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Abstract. An uncoupled numerical method for the analysis of dynamic crack propagation is proposed. The approach
consists of two main steps. Firstly, the internal stresses in the intact, unfractured, elastic body are calculated with
the use of the finite element method. In this calculation it is assumed that no cracks are present and that fracture
does not occur. Secondly, a theoretical crack is initiated and possible crack paths are derived from the elastic stress
data. The stress-intensity factors for the planar fracture modes I and II, for the anti-plane mode III, and for the
bending modes 1 and 2 are calculated from the well-known, linearized expressions for arbitrary, slightly curved
cracks in thin plate-like and shell-like structures. The direction and speed of crack propagation are determined
from a dynamic fracture criterion based on the energy release rate. Several applications of the uncoupled numerical
method are presented, concerning standard fracture specimens loaded by tensile forces and bending moments, a
single-edge notched beam loaded by shear forces, and a three-dimensional cylindrical tube loaded by torsional
moments. Good agreement with both experimental and numerical results from the literature has been obtained.
The major advantages of the uncoupled approach are its ease-of-use and the limited computational effort.
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1. Introduction

For a practical analysis of the structural integrity of complex mechanical structures, it is
necessary to obtain good insight in the distribution of the internal stresses. Such analyses
typically consist of the following stages

(i) a calculation of the elastostatic stresses in the intact, unfractured structure due to constant

external loads;

(ii) a calculation of the elastodynamic stresses in the intact, unfractured structure due to
time-dependent external loads;

(iii) a calculation of the initial, quasi-static propagation of cracks in the fractured structure
due to constant external loads; and

(iv) a calculation of the prolonged, dynamic propagation of cracks in the fractured structure
due to constant or time-dependent external loads.

These stages are of increasing difficulty. The finite element method has proved to be an
efficient means for the elastic stress calculations mentioned under (i) and (ii); see Hughes [1]
and Zienkiewicz [2]. Special crack-tip elements have been developed for the calculation of
the crack propagation mentioned under (iii} and (iv). These elements incorporate the stress
singularity at the crack tip, either by interpolation of the displacements with the use of square-
root functions (Stern and Becker [3, 4]) or by application of quarter-point nodes on the element
sides adjacent to the crack tip (Barsoum [5]).
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A strong disadvantage occurs in the application of the finite element method to the calcu-
lations mentioned under (iv). Namely, dynamic fracture involves both stress waves and crack
propagation. These dynamic effects interact: the stresses determine the crack propagation,
while rapid fracture initiates new stress waves. This interaction can only be incorporated in
a fully-coupled dynamic fracture analysis. In addition, the material rupture and the creation
of new crack surfaces lead to a continuous change in the geometry of the structure. This
necessitates a continuous adaptation of the element mesh, a shift of the special crack-tip
elements to the new position of the crack tip, and a transfer of variables from the old to the
new element division. An overview of computational studies on dynamic crack propagation,
including moving finite element techniques, is presented by Nishioka, Murakami and Takemo-
to [6]. In such studies the crack path is often assumed to be straight or otherwise to be known
beforehand. When the crack propagates along an arbitrary, a priori unknown, curved path,
many finite elements must be adapted. Since these adaptations require much computing time,
a fully-coupled dynamic fracture analysis is time-consuming and therefore often unsuitable
for a practical study of dynamic crack propagation in large mechanical structures.

As an alternative approach, we propose an uncoupled numerical fracture method (see
van Vroonhoven [7, 8]) based on the calculation of the elastodynamic stresses for the intact
configuration. The response of the intact structure due to constant or time-dependent external
loads is determined with the use of the finite element method and standard finite elements. It is
assumed that the material remains linearly elastic and that fracture does not occur. Afterwards,
as a form of post-processing, predictions of crack paths are computed from the elastic stress
data. The interaction between the crack propagation and the stress waves as described above
has only partially been accounted for in this uncoupled method, because the effect of the crack
propagation on the stress distribution is neglected. Also, the mutual influence of multiple
cracks is not incorporated. Of course, it cannot be expected that this uncoupled numerical
method will produce results with utmost precision for the entire fracture process, especially
near the moment of final collapse. Nevertheless, it is possible to analyse the initial phases of
crack propagation with reasonable accuracy.

