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Abstract i

Abstract

Neoclassical economics dictates the decision-making process of economic agents as the mathematical problem of

maximizing utility over a prescribed planning horizon. The mathematical similarities with optimal control theory

lead to a new interpretation of economic agents as optimal controllers. Pontryagin’s maximum principle generates

the necessary conditions, but the economic consequences become clear when its historical development is followed.

It is found that the Euler-Lagrange equations result in a no-arbitrage condition in economics, and Hamilton’s

canonical equations describe the change in asset allocation and the asset price over time. The Hamiltonian itself

is equivalent to the economic surplus of the agent, and the maximum principle requires that it is maximized

along the optimal trajectory with respect to the control actions. This gives a different, myopic perspective to

the economic agent, being an agent that maximizes economic surplus instantaneously instead of utility over an

entire planning period.
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Introduction 1

1 Introduction

Optimal control theory searches for a control strategy that renders the behavior of a controlled system optimal

according to a certain criterion. The systems under evaluation can be found in all kind of fields, ranging from

the smallest particles to the control of large chemical plants. The description of households, firms, governments,

and entire economies in the field of neoclassical economics is remarkably similar to the theory of optimal control.

Firms manage their business to maximize their profit or market share, while households allocate their assets

and manage their consumption to maximize utility, a measure for psychological satisfaction. The mathematical

similarities allow me to interpret economic agents as optimal controllers and use optimal control techniques to

describe their economic behavior over time.

In this thesis I will specifically focus on the optimal control description of economic agents that maximize utility

over a planning horizon. By coincidence or not, both the field of optimal control and the concept of utility

originates in the very gifted Bernoulli family. It was Johann Bernoulli who in 1696 (more then 300 years ago)

was the first to describe and solve the brachystochrone problem1, a problem that is now known as an optimal

control problem (see Sussmann and Willems (1997)). With this contribution Johann Bernoulli is seen today as

the father of the calculus of variations and optimal control. His son, Daniel Bernoulli, made an fundamental

contribution to preference theory and economics with the introduction of the concept of utility. While analyzing

the St. Petersburg Paradox, Daniel Bernouilli wrote 2 “The determination of the value of an item must not be

based on the price, but rather on the utility it yields. There is no doubt that a gain of one thousand ducats is

more significant to the pauper than to a rich man though both gain the same amount.”. The concept of utility

plays today a key role in the behavioral characterization of the economic agents, and is closely related to the

(shadow) price of an asset.

Although the origins of optimal control theory and utility maximization started within the same family, the

development of both fields occurred relatively separate. The purpose of this thesis is therefore threefold. First, I

describe the economic agent as an optimal controller, and view the maximization of utility as an optimal control

problem. Here I take the perspective of a control engineer, and specifically interpret the economic variables in

terms of their control theory equivalents. Second, I construct a thorough interpretation of Pontryagin’s maximum

principle in economics. Kamien and Schwartz (1981) and Seierstad and Sydsaeter (1986) apply the maximum

principle in economics, and provide some economic intuition, but use it mostly as a mathematical technique. I

show that the maximum principle has an intuitive interpretation for the economic agent such that it is much

more than a mere mathematical technique, but rather a new, myopic description of the economic agent. Third,

I will focus on the historical development of the maximum principle and relate it to the problem of utility

maximization. Sussmann and Willems (1997) narrate the development of the maximum principle and show,

with the brachystochrone problem as example, how it naturally evolved from a Lagrangian and Hamiltonian

system description. I will take a similar approach, but use the optimal control problem of the economic agent to

show how Pontryagin’s maximum principle is related to the Euler-Lagrange equations and Hamilton’s canonical

equations. This approach allows me to construct the economic interpretation of maximum principle, starting

with the fundamentals and gradually increasing the complexity.

Chapter 2 starts with the neoclassical description of the economic agent as an optimal controller. To fix ideas

I specifically view the economic agent as a household that maximizes utility. The state of the economic agent

is his asset allocation, and like a physical system this state changes dynamically over time, both autonomously

and by the control of the economic agent. In agreement with Kamien and Schwartz (1981), utility is derived

from both holding assets and from the control actions. This is more general than the utility functional of Merton

(1975) and Samuelson (1948) were the utility is only a functional of the control actions, specifically interpreted as

consumption. The utility functional itself consist of two parts, the accrual of the running utility over the planning

1The brachystochrone problem searches for the arc between point A and a lower point B down which a bead rolls in the least

amount of time, starting at rest and accelerated by gravity without any friction.
2The original work is written in Latin, the translated reference is Bernoulli (1954).
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Introduction 2

period, and the bequest or salvage utility at the end of the planning horizon. The economic agent behaves as

an optimal controller, planning his asset allocation and control actions over the prescribed planning horizon to

maximize utility, while taking the asset dynamics and other restrictions into account.

Chapter 3 goes back to the fundamentals of optimal control by simplifying the asset dynamics to describe the

economic agent as a Lagrangian system. In this setting, the economic agent behaves as a player in the economy

who drifts on the economic flow, equivalently to a mechanical system that moves through space under the influence

of a force field. The classical texts Landau and Lifshitz (1972) and Arnold (1978) describe the dynamics of those

mechanical systems with Lagrangian mechanics. In line with the research of my supervisor Dr. Ir. Max Mendel,

the isomorphic structure between mechanical and economic systems, allows the use of Lagrangian mechanics to

derive the dynamics of the economic agent. It is found that the generalized coordinates correspond to the agent’s

assets, and the generalized momenta to the shadow prices. The Euler-Lagrange equations are interpreted as a

no-arbitrage condition in economics.

Chapter 4 builds upon the Lagrangian characterization of the economic agent and introduces the Hamiltonian.

However, rather than using the original definition in Hamilton (1834) and Hamilton (1835), I adopt the control

Hamiltonian3 of Sussmann and Willems (1997). As Sussmann and Willems (1997) show, the application of the

control Hamiltonian will later turn out to be vital to make the step towards the maximum principle. Kamien and

Schwartz (1981) refer to the Hamiltonian as a device for remembering or generating the Euler-Lagrange equations.

I oppose this view, and interpret it as the economic surplus. That is, the net benefit for the agent, defined as

the difference between the (instantaneous) gained utility and the cost of consumption. With the Hamiltonian

representation of the economic agent, Hamilton’s canonical equations describe the change in the shadow price and

asset allocation over time. In addition to Hamilton’s equations, the control Hamiltonian is maximized along the

optimal trajectory with respect to the control input. This has an important economic implication. Initially, the

economic agent maximizes utility over a planning horizon, but the Hamiltonian characterization shows that the

agent can equivalently be represented myopically. This myopic perspective demonstrates an agent that maximizes

economic surplus instantaneously given his current asset allocation and the shadow prices. The changes in the

asset positions and the shadow prices depend on the conducted control actions of the agent, and are expressed

by Hamilton’s canonical equations of the controlled Hamiltonian.

The Hamiltonian characterization of the economic agent translated to the general optimal control problem of

Chapter 2. Pontryagin (1962) develops the maximum principle, being mathematical necessary conditions for

the optimal control problem, and Sussmann and Willems (1997) show that the maximum principle is a natural

extension of Hamilton’s canonical equations. Building on the work of Sussmann and Willems (1997), I extend the

economic interpretation from the Hamiltonian system towards the maximum principle. I show that the maximum

principle is a myopic description of the economic agent that takes the asset dynamics into consideration. The

maximum principle consist of 4 necessary conditions that the optimal control and asset trajectory should satisfy.

Each of these conditions can be interpreted from the agent’s perspective. The maximum condition dictates

that the economic agent maximizes economic surplus along the optimal trajectory with respect to his control

actions. This results in a myopic interpretation of the agent. In addition, the first-order condition with respect

to the control input, implies that the agent performs an marginal cost-benefit analysis instantaneously. The

Hamiltonian system condition requires that the asset and shadow price evolve as a Hamiltonian system over

time. The state equation simply returns the asset dynamics, the co-state equation describe the evolution of the

asset prices over time. The latter one is an no-arbitrage condition for the economic agent. The non-triviality

condition requires that the optimal control and asset trajectory at least depend on either the asset dynamics or

the utility functional. The transversality condition is the fourth and final condition and generates the boundary

condition for the asset prices. Chapter 6 concludes this thesis and Chapter 7 finishes with a short discussion on

the current method and possibilities for further research.

3In the remainder of this thesis I will always use the control Hamiltonian, and refer to it as the Hamiltonian.
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The Economic Agent as an Optimal Controller 3

2 The Economic Agent as an Optimal Controller

Economists are always searching for a better and more complete description of the behavior of households, firms,

governments and central banks in the economy. The behavior of these economic agents is often interpreted as

the decisions that they make over time. These decisions will affect the agent’s asset positions and future income,

as well as non-financial things such as leisure time. Additionally, the decisions of one economic agent will likely

affect others such that there is an interaction between the different players in the economy.

A fundamental question is how these economic players determine their decisions over time. The standard choice

in the field of neoclassical economics is to assume that economic agents behave rationally, acting in a self-

interested way to maximize their utility or personal satisfaction given all available information. These stylized,

rational agents are often called homo economicus, but are certainly not equivalent to money-hungry monomaniacs.

Instead, the homo economicus will take the satisfaction of factors like leisure time, and procreation into account

to make optimal decisions over time, see Persky (1995) for an in-depth discussion.

The description of the homo economicus is closely related to the theory of optimal control. In optimal control, we

try to stabilize a system or track a reference by selecting the control that maximizes a certain objective functional

or minimizes a certain cost functional. Analogous the homo economicus controls his assets over the planning

horizon by maximizing his utility over time and making decisions accordingly. To fix ideas while constructing the

analogy between optimal control theory and economics, I specifically focus on the description of the household

as an optimal controller.

2.1 The Economic Agent

Before we formalize the notion of utility maximization, we need to take a closer look at the assets of the household.

The assets or possessions of the household are very diverse, ranging from physical goods (like real estate and

an inventory of consumption goods) to financial products (like a bank account, bonds, stocks and insurances)

and immaterial goods like human capital. The agent is at each point in time fully characterized by his assets

portfolio, meaning that the asset portfolio is the state of the economic agent. We will consider n-different assets,

such that x(t) ∈ Rn. The units of x(t) depend on the asset under consideration, but in general we see x(t) as a

quantity and not as the value of the assets. 4

Similar to the state of a mechanical system, the assets change dynamically over time. Theses change occur

through autonomous dynamics and by control decisions of the agent. Assets diminish autonomously over time

by aging, wear and write-offs, while assets accumulate naturally through interest, pay-offs and production. The

control decisions include the possibility to investment or divest in assets, to consume part of the assets, or generate

an income by performing labor. The control decisions are denoted as u(t) and in general we have m-different

control decisions such that u(t) ∈ Rm. The evolution of the assets allocation over time is then described by the

first-order dynamics (see also Weitzman (2009), Samuelson (1948) and Ramsey (1928)).

ẋ(t) = f(x(t), u(t), t) (2.1)

where f(x(t), u(t), t) is some, possibly nonlinear, function of the assets x(t), the control decisions u(t) and time

t. Recall that the assets x(t) are measures as an quantity, and not in terms of its value or price. Equation

(2.1) describes the change in the number of assets over time, and is certainly not equivalent to the depreciation

or appreciation of the asset. The first-order, non-linear state-space description of the assets in (2.1) is very

common in control engineering and mechanics. However, it implies that the economic agent cannot change his

asset allocation x(t) instantaneously. Instead, the homo economicus changes the number of assets gradually over

time, by adjusting the rate at which the assets change.

4The price or shadow price is endogenous in the problem. It is conceptually hard to measure the number of assets in terms of its

dollar price while the value is endogenous in the allocation problem.
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The Economic Agent as an Optimal Controller 4

In the current set up it is important to realize that every component of the state x(t) is equal to one of the

assets of the household, meaning that the state x(t) does not incorporate any derivatives of the assets. This is

different from the description of, for example, a mass-spring-damper system. The second-order dynamics of this

mechanical system can equivalently be written in a system of first-order differential equations, but then the state

includes both the position and the velocity of the cart. In this thesis I will specifically assume that the state

only includes the asset “positions” and not the “velocity” of assets. This assumption will later be necessary to

interpret the generalized momenta or the co-state as the asset (shadow) prices.

