Multi-frame deep learning
models for action detection in
surveillance videos

-2
(7]
Q

=

|_
Q
O
c

Q
O

wn

[
(@)
—
Q

-
(7]
T

Delf
U De I ft Uﬁivtersity of
I Technology Delft Center for Systems and Control

Multi-frame deep learning
models for action detection in
surveillance videos

MASTER OF SCIENCE THESIS

For the degree of Master of Science in Systems and Control at Delft
University of Technology

T. A. Khan

November 17, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) - Delft University of
Technology

m inno_vation
for life

The work in this thesis was supported by TNO. Their cooperation is hereby gratefully ac-
knowledged.

Delft
U e t University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

Visual surveillance technologies are increasingly being used to monitor public spaces. These
technologies process the recordings of surveillance cameras. Such recordings contain depic-
tions of human actions such as "running", "waving", and "aggression". In the field of computer
vision, automated detection of human actions in videos is known as action detection. Re-
cently, deep learning models have been proposed for the task of action detection. Deep
learning models for this task can be grouped into single-frame models and multi-frame mod-
els. Single-frame models detect actions using individual frames of videos whereas multi-frame

models detect actions using sequences of frames.

This thesis proposes to use multi-frame models as compared to single-frame models for ac-
tion detection in surveillance videos. To compare multi-frame and single-frame models, we
implement the ACT-detector [1]. The ACT-detector is a deep learning model that takes as
input a sequence of K frames and outputs tubelets (labeled sequences of bounding boxes).
We train and evaluate ACT for various values of K on the VIRAT dataset [2]. In our com-
parison, K = 1 serves as the single-frame model and K > 1 as the multi-frame models. When
compared qualitatively, we find that multi-frame models have less missed detections. When
compared quantitatively, we find that multi-frame models outperform single-frame models in
performance measures such as classification accuracy, MABO, frame-mAP, and video-mAP.

To assess whether the improvements of multi-frame models yield purely from the increased
number of frames, or also from the temporal order encoded by those frames, we experiment
with training multi-frame models on unordered sequences of frames, i.e., sequences for which
the frames are shuffled in time. When compared qualitatively, we find that multi-frame
models have less precise localization when trained on unordered sequences. When compared
quantitatively, we find that multi-frame models perform worse when trained on unordered
sequences, indicating that multi-frame models learn temporal dynamics of actions. Neverthe-
less, even when trained on unordered sequences, multi-frame models outperform single-frame
models for action detection in surveillance videos.

Master of Science Thesis T. A. Khan

T. A. Khan Master of Science Thesis

Table of Contents

Preface v
1 Introduction 1
1-1 Motivation 1
1-2 Video processing 1
1-2-1 Action recognition 2
1-2-2 Action detection L 3

1-3 Research questions 3
1-4 Thesisoutline 4
2 Background 5
2-1 Artificial neural networks 5
2-1-1 Activation functions 6
2-1-2 Training 8

2-2 Convolutional neural networks 9
2-2-1 Convolutional layers 9
2-2-2 Max-pooling layers 10

2-3 VGG . . . 11
2-3-1 Design principles. 11
2-3-2 Architecture 11

2-4 SSD . . 12
2-4-1 Architecture 13
2-4-2 Anchorboxes 14
2-4-3 Prediction layers 16

Master of Science Thesis T. A. Khan

iv Table of Contents

3 Methodology 17
3-1 Architecture 17
3-1-1 VGG16 and auxiliary convolutional layers 17

3-1-2 Temporal stacking 18

3-2 Anchor cuboids 18
3-3 Prediction layers L 20
3-4 Training 20
3-4-1 Spatio-temporal loU 21

3-4-2 Anchor cuboid matching oL 21

3-4-3 Loss function 22

3-5 nference 23
3-6 Tubelet linking 23

4 Dataset and performance evaluation 25
4-1 Dataset 25
4-2 Performance evaluation 26
4-2-1 Precisionandrecall 27

4-2-2 Average Precision 27

4-2-3 C(lassification accuracy 28

4-2-4 MABO 28

4-2-5 Frame-mAP 28

4-2-6 Video-mAP 29

4-2-7 Weighted evaluation 29

5 Experiments 31
5-1 Experiment A: Single-frame models versus multi-frame models 31
5-1-1 Qualitative comparison 31

5-1-2 Quantitative comparison 34

5-2 Experiment B: Temporal order of frames in sequences 38
5-2-1 Qualitative comparisono 38

5-2-2 Quantitative comparison 40

6 Discussion 45
6-1 Per-class classification accuracy L L 45
6-2 Localizing small pixel resolution actions 46

7 Conclusion 51
7-1 Futurework 52
Bibliography 53

T. A. Khan Master of Science Thesis

Preface

As a student of Systems and Control with an interest in deep learning for computer vision, I
was excited to be given the opportunity to work on the topic of action detection. I worked on
this topic during my one-year internship at TNO. During this internship, I researched deep
learning models for action recognition and action detection. I was impressed by how these
models are capable of recognizing what actions are taking place in videos. My curiosity led
me to implement and experiment with these models. This graduation thesis documents the
findings of these experiments.

I would like to express my sincere gratitude to dr.ir. Gertjan Burghouts and dr. Raimon
Pruim. Their expert advice and continuous encouragement have been invaluable throughout
all stages of this work. I would also like to thank the members of TNO’s Intelligent Imaging
group for making me feel welcome and for providing resources to help advance my research.
I am also very thankful to my supervisor dr. ing. Raf Van de Plas. His guidance and
critique helped me remain sharp throughout this work. Finally, I am thankful to my family
for continuously supporting me throughout my studies.

Tiamur Khan
November 2019

Master of Science Thesis T. A. Khan

Vi Preface

T. A. Khan Master of Science Thesis

Chapter 1

Introduction

1-1 Motivation

Artificial intelligence is increasingly being used to aid authorities in processing data from
surveillance cameras. For a visual surveillance operator, whose job is to observe recordings of
surveillance cameras for suspicious behavior, it can become tiring to monitor multiple persons
on multiple cameras for long periods of time. Vandalism, theft, or aggression can occur in
only seconds, and if this is missed, authorities and medical professionals may respond too late.
In the field of computer vision, automated detection of human actions such as "running",
"waving", and "aggression" in videos is known as action detection. An automated action
detection system can aid the task of a visual surveillance operator by alerting when it detects
suspicious actions. Such a system could help improve the safety and security of public spaces
and may potentially save the lives of victims.

1-2 Video processing

Deep learning, a class of machine learning algorithms, has become the go-to approach for
many computer vision applications. They have outperformed conventional computer vision
approaches on tasks such as image recognition, object detection, and semantic segmentation.
Recently, deep learning models have been proposed for video processing. Videos, unlike
images, contain spatio-temporal data. The spatial data represents the appearance of the
scene and the temporal data represents the motion of the scene. Motion data can be crucial
for distinguishing human actions. For example, the actions "sitting down" and "standing up"
are similar in appearance, but differ in motion. This idea is visualized in Figure 1-1. Tasks in
video processing include action recognition and action detection. Modern action recognition
and action detection frameworks use deep learning to process the spatio-temporal data in
videos.

Master of Science Thesis T. A. Khan

2 Introduction

Figure 1-1: The actions "sitting down" and "standing up" are challenging to distinguish from a
single frame. The action becomes more clear when looking at sequence of frames. Figure from

[1].

1-2-1 Action recognition

Action recognition is the activity of recognizing a human action from a video containing
complete action execution [3]. Given such a video, the task of action recognition is to classify
the video into a set of labels. For this reason, action recognition is also referred to as action
classification. Action recognition answers the question: what is happening in the video?
Videos used for this task typically contain a single actor performing a single action. Deep
learning approaches for action recognition model the spatio-temporal data in videos by hybrid
architectures [4], multi-stream architectures [5], or 3D convolution [6, 7]. Figure 1-2 shows
sample frames from a dataset commonly used to benchmark approaches for action recognition.

Rafting Cricket Shot | Shaving Beard

Figure 1-2: A visualization of action recognition. Six sample frames from the UCF101 dataset
[8] are shown. Each frame denotes a video containing the action described by the text.

T. A. Khan Master of Science Thesis

1-3 Research questions 3

1-2-2 Action detection

Action detection is to localize in space and time and classify all action instances in a video.
Action instances are localized by sequences of bounding boxes through time. A labeled
sequence of bounding boxes through time is commonly referred to as an action tube [1]. Action
detection is also referred to as spatio-temporal action detection or spatio-temporal action
localization. Action detection answers the question: where, when, and what is happening
in the video? Since videos used for action detection are not necessarily trimmed to the
action, action detection is considered more challenging than action recognition. Several deep
learning approaches have been proposed for action detection. These can be divided into single-
frame approaches [9, 10], and multi-frame approaches [1, 11]. Single-frame approaches detect
actions using individual frames of videos whereas multi-frame approaches detect actions using
sequences of frames. Figure 1-3 visualizes the task of action detection. Action detection is
the primary focus of this thesis.

(a) Frame: 1 (b) Frame: 128

Figure 1-3: A visualization of action detection. Figure 1-3a: the first frame of a video containing
action instances. Figure 1-3b: frame 128 of a video containing action instances. These are samples
frames from the UCF101 dataset [8].

1-3 Research questions

This thesis proposes to use multi-frame models as compared to single-frame models for action
detection in surveillance videos. Multi-frame models are typically better performing as they
can infer motion patterns from sequences of frames. Recently, multi-frame approaches for
action detection have been evaluated on short sports videos (2-20 seconds per video) [1].
We evaluate multi-frame models for the more challenging use case of visual surveillance.
Surveillance videos are typically longer than sports videos and may contain multiple actions
happening simultaneously. There may also be time spans in which no actions take place. The
research question is formulated as:

e Do multi-frame models outperform single-frame models for action detection in surveil-
lance videos?

Master of Science Thesis T. A. Khan

4 Introduction

The performance increase of multi-frame models may yield purely from the increased number
of frames. To assess whether this is the case, we experiment with the temporal ordering
of frames for training multi-frame models. We expect that the temporal order of frames
contributes to the performance increase of multi-frame models as actions are characterized by
their dynamics (e.g. "sitting down" and "standing up"). The corresponding research question
is formulated as:

e Does the temporal ordering of frames matter for learning multi-frame models?

To answer these research questions, we implement the ACT-detector [1]. The ACT-detector
is a deep learning model that takes as input a sequence of K frames and outputs tubelets
(labeled sequences of bounding boxes). In our comparison, K = 1 serves as the single-frame
model and K > 1 as the multi-frame models.

1-4 Thesis outline

This thesis is divided into 7 chapters. Chapter 2 gives an introduction to artificial and
convolutional neural networks. Convolutional neural networks are used to model the spatio-
temporal data in videos. The VGG [12] and SSD [13] architectures are also discussed. The
VGG architecture is used by the SSD architecture and the SSD architecture forms the basis
for the ACT-detector [1]. The ACT-detector and our implementation of the framework are
discussed in Chapter 3. Chapter 4 discusses the dataset and the performance measures we
use for evaluating the ACT-detector for action detection. Chapter 5 presents and discusses
the experiments we conducted to answer the research questions. Chapter 6 analyzes the
performance of the ACT-detector in more detail. Chapter 7 concludes the thesis and provides
recommendations for future work.

T. A. Khan Master of Science Thesis

Chapter 2

Background

Recent approaches for action recognition [5, 6, 7] and action detection [9, 10, 1] use convolu-
tional neural networks to model the spatio-temporal data in videos. This chapter provides a
background in artificial and convolutional neural networks, discusses the VGG16 architecture
[12] for image recognition, and discusses the SSD architecture [13] for object detection. The
SSD architecture is the basis for the ACT-detector [1] for action detection, which will be
discussed in Chapter 3.

2-1 Artificial neural networks

An artificial neural network is a collection of computational nodes called neurons [14]. A
neuron processes multiple inputs and produces a single output. The output is the weighted
sum of its inputs, passed through an activation function. Mathematically, a neuron is defined
as:

N
flz,w) :=¢ <w0 + Zwm,) , (2-1)

i=1

where x are the inputs, w the weights, and ¢ the activation function. The variable wg denotes
the bias term, which is added to the weighted sum of inputs.

