

Workbench. It is implemented such that it should be agnostic to any model data generated with 

the Workbench: it infers the input and output variables and their ranges and uses those to expose 

dynamic controls to the user. Beyond the default range-highlighting mode, the dashboard can 

apply a sequential colour palette to depicted model runs according to a specific input variable of 

choice. If there are any clustering variables represented in the model data tables, the dashboard 

can also group timeseries outputs according to those clusters.  

The primary use case of the dashboard is to look at the portions of the output space associated 

with specific areas of the input space, on demand. One way this could be (and was) used for this 

study is isolating the top and bottom ten percentile cases of samples, in each parameter one at a 
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time. This enables visualizing the effect of extreme input values on model outcome. The 

dashboard enables further exploration of interaction effects, by isolating small portions of the input 

space associated with specific ranges of many input variables at once. Finally, the dashboard 

enables a quick view of the entire output space at once, as a user can see the full range of 

outcomes as well as select and study any arbitrary individual model run. The dashboard is broadly 

useful for initial exploratory analysis of complex time-series model output, though at present is 

implemented exclusively for experiments run using the EMA Workbench (Kwakkel, 2013). The 

source code is available here and archived here (Sher, 2024b). 

3.2.3. Sensitivity Analysis 

Sensitivity analyses are a class of model analysis method that evaluate the influence each model 

input—parameters, in this case—on each model output. In essence, they calculate the degree to 

which input variable contributes to variance in an output variable (Saltelli et al., 2019). Sensitivity 

analysis is typically applied to scalar outcomes. To bring sensitivity analysis to ABMs, whose 

outputs typically have a temporal dimension, several authors have suggested computing 

sensitivity at each time step of the model, creating a time-series measure of input variable 

sensitivity (Magliocca et al., 2018; Ligmann-Zielinska & Sun, 2010). 

A brief sensitivity analysis of the CRAB model is carried out using the feature scoring package 

built into the EMA Workbench. The package measures sensitivity as the proportion of an 

outcome’s variability that is attributable to a specific input. For any given outcome, the sum of the 

sensitivity indices for each input must be 1. The package’s methods are applied to the model 

outcomes once per simulation-year (every 4 timesteps) to assess input variable importance as a 

time-series. 

Sensitivity analysis serves two purposes in this study. First, it acts as the first statistical indicator 

of which input variables might be most responsible for the divergent dynamics of the outcomes. 

Much like visual analysis, this helps the analyst gain an intuitive understanding of the model’s 

behaviour and relationships before moving forward. Second, it can be used as a validation of the 

number of input samples in the experimental design. The time-series sensitivity for each input-

output pair can be computed using an increasing number of samples, and then results can be 

plotted to observe whether the sensitivities converge as the number of used samples approaches 

the total number of measured samples. 

3.2.4. Behaviour-Based Scenario Discovery 

Steinmann et al. (2020) introduced behaviour-based scenario discovery as a way of expanding 

the application of scenario discovery to models with timeseries outcomes, framing scenarios of 

interest based on the dynamics they are associated with, rather than end states. As described in 

Section 2.2, scenario discovery is broken down into three main steps: measurement, 

identification, and rule induction. The Measurement process has already been described in 

Section 3.2.1. The further two steps constitute the scenario discovery-specific analyses used in 

this study. 

https://github.com/ghsher/EMA_OE_Dashboard
https://zenodo.org/doi/10.5281/zenodo.13364651
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3.2.4.1. Time-Series Clustering 

First, runs are grouped based on behavioural similarity in each key outcome. Steinmann et al. 

(2020) perform univariate clustering, meaning each outcome variable is associated with its own 

set of clusters. This makes the clusters relatively easy to interpret, validate, and understand, as 

visualizing each cluster against the whole set of time series should highlight their distinct features. 

Multivariate time series clustering is more complex to compute, visualize, and interpret, but 

several methods exist (Zhou & Chan, 2014; Singhal & Seborg, 2006; Li & Liu, 2021). Using 

multivariate time series enables clusters to represent richer and more meaningful model states, 

but analysts must spend more time studying the clusters and ensuring that the clusters represent 

qualitatively distinct, real-world phenomena. This relies a bit on a priori knowledge of the system 

being modelled. To simplify analysis, this study will rely on univariate clustering.  

Steinmann (2018) compared several similarity metrics for use in time-series clustering of complex 

systems models. They selected Complexity-Invariant Distance (CID) (Batista et al., 2014), a 

measure that uses the Euclidean distance between same-time values in each pair of time-series 

weighed according to the time-series’ complexity. The latter step is taken to ensure that complex, 

dynamic time-series are not incorrectly considered far away from other time-series even when 

their dynamics are similar. In a different study, Jafino & Kwakkel (2021) compared several 

clustering algorithms for use in scenario discovery. Their conclusions found K-means clustering 

performs better than the alternatives, for the purposes. K-means clustering based on CID is 

already implemented in the EMA Workbench and will be used for this study.  

There are several ways to select K (the number of clusters) when performing K-means clustering. 

This study emulates Jafino & Kwakkel (2021) in using the elbow method. This method performs 

K-means clustering for increasing K values until a set of clusters is found such that moving to the 

next K up and performing clustering again does not sufficiently improve the clusters’ performance. 

Clustering performance here is measured by explained variance, which is a measure of the 

degree to which a set of clusters fully explains the variance in the dataset. The explained variance 

of a set of clusters of size K can be measured as: 

𝐸𝑉𝐾 = 1 −
∑ 𝑆𝑆𝐸𝑘

𝐾
𝑘=1

𝑆𝑆𝐸𝑎𝑙𝑙
 

where 𝑆𝑆𝐸𝑘 is the sum of the squared errors of the members of cluster 𝑘, and 𝑆𝑆𝐸𝑎𝑙𝑙 is the sum 

of the squared errors for the entire dataset (Jafino & Kwakkel, 2021). 

Once a K value is selected, the original experimental results are expanded to save the cluster 

with which each sample was associated. Finally, representative samples are selected from each 

cluster. This is done by calculating the centroid of each cluster and selecting the sample that 

minimizes the mean-squared-error between it and all other runs in the cluster. 

3.2.4.2. Rule Induction 

Rule induction is performed using the PRIM method as it is implemented in the EMA Workbench. 

The independent variables used in the PRIM process are the model parameters described Table 

3-1, i.e., the dimensions which PRIM looks to restrict. The dependent variable is the cluster to 
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which a given input sample belongs. This version of PRIM requires the dependent variable to be 

a binary variable, thus PRIM is run separately for each cluster, and cases are marked as in or out 

of that cluster. Ultimately, a rule will be generated to explain each cluster of model outputs, 

expressed in terms of the model’s input parameters—loosely, a scenario.  

PRIM’s primary output is a sequence of candidate rules, each represented by a set of restricted 

ranges within the model’s input parameters. These restrictions can be visualized as a bounding 

box within the multidimensional input space, so PRIM rules are often called “boxes.” As described 

in Section 2.2, a PRIM box can be evaluated according to its coverage (how many of the cases 

of interest fall inside the box) and density (how many of the cases inside the box are of interest). 

Each box found by PRIM is more restrictive than the last and usually trades off some performance 

in terms of coverage for added performance in terms of density. Thus, we must decide which 

boxes to select such that we maximize coverage and density. As a rule of thumb, we will try to 

select boxes that maintain a coverage above 80%: the rule needs to be able to explain at least 

80% of the cases that fall within a given cluster. However, we will manually study the coverage-

density trade-off of each sequence of PRIM boxes to ensure an adequate choice is made. 

Each selected box from PRIM defines a portion of the parameter space associated with a 

qualitatively distinct behaviour: together, these make a scenario. If the model and experiment 

have been designed correctly, the set of scenarios for each cluster provides an analyst with the 

full set of behaviour scenarios possible in this system (at least in terms of the outcome(s) of 

interest). Amalgamating the rules for each of these scenarios forms a sort of function that maps 

the model’s parameters to an expected dynamic system behaviour.  

Ideally, only a small number of input dimensions are restricted across the amalgamated set of 

rules. This aids both comprehensibility and visualization. 

3.2.4.3. Identifying Tipping in the Parameter Space 

In essence, we have first defined the system’s phases (by performing clustering on its outcome 

dynamics) and then identified which parameters are key predictors of that phase, and how so (via 

rule induction). While this is where traditional scenario discovery may end, this study seeks to 

then find tipping points, i.e., points at which the system tips from one expected behaviour to 

another. In other terms, we are looking for the conditions under which a realization of a system 

stops belonging to one scenario and begins to belong to another. 

With this framing, the use of the phase diagram becomes clear. Plotting the mapping function 

described in Section 3.2.4.2 would produce the system’s phase diagram. Then, we can look at 

the boundaries between phases to find points in the model’s parameter space where the system 

changes phase: a tipping point. However, just as with traditional scenario discovery, the job is not 

finished without further analysis. It is unhelpful to generate a phase diagram and suggest that that 

defines all relevant tipping points in a system. Practically, phases could be overlapping (i.e., there 

could be bad input space separability between the phases (Jafino & Kwakkel, 2021)) or there 

could be large gaps in the phase diagram, preventing the easy interpretation of tipping points. 