The great benefit of the uncoupled numerical fracture method is that a fixed finite element
division is sufficient and that mesh adaptation is not necessary. In addition, several independent
crack paths can be determined from one elastodynamic stress calculation. This implies a
considerable reduction of computing time in comparison with a fully-coupled dynamic fracture
analysis where each crack path must be determined in a separate dynamic calculation. Since
the direction of crack propagation immediately after the onset of fracture is mostly of crucial
importance for the overall safety of the structure [7, Chapter 1], it is often sufficient to study
only the first moments of crack propagation. This corresponds precisely to the range of validity
of the uncoupled numerical fracture method. Therefore, we expect that the uncoupled method
can produce useful results with a limited numerical effort.

2. Theory and numerical method

The uncoupled numerical fracture method has been developed for the analysis of fracture
problems involving rapid crack propagation and/or dynamic loading conditions [7, 8]. Never-
theless, this method can also be used to examine quasi-static crack propagation in structures
under constant loads. There is one restriction: the uncoupled method applies to thin, slightly
curved, plate-like or shell-like structures and is less suitable for analyzing general crack prop-
agation in thick three-dimensional solids. This restriction is related to the manner of crack
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representation, which is described below. We shall now give a detailed description of the
uncoupled numerical fracture method which consists of four distinct steps.

2.1. ELASTIC STRESS CALCULATION

The first step of the uncoupled numerical fracture method is the determination of the stresses
in the intact, unfractured, elastic body as a function of time, either analytically (if possible)
or numerically by means of a finite element computation. In order to perform a dynamic
analysis, it is necessary to calculate the initial equilibrium situation first. Most structures (for
example test specimens) may initially be in a stress-free state, or subjected to gravitational
forces, or in another simple stress situation. The elastodynamic calculation continues with the
addition of the time-dependent external loads and the computation of the stresses for several
time increments. Evidently, a quasi-static analysis can be carried out by taking the stresses
constant in time and equal to the initial stress distribution.

2.2. CRACK INITIATION AND CRACK REPRESENTATION

The initiation of a crack is the second step of the uncoupled numerical fracture method. The
precise location of crack initiation can be chosen freely, in combination with the initial length
and orientation of the crack. For example, the location may be at the position of the highest
stress, near a sharply rounded edge, or at a joint between different materials. It is also possible
to choose an initiation location where the stresses attain a local maximum, a point where an
external force is applied, or any other critical position in the structure.

Regarding the crack representation, we impose some restrictions on the geometry of the
structure under investigation and on the shape of the crack surfaces. The structure is assumed
to be a thin, flat plate or a thin-walled, slightly curved shell. Three-dimensional structures
which do not have constant thickness and/or are not entirely flat, can also be analyzed and
can be regarded as thin flat plates, as long as the thickness variations and the curvature remain
relatively small. The shape of the crack is subject to the conditions that the crack front is
assumed to be a straight line, and that the crack surfaces are assumed to be perpendicular to
the middle plane of the plate. As a result, it is not possible to incorporate variations of the
crack front over the thickness of the plate nor the degree of crack rotation. These latter effects
may occur when the crack propagates at different speeds in the upper and lower surfaces of
the plate or in different directions. In these cases, the crack front is no longer a straight line
perpendicular to the middle plane of the plate, but will rotate and attain a skew orientation with
respect to the plate normal. Observations on three-dimensional fractured specimens, however,
indicate that the cracks are almost perpendicular to the plate surfaces in many cases.

The projection of the crack onto the middle plane of the plate is described by the crack-
shape function y = A(z) with —a < z < +a. The coordinates = and y are the in-plane
Cartesian coordinates, which are related to the crack geometry and chosen such that the two
end points of the crack are on the z-axis. Thus, we have A(£a) = 0; see also Figure 1. The
perpendicular coordinate is denoted by z where —h/2 < z < +h/2. In the general situation,
the plate thickness h may depend on z and y. Obviously, there exists a relation between these
crack-related coordinates and the global Cartesian coordinates X, Y, Z which are used for the
elastic stress calculation.
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Figure 1. Geometry of an arbitrary curvilinear crack with crack-shape function A(z) and with normal and tangential
directions n and s.