Neurons can be arranged by means of layers (see Figure 2-1). There are three kinds of layers:
the input layer, the output layer, and the hidden layer. The input layer takes the input data
and passes them to the first hidden layer. The output layer contains neurons that process
the outputs from the final hidden layer to produce an output. The hidden layers are layers
that are neither the input layer nor the output layer [14]. A neural network has one input
layer, one output layer, and zero or more hidden layers. Neural networks with two or more
hidden layers are called deep neural networks [14]. The number of neurons in the input layer
is equal to the number of data inputs, the number of neurons in the hidden layers is a design
choice, and the number of neurons in the output layer is equal to the number of desired

Master of Science Thesis T. A. Khan

6 Background

hidden layers

output layer

input layer

Figure 2-1: An example deep neural network. The neural network contains one input layer, one
output layer, and two hidden layers. Figure adapted from [14].

outputs. To give an example, an application of neural networks is the recognition of digits
in 2-dimensional images. For a 2-dimensional image of size 28 x 28, the input layer contains
28 x 28 = 784 pixel values. The number of hidden layers and the number of neurons in those
layers is a design choice and is determined by cross-validation. The number of neurons in the
output layer is 10, as we wish to recognize the digits 0 through 9.

Several types of neural networks have been proposed for various applications. These neural
networks differ in the way their neurons are connected between layers. The neural network
shown in Figure 2-1 is a dense neural network. The neurons in dense neural networks are
connected to all neurons in the layer before it. Another type of neural network is the con-
volutional neural network. These are commonly used for image and video processing tasks.
Section 2-2 discusses the convolutional neural network in more detail. Neural networks that
contain feedback loops are called recurrent neural networks. Recurrent neural networks are
commonly used for processing sequential data such as text or time-series. As recurrent neural
networks contain feedback loops, they can be used for modeling dynamical systems. Some
approaches for video processing also make use of recurrent neural networks [4, 15]. Neural
networks that contain no recurrent connections are also referred to as feed-forward neural net-
works. Examples of feed-forward neural networks are dense neural networks and convolutional
neural networks.

2-1-1 Activation functions

As mentioned in the previous section, the output of a neuron is the weighted sum of its inputs,
passed through an activation function ¢. It has been shown that if ¢ is a non-linear function,
a neural network with 1 hidden layer can approximate any continuous function [16]. For this
reason, non-linearity is a desirable property of activation functions. Examples of non-linear
activation functions are: the sigmoid function [17], the hyperbolic tangent (tanh) [18], and
the Rectified Linear Unit (ReLU) [19]. These are visualized in Figure 2-2.

T. A. Khan Master of Science Thesis

2-1 Artificial neural networks 7

1/_ 1 1

-1 1 A

Sigmoid activation Tanh activation RelLU activation

Figure 2-2: Commonly used activation functions for neural network design. Figure adapted from
[20].

The sigmoid activation function is defined as:

1

T 1+ exp(—z) (2:2)

¢sigmoid (!T)

The sigmoid activation function maps an input = to a value in the range (0,1). This is
useful for neural networks that predict probabilities, as these are also in the range (0,1). The
hyperbolic tangent is defined as:

1 —exp(—2x)

Btann(T) = T+ exp(—22)

(2-3)

The range of the hyperbolic tangent is (—1, 1). This is useful for cases in which both a positive
and negative output is desired. The hyperbolic tangent has a similar shape to the sigmoid
function. The hyperbolic tangent and the sigmoid function are related as follows:

¢tanh($) = 2¢sigmoid<2$) -1 (2'4)

The sigmoid and the hyperbolic tangent functions have been the historical tools of choice
for adding non-linearity in neural networks [21]. In recent years, piece-wise linear activation
functions have been proposed. One of such functions is the Rectified Linear Unit (ReLU):

ORrerv () = max{0,z}. (2-5)

The ReLU activation function is 0 when the input « is negative and x when x is positive.
Therefore, the gradient of the ReLU activation function is either 0 or 1. A gradient of 0
results in no change for the weights during training. This problem is known as the vanishing
gradient problem. Some solutions have been proposed such as the Leaky ReLU activation
function [22].

Master of Science Thesis T. A. Khan

8 Background

2-1-2 Training

The goal of a neural network is to approximate a function f by tuning its weights w. The
process of tuning the weights to produce a desired output is called training. During training,
the neural network is presented with an input X and the corresponding label y. In the field
of deep learning, the label y is commonly referred to as the ground-truth [13, 1]. Based on
the input X, the neural network predicts an output . The predicted output is compared
to the ground-truth to measure how accurate the prediction of the neural network is. This
comparison is done by means of a loss function (also referred to as error function). Several
loss functions have been proposed for various tasks. An example loss function is the squared
L2-norm:

N

L(y,9) = > _(vi — 9:)% (2-6)

i=1
where L is the loss, y the ground-truth, ¢ the predicted output by the neural network, and
N the number of outputs. The squared L2-norm is small when the error |y — ¢/ is small, and
large when the error is large. The goal then becomes to minimize the loss function by tuning
the weights w. Minimizing the loss function is typically done by computing the gradient of

the loss function VL with respect to all weights.

The gradients in a neural network can be computed efficiently by the backpropagation algo-
rithm [23]. The backpropagation algorithm computes the gradients by using the chain rule.
The loss at the output layer is propagated backwards so that the gradients at the hidden
layer can be updated. The gradients at each layer are then used to update the weights at
each neuron:

w—w =w-—aVL, (2-7)

where « is the learning rate. The learning rate is determined empirically and is typically in
the order of 1073, Equation (2-7) updates the weights in the steepest descent direction. This
optimization strategy is known as Stochastic Gradient Descent (SGD) [24]. Other optimiza-
tion strategies have been proposed to increase the convergence rates of neural networks. An
example of such a strategy is Adam [25]. To summarize, the training procedure of a neural
network is:

1. An example input is given to the neural network. The input is forwarded to the hidden
layers, which forward their outputs to the output layer. The neural network produces
an output.

2. The loss at the output is calculated based on the ground-truth and the predicted output.

3. The gradients with respect to all weights are computed using the backpropagation
algorithm.

4. The weights are updated using the gradients.

By iterating this process for multiple training examples, a local minimum can be approximated
for the loss function. As neural networks contain large numbers of weights, the training set
should be sufficiently large for convergence.

T. A. Khan Master of Science Thesis

2-2 Convolutional neural networks 9

2-2 Convolutional neural networks

Convolutional neural networks are artificial neural networks that use the convolution operator
in at least one of its layers [21]. They contain three main building blocks: convolutional layers,
max-pooling layers, and fully connected layers. Fully connected layers are layers in which each
neuron is connected to all neurons in the layer before it. The following sections describe the
convolutional and max-pooling layers.

2-2-1 Convolutional layers

Convolutional neural networks are designed to process grid-structured inputs. An image,
which can be viewed as a 2D grid, contains spatial dependencies since local regions in images
are similar in pixel values. Convolution can exploit this property by producing similar values
for local regions with similar patterns. The convolution operator is a dot-product operation
between a grid-structured set of weights and similar grid-structured inputs drawn from differ-
ent spatial locations in the input volume [21] (see Figure 2-3). Convolution can also be defined
over multiple axes. For the case of image processing, it is common to use 2D convolution. 2D
convolution for an image I with kernel K € R"™*™ can be expressed as:

F(z,y) = ZZI(m—m,y—n)K(m, n), (2-8)

where F'(x,y) denotes the output of sliding the kernel over all pixels of the image. F(z,y) is
often called the feature map. The convolution operation has three parameters: kernel matrix
dimension, stride, and padding. The kernel matrix dimensions are the height and width of
the kernel, stride is the number of pixels the kernel shifts in the input, and padding controls
how the border of the input is padded. Since convolution decreases the dimension of the input
(see Figure 2-3), padding can be used to preserve the input dimensions.

input neurons kernel first hidden layer

X w o(x *w)

Figure 2-3: The kernel w € R3*3 is used for convolution of the input volume z to produce the
output feature map in the first hidden layer. The activation function o is applied after convolution.
Figure adapted from [20].

Master of Science Thesis T. A. Khan

10 Background

Compared to fully connected layers, neurons in a convolutional layer are sparsely connected
to the neurons in the layer before it (see Figure 2-4). This is because each neuron in a
convolutional neural network receives input from a small region of the image. An additional
observation is that parameters in convolutional layers are re-used as the same kernel slides
over all pixel values of an image. This is called parameter sharing. Due to sparse connectivity
and parameter sharing, convolutional layers are much more efficient in terms of computational
complexity and memory requirements than densely connected layers.

ONORONONO

Figure 2-4: Top: sparse connectivity of a convolutional neural network. Each neuron in a
convolutional layer is sparsely connected to the neurons in the layer before it. Bottom: fully
connected layers. Each neuron is a densely connected layer is connected to all neurons in the
layer before it. Figure adapted from [17].

2-2-2 Max-pooling layers

Convolutional neural networks also have max-pooling layers. These layers reduce the spatial
dimensions of feature maps by an operation called maz-pooling. Max-pooling divides the input
volume into a set of equal regions, and for each region, it takes the maximum value (see Figure
2-5). Max-pooling reduces the computational cost of a convolutional neural network and can
also reduce the number of parameters if placed before a fully connected layer. Max-pooling
has two parameters: dimension and stride.

T. A. Khan Master of Science Thesis

2-3 VGG 11

input neurons

2x2 Maxpooling

S
r g

Figure 2-5: Max-pooling: taking the maximum value of regions in feature maps. Dimensions =
2 x 2 and stride = 2. Figure adapted from [20].

2-3 VGG

We now discuss the VGG [12] convolutional architecture for image recognition. Image recog-
nition is the task of classifying images into a set of labels. Several convolutional architectures
have been proposed for this task, but the design principles of VGG are worth mentioning as
they played a major role in the design of more recent convolutional architectures [26]. The
VGG architecture was developed for the ImageNet Large Scale Visual Recognition Challenge
2014 (ISLVRC 2014) [27]. For this challenge, VGG achieved a top-5 error rate of 6.7%.

2-3-1 Design principles

VGG uses small kernel dimensions of 3 X 3 to process the input image. As VGG uses small ker-
nel dimensions, the depth (the number of layers) of the network is increased. This is because
small kernels capture only a small region of the input. However, successive convolution with
small kernel dimensions captures the same region as a single convolution with large kernel
dimensions. For example, 3 successive convolutions of a kernel of size 3 x 3 capture a region
in the input of size 7 x 7. The main advantage of using smaller kernels is that successive
convolutions can capture more complex and detailed features than a single convolution. They
also require less parameters (3 x 3 x 3 = 27 for small kernels versus 7 x 7 = 49 for large
kernels). By increasing the depth, the model also becomes more non-linear. This is because
more convolutions are computed, which are followed by non-linear activations. An increase in
non-linear activations results in an increase in the discriminative power of the network [21].
For these reasons, modern convolutional architectures increase the depth, while decreasing
the kernel dimensions.

2-3-2 Architecture

The input to VGG is an image tensor of size (224,224, 3). These values denote the height,
width, and number of channels for the image, respectively. VGG uses kernel dimensions of
3 x 3 and max-pooling dimensions of 2 x 2 to process the input image. The convolutions are
done with stride 1 and max-pooling is done with stride 2. A zero-padding of 1 is used for
convolution to preserve the input dimensions. Max-pooling with a size of 2 x 2 and stride 2

Master of Science Thesis T. A. Khan

12 Background

decreases the spatial dimensions of the feature maps by a factor of 2 (see Figure 2-5). The
number of kernels is increased by a factor of 2 whenever max-pooling takes place. This is
to balance the computational effort across layers and to capture more complex features in
the top layers [21]. VGG designed multiple architectures using these design principles. The
best performing version for the ISLVRC 2014 was the VGG16 architecture. This version of
VGG contains 16 weighted layers, hence the name VGG16. VGG16 contains 13 convolutional
layers, 5 max-pooling layers, and 3 fully connected layers. All convolutions are followed by
ReLU activations. The full design of VGG16 is shown in Table 2-1. In total, VGG16 contains
about 138 million parameters.