Additionally, one must relate the results back to the real-world system under study and attempt 
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the causes and implications of the tipping point, as well as how we might look out for it in the real 

world.  
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4 Results & Analysis 
This section will use the CRAB model to demonstrate the methodology for discovering tipping 

points described above in Section 3. For this demonstration, the output variable Household 

Population will be used as the focus of study. This variable serves as an indicator of the overall 

performance of a coastal region. As coastal denizens increasingly consider the option of retreat 

(i.e., migrating away from coastal regions), it is important to understand the conditions under 

which coastal regions are still able to maintain or grow their populations, and the conditions under 

which their populations collapse. The latter is important to know so that governments can prepare 

for coastal retreat by investing in support for migrants as well as ensuring services are provided 

for all citizens, even as populations shrink. Similar analysis applied to the GDP and Gini 

Coefficient (inequality) outcomes can be found in the Appendix. 

Part of the reason for this single-variable focus is that the clustering performed in this process 

relied on a univariate clustering algorithm. As discussed in Section 3.2.4.1, multivariate clustering 

is a powerful explanatory tool, but it is both computationally more expensive and requires more 

effort to translate into tangible scenarios. Future versions of this research should be carried out 

using multivariate clustering.  

Alongside the results for the main set of model runs, we will present the results of a set of 

simulations run at the same set of input samples but with a modified model that produces no 

flooding. This might provide an additional way to isolate the effect of the flood itself and explain 

the results of the model runs. 

4.1 Visual Analysis 

For an initial exploration of potential tipping in CRAB’s parameter space, the processed model 

data was loaded into the interactive, browser-based dashboard developed for open exploration 

of timeseries data, as described in Section 3.2.2. Figure 4-1 shows the 2000 timeseries outcomes 

plotted together with different highlighting rules, and Figure 4-2 shows the same outcomes for the 

no-flood run. 

It is clear from this initial analysis that some parameters—in this case, the initial markup rate—

have a stronger influence on the dynamics of the population outcome than others. The top 10 

percentile of cases by initial markup comprise a group of model realizations with highly similar 

dynamics. It is expected that this parameter might be predictive of a cluster in this Household 

Population outcome. 
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Figure 4-1: 2000 realizations of the Household Population outcome of the CRAB model. The highlighting in (a) and (b) 
reflect the top and bottom 10 percentile cases in terms of the initial makup parameter, respectively. (c) and (d) are 
highlighted according to the flood timing parameter. (e) and (f) are highlighted according to the capital-output ratio. 

We can study the model runs generated at the same sample points but without flooding to get a 

sense of the role of the flood on the performance of the model: 

 
Figure 4-2: 2000 realizations of the Household Population outcome of the CRAB model, run with no flooding. (a) reflects 
the top and (b) reflects the bottom 10 percentile cases in terms of the initial markup parameter. 

Initially, the lack of flooding seems to minorly decrease the dispersion of model results (seen most 

notably around timestep 20), implying that flooding does have at least some effect on the model 

behaviour. In Figure 4-1 and Figure 4-2, the flood can first occur at timestep 10 (per Table 3-1, 

flooding starts at timestep 30, but a 20-step burn-in time has been accounted for before creating 

these plots). 
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4.2 Sensitivity Analysis 

The subplots in Figure 4-3 shows the timeseries sensitivity of the outcomes named on the y-axis 

to each parameter. 

 
Figure 4-3: Time-series sensitivity of each key outcome to each input parameter in the CRAB model. 

Again, the Initial markup parameter dominates. Its importance is most clear in the Household 

Population and GDP outcomes, where it remains significantly more important than other factors 

across the time horizon. For Gini Coefficient and Median Wage, however, its importance wanes 

as the model run advances. This makes sense, as it is a parameter that sets the initial value of a 

variable which then changes endogenously. In both cases, the Sensitivity of wages to productivity 

parameter overtakes it in importance as time goes on. This also makes sense, as this parameter 

dictates how wages are reset at each timestep, and thus its influence compounds as model time 

goes on. The Gini Coefficient is partially calculated based on the distribution of wages across the 

population, so it is expected that both it and Median Wage would be sensitive to a parameter that 

informs wages. 

It is notable that in at least two of the outcomes, the sensitivity to each parameter changes 

drastically over time. This implies that the parameters predictive of a variable’s level at a given 

timestep may change over time. This does not, however, address which parameters are predictive 

of an outcome’s dynamics or behaviour across the entire time-series. For that, we must turn to 

behaviour-based scenario discovery. 
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According to sensitivity analysis, the model behaves relatively similarly when flooding is taken 

out, per Figure 4-4, below. A key difference is illustrated by the factors with high influence on 

inequality (Gini Coefficient, top right) in the later stages of the time horizon. In the flooded version 

of the CRAB model, Flood timing is an important factor to inequality, so in the unflooded version, 

its influence on the outcome is distributed across the other factors, notably as lingering importance 

for the Initial markup parameter. However, the dominant control behaviour remains: for most of 

the model run, the Initial markup parameter is most important to three of the four key outcomes. 

Only the Sensitivity of wages to productivity factor begins to become meaningfully influential near 

the end of the model run, and in that, only for two of the four outcomes.  

 
Figure 4-4: Time-series sensitivity of each key outcome to each input parameter in a version of the CRAB model without 
flooding. 

4.3 Validation of Experimental Setup 

Before we can use the above results to make claims about the relationships between uncertainties 

and outcomes in the CRAB model, we must validate that the experiment considers a sufficient 

portion of the model’s uncertainty space.  

4.3.1. Selection of sample size 

Sensitivity analysis already provides a measure through which we can evaluate the strength of 

an individual input’s influence on a model outcome. As more samples are used (and thus more of 

the model’s parameter space is covered), these sensitivities should converge towards their true 

values. Thus, we can observe how input sensitivity changes as more samples are added to 
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validate the final number of samples used. Figure 4-5 presents such a plot. Each subplot shows 

the time-series sensitivity of Household Population to the input parameter named on the y-axis. 

The lines represent the time-series sensitivities using sample sizes increasing by a step of 100, 

with larger samples shown using brighter lines. This method exploits the feature of Latin 

Hypercube sampling where each N+1th sample fittingly expands the space covered by the 

previous N samples as if the size had been N+1 from the start. 

  

Figure 4-5: Convergence of input sensitivities as the number of samples increases. The y-axis denotes the importance 
of  the named parameter to the outcome of interest, Household Population. Note the lack of shared y-axis. 

This method is in part adapted from the tendency in ABM literature to select the number of 

experiment replications where output variance coefficients begin to converge (Lorscheid et al., 

2012). Rather than looking at the variance across a set of replications, we look at the sensitivity 

across a set of sample points. Since the model is expected to behave differently at different 
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portions of the parameter space, sensitivity serves as a better basis than variance for an 

information convergence check as sample size increases. 

As is visible, sensitivity begins to converge at around 1000-1200 samples; the sensitivity time-

series for Nsamp=2000 are not so different from those with Nsamp=1000. Interestingly, only for 

init_markup—the most explanatory variable—does sensitivity increase as sample size increases. 

This suggests that, at small sample sizes, the effect of important variables cannot be as clearly 

distinguished, and some of the outcome variability that should be attributed to init_markup is 

instead distributed across the other parameters.  

4.3.2. Selection of number of replications 

For this study, the input space is the cross between the CRAB model’s parameter space and its 

stochastic variability. Though the main analysis of this study combines replications into one 

realization per sample point, and thus does not treat stochastic uncertainty as an explanatory 

variable, it is still important to ensure enough replications are used to cover the range of model 

behaviours across stochastic replications. 

One way to measure the size of the effect of stochastic uncertainty on combined model 

performance is via the time-series variance of each key metric. Variance is a statistical measure 

of a variable’s deviation from its mean. High variance means that, at a given sample point, the 

model’s performance is highly sensitive to stochastic uncertainty. Low variance means that, at a 

given sample point, the model behaves relatively similarly across all model replications. As the 

number of replications grows and thus the range of distinct model behaviours is increasingly 

covered, variance should converge. Figure 4-6, below, shows how variance in Household 

Population converges as the number of replications increases. The subplots show variance 

convergence at six different sample points which display qualitatively distinct dynamics in the 

Household Population variable. (In fact, they are the points identified as being representative 

samples for each of the clusters of that variable’s dynamics, which will be identified in Section 

Number).  
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Figure 4-6: Convergence of time-series variance in Household Population outcome across an increasing number of 
replications. Variances are calculated at six different input samples, selected to be representative of each discovered 
cluster (scenario). 

Two things are of note. First, the six subplots are, for the most part, visually distinct from one 

another. This implies that time-series variance differs in distinct portions of the model parameter 

space: i.e., the range of stochastic effects changes as the input parameters change. For example, 

Sample 1337 (bottom right) has a much lower and much flatter variance than Sample 740 (top 

right). Second, there are occasionally sudden jumps between subsequent lines in a given subplot. 