Figure 2. Various loading components acting on the crack surfaces, corresponding to the in-plane fracture modes
I and 11, the anti-plane fracture mode III, and the bending fracture modes 1 and 2.

2.3. STRESS-INTENSITY FACTORS

The third and fourth steps of the uncoupled numerical fracture method concern the deter-
mination of the crack path. After the crack initiation and at any moment of the crack-path
calculation, both the speed and the direction of crack propagation must be computed. To this
end, we use the expressions for the stress-intensity factors for curvilinear cracks in plates,
which have been derived by Cotterell and Rice [9] and by van Vroonhoven [7, 10, 11]. We
distinguish five different modes of fracture, namely the usual modes I and II of planar defor-
mation and mode III of anti-plane deformation, plus two additional modes to describe the
out-of-plane bending deformation. The bending modes are referred to by the arabic numerals
1 for normal bending and 2 for torsion; see van Vroonhoven {7, 11] and Hui and Zehnder [12].

The crack path is taken as a piece-wise linear curve with the sequential positions of the
crack tip as its vertices and with the crack increments as the connecting lines. The crack-
shape function \(z) is determined for each vertex by measurement of the distance to the line
connecting the end points of the crack path (the z-axis). The stress distributions along the crack
surfaces are derived from the elastic stresses which have been calculated at step one of the
uncoupled method. The in-plane stresses on opposite crack surfaces are taken equal; only the
perpendicular shear stresses on both crack surfaces are taken opposite. The stress components
along the crack in the positions (z, A(z), z) are denoted by 0;;(x, z) with —a < = < +a and
—h/2 < z < +h/2. The directions normal and tangential to the crack surfaces are denoted
by n and s, respectively, as illustrated in Figures 1 and 2.

The stress-intensity factors K and Kjj for the opening and sliding modes (planar defor-
mation) have been derived in [9] by a perturbation analysis and a linearization procedure with
respect to the crack-shape function A(z). The results obtained by this analysis are expressed
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in terms of the averaged normal and tangential stresses on the crack surfaces (see also Figure
2):

+h(z)/2 1 r+1
:L‘) /h(z)/2 onn(2,2) dz = 5/_1 Onn(z, Ch(z)/2)d(, (1)
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where ¢ = 2z/h(z) is the dimensionless thickness coordinate. The linearized results for the
stress-intensity factors are then given by
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where « is the inclination angle at the right crack tip: tana = X (a).

The stress-intensity factor Kjy for the tearing mode (anti-plane shear) has been calculated
in [7, Section 5.2] and [10]. It has been shown that the linearized result is independent of
the crack-shape function A(z), and that the function A(z) is only present in the expression
for Ky in the case of asymmetric loading of the crack, that is, when the perpendicular shear
stresses on the two crack surfaces are not precisely opposite. The reasons for the dissimilarity
with the expressions for Kj and Kjj are twofold [7, Section 5.4]. Firstly, two independent
fracture modes (I and II) exist in the case of planar deformation, whereas only one fracture
mode (III) exists in the case of anti-plane shear. Secondly, the stress-intensity factors K and
K7y are expressed in terms of tensile and shear stresses in the directions normal and tangential
to the crack surfaces; these directions are related to the derivative X' (z) of the crack-shape
function. The factor Ky, on the contrary, is expressed in terms of shear stresses acting in the
z-direction; this direction is constant along the crack. Thus, Ky depends on the derivative
M (z) to a lesser extent than the other two factors. The linearized expression for Ky is given
by

1 te +a\!/?
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where the function r () indicates the averaged perpendicular shear stress:
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The stress-intensity factors k; and k; for the normal bending and torsional modes have been
calculated in [7, Section 5.3] and [11] on the basis of Kirchhoff’s classical plate theory. For
details on this plate theory we refer to the textbooks by Timoshenko and Woinowsky-Krieger
[13] and Savin [14, Chapter VI]. The analysis in [7, 11] utilizes similar linearization and
perturbation techniques as in [9]. The stress-intensity factors are expressed in terms of the
(integrated) normal bending moments m(z) and torsional moments f(z) per unit length; see
Figure 2. These cross-sectional quantities are expressed in Nm/m and are defined by