Table 2-1: The VGG16 architecture. The term C3D64 refers to 64 kernels of dimensions 3 x 3,
the padding is chosen to preserve the input dimensions. Each convolution is followed by a ReLU
activation. The max-pooling layer is denoted by M and FC4096 refers to a fully connected layer
with 4096 neurons.

name config
convi_1 | C3D64
convl_2 | C3D64
pooll M
conv2_1 | C3D128
conv2_2 | C3D128
pool2 M
conv3_1 | C3D256
conv3_2 | C3D256
conv3_3 | C3D256
pool3 M
convd_1 | C3D512
convd 2 | C3D512
conv4_3 | C3D512
poold M
conv5_1 | C3D512
convs_2 | C3D512
convs_3 | C3D512

poolb M

fc6 FC4096
fc7 FC4096
fc8 FC1000

2-4 SSD

Having discussed the VGG16 architecture, we now discuss the SSD (Single Shot MultiBox
Detector) [13] architecture. The SSD architecture forms the basis of the ACT-detector [1],
which will be discussed in Chapter 3. The SSD architecture is a fully convolutional neural
network designed for the task of object detection. In computer vision, object detection is to
localize and classify multiple objects in images. The term fully convolutional neural network
refers to a convolutional neural network that contains no fully connected (dense) layers.

T. A. Khan Master of Science Thesis

2-4 SSD 13

The SSD architecture is a one-stage detector; the detector localizes and classifies the objects
in an image in a single evaluation of the network. This is unlike two-stage detectors [28, 29],
which propose regions and then classify these regions. One-stage detectors learn localization
and classification of objects jointly and have less computational costs than two-stage detectors.

2-4-1 Architecture

The SSD architecture is visualized in Figure 2-6. The input to SSD is an image tensor of size
(H x W x 3), where H and W are the height and width of the image, respectively. The 3
refers to the number of channels, which is 3 for an RGB-image. The output is a tensor of size
(B x (¢ +1+4)), where B is the number of anchor bozes and ¢ the number of classes. The
1 refers to the background class and the 4 to the number of coordinates in a bounding boz.
The terms anchor box and bounding box will be discussed in the next section.

Extra Feature Layers
A

VGG-16 , \

- _ll1_ru_u_gh_Conv5__§ I_ai(-:‘r Classifier : Conv: 3x3x(4x(Classes+4))

Classifier : Conv: 3x3x(6x(Classes+4))

74.3mAP
59FPS

Conv: 3x3x(4x(Classes+4)) @

10_2 Conv11_2
1024 1024 512 256 E 256

J—|
Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256 Conv: 1x1x128 Conv: 1x1x128 Conv: 1x1x128
Conv: 3x3x512-s2 Conv: 3x3x256-s2 Conv: 3x3x256-s1 Conv: 3x3x256-s1

| Detections:8732 per Class ‘
| Non-Maximum Suppression ‘

Figure 2-6: The SSD architecture. The SSD architecture contains three main components:
a modified version of VGG16 [12], auxiliary convolutional layers to provide additional feature
maps, and prediction layers to produce the output. We discuss these components in the following
paragraphs. Figure adapted from [13].

VGG16 base

A modified version of the VGG16 architecture is used by SSD to encode the input image
into lower level representations. The SSD architecture modifies the VGG16 architecture by
removing fc8, and sub-sampling and converting £c6 and fc7 into convolutional layers. The
resulting convolutional layers are denoted by conv6 and conv7 in Figure 2-6.

Auxiliary convolutional layers

On top of the modified VGG16 architecture, 4 blocks of convolutional layers are added. Each
block contains two convolutional layers. These convolutions provide additional feature maps.
The second convolutional layer of each block performs convolution with a stride of 2. This
decreases the spatial dimensions of the feature maps. The auxiliary convolutional layers
are denoted by conv8_1, conv8_2, conv9_1, conv9_2, conv10_1, convl0_2, convll_1, and
convll_2 in Figure 2-6.

Master of Science Thesis T. A. Khan

14 Background

2-4-2 Anchor boxes

Before we discuss how the auxiliary convolutional layers are used to compute the output, we
explain the terms bounding boxr and anchor boz.

For object detection, we use bounding boxes to describe the location of an object in an image.
We can represent bounding boxes by their pixel coordinates. The pixel coordinate system the
SSD architecture uses is the center-size coordinate system. The center-size coordinates of a
bounding box are: (cg, ¢y, w, h), where ¢, is the x-coordinate of the center of the box, ¢, the
y-coordinate of the center of the box, w the width of the box, and h the height of the box.
An example of center-size coordinates is given in Figure 2-7.

(0,0) (1,0)
=078

¢, =0.80

1|h=030

(0, 1) I‘WVI (1,1)

Center-Size Coordinates (c,, c,, w, h) = (0.78, 0.8, 0.24, 0.30)
Figure 2-7: A visualization of the center-size coordinate system. Figure adapted from [30].

We are now ready to discuss anchor boxes. Anchor boxes are prior bounding boxes encoded
in the SSD architecture. They serve as candidate regions for where an object may be. The
original implementation of SSD contains 8732 anchor boxes. They are manually chosen and
cover the full image. Anchor boxes are applied to low-level and high-level feature maps. The
feature maps used for this are from the layers conv4_3, conv7, conv8_2, conv9_2, conv10_2,
and conv1l_2. This is also indicated in Figure 2-6. The anchor boxes vary in scale and aspect
ratio.

The scale of the anchor boxes depends on the feature map. Larger feature maps (e.g. from
conv4_3) have smaller scales than smaller feature maps (e.g. from convii_2). The larger
feature maps are used to detect smaller objects and the smaller feature maps are used to
detect larger objects. If m feature maps are used for prediction, the scale of the anchor boxes
for each feature map is computed as:

Smax — Smin
Sk :Smln—f—ﬁ(kﬁ—l), k:G [Lm], (2—9)

where $;,i, is the minimum scale and $;,4, is the maximum scale. In the original implemen-
tation of the SSD m = 6, s;nin = 0.1, and S;pee = 0.9.

T. A. Khan Master of Science Thesis

2-4 SSD 15

For each element (also referred to as pixel) in these feature maps, a set of anchor boxes is
associated. The number of anchor boxes per element is 4 for feature maps from conv4_3,
conv10_2, and convll_2, and is 6 for feature maps from conv7, conv8_2, and conv9_2.
Figure 2-8 shows the anchor boxes associated with the center pixel of a feature map from
layer conv9_2. As can be seen from Figure 2-8, these anchor boxes vary in aspect ratio. The
SSD architecture uses aspect ratios of a, € {1,2, %} for feature maps from conv4_3, conv10_2,
and conv1l_2, and aspect ratios of a, € {1,2,3, %, é} for feature maps from conv7, conv8_2,
and conv9_2. Each pixel has an additional enlarged anchor box of aspect ratio 1. Given
the scales and aspect ratios, the width and height of the anchor boxes can be computed.

The width is computed as wf = s, /a, and the height is computed as hf = j’(% Table 2-2

summarizes the design of the anchor boxes used by the SSD architecture.

Figure 2-8: The anchor boxes associated with the center pixel of a feature map from layer
conv9_2. There are 6 anchor boxes in total. Figure adapted from [30].

Table 2-2: Anchor boxes design used by the SSD architecture. The input is assumed to be an
image tensor of size (300, 300, 3).

Feature map | Feature map | scale | number of aspect ratios
from dimensions anchor boxes
per element

convé_3 (38, 38, 512) | 0.1 4 ar € {1,2,3}
conv7 (19, 19, 1024) | 0.2 6 a, € {1,2,3,%, %}
conv8_2 (10, 10, 512) | 0.375 | 6 a, € {1,2,3,3,3}
conv9_2 (5, 5, 256) 0.55 |6 ar €{1,2,3,5,3}
conv10_2 (3, 3, 256) 0.725 | 4 a, € {1,2,1}
convil_2 (1, 1, 256) 09 |4 a, € {1,2,3}

Master of Science Thesis T. A. Khan

16 Background

2-4-3 Prediction layers

The output of the SSD architecture is the classes and bounding box coordinates of all anchor
boxes encoded in the architecture. The prediction layers produce this output by convolving
the feature maps shown in Table 2-2. The prediction layers compute k(c 4+ 1 + 4) outputs
for each element in a feature map. Here k is the number of anchor boxes per element shown
in Table 2-2, ¢ + 1 is the number of classes (including background), and 4 is the number of
bounding box coordinates. For this, k(c + 1 + 4) convolutional kernels of size 3 x 3 are used
per prediction layer. Table 2-3 shows the dimensions of the feature maps involved in the
prediction layers. The original implementation of SSD computes the class confidence scores
and bounding box coordinates of 38-38-4+19-19-6+10-10-6+5-5-6+3-3-4+1-1-4 = 8732
anchor boxes. The output is a tensor of size (8732,c+ 1+ 4).

Table 2-3: The input dimensions and the output dimensions of the feature maps involved in the
prediction layers. The prediction layers compute for all anchor boxes their class confidence scores
and their bounding box coordinates.

T. A. Khan

layer name

Feature map
input dimensions

Feature map
output dimensions

pred_conv4_3

38, 38, 512)

38, 38, 4(c + 1+ 4))

pred_conv7

19, 19, 1024)

19, 19, 6(c + 1 + 4))

pred_conv8_2

10, 10, 6(c + 1 + 4))

pred_conv9_2

[\

) Y

, 5, 6(c+1+4))

pred_conv10_2

pred_convll_2

(

(

(10, 10, 512)
(5,5
(3,3, 2
(1, 1

[\]

Ut Ot Ot
DD D
| =

)

(
(
(
(5,5
(3,3, 4(c+1+4))
(1,1, 4(c+1+4))

Master of Science Thesis

Chapter 3

Methodology

We implement the ACT-detector (ACtion Tubelet Detector) [1] to compare single-frame and
multi-frame models for action detection in surveillance videos. The ACT-detector is a fully
convolutional, one-stage detector that takes as input a sequence of frames and outputs tubelets
(labeled sequences of bounding boxes). The following sections discuss the components of the
ACT-detector, as well as the implementation details.

3-1 Architecture

The ACT architecture extends the SSD architecture along the temporal dimension. The input
to the ACT-detector is a sequence of frames. The input tensor is of size (K, H, W, 3), where
K denotes the number of frames, H the height of the frames, W the width of the frames,
and 3 refers to the number of channels, which is 3 for RGB-images. The height H and width
W is equal for all K frames. The original implementation of the ACT-detector is designed
for sequences with H = 300 and W = 300. For our implementation, we chose H = 360 and
W = 640. As will be discussed in Section 4-1, the surveillance videos we use for performance
evaluation are recorded at 1280 x 720 and 1920 x 1080 pixel resolutions. We downscale this to
640 x 360 to reduce the computational costs but preserve the aspect ratio of the recordings.
An overview of the ACT-detector is shown in Figure 3-1.

3-1-1 VGG16 and auxiliary convolutional layers

The VGG16 convolutional base and auxiliary convolutional layers of the SSD architecture
are used by the ACT-detector to process individual frames. For each frame in the sequence,
the frame is reduced to feature maps of various dimensions by the VGG16 convolutional base
and auxiliary convolutional layers. Since we have a larger input dimension than the original
implementation of ACT (640 x 340 versus 300 x 300), we add an additional convolutional
block with convolutional layers conv12_1 and conv12_2 to further reduce the feature map
dimensions. The weights of the VGG16 convolutional base and auxiliary convolutional layers
are shared among all frames in the sequence.

Master of Science Thesis T. A. Khan

18 Methodology

VGG conv
layers

extra conv
\v\layers
r regression and

o L classification
{2
5 g ’ conv layers
]
/.

Regression
(4K outputs per anchor)

Classification
(C+1 outputs per anchor)

Figure 3-1: An overview of the ACT-detector [1]. The ACT-detector contains four main com-
ponents: a modified version of VGG16 [12], auxiliary convolutional layers, temporal stacking, and
prediction layers. We discuss these components in the following paragraphs.

3-1-2 Temporal stacking

Once we have computed the feature maps for all frames, we stack the feature maps from the
following layers: conv4_3, conv7, conv8_2, conv9_2, conv10_2, convll_2, and convi2_2.
These are also the layers used by the SSD architecture to classify and regress anchor boxes.
Table 3-1 shows the individual and temporally stacked dimensions of the feature maps from
the previously mentioned layers for K = 6. As can be seen from Table 3-1, the feature maps
are stacked in the channel dimension. These stacks of feature maps represent the spatio-
temporal volume of the input sequence at reduced spatial dimensions.

