
Automated Solution of
Partial Differential Equations

with Discontinuities
using the Partition of Unity Method

Automated Solution of
Partial Differential Equations

with Discontinuities
using the Partition of Unity Method

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K. C. A. M. Luyben,

voorzitter van het College van Promoties,

in het openbaar te verdedigen op maandag 17 december 2012 om 15.00 uur

door

Mehdi NIKBAKHT

Master of Science in Structural Engineering, Sharif University of Technology

geboren te Mianeh, Iran

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. L. J. Sluys

Copromotor:

Dr. G. N. Wells

Samenstelling promotiecommissie:

Rector Magnificus Voorzitter

Prof. dr. ir. L. J. Sluys Technische Universiteit Delft, promotor

Dr. G. N. Wells University of Cambridge, copromotor

Prof. dr. ir. C. Vuik Technische Universiteit Delft

Prof. dr. H. P. Langtangen Universitetet i Oslo

Prof. dr. M. A. Hicks Technische Universiteit Delft

Dr. ir. R. B. J. Brinkgreve Technische Universiteit Delft

Dr. A. Simone Technische Universiteit Delft

Prof. dr. A. V. Metrikine Technische Universiteit Delft, reservelid

This research has been supported by the Dutch Technology Foundation (STW) and the Ministry

of Public Works and Water Management under grant number 06368.

Keywords: partition of unity method, automatic code generation, partial differential equations,

discontinuities, object oriented library, compiler, finite element methods

Copyright © 2012 by M. Nikbakht

The thesis cover is designed by M. Sahebi Afzal. The dolphin mesh used in the cover is created by

M. Rogners and it is avaibale inside the DOLFIN library.

Printed by Ipskamp Drukkers B.V., Enschede, The Netherlands

ISBN: 978-94-6191-548-1

Acknowledgement

This PhD thesis is a formal closure to more than twenty three years of my life as a

student, starting from a city in the north-west of Iran and finishing in a city in the

south-west of the Netherlands. These years filled with memories; Memories identified

with people; People who played a significant role in my student life. It is my great

pleasure to begin my thesis with acknowledgements.

First and foremost, I would like to thank GarthWells for giving me the opportunity

to work with him and under his supervision. Although Garth moved to Cambridge

in the second year of my PhD, he continued his supervision beside all his activities

in Cambridge. I am very grateful for his invaluable guidance, our discussions and his

insightful comments on my manuscripts. Garth is very enthusiastic about his work

and he also communicates his enthusiasm to those connected to him. I am sure I

would not have been able to finish this thesis without his help and remarkable ideas.

Also, I would like to thank Prof. Bert Sluys for his support during my PhD,

reading my thesis as my promoter, and for creating a very flexible environment

for the members of his group. I always had Bert’s support during different periods

of my PhD. Bert is not only a leading scientist but also a true gentleman. The

other members of my thesis committee are gratefully acknowledged for reading the

thesis, providing useful comments and being present in my defense session. It is

my privilege to have Prof. Hans Peter Langtangen, Prof. Kees Vuik, Prof. Michael

Hicks, Dr. Ronald Brinkgreve, Dr. Angelo Simone, Prof. Andrei Metrikine in my

thesis committee. The financial support from the Dutch Science Foundation and the

Ministry of Public Works and Water Management are also acknowledged.

My special thanks go to Kristian Ølgaard who was working in the computational

mechanics group on the FEniCS project as I was. After Garth’s departure to

Cambridge, we were only guys in the group working on the automatic code generation

topics. I always had nice and fruitful discussions with Kristian and I liked his

organized way of working. I also want to acknowledge support from the FEniCS

community all across the world most notably guys from Simula in Oslo.

I really enjoyed my time in the computational mechanics group which was an

international group full of nice people. It was always a wonderful opportunity for me

to learn about different cultures and countries. I would like to gratefully thank Zahid

Shabir, Frans van der Meer, Mojtaba Talebian, Oriol Lloberas Valls, Peter Moonen,

Ronnie Pedersen, Frank Radtke, Xuming Shan, Mohammad Mahdi Banatehrani,

Amin Karamnejad, Edlira Kondo, Vinh Phu Nguyen, Awais Ahmed, Aliyeh Alipour,

vi

Roberta Bellodi, Prithvi Mandapalli, Adriaan Sillem, Jitang Fan, Nghi Le, Mehdi

Musivand, Tien Dung Nguyen, Mirella Villani, Cor Kasbergen, Rafid Al-khoury,

Angelo Simone, Frank Everdij, Jaap Weerheijm, Marjon van der Perk and Anneke

Meijer for their friendship, support and help during my PhD. Frans also accepted

my request to translate the summary and prepositions of my thesis to Dutch. I know

how difficult it can be when it comes to a 13th-century Persian poem. I would like

to appreciate this favor and his friendship during last few years.