This is perhaps most visible in the plot for Sample 1625 (top left), at the end of the time horizon, 

as the lines for 𝑁𝑟𝑒𝑝𝑠 goes from ~30 to 40. This suggests individual replications were introduced 

that are radically different from the prior ones and thus have a large influence on overall variance. 

Given the abruptness with which this occurs, it is hard to assess whether the choice of Nreps=40 

is enough. It is also unclear what would be a sufficient stopping rule using this analysis.  
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4.3.3.  On choosing to combine replications 

To explore more closely the breadth of stochastic realizations in the CRAB model at a given 

sample point, Figure 4-7 presents individual model runs alongside the processed mean as a visual 

indicator of information lost.  

 

Figure 4-7: Aggregated dynamics of Household Population (mean and 95% confidence intervals, shown in blue, taken 
across 40 replications) atop dynamics of individual model replications, plotted separately for each of six sample points. 
Two arbitrary samples are highlighted in pink and green to help demonstrate distinct dynamics. For visual acuity, time-
series have been resampled intertemporally (one value per year, instead of per quarter). The vertical red line indicates 
the timing of the flood for the relevant input sample. 

It is clear from Figure 4-6 and Figure 4-7 that variance in the outcomes of the CRAB model can 

be relatively high, and that there are clearly distinct stochastic realizations of the model, even at 
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the same sample point (for example, Samples 1625 and 740 show wildly different dynamics 

between the two highlighted replications, whereas for the other four sample points, the two 

highlighted replications show more similar dynamics that just differ in level). Thus, some dynamic 

information is lost by taking the mean and processing replications together. In tangible terms, by 

using the average of stochastic replications, we could be looking at outcome behaviours that 

would never occur in reality, as they are the smoothed result of averaging several distinct 

behaviours together. The decision to combine replications is thus largely informed by the trade-

off of realism and computational resources. Further discussion on the implications of this decision 

and ways to address the trade-off can be found in Section 5.2.  

4.4 Behaviour-Based Scenario Discovery 

4.4.1. Time-Series Clustering 

Clustering was performed by first calculating the CID between the Household Population 

timeseries at each sample point and then applying k-means clustering to the sets of distances. 

To select an adequate number of clusters, one can use the elbow method, as discussed in 3.2.4.1. 

We apply this clustering for a range of 𝐾-values (total number of clusters) and select the one after 

which subsequent increases in 𝐾  provide small or diminishing improvements in terms of 

explanatory value. 

 
Figure 4-8: Explained variance and changed in explained variance gained by increasing K, for the Household 
Population outcome. The grey dotted line represents a 5% change in explained variance, the threshold that is used to 
determine an optimal K. 

Figure 4-8 plots the explained variance (a measure of a set of clusters’ explanatory value) in red, 

alongside the change in explained variance in blue. A traditional application of the elbow method 

might select 𝐾 = 3 , as the gain in explanatory value from moving to 𝐾 = 4  falls below the 

threshold of 5% (this is the same value used in Jafino & Kwakkel (2021), but is somewhat 

arbitrary: it is selected to be a small value). However, it is clear from this plot that a move to 𝐾 = 6 

also produces a pronounced increase in explained value. Thus, let us look at both sets of clusters 

(𝐾 = 3, 𝐾 = 6) and select one of the two. 
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Figure 4-9: 2000 realizations of the CRAB model, visualized according to cluster in Household Population. (a) depicts 
the clusters chosen with 𝐾 = 3, (b) depicts the clusters chosen with 𝐾 = 6. Representative samples are highlighted 

with a black border. 

Figure 4-9 shows the time-series model realizations clustered in the Household Population 

outcome for both 𝐾 = 3 and 𝐾 = 6. Each cluster is highlighted in its own plot, though all 2000 

model realizations are captured in every plot. Representative samples—model runs typical of their 

cluster—are shown highlighted with a black border. It appears that each cluster from the 𝐾 = 3 

set splits into two clusters in the 𝐾 = 6 set, which may explain why 𝐾 = 6 had a pronounced 

increase in explained variance relative to 𝐾 = 4, 𝐾 = 5. The differences follow: 

• The first cluster in Figure 4-9(a) seems to be represented in the blue and red clusters in 

Figure 4-9(b). These clusters depict the cases with high population and somewhat steady 

population growth. In the 𝐾 = 6 set, the red cluster represents the highest-population 

model runs, while runs in the blue cluster tend to see a fall to about 6000-8000 households 

in the early timesteps before turning to growth. The red cluster sees population start high 

and stay high. The rate of growth for both clusters is relatively high. Most runs in the blue 

cluster and all runs in the red cluster end with a population greater than the starting point, 

meaning more households moved to the region than left. Especially within the blue cluster, 

there is some amount of dissimilarity between the model runs in the early timesteps. 

Generally, both clusters are characterized by growth. 

   (a)           (b) 
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• The second cluster in Figure 4-9(a) is split between the orange and green clusters in 

Figure 4-9(b). These clusters depict the cases with steady population decline. In the 𝐾 =

6 set, we see more differentiation between cases that eventually reach a steady state with 

a somewhat depressed population (orange) and cases that continue to decline throughout 

the model run (green). The green cluster demonstrates a small amount of levelling off at 

the end of the time horizon, mirroring the orange cluster but much later and at a much 

lower population level. Notably, the cases in the green cluster have the highest density of 

high growth in the very early timesteps, though cases in the blue, orange, and red clusters 

also demonstrate this phenomenon. There is a bit of dissimilarity within the orange cluster, 

as some model runs look as though they begin to grow by the end of the time horizon. 

While the representative sample appears to level off and remain steady, the divergent 

behaviours in this cluster should not be ignored if a scenario were to be developed using 

this cluster. 

• The third cluster in Figure 4-9(a) is split between the purple and brown clusters in Figure 

4-9(b). These clusters depict the cases that have a very pronounced collapse in population 

at the start of the model run, and until roughly timestep 30 there is very little difference 

between runs in these clusters. However, runs in the purple cluster begin to recover earlier 

(around timestep 30), whereas runs in the brown cluster tend to take until about timestep 

50 to begin to recover. After these recovery points, both clusters take on slow-but-steady 

growth. 

It is important to note that in these timeseries, timestep 10 is the first moment at which a flood can 

occur in the model. This coincides with several notable dynamics, especially where model runs in 

the blue, orange, green, and red clusters have some uptick in population before continuing onto 

their dominant dynamic, and where those in the blue, orange, red, and purple clusters have some 

divergence before mostly coming back together. In the early timesteps of the latter set, the orange, 

red, and purple clusters tend to have shared dynamics (but divergent levels) in the early 

timesteps, whereas the blue cluster shows some divergent dynamics. 

The biggest gain in information from moving to 𝐾 = 6 is the differentiation between the orange 

and green cases. When lumped together for 𝐾 = 3, the fact that some cases continue to decline 

while others level off and maybe even grow is lost. Additionally, the temporal separation between 

the recovery points in the purple and brown clusters is important. Thus, we will move forward with 

the 𝐾 = 6 set. Each cluster will be named as follows: 

• Blue: Fall-Growth 

• Orange: Fall-Level Off 

• Green: Growth-Collapse 

• Red: Steady Growth 

• Purple: Collapse-Recovery @ 30 

• Brown: Collapse-Recovery @ 50 
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Each model run will be marked as belonging to one of these six clusters, serving as the foundation 

for the subsequent multi-class scenario discovery. An analyst could here decide to drop one or 

several clusters from the remaining steps of analysis. For example: 

• The Collapse-Recovery clusters might be considered dynamically similar enough that only 

one may be of great importance to study (perhaps the brown cluster, which includes the 

more extreme subset of the model runs showing early population collapse). 

• The red and possibly blue clusters might be considered “good” cases, as they both end 

with high population and somewhat steady growth (presumably towards a levelling-off 

point eventually). An analyst may therefore decide these are not worth the close study 

afforded to the other clusters.  

However, this study is interested in tipping points, and therefore is looking at the boundaries 

between scenarios rather than scenarios themselves. To plot a “phase diagram” of the CRAB 

model, it is important to understand the portions of the parameter space associated with all 

possible outcome dynamics. Thus, all six clusters will be carried forward. 

4.4.1.1. Comparison with No-Flood Case 

We can also study the results of the same experiment applied to the floodless version of the 

CRAB model. In this case, a hard application of the 5% change in explained variance threshold 

selects 𝐾 = 4. There is still in explained variance at 𝐾 = 7, however, it is less than 5%. Six 

scenarios is already asking a lot of both the analyst and the policymaker to keep track of, as one 

has to juggle both their distinct behaviours and the conditions under which each scenario occurs. 

Thus, especially since its gain in explained variance is smaller than the flooded-model 

counterpart, we will select 𝐾 = 4. 