The fundamental question in economics is how economic agents control their assets. In this paper I follow

the neoclassical explanation that dictates the decision-making process of economic agents as the mathematical

problem of maximizing utility over a prescribed planning horizon. Utility is in this setting interpreted as a

measure of psychological satisfaction, and the agent pursuits happiness by maximizing it. Specifically, we follow

Kamien and Schwartz (1981) and model the household as an economic agent who gains utility from both holding

the assets x(t) and making the control decisions u(t). The agent now takes those decision u(t) that maximize his

forecasted, accumulated utility over a fixed planning horizon.

The total utility over the planning period consist out of two parts; the accumulation of the running utility

v(x(t), u(t), t) over the planning horizon, and a bequest utility Φ(x(T ), T ) at the end of the planning horizon.

The running utility v(x(t), u(t), t) measures the satisfaction from holding assets x(t) and decisions u(t) at a

specific time t. The bequest utility Φ(x(T ), T ) measures the utility from leaving a bequest x(T ) at the end of

the planning horizon. The total utility for an arbitrary control trajectory {u(t) | t ∈ [0, T ]} with corresponding

asset trajectory {x(t) | t ∈ [0, T ]} is equal to

V [x(·), u(·)] = Φ (x(T ), T ) +

∫ T

0

v(x(t), u(t), t)dt (2.2)

Here, we use the shorthand notation x(·) and u(·) to indicate the asset trajectory and control trajectory over

the planning horizon [0, T ]. The formulation of the total utility in (2.2) is more general than the papers Ramsey

(1928), Samuelson (1948) and Merton (1975). In these papers the running utility v(x(t), u(t), t) is only a function

of the consumption u(t) and time t. I follow Kamien and Schwartz (1981), and argue that the economic agent

also gains a satisfactory feeling (utility) from holding the assets x(t). Owning the assets x(t) may provide the

household with a certain status within the community or give the confirmation of being successful. This means

that the running utility is in general a function of the asset position x(t), the consumption u(t) and time t. In

section Section 2.4 the usual assumptions for the utility function are provided.

The objective of the economic agent is to maximize his utility (2.2). However, the decision trajectory u(·) and

the asset trajectory x(·) are not independent quantities, but are coupled through the asset dynamics (2.1). These

assets dynamics constrain the optimization (2.3). Starting with some initial asset allocation x(0) = x0, the asset

trajectory is (assumed to be) uniquely described by the control u(·) and the state space description (2.1). The

agent thus searches for the control trajectory u(·) that maximizes the utility function. This can be mathematically

summarized as

V∗ = max
u(·)
V [x(·), u(·)] = max

u(·)

[
Φ (x(t), T ) +

∫ T

0

v(x(t), u(t), t)dt

]
s.t. ẋ(t) = f

(
x(t), u(t), t

)
, x(0) = x0, u(·) ∈ U , x(·) ∈ X

(2.3)

Denoting the optimal decision trajectory as u∗(·) and the corresponding optimal asset trajectory as x∗(·), we

naturally have that the total utility corresponding to the optimal trajectories exceeds the utility for all other

possible asset trajectories.

V ∗ = V [x∗(·), u∗(·)] ≥ V [x(·), u(·)] ∀ u(·) ∈ U and x(·) ∈ X

Similar to mechanical system where the input signal can saturate, it is possible that the control decisions of

agent are constraint to some admissible set. To illustrate this, let us consider the “investment” in human capital

Master of Science Thesis Ruud Smit



The Economic Agent as an Optimal Controller 5

and denoted it for the moment as uHC . Now imagine that the economic agent invest in his “human capital” to

increase his skill set and market value, which eventually leads to a higher wage. This investment in human capital

will be positive such that uHC > 0. It is however difficult to imagine that an economic agent can actively divest

in his “human capital”. This means that at least for human capital not all control decisions u(t) are admissible.

We will denoted the set of all admissible control signals as U and require that control decisions are constraint to

this set

u(t) ∈ U ∀ t ∈ [0, T ] (2.4)

And use the shorthand notation u(·) ∈ U to indicate that the full control trajectory should lie in the allowable

control set.

Similar, the asset allocation may be confined by legislation or physical restrictions to some admissible set. Short

selling of a financial asset may not be allowed, or limited to some extend, and having a negative number of physical

assets (real estate, consumption goods) does not seem very plausible. This means that the state trajectories are

also limited to the set of allowable states X . This poses the requirement that all admissible state trajectory

satisfy

x(t) ∈ X ∀ t ∈ [0, T ] (2.5)

and again I use the shorthand notation x(·) ∈ X to indicate that the full state trajectory should lie in the

allowable state set.

2.2 The Economic Agent as an Optimal Controller

The essence of the neoclassical description of the economic agent is the utility maximization problem of (2.3)

with the assets dynamics in (2.1) as constraints, and with the initial asset allocation, the admissible controls in

(2.4) and feasible states in (2.5) as additional constraints. This is mathematically summarized as

V∗ = max
u(·)
V [x(·), u(·)] = max

u(·)

[
Φ (x(T ), T ) +

∫ T

0

v(x(t), u(t), t)dt

]
s.t. ẋ(t) = f(x(t), u(t), t), x(0) = x0, x(·) ∈ X , u(·) ∈ U

(2.6)

This mathematical description is very well known to a control engineer, and is equivalent to the optimal control

problem of a physical system. The economic agent therefore behaves as an optimal controller. The asset allocation

x(t) is the state of the controlled system and the investment and consumption decisions are the control variables

u(t) of the agent.

Solving the optimization problem is in general difficult as we are not looking for a single value for the control

input u∗(t), but instead we are looking for the optimal trajectory of the state x∗(·) and the control u∗(·) over

the planning horizon t ∈ [0, T ]. In this sense, the problem is infinite-dimensional as the space of feasible paths is

an infinite-dimensional function space.

2.3 The Objective Function

Section 2.1 and 2.2 introduce the economic agent as an optimal controller with the goal to maximize the utility

functional. This functional incorporates both a running utility v(x(t), u(t), t) and a bequest utility Φ (x(T ), T ).

V∗ = max
u(·)
V [x(·), u(·)] = max

u(·)

[
Φ (x(T ), T ) +

∫ T

0

v(x(t), u(t), t)dt

]
(2.7)
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The optimal control problem with this objective functional is known as the Bolza Problem. The Lagrange and

Mayer problem are defined similarly to the Bolza problem, but differ in the formulations of the utility functional.

The Lagrange problem only includes the running utility and not the bequest utility. It is specified as

V∗ = max
u(·)
V [x(·), u(·)] = max

u(·)

[∫ T

0

v(x(t), u(t), t)dt

]
(2.8)

The Mayer problem on the other hand only includes the bequest utility and not the running utility. Its objective

is defined as

V∗ = max
u(·)
V [x(·), u(·)] = max

u(·)
Φ (x(T ), T ) (2.9)

The problem of Bolza seems at first glance to be more general than the Lagrange and Mayer formulation.

The Lagrange problem lacks the bequest utility Φ(·) = 0 and the problem of Mayer is missing the accrued

instantaneous utility, v(x(t), u(t), t) = 0. However, we can actually show that the three problem formulations are

equivalent, meaning that we can rewrite the problem of Bolza under some mathematical regularity conditions in

terms of the problem of Lagrange or Mayer and vice versa (see Bertsekas et al. (1995) and Appendix B). This of

course also means that the Lagrange and Mayer problem are equivalent.

2.4 The Utility Function

The utility functional (2.3) consist of the accrued running utility and the bequest utility. These functions describe

the behavior of the household in the economy. In principle, these functions could be anything, not necessarily

restricted to any specific form. There are however compelling arguments to assume that both the running utility

v(x(t), u(t), t) and the bequest utility Φ(x(T ), T ) are convex. In Becker (2011) this is discussed for simple choice

model. However, we should not blindly assume that the utility function is convex as this certainly will depend

on the assets and control possibilities under evaluation.

More-is-Better. The “more-is-better” property describes an economic agent that always values additional

assets x(t) and additional control u(t). Mathematically, this means that the marginal running utility is positive

in both the assets x(t) and the control u(t) 5

∂v

∂x

(
x(t), u(t), t

)
≥ 0,

∂v

∂u

(
x(t), u(t), t

)
≥ 0 (2.10)

And for the bequest utility

∂Φ

∂x

(
x(T ), T

)
≥ 0 (2.11)

The “more-is-better” property should not be used blindly. If the control u(t) is interpreted as consumption then

more consumption can make the agent better off. However, not all control actions will give the economic agent a

positive experience. If a component of u(t) is equal to the fraction of labor and leisure time, then more labor will

not benefit the agent directly (of course, labor can indirectly provide a benefit by generating income). However,

if we express the problems in terms of the fraction leisure versus labor time then the “more-is-better” property

is not unlikely.

Diminishing Marginal Utility. The utility of holding more assets x(t) and making control decisions u(t)

increases with their amount. The marginal utility from the assets and decision will however decrease

∂2v

∂x2

(
x(t), u(t), t

)
≤ 0,

∂2v

∂u2

(
x(t), u(t), t

)
≤ 0 (2.12)

and for the bequest utility

∂2Φ

∂x2

(
x(T ), T

)
≤ 0 (2.13)

5For ease of notation I do not show the time dependency of the assets x(t) and the control decisions u(t) in the partial derivatives.
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Time Preference Similar to the time-value of money, agents also have a clear time preference. This means

that utility derived from assets and consumption in the nearly future is valued higher. Mathematically, the

running utility decreases over time, and the bequest utility decreases with an increasing planning horizon.

∂v

∂t

(
x(t), u(t), t

)
≤ 0,

∂Φ

∂T

(
x(T ), T

)
≤ 0 (2.14)
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3 The Economic Agent as a Lagrangian System

Building on the work of Sussmann and Willems (1997), I do not focus immediately on the solution method for the

general optimal control problem. Instead, I follow the historical development of the maximum principle and start

in this chapter with the Lagrangian characterization of the economic agent. This will lead to the Euler-Lagrange

equations which have the interpretation of a no-arbitrage condition in economics.

The Lagrangian characterization of the economic agent is generated by the simplification of the asset dynamics

in (2.1) which become

ẋ(t) = u(t)

x(0) = x0

(3.1)

These (uncontrolled) assets dynamics imply that the amount of assets and the asset allocation does not mutate

autonomously over time. The assets can only change by a control action of the agent, which is best understood

as the negative of consumption6. I will refer to these assets as “simple consumption assets”. Assuming that both

the control and state are continuous time functions that are not restricted by some admissible control or state

set, we can write the mathematical problem of utility maximization as

V∗ = max
u(·)
V [x(·), u(·)] = max

u(·)

[
Φ (x(T ), T ) +

∫ T

0

v(x(t), u(t), t)dt

]
s.t. ẋ(t) = u(t), x(0) = x0, x(·) ∈ Rn, u(·) ∈ Rm

(3.2)

This is the description of an economic agent who is endowed with an initial amount of simple consumption assets

x0, and who consumes (part of) his assets to maximize utility over the planning horizon. The total utility in (3.2)

is equivalently written as a functional of the asset trajectory determined by (x(t), ẋ(t), t) instead of (x(t), u(t), t)

by substitution of the asset dynamics (3.1)7.

V∗ = max
x(·)
V [x(·)] = max

x(·)

[
Φ (x(T ), T ) +

∫ T

0

v(x(t), ẋ(t), t)dt

]
s.t. x(0) = x0, x(·) ∈ Rn, ẋ(·) ∈ Rn

(3.3)

The distinctive feature of this Lagrangian characterization is that the economic agent maximizes utility over all

possible asset trajectories x(·). The optimal asset trajectory is completed described by the utility functional, and

its solution can be found by techniques from the calculus of variations.