During my PhD, I had numerous visits to the University of Cambridge. I would

like to acknowledge the Engineering Department and Jesus College in Cambridge

for providing me places to work and live. I would like to thank all my friends and

colleagues in Cambridge who helped me to enjoy my stays there. Special thanks goes

to Hamed Nili in this regard.

Moving to a foreign country is always challenging. I would also like to highly

thank Mohammad Ali Abam and Amir Hossein Ghamarian who helped me to settle

smoothly in the Netherlands and they continued their support when I needed any

help. I express my best thanks to my Iranian friends all over the globe which surely I

will miss some if I want to mention all the names. I would like to thank the members

of our bi-weekly gatherings in Delft which I learned a lot with our discussions about

different topics. I also appreciate Mahmoud Sahebi Afzal for being a good friend and

designing the elegant cover of this thesis.

My professors at Sharif University of Technology taught me basics of structural

mechanics and introduced me to the wonderful world of academic research. For that,

my best thanks go to Prof. Amir Reza Khoei and Prof. Vahid Khonsari. I also want

to appreciate Heydar Zandiyeh and all my teachers in Roshd high school who helped

me to discover my abilities and provided an environment to grow.

Last but certainly not least comes my family. I think that now, at the end of my

PhD studies, would be the right moment to express my deepest gratitude to my

parents and my brother, Meisam for their unconditional support, encouragement,

love, faith and prayers to God in me throughout my whole life. I am sure that I could

not be here without them and I missed them a lot when I moved to the Netherlands.

I also want to thank my parents in-law and sister in-law. Their support, trust and

prayers to God during the last few years have been an invaluable asset for me. Finally,

I would like to thank my wife, Somayeh. Her support, encouragement, patience and

unconditional love were undeniably the bedrock upon which my life has been built.

I would like to appreciate her understanding during the busy period of writing my

thesis. For sure, she is my greatest achievement from Delft. I dedicate this thesis to

my family, with love and gratitude.

Mehdi Nikbakht

Eindhoven, October 2012

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivations and objectives . 4

1.3 Thesis outline . 5

2 Partition of unity methods 7

2.1 Application . 7

2.1.1 Applications in solid mechanics . 8

2.1.2 Applications in fluid mechanics . 9

2.2 A discretized form of an elasticity problem with discontinuities 11

2.3 Implementation aspects . 15

2.3.1 Variable number of degrees of freedom . 15

2.3.2 Integration of the intersected cells . 16

2.3.3 Surface representations . 17

3 An overview on the automated computational mathematical m odelling 21

3.1 FEniCS project . 22

3.1.1 Design of the automated framework . 22

3.1.2 Key components . 23

3.2 Examples . 32

3.2.1 Poisson problem . 33

3.2.2 Discontinuous Galerkin approach to linearised elasticity 36

3.2.3 Continuous Galerkin formulation for hyperelasticity 39

3.2.4 Incompressible elasticity . 43

3.3 Summary . 48

4 A form compiler for modeling discontinuities 49

4.1 Design requirements . 50

4.2 Form compiler input . 51

4.3 Structure of the form compiler . 54

4.3.1 Analysis of the form language input . 55

4.3.2 Intermediate code representation . 55

4.3.3 Optimisation of the intermediate representations 56

4.3.4 Code generation from the intermediate representations 57

4.3.5 Code formatting . 57

4.4 Components of the generated code . 57

4.4.1 The UFC-based classes . 57

viii Contents

5 A Partition of Unity Method library 63
5.1 Design considerations . 64

5.2 Core components of the PUM library . 64

5.2.1 pum::GenericPUM base class . 67

5.2.2 pum::GenericSurface base class . 68

5.3 Enriched degrees of freedom manipulation . 72

5.3.1 Implementation . 73

5.4 Non-branching continuous surface representation . 74

5.4.1 Surface representation . 75

5.4.2 Implementation . 78

5.5 The solver wrapper classes . 82

6 Applications in modelling different physical problems 83
6.1 H1-conforming primal approach to the weighted Poisson equation 83

