
1

Evaluating Linear and Nonlinear Model Predictive
Control for Reducing Cross-coupling Effects in

Helicopter Flight
Lotte Wellens

Abstract—Model predictive control is an optimal, model-based
control method that has the powerful capability of directly
including input and output constraints. Next to this, it is known
that helicopters are hard to fly with its complex, unstable and
highly coupled dynamics. With the introduction of the concept
of handling qualities, guidelines for helicopter and flight control
system design were set in the ADS-33 document to improve the
ease of controlling rotorcraft. In order to improve helicopter
handling qualities, this paper investigates whether linear and
nonlinear MPC are suitable for online application to helicopters
to reduce cross-coupling effects. This was investigated by evalu-
ating its performance on the cross-coupling requirements of the
ADS-33 handling quality document. It was found that both linear
and nonlinear MPC are very effective to reduce cross-coupling
effects even when disturbances or prediction model errors are
present. The model predictive controller could reduce the off-axis
coupling response by around 99% compared to the uncontrolled
helicopter. Furthermore, it performed 90% to 99% better than
a PID controller in most coupling cases.

Index Terms—cross-coupling effects, flight control, handling
qualities, helicopters, model predictive control.

NOMENCLATURE

ADS Aeronautical Design Standard
DOF Degree of Freedom
LMPC Linear Model Predictive Control
MPC Model Predictive Control
NLMPC Nonlinear Model Predictive Control
PID Proportional Integral Derivative
TA&T Target Acquisition and Tracking

β sideslip angle
δlon, δlat longitudinal and lateral stick displacement
∆ts simulation sampling time
ε error in the derivatives of the prediction model
λ0 non-dimensional uniform inflow velocity
λ0tr

tail rotor non-dimensional uniform inflow velocity
σ standard deviation of ε
θ0, θ1s, θ1c, θ0tr helicopter control inputs: collective pitch

angle, longitudinal cyclic pitch angle, lateral cyclic
pitch angle and tail rotor collective pitch angle

φ, θ, ψ fuselage Euler angles
ε simulation model uncertainty or disturbance
DMPC estimated derivative used in the prediction model
Dactual actual helicopter derivative
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e tracking error
ē tracking error vector along the prediction horizon
h altitude
i prediction horizon time step
K feedback gain
k control time step
N prediction horizon
Nu control horizon
nz normal acceleration
p, q, r helicopter body angular rates
pk subscript peak
Q tracking error weight matrix
r̄ reference state vector along the prediction horizon
ref subscript reference
t time
trim subscript value at trim
u control input vector
u, v, w helicopter velocity along the body axes
ū control input vector along the prediction horizon
x state vector
x, y, z helicopter coordinates in the Earth reference frame
x̄ predicted state vector along the prediction horizon

I. INTRODUCTION

COMPARED to fixed-wing aircraft, helicopters are highly
versatile vehicles that can be used to execute a diverse

range of commercial and military missions mainly due to
its extreme maneuverability in low- and high-speed flight,
vertical take-off and landing capabilities and the ability to
hover. However, these great capabilities come with the fact
that they are very difficult to control: they have fast, complex
dynamics, are inherently unstable and its motion is highly
coupled. Not only does this increase the workload of the pilot
tremendously, it is also the cause of many fatal accidents [1].
With the introduction of flight control systems and fly-by-wire
in helicopters in the 90’s-00’s, the flying characteristics of
the helicopter could be adjusted to the pilot’s needs to make
the helicopter easier and safer to fly [2], [3]. Furthermore,
handling quality requirements were set up in order to serve as
a guideline for desired flight characteristics to improve the ease
of controlling an aircraft [4]. However, to this day helicopters
remain hard to fly and not accessible to the general public.
Therefore, designing flight control systems in order to improve
the helicopter handling qualities and safety is an important but
challenging task.
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At the same time Model Predictive Control (MPC) is emerg-
ing as a promising model-based optimal control technique with
the powerful capabilities of including constraints on inputs
and outputs, and including an objective function directly in
the control algorithm. Furthermore, MPC has the advantage
of being able to take into account future information of
the system and the environment. This allows MPC to deal
efficiently with time delays, non-minimum phase behaviour
and to anticipate on future events [5]. Therefore, MPC offers
an easy way to directly incorporate technical specifications,
safety limits and performance bounds into the helicopter flight
control design and to calculate the optimal control input based
on a customized objective function and future information of
the flight dynamics and flight condition.

On the other hand the optimization process in MPC brings
along a big computational burden. Even though optimization
methods and computer power are rapidly improving, the real
time application of MPC to fast dynamic systems such as
helicopters is still in development. Furthermore, when the
theoretical and unpractical Lyapunov stability modifications
are not implemented to the MPC problem, the MPC problem
has to be stabilized by means of tuning. This can be time
consuming and requires expertise as no structured tuning
approach exists. Especially for nonlinear MPC, the compu-
tational burden and stability matter can become critical [6].

MPC was originally used in the 80’s for industrial processes
in areas as refining, petrochemicals and pulp and paper but
is now making its way into other applications such as elec-
tronics, medicine, energy and environment and the automotive
and aerospace industry [7]–[9]. With the rising popularity
of MPC new possibilities for improving helicopter flight are
emerging [10]. Research has been performed on MPC applied
to helicopters from the 00’s onwards where mainly tracking
tasks but also other tasks were investigated such as formation
flying [11], object avoidance [12], [13], flying in autorotation
[14] and for defining control limits corresponding to flight
envelope limits [15], [16] or load limits [17]. It has been
demonstrated by Liu et al. (2012) that MPC has excellent
tracking performance for flying a pirouette maneuver showing
that the controller can handle the extremely coupled lateral and
longitudinal dynamics [18]. Furthermore, the square maneuver
performed by Liu et al. (2010) tests the MPC controlled
helicopter’s ability to fly forwards, backwards and sideways
[19]. Here, flying the square trajectory was performed within
10 cm of the reference trajectory in a small-scaled flight test.
It was also shown that by using robust MPC, the controller can
deal with bounded external disturbances [20] and with constant
wind gusts [18]. However, most previous research on MPC
applied to helicopters focused on application in simulation.
Only few research tested the controller experimentally in a
mechanical set-up with limited Degrees of Freedom (DOF)
[21]–[23] or in a small-scaled flight test with an unmanned
aerial vehicle [18], [24]–[26].

In short, it can be seen that there is a clear need for heli-
copters to achieve good handling qualities such that helicopters
will be easier to fly and maneuver. One of the biggest reasons
it is so hard to fly a helicopter is because of the many cross-
coupling effects in its dynamics. Therefore, this is also a big

aspect in the handling quality requirements specified in the
”ADS-33 Aeronautical design standard performance specifi-
cation: handling qualities requirements for military rotorcraft”
[27]. With MPC having numerous advantages and making
its way into the aerospace industry, it is being applied to
helicopters in multiple researches. In this research, it will be
investigated how MPC can be used for helicopter flight control
to reduce cross-coupling effects and achieve better handling
qualities. Therefore, the objective of this research is:

to investigate whether linear and nonlinear MPC are suit-
able for online application to helicopters to reduce cross-
coupling effects by evaluating its performance on the cross-
coupling handling quality requirements of the ADS-33 docu-
ment.

On one hand, it will be investigated how well Linear Model
Predictive Control (LMPC) and Nonlinear Model Predictive
Control (NLMPC) are able to reduce cross-couplings on the
handling quality rating scale, compared to an uncontrolled
helicopter and compared to a Proportional Integral Derivative
(PID) controlled helicopter. On the other hand, it will be
investigated how sensitive the MPC controllers are to pre-
diction model errors when reducing cross-coupling effects.
Furthermore, the similarities and differences between linear
and nonlinear MPC will be analyzed.

This paper will first clarify the methodology used to fulfill
the research objective in Section II. Section III shows the
model predictive control design that will be analyzed. Next,
Section IV presents the results of the cross-coupling require-
ment simulations after which the results of the sensitivity
analysis will be presented in Section V. Finally, the findings
of this paper and recommendations for future work will be
stated in Section VI.

II. METHODOLOGY

In this section the method used for answering the re-
search objective will be described. First the cross-coupling
requirements that will be investigated will be explained. After
this, the simulation set-up of the cross-coupling requirement
simulations and the sensitivity analysis will be stated. Then,
the uncertainty implemented in the simulation model for the
cross-coupling requirement simulations will be introduced.
Furthermore, the error implemented in the prediction model for
the sensitivity analysis will be presented. Next, the nonlinear
and linear helicopter model used for the simulations will be
introduced. Finally, the PID controller used to compare the
MPC controller to will be presented.

A. Cross-coupling Requirements

First, some background information on cross-coupling ef-
fects and the requirements defined by the Aeronautical Design
Standard (ADS) will be given. After this, the cross-coupling
test cases used for the simulations will be presented.

1) Background: When for example a step input is given
in the collective stick of the helicopter, a change in height is
the helicopter’s primary dynamic response. However, due to
the helicopter’s complex dynamics many secondary, off-axis
responses arise as well: because of the change in collective
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TABLE I
PRIMARY AND SECONDARY RESPONSES FOR EACH INPUT AXIS [28].