h(zx)/2 +1
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The linearized results for the bending stress-intensity factors are given by
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where x = —(3 + v)/(1 — v) with v being the Poisson’s ratio of the material. The integrand

functions g1 (z) and g,(z) are defined by
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where the dimensionless crack-shape parameter A is defined by
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The last term in (10) contains a double integral in which the inner, singular integral must
be calculated by taking the Cauchy principal value. Interchanging the order of integration is
allowed [7, 11]. We note that the expressions for k; and k, are more complicated than those
for Ky and Kjj due to the constant » and the factor (2z — a)/a. Equating this constant to unity
and disregarding this factor in (9)—(12) results in simplified expressions for k; and k», which
resemble the expressions (3) and (4) of planar deformation [7, 1 1].

2.4. CRACK PROPAGATION

For the calculation of the crack-propagation direction and speed, we use the fracture criterion
based on the energy release rate or the J-integrals; see Broek [15, Chapter 5], Cherepanov
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[16, Chapter 5] and Freund [17]. According to van Vroonhoven [7, Chapter 4] and Hui and
Zehnder [12], the integral J; for mixed-mode fracture is given by

h h
Jp = E(K% + K3) + E,-KEH +

h(1 +v)

m(k% + k3), (14)

where h is the plate thickness in the crack-tip region, E is the Young’s modulus, v is the
Poisson’s ratio, and G = E/2(1 + v) is the shear modulus of the material. Because of the
thin, plate-like geometry, it is assumed that conditions of plane stress apply. The integral J, is
related to the amount of energy dissipation per unit length of crack advance and is expressed in
J/m. As an alternative to the factors &; and &, of the classical plate theory, the stress-intensity
factors K; and K, of Reissner’s plate bending theory [18, 19] can be used. The relation
between k1 and k; on one hand and K| and K on the other hand is given by [7, 12]

ki k 3 1/2
m-m-(E), (15)
K K> 1+v
so that the integral J; can be expressed as
h h h
Ji = 5 (Ki + Kip) + 55 Kin + 3-(K7 + K3). (16)

The integral J; in Reissner’s theory has been calculated in [7, Chapter 4] and is equal to

=2 Kk 2K\ K). a7
The direction of crack propagation is now derived from the vector J with component J; in
the direction ahead of the crack and with component J; in the perpendicular direction in the
plane of the plate. Following Cherepanov [16, Chapter 5], we take the direction of this vector
J as the direction of crack propagation. The angle 8, with respect to the current direction of
the crack is then determined by

J2

tan @, = 7 (18)
The speed of crack propagation is derived from a dynamic fracture criterion based on the
theories of Freund [17]. We denote the energy release rate for a dynamically propagating
crack by G(o,a,c) where o represents the stress state or the externally applied forces, a is
the crack length, and ¢ = a is the crack speed. It has been shown in [17, Chapter 6] that
the dynamic energy release rate for a propagating crack is equal to the energy release rate
G (o, a,0) for the static equilibrium state of a stationary crack of the same size a and subjected
to the same external load o, multiplied by a universal function of the crack speed c, viz.

G(o,a,c) = g(c)G(0,a,0), (19)

where g(c) is the universal function of crack speed. An accurate approximation of this function
is (see [7, Section 3.5]) and {17])

g9(c) = (1 —¢/er)y/1 —c/cq, (20)
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where 0 € ¢ < cr < ¢q With cg and ¢, being the speeds of Rayleigh waves and dilatational
waves, respectively. Since the relations (16)—(17) are valid for crack propagation under quasi-
static conditions, we take the length of the vector J as the energy release rate for the static
equilibrium situation [16, Chapter 5]. Thus, we obtain the expression

G(0,a,0) = \/J? + J3. @n

The crack speed ¢ is now determined by putting the dynamic energy release rate G(o,a,c) in
(19) equal to the critical energy release rate G, which is a material constant.
During the numerical computation, the new position of the crack tip is calculated from

Xtip, new = Xtip,old T € At., (22)

where At, is the time step for the crack-propagation increment and ¢ is a vector in the plane
tangent to the plate with length equal to the crack speed c and with its direction determined
by the crack-propagation angle 6,. It is emphasized that the time step At, for the fracture
simulation may be larger than the time step used in the finite element computation of the
elastodynamic stresses. However, the time step At cannot be chosen too large because
otherwise the numerical accuracy of the crack path will be insufficient. In situations with
static loading conditions, we may use a crack increment Ax with fixed length and with its
direction determined by the angle 6, as given in (18). The latter procedure is equivalent to
putting the crack speed ¢ equal to a fixed value, for instance the Rayleigh wave speed cg, and
choosing an appropriate time step At..

