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Abstract. We developed the CPR Tutor, a real-time multimodal feed-
back system for cardiopulmonary resuscitation (CPR) training. The CPR
Tutor detects mistakes using recurrent neural networks for real-time
time-series classification. From a multimodal data stream consisting of
kinematic and electromyographic data, the CPR Tutor system automat-
ically detects the chest compressions, which are then classified and as-
sessed according to five performance indicators. Based on this assess-
ment, the CPR Tutor provides audio feedback to correct the most critical
mistakes and improve the CPR performance. To test the validity of the
CPR Tutor, we first collected the data corpus from 10 experts used for
model training. Hence, to test the impact of the feedback functionality,
we ran a user study involving 10 participants. The CPR Tutor pushes
forward the current state of the art of real-time multimodal tutors by
providing: 1) an architecture design, 2) a methodological approach to
design multimodal feedback and 3) a field study on real-time feedback
for CPR training.

1 Introduction

In learning science, there is an increasing interest in collecting and integrating
data from multiple modalities and devices with the aim of analysing learning be-
haviour [4,15]. This phenomenon is witnessed by the rise of multimodal data ex-
periments especially in the contexts of project-based learning [21], lab-based ex-
perimentation for skill acquisition [11], and simulations for mastering psychomo-
tor skills [19]. Most of the existing studies using multimodal data for learning
stand at the level of “data geology”, investigating whether multimodal data can
provide evidence of the learning process. In some cases, machine learning models
were trained with the collected data for classifying or predicting outcomes such
as emotions or learning performance. At the same time, the existing research
that uses multimodal and multi-sensor systems for training different types of
psychomotor skills features neither personalised nor adaptive feedback [18].
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In this study, we aimed at overcoming this knowledge gap and by explor-
ing how multimodal data can be used to support psychomotor skill development
by providing real-time feedback. We followed a design-based research approach:
the presented study is based on the insights of [8], in which we demonstrated
that it is possible to detect common CPR mistakes regarding the quality of the
chest compressions (CC) (CC-rate, CC-depth and CC-release). In [8], we have
also shown that it is possible to extend the common mistake detection of com-
mercial and validated training tools like the Laerdal ResusciAnne manikin with
the CPR tutor. We were able to detect the correct locking of the arms while
doing CPR and the correct use of the body weight when performing the CCs.
The mistake detection models were obtained training multiple recurrent neural
networks, using the multimodal data as input and the presence or absence of the
CPR mistakes as output. This study extends the previous efforts by embedding
the machine learning approaches for mistake detection with real-time feedback
intervention.

2 Background

2.1 Multimodal data for learning

With the term “multimodal data”, we refer to the data sources derived from
multimodal and multi-sensor interfaces that go beyond the typical mouse and
keyboard interactions [16]. These data sources can be collected using wearable
sensors, depth cameras or Internet of Things devices. Example of modalities
relevant for modelling a learning task is learner’s motoric movements, physiolog-
ical signals, contextual, environmental or activity-related information [7]. The
exploration of these novel data sources inspired the Multimodal Learning Ana-
lytics (MMLA) research [15], whose common hypothesis is that combining data
from multiple modalities allows obtaining a more accurate representation of the
learning process and can provide valuable insights to the educational actors, in-
forming them about the learning dynamics and supporting them to design more
valuable feedback [4]. The contribution of multimodal data to learning is still
a research topic under exploration. Researchers have found out that it can bet-
ter predict learning performance during desktop-based game playing [11]. The
MMLA approach is also thought to be useful for modelling ill-structured learning
tasks [5]. Recent MMLA prototypes have been developed for modelling classroom
interactions [1] or for estimating success in group collaboration [21]. Multimodal
data were also employed for modelling psychomotor tasks and physical learning
activities that require complex body coordination [14] . Santos et al. reviewed ex-
isting studies using sensor-based applications in diverse psychomotor disciplines
for training specific movements in different sports and martial arts [19]. Limbu
et al. reviewed existing studies that modelled the experts to train apprentices
using recorded expert performance [13].
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2.2 Multimodal Intelligent Tutors

We are interested in the application of multimodal data for providing automatic
and real-time feedback. This aim is pursued by the Intelligent Tutoring Systems
(ITSs) research. Historically ITSs have been designed for well-structured learning
activities in which the task sequence is clearly defined, as well as the assessment
criteria and the range of learning mistakes that ITS is able to detect. Related
ITS research looked primarily at meta-cognitive aspects of learning, such as the
detection of learners’ emotional states (e.g. [10,3]). Several ITSs of this kind
are reviewed in a recent literature review [2]. Most of these studies employed
a desktop-based system where the user-interaction takes place with mouse and
keyboard. To find applications of ITSs beyond mouse and keyboard we need to
look in the field of medical robotics and surgical simulations into systems like
DaVinci. These robots allow aspiring surgeons to train standardised surgical
skills in safe environments [22].