Input \ Response Pitch θ Roll φ Heave w Yaw ψ

Longitudinal cyclic θ1s primary response due to lateral flapping desired in forward flight negligible

Lateral cyclic θ1c
due to longitudinal
flapping primary response descent with roll angle undesired

Collective input θ0
due to longitudinal
flapping

due to lateral flapping and
sideslip primary response due to change in torque

requires tail rotor thrust

Tail rotor collective θ0tr negligible due to tail rotor thrust and
sideslip undesired primary response

TABLE II
CROSS-COUPLING REQUIREMENTS SPECIFIED BY THE ADS-33 FOR OFF-AXIS DYNAMIC RESPONSES [29].

* NO CURRENT REQUIREMENTS.

Input \ Response Pitch θ Roll φ Heave w Yaw ψ

Pitch θ
(Longitudinal cyclic θ1s)

X ∆φpk/∆θ4

hover and fwd flight
flight path response
not objectionable in for-
ward flight

* yaw response due to
rotor torque changes in
aggressive pitch
manoeuvres

Roll φ
(Lateral cyclic θ1c)

∆θpk/∆φ4

hover and fwd flight
X * thrust/torque spikes in

rapid roll reversals
∆β/∆φ ratios
in fwd flight

Heave w
(Collective input θ0)

∆θpk/∆nzpk
in fwd flight

* ∆φpk/∆nzpk X r/
∣∣∣ḣ∣∣∣ ratios

in hover

Yaw ψ

(Tail rotor collective θ0tr )

* pitching moments due to
sideslip
in fwd flight

dihedral effect on roll
control power

not objectionable in hover X

input, there is a change in torque of the main rotor which
will cause the helicopter to yaw. In order to counter this yaw
motion, the pedal needs to be used to generate a counter-
acting moment coming from the tail thrust. Similarly, when an
input is given to one of the other control inputs, the helicopter
responds with a primary on-axis response and some secondary
responses in the off-axis degrees of freedom. An overview of
the primary and secondary responses of each control input is
given in Table I where it can be seen that many cross-coupling
effects are caused by lateral or longitudinal flapping of the
rotor blades or by changes in the rotor torque. These off-axis
responses are often referred to as inter-axis coupling, input-
output coupling or cross-coupling effects. They are mostly
undesired as they increase the workload of the pilot immensely
even for straightforward tasks such as maintaining hover.

Therefore, requirements on the amount of cross-coupling
effects in helicopter flight are widely described in the ADS-
33 handling qualities document [27]. Here, the ADS-33 puts
requirements on the amount of off-axis response present
such that the helicopter has good handling qualities. In this
way, the ADS-33 provides a way to objectively measure
cross-coupling effects and handling qualities and serves as
a guidance for the design of the helicopter and its flight
control systems. Here, handling qualities are defined as ”those
qualities or characteristics of an aircraft that govern the ease
and precision with which a pilot is able to perform the tasks
required in support of an aircraft role” by Cooper and Harper
(1969) [30]. For most cross-coupling effects, the document
has defined a certain parameter indicating the amount of

off-axis response compared to the amount of on-axis input
given. Hence, when flying the helicopter and giving a step
input in one of the controls, this parameter that resembles
the amount of off-axis response should remain within the
required limits in order to have a certain level of handling
qualities. In order to specify these limits, level 1, 2 and 3
handling quality boundaries for these parameters were defined
based on Cooper-Harper ratings of flight tests. This rating
scale subjectively measures the ease of controlling an aircraft
by letting the pilot answer a series of questions about flying
the maneuver to then categorize the maneuver in a level of
handling quality [30]. Here, level 1 is the best level with
excellent to fair handling qualities requiring no to minimal
pilot workload to perform the maneuver. Level 2 captures
the maneuvers with aircraft characteristics with minor to very
objectionable but tolerable deficiencies. Level 3 indicates the
worst level of handling qualities where major deficiencies
are present in the aircraft characteristics and an extensive
workload is required to fly the maneuver. These boundaries
can then be used as design requirements or just as indicative
guidelines. The cross-coupling requirements specified in the
ADS-33 document for off-axis responses are summarized in
Table II with its respective parameter representing the amount
of cross-coupling.

2) Test Cases: There are 10 cross-coupling requirements
that will be tested which are formulated in the ADS-33 in
Section 3.3.9 page 12 on interaxis coupling for hover and
low speed flight and 3.4.5 page 17 on interaxis coupling for
forward flight. The hover and low speed flight requirements
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will be performed at 0 knots flight speed and the forward
flight requirements will be simulated at 80 knots or 41 m/s
flight speed. For all these requirements, an excitation in one
of the control inputs is given after which the off-axis response
will be measured by means of a predefined cross-coupling
parameter that scales with the off-axis response. The cross-
coupling criteria for hover and low speed flight and for forward
flight that will be tested are presented below and will be
explained more thoroughly in Section IV.
For hover and low speed flight:

1) yaw due to collective for aggressive agility
2) pitch due to roll coupling for aggressive agility
3) roll due to pitch coupling for aggressive agility
4) pitch due to roll coupling for target acquisition & tracking
5) roll due to pitch coupling for target acquisition & tracking

For forward flight:
6) pitch attitude due to collective control

a) small collective inputs
b) large collective inputs

7) pitch due to roll coupling for aggressive agility
8) roll due to pitch coupling for aggressive agility
9) pitch due to roll coupling for target acquisition & tracking

10) roll due to pitch coupling for target acquisition & tracking
Both time (for aggressive agility) and frequency (for target

acquisition and tracking) requirements are set out in the ADS-
33 for pitch and roll coupling as coupling handling qualities
are not only task but also frequency dependent. ”A pilot
may be less tolerant of large amounts of coupling at high
frequency for an aggressive-precision task but may find the
same amount acceptable for a non-aggressive low precision
task.” as discussed by Blanken et al. (1997) [31]. Therefore,
the frequency domain criteria is needed in order to also capture
the short-term coupling response that corresponds to high
precision, agile tracking tasks.

For the time domain requirements, the control input that will
be given in order to excite the on-axis response will mostly be
a step input of plus or minus 10% of the control input range
given one second after the simulation started. This usually
leads to a significant and fast change in the on-axis attitude.
In some simulation cases, which will be mentioned, the step
input is smaller than the 10% change because of helicopter
limits. The control input that will be given for the frequency
domain requirements will be explained in Section IV-E.

B. Simulation Set-up

This section will discuss the control and model set-ups used
for the cross-coupling requirement simulations and the sensi-
tivity analysis. An overview of the models used as simulation
and prediction model for the cross-coupling simulations and
the sensitivity analysis can be found in Figure 1.

1) Cross-coupling Requirement Simulations: The effective-
ness of MPC to reduce cross-coupling effects during helicopter
flight will be evaluated by investigating its performance on
the 10 cross-coupling requirements set out by the ADS-33
document for hover and forward flight. The performance of
reducing cross-coupling effects will be measured by means

Fig. 1. Overview of simulation and prediction model set-up for the cross-
coupling requirement and sensitivity analysis simulations.

of the cross-coupling parameter defined in the ADS-33 and
the handling quality level it corresponds to. This will be done
in a simulation of the BO-105 helicopter where each of the
cross-coupling cases will be tested for the helicopter with
nonlinear MPC applied to it, with linear MPC applied to it, the
helicopter without controller and the PID controlled helicopter.
In this way, the performance of the MPC controllers can be
compared to the uncontrolled helicopter and to a conventional
control technique. Furthermore, the linear and nonlinear MPC
controller can be compared to each other. In this simulation
the objective of the controllers will be to minimize the off-
axis attitude responses when simulating both a positive and
negative step in the on-axis control input. The position of the
helicopter and the on-axis response will be uncontrolled. In
the uncontrolled simulations, the on-axis and relevant off-axis
attitude will be uncontrolled. The off-axis attitude that is not
part of the cross-coupling case will be controlled to remain
constant using the simple PID controller from Section II-F
e.g. yaw attitude in the pitch due to roll coupling case.

The simulation will use the nonlinear, 8 DOF helicopter
model ran at 100 Hz as simulation model which has to
represent the actual helicopter dynamics. Furthermore, the
MPC controllers also use a helicopter model in order to predict
the future states of the helicopter. The same nonlinear 8 DOF
model is used as prediction model for the nonlinear MPC
controller whereas the linear MPC controller will use the
linearized 8 DOF model. Both models will be explained further
in Section II-E. In order to be able to compare the performance
of NLMPC with LMPC without the bias of NLMPC having
a perfect future state prediction, an uncertainty is added to
the simulation model. Hence, the 4 control configurations will
be tested in a simulation with and without uncertainty added
to the simulation model. In this way, not only an unbiased
comparison can take place but also a more realistic behaviour
of the helicopter can be simulated as the uncertainty will be
implemented as a disturbance in the main rotor thrust. More
on this uncertainty that is added to the simulation model can
be found in Section II-C.