Table 3-1: Individual and temporally stacked dimensions of feature maps for K = 6. The third
dimension denotes the number of feature maps.
Feature map | Feature map | Stacked
from dimensions feature map
dimensions
conv4_3 (45, 80, 512) (45, 80, 3072)
conv7 (23, 40, 1024) | (23, 40, 6144)
conv8_2 (12, 20, 512) (12, 20, 3072)
conv9_2 (6, 10, 256) (6, 10, 1536)
conv10_2 (3, 5, 256) (3, 5, 1536)
convil_2 (2, 3, 256) (2, 3, 1536)
convi2_2 (1, 2, 256) (1, 2, 1536)

3-2 Anchor cuboids

Before we discuss how the stacked feature maps are used to compute the output, we explain

the term anchor cuboid.

T. A. Khan

Master of Science Thesis

3-2 Anchor cuboids 19

The ACT-detector uses anchor cuboids as priors for action detection. Anchor cuboids are
temporal extensions of anchor boxes. They are sequences of bounding boxes in time which
serve as candidate volumes in which actions may occur. Their temporal length is equal to
the number of frames in a sequence (K). Their spatial extent is fixed over time. The anchor
cuboids are applied on the stacked feature maps shown in Table 3-1. Similar to SSD, they vary
in size and aspect ratio. The original implementation of ACT contains 8732 anchor cuboids.
Our implementation contains 21842 anchor cuboids, since we have larger input dimensions
than the original implementation of ACT. Figure 3-2 visualizes anchor cuboids.

Similar to SSD, the larger stacked feature maps are used to detect smaller actions and the
smaller stacked feature maps are used to detect larger actions. We compute the scales using
Equation (2-9), with m = 7, $pin = 0.05, and $;q; = 0.5. We chose the values of s,,;, and
Smaz SMall as the action in the dataset are small in pixel resolution. The aspect ratios of
ar € {1,2, %} are used for feature maps from conv4_3, convil_2, and conv12_2 and aspect
ratios of a, € {1, 1%, 2, %, %} for feature maps from conv7, conv8_2, conv9_2, and conv10_2.
We chose these aspect ratios more square than the original implementation of ACT as the
actions in our dataset are more square than wide or tall. A summary of the design of our

anchor cuboids is shown in Table 3-2.

Anchor
cuboid

Regressed
Tubelet

Figure 3-2: Anchor cuboids (left) regress to tubelets (right) to follow the action in time. Figure
adapted from [1].

Table 3-2: Anchor cuboid design for our implementation of ACT K = 6. The input is assumed
to be an image sequence tensor of size (6,360,640, 3).

Feature map | Stacked scale | number of aspect ratios
from feature map anchor cuboids
dimensions per element

convéd_3 (45, 80, 3072) | 0.05 | 4 a, € {1,2,1}
conv? (23, 40, 6144) | 0.125 | 6 ar € {1,15,2,%, 5}
conv8_2 (12, 20, 3072) | 0.2 | 6 ar € {1,15,2,%, 5}
conv9_2 (6, 10, 1536) | 0.275 | 6 ar € {1,15,2,%, 5}
conv10_2 (3,5,1536) [0.35 |6 ar € {1,13,2, 3,5}
convil_2 (2, 3, 1536) 0.425 | 4 ar € {1,2,%}
convi2_2 (1, 2, 1536) 0.5 4 ar € {1,2,3}

Master of Science Thesis

T. A. Khan

20 Methodology

3-3 Prediction layers

The output of the ACT detector is the classes and sequences of bounding box coordinates
for all anchor cuboids encoded in the architecture. Similar to SSD, the prediction layers
produce this output. The main differences are that the inputs to the prediction layers are
stacked feature maps and that they predict the bounding box coordinates for each frame in
the sequence. The prediction layers compute k(c + 1 + 4K) outputs for each element in a
stacked feature map. Here k is the number of anchor cuboids per element shown in Table
3-2, ¢+ 1 is the number of classes (including background), and K is the number of frames in
a sequence. For this, k(c+ 1+ 4K) convolutional kernels of size 3 x 3 are used per prediction
layer. Table 3-3 shows the dimensions of the feature maps involved in the prediction layers.
We classify and regress 45-80-4+423-40-64+12-20-6+6-10-64+3-5-64+2-3-4+1-2-4 = 21842
anchor cuboids into tubelets. Tubelets are labeled sequences of bounding boxes through time.
The size and aspect ratio of the bounding boxes in a tubelet can change over time. The idea is
that these boxes follow the action in time (see Figure 3-2). The output of our implementation
of the ACT-detector is a tensor of size (21842,c+ 1 + 4K).

Table 3-3: The input dimensions and the output dimensions of the feature maps computed by
the prediction layers of ACT K = 6. The prediction layers compute for all anchor cuboids their
class confidence scores and their sequence of bounding box coordinates. The third dimension is
the number of feature maps.

layer name Feature map Feature map

input dimensions | output dimensions
pred_conv4_3 | (45, 80, 3072) (45, 80, 4(c+ 1+ 24))
pred_conv7 (23, 40, 6144) (23, 40, 6(c+ 1+ 24))
pred_conv8_2 | (12, 20, 3072) (12, 20, 6(c+ 1+ 24))
pred_conv9_2 | (6, 10, 1536) (6, 10, 6(c + 1+ 24))
pred_conv10_2 | (3, 5, 1536) (3,5, 6(c+1+24))
pred_convll_2 | (2, 3, 1536) (2,3, 4(c+1+24))
pred_convi2_2 | (1, 2, 1536) (1,2, 4(c+1+24))

3-4 Training

To train the ACT-detector, we give an example input image sequence X and corresponding
ground-truth tubelets y. The ground-truth tubelets y contain the class labels and sequences
of bounding box coordinates of all actions happening in image sequence X. We represent the
ground-truth tubelets as a tensor of size (N, 1+ 4K), where N is the number of actions, 1 is
the class label, and 4K are the bounding box coordinates for all boxes in the sequence. The
ACT-detector predicts tubelets of size (21842, c+1+4K), where c+1 is the number of classes
(including background). To compare the ground-truth tubelets to the predicted tubelets, we
encode the ground-truth tubelets into a shape similar to the predicted tubelets. We do this
by a process called "anchor cuboid matching". Before we discuss anchor cuboid matching, we
briefly mention the spatio-temporal IoU metric.

T. A. Khan Master of Science Thesis

3-4 Training 21

3-4-1 Spatio-temporal loU

We can measure the amount of overlap of two bounding boxes by using the Intersection over
Union (IoU) metric. This metric is also referred to as the Jaccard index. As the name implies,
for two bounding boxes A and B, the IoU is defined as the intersection of A and B divided
by the union of A and B:

ANB
IoU = . 3-1
°Y T AUB (3-1)
Equation (3-1) is visualized in Figure 3-3.
A
ANB
2
Jaccard Index = ANE =
AUB
AUB

Figure 3-3: A visualization of the loU. Figure adapted from [30].

We can extend the IoU along the temporal dimension by taking the average of the per-frame
IoU. This is known as the spatio-temporal IoU [1]. We use the spatio-temporal IoU to compare
two tubelets of equal temporal length.

3-4-2 Anchor cuboid matching

Anchor cuboid matching matches the anchor cuboids of the ACT detector to the ground-truth
tubelets. To do so, we compute the spatio-temporal IoUs between all anchor cuboids B and
all N ground-truth tubelets. This is a tensor of size (B, N). The value of B is 21842 in our
implementation of the ACT-detector. For each ground-truth tubelet, we match the ground-
truth tubelet to the anchor cuboid with the highest spatio-temporal IoU. Then, we match
anchor cuboids with a spatio-temporal IoU larger than a threshold (0.5) to the ground-truth
tubelet with the highest spatio-temporal IoU. The anchor cuboids that are matched to any
ground-truth tubelets are considered positives. The remaining anchor cuboids are considered
negatives. The positive anchor cuboids are assigned the class labels and sequence of bounding
box coordinates of the ground-truth tubelets they are matched with. The negative anchor
boxes are assigned the background class. Anchor cuboid matching is visualized in Figure 3-4.

Master of Science Thesis T. A. Khan

22 Methodology

Figure 3-4: Anchor cuboid matching. The anchor cuboids (red) are matched to the ground-truth
tubelet (green). For this, the spatio-temporal loU is used as a criterion.

3-4-3 Loss function

Only sequences that contain the same actions for all frames in the sequence are considered for
training. During training, a sequence of frames is given as input to the network. The network
produces an output, which is compared to the ground-truth tubelets. Let x;; € {0,1} be the
binary variable whose value is 1 if and only if anchor cuboid a; is matched to the ground-truth
tubelet g; of label . The loss £ between the predicted tubelets and the ground-truth tubelets
is computed as:

1
L= N(ﬁconf + £reg)7 (3'2)

where N is the number of positive assigned anchor boxes, L., the confidence loss, and L4
the regression loss. The loss £ is the sum of the confidence loss Lo, and the regression loss
Lyeqg. This enables the ACT-detector to learn classification and regression of anchor cuboids
jointly. The confidence loss Lo is defined as:

Econf = - Z .%'?j IOg(ézy) - Z log(ég)a (3_3)
i€P ieN

where P denotes the set of positive anchor cuboids, A/ denotes the set of negative anchor
cuboids, ¢/ is the predicted confidence score for label y, and &Y is the predicted confidence
score for the background class. Equation (3-3) is known as the cross-entropy loss. The
regression loss L4 is defined as:

T. A. Khan Master of Science Thesis

3-5 Inference 23

K
1 “
Lreg = = Z Z x%’j Z smoothy (7% — gfj’?),
1€P ce{z,y,w,h} k=1

g?k — q*k
. x, _ Jj 7
Wlth gwk = T,
7
Yk Yk
g:" —a;
Y _ 9] 1
9 = T (3—4)
a;
W
g.
Wi J
9 = log ~wr |
a;
hy

he _
g;; = log K
%

where 7;* is the predicted regression for the ¢ € {z,y, w, h} coordinate of anchor a; at frame
fr, and g; is the ground-truth tubelet. The regression loss is defined using a smoothy, loss
[28] and is averaged over K frames.

3-5 Inference

Given a sequence of frames as input to the ACT-detector, the output is B tubelets. The
value of B in our implementation is 21842. This number is much higher than the number of
actions in the sequence. Thus, we filter the tubelets when we infer the model on sequences
not seen in the training data. Filtering is done in two steps: 1. threshold filtering and 2.
non-maximum suppression (NMS). Threshold filtering is simply removing the tubelets with
a low confidence score. We set the threshold for this at 0.05. Non-maximum suppression is
to remove the tubelets that have a spatio-temporal IoU larger than a threshold 8 with the
tubelet with the highest confidence. Non-maximum suppression is performed on a per-class
bases. We chose 6 = 0.3, as was done by [1]. This is repeated until there are no tubelets that
match this criterion.

3-6 Tubelet linking

So far we have only discussed processing sequences of K frames by the ACT-detector. How-
ever, an untrimmed video usually has many more frames than K. We process such videos by
splitting the video into sequences of K frames. For a video of N frames, the frames are pro-
cessed in windows of [f1, fo,..., fx|, [fe, f3,- -y fr+1), oy [N—K+1, [N—K+2 - - -, [N], where
fn denotes frame n. Each sequence is given as input to the ACT-detector. The ACT-detector
computes tubelets for each sequence. These tubelets are, by design, fixed in their temporal
length, i.e., they are sequences of K bounding boxes. To follow the action in time, beyond the
sequences, we process these tubelets into temporally coherent action tubes, or tubes for short.
Similar to tubelets, tubes are sequences of bounding boxes. However, their temporal extent
is not fixed. They can, for example, be 10 frames long or even 1000 frames long. Processing

Master of Science Thesis T. A. Khan

24 Methodology

tubelets into tubes is known as "tubelet linking" [1]. Tubelet linking is done by an external
processing algorithm and was originally proposed by [10] for linking frame-level detections.
The algorithm was extended by [1] for linking sequence-level detections (tubelets). We briefly
discuss the tubelet linking algorithm in the following paragraphs.

Input tubelets For each sequence in a video, we compute B tubelets. We perform per-class
NMS and keep the top N = 10 tubelets for each class. These tubelets are used as candidate
tubelets for tubelet linking.