After the determination of the new crack-tip position, the third and fourth steps in the
uncoupled numerical fracture method are repeated. The stress-intensity factors for the new,
extended crack are calculated and, as long as the resulting value of G(o,a,0) exceeds the
critical energy release rate G, the crack propagation will continue. It is assumed that the
dynamic fracture process remains unstable (see [16, Chapter 4] and [17, Chapter 1]). But
when G (0, a,0) decreases and becomes less than G, the crack-propagation speed ¢ becomes
zero and crack arrest occurs.

Finally, we emphasize that the uncoupled numerical fracture method admits the analysis
of only one crack at a time. It is possible to analyze the propagation of multiple cracks by
performing separate, parallel computations on the basis of the procedure described above.
Every crack calculation starts with the initiation of a new crack, which may be chosen at
a different position and with a different initial length and/or orientation. The ease-of-use of
the uncoupled method becomes apparent when we consider the significant numerical effort
involved in a (dynamic) finite element computation compared to the relatively small amount of
post-processing for uncoupled fracture simulations. The elastic stress calculation for a large,
complicated geometry can be quite elaborate and can require several hours of computing time.
But such stress calculation for the intact geometry always has to be performed in a practical
failure analysis. Namely, it is one of the simplest ways to obtain insight in the internal stress
distributions, as we have mentioned in the introduction where these calculations were referred
to as stages (i) and (ii). The time needed to calculate a crack path by the uncoupled method
ranges from a few minutes to at most one hour on a HP-9000 computer, depending on the
length of crack extension. The fully-coupled fracture calculations of stages (iii) and (iv), on
the other hand, need an amount of computing time which is normally considerably larger than
that for the elastodynamic stress calculation for the intact geometry. The advantages of the
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uncoupled numerical fracture method are obvious: the elastodynamic stress data are already
available and can be used again for repeated, uncoupled crack-path calculations, resulting in
large savings in computing time.

3. Discussion of uncoupled calculation

The uncoupled numerical fracture method uses elastic stress data of the unfractured configu-
ration to make crack-path predictions. This may sound contradictory, but it can be explained
by the following argument for quasi-static fracture. In the first step of an uncoupled analysis,
we compute the elastic stress distribution for the intact structure under the assumption that
fracture does not occur. In the next steps, we assume the existence of a crack at a certain
position and at a given moment of time. This crack, however, is a theoretical crack in the
sense that it does not exist in reality. The stresses in these positions are considered to act on
the crack surfaces, opening the crack, and creating a stress singularity at its tip. This leads
to a paradox, since there are no singularities in the computed stress data. On the other hand,
the surfaces of a real crack would have been stress-free. This paradox is explained with the
superposition principle (see Broek [15, Section 3.5]) for the situation of a mode I crack.

Consider the intact, unfractured, elastic body loaded by prescribed external forces. The
distribution of the internal stresses is calculated at step one of the uncoupled method. Also
consider three related configurations under different loading conditions illustrated in Figure 3.
Firstly, the body (a) contains a crack with stress-free crack surfaces and is subjected to the same
external loads as the intact, unfractured, elastic body. Due to the presence of the crack, stress
relief occurs resulting in crack opening. Secondly, the body (b) having the same geometry as
(a) is loaded by extra stresses o,, = p(z) being applied to the crack surfaces in the direction
n normal to the crack. These stresses tend to close the crack and the function p(z) is chosen
such that complete crack closure occurs and that the stress singularities at the crack tips
vanish. Because of the disappearing stress singularities, the configuration (b) coincides with
the intact, unfractured geometry. The difference between (a) and (b) is obtained by subtraction.
This results in configuration (c) where no externally applied forces are present; only the crack
surfaces are subjected to stresses g, = —p(x) having opposite sign with respect to body (b).
These stresses tend to open the crack and create stress singularities at the crack tips. Because
of the superposition principle, the stress intensities for (a) and (c) are identical. The stress
distribution p(x) is derived from the solution of problem (b) or, equivalently, from the solution
for the intact, unfractured, elastic body. The obtained stress distribution is then used for the
calculation of the stress-intensity factors. This argument shows that the influence of the stress
situation on the stress-intensity factors is correctly incorporated in the uncoupled numerical
fracture method.