2) Sensitivity Analysis Simulations: The robustness or sen-
sitivity of MPC to prediction model errors will be investigated
by evaluating the decoupling performance of the MPC con-
trollers when a mismatch or error is present in the prediction
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model. In order to be able to systematically implement an
error in the prediction model, the linear prediction model will
be used. In this way the error can be applied to one of the
relevant derivatives in the state and input matrix. To reduce
the model mismatch between the simulation and prediction
model, the linear model is also used for the simulation. The
implementation of the fixed error in the prediction model will
be explained in Section II-D

The aim of the sensitivity analysis is twofold. First of all,
for each cross-coupling case the important derivatives will be
identified by means of implementing a fixed error in every
prediction model derivative relevant to the cross-coupling case,
one at a time. Then, cross-coupling requirement simulations
are performed and the cross-coupling parameters are mea-
sured. Based on the change in cross-coupling parameter and if
the controller still has level 1 handling qualities the derivatives
which alter the handling qualities of the MPC controlled he-
licopter the most can be found. This information is important
as to known which prediction model derivative needs to be of
high accuracy in order to still have level 1 handling qualities.
Secondly, once the important derivatives have been identified
they will be investigated further by varying the error that
is implemented and measuring how this affects the cross-
coupling parameter. This information gives understanding to
how sensitive these derivatives are to errors and what kind of
errors are most performance degrading (over/underestimating,
changing sign, etc.). It must be noted that in this research only
the influence of one error at a time will be investigated as to
pinpoint the important derivatives. The robustness to multiple
errors at the same time is beyond the scope of this research.

C. Introducing the Uncertainty

An uncertainty will be implemented in the nonlinear simula-
tion model for the cross-coupling simulations for two reasons.
Firstly and most importantly, the error is introduced in order
to remove the positive bias of the nonlinear MPC controller.
Secondly, the addition of the uncertainty into the helicopter
model adds more realistic dynamics as the uncertainty that
is added acts as a disturbance to the main rotor thrust.
Without the uncertainty, the nonlinear MPC would have a
perfect prediction model which is unrealistic and yields an
unfair comparison of the nonlinear MPC with the linear MPC.
Furthermore, it was decided to introduce the uncertainty in
the simulation model instead of in the prediction model in
order to have a consistent implementation for both the linear
and nonlinear MPC, maintaining comparability. This entails
that there is also a disturbance introduced in the helicopter
dynamics which will be noticeable in the behavior of the
helicopter but not unwanted.

The uncertainty ε is introduced as a time-varying random
variable with normal distribution ε ∼ N (σ, 0) with a standard
deviation of σ and zero mean [32]. It is applied to the main
rotor thrust coefficient as the thrust force is the main aero-
dynamic force acting on the helicopter, affecting the motion
in all degrees of freedom, and is also very hard to predict.
Hence, adding an uncertainty in the thrust coefficient in the
model is realistic. It is applied according to Equation 1 so

Fig. 2. A 5 second trial of the uncertainty ε with σ = 0.2 over time.

that CT is being decreased or enlarged with ε multiplied with
the original thrust coefficient. As can be seen, the uncertainty
varies with time: each simulation time step ∆t the uncertainty
ε changes. As the uncertainty is randomly generated each
time step, every simulation is different. Therefore, a series of
6 simulations, called trials, are ran where the cross-coupling
results are linearly averaged.

CT = CT · (1 + ε(∆t)) (1)

For the simulations, a standard deviation of σ = 0.2 is chosen
which means that 68% of the generated uncertainties will
be within [−0.2, 0.2] and 95% will be within [−0.4, 0.4].
In Figure 2, one can see a trial of this randomly generated
uncertainty over 5 seconds.

D. Introducing the Sensitivity Analysis Error

The error will be implemented in the prediction model of the
MPC controller in the elements of the state matrix A and input
matrix B of the linear helicopter model. More specifically, it
will be implemented in the relevant elements only e.g. for
yaw due to collective coupling the error will be implemented
in the derivatives of the yaw acceleration so ∂ṙ

∂u ,
∂ṙ
∂v , ... in the

A matrix and ∂ṙ
∂θ0

, ∂ṙ
∂θ1s

, ... in the B matrix. Here, a simplified
notation will be used such that for example the derivative ∂ṙ

∂u
will be noted as ṙu.

The error ε will be implemented to the actual derivative in a
dimensionless manner as can be seen in Equation 2. Here, the
estimated derivative DMPC , so the derivative with error used
by the MPC controller, will be equal to the actual derivative
Dactual plus a fraction ε of the actual derivative. An overview
of how the error value influences the proportions between the
actual and the MPC derivative can be found in Equation 3.

DMPC = Dactual(1 + ε) (2)

ε < −1 : sgn(DMPC) = −sgn(Dactual)

ε = −1 : DMPC = 0

−1 < ε < 0 : |DMPC | < |Dactual|
ε = 0 : DMPC = Dactual

ε > 0 : |DMPC | > |Dactual|

(3)

In order to find out how large such an error realistically
could be when modeling a helicopter, data from Pavel (1996),
considered as estimated derivatives, was compared to data
from the NASA model of Heffley et. al (1979), considered as
actual derivatives [33], [34]. Here, it could be seen that most
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errors are within -1 and 0, hence underestimating the actual
derivative in absolute value. It is only for a few cases that a
greater positive or negative error occurs but still around an
absolute value of 1. Furthermore, some outliers were spotted
with errors of ±30. However, these only occur when the actual
derivative is almost zero. As will be clear later from the results
of the sensitivity analysis, the accuracy of these derivatives
barely influence the MPC performance at all.

Based on an error analysis of the data from Pavel (1996)
and Heffley et. al (1979), it was chosen to first find the
important derivatives by applying an error of 10 and -10 to all
of the relevant derivatives one by one and measuring the cross-
coupling parameters [33], [34]. After this a range of errors
from -10 to 10, so ε = −10, −9, −8, −7, −6, −5,
−4, −3, −2, −1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, will
be applied to the most important derivatives in order to have
an individual analysis.

E. Helicopter Model

The 8 DOF nonlinear model of the BO-105 helicopter used
for the simulations in this research was developed at the TU
Delft and consists out of 6 helicopter body DOFs and 2 rotor
inflow DOFs, one for the main rotor and one for the tail rotor
[33], [35]. The rotor inflow dynamics is added because the
hingeless rotor system of the BO-105 causes the rotor and
body dynamics to be highly coupled [36]. Furthermore, the
body dynamics takes into account the forces and moments
from the main rotor, tail rotor, fuselage, horizontal tail and
vertical tail. The helicopter’s motion will be described by a
total of 14 states and will be controlled by 4 control inputs
namely the main rotor collective, the longitudinal cyclic, the
lateral cyclic and the tail rotor collective as seen in Equation
4 and 5 respectively.

x = [u v w p q r ψ θ φ x y z λ0 λ0tr
]′ (4)

u = [θ0 θ1s θ1c θ0tr
]′ (5)

The linear 8 DOF model of the system is obtained by
linearizing the nonlinear model around a certain trim condition
(xtrim, utrim) using perturbation linearization [37][p. 563].
The linear model then approximates the nonlinear model at
and around this trim condition. The more the helicopter state
deviates from the trim condition or the more nonlinear the
helicopter behaves at this trim condition, the worse the linear
approximation will be.

Furthermore, some physical boundaries are imposed on the
control inputs because of actuator limits. Firstly, the control
inputs are bounded by upper and lower limits. The data for
these limits of the BO-105 helicopter is retrieved from Prouty
(2002) [37]. Secondly, the rate of change in each control input
is limited. No rate limits were found for the BO-105 so the
rate data for the Bell 412 helicopter from Voskuijl et al. (2010)
was used [38]. The input ranges and input rate limits of the
BO-105 helicopter model can be found in Table III.

F. PID Controller Design

In order to be able to compare the performance of the MPC
controller with a controlled helicopter, a simple Proportional

TABLE III
INPUT RANGE AND RATE LIMITS.

Limit Value

[deg]

Limit Value

[deg]

Limit Value

[deg·s]

θ0min -0.2 θ0max 15.0 ∆θ0max 16.0 ·∆t

θ1smin -6.0 θ1smax 11.0 ∆θ1smax 28.8 ·∆t

θ1cmin -5.7 θ1cmax 4.2 ∆θ1cmax 16.0 ·∆t

θ0trmin
-8.0 θ0trmax

20.0 ∆θ0trmax
32.0 ·∆t

TABLE IV
PID CONTROLLER GAINS FOR THE SIMULATIONS.

Gain Value [-] Gain Value [-] Gain Value [-]

Kθ1 3 Kφ1
0.55 Kψ1

16

Kθ2 11.2 Kφ2
40 Kψ2

170

Kq 0.8 Kp -0.35 Kr 1.9

Integral Derivative controller will be implemented. This PID
controller uses control rules based on the error between the
reference state and the actual state, the integral of this error and
the gradient of this error. For the cross-coupling simulations,
only the attitude of the helicopter will be controlled. Therefore,
the PID rules, which can be seen in Equation 6-8, are imple-
mented to θ1s0 , θ1c and θ0tr0

only [36]. Here, the K...’s are
the gains that were tuned using the Ziegler-Nichols method
and fine-tuned using trial and error. The final values of the
gains can be seen in Table IV. Furthermore, the integral term
in these PID rules is taken in discrete time over an interval
of t − 5∆t to t where t is the current time and ∆ts is the
simulation time step. As can be seen, the inputs are solely
dependent on the on-axis tracking error e.g. θ1s depends on
θ − θref only.