Initialization In the first sequence, a new link is started for each of the N tubelets. A link
L is a sequence of tubelets. The confidence score of a link is the average of the confidence
scores of the tubelets in the link. At a given sequence, new links start for tubelets that are
not associated to any existing links.

Overlap The tubelet linking algorithm depends on an overlap measure between a link L
and tubelet ¢. The overlap of L and ¢ is defined as the spatio-temporal IoU between the last
tubelet of the link L and t.

Linking Given a new sequence, we extend the existing links with one of the N tubelets
starting from the sequence. We extend a link L, with tubelet ¢ if it meets the following
criteria: (i) ¢ is not already selected by an other link, (ii) ¢ has the highest confidence score,
and (iii) the overlap of L and t is larger or equal than a threshold 7. For our experiments, we
chose 7 =0.1.

Termination A link is terminated if no tubelets meet the criteria discussed in the previous
paragraph for K — 1 consecutive frames.

Temporal smoothing We build an action tube for each link. The confidence score of a tube
is equal to the confidence score of the link. For each sequence in the link, we average the
bounding box coordinates of tubelets that pass through the same frames. We now have a
sequence of averaged bounding box coordinates through time, i.e, an action tube. We chose
to average the bounding box coordinates to obtain smoother tubes.

T. A. Khan Master of Science Thesis

Chapter 4

Dataset and performance evaluation

The previous chapter discussed our implementation of the ACT-detector, the framework
we use to evaluate single-frame and multi-frame models for action detection. This chapter
discusses the dataset and the performance measures we chose for evaluating these models.

4-1 Dataset

This thesis considers the surveillance application of action detection. The chosen dataset
for this application is the VIRAT dataset [2] from the Activity in Extended Videos Prize
Challenge 2018 (ActEV-PC 2018) [31]. VIRAT is a video dataset that contains recordings of
surveillance cameras of multiple scenes. An example scene of VIRAT is shown in Figure 4-1.
Depending on the scene, these recordings have pixel resolutions of 1280 x 720 or 1920 x 1080.
All videos are recorded at 30 fps. The reason why we chose VIRAT is that it contains
high-quality recordings and annotations.

VIRAT has labels for 18 action classes. Some example classes are: "activity carrying',
"pulling", "entering', "exiting", "vehicle turning right", and "vehicle turning left". The
training set has 1138 labeled action tubes, which in total are 247971 labeled boxes. Mul-
tiple actions may happen simultaneously. There are also time spans in which no actions take
place. VIRAT is considered challenging in terms of pixel resolutions of humans, the wide
spatial coverage of scenes, and background clutter [2].

The dataset comes with a training, validation, and test split. As the test split does not contain
annotations, the validation split is regarded as the test split for this thesis. The training and
validation sets contain 64 and 54 videos each, where each video is between 25 seconds and
14 minutes long. The videos in the validation set contain recordings from the same scenes as
videos in the training set.

Master of Science Thesis T. A. Khan

26 Dataset and performance evaluation

Figure 4-1: An example scene and action from the VIRAT dataset. The blue text is the action
label (in this case "vehicle_turning_right"), and the green box is the action location.

4-2 Performance evaluation

The performance of action detection frameworks can be quantified by means of frame-level
metrics and video-level metrics. Frame-level metrics compare the ground-truth boxes at frame
f, to the boxes originating from all predicted tubelets that pass through frame f. Frame-level
metrics are independent of the linking strategy. Video-level metrics compare the predicted
tubes of video v to the ground-truth tubes of video v. The following performance metrics are
used:

Classification accuracy;

Mean Average Best Overlap (MABO);

Frame-mAP: Frame mean Average Precision; and

Video-mAP: Video mean Average Precision.

Before we discuss the above performance metrics, we define the following terms:

e Precision and recall; and
e Average Precision (AP).

T. A. Khan Master of Science Thesis

4-2 Performance evaluation 27

4-2-1 Precision and recall

Precision and recall are commonly used metrics for classification and detection tasks. They
are also used to compute the Average Precision, a metric that will be discussed in the next
paragraph. Precision (P) is defined as the number of true positives (7,,) divided by the
number of true positives plus the number of false positives (F},):

Ty

- , 4-1
T+ F (4-1)

The sum of the number of true positives and the number of false positives is the total number
of positive predictions. Precision measures how accurate the positive predictions of a system
are. High precision relates to a low false positive rate. A precision of 1.0 means that every
positive prediction of the system is correct.

The recall (R) is defined as the number of true positives (T},) divided by the number of true
positives plus the number of false negatives (F,):

1y

R=—2_
T, + Fy

(4-2)
The sum of the number of true positives and the number of false negatives is the number of

ground-truths. Recall measures how many ground-truths are detected. High recall relates to
a low false negative rate. A recall of 1.0 means that all ground-truths were detected.

Both precision and recall are necessary to measure the performance of a detection system.
A detection system with high precision but low recall misses many detections and a system
with low precision but high recall has a high false positive rate. A good performing system
has both high precision and high recall.

4-2-2 Average Precision

As predictions have a class confidence score, the precision and recall scores can be evaluated
at various confidence thresholds. Typically, for high confidence thresholds, the precision is
high and the recall is low, and for low confidence thresholds, the precision is low and the recall
is high. These precision and recall scores can be plotted to create a precision-recall curve.
Example precision-recall curves are shown in Figure 4-2.

The area under a precision-recall curve is commonly used to summarize the plot and is referred
to as Average Precision. The Average Precision (AP) is computed as:

AP => (R, — Rn_1)Pn, (4-3)

where P, and R, are the precision and recall scores at the nth threshold. The Average
Precision is computed per class. The Average Precision averaged over all classes is known
as the mean Average Precision (mAP). The mean Average Precision is used to compute
the frame-mAP and video-mAP scores for action detection systems. These metrics will be
discussed in the upcoming paragraphs.

Master of Science Thesis T. A. Khan

28 Dataset and performance evaluation

expected model ideal model
precision precision
1 1

recall recall

Figure 4-2: Example precision-recall curves. Typically, the precision is high for low recall values,
and is low for high recall values. The ideal model has high precision and high recall. Figure
adapted from [20].

4-2-3 Classification accuracy

The classification accuracy [1] measures the ratio of correctly classified boxes. This is a
frame-level metric and is evaluated per class. For each ground-truth box of class ¢, the IoU is
computed between the ground-truth box and all predicted boxes. The predicted boxes that
have an IoU larger than 0.5 are averaged in their class confidence scores. If the maximum
of these scores corresponds to class ¢, the ground-truth box is correctly classified. As the
classification accuracy is computed per class, the final score is defined as the mean over all
classes.

4-2-4 MABO

Mean Average Best Overlap (MABO) [1] measures localization performance of action de-
tection systems. Similar to classification accuracy, for each ground-truth box, the IoU is
computed between the ground-truth box and all predicted boxes. The IoU between the
ground-truth box and the best overlapping predicted box is kept (BO). Then, for each class,
the average over all ground-truth boxes is taken (ABO). Finally, the mean is taken over all
classes (MABO). MABO is a frame-level metric.

4-2-5 Frame-mAP

Frame-mAP [9] is a commonly used metric to measure the detection performance of action
detection systems. The frame-mAP is a frame-level metric, which means that the predicted
boxes at frame f are compared to the ground-truth boxes at frame f. A predicted box is
considered correct if its IoU with the ground-truth box is larger than a threshold 6 and its
class label is correctly predicted. For each class, the frame-AP is computed, which is then
averaged over all classes to form the frame-mAP. As frame-mAP is independent of the linking
strategy, frame-mAP is a good measure to compare detection performances of models.

T. A. Khan Master of Science Thesis

4-2 Performance evaluation 29

4-2-6 Video-mAP

Video-mAP [9] is used to measure the detection performance of action detection systems on
the video-level. For video-mAP, the predicted tubes of video v are compared to the ground-
truth tubes of video v. A predicted tube is considered correct if its spatio-temporal IoU with
the ground-truth tube is larger than a threshold 6 and its class label is predicted correctly.
For each class, the video-AP is computed, which is then averaged over all classes to form the
video-mAP. Video-mAP is a good measure to compare detection performances of models and
linking strategies combined.

4-2-7 Weighted evaluation

We also evaluate the weighted classification accuracy, weighted MABO, weighted frame-mAP,
and weighted video-mAP. We define these by weighting the per-class performances by their
appearances. For frame-level metrics, we weight by the frame-level appearances, and for
video-level metrics, we weight by the video-level appearances. Frame-level appearances refer
to the number of bounding boxes for a specific class and video-level appearances refer to the
number of tubes for a specific class. The number of bounding boxes divided by the number
of tubes is a measure for the average duration of a tube. The frame-level and video-level
appearances of classes of VIRAT are shown in Table 4-1. The weighted evaluation metrics
are then computed as:

Ae
Mw = ; Zc Ac M07 (4'4)

where M,, denotes the weighted performance score, A. the appearance of class ¢, and M, the
class performance score. M could be one of classification accuracy, MABO, frame-mAP, or
video-mAP. Values for A, can be found in Table 4-1. The frame-level appearances are used
to compute the weighted classification accuracy, weighted MABO, and weighted frame-mAP.
The video-level appearances are used to compute the weighted video-mAP.

The reason why we consider weighted evaluation is that there is a large variation in class
appearances (see Table 4-1). This is known as class imbalance. Weighting these classes
equally could skew the performance numbers if the classes with little appearances perform
much better or worse than classes with high appearances. The implication of class imbalance
is discussed in Section 6-1.

Master of Science Thesis T. A. Khan

30 Dataset and performance evaluation

Table 4-1: Frame-level and video-level appearances of classes in the training set of VIRAT.

Class Frame-level appearances | Video-level appearances
Closing 5326 132
Closing_trunk 1138 21
Entering 7701 71
Exiting 5371 65
Loading 4715 37
Open_ trunk 1378 22
Opening 7404 127
Pull 9252 23
Riding 9420 22
Talking 14698 41
Transport_ HeavyCarry 15661 31
Unloading 4465 32
activity__carrying 128422 205
specialized_ talking phone | 5098 17
specialized_ texting phone | 683 4
vehicle_turning_ left 12783 133
vehicle_ turning right 12843 137
vehicle u_ turn 1613 8

T. A. Khan Master of Science Thesis

Chapter 5

Experiments

Two distinct experiments have been conducted to evaluate single-frame and multi-frame mod-
els for action detection in surveillance videos. The framework used for this evaluation is the
ACT-detector [1] and the surveillance videos are from the VIRAT dataset [2]. ACT K =1
serves in this evaluation as the single-frame model and ACT K > 1 as the multi-frame models.
The following sections present and discuss the results of these experiments.

5-1 Experiment A: Single-frame models versus multi-frame models

In this first experiment, we compare single-frame and multi-frame models on action detec-
tion performance in surveillance videos. The goal is to assess whether multi-frame models
outperform single-frame models for this use case. For this, we train and evaluate ACT for
K =1,2,4,6, and 12. The sequences used for training originate from all 64 training videos
and do not contain overlapping frames. We chose not to overlap frames during training as
we found little difference in performance by doing so and to reduce the training time of our
models. For testing, we use all 54 test videos. The test videos are processed in overlapping se-
quences, as described in Section 3-6. Each sequence is given as input to ACT. The computed
tubelets are used for tubelet linking and performance evaluation.

5-1-1 Qualitative comparison

Once the predicted tubes are computed, we can draw them on the videos. We can then
visually observe how accurate our detections are. We visually compare the predicted tubes
for ACT K =1 and ACT K > 1. We see that K = 1 misses detections more frequently, i.e.,
actions found in one frame may have been missed in the next. This occurs less frequently for
K > 1. The idea of missing detections has been visualized in Figure 5-1. We also notice that
actions that may have been ambiguous on individual frames are classified more accurately
for K > 1. Finally, we see more precise localization for K > 1; the actions are followed more
smoothly through time.

Master of Science Thesis T. A. Khan

32 Experiments

(a) Predicted tube for ACT K = 1. (b) Predicted tube for ACT K = 6.

Figure 5-1: A visualization of the predicted tubes of ACT K =1 and ACT K = 6 for the video
VIRAT_S_000205_02_000409_000566. The action "activity_carrying" is missed by ACT K =1
in the 4th frame (4th row).