6.2 L2-conforming discontinuous Galerkin approach to the elasticity equation 87

6.3 Continuous/discontinuous interior penalty formulation for the biharmonic equation . 91

6.4 Mixed formulation for the Poisson equation . 96

6.5 H(curl)-conforming elements for an electromagnetic problem 98

6.6 H1-conforming primal approach to the hyperelasticity problem 101

6.7 Cohesive crack propagation . 103

6.8 Partially saturated porous media problem . 107

6.9 Circular slip plane problem . 120

7 Conclusions and future works 129
7.1 Conclusions . 129

7.2 Recommendations for future . 131

References 133

List of Figures 148

List of Tables 154

Summary 155

Samenvatting 157

Propositions 159

Stellingen 161

Curriculum vitae 163

Chapter 1 Introduction

1.1 Background

Numerical solution of partial differential equations with discontinuities is important

in a wide range of physical problems. A well-known example in solid mechanics is

the modelling of the propagation of cracks. Modelling shear-bands, dislocations and

material inclusions are other examples in solid mechanics. Modelling shocks and

interfaces in multi-phase flows can also be classified as problems whose solutions are

discontinuous in fluid mechanics. In electromagnetism, discontinuous solutions may

also happen along the boundaries between materials with different electromagnetic

properties.

Using the finite element method (Hughes, 2000; Cook et al., 2002; Zienkiewicz

et al., 2005) for the numerical modeling of evolving discontinuities across a priori

unknown surfaces involves considerable challenges. In early implementations of

finite element models for problems with discontinuity surfaces, the main focus was

on mesh adaptation to construct meshes that conformed to discontinuity surfaces

(Ingraffea and Saouma, 1985; Swenson and Ingraffea, 1988). Not only is generating

a mesh compatible with discontinuity surfaces a challenging task in developing the

finite element models, but computed solutions of such models may also suffer from

inaccuracy and mesh-dependency (Bažant, 1976; de Borst et al., 1993). Moreover,

updating the mesh to capture the solution is inevitable for evolving discontinuities

(Camacho and Ortiz, 1996). The remeshing becomes cumbersome, time consuming

and a computationally demanding task especially for three-dimensional problems

(Carter et al., 1997). Furthermore, for nonlinear problems, it may be necessary to

transfer data between different meshes many times which is expensive and it can

considerably decrease accuracy of solutions (Bittencourt et al., 1992; Tijssens et al.,

2000a,b).

To overcome the draw-backs related to modeling problems with discontinuity

surfaces using the classical finite element method, a new approach, the so-called

continuous/discontinuous finite element methods, has been developed (Ortiz et al.,

1987; Belytschko et al., 1988; Belytschko and Black, 1999). In this approach, specific

kinematics have been added to the classical finite element approximations to capture

discontinuities. This new approach essentially consists of enriching a standard

smooth finite element basis, with additional (discontinuous) functions, devised for

capturing physical discontinuities. These additional functions are selected to take

2 Chapter 1 Introduction

advantages of the information that is already known about the expected behavior of

discontinuities (e.g. Heaviside function for problems whose solutions exhibit jumps).

This approach decouples topology of a mesh from discontinuity surfaces; therefore,

no special treatment in the mesh discretization is required for subdomains containing

discontinuities.

As for the enriching techniques, two broad families can be distinguished in terms of

enrichment strategies. A first family, the so-called embedded finite element methods,

contains methods in which elemental enrichments are performed. The enrichment

functions are defined on the local enhanced degrees of freedom for each element

and these enhanced degrees of freedom are removed by static condensation prior to

the global tensor assembly. For this reason, no new global degrees of freedom are

introduced to computational domains and the total number of degrees of freedom

does not change. In these methods, discontinuity surfaces are embedded in finite

elements without considering them in mesh generation stages. The embedded finite

element methods, in which enrichment functions are added locally for each element

intersected by discontinuities and remain at the element level, were inspired by

a work of Ortiz et al. (1987). Their model could capture the behavior of one

weak discontinuity line crossing a finite element. Belytschko et al. (1988) proposed

another formulation which could capture a softening band between two parallel weak

discontinuity lines within an element. The idea was also used in modeling strong

discontinuity surfaces (Simo and Oliver, 1994; Dvorkin et al., 1990; Klisinski et al.,

1991).