This is different from the initial optimal control problem, where the maximization of utility takes place over all

possible asset trajectories x(·) that satisfy the asset dynamics for some choice of the control trajectory u(·). The

maximization is hence performed over the asset-control pair (x(·), u(·)). In the optimal control problem, both

the asset dynamics and the utility functional give the problem of utility maximization an interesting structure.

The Lagrangian characterization of the economic agent is analogous to the description of a mechanical system that

moves through space. The analogy will be developed in this chapter, but is summarized in Table 3.1. The solution

of the optimal asset trajectory can be described both by Euler-Lagrange equations and by Hamilton’s canonical

equations. Arnold (1978) refers to the application of these two solution methods in mechanics as Lagrangian

mechanics and Hamiltonian mechanics. We will adopt this terminology and refer to it, in the economic application

under consideration, as the Lagrangian economic agent and the Hamiltonian economic agent. The Lagrangian

method is discussed in the current chapter, the Hamiltonian approach in the next chapter.

6The assets of the agents will decreases through consumption, such that u(t) ≤ 0 corresponds to consumption of the assets.
7In classical mechanics it is customary to denote the generalized coordinate and its derivative as q(t) and q̇(t). To keep the

notation consistent throughout this document, I stick to x(t) and ẋ(t) in this chapter.
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Symbol
Lagrangian & Hamiltonian

Mechanics
Economic Interpretation Units

x(t) Generalized Coordinates Asset Positions [asset]

u(t) Control Variable Consumption

[
asset

year

]
p(t) Generalized Momenta Asset Prices

[
utils

asset

]
F (t) Potential Force Utility Rental

[
utils

asset year

]
v
(
x(t), ẋ(t), t

)
Lagrangian Instantaneous Utility

[
utils

year

]
Φ
(
x(T ), T

)
- Bequest Utility [utils]

V∗ Negative of Action Maximized Total Utility [utils]

H
(
x(t), p(t), u(t), t

)
Control Hamiltonian Economic Surplus

[
utils

year

]

Table 3.1: The analogy between Lagrangian and Hamiltonian Mechanics and the utility maximization problem

of an economic agent with simple consumption goods.

3.1 Economic Interpretation of the Euler-Lagrange Equation

The formulation of the economic agent in (3.3) has many similarity with Lagrangian mechanics. Landau and

Lifshitz (1972) and Arnold (1978) explain that the dynamics of a mechanical system can be derived from the

action functional, and this is called Hamilton’s principle. The action functional is defined similarly as the utility

over a planning horizon8. The true state trajectory of such a mechanical system is described by the stationary

points that minimize the action. These stationary points are described by the Euler-Lagrange equations.

The isomorphic structure between the Lagrangian economic agent and Lagrangian mechanics enables the use of

Lagrangian mechanics to derive the agent’s behavior. The action of a mechanical system and the utility of an

agent are equivalent concepts here, but with the difference that action is minimized and utility is maximized.

The agent’s asset trajectory is, similar to the mechanical system, described by its stationary points. However, in

contrast with mechanics, I look for the stationary points that maximize the utility functional9. The stationary

points are obtained with the Euler-Lagrange equations which are

∂v

∂x

(
x(t), ẋ(t), t

)
− d

dt

(
∂v

∂ẋ

(
x(t), ẋ(t), t

))
= 0 (3.4)

In mechanics, this forms of the Euler-Lagrange equations is only applicable when all forces can be derived from

some potential function. In general handling dissipative forces, and therefore also transactions costs in economics,

will be hard to include in the Euler-Lagrange equations. See Appendix A for a short digression on the inclusion

of dissipative forces in the Euler-Lagrange equations. The derivation of (3.4) is a standard application of the

calculus of variation and can be found in the classical textbooks Arnold (1978) and Landau and Lifshitz (1972).

They assume that the generalized coordinates have a boundary condition at the end of the planning horizon.

For the economic agent, the final asset allocation is however part of the utility maximization problem. Luckily,

the Euler-Lagrange equations still hold true without the boundary condition, but then require the additional

8The utility functional incorporates a bequest utility, while the action does not incorporate a final cost. This is not problematic

as the Bolza utility functional can be transformed into the Lagrangian objective functional, see Section 2.3.
9A simple step would be to convert the maximization of utility into the minimization of the negative of utility also called disutility.
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transversality condition.

p(T ) = −∂v
∂ẋ

(
x(T ), ẋ(T ), T

)
=
∂Φ

∂x

(
x(T ), T

)
(3.5)

To be certain that the obtain trajectory actually maximizes the utility over the planning, we should also check

the second-order conditions. This is checked with the Legendre conditions (see Gelfand and Fomin (1963)), which

is

∂2v

∂ẋ2

(
x(t), ẋ(t), t

)
≤ 0 (3.6)

As in mechanics, we can give an economic interpretation to the partial derivatives in the Euler-Lagrange equations

and the transversality condition. In mechanics, we define the generalized momenta that correspond to the

generalized coordinates x(t), as

pm(t) =
∂v

∂ẋ

(
x(t), ẋ(t), t

)
(3.7)

This is the definition of the shadow price as in the work Kamien and Schwartz (1981). However, we should

remember that the action was minimized and the utility maximized. This means that we should be very careful

with the sign convention here. It is better to define the shadow price as

p(t) = −∂v
∂ẋ

(
x(t), ẋ(t), t

)
(3.8)

This definition corresponds to the incremental increase of the utility functional due to an incremental increase

in the asset allocation, see also Section 3.3. This is called a shadow price in economics. Remember also that

the “more-is-better” property dictates that the marginal increase in utility is positive or at least nonnegative for

a marginal increase in consumption. However, the control u(t) in the asset dynamics (3.1) equals the negative

of consumption, meaning that u(t) ≥ 0 corresponds to the agent buying assets, and not consuming them. To

ensure a positive shadow price, as one would expect it to be, the shadow price should be defined as in (3.8). The

units of this shadow price are

[
utils

asset

]
. The transversality condition in (3.5) is then interpreted as a boundary

condition for the asset price at the planning horizon. At that point, the price of the asset is determined by the

bequest utility of the economic agent. As the “more-is-better” property also holds for the bequest utility, the

price at the end of the planning horizon will be positive. The definition of the shadow price as in (3.8) will in

the next chapter turn out to be essential to give a proper interpretation of the Hamiltonian.

The second term of the Euler-Lagrange equation is in mechanics interpreted as the applied force on the mechanical

system. It has the definition

F (t) =
∂v

∂x

(
x(t), ẋ(t), t

)
(3.9)

In economics, I interpret this force as the utility rental that the agent receives while holding the assets x(t). It

is the incremental benefit or psychological satisfactions that the economic agent receives from an incremental

amount of additional assets. The Euler-Lagrange equation (3.4) is with the definition for the shadow price and

the utility rental written as

ṗ(t) = −F (t) (3.10)

and I interpret this as the no arbitrage condition for the economic agent. It states that any change in the shadow

price p(t) of an asset x(t) is due to the utility rental of that asset. The depreciation of the asset must be equal to

the instantaneous payoff of holding the asset x(t). The asset price decreases as the asset already pays out some

of its value to the agent. To make this more clear, let us assume that this equality does not hold such that

ṗ(t) < −F (t) (3.11)
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Then the instantaneous benefit of holding asset x(t) is greater than the price change of the asset. An economic

agent could take advantage of this situation by buying an additional amount of the asset δx at time t for (shadow)

price p(t), holding it for a small period ∆t, and selling it at time t+ ∆t. This will cost the agent in terms of the

shadow price

p(t)δx− p(t+ ∆t)δx ≈ ṗ(t)∆tδx

But he will receive the additional utility

δx

∫ t+∆t

t

F (t)dt ≈ F (t)∆tδx

Due to (3.11), the benefit of holding an additional amount of x(t) exceeds the shadow costs of buying these

assets. The economic agent should always take advantage of this opportunity. The agent will buy the additional

amount of asset x(t) until the incremental benefit equals the shadow price of the asset x(t). Therefore, the no

arbitrage condition must hold.

The Euler-Lagrange equations (3.4) result in a second-order differential equation that describes the controlled

asset position of the agent. This means that the controlled behavior of the Lagrangian economic agent can be

described in a state-space form with 2 state variables. The state variables will be the asset price p(t) and the

asset allocation x(t), as we will show with Hamilton’s canonical equations. This is similar to a mechanical system

that is at a time instant described by both its position x(t) and its momentum p(t) or its velocity ẋ(t).

3.2 Economic Interpretation of the Derivation of the Euler-Langrange Equation

The proof of the Euler-Lagrange equation can be found in many textbooks such as Landau and Lifshitz (1972) and

Arnold (1978). Here, we will repeat this proof using the calculus of variations and give an economic interpretation

of it. Recall that it is the objective of the agent to maximize his total utility over the planning horizon t ∈ [0, T ],

and in the setting of the Lagrangian economic agent, it equals

V∗ = max
x(·)
V [x(·)] = max

x(·)

[
Φ (x(T ), T ) +

∫ T

0

v(x(t), ẋ(t), t)dt

]
s.t. x(0) = x0, x(·) ∈ Rn, ẋ(·) ∈ Rn

(3.12)

The agent starts with an initial amount of assets x0 and is free to choose his asset path x(·) over the planning

horizon, without a boundary condition for x(T ). This is called a free-endpoint, fixed-time problem in the calculus

of variations. The optimal asset trajectory x∗(·) is the trajectory that maximizes the total utility of the economic

agent such that

V [x∗(·)] ≥ V [x(·)] ∀ x(·) ∈ Rn (3.13)

for all other possible trajectories x(·). If the agent starts with the optimal trajectory x∗(·), and considers to

vary this optimal path by an arbitrary change η(t) over the entire planning horizon (such that η(t) | t ∈ [0, T ],

abbreviated as η(·)), then the agent will find the new asset trajectory x∗(·)+η(·) less interesting as it will decrease

his total utility over the planning horizon. To formalize this optimization mathematically, we consider the varied

asset trajectory x∗(·) + εη(·), where ε is some constant weight and η(t) is an arbitrary and smooth function that

is defined over the full planning horizon and atleast nonzero for some t over the planning horizon. The agent can

of course not change his initial asset allocation, requiring that the initial variation equals η(0) = 0. Now for ease

of notation, let us denote in the sequel of this section the varied trajectory as x(·) + εη(·). The accrued utility

over the planning horizon is for this varied path equal to

V [x(·) + εη(·)] = Φ
(
x(T ) + εη(T ), T

)
+

∫ T

0

v
(
x(t) + εη(t), ẋ(t) + εη̇(t), t

)
dt (3.14)
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Figure 3.1: Schematic of the optimal and varied asset trajectories

The utility functional should by definition be maximized by the optimal asset trajectory x∗(·). Any variation

of the asset allocation εη(·) of the optimal trajectory should result in a decreased well-being of the agent. This

means that the change in the agent’s well-being should be at extremal with respect to ε at the point ε = 0. The

first-order condition is equal to
dV (x(·) + εη(·))

dε

∣∣∣∣
ε=0

= 0 (3.15)

Manipulating this expression, we obtain

dV (x(·) + εη(·))
dε

∣∣∣∣
ε=0

=
d

dε

∣∣∣∣
ε=0

(
Φ
(
x(T ) + εη(T ), T

)
+

∫ T

0

v(x(t) + εη(t), ẋ(t) + εη̇(t), t)dt

)

=

[
∂Φ(x, t)

∂x
η(T )

]
t=T

+

∫ T

0

(
∂v (x, ẋ, t)

∂x
η(t) +

∂v (x, ẋ, t)

∂ẋ
η̇(t)

)
dt

For the second term in the integral, we use the chain rule to write∫ T

0

(
∂v (x, ẋ, t)

∂ẋ
η̇(t)

)
dt =

[
∂v (x, ẋ, t)

∂ẋ
η

]T
0

−
∫ T

0

d

dt

(
∂v (x, ẋ, t)

∂ẋ

)
η(t) dt (3.16)

Using the chain rule result, and the boundary condition that the agent is unable to vary his initial asset position