T. A. Khan Master of Science Thesis

5-1 Experiment A: Single-frame models versus multi-frame models 33

The visual comparison can be summarized by the figure shown in Figure 5-2. The figure
shows the time ranges of the predicted and ground-truth tubes for a video in the test set for
ACT K =1 and ACT K = 6. A higher color intensity in the time ranges signifies multiple
actions of the same class are taking place simultaneously. This figure shows that the predicted
tubes of K = 1 contain more gaps as compared to the predicted tubes of K = 6. Gaps in the
time ranges mean that there are no detections in those frames. This confirms our findings
from the visual comparison of ACT K = 1 missing more detections than ACT K > 1. We
observe similar behavior for other videos in the test set.

VIRAT_S_000205_02_000409_000566.mp4

|\ T W I 1|
Closing I I
s T TR URUTTT R ATTTT |
Exiting i
Opening I
vehicle_turning_left | 1 u - n -
1] O 0 O 1 1WA o s

1000

2000
Frame number

3000

4000

(a) Time ranges of tubes for ACT K = 1.

VIRAT_S_000205_02_000409_000566.mp4

activity_carrying h_l |
Closing I I
Entering | 1 I
Exiting I
Opening | I
vehicle_turning_left{ 1 u A ,,,,,, | R |
vehicle_turning_right |] | | Nl N | = erziuggo;jth

1000

2000
Frame number

Master of Science Thesis

(b) Time ranges of tubes for ACT K = 6.

Figure 5-2: A visualization of the temporal ranges of the predicted and ground-truth tubes of
ACT K =1 and ACT K = 6 for the video VIRAT_S_000205_02_000409_000566. A higher
color intensity in the time ranges signifies multiple actions of the same class are taking place
simultaneously.

T. A. Khan

34 Experiments

5-1-2 Quantitative comparison

Classification accuracy

The classification and weighted classification accuracies (in percentages) are shown in Table
5-1 and Figure 5-3.

Table 5-1: Classification and weighted classification accuracies of ACT on VIRAT @loU=0.5.

Classif accuracy | Weighted classif accuracy
ACTK=1 |771 17.53
ACT K=2 | 1847 44.19
ACT K=4 | 1827 45.54
ACTK=6 17.50 45.82
ACT K =12 | 19.53 50.84

Classification accuracy on VIRAT @loU=0.5

50 1+ EEE non-weighted
I weighted

m B B

30 1 I I I I

201

NN N II N
EREEREE

1 2 4 6 12
The number of frames in a sequence (K)

Classification accuracy in %

Figure 5-3: Classification accuracy of ACT on VIRAT @loU=0.5.

When looking at the classification and weighted classification accuracies in Table 5-1, we see
a much larger accuracy for K > 1 compared to K = 1. This shows that multi-frame models
perform better in classification than single-frame models for this dataset. As multi-frame
models process sequences of frames, they can find motion patterns. Motion patterns can help
distinguish actions that have little spatial variance. Two frames are enough to infer motion
data, this may explain the large performance difference between K = 2 and K = 1. As found
from the qualitative comparison, single-frame models miss detections more frequently. If a
detection is missed, the accuracy for that ground-truth box is considered 0. This contributes
to the lower score for K = 1. From Table 5-1 we also see that the weighted classification
accuracy increases when K increases. This is expected as more frames allow for more motion
patterns, making actions more distinguishable.

T. A. Khan Master of Science Thesis

5-1 Experiment A: Single-frame models versus multi-frame models 35

MABO

The MABO and weighted MABO scores (in percentages) are shown in Table 5-2 and Figure
5-4.

Table 5-2: MABO scores of ACT on VIRAT.

MABO | Weighted MABO
ACT K=1 |21.27 21.55
ACT K =2 | 54.31 54.86
ACT K =4 | 56.25 57.14
ACT K=6 | 57.52 57.95
ACT K =12 | 59.59 | 62.01

MABO on VIRAT

| mmm non-weighted _—
B weighted -

MABO in %

1 2 4 6 12
The number of frames in a sequence (K)

Figure 5-4: MABO scores of ACT on VIRAT.

As MABO is a measure for localization performance, we can see from Table 5-2 that K > 1 is
more precise in localizing actions than K = 1. This confirms our findings from the qualitative
comparison. Since multi-frame models output tubelets, bounding boxes are produced for
each frame in the sequence. This reduces the chance an action is missed, which improves the
MABO scores. An additional reason why the MABO scores are higher for multi-frame models
is that a sequence of frames is used to regress the anchor cuboids. The anchor cuboids can
use data from neighboring frames to regress the bounding boxes in an anchor cuboid. We
also notice that MABO increases for larger values of K. This is expected as with larger K,
more frames can be used to regress the anchor cuboids.

We notice little difference when comparing the MABO scores to the weighted MABO scores.
When visualizing the tubes of ACT, we saw that ACT is well capable of localizing moving
humans and vehicles. Predicting the correct action label is however more challenging. As
all actions involve humans and vehicles, and the IoUs are computed independent of the class
labels, there is little difference in scores by weighting the scores by their class appearances.

Master of Science Thesis T. A. Khan

36 Experiments

Frame-mAP

The frame-mAP and weighted frame-mAP scores (in percentages) are shown in Table 5-3 and
Figure 5-5.

Table 5-3: Frame-mAP scores of ACT on VIRAT @loU=0.5.

Frame-mAP | Weighted frame-mAP
ACTK=1 | 259 6.12
ACT K=2 |6.06 17.92
ACT K=4 |6.69 19.20
ACTK=6 |6.91 19.85
ACTK=12 | 7.71 21.89

Frame-mAP on VIRAT @loU=0.5

) i i H
. -I -I .I

1 2 4 6 12
The number of frames in a sequence (K)

EmE non-weighted
20 1 mmm weighted

10 A

Frame-mAP in %

Figure 5-5: Frame-mAP scores of ACT on VIRAT @loU=0.5.

From Table 5-3 we see that ACT K > 1 has higher frame-mAP and weighted frame-mAP
scores than ACT K = 1. As frame-mAP measures detection performance, this shows that
multi-frame models have higher detection performance compared to single-frame models. As
shown in the previous paragraphs, multi-frame models have higher classification and local-
ization performances than single-frame models. The task of detection, which for the case of
frame-mAP is to localize and classify actions for each frame, becomes easier for models with
higher classification and localization performance. Hence, multi-frame models have higher
frame-mAP scores than single-frame models.

We also notice an improvement in frame-mAP scores by increasing K. There is a large
performance difference between ACT K = 1 and ACT K = 2. For larger values of K there
is a performance increase, but not as significant. This is expected as a similar pattern was
observed for the classification and localization performances. The combined task of detection
thus follows a similar trend.

T. A. Khan Master of Science Thesis

5-1 Experiment A: Single-frame models versus multi-frame models 37

Video-mAP

The video-mAP and weighted video-mAP scores (in percentages) are shown in Table 5-4 and
Figure 5-6.

Table 5-4: Video-mAP scores of ACT on VIRAT @loU=0.2.

Video-mAP | Weighted video-mAP
ACTK=1 |0.93 1.65
ACT K =2 | 547 74
ACT K=4 | 445 6.95
ACT K=6 |4.09 7.37
ACT K =12 | 5.01 8.91

Video-mAP on VIRAT @loU=0.2

mmm non-weighted
g4 Mmm weighted

Video-mAP in %

i
“HEEN

1 2 4 6 12
The number of frames in a sequence (K)

Figure 5-6: Video-mAP scores of ACT on VIRAT @loU=0.2.

Video-mAP measures the combined performance of the model and the linking strategy. As
the linking strategy is the same for all models, video-mAP indirectly measures the action
detection performance of a model on the video-level. In Table 5-4 we see a similar pattern for
the classification, MABO, and frame-mAP scores. We see a large increase for ACT K > 1
compared to ACT K = 1. Multi-frame models outperform single-frame models on the video-
level as well. The higher detection performances of multi-frame models on the frame-level
translate to higher detection performances on the video-level. This is because the tubelet
linking algorithm processes the detections obtained at the frame-level. If these detections are
more accurate, the produced tubes are more accurate as well. We notice that ACT K = 12
is the best performing model, followed by ACT K = 2.

Model sizes
We report the number of parameters for each model we evaluated in Table 5-5. We do this to

give an impression of the processing speed of the models. The number of parameters depends
on K and on the number of classes in the dataset.

Master of Science Thesis T. A. Khan

38

Experiments

Model Parameters
ACTK=1 |27™
ACTK=2 | 31M

ACT K =4 | 44M
ACTK=6 | 62M

ACT K =12 | 142M

Table 5-5: The number of parameters of ACT as a function of K. Here M denotes 1 million.

ACT K = 2 has around 15% more parameters than ACT K = 1. However, the performance
increase of ACT K = 2 is much larger than 15%. For a small increase in parameters, the
performance increases significantly. When increasing K to higher values such as 4, 6, and 12,
the number of parameters increases substantially. For real-time applications, ACT K = 4,
K =6, and K = 12 are less suitable due to the larger number of parameters.

5-2 Experiment B: Temporal order of frames in sequences

For this experiment, we compare multi-frame models trained on ordered sequences of frames
and multi-frame models trained on unordered sequences of frames. The goal is to assess
whether the performance increase of multi-frame models is purely from the increased number
of frames, or also from the temporal order encoded in those frames. We train ACT K = 6 on
unordered sequences of frames by shuffling the frames in a sequence before we give it as input
to the model. We expect that the temporal order in sequences contributes to the performance
increase of multi-frame models as actions can be characterized by their dynamics. We use the
same 54 test videos and evaluate these videos in a similar fashion as experiment A.

5-2-1 Qualitative comparison

When comparing the predicted tubes for ACT K = 6 trained on ordered sequences and for
K = 6 trained on unordered sequences, we see a difference in localization performance. ACT
K = 6 trained on unordered sequences is able to follow the action in space and time, however,
the localization is less precise compared to K = 6 trained on ordered sequences. The behavior
we see for K = 6 trained on unordered sequences is that the boxes in an action tube expand
and shrink sporadically. This is likely because the unordered sequences used for training
behave similarly. This behavior is visualized in Figure 5-7.

Figure 5-8 shows the time ranges of the predicted and ground-truth tubes for a video in the test
set for ACT K = 6 trained on ordered sequences versus ACT K = 6 trained on unordered
sequences. Similar to ACT K = 6 trained on ordered sequences, ACT K = 6 trained on
unordered sequences has little to no gaps in its predicted tubes. So multi-frame models,
even if they learn from unordered sequences, contain less missed detections than single-frame
models. Figure 5-8 also shows the confusion of ACT K = 6 trained on unordered sequences
for the classes "vehicle_turning right" and "vehicle_ turning_left". This could be because the
model has not learned the dynamics of these actions during training and therefore, struggles
to differentiate between the two.

T. A. Khan Master of Science Thesis

5-2 Experiment B: Temporal order of frames in sequences 39

(a) Predicted tube for ACT K = 6. (b) Predicted tube for ACT K = 6 unordered.

Figure 5-7: A visualization of the predicted tubes of ACT K = 6 trained on ordered sequences and
ACT K = 6 trained on unordered sequences for the video VIRAT_S_040000_08_001084_001190.
The bounding boxes expand for ACT K = 6 trained on unordered sequences. The correct class

label is "Pull".

Master of Science Thesis T. A. Khan

40 Experiments

VIRAT_S_040000_08_001084_001190.mp4

Closing . .
Entering -
Loading _
Opening . .
<
Transport_HeavyCarry - []
vehicle_turning_left - """
vehicle_turning_right -— """ Il- """ B Predictions
B Ground-truth

500 1000 1500 2000 2500
Frame number

(a) Time ranges of tubes for ACT K = 6.

VIRAT_S_040000_08_001084_001190.mp4

activity_carrying _ ([| [| 1

Closing | N

Entering 1 -

toading —

Opening - .

P —— —
Transport_HeavyCarry -
vehicle_turning_left _q ,,,,,,
vehicle_turning_right —_ ,,,,,,, = predictions
I Ground-truth

500 1000 1500 2000 2500
Frame number

(b) Time ranges of tubes for ACT K = 6 unordered.
Figure 5-8: A visualization of the temporal ranges of the predicted and ground-truth tubes of
ACT K = 6 trained on ordered sequences and ACT K = 6 trained on unordered sequences for the

video VIRAT_S_040000_08_001084_001190. A higher color intensity in the time ranges signifies
multiple actions of the same class taking place simultaneously.