Per Figure 4-10, four distinct scenarios exist. The blue cluster is representative of the Steady 

Growth cluster from the flooded model, where population only sees some minor wobbling at the 

start of the time horizon before settling into a growth pattern. The orange cluster is representative 

of the Growth-Collapse cluster from the flooded model, though there are some cases represented 

that might be representative of the Fall-Level Off cluster. The green cluster is highly reminiscent 

of the Fall-Growth cluster from the other version, and at the bottom of the cluster some runs that 

might have been classified as Collapse-Recovery @ 30 are included. Finally, the red cluster 

constitutes this version’s Collapse-Recovery cluster, with sharp population decline and eventual 

slow recovery. 

The no-flood version of the model produces relatively similar results to that of the flooded model. 

Thus, further analysis will be done just on the flooded version of the model, as that is the CRAB 

model’s original intent. It will thus be a surprising result if the Flood timing parameter is shown to 

be an important one in the scenario discovery process. 
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Figure 4-10: 2000 realizations of the CRAB model without flooding, visualized according to cluster in Household 
Population. 𝐾 = 4. 

4.4.2. Rule Induction 

Figure 4-11 shows the coverage-density trade-offs generated by applying the PRIM algorithm to 

the each of the time-series clusters of the household population outcome. Each dot in the 

coverage-density trade-off plot is a candidate box that the PRIM algorithm has identified as a 

possible rule in its input space, the model parameters. PRIM starts with the unrestricted space—

the right-most dot, coloured purple in all six plots. Then it additively applies restrictions in the input 

space that produce the largest gain in density with the smallest loss in coverage. It proceeds this 

way until it finds a box with 100% density, if possible—i.e., all samples within the box are of the 

correct cluster of interest. The vertical red line in these plots is added for the convenience of 

indicating 80% coverage, which will be used as a rule of thumb for a minimum-acceptable 

coverage for this study: the discovered rule needs to be able to explain at least 80% of the cases 

that fall within a given cluster. 

A decision must be made regarding which of these candidate bounding boxes to select as the 

scenario-defining rule for each behavioural cluster. As the rules associated with each box become 

stricter, boxes become denser (i.e., more cases that fall within the box belong to their associated 

cluster), but they also lose coverage (i.e., fewer of the total instances of their cluster fall within the 

box). For some of the clusters, the selection is clear. For the Collapse-Recovery @ 50 cluster (f), 

there exists a box with 100% density that has greater than 80% coverage, so this box is selected.  
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(a): Fall-Growth                                (b): Fall-Level Off 

  
(c): Growth-Collapse                               (d): Steady Growth 

  
(e): Collapse-Recovery @ 30                 (f): Collapse-Recovery @ 50 

Figure 4-11: Coverage-density trade-off plots resulting from applying PRIM to each cluster. 
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The simple choices stop there, though. The Steady Growth cluster (d) has no box with less than 

80% coverage, so the maximum-density box could be selected. However, this box restrictions in 

five of the eight input dimensions. To assist in comprehensibility of the selected scenarios and 

thus the tipping points between them, we should try to limit the number of dimensions restricted 

by any given rule. The upper-most green box restricts only 4 dimensions for a very marginal loss 

in density. The upper-most cyan box restricts only 2 dimensions and has a density just over 60%, 

compared to roughly 75% of the most-restrictive box. Either of these could be selected: we should 

look more closely at the induced rules to decide. 

 
                                                           (i)                        (ii) 

Figure 4-12: Two candidate bounding boxes for inducing a rule to describe the Steady Growth cluster. 

Figure 4-12 visualizes the rules associated with each box. While (ii) shows that adding restrictions 

in two more dimensions leads to an 8-percentage point gain in density for just a 5-point loss in 

coverage, it is also notable that the restrictions in these dimensions are very slight. Thus, while it 

might be mathematically true that this restriction is beneficial, it is harder to ultimately convert into 

a meaningful scenario narrative. For this reason, we will select the box described in (i). 

The Growth-Collapse cluster (c) gives a somewhat simpler choice. The four highest-density boxes 

all have relatively similar density and coverage, and all hover around 80% coverage. Thus, we 

can comfortably select one of the boxes that only restricts three dimensions.  

The Collapse-Recovery @ 30 cluster (e) has a candidate bounding box just under 80% density 

right at both the 80% coverage line and the elbow of its tradeoff curve, so that box will be selected. 

The first two clusters present more of a quandary. Around the 80% coverage threshold, both have 

boxes with only 60% density, meaning that 40% of the cases that fall within these boxes belong 

to different clusters. The Fall-Growth cluster (a) demonstrates a mostly linear trade-off between 

density and coverage beyond a certain point, so there are no outsize gains to be made by 

breaking the 80% coverage threshold. Therefore, the maximum-density box just to the right of 

that threshold will be selected. The Fall-Level Off cluster (b), however, does show sudden jumps 

in density as boxes become more restrictive. Density grows much faster than coverage falls as 

coverage processes downwards to ~70% or just below it. Thus, one could argue that a ~75% 

density-70% coverage box might be a better choice than one with 60% density and 80% coverage.  
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                                                           (i)                        (ii) 

Figure 4-13: Two candidate bounding boxes for inducing a rule to describe the Fall-Level Off cluster. 

Figure 4-13 shows the comparison of the two candidate boxes. The restrictions are very similar, 

and one can see how narrative scenarios developed from these quantitative boundaries could 

end up erasing the difference. Thus, the choice is not of great concern. For this analysis, we will 

move forward with box (ii), as it is a more restrictive box and might aid in the separation of the 

input space across the six clusters. 

Table 4-1, below, summarizes the rules captured by the six selected bounding boxes.  

Table 4-1: Induced rules from applying PRIM to each cluster of Household Population dynamics. 

 
Init. Markup Cap-Out Ratio Min. Unempl. Flood Timing 

min max min max min max min max 

Fall-Growth 0.0999 0.2307 0.2196 0.5234 - - - - 
Fall-Level Off 0.0786 0.1322 0.3038 0.5999 - - - - 

Growth-Collapse 0.5007 0.0787 - - 0.0200 0.0786 35.5 80.0 
Steady Growth 0.1032 0.1677 0.2000 0.3901 - - - - 

Collapse-Recovery @ 30 0.2058 0.2826 - - - - - - 
Collapse-Recovery @ 50 0.3031 0.5000 - - - - - - 

Only four of the eight input parameters appear as restricted dimensions across any of the six 

clusters. In fact, two of the restricted parameters are only restricted in one cluster (Growth-

Collapse). Referring back to Table 3-1, these two dimensions have almost their full range 

represented here: Emigration Minimum Unemployment has a range of 2-8% (0.02 to 0.08) and 

Flood Timing has a range of 30 to 80. Again, while these restrictions might be numerically 

important to the discovered boxes, they probably do more to complicate the development of 

scenarios than they do to serve those scenarios. Further, we must remember that the goal of this 

process is to study the boundaries between the discovered scenarios as tipping points. For both 

reasons, it serves the qualitative results of this study to ignore those two restrictions and focus 

just on the two most critical dimensions from Table 4-1: Initial Markup and Capital-Output Ratio. 
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4.4.3. Identifying Tipping in Parameters 

Though following this process will not always result in just two restricted dimensions, it does serve 

visualization of the resultant phase diagram. While Table 4-1 provides the collected restrictions 

as a table, it will be helpful to visualize them in the two-dimensional input (sub)space involving 

the two restricted dimensions. 

 
Figure 4-14: Induced rules for each cluster in Household Population, plotted as boxes in the two primary restricted 
dimensions of the parameter space. 

In essence, the job is done here, as this constitutes a phase diagram of the CRAB model. It is 

important to note this is just one phase diagram for the model: one where each phase is defined 

by a qualitatively distinct dynamic in the Household Population output variable.  

Several things stand out. First, there exists a clear, one-dimensional tipping point between the 

purple and brown dynamics (the two Collapse-Recovery) dynamics. If you consider those distinct 

enough dynamics, then there is a tipping point at roughly an Initial Markup of 0.3. The first four 

clusters have more interesting phase transitions. Growth-Collapse clearly exists at the very low 

end of the Initial Markup dimension and crossing beyond 0.08 exits that phase. In cases where 

Capital-Output Ratio is above 0.30, the phase transitions to Fall-Level Off. In cases where Capital-

Output Ratio is below 0.39, the phase is near a transition boundary towards Steady Growth. The 

overlap between these two boxes reveals a limitation of this method, as it is hard to say exactly 

what dynamic occurs within that subspace. The Fall-Growth phase adds further complication 

here, as it overlaps with most of the Steady-Growth phase and some of the Fall-Level Off and 

Collapse-Recovery @ 30 phases. However, the overlap with the latter cleanly constitutes a tipping 

point itself: at roughly an Initial Markup of 0.21-0.23, there exists a tipping point towards a dynamic 

of early, sharp collapse. 

Table 4-2 summarizes the tipping points that can be extracted from Figure 4-14.  
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Table 4-2: Descriptive population tipping points discovered in the parameter space of the CRAB model. 

Identifier Clusters Rule(s) Consequence(s) 

HP-TP1-a 
Growth-Collapse  

→ 

Fall-Level Off  

Initial markup 

crosses above 

~0.08-0.10. 

Capital-output ratio 

is above 0.30.  

Initial population dynamics 

switch from growth to 

slight collapse, but end 

population levels off. 