η(0) = 0, the expression for the first variation of the utility functional equals

η(T )

[
∂v (x, ẋ, t)

∂ẋ
+
∂Φ(x, t)

∂x

]
t=T

+

∫ T

0

(
∂v (x, ẋ, t)

∂x
− d

dt

(
∂v (x, ẋ, t)

∂ẋ

))
η(t)dt = 0

This equality only holds true for an arbitrary function η(t) when the integral is equal to zero, resulting in the

Euler-Lagrange equation

∂v

∂x

(
x(t), ẋ(t), t

)
− d

dt

(
∂v

∂ẋ

(
x(t), ẋ(t), t

))
= 0

And the first term on the right side is equal to zero

η(T )

[
∂v

∂ẋ

(
x(T ), ẋ(T ), T

)
+
∂Φ

∂x

(
x(T ), T

)]
= 0

This must hold for any variation at the end of the planning T , such that in general η(T ) 6= 0. Recognizing the

definition of the shadow price, this implies

p(T ) = −∂v
∂ẋ

(
x(T ), ẋ(T ), T

)
=
∂Φ

∂x

(
x(T ), T

)
(3.17)

This tranversality condition simply states that without an bequest function the terminal asset stock x(T ) must

be valueless for the economic agent. That is, the economic agent does not plan to leave anything valuable after

the planning horizon. With an bequest utility, the price at the end of the planning horizon is determined by the

marginal (bequest) utility.
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Remark 1. We can give the application of the chain rule in (3.16) an economic interpretation when we use the

definition for the asset (shadow) prices (3.8).The chain rule be write as

d
(
p(t)η(t)

)
= p(t)dη(t) + dp(t)η(t)

The total value change of the variation d
(
p(t)η(t)

)
is due to the change in the variation p(t)dη(t) plus the change

in the price due to the variation dp(t)η(t)

3.3 The Shadow Price as the Generalized Momentum

In Section 3.1, the shadow price was defined as the generalized momentum10

p(t) = −∂v
∂ẋ

(
x(t), ẋ(t), t

)
(3.18)

We mentioned that the shadow price is equal to the incremental change of the utility functional due to an

incremental increase in the asset allocation. To show that this is the case, let consider the total utility when the

initial asset position increases from x(0) = x0 to x(0) = x0 + η, and denote the corresponding utility as V ∗(x0)

and V ∗(x0 + η). The increased initial asset position results in a variation of the asset trajectory, denoted as η(t).

The difference between the utility functionals is approximated with a first-order Taylor expansion around the

optimal trajectory x(·), yielding

V ∗(x0 + η)− V ∗(x0) ≈ ∂Φ

∂x

(
x(T ), T

)
η(T ) +

∫ T

0

(
∂v

∂x

(
x(t), ẋ(t), t

)
η(t) +

∂v

∂ẋ

(
x(t), ẋ(t), t

)
η̇(t)

)
dt (3.19)

The application of integration by parts (similar to the proof of the EL-equations), and the definition of the

shadow price, results in

η(0)p(0) + η(T )

[
−p(T ) +

∂Φ

∂x

(
x(T ), T

)]
︸ ︷︷ ︸

=0

+

∫ T

0

(
∂v

∂x
− d

dt

(
∂v

∂ẋ

))
︸ ︷︷ ︸

=0

η(t)dt = 0

The two later terms vanished because of the transversality conditions and the Euler-Lagrange equations. With

η(0) = η, this means that the increase in the utility functional is approximately

V ∗(x0 + η)− V ∗(x0) ≈ ηp(0)

And in the limit, we have

lim
η→0

V ∗(x0 + η)− V ∗(x0)

η
= p(0)

An incremental increase in the initial asset position, dη, results in an incremental increase of the utility functional

of the amount p(0)dη. The value of the assets at time t = 0 is therefore equal to p(0).

A similar argument can used to show that the interpretation of a shadow price holds over the complete planning

horizon. To do that, consider an agent that follows an optimal asset trajectory, but at some time τ unexpectedly

receives an additional amount of assets η. This means that the variation η(t) = 0 for the interval t ∈ [0, τ〉, and

η(τ) = η. The increase in the total utility can again be found using a Taylor approximation, resulting in

V
(
x(·) + η(·)

)
− V

(
x(·)

)
≈ η(τ)p(τ) + η(T )

[
−p(T ) +

∂Φ

∂x

(
x(T ), T

)]
︸ ︷︷ ︸

=0

+

∫ T

τ

(
∂v

∂x
− d

dt

(
∂v

∂ẋ

))
︸ ︷︷ ︸

=0

η(t)dt = 0

= η(τ)p(τ)

10Taking the difference between maximization of the utility and minimization of the action into account.
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In the limit, we obtain

lim
η→0

V
(
x(·) + η(·)

)
− V

(
x(·)

)
η

= p(τ)

An incremental increase in the initial asset position at time τ , thus results in an incremental increase of the utility

functional of the amount p(τ)dη. The value of the assets at time τ is therefore equal to p(τ), and in general we

can thus interpret the generalized momentum as the shadow price of the asset.

The units of the shadow price is equal to utils per asset. This is not a very convenient measure to work with as

the price of an asset is generally measure in terms of a currency, e.g. dollars, euros or yens. If the dollar price of

one asset is known, then we could use that as numeraire, and use it to express the value of the assets in terms

of their dollar value.

3.4 Handling the Asset Dynamics in the Lagrangian

This chapter start with the asset dynamics (3.1) for the “simple consumption goods”. The general asset allocation

problem in Section 2.2 however incorporates the (possibly nonlinear) asset dynamics of the form

ẋ(t) = f(x(t), u(t), t) (3.20)

The maximum principle in Chapter 5 focuses on the general asset dynamics, but incorporation of the asset

dynamics is possible in the Lagrangian method. This requires the asset dynamics to be invertible, meaning that

the control decisions u(t) can be express as some function of x(t), ẋ(t), and t. Let this function be

u(t) = û(x(t), ẋ(t), t) (3.21)

Incorporation of the asset dynamics is then simply done by substitution of (3.21) in the utility functional, yielding

V∗ = max
x(·)
V [x(·)] = max

x(·)

[
Φ
(
x(T ), T

)
+

∫ T

0

v
(
x(t), û

(
x(t), ẋ(t), t

)
, t
)
dt

]
s.t. x(0) = x0, x(·) ∈ Rn, ẋ(·) ∈ Rn

(3.22)

With the substitution of the inversed asset dynamics, the total utility is again a functional that depends on

the asset trajectory x(·). This implies that the Euler-Lagrange equations in (3.4) must hold. Rewriting those

equations, yields the Euler-Lagrange equations for the invertable asset dynamics.

∂v

∂x
+
∂v

∂u

∂u

∂x
− d

dt

(
∂v

∂u

∂u

∂ẋ

)
= 0 (3.23)

The definition of the shadow price p(t) is not changed, but accounting for the asset dynamics, it is equal to

p(t) = −∂v
∂u

∂u

∂x
(3.24)

And the Legendre condition can be written as

∂2v

∂ẋ2
=

∂

∂ẋ

(
∂v

∂u

∂u

∂x

)
=
∂2v

∂u2

(
∂u

∂ẋ

)2

+
∂v

∂u

∂2u

∂ẋ2
≤ 0 (3.25)

3.4.1 The Asset Dynamics of the Lagrangian Economic Agent Revised

Now let us again consider the simple consumption assets. The control in the asset dynamics (3.1) increase the

asset position, and correspond with the negative of consumption. The asset dynamics of the simple consumption

goods are arguably more insightful when defined as

ẋ(t) = −u(t)

x(0) = x0

(3.26)

Master of Science Thesis Ruud Smit



The Economic Agent as a Lagrangian System 15

Where the control u(t) now simply corresponds with consumption. The shadow price is now defined as

p(t) =
∂v

∂u

(
x(t), u(t), t

)
(3.27)

The Euler-Lagrange equations can be written as

∂v

∂x

(
x(t), u(t), t

)
+
∂v

∂u

(
x(t), u(t), t

)
= 0 (3.28)

And the Legendre condition is equal to

∂2v

∂u2
≤ 0 (3.29)
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4 The Economic Agent as a Hamiltonian System

This chapter continues with the set-up of the previous chapter. It considers the maximization of utility with

simple consumption goods, and converts the Lagrangian description of the economic agent into a Hamiltonian

system. It was Sir William Rowen Hamiltonian who showed in Hamilton (1834) and Hamilton (1835) that the

dynamics of a mechanical system could be derived from the action integral, called Hamilton’s Principle, and

that the Euler-Lagrange equations can be converted into a systems of first-order differential equations. However,

rather than using the original definition for the Hamiltonian, I adopt the definition of Sussmann and Willems

(1997) which incorporates the control decisions u(t) into the Hamiltonian, leading to “Hamilton’s equations as

he should have written them”.

To some it may seem that the Hamiltonian and Hamilton’s canonical equations are a simple rewriting of the

Euler-Lagrange equations. Kamien and Schwartz (1981) refer in the economic context to it as “The device for

remembering or generating these conditions (...) is the Hamiltonian”. I oppose this idea and view the Hamiltonian

not simply as a device for calculating the optimal solutions, but rather as the economic surplus of the agent.

Hamilton’s canonical equations, two first-order differential equations, describe the evolution of the asset positions

and the shadow price over time. However, the use of the control Hamiltonian also gives us the insight that the

Hamiltonian is maximized at every moment in time. This has important economic implications and results in a

myopic description of the economic agent.

4.1 The Hamiltonian as the Economic Surplus

The mathematical set-up of the agent’s behavior is in this chapter equivalent to the Lagrangian set-up. However,

to be able to use the control Hamiltonian, the utility is expressed as functional in terms of (x(t), u(t), t). The

agent is then described by the optimal control problem

V∗ = max
u(·)
V [x(·), u(·)] = max

u(·)

[
Φ (x(T ), T ) +

∫ T

0

v(x(t), u(t), t)dt

]
s.t. ẋ(t) = u(t), x(0) = x0, x(·) ∈ Rn, u(·) ∈ Rn

(4.1)

In the previous chapter, we explained that its solution is described by the Euler-Lagrange equation in combination

with the Legendre and transversality conditions. As the asset dynamics of the “simple consumption goods” ensure

that ẋ(t) = u(t), it is possible to rewrite the Euler-Lagrange as

∂v

∂x

(
x(t), ẋ(t), t

)
− d

dt

(
∂v

∂u

(
x(t), ẋ(t), t

))
= 0 (4.2)

Here we stick to the notation of Sussmann and Willems (1997), but to clarify it, with
∂v

∂u

(
x(t), ẋ(t), t

)
we mean

the partial derivative of the running utility v(x(t), u(t), t) with respect to the control action u(t) and evaluated

at the point (x(t), u(t), t) = (x(t), ẋ(t), t). The Legendre and transversality condition can, in the same notation,

be written as

∂2v

∂u2

(
x(t), ẋ(t), t

)
≤ 0 and p(T ) =

∂Φ

∂x

(
x(T ), ẋ(T ), T

)
(4.3)

Now, let us reconsider the problem of utility maximization as described in (4.1). This objective states that the

utility accrued over the planning period is maximized, and its solution is not a single point, but the optimal

asset trajectory x∗(·) over the entire planning horizon. This optimal asset trajectory is described by the Euler-

Lagrange equation, the Legendre condition, and the transversality condition. The Euler-Lagrange equation

describes all stationary asset trajectories, and the Legendre condition guarantees that the stationary solution

indeed maximizes the utility functional. The transversality condition ensures that the bequest utility is taken

into account, and that the assets are correctly priced at the planning horizon.
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Taking a second look at the Legendre condition, reveals that it is the usual second-order necessary condition for

the instantaneous maximization of the running utility v(x(t), u(t), t) with respect to the control input. However,

the first-order condition, the Euler-Lagrange equation, looks not all like the first-order order condition of such

an instantaneous maximization. This leads to the natural question whether there exist a new function, with an

economic interpretation, that is at every instant along the optimal asset trajectory maximized with respect to

the control u(t). This is especially interesting from an economic perspective. The initial utility objective (4.1)

describes an agent that maximizes utility over an entire planning horizon. However, if their exist a new function

that is maximized at every instant with respect to control actions, and that results in the same asset and price

dynamics as the Lagrangian description, then this agent can also be described myopically. This new function

is found to exist, and is called the Hamiltonian in control theory, and will be defined hereafter. In economics

it has the interpretation of the economic surplus. The alternative, myopic characterization describes an agent

that maximizes economic surplus at every instant with respect to the allowed control actions, given the asset

allocation and the asset prices.