The argumentation presented above reveals some limitations of the uncoupled numerical
fracture method, regarding the dynamic effects. As described in the introduction, the stresses
and the crack propagation are linked. Firstly, the crack-path predictions are based on the
elastic stress situation. This equally applies to dynamic and static fracture processes. Secondly,
rapid crack propagation induces stress waves emanating from the moving crack tip and the
continuous change in the geometry leads to different relations between the stresses and the
external loads. The latter effect, i.e., the influence of the propagating crack on the stress field,
is neglected in the uncoupled method. The dynamic interaction is only incorporated in the
universal function of the crack speed g(c) which relates the elastodynamic energy release rate
to its static equivalent, as shown in the equation (19). Because of the partial incorporation of



184 J.C.W. van Vroonhoven and R. de Borst

P 1t 11t

— |||

T T

Figure 3. Three configurations illustrating the principle of superposition. Configuration (a) with external load
and stress-free crack surfaces, minus configuration (b) with extra stresses closing the crack, is equivalent to
configuration (c) with opposite stresses applied to the crack surfaces and without external load.

the dynamic effects, the uncoupled method can only produce reliable results for the initial
phases of crack propagation, but not over the full range of the fracture process. This is not
considered a major problem, since the initial phases of crack propagation are generally seen
as the most important ones in judging the structural integrity of the constructions.

4. Numerical results and discussion

The uncoupled numerical fracture method has been incorporated, together with a finite element
program, in the MATLAB programming environment [20]. For the division of the geometries
into finite elements, the mesh generation program SEPMESH of the SEPRAN package [21]
has been utilized. Since the uncoupled method is applied to thin-walled structures under
tension and bending loads, the 8-node brick elements of Wilson and Taylor [22, 23] are
employed; see also Hughes [1, Section 4.7] and MacNeal [24, Chapter 8]. These elements
have eight corner nodes and additional, quadratic interpolation functions (or shape functions)
to ensure the correct bending stiffness of the element. The additional interpolation functions
are commonly called ‘incompatible modes’. Standard 8-node brick elements with linear
interpolation functions are unsuitable for the solution of general elasticity problems, since these
elements cannot incorporate the quadratic displacements occurring in bending deformation.
These standard linear elements appear to be too stiff. Furthermore, the Wilson-Taylor elements
use a Gaussian quadrature rule with eight (2 x 2 x 2) integration points, which is more
economic than the 20-node quadratic brick elements with either a 27-point (3 x 3 X 3)
Gaussian quadrature rule or a 14-point non-Gaussian quadrature rule; see Irons [25]. This
establishes a considerable reduction in computing time for the assembly process. Moreover,
van Vroonhoven [7, Section 7.5] has shown that the elements of Wilson and Taylor give a
far better performance concerning the calculation of the displacements and the stresses than
some other 8-node brick elements, such as under-integrated elements.

4.1. SQUARE PLATE LOADED BY TENSILE FORCES OR BENDING MOMENTS

A series of numerical tests has been carried out to investigate the accuracy and the reliability
of the uncoupled numerical fracture method. The first test concerns the possible dependence
of the calculated crack path on the finite element division. To this end, we study a square plate
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(a) slope 0.10 10x10 elements (b) slope 0.20 16x16 elements
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Figure 4. Crack paths in a square plate loaded by tensile forces, derived with the uncoupled numerical fracture
method. Subsequent positions of the crack tip are shown by o and the prospective end point of the crack by x.

of size | x [ and thickness h = /20, loaded by uniform tensile forces or uniform bending
moments on two opposite sides. The plate is divided into 7 x n elements with one element over
the thickness; the elements have a variable, slanted orientation. After the stress calculation a
crack is initiated at the middle of one of the traction-free sides. A crack increment Ax of fixed
length is used to simulate quasi-static crack propagation. The initial crack length is equal to
3/4 of the element width and the crack increments are chosen equal to 2/3 of the element
width.