HP-TP1-b 
Growth-Collapse  

→ 

Steady Growth  

Capital-output ratio 

is below 0.39. 

Population continues to 

grow throughout time 

horizon. 

HP-TP1-c 
Growth-Collapse  

→ 

Fall-Growth 

Capital-output ratio 

is between 0.22 

and 0.52. 

Initial population dynamics 

switch from growth to 

slight collapse, but end 

population later grows. 

HP-TP2 

(Several) 

→ 

Collapse-

Recovery @ 30 

Initial markup crosses above ~0.21. 

Initial dynamics see sharp 

collapse. After roughly 8 

years, population begins 

slow recovery. 

HP-TP3 

Collapse-

Recovery @ 30 

→ 

Collapse-

Recovery @ 50 

Initial markup crosses above ~0.30. 

Initial dynamics remain 

same (sharp collapse), but 

recovery only begins after 

12 years. 

In this summary, HP-TP1-(a, b, c) are noted as part of the same family of tipping points, as they 

all require a similar change in one parameter (initial markup) and therefore system behaviour 

“after” the tipping point is dependent on the level of the second parameter, even though behaviour 

“before” the tipping point is not.  

  



43 
 

5 Discussion & Limitations 
5.1 Extracting Policy-Relevant Lessons 

There are two ways that policymakers could use the results of this study, or another study 

following this methodology. First, if the parameters underpinning the discovered scenarios (and 

thus the tipping points between them) are controllable (i.e., can be influenced by policy or other 

means), policymakers can reflect on the consequences of tipping points to identify particularly 

desirable or undesirable ones. If there are existing policy levers that are known to drive the 

parameters in a particular direction, combining these levers with effective monitoring can help 

drive a system either towards a positive tipping point or away from a harmful one. For an example 

in the CRAB model, if a negative tipping point was discovered at the high end of the debt-to-sales 

ratio parameter, governments could impose limitations on firms regarding the amount of debt they 

take on.  

Second, if parameters are not influenceable or describe exogenous effects, investing in 

monitoring of the parameters’ real-world parallels is important. Understanding the real-world 

indicators that correspond to certain levels of our model parameters allows us to identify where in 

the phase space the system currently lies, and where it might be going. If data showed that a 

system was moving towards a negative tipping point, for example, policy efforts could be directed 

towards mitigating the consequences of crossing that tipping point.  

Unfortunately, the CRAB model parameters used in this study are mostly too abstract 

(uninfluenceable and unmonitorable) to be connected to policy recommendations. Curiously, the 

most important parameter in this study—Initial Markup—is quite tangible, but it is hard to know 

exactly what markup rate firms use and it is hard to influence via policy outside price controls. 

The model parameter itself also reflects only the initial conditions of an endogenous variable, thus 

it is unclear how to adequately monitor the real-world analog of this parameter. Thus, this study 

serves mostly as a methodological testing ground, rather than a policy study. To get meaningful, 

policy-relevant results regarding tipping points in a model’s parameter space, the model’s 

parameters themselves must be constructed in a way that is policy-relevant. 

What we can take from the results is that, according to the CRAB model, pricing is an important 

predictor of system-wide success. This likely results from the economic bias encoded into CRAB’s 

underlying Keynes & Schumpeterian economic model: when firms charge more early in a model 

run, they grow and become more stable, which also grows the region’s economy and ensures it 

is more able to withstand the economic disruption brought by a major flood (Taberna et al., 2021). 

5.1.1. Parameter- vs. Variable-Based Tipping Points  

This study looked at tipping in model parameters. That is, the model’s input parameters were 

chosen as the independent variables in which scenario rules were induced. An alternative 

approach is to consider variable-based tipping. In model speak, variable-based tipping points are 

those expressed in terms of a model’s endogenous variables as they evolve throughout the model 
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run. Accordingly, the phase transitions would then also be expressed in terms of the levels of 

endogenous variables. Meta-variables like the variance or rate of change of certain endogenous 

variables could also be calculated and used as independent variables for this purpose. The 

difference between parameter- and variable-based tipping points mirrors the difference between 

externally and endogenously caused tipping points discussed in Section 2.1. 

To integrate this variable-based approach into this study, endogenous variables such as 

population, wage, or GDP would replace the model parameters as the independent variables 

used by the PRIM algorithm. Thus, PRIM’s results would be expressed as a set of rules restricting 

the endogenous variable space. These variables would have to be sampled at a certain timestep, 

such as at the timestep when the simulated flood occurs. 

This would enable several improvements. First, there is a clearer analogy between this approach 

and the framing of a phase diagram. A simple physical phase diagram usually expresses a 

material’s physical state (its phase) in terms of conditions like temperature and pressure: these 

conditions are much more like endogenous state variables than exogenous parameter inputs.  

Similarly, second, it might be easier to develop policies that address or attempt to drive 

endogenous state variables than those that drive exogenous inputs: as such, a study of variable-

based tipping might lend itself better to answering questions with real-world policy impact. Beyond 

just driving system variables, understanding variable-based tipping points could serve the 

development of early-warning signals for tipping or other undesirable model outcomes. If an 

endogenous variable at an early or otherwise identifiable timestep is highly predictive of a 

particular model end-state or behaviour, then monitoring that variable in the real world becomes 

very important for anticipating and pre-empting system behaviour.  

Some scholars might argue that this study has not done anything at all about tipping points. The 

time-series visible in Figure 4-1 and Figure 4-7 do not display, within a given or representative 

model run, a rapid change of state like those described in much tipping point literature. However, 

the tipping points discovered in this study do display such features as abrupt change and distinct 

system states, just in the model’s parameter space, rather than its temporal domain. While this 

differs from van Ginkel et al.’s (2022) stepwise approach to recognizing tipping points, it is useful 

to policymakers in very similar ways. 

5.1.2. Other CRAB Input Parameters 

One intent of the CRAB model was to bring a behavioural economics perspective to the study of 

coastal climate adaptation (Taberna et al., 2023). As such, within the model, a synthetic 

population of agents is generated that are representative of a real-world coastal region, with 

behavioural characteristics like Worry and Flood experience (see Figure 3-1). This representative 

sample is generated according to a statistical distributed deduced from surveys performed by 

members of the CRAB model’s initial development team (Noll et al., 2022). 

The more traditional, rational-economics variables that were selected as control parameters for 

this study. Behavioural population traits were left out of the parametric sampling in part because 

of the nature of the statistics gathered from the survey. If we were to take, say, the mean of one 
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of these treats as a parameter, the nature of the exploratory modeling approach would require us 

to vary it across a reasonable range of values. However, co-linearities between the empirically 

measured traits mean that others would have to change accordingly. If more than one such trait 

was included in the parameter space, then arbitrarily varying both parameters would create 

unrealistic populations and may sacrifice the realism gained by using behavioural data in the first 

place (Taberna et al., 2023). However, it may still have been interesting to attempt this, knowing 

the limitations of the method, to compare the relative influence of the behavioural and rational 

parameters on model dynamics. 

5.2 Potential Methodological Improvements 

5.2.1. Stochastic Replications 

Based on the discontinuities in Figure 4-6 and the variety of dynamics in Figure 4-7, one’s instinct 

might be to keep each replication as a separate model realization when using a model as complex 

as the CRAB model, and then perform the above scenario discovery pipeline on the full dataset. 

Unfortunately, this is a computationally intensive task. Even the relatively small experiment 

performed in this study produced 80000 distinct model realizations (replications × input samples). 

To perform clustering on such a dataset using CID requires at least 50 GB of working program 

memory. 

There are several workarounds, all of which constitute areas for improvement of this study. For 

one, a more intelligent means of storing and accessing the distances measured during the initial 

clustering steps could be developed, to minimize program memory required. Tools like PyArrow 

could enable such computation with limited active memory use (pyarrow 17.0.0, 2024).  

Alternatively, one should look for ways to reduce the total number of realizations without losing 

information. One possible method would be to perform clustering within each sample point to find 

groups of distinct behaviours across the stochastic uncertainty space. If one were to find that a 

clustering with 𝐾 = 3 explains much of the variance within the 40 replications at a given sample 

point, then one could carry forward a representative replication for each of those clusters and 

drop the remaining 37 replications, effectively decimating the size of the dataset without losing 

too much information. 

It is not just important that losing the distinct dynamics covered by different stochastic replications 

means that fewer total possible model dynamics are covered. What is perhaps most critical is 

that, by representing a model run (sample point) as the average of its replications, one might 

create brand new dynamics that are not represented in any of the individual model realizations. 

Especially when variance changes over the parameter space (as it does, per Figure 4-6), the 

effects of averaging on the overall measured dynamics could lead to mistaken conclusions. 