Now let us define this new function, called the Hamiltonian, as a function of the assets x(t) ∈ Rn, the control

u(t) ∈ Rn, the shadow price p(t) ∈ Rn and time t ∈ R and with the functional form

H
(
x(t), p(t), u(t), t

)
= v
(
x(t), u(t), t

)
+ p(t)u(t) (4.4)

The Hamiltonian is the sum of the direct benefit v(x(t), u(t), t) plus the increase in the value of the asset

portfolio when the price is assumed to be constant 11,12. Remember that consumption in this set-up corresponds

to u(t) ≤ 0. The Hamiltonian is hence the differen1ce between the direct benefit v(x(t), u(t), t) minus the cost

of the consumed goods p(t)u(t). This is what we will call the economic surplus of the agent, also called the

consumer surplus. This definition of the Hamiltonian (4.4) is slightly different from the definition of Sussmann

and Willems (1997) and it has all to do with the difference between minimizing the action and maximizing the

utility. In fact, with my definition of the shadow price as

p(t) = −∂v
∂u

(
x(t), ẋ(t), t

)
(4.5)

the Hamiltonian in the paper of Sussmann and Willems (1997) is the negative of the Hamiltonian of (4.4). Now

let us consider the first-order conditions for maximization of the Hamiltonian with respect to its arguments

(x(t), u(t), p(t), t). The first derivative with respect to the assets x(t) is directly interesting, and equals

∂H

∂x

(
x(t), p(t), u(t), t

)
=
∂v

∂x

(
x(t), u(t), t

)
(4.6)

Now recognize that term on the right sight is equal to the utility rental in (3.9), when evaluated at (x(t), u(t), t)

is (x(t), ẋ(t), t). The no-arbitrage condition (the Euler-Lagrange equation in (4.2)) should still hold, meaning

that the change in price can also be expressed in terms of the economic surplus as

ṗ(t) = −∂H
∂x

(
x(t), p(t), ẋ(t), t

)
(4.7)

The change in the economic surplus with respect to the price p(t) is easy to see. An increase in the price does not

directly changes the instantaneously gained utility, but it does increases the cost of consumption. This means

that ∂H/∂p = u(t) and substituting the asset dynamics of the simple consumption goods, yields

ẋ(t) =
∂H

∂p

(
x(t), p(t), ẋ(t), t

)
(4.8)

The change in the economic surplus with respect to the control action u(t) is the key argument to use the control

Hamiltonian instead of the Hamilton’s original definition. The cost of consumption increases linearly with the

11Recognizing the asset dynamics of the simple consumption goods, the control Hamiltonian could also be written somewhat

informal as H = v
(
x(t), u(t), t

)
+ p(t)ẋ(t)

12The value of the portfolio changes in two different ways due to either a change in the asset portfolio or due to a change in the

asset prices.
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control action, but also the derived utility changes. How much does the utility changes incrementally, well by

definition (4.5) exactly with the asset price. This means that the change in economic surplus with respect to the

control action is actually zero

∂H

∂u

(
x(t), p(t), ẋ(t), t

)
=
∂v

∂u

(
x(t), ẋ(t), t

)
+ p(t) = 0 (4.9)

The economic surplus of the agent is at every instant stationary with respect to control action u(t). This is

the first indication that the economic surplus is maximized by the economic agent. The change of the economic

surplus with respect to time, is best understood if we analyze the total time derivative of the Hamiltonian. It is

equal to (omitting the arguments of the derivatives):

dH

dt
=
∂H

∂x
ẋ(t) +

∂H

∂u
u̇(t) +

∂H

∂p
ṗ(t) +

∂H

∂t
(4.10)

Recognizing that the first three partial derivatives of the right cancel due to (4.7), (4.8), and (4.9). Meaning that

the total time derivative of the hamiltonian is equal to the partial time derivative of the hamiltonian.

dH

dt
=
∂H

∂t
=
∂v

∂t

(
x(t), u(t), t

)
(4.11)

The means that the economic surplus only changes over time, if the Hamiltonian explicitly depends on time.

For the problem with simple consumption goods, this means that the Hamiltonian is constant over time, if the

running utility does not depend on time. For mechanical systems, this happens when all forces can be derived

from a potential function. For dissipative systems, the Hamiltonian may be characterized as time-dependent as

McDonald (2015) describes. For economic systems, a time-dependency often enters the running utility naturally

to capture the time preference of agents.

4.2 Towards the Maximum Principle and the Myopic Agent

The definition of the Hamiltonian (4.4) ensures that the no-arbitrage condition (4.2) is compactly written into two

first-order differential equations. In the Euler-Lagrange equation, the controlled evolution of the asset positions

and the shadow prices are intertwined. By application of the Hamiltonian, the evolution of the asset positions

and the shadow prices are entangled from each other, and are both expressed as a first-order differential equation

that depends on the economic surplus.

ṗ(t) = −∂H
∂x

(
x(t), p(t), u(t), t

)
and ẋ(t) =

∂H

∂p

(
x(t), p(t), u(t), t

)
(4.12)

In addition to this, the application of the control Hamiltonian shows that the economic surplus is at least

stationary over time with respect to the control input u(t)

∂H

∂u

(
x(t), p(t), u(t), t

)
= 0 (4.13)

Sussmann and Willems (1997) refer to equations (4.12) and (4.13) as “Hamilton’s equations as he should have

written them”. They argue that the maximum principle would have been discovered by Hamilton himself, or

some other 19th century mathematician, if Hamilton wrote the Hamiltonian in the form of (4.4).

Now to see that the economic surplus is indeed maximized, let us consider the Legendre condition (4.3) that

states ∂2v/∂u2 ≤ 0. Now realize that the economic surplus is the sum of the running utility v(x(t), u(t), t) plus

a linear term of the control u(t). Then the Legendre condition is equivalently written in terms of the economic

surplus as

∂2H

∂u2

(
x(t), p(t), u(t), t

)
≤ 0 (4.14)
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The first-order condition in (4.13) shows that the Hamiltonian is stationary with respect to control action u(t),

and the Legendre condition indicated that the Hamiltonian is indeed maximizes. Section 4.6 discusses the proof

that the Hamiltonian is indeed maximized along the optimal trajectory with respect to the control action, using

the Weierstrass Excess Function. It shows that the economic surplus decreases for an arbitrary u(t) compared

to the optimal asset trajectory

H
(
x∗(t), p(t), u(t), t

)
−H

(
x∗(t), p(t), u∗(t), t

)
≤ 0

4.3 Weierstrass Excess Function to Show that Economic Surplus is Maximized.

The Weierstrass excess function was originally developed to construct conditions for a strong maximum in the

calculus of variations. These solutions are continuous, but not necessarily smooth. For the agents under eval-

uations, it originally showed that an optimal asset trajectory x∗(·) is also optimal compared to another asset

trajectory x(·) which is, at every point in time, arbitrarily close to x∗(·), but its derivative not necessarily. It was

defined bij Weierstrass (see Sussmann and Willems (1997)) in terms of the running utility (the Lagrangian) as

E
(
x∗(t), ẋ∗(t), w, t

)
= v
(
x∗(t), w, t

)
− v
(
x∗(t), ẋ∗(t), t

)
− ∂v

∂ẋ

(
x∗(t), ẋ∗(t), t

)(
w − ẋ∗(t)

)
But recognizing the definition of the economic surplus and the shadow price, this expression is equivalently

written as the difference in economic surplus

E
(
x∗(t), ẋ∗(t), w, t

)
= H(x∗(t), p(t), w, t)−H(x∗(t), p(t), ẋ∗(t), t)

And to proof that the economic surplus is indeed maximized, we should proof that Weierstrass excess function is

not positive E
(
x(t), ẋ(t), w, t

)
≤ 0. This proof can be set-up in different forms, but we will discuss here the proof

in Leitmann (1980) and Friesz (2010), and review it from an economic perspective. The proof is constructed by

considering the following variation of the optimal asset trajectory x∗(t) of the form

x(t) =


x∗(t) if t ∈ [0, τi] ∪ [τe, T ]

ζ(t) if t ∈ [τi, ε], and ε ∈ [τi, τe]

φ(t, ε) if t ∈ [ε, τe]

(4.15)

where

ζ(t) = x∗(τi) + w(t− τi) and w ∈ R

φ(t, ε) = x∗(t) +
ζ(ε)− x∗(ε)

τe − ε
(τe − t)

This variation of the optimal asset trajectory x∗(·) looks mathematically challenging, but plotted in Figure 4.1

it is actually quite simple. With the varied asset-trajectory x(·) the economic agent follows the optimal asset

trajectory over the entire planning horizon except for the part t ∈ [τi, τe]. In the first part of this interval

t ∈ [τi, ε], the agent adjust his consumption rate to the constant rate −w. In the second part, the agent follows

again the optimal trajectory, but adjusted for the additional or reduced consumption of the first interval. This

difference is linearly spread over the interval t ∈ [ε, τe] such that the amount of assets at time t = τe is equal

in both the optimal and the varied path. Thereafter the optimal asset trajectory is again followed. The rate of

change of the varied asset trajectory is equal to

ẋ(t) =


ẋ∗(t) if ∪ [0, τi], or t ∈ [τe, T ]

w if t ∈ [τi, ε]

ẋ∗(t)− ζ(ε)− x∗(ε)
τe − ε

if t ∈ [ε, τe]
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Figure 4.1: Schematic representation of the variation to proof that the economic surplus is maximized.

This formulation ensures that if the first time interval is decreased, then the varied trajectory x(·) approaches

the optimal asset trajectory x(·) as ε → τi. Now if x∗(·) is indeed the optimal asset trajectory then we should

have that the gained utility over the optimal path is larger than over the varied path.