Many instances of the embedded finite element methods exist in literature

(Belytschko et al., 1988; Simo et al., 1993; Lotfi and Shing, 1995; Larsson et al.,

1996; Oliver, 1996; Sluys and Berends, 1998; Wells and Sluys, 2001b). Jiràsek

(2000a) performed a comparative study on these methods. He showed that individual

models are different in many aspects, e.g. the type of parent element, the type

of discontinuity (weak/strong) and constitutive laws. He divided the embedded

finite element methods into three different groups which differ in traction continuity

conditions and kinematical descriptions of discontinuity surfaces.

However, a number of problems have been experienced in using the embedded

finite element methods to model domains with discontinuities (Jiràsek, 2000b;

Jiràsek and Belytschko, 2002). A first problem is using the elemental enrichments

that are defined on the internal degrees of freedom corresponding to the jump over

discontinuity surfaces. The enrichment functions are discontinuous not only on the

surfaces but also at the boundaries of elements intersected by discontinuities. This

leads to a non-conforming formulation in which the compatibility of strain fields is

not satisfied and it is only enforced in a weak sense.

Another problem is related to the lack of the kinematic decoupling of the embedded

finite element formulations. Using the enrichment functions, arbitrary displacement

1.1 Background 3

jumps can be reproduced in the embedded finite element methods. However, the

strains on both sides of the discontinuity surface are still coupled (in elements that

are crossed by the discontinuity surface).

This limitation has severe implications and it has the consequence that even after

complete failure (formation of a stress-free crack), the strain field approximations

in the two parts of the element intersected by a discontinuity are not independent.

For example, using a constant-strain triangle, the strains in these two parts are

approximated by the same constant tensor. Of course, a higher-order formulation

with a spatially variable strain approximation can be used to increase the decoupling,

but a certain bond always remains that prevents the modeling of the two separated

material bodies in full generality.

The uniqueness and numerical robustness of solutions are a third problem

for the embedded finite element methods. The additional enrichment degrees of

freedom have an internal character; thus, they can be eliminated on the element

level by special treatments. Although this elimination has an advantage from the

computational point of view, because the number of global degrees of freedom

remains the same, it introduces numerical problems for the embedded finite element

methods. In order to avoid these numerical problems, special attention must be

devoted to element sizes and orientation of elements with respect to discontinuity

surfaces.

To overcome these problems, another family of enriching techniques has been

introduced for modeling problems with discontinuities. This family covers methods

in which the idea of the nodal enrichment using the Partition of Unity (PU) concept

(Babuška et al., 1994) is applied. In this approach, the discontinuity surfaces are

modeled by enriching the classical polynomials with special functions that are defined

on additional degrees of freedom, called enriched degrees of freedom. These enriched

degrees of freedom are added globally to the discretized system; therefore, they

increase the total number of degrees of freedom. Special attentions must be devoted

to handle entries corresponding to the new degrees of freedom in the assembly stage.

Babuška and Melenk (1996, 1997) developed a method based on the partition of

unity concept. In their method, they used the global enrichments to improve the finite

element approximation properties in the entire domain in comparison to the classical

finite element approximations. They showed that a partition of unity formulation

can be constructed using finite element basis functions and the quadrature of weak

formulations. They utilised the global enrichments to approximate solutions of the

Helmholtz equation and the Laplace equation. The enrichment for capturing locally

non-smooth phenomena for boundary layers was also briefly discussed in their work.

Later on, local partition of unity enrichment functions have been used to

model problems with discontinuity surfaces. The eXtended Finite Element Method

(XFEM) (Belytschko and Black, 1999; Moës et al., 1999) and the Generalized Finite

4 Chapter 1 Introduction

Element Method (GFEM) (Strouboulis et al., 2000b, 2001) are two examples of

the local enrichments. In these methods, the local enrichments have been used

in subdomains around discontinuities and special numerical integration algorithms

have been utilised for cells intersected by discontinuities. Note that the eXtended

Finite Element Method and the Generalized Finite Element Method have similar

formulations and their different names are mainly because of historical reasons.

1.2 Motivations and objectives

With the introduction of the partition of unity enrichment methods and their

applications in modeling physical problems with discontinuous solutions in the last

decade, the computational technology for the modelling of these types of problems

is now maturing. However, the implementation of these techniques can be tedious,

difficult and requires a significant investment of time, especially for coupled nonlinear

problems in which different combinations of continuous and discontinuous function

spaces might be used. Therefore, the application of the partition of unity enrichment

methods is mainly limited to a small group (e.g. computational scientists) who can

develop finite element software rather than a broader group (e.g. engineers) that

uses the computational technology.