Averaging replications is a somewhat standard approach in the DMDU field and is the standard 

implementation of the process_replications() method included in the EMA Workbench 

(Kwakkel, 2013), but perhaps is not suitable when applied to complex applications like ABMs.  
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5.2.2. Rule Induction 

As indicated in the review of the literature (2.2), there is an entire subfield of data science devoted 

to developing and improving rule induction methods. The methods used in DMDU (PRIM, CART, 

and some others) are relatively primitive by comparison. From this study, several drawbacks of 

PRIM become clear. First, PRIM is restricted to defining rules orthogonally: one restricted range 

for each restricted parameter. This is why PRIM’s rules are referred to as “boxes,” because their 

edges in the parameter space are strictly straight. Traditional physical phase diagrams such as 

the one depicted in Figure 2-1(b) are not restricted to “boxy” phases, and in fact such a limitation 

would severely hinder their utility. Figure 5-1, below, depicts a toy phase diagram with a simple 

separation between solid, liquid, and gas. Superimposed on the diagram are boxes, loosely 

representative of what it might look like if PRIM had been used to identify the rules for each phase 

from a set of observations. Even in this simple diagram, it is clear to see how orthogonal rules 

limit both accuracy and comprehensibility.  

 
Figure 5-1: Toy phase diagram with square phase "boxes" superimposed 

To evaluate the impact of “boxy” rules on the CRAB model’s phase diagram, we can plot all 

sample points in the input space and colour each point according to its cluster: essentially, we 

can attempt to visually identify rules ourselves instead of relying on an algorithmic method like 

PRIM. With many dimensions (such as the eight in this study), this is very difficult. However, 

having run PRIM, we have discovered that only two dimensions are critical in defining the rules 

that separate our six model states. Thus, we can do this using a single two-dimensional scatter 

plot with the axes init_markup and capital_firm_cap_out_ratio.  
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Figure 5-2: Scatterplot of 2000 CRAB model realizations, coloured according to cluster in Household Population 
outcome. 

Indeed, Figure 5-2 demonstrates better input space separability than the phase diagram 

generated using the PRIM boxes (Figure 4-14). Figure 5-3, below, combines the two plots 

together, with smaller dots to enable cross-comparison. Only the brown Collapse-Recovery @ 50 

cluster (phase, system state, etc.) has a boxy shape. The green, orange, and red clusters all have 

triangular shapes, the purple roughly quadrilateral, and the blue cluster a very irregular shape 

enclosing the red one. This nuance better illustrates the boundaries between the phases and thus 

could lead to more meaningful tipping points than those summarized in Table 4-2, especially 

clarifying the transitions surrounding the Fall-Growth cluster. From this plot, it is clear to see that 

the Steady Growth cluster might be a special case of the conditions that usually enable the Fall-

Growth cluster. If the parameters were more meaningful or controllable (see Sections 5.1.1 and 

5.1.2), this could be an important conclusion to drive policy development.  

 
Figure 5-3: A replication of Figure 5-2: Scatterplot of 2000 CRAB model realizations, coloured according to cluster in 
Household Population outcome.Figure 5-2 (scatterplot of clustered realizations in most-critical dimensions, as 
suggested by PRIM) with the rules/boxes discovered by PRIM plotted behind for visual comparison.  
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With more information comes more communication. More precise (non-box) rules might also be 

harder to communicate. In two or three dimensions, where the rules are still easily visualizable in 

a plot, this loss is probably not felt as much. However, when there are more than three restricted 

dimensions and rules must be communicated via text or a combination of several 2-D plots, it may 

be easier to ground policy development in orthogonal rules: it is very easy to understand one 

restricted range per important variable, but it is harder to keep in mind if those ranges change 

dependent on the level of several other variables. 

As a secondary issue, PRIM requires the manual selection of a candidate box for each case of 

interest. This is good, as it enables a policy analyst to personally weigh the trade-off between 

coverage, density, and information load (number of restricted dimensions), but the implications of 

this decision are not always explored in scenario discovery studies. Further, there are other 

factors beyond these three numerical measures that suggest whether a rule is good or not. For 

example with multiclass scenario discovery, input space separability is an important performance 

metric that enables clear communication of the discovered scenarios and the boundaries between 

them. A concurrent clustering and rule induction algorithm like the one used in Jafino & Kwakkel 

(2021) addresses this problem by inferring differentiating rules at the same time it makes the split 

in the output space. Alternatively, sequential methods like PRIM could be extended to perform 

several binary rule inductions in parallel and suggest a set of boxes that meet certain coverage 

and density requirements while minimizing overlap.   

5.2.3. Clustering Algorithms 

Finally, the choice of clustering algorithm is an important one that has downstream effects on the 

credibility of the identified clusters. Steinmann (2018) reviewed several distance metrics 

underpinning the use of clustering in behaviour-based scenario discovery and ultimately selected 

CID, which was the primary motivation for doing the same in this study. However, Steinmann 

used a simpler, deterministic model. In discussing the complexity of analyzing (spatio-)temporal 

outcomes of ABMs, Lee et al. (2015) suggest that Dynamic Time Warping (DTW) is a better 

method for evaluating the difference between two complex time-series as it is able to identify 

similar dynamics that are offset along the time horizon. Given that CRAB is a highly stochastic 

model and in this study is focused on identifying boundaries between system states (which are 

defined more by dynamics than by the exact moment in time when those dynamics occur), it is 

possible that DTW would have been a better distance metric to use for this study. 

5.3 Future Work 

There are several avenues that this Thesis opens up for future work, which are summarized as 

follows: 

• The methodology covered in this study should be repeated, with improvements or as-is, 

on a model with input parameters that are more directly reflective of policy levers or things 

that can be influenced by policy levers. Ideally, this could be done in conjunction with a 

participatory model design process, such that the resultant model is itself informed by 

policymakers. The goal of such a study could be to demonstrate whether policymakers 

can make effective use of the tipping points that this method identifies. 
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• Instead of input parameters, the approach could be modified to use endogenous variables 

as the independent variables of rule induction (at specific time slices, or, if a mathematical 

method can be suggested, full time-series themselves). This could be repeated on a model 

like the CRAB model, as the endogenous variables tracked within the CRAB model might 

be more useful indicators for policymakers to track as tipping point warning signs, or 

targets for them to direct policy efforts towards. 

• The methodology followed in this study could also be repeated but using multivariate 

clustering when defining the scenarios. This would help make scenarios more meaningful 

and broadly relevant. Instead of just a scenario of population growth or collapse, we could 

study more complex scenarios, like one characterized by all three of population growth 

alongside inequality growth and high governmental debt. 

• Methods for keeping individual model realizations separate without averaging stochastic 

replications should be explored. Some suggestions are made in Section 5.2.1, such as 

using another, smaller round of time-series clustering to identify and extract dynamically 

distinct replications. 

• The implications of various distance metrics underpinning time-series clustering should be 

investigated in the context of a complex, stochastic ABM like the CRAB model. This 

effectively repeats (Steinmann, 2018) with application to ABMs. 

• Alternative rule induction methods (other than PRIM) could be explored. A method like the 

one described in (Jafino & Kwakkel, 2021) could enable concurrent splitting of the input 

and output space, which would lead to a more clearly separated “phase” space and better 

enable the phase space visualization of tipping points. Alternatively, PRIM could be 

extended to produce non-orthogonal rules or to handle rule induction for several scenarios 

in parallel.  

5.4 A Note on Bringing DMDU to ABMs 

Ultimately, this study was in part motivated by the need to improve or expand methods for the 

analysis of the outputs of ABMs. The last decade has seen plenty of work pushing this field 

forward (Lee et al., 2015; Magliocca et al., 2018; Ligmann-Zielinska et al., 2020). Meanwhile, 

while DMDU scholars have been creating and improving methods for analyzing large sets of 

model outputs across uncertainty ranges, there have been computational challenges in bringing 

such methods to complex models such as ABMs (Moallemi et al., 2020; Helgeson et al., 2022). 

This study has attempted to bridge this gap by using a standard DMDU analysis tool (scenario 

discovery) on a large, complex ABM to answer the type of question that a policy researcher may 

seek to answer using an ABM. In a sense, this study is attempting to show that the time has come 

to reject the perceived challenge of using DMDU methods in complex models.  

Two things have been considered challenges in the marriage of these two sub-fields of 

computational policy support. First, ABMs tend to have longer runtimes than simpler models, 

especially when developed in Python, a standard language for scientific computation. This limits 

the number of model runs that can be used in an analysis of a model’s output space. However, 

pushing the limits of the student-level account’s access to TU Delft’s high-power computing 

platform still afforded me 10000 model runs per hour (Delft High Performance Computing Centre, 

2024), which certainly enables a wide study of structural and parametric uncertainty. There is 
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ongoing work in the DMDU community to improve algorithms, sampling methods, and embedded 

support for parallel processing and high-performance computing such that the methods can be 

brought more frequently and successfully to studies using complex models (Moallemi et al., 2020). 

Computational supports like the EMA Workbench (Kwakkel, 2013) aid the application of DMDU 

methods to complex models with minimal adaptation in a model’s codebase. 