2.3 Cardiopulmonary Resuscitation (CPR)

In this study, we focus on one of the most frequently applied and well studied
medical simulations: Cardiopulmonary Resuscitation. CPR is a lifesaving tech-
nique applied in many emergencies, including a heart attack, near drowning or
in the case of stopped heartbeat or breathing. CPR is nowadays mandatory not
only for healthcare professionals but also for several other professions, especially
those more exposed to the general public. CPR training is an individual learn-
ing task with a highly standardised procedure consisting of a series of predefined
steps and criteria to measure the quality of the performance. We refer to the
European CPR Guidelines [17]. There exists a variety of commercial tools for
supporting CPR training, which can track and assess the CPR execution. A very
common training tool is the Laerdal ResusciAnne manikins. The ResusciAnne
manikins provide only retrospective and non-real-time performance indicators
such as CC-rate, CC-depth and CC-release. Other indicators are neglected and
that creates a feedback gap for the learner and higher responsibility for the
course instructors. Examples of these indicators are the use of the body weight
or the locking of the arms while doing the CCs. So far, these mistakes need to
be corrected by human instructors.

3 System Architecture of the CPR Tutor

The System Architecture of the CPR Tutor implements the five-step approach in-
troduced by the Multimodal Pipeline [9], a framework for the collection, storing,
annotation, processing and exploitation of data from multiple modalities. The
System Architecture was optimised to the selected sensors and for the specific
task of CPR training. The five steps, proposed by the Multimodal Pipeline are
numbered in the graphical representation of the System Architecture in Fig. 1.
The architecture also features three layers: 1) the Presentation Layer interfac-
ing with the user (either the learner or the expert); 2) the Application Layer,
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implementing the logic of the CPR Tutor; 3) the Data Layer, consisting of the
data used by the CPR Tutor. In the CPR Tutor, we can distinguish two main
phases which have two corresponding data-flows: 1) the offline training of the
machine learning models and 2) the real-time exploitation in which the real-time
feedback system is activated.

3.1 Data collection

The first step corresponds to the collection of the data corpus. The main system
component responsible for the data collection is the CPR Tutor, a C# appli-
cation running on a Windows 10 computer. The CPR Tutor collects data from
two main devices: 1) the Microsoft Kinect v2 depth camera and 2) the Myo
electromyographic (EMG) armband. In the graphic user interface, the user of
the CPR Tutor can ‘start’ and ‘stop’ the recording of the session. The CPR
Tutor collects the data of the user in front of the camera wearing the Myo. The
collected data consist of:

– the 3D kinematic data (x,y,z) of the body joints (excluding ankles and hips)
– the 2D video recording from the Kinect RGB camera,
– 8 EMG sensors values, 3D gyroscope and accelerometer of the Myo.

3.2 Data storing

The CPR Tutor adopts the data storing logic of the Multimodal Learning Hub [20],
a core component of the Multimodal Pipeline. As the sensor applications collect
data at different frequencies, at the ‘start’ of the session, each sensor application
is assigned to a Recording Object a data structure arbitrary number of Frame
Updates. In the case of the CPR Tutor, there are two main streams coming from
the Myo and the Kinect. The Frame Updates contain the relative timestamp
starting from the moment the user presses the ‘start’ until the ‘stop’ of the ses-
sion. Each Frame Update within the same Recording Object shares the same set
of sensor attributes, in the case of the CPR Tutor, 8 attributes for Myo and 32 for
Kinect, corresponding to the raw features that can be gathered from the public
API of the devices. The video stream recording from the Kinect uses a special
type of Recording Object, specific for video data. At the end of the session, when
the user presses ‘stop’, the data gathered in memory in the Recording Objects
and the Annotation Object is automatically serialised into the custom format
introduced by the LearningHub: the MLT Session (Meaningful Learning Task).
For the CPR Tutor, the custom data format consists of a zip folder containing:
the Kinect and Myo sensor file, and the 2D video in MP4 format. Serialising the
sessions is necessary for creating the data corpus for the offline training of the
machine learning models.