Calculations have been performed for various numbers of elements and for various different
element orientations. In Figure 4 we show some typical results for the crack paths in the plate
loaded by tensile forces, for (a) an element division with n = 10 and a maximum slope of
the element lines equal to 0.10, and for (b) an element division withn = 16 and a maximum
slope of 0.20. These slopes correspond to inclination angles of the mesh lines of 5.7° and
11.3°, respectively. Subsequent positions of the crack tip are marked by open circles. The
prospective end point of the crack is at the middle of the traction-free side opposite to the
point of crack initiation and is indicated by x. Similar results have been obtained for the
plate loaded by bending moments, where anti-clastic bending behaviour [13, Section 11] is
observed in the displacement solution due to the applied moment. Because of the simple
loading configuration, the fracture process can be described by one stress-intensity factor: Kj
for the tension problem and k; (or K;) for the bending problem. A trivial solution is obtained
with a uniform uniaxial stress state and with a straight crack path, despite the slanted element
orientation. Refinement of the element division and selection of other inclination angles also
produce straight crack paths for both loading situations.

In order to illustrate that the crack speed is calculated correctly, we have also performed
a dynamic uncoupled fracture analysis of the square plate under tensile forces, for the finite
element division with n = 16 and a maximum slope of the element lines equal to 0.20.
The Poisson’s ratio v has been set equal to 0.250, so that the Rayleigh wave speed equals
cr = 0.5815,/E/p with E the Young’s modulus and p the density of the material. The initial
crack length is again equal to 3/4 of the element width; the time step for the crack increment
is chosen equal to At, = 0.090 I/p/E. The resulting crack path is shown in Figure 5(a),
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(a) crack path for dynamic test (b) crack speed
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Figure 5. Dynamic crack propagation: (a) crack path in a square plate loaded by tensile forces and (b) dimensionless
crack speed ¢/cg as function of the crack-tip position Ziip /L.

illustrating that the length of the crack increments gradually increases as the crack propagates.
The crack speed as function of the crack-tip position is presented graphically in Figure 5(b)
and is given by

(ziip) = cr - (1 - ﬁ—) . (23)

'Ttlp

because the mode I stress-intensity factor is equal to Ki = o/@Zgp for a uniform stress
field o, as derived from (3). The result (23) coincides with the results obtained by Broek [15,
Section 6.1]. The parameter z. in (23) is the critical crack length and is derived from

K.=+/EG./h = o\/Tx,. 24)

When the initial crack length is smaller than z., no crack propagation will occur. Only cracks
with an initial length larger than z. will lead to fracture of the plate.

4.2. SINGLE-EDGE NOTCHED BEAM LOADED BY SHEAR FORCES

The next test concerns curvilinear crack propagation under shear loads. A suitable test for the
examination of shear effects was proposed by losipescu [26], namely a beam with a single-
edge notch loaded by compressive forces applied at four different points, as shown in Figure
6. We adopt the dimensions of Feenstra [27, Section 5.1] and Schlangen {28, Section 3.3]
and study a beam of length 440 mm, height 100 mm, and thickness 10 mm. The forces Fy are
applied at a distance of 20 mm from the plane of symmetry and the forces F; at a distance of
200 mm. Because of mechanical equilibrium, we have F; = 10F,. The beam is divided into
a total of 264 elements with one element over the thickness and with refinement in the shear
zone, where the elements are of size 10 x 10 x 10 mm?>.