Ψ(ε) = V [x∗(·)]− V [x(·)] ≥ 0

Evaluated at ε = τi, the varied path is by its definition equal to the optimal trajectory. Because the utility will

decrease when the agent leaves the optimal trajectory, this means that

Ψ(τi) = 0 and
∂Ψ

∂ε
(τi) ≤ 0

The proof is now set-up by contradiction. It show that the ∂Ψ/∂ε evaluate at time τi is equal to Weierstrass

Excess Function which proofs that the Hamiltonian is indeed maximized along the optimal trajectory. As the

economic agent follows the optimal asset trajectory everywhere except for the interval t ∈ [τi, τe], we obtain

Ψ(ε) =

∫ ε

τi

[
v
(
ζ(t), ζ̇(t), t

)
− v
(
x(t), ẋ(t), t

)]
dt+

∫ τe

ε

[
v
(
φ(t, ε), φ̇(t, ε), t

)
− v
(
x(t), ẋ(t), t

)]
dt

The derivative of this expression should be evaluated using Leibniz’s integral rule, resulting in

∂Ψ

∂ε
(ε) = v

(
ζ(ε), ζ̇(ε), ε

)
− v
(
φ(ε, ε), φ̇(ε, ε), ε

)
+

∫ τe

ε

[
∂v

∂x

∂φ

∂ε
(t, ε) +

∂v

∂u

∂φ̇

∂ε
(t, ε)

]
Application of the chain rule allows us to write the later integral as∫ τe

ε

[
∂v

∂x
− d

dt

(
∂v

∂u

)]
∂φ

∂ε
(t, ε)dt+

∂v

∂u

(
φ(τe, ε), φ̇(τe, ε), τe

)∂φ
∂ε

(τe, ε)−
∂v

∂u

(
φ(ε, ε), φ̇(ε, ε), ε

)∂φ
∂ε

(ε, ε)

Recognize that the ∂φ/∂ε(τe, ε) = 0, and reducing the length of the first interval to ε → τi. The optimal asset

trajectory then approached the optimal trajectory, and the terms in the integral cancel due to the Euler-Lagrange

equations. This yields the expressions

∂Ψ

∂ε
(τi) = v

(
ζ(τi), ζ̇(τi), τi

)
− v
(
φ(τi, τi), φ̇(τi, τi), τi

)
− ∂v

∂u

(
x∗(τi), ẋ

∗(τi), τi

)(
ζ̇(τi)− ẋ∗(τi)

)
And with the definitions in (4.15) this simplifies to

∂Ψ

∂ε
(τi) = v

(
x∗(τi), w, τi

)
− v
(
x∗(τi), ẋ

∗(τi), τi

)
− ∂v

∂u

(
x∗(τi), ẋ

∗(τi), τi

)(
w − ẋ∗(τi)

)
= H(x∗(τi), p(τi), w, τi)−H(x∗(τi), p(τi), ẋ

∗(τi)τit)

≤ 0

Where the latter inequality holds by definition. This proofs that the Hamiltonian is indeed maximized along the

optimal asset trajectory.
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4.4 The Myopic Economic Agent with Simple Consumption Goods

The results of Section 4.2 imply that an agent who maximizes utility over an entire planning horizon is equivalently

described as an agent that maximizes his economic surplus instantaneous with respect to the control action u(t),

given his current asset positions x(t) and shadow prices p(t). This is mathematically denoted as

max
u(t)

H
(
x(t), p(t), u(t), t

)
= max

u(t)
v
(
x(t), u(t), t

)
+ p(t)u(t) (4.16)

The agent maximizes economic surplus only with respect to the control u(t) as this is the only parameters that

he can change instantaneously. The asset allocation and the shadow prices will change, but as a result of the

consumption u(t) of agent. The change in the asset allocation and the shadow prices is expressed in terms of the

economic surplus by Hamilton’s canonical equations and with the appropriate boundary conditions.

ẋ(t) =
∂H

∂p

(
x(t), p(t), u(t), t

)
and x(0) = x0 (4.17)

ṗ(t) = −∂H
∂x

(
x(t), p(t), u(t), t

)
and p(T ) =

∂Φ

∂x

(
x(T ), T

)
(4.18)

From an economic point of view, this is not surprising. An increase in the shadow price does not immediately

lead to an increase in the gained utility, but it does increase the cost of consumption, resulting in (4.17). Similar,

an incremental change in the asset positions does not increases the cost of consumption immediately, but it does

increase the utility gained instantaneously. The increase is (approximately) equal to the utility rental times

the increment in the number of assets. By the no-arbitrage condition, the change in the shadow price and

the utility rental are related to each other, meaning that shadow price dynamics are expressed in terms of the

agent’s economic surplus as in (4.18). The power of the Euler-Lagrange equation (the no-arbitrage condition),

the Legendre condition and the Weierstrass Necessary Condition are all captured in this myopic perspective.

Also note that it is in this formulation not necessary to define the shadow price as (4.5). Instead the shadow

price is implicitly defined with the maximization of the economic surplus as in (4.16).

This myopic characterization of the economic agent should not be interpreted as an simple problem to solve.

The actual asset and price trajectory are still described by the boundary value problem (4.17) and (4.18), where

in addition the control u(t) is determined by the surplus maximization of (4.16). Analytic solutions can only be

obtained in the simplest cases, meaning that computational solvers often need to be employed.

4.5 The Control Hamiltonian versus Hamilton’s Original Definition

In the previously sections, we already mentioned a couple of times that the control Hamiltonian is essential to

get the insight that the economic surplus is maximized along the optimal asset trajectory. To show that this is

indeed the case, let us review Hamilton’s original definition in the economic setting, and follow Sussmann and

Willems (1997) who gave a similar argument for the brachystochrone problem.

Hamilton considered the formulation of the action functional, where the Lagrangian is a function of (x(t), ẋ(t), t).

This corresponds with the utility maximization problem that is not explicitly a function of the control u(t)

V∗ = maxV [x(·)] = max

[
Φ (x(T ), T ) +

∫ T

0

v(x(t), ẋ(t), t)dt

]
s.t. x(0) = x0, x(·) ∈ Rn, ẋ(·) ∈ Rn

(4.19)

The original definition of the Hamiltonian is for the utility maximization problem written as

H
(
x(t), p(t), t

)
= v
(
x(t), ẋ(t), t

)
+ p(t)ẋ(t) (4.20)

In this definition, we took the difference between the action minimization and utility maximization into account,

as well as the sign convention for the shadow price. Notice that the original Hamiltonian can also be interpreted
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as the economic surplus of the agent. However, the arguments of the original Hamiltonian in (4.20) dictates that

it is a function of the the assets x(t) ∈ Rn, the shadow price p(t) ∈ Rn and of time t ∈ R. The expression itself

suggest that the Hamiltonian is also a function of the change in the asset positions ẋ(t) ∈ Rn. Hamilton did

not see the fulfilled demand ẋ(t) as an independent variable, but as a variable that is implicitly defined by the

definition of the shadow price. This means that the function for the shadow price in (4.5) should be inverted,

such that the demand ẋ(t) is a function of x(t), p(t) and time t. This inversion is not always possible, but lets

assume that it is. In line with the asset dynamics, denote this inverted function as ẋ(t) = u(x(t), p(t), t) and

recognize that the control actions are now a function of (x(t), p(t), t). The original Hamiltonian is then equal to

the control Hamiltonian H
(
x(t), p(t), u(t), t

)
with the substitution of the control u(t) = u(x(t), p(t), t).

H
(
x(t), p(t), u

(
x(t), p(t), t

)
, t
)

= H
(
x(t), p(t), t

)
(4.21)

The canonical equations that Hamilton obtained, are

ṗ(t) = −∂H
∂x

(
x(t), p(t), t

)
and ẋ(t) =

∂H
∂p

(
x(t), p(t), t

)
(4.22)

And, if it is indeed possible to invert the function for the shadow price in (4.5), then Hamilton’s original canonical

equations can also be evaluated in terms of the control Hamiltonian.

∂H
∂x

=
∂H

∂x
+
∂H

∂u

∂u

∂x
=
∂H

∂x
and

∂H
∂p

=
∂H

∂p
+
∂H

∂u

∂u

∂p
=
∂H

∂p
(4.23)

Where ∂H/∂u = 0 as the control Hamiltonian is stationary with respect to the control u(t). This discussions

shows that the canonical equations that result from the control Hamiltonian are equivalent to those from Hamil-

ton’s original definition. Both these Hamiltonians can in economics be interpreted as the economic surplus, but

the control Hamiltonian has some clear advantages.

The first, and most obvious advantage has to with the inversion of the shadow price to obtain the fulfilled the

demand ẋ(t). The control Hamiltonian recognizes the possibility of using the asset dynamics in the Hamiltonian.

The resulting canonical equations for the asset allocation and the shadow price are completely equivalent to the

no-arbitrage condition of the Euler-Lagrange equation. This is not the case for the original Hamiltonian where

the equivalence with the Euler-Lagrange equations only holds when the fulfilled demand ẋ(t) can be expressed

in terms of (x(t), p(t), t) by inverting the function of the shadow price.

However, the most important advantage is that only the control Hamiltonian gives the insight that the economic

surplus is maximized along the optimal asset trajectory with respect to the control actions u(t). The original

Hamiltonian does not provide this insight as it is not even a function of the control action u(t) or the fulfilled

demand ẋ(t). It is therefore only the control Hamiltonian that gives the insight that the agent maximizes

economic surplus along the optimal trajectory.

4.6 Hamilton’s Equations and the Shadow Price from Utility Maximization

In Section 3.2 we proofed the no-arbitrage condition (the Euler-Lagrange equation) by evaluating the utility

functional for a variation of the optimal trajectory. The control Hamiltonian was defined, and interpreted as

the economic surplus, and we showed that the asset and price dynamics implied by the no-arbitrage condition,

can also be expressed in terms of Hamilton’s canonical equations (as he should have written them). However,

Hamilton’s canonical equations can also be derived directly from the utility functional. The utility functional is

in terms of the Hamiltonian written as

V∗ = max
x(·)
V [x(·)] = max

x(·)

[
Φ (x(T ), T ) +

∫ T

0

H
(
x(t), p(t), ẋ(t), t

)
− p(t)ẋ(t)dt

]
s.t. ẋ(t) = u(t), x(0) = x0, x(·) ∈ Rn, ẋ(·) ∈ Rn

(4.24)
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The no-arbitrage condition was derived with the variation εη(·), but let now follow the notation of Landau and

Lifshitz (1972), and denote the variation as δx(·). This variation also effects the shadow price p(t) and the change

in the asset allocation ẋ(t), and denoted these variations respectively as δp(·) and δẋ(·). The first variation in

the utility functional then equals

δV =
∂Φ

∂x

(
x(T ), T

)
δx(T ) +

∫ T

0

(
∂H

∂x
δx(t) +

(
∂H

∂p
− ẋ(t)

)
δp(t) +

∂H

∂u
δẋ(t)− p(t)δẋ(t)

)
dt (4.25)

The latter variation is rewritten using the chain rule and the fact that the initial position cannot change δx(0) = 0,

yielding ∫ T

0

p(t)δẋ(t)dt = p(T )δx(T )−
∫ T

0

ṗ(t)δx(t)dt (4.26)

Such that the first variation of the utility functional equals

δV =

(
∂Φ

∂x

(
x(T ), T

)
− p(T )

)
δx(T ) +

∫ T

0

((
∂H

∂x
+ ṗ(t)

)
δx(t) +

(
∂H

∂p
− ẋ(t)

)
δp(t) +

∂H

∂u
δẋ(t)

)
dt (4.27)

For a stationary asset trajectory, we require that the first variation in the utility functional is equal to zero. This

means that all terms before the variations in δx, δp, and δẋ should be equal to zero, implying the Hamilton’s

canonical equations

ẋ(t) =
∂H

∂p

(
x(t), p(t), ẋ(t), t

)
, ṗ(t) = −∂H

∂p

(
x(t), p(t), ẋ(t), t

)
and

∂H

∂u

(
x(t), p(t), ẋ(t), t

)
= 0 (4.28)

And the transversaility condition for the shadow price

p(T ) =
∂Φ

∂x

(
x(T ), T

)
(4.29)
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5 The Maximum Principle as a Myopic Economic Agent

In Chapter 2, I described the utility maximization problem of the economic agent as an optimal control problem.

The goal of the agent is to find the optimal control trajectory u∗(·) with the corresponding asset trajectory x∗(·).
The distinctive feature of this maximization problem is that the total utility over the planning horizon depends on

the asset-control pair (x(·), u(·)), and both the utility functional and the asset dynamics determine the optimal

trajectory. This is different from the Lagrangian and Hamiltonian approach, where the optimal trajectory is

determined by the utility functional and the agent searches over all possible assets paths. Mathematically, the

problem of utility maximization is summarized as

V∗ = max
u(·)
V [x(·), u(·)] = max

u(·)

[
Φ (x(T ), T ) +

∫ T

0

v(x(t), u(t), t)dt

]
s.t. ẋ(t) = f(x(t), u(t), t), x(0) = x0, x(·) ∈ X , u(·) ∈ U

(5.1)

In Table 5.1 I summarize the analogous variables in utility maximization problem and control theory. The

Lagrangian and Hamiltonian set-up in Chapter 3 and Chapter 4 only consider “simple consumption goods”,

reducing the asset dynamics to f(x(t), u(t), t) = u(t), and I showed that the agent is equivalently described as a

Hamiltonian system. The Hamiltonian can specifically be interpreted as the economic surplus and was defined

as H = v (x(t), u(t), t) + p(t)u(t) which also could be written as H = v (x(t), u(t), t) + p(t)ẋ(t). The experience

that we gained with the simple consumption goods, suggests that the general problem of utility maximization

can be solved in a similar way by incorporating the asset dynamics into the Hamiltonian. This leads to a new

description of the Hamiltonian as H = v (x(t), u(t), t) + p(t)f(x(t), u(t), t). Pontryagin (1962) showed that the

optimal control problem can indeed be solved with an Hamiltonian, but that a more general form is required.