5-2-2 Quantitative comparison
Classification accuracy
The classification and weighted classification accuracies (in percentages) of ACT for K = 1,

K = 6 trained on ordered sequences, and K = 6 trained on unordered sequences are shown
in Table 5-6 and Figure 5-9.

T. A. Khan Master of Science Thesis

5-2 Experiment B: Temporal order of frames in sequences 41

Table 5-6: Classification and weighted classification accuracies of ACT for K =1, K =6, and
K = 6 trained on unordered sequences on VIRAT @loU=0.5.

Classif accuracy | Weighted classif accuracy
ACTK =1 7.71 17.53
ACT K =6 17.50 45.82
ACT K = 6 unordered | 15.74 44.19

Classification accuracy on VIRAT @loU=0.5

EmE non-weighted

404 m weighted . -
0\0
£
>
O
T 30 1
3
Q
o
©
s I I
5 20 A
©
=
=
(%]
O 10+

0_

1 6 6 unordered
The number of frames in a sequence (K)

Figure 5-9: Classification accuracy of ACT on VIRAT @loU=0.5.

From Table 5-6 we see that classification performance decreases when training on unordered
sequences of frames in comparison to training on ordered sequences of frames. This is expected
as the model has not learned the temporal dynamics of actions, and thus cannot use this
characteristic for classification. However, multi-frame models that have not learned action
dynamics still outperform single-frame models. Having more data available at the input
leads to more accurate predictions. And outputting tubelets means that each frame in the
sequence contains predictions. Thus, reducing the chance that a detection is missed. Thereby
increasing the classification, localization, and detection performances.

MABO

The MABO and weighted MABO scores (in percentages) of ACT for K = 1, K = 6 trained
on ordered sequences, and K = 6 trained on unordered sequences are shown in Table 5-7 and
Figure 5-10.

We notice little difference in MABO scores for ACT K = 6 trained on ordered sequences and
K = 6 trained on unordered sequences. From the qualitative comparison we found that the
bounding boxes expand or shrink sporadically, indicating a lower MABO score. However,
the MABO scores are around equal, with K = 6 trained on ordered sequences being slightly
higher. We expect this is the case since MABO is evaluated on the frame-level and the visual
comparison is done on the video-level. Also, MABO looks at the best overlap in each frame.
However, the bounding box with the highest overlap with the ground-truth is not always

Master of Science Thesis T. A. Khan

42 Experiments

Table 5-7: MABO scores of ACT for K =1, K = 6, and K = 6 trained on unordered sequences
on VIRAT.

MABO | Weighted MABO
ACTK=1 21.27 21.55
ACTK=6 57.52 57.95
ACT K = 6 unordered | 57.44 55.86

MABO on VIRAT
EmE non-weighted
S | B
N
N
30 A

60 A

MABO in %
N
o

10 ~
0 —J.—..—“
1 6 6 unordered
The number of frames in a sequence (K)

Figure 5-10: MABO scores of ACT on VIRAT.

chosen for tubelet linking since tubelet linking has no access to the ground-truth. Perhaps
taking the average overlap would better reflect the behavior we observed in the qualitative
comparison. We still notice a large performance increase for ACT K = 6 trained on unordered
sequences compared to ACT K = 1.

Frame-mAP

The frame-mAP and weighted frame-mAP scores (in percentages) of ACT for K =1, K =6
trained on ordered sequences and K = 6 trained on unordered sequences are shown in Table
5-8 and Figure 5-11.

Table 5-8: Frame-mAP scores of ACT on VIRAT @loU=0.5.

Frame-mAP | Weighted frame-mAP
ACTK=1 2.59 6.12
ACT K =6 6.91 19.85
ACT K = 6 unordered | 5.25 16.33

The frame-mAP scores decrease when training on unordered sequences. Due to the lower
classification accuracies and slightly lower MABO scores, the detection scores are lower as well.
The temporal order of frames matters for learning multi-frame models for action detection.

T. A. Khan Master of Science Thesis

5-2 Experiment B: Temporal order of frames in sequences 43

Frame-mAP on VIRAT @loU=0.5

20.0 mmm non-weighted

m weighted

17.54
15.0 1
12.54
10.0 1

7.5
5.0 4 -

Frame-mAP in %

1 6 6 unordered
The number of frames in a sequence (K)

2.5 1

E

0.0 -

Figure 5-11: Frame-mAP scores of ACT on VIRAT @loU=0.5.

Multi-frame models trained on ordered sequences outperform multi-frame models trained on
unordered sequences. Again we note the frame-mAP scores of multi-frame models trained on
unordered sequences are higher than the frame-mAP scores of single-frame models.

Video-mAP

The video-mAP and weighted video-mAP scores (in percentages) of ACT K =1, K = 6

trained on ordered sequences and K = 6 trained on unordered sequences are shown in Table
5-9 and Figure 5-12.

Table 5-9: Video-mAP scores of ACT on VIRAT @loU=0.2.

Video-mAP | Weighted video-mAP
ACT K =1 0.93 1.65
ACT K =6 4.09 7.37
ACT K = 6 unordered | 3.05 5.13

From Table 5-9 we see that the video-mAP score decreases when trained on unordered se-
quences. Since the detections on the frame-level are worse for ACT K = 6 trained on un-
ordered sequences, the produced tubes are also worse compared to K = 6 trained on ordered
sequences. However, the video-mAP score of ACT K = 6 trained on unordered sequences
is higher than ACT K = 1. Using multi-frame models, even when trained on unordered
sequences, leads to better results than training on individual frames.

Master of Science Thesis T. A. Khan

44 Experiments

Video-mAP on VIRAT @loU=0.2

|
7 mm non-weighted |
mm weighted
6 |

Video-mAP in %

1 6 6 unordered
The number of frames in a sequence (K)

Figure 5-12: Video-mAP scores of ACT on VIRAT @loU=0.2.

T. A. Khan Master of Science Thesis

Chapter 6

Discussion

This chapter discusses the performance of ACT on VIRAT in more detail. The per-class
classification accuracies and the localization performance for small pixel resolution actions
will be analyzed. The focus is on multi-frame models (K > 1).

6-1 Per-class classification accuracy

Table 5-1 and Figure 5-3 in Section 5-1-2 show the classification and weighted classification
accuracies (in percentages) of ACT on VIRAT. As can be seen from Table 5-1, there is a large
difference in the classification and the weighted classification accuracies. For example, the
classification accuracy of ACT K = 12 is 19.53, whereas the weighted classification accuracy is
50.84. As mentioned in Section 4-2-7, the classification accuracy takes the average of the per-
class classification accuracies and the weighted classification accuracy weights the per-class
classification accuracies by their appearances. The reason why the classification accuracy
is lower than the weighted classification accuracy is that some classes are more challenging
to classify than others (will be discussed in the following paragraphs). For such classes,
the classification accuracy is low. This can be seen in Table 6-1, which shows the per-class
accuracies (in percentages) for ACT K = 12 and the per-class appearances of VIRAT. The
classification accuracy (the average of the per-class accuracies) is low because the per-class
accuracies of some classes are low.

We also see a large variance in class appearances in Table 6-1. As mentioned in Section 4-2-7,
this is known as class imbalance. Due to this class imbalance, the models become biased
during training. When making predictions, the models tend to predict classes with more
appearances since they saw more examples of these during training. For example, when the
action "Exiting" takes place, in which a person exits a vehicle, it is often the case that the
model predicts "activity_ carrying" for the person, but misses the interaction of the person
with the vehicle. This is visualized in Figure 6-1. This is a trend we have noticed for some
other classes as well. Classes with low appearances are rarely predicted, resulting in low
classification accuracies for these classes.

Master of Science Thesis T. A. Khan

46 Discussion

Table 6-1: Per-class accuracies for ACT K = 12 on VIRAT @loU=0.5 and the frame-level
appearances of VIRAT.

Class Classif accuracy | Frame level appearance
Closing 1.16 5326
Closing_ trunk 5.62 1138
Entering 0.74 7701
Exiting 0.61 5371
Loading 21.53 4715
Open__trunk 3.85 1378
Opening 0.65 7404
Pull 64.79 9252
Riding 7.98 9420
Talking 43.47 14698
Transport_ HeavyCarry 22.10 15661
Unloading 3.18 4465
activity__carrying 75.11 128422
specialized_ talking phone | 0.59 5098
specialized_ texting_phone | 0.0 683
vehicle_ turning left 39.35 12783
vehicle_turning_ right 48.99 12843
vehicle u_ turn 11.90 1613

We investigate the per-class accuracies of ACT K = 12 for all test videos and plot the results
in Figure 6-2. In Figure 6-2, we indeed see a bias for the model. Actions such as "Closing’",
"Closing_ Trunk", "Entering", "Exiting", "Loading", and "Open_ Trunk" have low accuracies.
This could be because they have fewer appearances during training, or it might be because
these actions are inherently challenging to classify. We note that these classes are interactions
of humans and vehicles and have little spatial variance. We provide some recommendations

in Section 7-1 to improve the classification accuracy for such classes.

6-2 Localizing small pixel resolution actions

The surveillance videos from VIRAT are recorded at 1280 x 720 and 1920 x 1080 pixel resolu-
tions. Even though these recordings are of high quality, the (human) actions are small in pixel
values. The human heights in VIRAT are in the range of 20 to 180 pixels, which means the
human to video height ratio is in the range of 2 to 20%. An example small action is shown in
Figure 6-3. Sequences of frames like Figure 6-3 are down-scaled to 640 x 360 before given as
input to ACT. So some humans are only up to 10 pixels long. Despite these challenges, ACT
shows impressive localization performance. It is able to locate actions that are small in pixel
resolutions. One reason for this could be that it detects movements of pixels in sequences of
frames to locate actions.

Despite the impressive localization performance, some actions remain challenging to detect
due to the low per-class classification accuracies. We conclude that the classification accuracy
is the bottleneck for action detection performance in surveillance videos for the ACT-detector.

T. A. Khan Master of Science Thesis

6-2 Localizing small pixel resolution actions 47

Figure 6-1: An example case of the action "Exiting" being missed. The ground-truth is denoted
by the green box and the prediction is denoted by the red box. The action label of the ground-truth
is "Exiting" and the action label of the prediction is "activity_carrying".

Master of Science Thesis T. A. Khan

48

Discussion

VIRAT_S_000007.mp4

VIRAT_S_000008.mp4
VIRAT_S_000200_00_000100_000171.mp4
VIRAT_S_000200_02_000479_000635.mp4
VIRAT_S_000201_00_000018_000380.mp4
VIRAT_S_000201_01_000384_000589.mp4
VIRAT_S_000201_02_000590_000623.mp4
VIRAT_S_000201_04_000682_000822.mp4
VIRAT_S_000203_01_000171_000345.mp4

VIRAT_S_000203_08_001702_001734.mp4 |
VIRAT_S_000204_07_001577_001611.mp4 |

VIRAT_S_000204_09_001768_001849.mp4
VIRAT_S_000205_02_000409_000566.mp4

VIRAT_S_000205_03_000860_000922.mp4 |
VIRAT_S_000205_05_001092_001124.mp4 |
VIRAT_S_000205_06_001566_001631.mp4 |
VIRAT_S_000206_00_000025_000058.mp4 |
VIRAT_S_000206_01_000148_000184.mp4 |

VIRAT_S_000206_02_000294_000327.mp4
VIRAT_S_000206_08_001618_001712.mp4
VIRAT_S_000207_02_000498_000530.mp4

VIRAT_S_000207_03_000556_000590.mp4 |
VIRAT_S_040000_00_000000_000036.mp4 |
VIRAT_S_040000_04_000532_000622.mp4 |