θ1s = θ1strim +Kθ1(θ − θref ) +Kqq (6)

+Kθ2

t∑
t−5∆ts

(θ − θref )∆t

θ1c = θ1ctrim +Kφ1
(φref − φ) +Kpp (7)

+Kφ2

t∑
t−5∆ts

(φref − φ)∆t

θ0tr = θ0trtrim
+Kψ1(ψ − ψref ) +Krr (8)

+Kψ2

t∑
t−5∆ts

(ψ − ψref )∆t

Similar to the MPC controller, only the relevant DOFs will
be tracked in a simulation. The inputs for the uncontrolled
DOFs are then set to the trim value instead of applying the PID
rule. Furthermore, the inputs calculated by the PID controller
are limited to their respective maximum or minimum boundary
value as there are physical constraints on the control inputs.

III. MODEL PREDICTIVE CONTROL

This section will first introduce the concept of linear and
nonlinear model predictive control for reference tracking after
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Fig. 3. The concept of MPC in discrete time for reference tracking [39].

which the MPC controller design used for the simulations will
be presented.

A. Introduction to MPC

MPC is a type of model-based, optimal control where
at each time step, k, an optimal control input sequence
ūk = [uk, uk+1, . . . , uk+N−1] is computed online over
a future time horizon, the prediction horizon N , by solving
an open-loop optimization problem that has knowledge of the
system model [5]. The optimization uses the current state
of the system as initial state and a model of the system
to compute the future states along the prediction horizon in
order to optimize a desired objective function. Then, only
the first control input in this optimal control input sequence
uk is applied to the system. At the next time step, the
prediction horizon of the optimization problem shifts one step
forward, to k + 1, and the next optimal control sequence
ūk+1 = [uk+1, uk+2, . . . , uk+N ] is computed.

In Figure 3, one can see the concept of MPC explained in
discrete time for a reference tracking problem. In a reference
tracking problem, the objective function of the optimization
is to minimize the error ē = [ek+1, . . . , ek+N ] between
the reference trajectory r̄ = [rk+1, . . . , rk+N ] and the
predicted output trajectory x̄ = [xk+1, . . . , xk+N ]. Then,
the optimization problem consists of computing the optimal
control input over the prediction horizon such that the tracking
error is minimized and the constraints are met.

A distinction can be made between linear and nonlinear
model predictive control. The difference lies in the use of a
linear or nonlinear objective function, constraints and predic-
tion model. If one these elements is nonlinear, the controller is
considered a nonlinear MPC controller [5]. Nonlinearity often
comes with non-convexity which can cause the optimization
problem to have multiple local optima and which also in-
creases the complexity of solving the optimization problem.
Therefore, NLMPC usually has an increased computation time
and can cause the optimization solution to become suboptimal.
However, also the fidelity of the model plays a big roll in
the closed-loop performance as the algorithm optimizes the
error between the predicted state and the reference state over
the prediction horizon. When MPC with a linear prediction
model is applied to a highly nonlinear system, the prediction

model might not be of sufficient fidelity. A discussion on how
this influences the results of the cross-coupling requirement
simulations is held in Section IV-F4. Furthermore it must be
noted that in this report use is made of a quadratic objective
function with positive definite weight and of a constraint with
an absolute value function which are nonlinear but convex
functions. Nevertheless, when the linear prediction model is
used the controller will still be considered a linear MPC
controller as the objective function, constraints and prediction
model are still convex.

B. Controller Design

The MPC design used for the simulations will be presented
in this section including its objective function, constraints, the
prediction models and tuning parameters.

1) Objective Function: The goal of the controller in the
cross-coupling requirement simulations is to reduce the off-
axis response when an on-axis input is given. In order to
achieve this, the MPC controller is going to track a constant
trim reference signal for the off-axis responses only. Then,
the objective of the MPC controller in the cross-coupling
requirement simulations is to minimize the error between
the state and the reference signal for the off-axis states. A
quadratic objective function will be used to minimize the
tracking error with weight Q and reference trajectory r as
can be seen in Equation 9.

minimize
ūk, x̄k

N∑
i=0

{(
xk+i − rk+1

)′
Q
(
xk+i − rk+1

)}
(9)

Here, the weight Q changes depending on the cross-coupling
case. For example, if the requirement for pitch due to roll
cross-coupling is being simulated, the pitch and yaw angle will
be tracked whereas the roll angle won’t be controlled. For this
case Q will be equal to diag(0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0).
The reference trajectory of the pitch and yaw angle will be the
trim value of the respective angle. It must be noted that only
the attitudes (ψ, θ, φ) will be controlled and not the angular
rates (p, q, r) or angular accelerations (ṗ, q̇, ṙ). This would
yield steady-state offsets if no integral term would be added.
Furthermore, it is only the attitude that is the direct state that
needs to be controlled.

2) Constraints: One of the big advantages of model
predictive control is that it can incorporate soft and hard
constraints on inputs and states directly in the controller.
Hence, some physical boundaries on the input range and
input rates are imposed because of actuator limits. Firstly,
the input range is limited for each control input by
umin = [θ0min θ1smin θ1cmin θ0trmin

]′ and umax =
[θ0max θ1smax θ1cmax θ0trmax

]′. Secondly, the rate of
change in each control input is limited by ∆umax =
[∆θ0max

∆θ1smax
∆θ1cmax

∆θ0trmax
]′. The values of the

limits used in the simulations can be seen in Table III. These
limits are implemented according to Equation 10 and 11 and
hold over the entire prediction horizon and for all control
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inputs. The state variables are not bounded by upper and lower
limits but are constraint by the dynamics of the helicopter.

umin < uk+i < umax for i = 1, 2, . . . , N (10)
|uk+i − uk+i−1| < ∆umax for i = 1, 2, 3, . . . , N (11)

3) Prediction Model: The 8 DOF BO-105 helicopter model
described in Section II-E will be used as prediction model in
the MPC controller. Depending on whether linear or nonlinear
MPC will be implemented, the linear or nonlinear 8 DOF
model will be used as prediction model. It must be noted
that by using the nonlinear model as prediction model, the
optimization of the MPC controller becomes non-convex.
More on the differences between NLMPC and LMPC can be
found in IV-F4.

4) Tuning Parameters: First of all, the controller will have
a sampling time of 0.03 s. With a simulation sampling time
of 0.01 s this means the controller calculates a new control
input every 3 simulation time steps. In the remaining steps,
the control input is kept the same as the previously calculated
input. Next, a constant prediction horizon N of 5 control time
steps (0.15 s) is used. In order to reduce the computation time,
a control horizon Nu of 3 control steps (0.09 s) was selected.
Hence, after 3 control time steps the control input of the last
step is fixed for the remaining steps in the prediction horizon.

5) Complete MPC Formulation: To summarize the MPC
controller design that is used in the cross-coupling simula-
tions and the sensitivity analysis simulations, the complete
MPC optimization problem is presented in Equation 12. The
optimization problem will be solved in Matlab 2020b with the
fmincon-function using sequential quadratic programming as
optimization algorithm which is a smooth nonlinear optimiza-
tion method. Here, the trim control inputs are used as initial
value. It must be noted that for each simulation individual
components can change such as the model when using LMPC
or NLMPC or implementing the error from the sensitivity
analysis, or the weight Q when a different cross-coupling case
is tested.

minimize
ūk, x̄k

N∑
i=1

{(
xk+i − rk+1

)′
Q
(
xk+i − rk+1

)}
subject to: xk+i = f(xk+i−1, uk+i−1) for i = 1, 2, ..., N

umin < uk+i < umax for i = 0, 1, ..., N − 1

|uk+i − uk+i−1| < ∆umax for i = 0, 1, ..., N − 1

with: x = [u v w p q r ψ θ φ x y z λ0 λ0tr ]′

u = [θ0 θ1s θ1c θ0tr ]′

(12)

IV. CROSS-COUPLING REQUIREMENT SIMULATIONS

This section will present the results and analysis of the
cross-coupling requirement simulations for all 10 cross-
coupling cases. For each coupling case the cross-coupling
parameter results for one simulation setting will be shown.
In general, the results of the other settings are comparable
and will therefore be discussed briefly in the overview tables
in Section IV-F. Furthermore, a demonstration of how to
calculate the cross-coupling parameter will be presented for

Fig. 4. Pitch due to roll requirement simulation of the uncontrolled helicopter
for 80 knots for a positive (right) lateral cyclic step input.

Fig. 5. Pitch due to roll requirement results for 80 knots for a positive (right)
lateral cyclic step input.

pitch due to roll for both the time and frequency domain
requirement. Moreover, an off-axis rate response analysis will
be performed for pitch due roll coupling as an example in order
to analyze and compare the coupling reduction performance
of the PID and MPC controller.