Second, it is not always clear how, when, or why to use DMDU methods in an ABM. DMDU 

methods are just one way to explore uncertainty in a model. There is already a growing literature 

on the application of sensitivity analysis in ABMs that lies outside the DMDU literature (Ligmann-

Zielinska et al., 2020). Researchers may study the ABM literature and find that sensitivity analysis 

on its own is a sufficient tool for exploring uncertainty in an ABM. Thus, it is imperative that DMDU 

scholars make clear that their methods can be used in complex modeling applications and can 

answer complex questions like the one presented in this study. Furthermore, it is important that 

DMDU literature discusses its methods in such a way that is easy to adopt in future work, 

especially when publishing open-source code. Again, the use of standardized tools like the EMA 

Workbench can help here. 

Thus, I believe that it is wrong to frame bringing DMDU to complex models such as ABMs as a 

challenge, and that doing so likely makes it appear more challenging than it is to researchers new 

to either part of the field. The supports are now in place to make standard both demonstrating 

new DMDU methods in the context of ABMs and using DMDU methods to explore or stress-test 

the boundaries of new ABMs.  
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6 Conclusion 
This study explored the use of scenario discovery to search tipping points in complex coupled 

human-Earth systems using ABMs. Using the framing of phase transitions and phase diagrams, 

this research demonstrated this from start to finish, including illustrating an example of how tipping 

points can be visually communicated using the results of scenario discovery.  

There were three research questions posed in Section 1.2 of this document. The first sub-question 

aimed to identify which recent advancements in scenario discovery enable its use for exploring 

and discovering tipping points. The study found that behavior-based scenario discovery (which 

brings time-series clustering and multi-class scenario discovery together) is suitable for this 

purpose. However, this study lacked in being able to make its result particularly useful or salient 

to policymakers. This could be improved by using more relevant input parameters, such as those 

that can be monitored by governments or driven by policy, or by using endogenous variables as 

the scenario-defining conditions instead. 

The second sub-question about communicating and visualizing tipping points was addressed by 

building on an existing analogy of the phase diagram as a way of capturing distinct states of an 

ABM. This study suggests that scenario discovery, which breaks a model’s output behaviours a 

set of qualitatively distinct scenarios of interest and associates portions of its input space with 

each scenario, can be used to construct such a phase diagram. Then, this serves as a convenient 

visualization that enables the intuitive interpretation of tipping points in a model (or the system it 

purports to represent). 

Finally, the third sub-question addressed the challenges of applying scenario discovery to the 

output of ABMs. This is in line with other literature on the challenges of output analysis in ABMs, 

since they are often complex, have many dimensions (plus, outputs are often reported across 

space and/or time), and require many stochastic replications. The research confirmed that while 

ABMs introduce additional layers of complexity, particularly due to their stochastic nature, using 

scenario discovery to explore and simplify the relationships between their inputs and outputs is 

still feasible. More work should be done to explore the opportunity and impact of applying such a 

method without averaging replications together. In particular, the role of averaging should be 

studied in such a way that can identify whether it leads to potentially inferring incorrect policy 

lessons. In line with this question, the experimental design was validated, confidently showing the 

sample size was sufficient, though perhaps less definitely less so for the number of replications. 

Tipping points are not going away as either a scientific or political tool important for framing the 

social, economic, and environmental impacts of climate change. It is thus important that scientists, 

analysts, advocates, and legislators are well-informed about the concept and have access to 

accurate information about tipping points across any number of human-Earth systems. This 

research builds on existing literature in exploratory modeling to propose one way of identifying 

and communicating such tipping points, expanding our methodological toolkit. Hopefully, this 

research can help computational policy analysis play a role in reversing climate change instead 

of advancing it. 
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Appendix A: Analysis Pipeline for 
Other Outcome Variables 
This appendix will replicate the core of the analysis pipeline—in particular, Sections 4.3 (validation) 

and 4.4 (behaviour-based scenario discovery for tipping point identification) for two alternative 

outcome variables: GDP and the Gini Coefficient. Per Table 3-1, bothTable 3-2: Four primary 

CRAB model outcomes measured in this study. were chosen as convenient, accessible measures 

of their respected phenomena (economic activity and inequality, respectively). The Median Wage 

variable has been left out for brevity and due to a lack of interesting interactions (at least those 

that stand out from the other three). 

GDP 

Validation of Experimental Setup 

The three plots from Section 4.3 are replicated here for the GDP variable. 

 
Figure A-1: Convergence of input sensitivities as the number of samples increases. The y-axis denotes the 

importance of the named parameter to the GDP outcome. Note the lack of shared y-axis. 
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Figure A-1, above, shows how sensitivity time-series (measuring how the importance of each 

input variable to the GDP output variable changes over time) converge as the number of model 

samples considered in the experimental run is increased. Results here largely mimic those in 

Figure 4-5 from the main text. For all but two variables, sensitivity coefficients are overestimated 

with a lower number of samples. The distance between subsequent sensitivity time-series is 

decreasing as 𝑁 increases and seems quite small by the step from 𝑁 = 1900 to 𝑁 = 2000 (the 

full sample size). Initial markup, which is still found to be the most important parameter, has its 

importance underestimated at low sample sizes before converging on a higher number. 

Interestingly, the Flood timing parameter has a relatively consistent importance across all sample 

sizes.  

Figure A-2, below, instead shows the convergence of time-series variance as replications 

increase from 2 to 40. The sets of variances are measured at four different points in the model’s 

sample space, at four sample points that denote representative samples of the clusters of 

behaviours in this variable (Figure A-4).  

There are several things to comment on. Unlike for Household Population, there are not many 

notable jumps in the shape of the progressive variance curves except at very low numbers of 

replications (where they are to be expected). This might suggest that stochasticity has less effect 

on the GDP outcome: there are fewer stochastically distinct behaviours generated at each sample 

point. The variance that is measured could be due to differences in GDP level between 

realizations, rather than its behaviour. A fair portion of the random number calls in the CRAB 

model occur during migration, which could explain why stochasticity has a more drastic effect on 

the behaviour of the Household Population outcome. 

 
Figure A-2: Convergence of time-series variance in the GDP outcome across an increasing number of replications. 
Variances are shown for four sample points, each representative of a different scenario (clustered by GDP 

dynamics). 
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Samples 907, 466, and 1907 (top-left, top-right, and bottom-left of Figure A-2) show relatively 

similar time-series variances as replications near 𝑁𝑟𝑒𝑝 = 40, with the middle of the three differing 

the most (especially at the end of the time horizon) and taking the longest to converge to this 

curve shape. Sample 336 (bottom-right) shows very low variance compared to the other three. 

This is perhaps due to the phenomenon captured by its associated cluster having a more 

dominant effect than stochasticity at this part of the parameter space. However, the fact that 

variance itself can vary this much across the parameter space is further evidence that researchers 

studying uncertainty in models of complex SES should be careful about averaging replications: 

the effect of this averaging can be drastically different across the uncertainty space. 

 
Figure A-3: Aggregated dynamics of GDP atop individual replications, plotted separately for each of four sample points. 
Two arbitrary samples are highlighted in pink and green to help demonstrate distinct dynamics. Time-series have been 
resampled to annual measurements. The vertical red line indicates the timing of the flood for the relevant input sample. 

Finally, Figure A-3 shows the dynamics of the individual replications at each of the representative 

sample points before and after they are averaged together. Indeed, Sample 336 (bottom-right) 

has the least variance in both behaviour and level. In Samples 907 and 466 (top row), while there 

appear to be some distinct behaviours, their distinctions seem to perhaps be more exaggerations 

of the same dynamics: growth, slight (to large) fall, recovery. Sample 1907 is less clear. Some 

replications appear to fall or steady out shortly after the flood, while the dominant behaviour at 

the sample is one of medium growth both before and after it. This suggests that looking at the 

variances alone—even as they converge with a growing number of replications—does not tell the 

whole story. 
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Behaviour-Based Scenario Discovery 

This section repeats Section 4.4 with application to the GDP outcome. 

 
Figure A-4: 2000 realizations of the CRAB model, clustered (𝐾 = 4) according to behaviour of the GDP outcome. 

Figure A-4 shows the four clusters of GDP time-series. The GDP variable is notably more erratic 

than Household Population. Each representative sample (highlighted with a black outline) shows 

a slight collapse at a midpoint timestep, which corresponds with the Flood timing parameter for 

that sample. Thus, flooding has a more direct and immediate effect on GDP than on population: 

this is to be expected.  

The orange and green clusters share similar dynamics of growth, with the orange cluster 

exhibiting faster growth and higher GDP, even (especially) after the flood. In fact, according to 

the representative scenarios, the orange and green clusters show near-identical behaviour 

leading up to their floods, and only diverge in terms of flood recovery. The blue cluster 

demonstrates a wider distribution of post-flood outcomes, though has a relatively similar pre-flood 

pattern. Cases in the blue cluster vary from continued collapse up to a subtle rise back to and just 

past pre-flood peaks. However, the blue cluster clear comprises model runs where flooding 

severely hindered economic activity and growth, and in some case led to decline. Finally, the red 

cluster shows tight behaviour throughout. Its behaviour before flooding appears very distinct from 

the other three, implying that the economy in this scenario is already struggling even without 

flooding. The spikes at the bottom of the graph are due to different sample points having different 

flood timings, but the clustering algorithm is still able to correctly group these as dynamically 

similar model runs. GDP does eventually begin recovery in all runs found in this cluster, though 

very slowly. 