VIRAT_S_040000_08_001084_001190.mp4
VIRAT_S_040000_09_001194_001574.mp4
VIRAT_S_040003_00_000000_000072.mp4
VIRAT_S_040003_01_000083_000193.mp4
VIRAT_S_040003_02_000197_000552.mp4
VIRAT_S_040005_06_000886_001016.mp4
VIRAT_S_040005_08_001225_001276.mp4
VIRAT_S_040100_03_000496_000559.mp4
VIRAT_S_040100_04_000626_000689.mp4
VIRAT_S_040100_05_000696_000762.mp4
VIRAT_S_040100_06_000767_000988.mp4
VIRAT_S_040100_07_001043_001099.mp4
VIRAT_S_040100_08_001103_001181.mp4
VIRAT_S_040100_09_001186_001533.mp4
VIRAT_S_040101_05_000722_001547.mp4
VIRAT_S_040101_06_001557_001590.mp4
VIRAT_S_040102_04_000596_000689.mp4
VIRAT_S_040102_06_000849_000908.mp4
VIRAT_S_040102_07_000916_000983.mp4
VIRAT_S_040103_00_000000_000120.mp4
VIRAT_S_040103_01_000132_000195.mp4
VIRAT_S_040103_02_000199_000279.mp4
VIRAT_S_040103_03_000284_000425.mp4
VIRAT_S_040103_06_000836_000909.mp4
VIRAT_S_040104_07_001268_001348.mp4
VIRAT_S_050000_06_000908_000970.mp4
VIRAT_S_050000_08_001235_001295.mp4
VIRAT_S_050000_09_001310_001373.mp4
VIRAT_S_050000_11_001530_001576.mp4

~
<
2
]
o
£
@
o
(]

Entering

Loading

Open_Trunk

2 2
5 &
> £ <
£ a o m
])
9 2 29 2
2> o g 5 I
> 2z % 5 d
b = E & £ £ £
I, £ oo EE 3
¢ o8 0o 0 2 3 S5
= s £ J NN B2
g 22 5 2% 5 o o o
= 2L a4 8 2 8835 5 g
€S T c 8 > o T ¥ g2 ¢
L =5 = g 25 © 0 £ £ =
2 5 8B @ & £ U o o o 0o o
O a xkFF S5 68 o a > > >

Figure 6-2: Per-class classification accuracy of ACT K = 12 for all test videos of VIRAT. The
vertical axis denotes the video names of all test videos and the horizontal axis denotes all action
classes. A white box indicates that the class does not appear in the video. Dark colors mean low
classification accuracy and light colors mean high classification accuracy. The colormap is cividis.

T. A. Khan

Master of Science Thesis

6-2 Localizing small pixel resolution actions

49

T

Figure 6-3: A visualization of the localization performance of ACT for small pixel resolution
actions. The ground-truth box is denoted by the green box and the prediction is denoted by the

red box. The action label of the ground-truth is "activity_carrying" and the action label of the
prediction is "activity_ carrying".

Master of Science Thesis T. A. Khan

50 Discussion

T. A. Khan Master of Science Thesis

Chapter 7

Conclusion

This thesis evaluated single-frame and multi-frame deep learning models for action detection
in surveillance videos. We implemented the ACT-detector, which takes as input a sequence
of K frames and output tubelets (labeled sequences of bounding boxes). We set K = 1 to
evaluate single-frame models and K = 2,4, 6, and 12 to evaluate multi-frame models. We find
that multi-frame models outperform single-frame models for action detection on the VIRAT
dataset. Multi-frame models have less missed detections since they output labeled bounding
boxes for each frame in a sequence. They also have higher classification accuracies, more
precise localization, and higher detection scores. This is because they find motion patterns,
which allows them to distinguish actions that are ambiguous in individual frames. From our
tests, we find that K = 12 is the best performing multi-frame model. However, K = 2
performs nearly as well but has fewer parameters. We conclude that ACT K = 2 is a good
trade-off between detection performance and model size for action detection in surveillance
videos.

We also experimented with the temporal ordering of frames for training multi-frame models.
We trained ACT K = 6 on unordered sequences and compared the performance of this model
to ACT K = 6 trained on ordered sequences. We find that multi-frame models trained on
ordered sequences outperform multi-frame models trained on unordered sequences for action
detection on the VIRAT dataset. This shows that the temporal ordering of frames matters for
learning multi-frame models, indicating that multi-frame models recognize actions by their
dynamics. Nevertheless, multi-frame models outperform single-frame models, even when
trained on unordered sequences. Having more data available at the input leads to an increase
in performance, regardless of the temporal continuity of the data.

When analyzing the performance of the ACT-detector on the VIRAT dataset, we find that
some classes are more challenging to classify than others. However, the localization perfor-
mance of ACT is impressive. Even for small pixel resolutions, ACT is able to localize actions.
For applications for which the class label is less important, the ACT-detector is a good can-
didate framework. For the surveillance use case, the ACT-detector can be a good framework
to aid visual surveillance operators to detect actions with more spatial variance. For actions
with less spatial variance, the class label should be re-evaluated manually.

Master of Science Thesis T. A. Khan

52 Conclusion

7-1 Future work

We trained and evaluated the ACT-detector on the VIRAT dataset for K = 1,2,4,6, and
12. We found an increase in performance when increasing K. This trend, however, may not
hold for larger values of K. Actions can become ambiguous if too many frames are used
in a sequence, as the same actor has enough time to perform multiple actions. This may
ultimately lead to difficulties during training since the model learns to output one label for
each anchor cuboid. For this reason, we expect that there is an optimum value for K. We also
believe this value is dataset dependent as this optimum depends on the duration of action
tubes in the dataset. We chose K = 12 as the largest value for our experiments since K > 12
resulted in memory exhausted errors during training. This is because of the limited memory
of the GPU we used. We leave training and evaluating multi-frame models for larger values
of K for future work.

Data augmentation is a commonly used technique to improve the performance of deep learning
models for computer vision. Action detection frameworks can also benefit from applying
data augmentation during training. For this work, it was decided not to implement a data
augmentation pipeline as the focus was on the comparison of deep learning models, and not
on maximizing performance. We leave data augmentation to improve performance for future
work.

As mentioned in the discussion, some actions of the VIRAT dataset are challenging to classify
for ACT. ACT uses 2D convolution to classify anchor cuboids from temporally stacked feature
maps. However, recent work in action recognition [6, 7] has shown that 3D convolution is a
more promising way of encoding video data. The ACT-detector could be extended to apply
3D convolution. Instead of processing each frame separately and then stacking the resulting
feature maps temporally, the sequence of frames would be processed entirely and would be
reduced to 3D feature maps. These feature maps can then be used to classify and regress
anchor cuboids to form tubelets. 3D convolution is a promising research direction for action
detection frameworks.

Another way to increase the classification performance of action recognition and action de-
tection frameworks is to explicitly model human-object interactions. For example, the action
"picking up" requires the interaction of human and object. If there are no objects detected
nearby the human, then the action "picking up" is likely a false detection. These interactions
can be modeled by graph convolutional networks [32]. This is a promising way of adding real-
world knowledge to improve the performance of deep learning models for action detection.

T. A. Khan Master of Science Thesis

Bibliography

[1] V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid, “Action tubelet detector for
spatio-temporal action localization,” ICCV, Oct, vol. 2, 2017.

[2] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J. T. Lee, S. Mukherjee, J. Aggar-
wal, H. Lee, L. Davis, et al., “A large-scale benchmark dataset for event recognition in
surveillance video,” in CVPR 2011, pp. 3153-3160, IEEE, 2011.

[3] Y. Kong and Y. Fu, “Human action recognition and prediction: A survey,” arXiv preprint
arXiv:1806.11230, 2018.

[4] J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell, “Long-term recurrent convolutional networks for visual recog-
nition and description,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 26252634, 2015.

[5] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action recog-
nition in videos,” in Advances in neural information processing systems, pp. 568-576,
2014.

[6] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotempo-
ral features with 3d convolutional networks,” in Proceedings of the IEEE international
conference on computer vision, pp. 4489-4497, 2015.

[7] J. Carreira and A. Zisserman, “Quo vadis, action recognition? a new model and the
kinetics dataset,” in Computer Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on, pp. 4724-4733, IEEE, 2017.

[8] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions classes
from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[9] G. Gkioxari and J. Malik, “Finding action tubes,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 759-768, 2015.

Master of Science Thesis T. A. Khan

54

Bibliography

[10]

[11]

[12]

[13]

[20]

[21]

[22]

[23]

G. Singh, S. Saha, M. Sapienza, P. H. Torr, and F. Cuzzolin, “Online real-time multiple
spatiotemporal action localisation and prediction.,” in ICCV, pp. 3657-3666, 2017.

C. Gu, C. Sun, D. Ross, C. Vondrick, C. Pantofaru, Y. Li, S. Vijayanarasimhan,
G. Toderici, S. Ricco, R. Sukthankar, et al., “Ava: A video dataset of spatio-temporally
localized atomic visual actions,” in CVPR 2018, 2018.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd:
Single shot multibox detector,” in European conference on computer vision, pp. 21-37,
Springer, 2016.

M. A. Nielsen, Neural networks and deep learning, vol. 25. Determination press San
Francisco, CA, USA:, 2015.

D. Zhang, X. Dai, X. Wang, and Y.-F. Wang, “S3d: Single shot multi-span detector via
fully 3d convolutional networks,” arXiv preprint arXiv:1807.08069, 2018.

H. Huang and C. Wu, “Approximation capabilities of multilayer fuzzy neural networks on
the set of fuzzy-valued functions,” Information Sciences, vol. 179, no. 16, pp. 2762-2773,
2009.

1. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:
//www .deeplearningbook.org.

S. Pattanayak, Pattanayak, and S. John, Pro Deep Learning with TensorFlow. Springer,
2017.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the best multi-stage
architecture for object recognition?,” in 2009 IEEE 12th international conference on
computer vision, pp. 2146-2153, IEEE, 2009.

E. al Hakim, “3D YOLO: End-to-End 3D Object Detection Using Point Clouds,” Mas-
ter’s thesis, KTH Royal Institute of Technology, Sweden, 2018.

C. C. Aggarwal, “Neural networks and deep learning,” Cham: Springer International
Publishing, 2018.

B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified activations in
convolutional network,” arXiv preprint arXiv:1505.00853, 2015.

D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al., “Learning representations by
back-propagating errors,” Cognitive modeling, vol. 5, no. 3, p. 1, 1988.

H. Robbins and S. Monro, “A stochastic approximation method,” The annals of mathe-
matical statistics, pp. 400—407, 1951.

?

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

T. A. Khan Master of Science Thesis

http://www.deeplearningbook.org
http://www.deeplearningbook.org

55

[26]

[27]

28]

[29]

[30]

[31]

32]

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770—
778, 2016.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, no. 3, pp. 211-252, 2015.

R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on com-
puter vision, pp. 1440-1448, 2015.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” in Advances in neural information processing systems,

pp. 91-99, 2015.

S. Vinodababu, “a pytorch tutorial to object detection.” https://github.com/
sgrvinod/a-PyTorch-Tutorial-to-Object-Detection, 2018.

G. Awad, A. Butt, K. Curtis, Y. Lee, J. Fiscus, A. Godil, D. Joy, A. Delgado, A. Smeaton,
Y. Graham, et al., “Trecvid 2018: Benchmarking video activity detection, video caption-
ing and matching, video storytelling linking and video search,” 2018.

Y. Zhang, P. Tokmakov, M. Hebert, and C. Schmid, “A structured model for action
detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 9975-9984, 2019.

Master of Science Thesis T. A. Khan

https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection
https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Object-Detection

56 Bibliography

T. A. Khan Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Preface

	Main Matter
	Introduction
	Motivation
	Video processing
	Action recognition
	Action detection

	Research questions
	Thesis outline

	Background
	Artificial neural networks
	Activation functions
	Training

	Convolutional neural networks
	Convolutional layers
	Max-pooling layers

	VGG
	Design principles
	Architecture

	SSD
	Architecture
	Anchor boxes
	Prediction layers

	Methodology
	Architecture
	VGG16 and auxiliary convolutional layers
	Temporal stacking

	Anchor cuboids
	Prediction layers
	Training
	Spatio-temporal IoU
	Anchor cuboid matching
	Loss function

	Inference
	Tubelet linking

	Dataset and performance evaluation
	Dataset
	Performance evaluation
	Precision and recall
	Average Precision
	Classification accuracy
	MABO
	Frame-mAP
	Video-mAP
	Weighted evaluation

	Experiments
	Experiment A: Single-frame models versus multi-frame models
	Qualitative comparison
	Quantitative comparison

	Experiment B: Temporal order of frames in sequences
	Qualitative comparison
	Quantitative comparison

	Discussion
	Per-class classification accuracy
	Localizing small pixel resolution actions

	Conclusion
	Future work

	Back Matter
	Bibliography