A limited number of finite element libraries which support the partition of unity

enrichment methods are available (see for example Bordas et al. (2007), Giner et al.

(2009) and Chamrová and Patzák (2010)). These libraries follow the traditional

paradigm in which a user is required to program by hand the innermost parts of a

finite element solver.

To overcome the cumbersome and time consuming task of translating a partial

differential equation to a discretized system of algebraic equations, the automatic

generation of code is a possibility (Kirby and Logg, 2006, 2007; Logg et al., 2012a).

In the automatic code generation approach, the required code for the innermost

assembly loop in the finite element methods is generated automatically using a

compiler approach. The compiler approach hides implementation details from users

by providing an interface which mimics mathematical formulations.

One of the novel projects which widely uses the compiler approach is the FEniCS

project (Logg et al., 2012f). FEniCS relies on the automatic code generation of finite

element models and facilitates modelling complex problems by removing the need

for a hand-generated code for the discretized systems of finite element formulations.

This approach improves the speed and efficiency of implementing different finite

element models. FEniCS supports not only conforming Lagrange formulations but

also discontinuous Lagrange formulations. Moreover, a wide range of finite elements

are also supported within the FEniCS project.

The objective of this work is to design a general, efficient, simple and reliable

1.3 Thesis outline 5

framework to model problems whose solutions exhibit jumps over surfaces (strong

discontinuities) in an automated way. This automated framework can facilitate the

modelling of discontinuities for a wide range of physical problems by the automatic

code generation approach for users of computational technology. It uses available

tools from FEniCS and extends them to provide required functionalities to support

the partition of unity enrichment methods. In summary, the following goals should

be achieved through the automated framework:� a detachment of underlying partial differential equations (PDEs) from the

partition of unity implementation details;� uncoupling surface representations from the rest of the finite element

implementation to allow testing various competing representations with a

minimum rework;� a rapid development of different models for the simulation of discontinuity

surfaces in a wide range of physical problems using Lagrange/non-Lagrange

families of finite element function spaces;� providing a framework to use different enrichment strategies easily; and� a fast implementation of different combinations of continuous/discontinuous

finite element spaces for modeling discontinuity surfaces in coupled problems.

The implementation of the automated framework for modeling problems with

discontinuity surfaces is divided into two components: a form compiler and a solver

library. The form compiler is used to generate PDE–specific low-level code using

an input representing a variational formulation. The generated code is then used

to assemble element tensors and nodal mapping required for the partition of unity

enrichment methods inside a solver. The solver library provides information about

discontinuity surfaces, meshes, boundary conditions and coefficient functions. It

also solves variational problems and post processes results. In the case of evolving

discontinuity surfaces, the evolution criteria are also defined inside the solver. Both

the compiler and the solver library are licensed as open–source software and they

can be downloaded from the FEniCS project website (Logg et al., 2012f).

1.3 Thesis outline

This thesis is organized as follows. Chapter 2 elaborates the partition of unity

methods in modelling problems with discontinuity surfaces and provides literature

reviews on the application of these methods. The implementation of these methods

is challenging and careful attention must be devoted to designing corresponding

6 Chapter 1 Introduction

software packages. Implementation aspects specific for the partition of unity method

are explained at the end of this chapter. An overview of the automation of

computational mathematical modelling is given in Chapter 3. In this chapter,

the main focus is on the FEniCS project and its key components are explained.

At the end of this chapter, a number of examples of solving different partial

differential equations are presented to show the versatility and possibility of using

FEniCS to model different physical problems. The partition of unity compiler is

the first component of the automated framework. The structure and interface of

the compiler are explained in Chapter 4. This compiler is built on top of the

FEniCS From Compiler (Logg et al., 2012b) and generates the required low-level

code to model problems with discontinuity surfaces in the partition of unity

framework. The structure of the generated code using the partition of unity compiler

is then elaborated. Chapter 5 explains the other component of the proposed

framework, which is the partition of unity method library. The solver library provides

components which can use the automatically generated code to model discontinuity

surfaces. The key components of the library are explained. In Chapter 6, modeling

of discontinuities in a wide range of two- and three-dimensional physical problems

is presented. Finally, this thesis is closed by conclusions and suggestions for future

work in Chapter 7.