A. Pitch due to Roll Coupling

For both pitch due to roll and roll due to pitch coupling the
ADS33 states that ”The ratio of peak off-axis attitude response
from trim within 4 seconds to the desired (on-axis) attitude
response from trim at 4 seconds, ∆θpk/∆φ4 (∆φpk/∆θ4),
following an abrupt lateral (longitudinal) cockpit control step
input, shall not exceed ± 0.25 for Level 1 or ± 0.60 for Level
2. Heading shall be maintained essentially constant.” [27].
Therefore, a step input of ±10% the control range is given in
the lateral cyclic at t = 1 s as can be seen in Figure 4. In
this Figure a demonstration is given on how to calculate the
cross-coupling parameter of the uncontrolled helicopter using
Equation 13. A ∆θpk/∆φ4 of 0.45 was obtained.

if a step input is given at t = 0 s
∆θpk = (max |θ| before t = 4 s)− θtrim
∆φ4 = φ(t = 4 s)− φtrim

(13)
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Fig. 6. On- and off-axis rate responses to a lateral cyclic input [31].

Fig. 7. Pitch due to roll coupling on/off-axis response analysis for 80 knots
for a positive (right) lateral cyclic step input.

The cross-coupling parameter results for all control con-
figurations for 80 knots flight with a positive lateral cyclic
step input can be seen in Figure 5. It can be seen that the
cross-coupling parameter is reduced significantly when the
helicopter is being controlled, going from level 2 to level 1
with plenty of margin. When zooming in to 10−3 one can
see that NLMPC reduces the off-axis response the most with
shortly after that the LMPC controller. The PID controller
also performs great but cannot surpass the MPC performance.
Moreover, it can be seen that the uncertainty doesn’t seem to
have much of effect to the coupling reduction performance for
all control set-ups.

As to investigate the off-axis rate response of the different
control set-ups and to indicate the difference between the PID
and MPC coupling reduction behaviour, the pitch and roll rate
responses for a step input in the lateral cyclic at t = 1 s
are investigated. The different types of off-axis rate responses
defined by Blanken et al. (1997) can be seen in Figure 6.
Here, the ideal off-axis rate response is the response with no
coupling so with a rate staying as close to zero as possible.
In Figure 7 it can be seen that the uncontrolled helicopter
shows an off-axis rate response with control coupling. When
the controllers are introduced, the off-axis response reduces
significantly, eliminating most cross-coupling effects. The PID

Fig. 8. Roll due to pitch requirement results for 80 knots for a positive (up)
longitudinal cyclic step input.

controller shows a small and quick washed-out coupling
response whereas the MPC controller reduces the off-axis
rate even more and faster, showing a response with quasi no
coupling.

B. Roll due to Pitch Coupling

The requirement for roll due to pitch coupling is very similar
to the pitch due to roll coupling requirement and is therefore
already explained in Section IV-A. The computation of the
cross-coupling parameter can be seen in Equation 14.

if a step input is given at t = 0 s
∆φpk = (max |φ| before t = 4 s)− φtrim
∆θ4 = θ(t = 4 s)− θtrim

(14)

In Figure 8 one can see that again the controllers reduce
the handling qualities from level 3 or 2 to level 1. When
zooming in to 10−3 it can be seen that NLMPC performs best
at minimizing the roll angle, almost completely eliminating
the cross-coupling effects. Close after NLMPC comes LMPC
and then the PID controller. Again, the uncertainty barely
has an effect on the cross-coupling parameter results with
controller. Without controller, the uncertainty degrades the
handling qualities to level 3.

C. Yaw due to Collective Coupling

The ADS-33 states that ”The yaw rate response to abrupt
step collective control inputs with the directional controller
fixed shall not exceed the boundaries specified in Figure 11.
The directional controller may be free if the rotorcraft is
equipped with a heading hold function. Pitch and roll atti-
tudes shall be maintained essentially constant. ... Oscillations
involving yaw rates greater than 5 deg/sec shall be deemed
objectionable.” [27]. The yaw rate boundaries that are referred
to can be seen in Figure 9. Here, r1 is defined as the largest
peak of yaw rate by magnitude between the start of the step
input and 3 seconds after the step input. Furthermore, ḣ(3) is
the value of ḣ at 3 seconds after the step input. Finally, r3 is
equal to r(3) − r1 for r1 > 0 and to r1 − r(3) for r1 < 0
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Fig. 9. Yaw due to collective coupling requirement [27]

Fig. 10. Yaw due to collective requirement results for hover for a positive
(up) collective step input.

where r(3) is the yaw rate at 3 seconds after the step input.
The complete computation of the cross-coupling parameters
can be seen in Equation 15.

if a step input is given at t = 0 s

ḣ(3) = ḣ(t = 3 s)
r1 = max |r| before t = 3 s
if r1 > 0 : r3 = r(t = 3 s)− r1

if r1 < 0 : r3 = r1 − r(t = 3 s)

(15)

The results of the yaw due to collective requirement simu-
lations for hover for a positive input can be seen in Figure 10.
Here, again the handling qualities are improved from level 3
to level 1 when a controller is introduced. However, when the
uncertainty is present the results of the linear and nonlinear
MPC controllers are both located just over the border of the
level 1 boundary. Nevertheless, the result of the PID controller
with uncertainty remains in level 1.

This rather large performance difference can be explained
by the fact that the MPC uses the prediction model of the
helicopter which now has a mismatch with the disturbed
simulation model. Furthermore, this coupling case is signif-
icantly more vulnerable to the mismatch as the uncertainty is
applied to the thrust coefficient which is directly related to the
collective input. Moreover, when the positive input is given the
thrust of the helicopter increases, as opposed to the negative
input, causing the disturbance in the thrust coefficient to have
more effect. As can be seen in Table V, the MPC controllers

Fig. 11. Pitch due to collective requirement results for 80 knots for a small,
positive (up) collective cyclic step input.

are still in the level 1 zone for the negative input case. Hence,
it can be concluded that for yaw due to collective coupling
the MPC controllers are sensitive to this uncertainty in the
main rotor thrust. However, one could improve the robustness
of the MPC controller to this kind of model mismatches by
implementing robust MPC.

D. Pitch due to Collective Coupling

The requirement for pitch due to collective coupling is
split in a requirement for small collective inputs (<20% rotor
torque change) and large collective input (>20% rotor torque
change). For small collective inputs the ADS-33 says that
”the peak change in pitch attitude from trim, ∆θpk, occurring
within the first 3 seconds following a step change in collective
causing less than 20% torque change, shall be such that
the ratio

∣∣∆θpk/∆nzpk ∣∣ is no greater than 1.0 deg/ft/sec2,
where ∆nzpk is the peak incremental normal acceleration
from 1 g flight.” [27]. For large collective inputs, the ratio∣∣∆θpk/∆nzpk ∣∣ should be no greater than 0.5 deg/ft/sec2 for a
positive collective input and no greater than 0.25 deg/ft/sec2

for negative collective inputs. The computation of the cross-
coupling parameter can be seen in Equation 16.

if a step input is given at t = 0 s
∆θpk = (max |θ| before t = 3 s)− θtrim
∆nzpk = (max |ẇ| before t = 3 s)− ẇtrim

(16)

The cross-coupling results for pitch due to small collective
inputs can be seen in Figure 11. Here, it is clear that again
the handling qualities are improved from level 3 or 2 to level
1 when a controller is applied. When zooming in to 10−3

it can be seen that both NLMPC and LMPC have a very
small cross-coupling parameter, almost completely eliminating
the off-axis response. The PID controller also improves the
handling qualities a lot but still has a larger cross-coupling
parameter than the MPC controllers.

What is remarkable about these simulations is that the
simulation with uncertainty has, for all control set-ups, sig-
nificantly better coupling reduction performance. This can be
explained by the random behaviour of the uncertainty that is
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Fig. 12. Pitch due to roll frequency requirement simulation of the uncontrolled
helicopter for 80 knots for a positive (right) lateral cyclic step input.

Fig. 13. q/p frequency response of the uncontrolled helicopter for 80 knots
for a positive (right) lateral cyclic step input (corresponding to Figure 12).

implemented in the thrust coefficient and that changes each
simulation time step. This causes ẇ and hence nzpk to change
each time step as well, yielding a very large ∆nzpk . Therefore,
in this coupling case the cross-coupling parameter does not
give a proper indication of the off-axis response compared
to on-axis input. That is, the cases with uncertainty cannot be
compared to the undisturbed cases. Still, the same performance
proportions are found for the uncontrolled, NLMPC, LMPC
and PID controlled helicopter with uncertainty as compared to
the results without uncertainty.