3.3 Data annotation

The annotation can be carried out by an expert retrospectively using the Visual
Inspection Tool (VIT) [6]. In the VIT, the expert can load the MLT Session
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files one by one to triangulate the video recording with the sensor data. The
user can select and plot individual data attributes and inspect visually how
they relate to a video recording. The VIT is also a tool for collecting expert
annotations. In the case of CPR Tutor, the annotations were given as properties
of every single CC. From the SimPad of the ResusciAnne manikin, we extracted
the performance metrics of each recorded session. With a Python script, we
processed the data from the SimPad in the form of a JSON annotation file, which
we added to each recorded session using the VIT. This procedure allowed us to
have the performance metrics of the ResusciAnne manikin as “ground truth” for
the training the classifiers. As previously mentioned, the Simpad tracks the chest
compression performance monitoring three indicators, the correct CC-rate, CC-
release and CC-depth. By using the VIT, however, the expert can extend these
indicators by adding manually custom annotations, in the form of attribute-
value pairs. For this study, we use the target custom classes armsLocked and
bodyWeight corresponding to two performance indicators, currently not tracked
by the ResusciAnne manikins.

3.4 Data processing

For data processing, we developed a Python script named SharpFlow6. This
component is used both for the offline training and validation of the mistake
detection classifiers as well as for the real-time classification of the single CCs.
In the training phase, the entire data corpus (MLT Sessions with their annota-
tions) is loaded into memory and transformed into two Pandas data frames, one
containing the sensor data the other one containing the annotations. As the sen-
sor data came from devices with different sampling frequencies, the sensor data
frame had a great number of missing values. To mitigate this problem, the data
frame was resampled into a fixed number corresponding to the median length of
each sample. We obtained, therefore, a 3D tensor of shape (#samples × #at-
tributes × #intervals). The dataset was divided in 85% for training and 15%
for testing using random shuffling. A part of the training set (15%) was used as
validation set. We also applied feature scaling using min-max normalisation with
a range of -1 and 1. The scaling was fitted on the training set and applied on
the validation and test sets. The model used for classification was a Long-Short
Term Memory network [12] which is a special type of recurrent-neural network.
Implementation was performed using PyTorch. The architecture of the model
chosen was a sequence of two stacked LSTM layers followed by two dense layers:

– a first LSTM with input shape 17x52 (#intervals times #attributes) and
128 hidden units;

– a second LSTM with 64 hidden units;

– a fully-connected layer with 32 units with a sigmoid activation function;

– a fully connected layer with 5 hidden units (number of target classes)

– a sigmoid activation.

6 Code available on GitHub (https://github.com/dimstudio/SharpFlow)

https://github.com/dimstudio/SharpFlow
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All of our classes have a binary class, so we use a binary cross-entropy loss for
optimisation and train for 30 epochs using an Adam optimiser with a learning
rate of 0.01.

3.5 Real-time exploitation

The real-time data exploitation is the run-time behaviour of the System Archi-
tecture. This phase is a continuous loop of communication between the CPR
Tutor, the SharpFlow application and the prompting of the feedback. It can be
summarised in three phases 1) detection, 2) classification and 3) feedback.

1) Detection. For being able to assess a particular action and possibly de-
tect if some mistake occurs, the CPR Tutor has to be certain that the learner has
performed a CC and not something different. The approach chosen for action
detection is a rule-based approach. While recording, the CC detector continu-
ously checks the presence of CCs by monitoring the vertical movements of the
shoulder joints from the Kinect data. These rules were calibrated manually so
that the CC detector finds the beginning and the end of the CCs. At the end of
each CC, the CPR Tutor pushes the entire data chunk to SharpFlow via a TCP
client.

2) Classification. SharpFlow runs a TCP server implemented in Python
which is continuously listening for incoming data chunks by the CPR Tutor. In
case of a new chunk, SharpFlow checks if it has a correct data format and if
it is not truncated. If so, it resamples the data chunks and feeds them into the
min-max scaler loaded from memory, to make sure that also the new instance
is normalised correctly. Once ready, the transformed data chunk is fed into the
layered LSTMs also saved in memory. The results for each of the five target
classes are serialised into a dictionary and sent back to the CPR Tutor where they
are saved as annotations of the CC. SharpFlow takes on average 70 milliseconds
to classify one CC.