The Hamiltonian for the optimal control problem is equal to

H
(
x(t), p(t), u(t), t

)
= p0v

(
x(t), u(t), t

)
+ p(t)f(x(t), u(t), t) (5.2)

This Hamiltonian indeed incorporates the asset dynamics, but also introduces a new parameter p0. Section 5.3

elaborates on this new parameter, but lets note here that p0 has a constant value over the planning horizon,

and that for most applications the choice p0 = 1 is appropriate. For the agent under evaluation, Pontryagin’s

Hamiltonian can still be interpreted as the economic surplus, and it is again the sum of the (instantaneously)

received utility plus the value change of the asset portfolio when the price is assumed to be constant13.

Necessary conditions for the optimal control trajectory and the corresponding asset trajectory are developed

by Pontryagin (1962), and rigorously proven as well. These conditions are generally referred to as Pontrygan’s

maximum principle or simply the maximum principle. In the next section I will discuss the economic implications

of the maximum principle for the agent, and not to surprisingly, it is closely related to the Hamiltonian system

description of the previous chapter. With the maximum principle, the agent is again described myopically,

maximizing economic surplus at every instant along the optimal asset trajectory. Hence, the goal of this chapter is

not to give a full treatment of maximum principle, but rather show that it naturally evolved from the Hamiltonian

system characterization and that the economic interpretation remains. The maximum principle consists of four

necessary conditions that an optimal control and asset trajectory should satisfy. These conditions are in control

theory called

� The maximum condition

� Hamiltonian system condition

� Non-triviality condition

� Transversality conditions

13The value of the portfolio changes in two different ways due to either a change in the asset portfolio or due to a change in the

asset prices. The economic agent does not account for the price change in the Hamiltonian.
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In the next sections I will discuss these conditions, relate it to the Lagrangian and Hamiltonian description of

the previous sections and show how it is interpreted in economics. Handling state constraint in the optimal

control problem is very hard, and I will not focus on it in the discussion that follows, such that x(·) ∈ Rn. It is

furthermore noteworthy to mention that the control signal u(t) can be a partial continuous function over time.

The agent is under the maximum principle allowed to change his control instantaneously, as one would expect it

to be.

Symbol Control Theory Economic Interpretation Units

x(t) State Variable Asset Portfolio [asset]

u(t) Control Variable Control Variable

[
asset

year

]
p(t) Co-state Price of Assets

[
utils

asset

]
V∗ Action Total Utility [utils]

X Allowable state set Allowable Asset Positions -

U Allowable control set Allowable Control Decisions -

v
(
x(t), ẋ(t), t

)
Running cost Instantaneous Utility

[
utils

year

]
Φ (x(T ), T ) Final cost Bequest Utility [utils]

H
(
x(t), u(t), p(t), t

)
Control Hamiltonian Economic Surplus [utils]

Table 5.1: The analogy between the maximum principle and the utility maximization problem

5.1 The Maximum Condition as the Myopic Maximization of Economic Surplus

The maximum condition states that the Hamiltonian is maximized along the optimal asset trajectory, while

taking the allowable control set U into account. Mathematically, that is

H
(
x∗(t), u∗(t), p(t), t

)
= max
u(t)∈U

H
(
x∗(t), u(t), p(t), t

)
at each t ∈ [0, T ] (5.3)

where the Hamiltonian is defined as in (5.2). Here, we immediately recognize the similarity with the maximum

condition for “simple consumption goods” as in (4.16). With the general asset dynamics, the agent still behaves

myopically, maximization economic surplus at every time instant while taking the limitations on the control

actions u(t) into account. The co-state p(t) can still be interpreted as the shadow price. The same argument can

be applied as was used in Section 4.6. The shadow price is now however defined implicitly by (5.3) and not by

equation (4.5).

If all control actions are allowed such that u(t) ∈ Rm, or the optimal control signal is not located on the boundary

of the control set, then the maximum condition also implies that the Hamiltonian is still stationary with respect

to the control u(t)

∂H

∂u

(
x∗(t), u(t), p(t), p0, t

)
= p0

∂v

∂u

(
x∗(t), u(t), t

)
+ p(t)

∂f

∂u

(
x∗(t), u(t), t

)
= 0 (5.4)

And for the economic agent this is equivalent to a marginal cost-benefit analysis. To show this, let us fix ideas

and interpret the control signal u(t) as consumption. The first part of the equation is than interpreted as the

Master of Science Thesis Ruud Smit



The Maximum Principle as a Myopic Economic Agent 26

marginal benefit of consumption. The marginal increase would be equal to

p0
∂v

∂u

(
x∗(t), u(t), t

)
δu

The second part is the marginal cost of consumption. It is equal to the price p(t) times the change in the asset

position due to the additional consumption.

p(t)
∂f

∂u

(
x∗(t), u(t), t

)
δu

Equation (5.3) than states that the marginal benefit of consumption must be equal to the marginal cost of

consumption. The maximum condition hence describes an agent that maximizes economic surplus, while taking

the allowable control actions into account. When the control set is not restricted, than the maximizing behavior

of the economic agent implies that he performs an marginal cost-marginal benefit analysis instantaneously.

5.2 Hamiltonian System for the Asset Positions and Asset Prices

The asset positions and the shadow prices evolve over the planning horizon according to a Hamiltonian system.

The dynamics of both are expressed in terms of the surplus as

ẋ(t) =
∂H

∂p

(
x(t), u(t), p(t), t

)
at each t ∈ [0, T ] (5.5)

ṗ(t) = −∂H
∂x

(
x(t), u(t), p(t), t

)
at each t ∈ [0, T ] (5.6)

These equations look familiar, and are equal to Hamilton’s canonical equations (4.17) and (4.18) of the previous

chapter. The first equation (5.5) simply returns the uncontrolled asset dynamics ẋ(t) = f(x(t), u(t), t). The

second equation (4.18) is interpreted as the no-arbitrage condition for the assets, and we can use an similar

argument as in Section 3.1. To develop the no-arbitrage argument, notice that the canonical equation for the

price, together with the definition of the Hamiltonian can be written as

ṗ(t) = −∂v
∂x

(
x(t), u(t), t

)
− p(t)∂f

∂x

(
x(t), u(t), t

)
(5.7)

where for the moment the parameter p0 is set to p0 = 1. Lets assume that (5.7) does not hold such that

ṗ(t) + p(t)
∂f

∂x

(
x(t), u(t), t

)
< −∂v

∂x

(
x(t), u(t), t

)
(5.8)

Then the agent could take advantage of this situation by buying an additional amount of assets, and selling these

assets a moment later. To get this insight, consider an agent that buys an incremental amount of assets δx(t)

at time t and sells these assets a moment later at time t + ∆t. The assets dynamics imply that the additional

assets δx(t) increase over this short time interval approximately as

δx(t+ ∆t) ≈ δx(t) +
∂f

∂x

(
x(t), u(t), t

)
δx(t)∆t (5.9)

The total costs from buying and selling these assets is equal to

p(t)δx(t)− p(t+ ∆t)δx(t+ ∆t) ≈ p(t)δx(t)− p(t+ ∆t)
(
δx(t) +

∂f

∂x

(
x(t), u(t), t

)
δx(t)∆t

)
(5.10)

≈ −ṗ(t)∆tδx(t)− p(t+ ∆t)
∂f

∂x

(
x(t), u(t), t

)
δx(t)∆t (5.11)

The additionally utility gained from holding the additional utility is equal to

∂v

∂x
δx∆t (5.12)

And it follows that if the inequality in (5.8) holds then the incremental utility from the additional assets exceeds

the cost of buying and selling them. The agent should take advantage of this situation and buy the assets until

the equality (5.6) is obtained.
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5.3 Non-Triviality Condition

Pontryagin’s Hamiltonian uses two multipliers, the constant multiplier p0 and the co-state p(t). The non-triviality

condition excludes the trivial solution for which both multipliers are equal to zero. That is

(p0, p(t)) 6= (0, 0) (5.13)

Solutions that satisfy the 4 conditions of the maximum principle are in control theory called extremals. It is

possible that there exist extremals for the case where p0 = 0 and for the case that p0 > 0. The latter are called

normal extremals, and then it is always possible to set the multiplier p0 = 1 (see Schättler and Ledzewicz (2012)).

However, it may occur that a solution with p0 = 0 also exists and these extremals are called abnormal.

In Section 4.4 we found that the Hamiltonian for simple consumption goods only incorporates the shadow price

p(t), and effectively set the multiplier p0 = 1. For the simple consumption goods this is always possible. An

abnormal solution p0 = 0 would directly imply that also the shadow price is equal to p(t) = 0. This violates

the non-triviality condition and therefore the abnormal solution does not exist for simple consumption goods.

In general, we can however not exclude the possibility of an abnormal solution. The economic interpretation of

the abnormal solution is however rather odd, because such an extremal does not depend on the running utility.

For normal extremals, it is always possible to set p0 = 1, because the Hamiltonian is linear in its multipliers. A

different choice would simply scale the shadow price p(t).

5.4 Transversality Condition for the Asset Price

The boundary condition for the asset price is for the Maximum Principle very similar to the transversalility

condition of Section 4.4. When x(·) is not restricted and the terminal time T is fixed, then the transversality

condition is equal to

p(T ) = p0
∂Φ

∂x

(
x(T ), T

)
(5.14)

The shadow price at the end of the planning horizon is again determined by the bequest utility.
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6 Summary and Conclusion

Economic agents face optimal control problems in their pursuit for financial gains and happiness. Their objective

is to maximize profits, markets shares or utility by controlling their possessions optimally over time. The economic

agents therefore behave as optimal controllers while planning their assets and control trajectories. This enables

the use of control theory in economics. However, recognizing that each agent’s decision-making process is an

optimal control problem and solving it with optimal control theory, is not enough. Only applying optimal control

theory leads to a black-box procedure that does not provide much insight into the behavior of economic agents.

In this thesis I therefore contribute to the current literature by developing a thorough economic interpretation of

Pontryagin’s maximum principle. To construct this economic interpretation, I start with the origins of optimal

control and gradually increase the complexity. To fix ideas, I focus in particular on households that maximize

utility over a fixed planning horizon, and on assets that have deterministic dynamics.

The complexity of the utility maximization problem reduces when only “simple consumption goods” are consid-

ered. The economic agent is then equivalent to a Lagrangian system. An important difference is however that the

action of a mechanical system is minimized, while agents maximize their utility. The difference does not discard

the possibility to describe the economic agents in terms of Lagrangian mechanics, but it leads to some differences

in the sign convention. In particular I find that the agent’s utility over the planning horizon is similar to the

negative of the action in mechanics. Also, the asset positions and shadow prices are respectively the generalized

coordinates and generalized momenta of the economic agent. All obtained analogous variables are summarized

in Table 3.1, and these results are in accordance with the current research of my supervisor Dr. Ir. Max Mendel.

The resemblance with Lagrangian mechanics permits the application of the Euler-Lagrange equation to obtain

the controlled asset dynamics. For the economic agent I interpret the Euler-Lagrange equation as a “no-arbitrage

condition”, and it requires that the asset prices decrease with the utility rental. The Euler-Lagrange equation

does not completely specify the agent’s optimal asset trajectory, because the asset positions at the horizon of

the control interval are part of the utility maximization problem. The transversality condition generates the

additional boundary condition, and relates the terminal prices to the bequest utility.