We can name the clusters as follows: 
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• Blue: Post-Flood Stagnation/Collapse 

• Orange: Rapid Post-Flood Growth 

• Green: Adequate Post-Flood Growth 

• Red: Weak Economy 

As always, these names are imperfect, so the clusters themselves should be studied to remember 

the dynamics they display. Most notably, the blue cluster’s name implies that all cases stagnate 

or collapse. Some cases in fact grow. However, that behaviour is not the dominant or unique 

behaviour of the blue cluster, especially compared to the orange and green ones. Furthermore, 

while the red cluster is so-named due to its starting state, in fact all cases in this cluster have a 

higher and faster-growing GDP than some cases in the blue cluster. Thus, its name is descriptive 

of the economy’s starting state, but not necessarily the full time-series dynamic. 

 

Figure A-5: Coverage-density trade-off curves from the PRIM algorithm applied to the clusters of GDP dynamics. (a): 
Post-Flood Stagnation/Collapse (blue cluster); (b): Rapid Post-Flood Growth (orange cluster); (c): Adequate Post-Flood 
Growth (green cluster); (d): Weak Economy (red cluster). 
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For brevity, the coverage-density tradeoffs for each rule induction (Figure A-5) are presented as 

they were in Section 4.4.2 but are not closely analysed. The process for selecting an ideal box 

from each closely mirrors that which was done for the Household Population outcome. Unlike 

Household Population, these decisions are mostly straightforward. The combined rules 

determined from the selected boxes are available in Table A-1: 

Table A-1: Induced rules from applying PRIM to each cluster of GDP dynamics. 

 
Init. Markup Cap-Out Ratio Flood Timing 

min max min max min max 

Post-Flood Stagnation/Collapse  0.0501 0.1155 - - 39.5 80.0 
Rapid Post-Flood Growth 0.0941 0.1957 0.2000 0.4277 - - 

Adequate Post-Flood Growth 0.1596 0.2828 - - - - 
Weak Economy 0.3031 0.5000 - - - - 

Again, Initial Markup dominates as the predictive variable. Two other variables appear once, both 

with restrictions on one end of their range. From these rules, the scenarios can be plotted in two 

dimensionally reduced spaces: Initial Markup against each of the other two variables. An 

alternative would be to visualize the resultant space in 3D, though due to the minimal restrictions 

in the two secondary dimensions, there might be too much overlap to make this visualization 

communicative. 

 
Figure A-6: GDP behaviour scenarios plotted in the dimensions in which their rules have restraints. 

From this view of the system, tipping points in GDP come mostly in the Initial markup parameter. 

Broadly speaking, the “good” scenarios are the orange and green ones. Thus, we can deduce 

that having a very low or relatively high initial markup leads to unwelcome outcome behaviours. 

The same criticism of the salience of these results can be applied here as it was for the Household 

Population results: the parameters used in this study lead to a slightly obtuse reading of tipping 

points from this process, despite the method showing clear potential for their identification. One 

could take Initial markup as a proxy for markup rates and restrictive pricing in general. With this 

lens, these results imply that a coastal economy is most likely to recover well (economically 

speaking, at least) from a flooding event when it is affordable for individuals (prices are not set 

too high) while businesses are still able to turn some profit and keep resources “for a rainy day.” 
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Gini Coefficient 

Validation of Experimental Setup 

The three plots from Section 4.3 are replicated here for the Gini Coefficient variable. 

 
Figure A-7: Convergence of input sensitivities as the number of samples increases. The y-axis denotes the importance 
of the named parameter to the Gini Coefficient outcome. Note the lack of shared y-axis. 

Figure A-7 (convergence of time-series sensitivities for the Gini Coefficient) shows very similar 

results to Figure A-1, except the Sensitivity of wages to productivity variable both becomes quite 

important to the model and has relatively consistent importance as more samples are added. This 

behaviour is consistent with behaviours seen elsewhere in the report. Interestingly, in the early 

timesteps where it is less important, convergence trends downwards, whereas when it is 

important at the end of the horizon, it trends upward like the Initial markup sensitivity.  

Figure A-8 shows some jumps in time-series variance as replication count increases, more like 

the analog graph for Household Population than the one for GDP. The representative sample of 

the top-right cluster has low and relatively flat variance across its time-series. In contrast, the 

sample in the top-left cluster not only shows high variance, but the shape of the variance curve 

changes radically as certain replications are introduced, such as what appears to be the 37th and 
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39th replications in light green and almost-yellow, respectively. Not only is the across-replication 

variance thus highly dependent on input parameters, also the likelihood of stochastic replications 

being behaviourally distinct (and not just distinct in level) might vary as well. 

 
Figure A-8: Convergence of time-series variance in the Gini Coefficient outcome across an increasing number of 
replications. Variances are shown for four sample points, each representative of a different scenario (clustered by 
Gini Coefficient dynamics). 

Indeed, Figure A-9 seems to agree. The left two plots show signs of some very distinct model 

behaviours, including short-term but sharp periods of high inequality visible in Sample 124 

(bottom-left). Meanwhile, Sample 1288 appears quite consistent both in level and in dynamics. 

Behaviour-Based Scenario Discovery 

This section repeats Section 4.4 with application to the Gini Coefficient outcome. Figure A-10 

shows the three clusters of Gini Coefficient dynamics. They are somewhat distinct, but in a way 

that is different from the previous two output variables studied. The orange and green clusters 

end with similar dynamics, but differ roughly in both levels and dynamics at the early stages of 

the model run: cases in the orange cluster start with high inequality, whereas cases in the green 

cluster less so. Cases in the blue cluster, however, start and end with a distinct dynamic. They 

very densely occupy the low end of inequality at the start of model monitoring, but rise to be the 

high-inequality cases by the end. Knowing what we know about what factors are influential on the 

model, it is already possible to suspect that Initial markup may play a large role in associating 

cases with this cluster. Low initial markup might lead to very accessible prices, good earnings and 

savings, and thus low inequality in the early stages, but if it leads to weak businesses without the 

capital capacity to weather a flood, then it could cause the highly disparate, unequal end states 

seen in this cluster. 

 



60 
 

 
Figure A-9: Aggregated Gini Coefficient dynamics atop individual replications, plotted for each of four sample points. 
Two samples are highlighted in pink and green to help demonstrate distinct dynamics. Time-series have been 
resampled. The vertical red line indicates the timing of the flood for the relevant input sample.

 

Figure A-10: 2000 realizations of the CRAB model, clustered (𝐾 = 3) according to dynamics in the Gini Coefficient. 
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We can name the clusters as follows: 

• Blue: Low Initial-High Final 

• Orange: High Initial-Low Final 

• Green: Low Throughout 

 
Figure A-11: Coverage-density trade-off curves from applying PRIM to clusters based on Gini dynamics. (a): Low Initial-

High Final Inequality (blue cluster); (b) High Initial-Low Final (orange cluster); (c): Low Throughout (green cluster).  

Again, the coverage-density trade-offs from Figure A-11 present relatively straightforward 

decisions, with a clear elbow (a, c), high-density cases with sufficient coverage (all three), and 

generally few restricted dimensions. The extracted rules follow in : Induced rules from applying 

PRIM to each cluster of Gini Coefficient dynamics.Table A-2. Again, Initial markup is highly 

dominant, and while Flood timing makes an appearance, just a tiny portion of its range is left out 

in the rule, and thus can be ignored: it adds more cognitive burden to a policymaker to keep track 

of that than the information lost by losing 2-3 quarters of timing accuracy, especially since flood 

timing is an inherently stochastic effective. 
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Table A-2: Induced rules from applying PRIM to each cluster of Gini Coefficient dynamics. 

 
Init. Markup Flood Timing 

min max min max 

Low Initial-High Final 0.0501 0.0817 32.5 80.0 
High Initial-Low Final 0.2816 0.500 - - 

Low Throughout 0.0957 0.2256 - - 

As Initial Markup is the only highly relevant dimension, the tipping points in this variable could be 

visualized in one dimension, i.e., along a number line. For ease of creation and full information, it 

is still presented in Figure A-12 as a 2D plot with Flood timing on the y-axis. However, if explaining 

the identifiable tipping points to a client or colleague (one who is technical or otherwise), such a 

small or tangential restriction in a scenario definition could detract from the overall message.  

 
Figure A-12: Gini Coefficient dynamics scenarios plotted in the dimensions in which their rules have restraints. 

It is clear the parameter-based tipping points occur in the Initial markup variable almost 

exclusively. This might be surprising, due to the high levels of importance that Sensitivity of wages 

to productivity has in the later model timesteps. Perhaps, this illustrates a weakness in this 

method: if the role of each parameter variable changes over the time horizon, behaviour-based 

scenario discovery might bias towards linking together samples that produce similar early 

dynamics, thus ignoring the role of variables that are potentially critical later. For this reason, the 

methods described in this study should not replace sensitivity analysis or any other method of 

assessing which factors are important (to a model’s behaviour, its tipping points, etc.), but rather 

complement them. 
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