3) Feedback. Every time the CPR Tutor receives a classified CC, it com-
putes a performance and an Error Rate (ER) for each target class. The per-
formance is calculated with a moving average with a window of 10 seconds,
meaning it considers only the CCs performed in the previous 10s. The Er-
ror Rate is calculated as the inverse sum of the performance: ERj = 1 −∑n

i=0
Pi,j

n where j is one of the five target classes, n is the number of CCs
in one time window of 10s. Not all the mistakes in CPR are, however, equally
important. For this reason, we handcrafted five feedback thresholds of activa-
tion in the form of five rules. If the ER is equal or greater than this threshold
the feedback is fired, otherwise, the next rule is checked. The order chosen was
the following: ERarmsLocked >= 5, ERbodyWeight >= 15, ERclassRate >= 40,
ERclassRelease >= 50, ERclassDepth >= 60. Although every CC is assessed im-
mediately after 0.5s we set the feedback frequency to 10s, to avoid overloading
the user with too much feedback. The modality chosen for the feedback was
sound, as we considered the auditory sense the least occupied channel while do-
ing CPR. We created the following audio messages for the five target classes:
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(1) classRelease: “release the compression”; (2) classDepth: “improve compres-
sion depth”; (3) armsLocked : “lock your arms”; (4) bodyWeight : “use your body
weight”; (5) classRate: *metronome sound at 110 bpm*.

4 Method

In light of the research gap on providing real-time feedback from multimodal sys-
tems, we formulated the following research hypothesis which guided our scientific
investigation.

H1: The proposed architecture allows the provision of real-time feedback for
CPR training.

H2: The real-time feedback of the CPR Tutor has a positive impact on the
considered CPR performance indicators.

4.1 Study design

To test H1, we developed the CPR tutor with a real-time feedback component
based on insights from our design-based research cycle. We planned a quan-
titative intervention study in collaboration with a major European University
Hospital. The study took place in two phases: 1) Expert data collection involving
a group of 10 expert participants, in which the data corpus was collected; 2) a
Feedback intervention study involving a new group of 10 participants. A snap-
shot of the study setup for both phases is shown in Fig. 2. All participants in the
study were asked to sign an informed consent letter detailing all the details of
the experiment as well as the treatment of the collected data in accordance with
the new European General Data Protection Regulation (2016/679 EU GDPR).

4.2 Phase 1 - Expert data collection

The expert group counted 10 participants (M: 4, F: 6) having an average of 5.3
previous CPR courses per person. We asked the experts to perform 4 sessions
of 1 minute duration. Two of these sessions, they had to perform correct CPR,
while the reminder two sessions they had to perform incorrect executions not
locking their arms and not using their body weight. In fact, from the previous
study [8] we noticed it was difficult to obtain the full span of mistakes the
learners can perform. Asking the experts to mimic the mistakes was, thus, the
most sensible option for obtaining a dataset with a balanced class distribution.
We, therefore, collected around 400 CCs per participant. The 1 minute duration
was set to prevent that physical fatigue influenced the novice’s performance.
Once the data collection was completed, we inspected each session individually
using the Visual Inspection Tool. We annotated the CC detected by the CPR
Tutor, by triangulating with the performance metrics from the ResusciAnne
manikin. The bodyWeight and armsLocked were instead annotated manually by
one component of the research team.
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Fig. 1. The System Architecture of the CPR Tutor

4.3 Phase 2 - Feedback intervention

The feedback intervention phase counted 10 participants (M: 5, F: 5) having an
average of 2.3 previous CPR courses per person. Those were not absolute novices
but recruited among the group of students that needed to renew their CPR
certificate. The last CPR training for these participants was, therefore, older
than one year. Each participant in the feedback intervention group performed 2
sessions of 1 minute, one with feedback enabled and one without feedback.

5 Results

The collected data corpus from the expert group consisted of 4803 CCs . Each
CC was annotated with 5 classes. With the methodology described in sec. 3.4,
we obtained a tensor of shape (4803, 17, 52). As the distribution of the classes
was too unbalanced, the dataset was downsampled to 3434 samples (-28.5%).
In Tab. 1, we report the new distribution for each target class. In addition,
we report the results of the LSTM training reporting for each target class the
accuracy, precision, recall and F1-score. In the feedback group, we collected a
dataset of 20 sessions from 10 participants with 2223 CCs detected by the CPR
Tutor and classified automatically. The feedback function was enabled only in
10 out of 20 sessions. The feedback was fired a total of 16 times. In Tab. 2, we
report the feedback frequency for each target class and the class distribution for
each target class. We generated Error Rate plots for each individual session. In
Fig. 3, we provide an example plot of a session having five feedback interventions
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Table 1. Five target classes distribution and performance of corresponding LSTM
models trained on the expert dataset.