A crack is initiated at the center of the long edge of the beam, in the plane of symmetry, with
an initial length of (a) 15 mm or (b) 25 mm. The deformation of the beam is essentially two-
dimensional and the fracture process can be described by a combination of the stress-intensity
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(a) initial crack length 15 mm
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Figure 6. Crack paths in a single-edge notched beam loaded under shear conditions, derived with the uncoupled
numerical fracture method. Subsequent positions of the crack tip are shown by o.

factors K7 and Kj;. Due to the shear stresses, the crack propagation is (initially) dominated by
mode II and will occur along a curved path ending on the opposite edge to the right of the point
where the force Fj is applied [28, Section 4.1]. The crack paths obtained with the uncoupled
numerical fracture method, as shown in Figure 6, satisfy this requirement although deviations
occur near the points of crack arrest. These deviations are caused by compressive stresses
which occur in the uncoupled analysis. In a fully-coupled fracture analysis, these compressive
stresses would shift to the top of the beam during crack propagation. The first part of the crack
path is therefore reliable, while the second part must be considered with caution.

The crack paths of Figure 6 agree with both the experimental and the numerical results
in [28, Sections 4.1, 6.2]. The present results are better than those in [27, Section 5.1] where
a straight crack path inclined at an angle of approximately 45° with respect to the edge was
obtained. Single-edge notched beams of other dimensions have been studied by Lubliner,
Oliver, Oller and Ofiate [29] with the use of a plastic-damage model and by Rots [30] with
smeared and discrete crack representations. Their studies have led to similar results.

4.3. CYLINDRICAL PIPE LOADED BY TORSIONAL MOMENTS

A three-dimensional test problem with curvilinear crack propagation is the torsion of a hollow
cylindrical pipe. The thickness of the pipe is 10 mm and the inner and outer radii are 30
and 40 mm. The pipe has a length of 400 mm and is loaded by torsional moments at both
end surfaces. We choose a finite element division with 25 elements in the axial direction, 16
elements in the circular cross section, and one element over the thickness. Because of the
torsional loading, a stress state of pure shear is obtained.

A crack is initiated in the middle cross section of the pipe and through the thickness. The
initial crack length is 3/4 of the element size in the circumferential direction and the crack
increments are 2/3 of that element size. The early stage of fracture is dominated by mode II,
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Figure 7. Crack paths in a cylindrical pipe loaded by torsional moments, derived with the uncoupled numerical
fracture method. The initial crack is at the middle of the side view and at the top of the cross-sectional view.
Subsequent positions of the crack tip (into two directions) are shown by o.

but the crack deflects in such a fashion that the stress-intensity factor Ky gradually becomes
more dominant while K decreases. Crack propagation is determined in two (symmetric)
directions and the pipe with the calculated crack paths is shown in Figure 7. The calculation is
terminated when the linearized expressions (3)—(5) and (9)—(10) for the stress-intensity factors
cannot be used anymore due to extreme curvature of the crack path. The present numerical
results agree with the crack-path predictions based on the experimental work of Richard [31]
and the theoretical work of Lakshminarayana and Murthy [32]. This example shows that the
uncoupled numerical fracture method can also be used for a study of crack growth in shell-like
structures.

5. Conclusions

Application of an uncoupled numerical fracture method to standard test problems has shown
that this method is not susceptible to variations in the finite element division. This mesh
independence concerns both the element size and the element orientation. In addition, appli-
cations to Iosipescu’s single-edge notched shear beam and to the torsion of a cracked, hollow,
cylindrical pipe have demonstrated that correct crack-propagation directions are derived for
fracture under mixed-mode conditions and in three dimensions. The crack propagation was
determined on the basis of the energy release rate in combination with the stress-intensity
factors for arbitrary, slightly curved cracks. Moreover, the use of a dynamic fracture criterion
enables the accurate calculation of the speed of crack propagation. Based on these consid-
erations, we conclude that the uncoupled numerical fracture method produces trustworthy
results, and that extension to more complicated problems is allowed.

Due to the partial uncoupling between crack propagation and dynamic effects, the results
for prolonged crack propagation must be considered with caution, especially near the point of
crack arrest or final collapse. Nevertheless, good crack-path predictions have been obtained
for the early phases of fracture. The advantages of the uncoupled numerical fracture method
are that adaptations of the finite element division are not necessary, and that the elastodynamic
stress data can be used repeatedly for multiple crack computations. Thus, we conclude that
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with this uncoupled method we have established an effective, powerful, and inexpensive tool
for the analysis of crack propagation both in statically and in dynamically loaded structures.
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