E. Pitch due to Roll and Roll due to Pitch Coupling for Target
Acquisition and Tracking

The ADS-33 states that the pitch due to roll (q/p) and roll
due to pitch (p/q) coupling parameters should not exceed
the boundaries indicated in Figure 14 where ”the average
q/p and average p/q are derived from ratios of pitch and
roll frequency responses. Specifically, average q/p is defined
as the magnitude of pitch-due-to-roll control input (q/δlat)
divided by roll-due-to-roll control input (p/δlat) averaged be-
tween the bandwidth and neutral-stability (phase = -180 deg)
frequencies of the pitch-due-to-pitch control inputs (θ/δlon).
Similarly, average p/q is defined as the magnitude (p/δlon)
divided by (q/δlon) between the roll-axis (φ/δlat) bandwidth
and neutral stability frequencies.” [27]. Here, the bandwidth
is defined as the lesser of the phase bandwidth, which is the
frequency corresponding to -135◦ phase, and gain bandwidth,

Fig. 14. Average p/q over average q/p for 80 knots [31].

which is the frequency corresponding to the magnitude at
neutral stability with a margin of 6 dB added to it. For the
calculation of the pitch and roll bandwidth it was assumed that
δlon and δlat are equivalent to θ1s and θ1c respectively. As the
limits set by the ADS-33 are not perfectly clear, the limits for
q/p will be set to -21 dB for level 1/2 and -4 dB for level 2/3
and for p/q to -10 dB for level 1/2 and -5 dB for level 2/3.

As a demonstration for the frequency parameter calcu-
lations, the simulation of the pitch due to roll frequency
requirement for the uncontrolled helicopter in 80 knots flight
is shown in Figure 12. Here, a frequency sweep was given in
the lateral cyclic input from 20 rad/s to 0.5 rad/s for 18 s. The
longitudinal cyclic and collective were kept constant whereas
the tail rotor collective was controlled by a PID controller in
order to maintain a constant yaw angle. As can be seen, the
on-axis roll rate is oscillating with the lateral input, inducing
the off-axis pitch rate to oscillate as well but with a slightly
smaller amplitude. By calculating the frequency response of
the pitch rate divided by the roll rate using the fast Fourier
transform algorithm, the q/p gain can be obtained. Here, the
gain of q/p gives an accurate indication of the amount of off-
axis pitch rate response compared to on-axis roll rate. As can
be seen in Figure 13, the average q/p gain between the pitch
bandwidth and neutral stability frequency was found to be -
3.1 dB. This means that for a roll rate amplitude of 10◦/s the
pitch rate amplitude would be 7◦/s on average for frequencies
between 2.4 and 3.4 rad/s.

The average p/q over average q/p for 80 knots results for
the different control set-ups can be seen in Figure 14. Here,
the uncontrolled helicopter has level 3, at the border of level
2, handling qualities. When the controllers are introduced the
handling qualities go to level 1. The PID controller brings
the amount of cross-coupling back to around -30 dB for both
pitch due to roll and roll due to pitch coupling, with and
without uncertainty. This indicates that for a roll (pitch) rate
amplitude of 10◦/s the pitch (roll) rate amplitude would be 3◦/s
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TABLE V
OVERVIEW OF THE CROSS-COUPLING HANDLING QUALITY LEVEL RESULTS.

Cross-coupling case Condition
BO-105 NLMPC LMPC PID
σ = 0 σ = 0.2 σ = 0 σ = 0.2 σ = 0 σ = 0.2 σ = 0 σ = 0.2

Pitch d.t. roll 0 kn, +ve input III III I I I I I I
0 kn, -ve input II II I I I I I I
80 kn, +ve input II II I I I I I I
80 kn, -ve input III III I I I I I I

Roll d.t. pitch 0 kn, +ve input III III I I I I I I
0 kn, -ve input III III I I I I I I
80 kn, +ve input II III I I I I I I
80 kn, -ve input II II I I I I I I

Yaw d.t. collective +ve input III III I II I II I I
-ve input III III I I I I I I

Pitch d.t. collective small, +ve input III I I I I I I I
small, -ve input III I I I I I I I
large, +ve input III III I I I I I I
large, -ve input III III I I I I I I

Pitch d.t. roll 0 kn II II I I I I I I
for TA&T 80 kn III III I I I I I I

Roll d.t. pitch 0 kn II II I I I I I I
for TA&T 80 kn II I I I I I I I

on average. The MPC controllers go even further to about -80
dB for q/p indicating a pitch rate amplitude of only 0.002◦/s
for a roll rate amplitude input of 10◦/s. For p/q NLMPC goes
to -75 dB without and -57 dB with uncertainty whereas LMPC
goes to about -45 dB for both with and without uncertainty.

F. Overview of the Cross-coupling Results

This section will first present an overview of the handling
quality levels of each cross-coupling case. Next, a comparison
of the cross-coupling parameter of NLMPC with the uncon-
trolled helicopter and of NLMPC and LMPC with the PID
controller will be made for both the simulations with and
without uncertainty. Lastly, a comparison of the performance
of linear and nonlinear MPC will be presented.

1) Overview of Handling Quality Levels: An overview of
the cross-coupling handling quality level results can be seen
in Table V. Here, the uncontrolled helicopter mostly has level
3 or 2 handling qualities. Once a controller is introduced, the
handling qualities are improved to level 1. This indicates that
all controllers succeed very well at reducing the cross-coupling
effects in order to have good handling qualities. Even with
uncertainty added to the simulation model, the controllers are
able to obtain level 1 handling qualities. The only exception
is the NLMPC controller for the yaw due to collective case
for a positive collective input which obtained level 2 handling
qualities with the uncertainty. This exception will be further
explained when looking at Table VII.

2) Comparison of the Cross-coupling Parameter (σ = 0):
In Table VI a comparison of the cross-coupling parameters in
percentage increase can be seen for the simulations without
uncertainty. First of all, the NLMPC results are compared to
the uncontrolled helicopter results where a negative percentage
indicates a reduction of cross-couplings. Next, the NLMPC

and LMPC are compared to the PID controller by indicating
how much percent the MPC cross-coupling parameter is
increased with respect to the PID cross-coupling parameter.
Here, the positive values are indicated in red and indicate the
PID controller is better at reducing couplings than MPC. It
must be noted that for the yaw due to collective case, the
r3/
∣∣∣ḣ(3)

∣∣∣ parameter is used for the percentages as this was
the limiting parameter for most cases.

First of all, it can be seen that the NLMPC reduces coupling
by about 99.9% for almost all cross-coupling cases which
is remarkably high. It indicates that the off-axis response
can be almost entirely eliminated by introducing the MPC
controller. Furthermore, when comparing the MPC to the PID
controller almost all cases have much better cross-coupling
reduction than the PID controller. Percentages of about 90%
and 99% better than the PID controller are achieved for
NLMPC whereas the LMPC has slightly lower percentages
especially for roll due to pitch.

The roll due to pitch case for hover and a positive input even
has the PID controller performing better than LMPC. This
degradation of the LMPC performance happens because of the
mismatch between the linear prediction model and nonlinear
simulation model. It was found that at some point in the
simulation the linear model estimates the roll and pitch rate
to be of opposite sign as the actual nonlinear model causing
the controls to change drastically, decreasing the coupling
reduction performance. Nevertheless, the handling qualities of
LMPC still remain far within the level 1 zone.

Next to this, the yaw due to collective case with a negative
input seems to have a better cross-coupling parameter with
PID controller. Furthermore, for a positive input the cross-
coupling parameter for MPC is only 3 to 5 percent better
than the PID controller which is much lower than in the other
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TABLE VI
COMPARISON OF THE CROSS-COUPLING PARAMETER RESULTS IN PERCENTAGE INCREASE FOR THE SIMULATIONS WITHOUT UNCERTAINTY.

Cross-coupling case Condition
NLMPC compared
to BO105 [%]

NLMPC compared
to PID [%]

LMPC compared
to PID [%]

Pitch d.t. roll 0 kn, +ve input -99.99 -97.71 -56.74
0 kn, -ve input -99.98 -98.35 -92.57
80 kn, +ve input -99.99 -97.47 -97.39
80 kn, -ve input -99.99 -98.95 -98.97

Roll d.t. pitch 0 kn, +ve input -99.99 -98.99 58.20
0 kn, -ve input -100.00 -99.54 -92.70
80 kn, +ve input -100.00 -99.86 -77.47
80 kn, -ve input -99.96 -97.66 -73.36

Yaw d.t. collective +ve input -98.44 -3.13 -5.42
-ve input -98.13 4.40 6.25

Pitch d.t. collective small, +ve input -99.93 -89.73 -89.89
small, -ve input -99.93 -90.13 -89.98
large, +ve input -99.92 -89.37 -89.90
large, -ve input -99.94 -90.59 -90.11

Pitch d.t. roll 0 kn -99.95 -99.29 -99.45
for TA&T 80 kn -99.98 -99.58 -99.54

Roll d.t. pitch 0 kn -99.96 -99.53 -99.53
for TA&T 80 kn -99.96 -99.36 -81.21

TABLE VII
COMPARISON OF THE CROSS-COUPLING PARAMETER RESULTS IN PERCENTAGE INCREASE FOR THE SIMULATIONS WITH AN UNCERTAINTY OF σ = 0.2.