class Class distribution Accuracy Precision Recall F1-score

classRelease 0: (1475, 42.9%), 1: (1959, 57.1%) 0.905 0.897 0.954 0.925

classDepth 0: (2221, 64.6%), 1: (1213, 35.4%) 0.954 0.955 0.953 0.954

classRate 0: (1457, 42.5%), 1: (1977, 575%) 0.901 0.815 0.819 0.817

armsLocked 0: (1337, 38.9%), 1: (2097, 61.1%) 0.981 0.975 1 0.987

bodyWeight 0: (1206, 35.1%), 1: (2228, 64.9%) 0.97 0.967 0.994 0.98

(vertical dashed lines) matching the same colours of the target classes. Although
the Error Rates fluctuate heavily throughout each session, we noticed that nearly
every time the feedback is fired the Error Rate for the targeted mistake is subject
to a drop. We analysed, therefore, the effect of CPR Tutor feedback by focusing

Microsoft
Kinect v2

Simpad

Laerdal 
ResusciAnne

Myo armband

Fig. 2. Study design of the CPR
Tutor
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Fig. 3. Plot of the error rates for one session.

on the short-term changes in Error Rate for the mistakes targeted by the CPR
Tutor. In Tab. 2, we report the average ERs 10s before and 10s after the audio
feedback was fired. We report the average delta of these two values for each
target class. For classRelease, classDepth and classRate we notice a decrease of
the Error Rate, whereas for armsLocked and bodyWeight an average increase.

6 Discussion

In H1 we hypothesised that the proposed architecture for a real-time feedback is
suitable for CPR training. With the System Architecture outlined in sec. 3, we
implemented a functional system which can be used both for the offline model
training of the CPR mistakes as well as for the real-time multimodal data ex-
ploitation. The proposed architecture exhibited reactive performances, by classi-



10

Table 2. Average Error Rate for each target class 10s before and 10s after the audio
feedback were fired.

Class
Class

distribution

Freq.

Feedback

ER 10s

before

feedback

ER 10s

after

feedback

delta

classRelease 0: (475, 21.4%), 1: (1746, 78.6%) 2 46.60% 33.50% -13.10%

classDepth 0: (704, 31.7%), 1: (1517, 68.3%) 5 59.80% 55.00% -4.80%

classRate 0: (475, 21.4%), 1: (1746, 78.6%) 5 44.20% 34.5% -9.70%

armsLocked 0: (3, 0.1%), 1: (2218, 99.9%) 1 0.6% 5.1% 4.50%

bodyWeight 0: (69, 3.1%), 1: (2152, 96.9%) 3 10.70% 12.90% 2.20%

fying one CC in about 70 milliseconds. The System Architecture proposed is the
first complete implementation of the Multimodal Pipeline [9] and it shows that
it is possible to close the feedback loop with a real-time multimodal feedback.

In H2 we hypothesised that the CPR Tutor with its real-time feedback func-
tion can have a positive impact on the performance indicators considered. With
a first intervention feedback study involving 10 participants we noticed that
there is a short-term positive influence of the real-time feedback on the detected
performance, witnessed by a decrease of Error Rate in the 10 seconds after the
feedback was fired (Tab. 2). This effect is confirmed in three out of five tar-
get classes. The remaining two classes show opposite behaviours. In these two
cases, the increase of Error Rate is smaller as compared to the former target
classes. We suppose this behaviour is linked to the extreme class distribution
of these two classes. In turn, this distribution can be due to the fact that the
participants of the second group were not beginners and, therefore, not perform
common mistakes such as not locking the arms or not using their body weight
correctly. These observations cannot be generalised due to the small number of
participants tested for the study.

7 Conclusions

We presented the design and the development of real-time feedback architecture
for CPR Tutor. Building upon existing components, we developed an open-source
data processing tool (SharpFlow) which implements a neural network architec-
ture as well as a TCP server for real-time CCs classification. The architecture
was employed in a first study aimed at expert data collection and offline training
and the second study for real-time feedback intervention allowing us to prove
our first hypothesis. Regarding H2, we collected observations that , while cannot
be generalised, provide some indication that the feedback of the CPR tutor had
a positive influence on the CPR performance on the target classes. To sum up,
the architecture used for the CPR Tutor allowed for provision of real-time mul-
timodal feedback (H1) and the generated feedback seem to have a short-term
positive influence on the CPR performance on the target classes considered.
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