The transformation from Lagrangian towards Hamiltonian mechanics gives an entirely new, myopic perspective to

the economic agent. The key insight is generated when the control Hamiltonian is used. By definition, it is equal

to the difference in the direct utility minus the cost of consumption. The Hamiltonian is therefore a measures

for the agent’s instantaneous net benefit, also called economic surplus. The formulation of the Hamiltonian

ensures that the no-arbitrage condition is compactly written into two first-order differential equations. From the

Euler-Lagrange equation, it entangles the evolution of the asset positions and the price dynamics. In addition,

the Legendre and Weierstrass necessary condition imply that the control Hamiltonian is maximized along the

optimal asset trajectory with respect to the control input. I find that this gives an novel, myopic characterization

of the economic agent. Instead of maximization utility over the planning horizon, the economic agent maximizes

economic surplus myopically, given the current asset positions and shadow prices. The assets and shadow prices

evolve over time according to a Hamiltonian system that excludes arbitrage possibilities.

The myopic interpretation of the economic agent translated to the general utility maximization problem. The

control Hamiltonian incorporates the asset dynamics, and preserves its interpretation of the economic surplus.

The control Hamiltonian is equal to the summation of the direct utility plus the value change of the asset

portfolio (when the agent assumes that the prices are constant). The maximum principle generates four necessary

conditions and I interpret each condition in terms of the agent’s behavior. I find that the maximum condition

dictates that the economic agent maximizes economic surplus with respect to his control actions and given the

current asset positions and the shadow prices. This ensures that the myopic interpretation of the agent also holds

for the maximum principle. In addition, the first-order condition with respect to the control input, implies that

the agent performs a marginal cost-benefit analysis instantaneously. The Hamiltonian system condition requires

that the asset and shadow price evolve as a Hamiltonian system over time. The state equation simply returns

the original asset dynamics, and the co-state equation describe the evolution of the asset prices over time. The
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latter price equation prevents arbitrage possibilities and is therefore equivalent to a no-arbitrage condition. The

non-triviality condition requires that the optimal control and asset trajectory at least depend on either the asset

dynamics or the utility functional, and the transversality condition ensure that the bequest utility is correctly

priced into the assets by generating a boundary condition for the shadow prices.
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7 Discussion and Further Research

In this thesis I model the decision-making process of economic agents in a neoclassical manner, assuming that

agents act rational, have access to assets with deterministic dynamics, and maximize utility over a fixed planning

horizon. Recognizing that this utility maximization problem is an optimal control problem, enables the use of

control theory in economics. The major contribution of my work is to construct a thorough economic interpre-

tation of the maximum principle. I find that the maximum principle dictates an alternative, myopic perspective

where the economic agent maximizes his economic surplus instantaneously, instead of utility over a planning

horizon. Further research needs to be done to complete the interpretation and analogy, but the work in this

thesis already leads to ample of opportunities for the application of control theory in economics. In the following

sections I address opportunities for the improvement of the current interpretation and suggest possibilities for

further research and applications.

The dynamics of an entire economy Macroeconomic theory often models the dynamics of an entire economy

as a single rational economic agent with an infinite planning horizon. Examples of such models are: The Ramsey

model, Solow-Swam model and the Ramsey-Koopmans-Cass model. The analogy development in this thesis also

applies for these models.

However, it would be interesting to model an entire economy as an collection of different agents and not as an

single representative agent. This requires the modeling of different agents (household, firms, governments) and

their interactions. The recent developments in distributed control theory may prove a sensible way to do this

and diverge from the idea of a single representative agent. It is especially interesting to start with the modeling

of a market that consist of interacting households and firms each with their own goals.

Assets The assets in this thesis are modeled as deterministic with known dynamics. The economic agent

has perfect foresight and does not encounter any unexpected changes in the assets. This simplification may

on average be a good representation, but it would be better to acknowledge that assets change randomly over

time. Physical assets may break down earlier then expected, the value of stocks and bonds fluctuate randomly

over time, and sudden technological improvements can render human capital superfluous. This means that the

uncertainty should be incorporated in the asset dynamics. One of the difficulties will be that the underlying

assets (remember it is a quantity) do not necessarily change, but that its price may fluctuate over time.

From a control perspective, uncertainty in the equations of motion is not uncommon. Controlled systems are often

affected by disturbances or higher order dynamics that are not modeled. By introducing a stochastic component

in the assets dynamics, it will be necessary to look at the expected total utility functional and interpret the risk

aversion of the economic agent in control theory. In that situation the co-state corresponds to the “velocity” of

the asset.

The Shadow Price Throughout this thesis, I assume that each component in the state x(t) corresponds to

an asset of the household. This ensures that the corresponding co-state p(t) can be interpreted as a shadow

price. However, it is unclear how the co-state is interpreted when the uncontrolled dynamics of one asset is of

second-order.

Controlling Government The decision-making process of economic agents depends both on the asset dynam-

ics and the utility functional. Parameters in especially the assets dynamics can be controlled by the government

and the central bank. Interest rates are affected by monetary policies, and income generated by both assets

and labor are taxed by governments. Changes in the tax legislation and monetary policy effects the decisions-

making of economic agents, resulting in a behavioral change. It would be interesting to model the government
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as a controller with specific goals on the wealth accumulation, employment rates, and government revenue. The

interaction with households and firms will especially be challenging.
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A Friction forces in the Euler-Lagrange Equation.

The Euler-Lagrange equation for a mechanical system in a force field is equal to

∂v

∂x

(
x(t), ẋ(t), t

)
− d

dt

(
∂v

∂ẋ

(
x(t), ẋ(t), t

))
= 0 (A.1)

Handling frictions forces is however hard. These forces are velocity dependent and therefore cannot be derived

from a potential function. The same problems will arise when a Lagrangian economic agent is being investigated

in the presence of transactions costs. Friction forces can be handled by the introduction of a Rayleigh dissipation

function R(x(t), ẋ(t), t)

∂L (x, ẋ, t)

∂x
− d

dt

(
∂L (x, ẋ, t)

∂ẋ

)
+
∂R

∂ẋ
= 0

By an additional term τ(x, ẋ, t) called the generalized forces with

− d

dt

(
∂L
∂ẋ

)
+
∂L
∂x

= τ(x, ẋ, t)

These methods result for mechanical systems in the correct equations of motion, but the relation with the action

principle is lost. A novel approach is to evaluate complex Lagrangians. The Euler-Lagrange equations than

incorporates a half derivative of the position x(t), denoted as x̂.

− d

dt

(
∂L
∂ẋ

)
+ i

∂L
∂x̂

+
∂L
∂x

= 0

This is a novel approach that is currently being researched by my supervisor dr. ir. Max Mendel to model

dissipative transactions costs in economics. This seems to be the most promising method to incorporate the

transaction cost and retain the principle of utility maximization.
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B Convert the Bolza Problem into the Lagrange Problem and Mayer

Problem

B.0.1 Conversion of the Bolza formulation into the Lagrange problem

The difference between the Bolza and Lagrange objective functional in (2.7) and (2.8) is the bequest utility

Φ(x(T ), T ) at the end of the planning horizon. In order to convert the Bolza problem in terms of the Lagrange

problem, it is necessary to incorporate the bequest utility into the running utility. To do this, let us assume

that the bequest utility Φ(x(t), t) is defined over the full planning horizon t ∈ [0, T ], and assume that its time

derivative exist. Then we can rewrite the bequest utility as

Φ (x(T ), T ) = Φ(x0, 0) +

∫ T

0

dΦ(x, t)

dt
dt

= Φ(x0, 0) +

∫ T

0

(
∂Φ(x, t)

∂t
+
∂Φ(x, t)

∂x
f(x(t), u(t), t)

)
dt

This means that Bolza functional is equivalent to

V∗ = max
u(·)
V [u(·)] = max

u(·)

[
Φ (x(T ), T ) +

∫ T

0

v(x(t), u(t), t)dt

]

= Φ(x0, 0) + max
u(·)

[∫ T

0

(
v(x(t), u(t), t) +

∂Φ(x, t)

∂t
+
∂Φ(x, t)

∂x
f(x(t), u(t), t)

)
dt

]
The first term on the right hand side, Φ(x0, 0), only depends on the initial time t0 = 0 and the initial asset

allocation x0. This terms is not affected by the control decision u(·), meaning that the maximization is equivalent

to

max
u(·)∈U

[∫ T

0

(
v(x(t), u(t), t) +

∂Φ(x, t)

∂t
+
∂Φ(x, t)

∂x
f(x(t), u(t), t)

)
dt

]
which is of course a Lagrange type of problem.

B.0.2 Conversion of the Bolza formulation into the Mayer problem

The difference between the Bolza and Mayer objective functional in (2.7) and (2.9) is the running utility

v(x(t), u(t), t) over the planning horizon. In order to convert the Bolza problem into a Mayer problem, it is

necessary to incorporate the running utility in the bequest utility. To do this, let us define an auxiliary state y(t)

with the running utility as it equations of motion, and with the initial condition

ẏ(t) = v(x(t), u(t), t)

y(0) = 0

The value of this auxiliary state y(t) at the end of the planning horizon is equal to the accrued instantaneous

utility over the planning horizon.

y(T ) =

∫ T

0

v(x(t), u(t), t)dt

Extending the state-space x(t) with this auxiliary state to x̄ =
[
x, y
]

, the Bolza functional is equivalently written

as

max
u(·)∈U

[Φ (x(T ), T ) + y(T )] s.t.

[
ẋ

ẏ

]
=

[
f(x, u, t)

v(x, u, t)

]
Here we recognize the Mayer formulation of optimal control.
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C Proof of the EL-equations by converting the Bolza Problem into

Langrange’s Formulation

Now, let us again consider the utility functional with a bequest utility and recall from Section 2.3 that we can

rewrite the Bolza utility functional in the Lagrange formulation, yielding

V∗ = maxV [x(·), ẋ(·)] = max

[∫ T

0

(
v(x(t), ẋ(t), t) +

∂Φ(x, t)

∂t
+
∂Φ(x, t)

∂x
ẋ

)
dt

]
s.t. x(0) = x0, x(·) ∈ Rn

(C.1)

This is equal to the set-up in the previous proof, but now with the bequest utility incorporates into the run-

ning utility. The Euler-Lagrange equations (3.4) derived in the previous section must also hold for this utility

functional, yielding

d

dt

(
∂v(x(t), ẋ(t), t)

∂ẋ
+
∂Φ(x, t)

∂x

)
− ∂v(x(t), ẋ(t), t)

∂x
− ∂

∂x

(
∂Φ(x, t)

∂t
+
∂Φ(x, t)

∂x
ẋ

)
= 0

Now, we can simply this equations by recognizing that the last expressions on the left side is equal to the total

time-derivative of the bequest function.

d

dt

(
∂v(x(t), ẋ(t), t)

∂ẋ
+
∂Φ(x, t)

∂x

)
− ∂v(x(t), ẋ(t), t)

∂x
− ∂

∂x

(
dΦ(x, t)

dt

)
= 0 (C.2)

The partial derivative of x and total time derivative can be interchanged for the bequest bequest, meaning that

d

dt

(
∂Φ(x, t)

∂x

)
=
∂2Φ(x, t)

∂t∂x
+
∂2Φ(x, t)

∂x2
ẋ(t) =

∂

∂x

(
dΦ(x, t)

dt

)
Cancellation of these partial derivatives in (C.2) yields

d

dt

(
∂v (x, ẋ, t)

∂ẋ

)
− ∂v (x, ẋ, t)

∂x
= 0 (C.3)

Remarkably, this is equal to the previously obtained Euler-Lagrangian equations that do not depend on the

bequest utility Φ(x(T ), T ). However, the bequest utility does influences the behavior of the economic agent

through the transversality conditions. Using (3.5), the boundary condition is equal to

∂

∂ẋ

(
v(x(t), ẋ(t), t) +

∂Φ(x, t)

∂t
+
∂Φ(x, t)

∂x
ẋ

)∣∣∣∣
t=T

= 0

And recognizing the definition of the shadow price, we find that the shadow price at the end of the planning

horizon is determined by the bequest utility

p(T ) = −∂v
∂ẋ

(
x(T ), ẋ(T ), T

)
=
∂Φ

∂x

(
x(T ), T

)
(C.4)
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