Cross-coupling case Condition
NLMPC compared
to BO105 [%]

NLMPC compared
to PID [%]

LMPC compared
to PID [%]

Pitch d.t. roll 0 kn, +ve input -99.97 -95.01 -69.54
0 kn, -ve input -99.90 -90.89 -87.17
80 kn, +ve input -99.98 -96.35 -95.98
80 kn, -ve input -99.97 -96.46 -96.09

Roll d.t. pitch 0 kn, +ve input -99.98 -98.82 60.42
0 kn, -ve input -99.98 -98.10 -90.39
80 kn, +ve input -99.98 -99.25 -78.07
80 kn, -ve input -99.82 -90.62 -64.22

Yaw d.t. collective +ve input -94.81 121.77 137.05
-ve input -97.26 5.85 13.72

Pitch d.t. collective small, +ve input -99.93 -90.12 -88.52
small, -ve input -99.93 -89.57 -88.49
large, +ve input -99.91 -88.59 -89.74
large, -ve input -99.96 -89.57 -89.24

Pitch d.t. roll 0 kn -99.76 -97.07 -95.61
for TA&T 80 kn -99.99 -99.59 -99.45

Roll d.t. pitch 0 kn -99.83 -98.04 -98.23
for TA&T 80 kn -99.49 -96.73 -81.39

cases. This can be explained by the fact that this parameter
relies on the yaw rate response instead of the yaw angle. It is
the only cross-coupling parameter depending on the angular
rate instead of attitude. Since the MPC controller is focusing
solely on minimizing the attitude error, aggressive yaw rate
motions are induced causing the cross-coupling parameter to
take up higher values. The PID controller is not that aggressive
because of the differential term. The results for this case could
be improved by adding a term to the objective function that
directly minimizes the yaw rate.

3) Comparison of the Cross-coupling Parameter (σ = 0.2):
In Table VII one can see the comparison of cross-coupling
parameters in percentage increase for the simulations with
uncertainty applied to the thrust coefficient. In general, it can
be seen that the absolute percentages are only slightly lower
than the absolute percentages of the simulations without uncer-
tainty. This indicates that the MPC controllers are robust to this
disturbance, preserving the coupling reduction performance.

Here, the yaw due to collective coupling case seems to be
the exception. With uncertainty, the handling qualities for the
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Fig. 15. Pitch due to roll requirement sensitivity analysis for 80 knots for a positive (right) and negative (left) lateral cyclic and for a positive and negative
error implemented in one of the derivatives.

Fig. 16. Analysis of error in q̇θ1s -derivative for pitch due to roll coupling at
80 knots for a positive input.

positive input are even decreased to level 2 as said before. As
the uncertainty is implemented in the thrust coefficient, which
greatly influences the rotor torque, the yaw coupling is directly
influenced. With this poorly estimated main rotor torque in
the MPC prediction model, the MPC controller is unable to
reduce the couplings in the yaw axis sufficiently. Also when
comparing the MPC controllers to the PID controller, which
does not rely on a prediction model, it is clear that the PID
controller performs much better. A solution to this deteriorated
performance of the MPC due to the highly influential distur-
bance could be to implement robust model predictive control.
This will improve the performance of MPC to unmeasured
disturbances but at the cost of decreased overall performance.

Next to this, the yaw due to collective coupling case seems
to be the case with the least reduction of cross-couplings
compared to the uncontrolled helicopter. This was also seen
for the results without uncertainty as the yaw rate instead of
angle is measured in the parameter.

4) Comparison of Linear and Nonlinear MPC: As dis-
cussed before in Section III-A, the difference between linear
and nonlinear MPC in this report lies in the use of the
nonlinear or linear prediction model in the MPC algorithm.

On one hand, the nonlinearity in the optimization scheme
comes with non-convexity and hence multiple local optima
and a heavier computational burden. On the other hand, also
the fidelity of the prediction model plays a roll in the closed-
loop performance. Here, the linear prediction model might fall
short as the linearization of the nonlinear system around a
trim point only approximates the system at and around this
trim point. The more the helicopter state deviates from the
trim condition, the worse the linear approximation will be.
Also, the more nonlinear the helicopter behaves at this trim
condition, the worse the linear approximation will be.

In the cross-coupling results in this chapter it can be seen
that both linear and nonlinear MPC perform very well at
reducing couplings, even with an uncertainty applied in the
simulation model. The performance difference between linear
and nonlinear MPC for these simulations is very small. In
most cases the nonlinear controller performs slightly better
than the linear controller or has almost similar performance as
the linear controller. This is an indication that the fidelity of
the linear model is sufficient for the cross-coupling simulations
to be used as prediction model. This can be explained by
means of two reasons based on properties specific to the cross-
coupling simulations. First of all, the model mismatch stays
small because of the use of a very short prediction horizon
which prevents the accumulation of error along the horizon.
Secondly, as the reference trajectory that is tracked is the trim
condition around which is linearized, the state stays relatively
close to the linearization point which also limits the linear
model mismatch.

There is one case, the roll due to pitch coupling case
for hover with a positive input, where the linear controller
performs worse than the PID controller. This was due to
a linear model mismatch where the linear model predicted
that ṗ, q̇ > 0 whereas the actual, nonlinear model states that
ṗ, q̇ < 0, resulting in a sudden change of controls which is not
present in the NLMPC and PID simulations. Nevertheless, the
fidelity is still good enough to have level 1 handling qualities.

Overall it can be concluded that the differences in cross-
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coupling reduction performance between LMPC and NLMPC
are so small they do not noticeably deteriorate the handling
qualities and can be assumed to be non existent. As linear
MPC has the advantage of having a shorter computation time
and no suboptimal solutions, linear MPC is preferred over
nonlinear MPC in order to reduce cross-coupling effects.

V. SENSITIVITY ANALYSIS

This section will present the results of the sensitivity
analysis simulations for all 10 cross-coupling cases. First, the
sensitivity analysis of the pitch due to roll coupling case will
be worked out as an example. Next, the final results of all
coupling cases will be introduced in an overview table.

A. Pitch due to Roll Coupling

The sensitivity analysis for pitch due to roll coupling for
80 knots can be seen in Figure 15. Here, each dot represents
the value of the cross-coupling parameter when the error of
10 or -10 is implemented in the corresponding derivative as
indicated in the legend. It can be seen that the only derivative
that gets the handling qualities out of the level 1 zone when an
error, namely a negative error, is applied is the change in pitch
acceleration due to longitudinal cyclic derivative q̇θ1s . When
zooming in to the level 1 zone, it can be seen that also negative
errors in q̇q and q̇θ0 increase the cross-coupling parameter.
Nevertheless, the handling qualities for these derivatives stay
within level 1. It is notable that these three derivatives are
also the ones with largest absolute value in the A and B
matrix as can be seen in the pitch acceleration derivatives
in Equation 17. This is also highly logical as the elements
with the largest absolute value influence the dynamics of that
degree of freedom the most.

From implementing this large error, it was found that q̇θ1s
is the important derivative for this coupling case, bringing
the handling qualities from level 1 to level 3. Therefore, a
more elaborate individual analysis is performed varying the
error implemented in q̇θ1s . This individual analysis can be
seen in Figure 16 and shows that once the error gets smaller
than -1, so when the estimated derivative changes sign, the
handling qualities jump from level 1 to level 3. Physically
this is logical because if the change in pitch acceleration due
to longitudinal cyclic input is estimated to be of opposite sign,
then pulling the cyclic stick up would be causing the helicopter
to pitch down. Hence, when the MPC prediction model has
this physically incorrect and influential derivative, the resulting
optimal control input cannot reduce the cross-coupling effects
sufficiently in closed-loop. Nevertheless, positive errors seem
to barely have an effect on the handling qualities when
implemented to q̇θ1s .

B. Overview of the Sensitivity Analysis

An overview of the important derivatives for each cross-
coupling case can be seen in Table VIII together with some
characteristics of how the error influences the cross-coupling
parameters. For example, when it says ε <-1, it means that the
handling qualities are degraded to level 2 or 3 only for errors

smaller than -1. Furthermore, ’symmetrical’ means the error in
the derivative influences the handling qualities in a symmetric
way: when the absolute value of the error increases the cross-
coupling parameter increases and hence the handling qualities
decrease. When 0 or 80 knots is stated in the characteristics
this means the handling qualities are only affected negatively
for this flight speed. Furthermore, the actual values of the
derivatives at 80 knots can be seen in Equation 17.ṗu ṗv ṗw ṗp ṗq ṗr
q̇u q̇v q̇w q̇p q̇q q̇r
ṙu ṙv ṙw ṙp ṙq ṙr

 =

=

0.1 −0.1 −0.2 −17.4 4.5 0.4
0.1 0.0 0.2 1.5 −4.0 0.0
0.0 0.3 −0.2 −2.8 1.5 −1.4


ṗθ0 ṗθ1s ṗθ1c ṗθ0tr
q̇θ0 q̇θ1s q̇θ1c q̇θ0tr
ṙθ0 ṙθ1s ṙθ1c ṙθ0tr

 =

=

 4.3 −8.7 159.6 9.0
23.5 −49.8 4.6 0.0
4.6 8.4 21.8 −22.5


(17)

Similar to the pitch due to roll coupling analysis, it is
in general noticeable that the important derivatives are the
derivatives that either have a relatively large value in the state-
space matrix (Equation 17) or that experience a large change
from trim throughout the cross-coupling simulations. Again,
this is quite logical as the product of the derivative and the
deviation of the state from trim determines the acceleration
of that degree of freedom. Hence, when an error is present in
the derivative with a large value, the mismatch between the
estimated and actual motion increases. Being able to deduct
which derivatives are important from the state-space matrices
enables to extend the results of this BO-105 sensitivity analysis
to other helicopters as well.

It can also be seen in this overview that the important
derivatives are mostly control derivatives from matrix B.
Furthermore, mostly negative errors, at least smaller than -1,
degrade the handling qualities to level 2 or 3 whereas the
positive errors barely change the cross-coupling effects in
most cases. For the control derivatives this is highly logical
because the error smaller than -1 indicates the derivative
changes sign, meaning that the controls would be working
in the opposite direction. For example, if the ṙθ0tr derivative
is of opposite sign, the tail rotor force would be pointing the
opposite direction. For the pitch damping derivative q̇q , the
opposite sign is degrading the handling qualities because this is
an important stability derivative for the phugoid Eigenmotion.
When the sign is estimated incorrectly, the Eigenmotion of the
helicopter is majorly affected.

Besides the control derivatives and the pitch damping
derivative that degrade when negative errors are implemented,
there are the ṗp and ṗu derivatives which are important for
the roll due to pitch coupling for both positive and negative
errors. Here, the roll damping derivative ṗp is characteristic
for the roll subsidence Eigenmotion and is therefore also
important to be accurate regardless of the sign. Furthermore,
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TABLE VIII
OVERVIEW AND CHARACTERISTICS OF THE IMPORTANT DERIVATIVES FOR EACH CROSS-COUPLING CASE.

Cross-coupling case Important
derivatives

Characteristics Cross-coupling case Important
derivatives

Characteristics

Pitch d.t. roll q̇θ1s ε <-1 Pitch d.t. roll q̇q ε ≤-8

for TA&T q̇θ0 ε ≤-4, 80 kn

q̇θ1s ε ≤-1

Roll d.t. pitch ṗu symmetrical, 0 kn Roll d.t. pitch ṗp ∼ symmetrical

ṗp for TA&T ṗθ1c ε ≤-1

ṗθ1c ε ≤-1 ṗθ0tr ε ≤-6, 80 kn

Yaw d.t. collective ṙθ0 symmetrical

ṙθ1c ε ≤-3

ṙθ0tr ε ≤-1

Pitch d.t. collective q̇θ1s ε ≤-1

the ṗu derivative is a coupling derivative which couples the
lateral and longitudinal motion when the rotor is tilting and
a forward velocity change occurs. Hence, the tilting forward
during the roll due to pitch maneuver creates this large change
in forward velocity u, giving this derivative more importance
in the helicopter dynamics.

As the error in the derivative was found to mostly stay
within -1 and 1 in Section II-D, it can be concluded that
the MPC controller is robust to these model errors and keeps
having level 1 handling qualities. However, when the absolute
error increases and specially when the errors gets smaller
than -1, the performance of the MPC controller deteriorates
to level 2 or 3 handling qualities. This could be solved by
implementing robust MPC which improves the performance
when an unmeasured error or disturbance is present.

VI. CONCLUSION AND RECOMMENDATIONS

This work investigated whether linear and nonlinear model
predictive control are suitable for online application to heli-
copters to reduce cross-coupling effects by evaluating its per-
formance on the cross-coupling handling quality requirements
of the ADS-33 document. The cross-coupling requirements
were tested in simulation by implementing a step in one
control input and measuring the cross-coupling parameter
which represents the amount of off-axis response.

It was found that both linear and nonlinear MPC are able
to reduce the off-axis response of the tested cross-coupling
cases by around 99% compared to the uncontrolled helicopter
bringing all handling quality levels from level 2 or 3 to level
1. Here, handling qualities of level 1 indicate having minimal
pilot workload and desired aircraft characteristics. Also the
PID controller is able to bring the handling qualities from
level 2 or 3 to level 1. However, when comparing the MPC
to the PID controller almost all MPC cases have 90% to
99% better cross-coupling reduction than the PID controller
which can be explained by the optimal and model-based
behaviour of the MPC controllers. Where the PID controller
shows a washed-out coupling off-axis rate response, the MPC
controllers almost eliminate all coupling showing a quasi
decoupled off-axis rate response.

When a disturbance is introduced in the simulation model,
the cross-coupling reduction performance is only slightly less,
keeping level 1 handling qualities for most coupling cases.
This indicates that MPC is robust to this disturbance. Only
the yaw due to collective coupling case with uncertainty for a
positive collective input gives level 2 handling qualities for the
MPC controllers. However, this can be explained by the poorly
estimated yaw coupling in the prediction model because of the
unknown disturbance in rotor thrust and by the cross-coupling
parameter that is based on the yaw rate instead of yaw angle
which is optimized for. This could be solved by implementing
a robust MPC controller or adapting the objective function to
also minimize the yaw rate.

Furthermore, the differences in performance between linear
and nonlinear MPC for the cross-coupling simulations are so
small they do not noticeably degrade the handling qualities
and can be assumed to be non-existent. As linear MPC has
the advantage of having a shorter computation time and no
suboptimal solutions, linear MPC is preferred over nonlinear
MPC in order to reduce cross-coupling effects.

In addition, it was examined how sensitive MPC is to
prediction model errors when reducing cross-coupling effects
by implementing a fixed error in the relevant derivatives of
the linear prediction model and measuring the performance
change. It was found that the derivatives sensitive to errors
are the derivatives that either have a relatively large value in
the state-space matrix or that experience a large change from
trim throughout the simulation. These derivatives were mainly
control derivatives. After individual analysis of the important
derivatives it was found that mostly negative errors smaller
than -1 degrade the handling qualities to level 2 or 3 whereas
the positive errors barely change the cross-coupling effects in
most cases. For the control derivatives this is highly logical
because the error smaller than -1 indicates the derivative
changes sign, meaning that the controls would be working in
the opposite direction according to the prediction model. As
the error in the derivative was found to mostly stay within
-1 and 1, it can be concluded that the MPC controller is
robust to these model errors and keeps having level 1 handling
qualities. Nevertheless, when the absolute error increases and
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specially when the errors gets smaller than -1, the degradation
in performance could be solved by implementing robust MPC
which improves the performance when an unmeasured error
or disturbance is present.

As a recommendation for future work it is suggested to
test the established controller more elaborately by extending
the test cases with more flight speeds and by evaluating the
performance to a disturbance implemented in other parts in
the model. Besides this, robust MPC could be implemented
in order to improve the robustness to both model errors
and disturbances in the simulation model. By implementing
robust MPC, one increases the robustness going at the cost
of the overall performance. Therefore, this trade-off between
robustness and performance should be investigated.

REFERENCES

[1] H. S. A. T. of IHSTI-CIS, “Helicopter accidents: Statistics, trends
and causes,” International Helicopter Safety Team - Commonwealth of
Independent States, Louisville, Kentucky, USA, Tech. Rep., 03 2016.

[2] H. Huber and P. Hamel, “Helicopter flight control: State of the art and
future directions,” in Nineteenth European Rotorcraft Forum. Cernobbio
(Como), Italy: European Rotorcraft Forum, 09 1993.

[3] G. Padfield, “Helicopter handling qualities and control: is the helicopter
community prepared for change?” in Royal Aeronautical Society Con-
ference on Helicopter Handling Qualities and Control, Royal Aerospace
Establishment. London: Controller HMSO London, 11 1988.

[4] D. G. Mitchell, D. B. Doman, D. L. Key, D. H. Klyde, D. B. Leggett,
D. J. Moorhouse, D. H. Mason, D. L. Raney, and D. K. Schmidt,
“Evolution, revolution, and challenges of handling qualities,” Journal
of Guidance, Control, and Dynamics, vol. 27, no. 1, pp. 12–28, 2004.

[5] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control: Theory,
Computation, and Design, 2nd ed. Santa Barbara, California: Nob Hill
Publishing, 11 2017.

[6] Y.-G. Xi, D. Li, and S. Lin, “Model predictive control — status and
challenges,” Acta Automatica Sinica, vol. 39, p. 222–236, 03 2013.

[7] S. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, no. 7, pp.
733–764, 07 2003.

[8] D. Hrovat, S. Di Cairano, H. E. Tseng, and I. V. Kolmanovsky, “The
development of model predictive control in automotive industry: A
survey,” in 2012 IEEE International Conference on Control Applications,
11 2012, pp. 295–302.

[9] S. Vazquez, J. Leon, L. Franquelo, J. Rodriguez, H. Young, A. Marquez,
and P. Zanchetta, “Model predictive control: A review of its applications
in power electronics,” Industrial Electronics Magazine, IEEE, vol. 8, pp.
16–31, 03 2014.
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