Chapter 2 Partition of unity methods

To allow discontinuity surfaces to evolve independently from the mesh topology,

the traditional finite element formulations have been extended. This extension is

achieved by adding enrichment functions to the standard approximations in the

partition of unity context. The enrichment functions are defined on new degrees

of freedom and they change the structure of the discretized system of variational

equations. Enriching the standard finite element enables the modelling of problems

by finite elements with no explicit meshing of discontinuity surfaces. This facilitates

the development of finite element models for physical problems with discontinuity

surfaces especially in the case of evolving surfaces.

Partition of unity enrichment methods (Belytschko and Black, 1999; Moës et al.,

1999; Strouboulis et al., 2000b, 2001) have been widely used for the analysis of static

and propagating discontinuities in different physical problems. In these methods, no

restriction exists on the type of underlying finite element spaces and the continuity

of displacement jumps across element boundaries is satisfied. (in contrast to the

embedded finite element methods (Simo et al., 1993; Lotfi and Shing, 1995; Larsson

et al., 1996; Oliver, 1996; Wells and Sluys, 2001b)).

This chapter continues by a literature review on the application of the partition

of unity enrichment methods. Next, a partition of unity formulation for an

elasticity problem is presented in a domain in which the solution exhibits a jump

over a discontinuity surface. The structure of the discretized system of algebraic

equations and required extensions in comparison with the standard finite element

approximation are elaborated. At the end, implementation aspects specific to the

partition of unity enrichment methods are discussed.

2.1 Application

Using the partition of unity enrichment can dramatically simplify modelling

problems with discontinuity surfaces. The success of using these methods in

modelling challenging topics like cracks has motivated their applications for other

physical problems containing discontinuity surfaces. To illustrate this, a brief

literature overview on the application of the partition of unity methods is given

in solid mechanics and fluid mechanics. For a more complete overview, interested

readers are referred to review papers by Yazid et al. (2009), Belytschko et al. (2009)

and Fries and Belytschko (2010).

8 Chapter 2 Partition of unity methods

2.1.1 Applications in solid mechanics

In solid mechanics, modelling problems characterized by discontinuities,

singularities, localized deformations and complex geometries using the partition of

unity approaches can be found in literature. In the following, a literature review on

the modelling of cracks, frictional contacts and grain boundaries is given to show the

diversity of problems which can be tackled using the partition of unity enrichment

methods in the field of solid mechanics.

Cracks The local enrichment in the partition of unity concept was applied to

fracture mechanics in a paper by Belytschko and Black (1999). They used enrichment

functions obtained from the asymptotic solutions at crack tips for the entire crack

length. The idea of enriching cracks with the Heaviside function was introduced in

Moës et al. (1999), besides using asymptotic enrichment functions just in crack tips.

In this work, the method’s name was also coined as XFEM. This method was later

extended to model branched and intersecting cracks in Daux et al. (2000).

XFEM was extended for the modelling of three-dimensional cracks by

Sukumar et al. (2000). This method was also employed in modeling propagating

three-dimensional cracks in Areias and Belytschko (2005) and Gasser and Holzapfel

(2005). Using a similar approach, referred to as GFEM, Duarte et al. (2001) also

simulated three-dimensional dynamic crack propagation.

Cohesive cracks can also be modeled using XFEM. Wells and Sluys (2001a)

used the step enrichment function to model cohesive cracks in simulating fracture

in quasi-brittle heterogeneous materials. In their implementation, crack tips were

limited to element edges. In Moës and Belytschko (2002) and Zi and Belytschko

(2003), near crack-tip enrichment functions in addition to the Heaviside function

were used to model cohesive cracks. This allowed crack tips to be located anywhere

within elements.

Remmers et al. (2003) have proposed a method for cohesive cracks where

discontinuities are inserted element-wise. This method eliminates the need for the

definition of a crack surface and the topology of the cracks emerges naturally as

elements meet the insertion criterion.

Frictional contact Frictional contact plays an important role in many mechanical

devices. Numerical modelling of frictional contact in the standard finite element

method suffers heavily form instability and the computed solution strongly depends

on model variables and solution algorithms (Wriggers, 2006).

Dolbow et al. (2001) showed how nonlinear constitutive laws for contacts on

arbitrary surfaces can be enforced using an XFEM formulation. They studied

two-dimensional crack growth with three different interfacial constitutive laws for

2.1 Application 9

crack surfaces, including a perfect contact and a unilateral contact with or without

friction. They also used an iterative method called LATIN to resolve the non-linear

boundary value problem. The penalty approach in combination with the extended

finite element method was used to model frictional contact with large sliding in

Khoei and Nikbakht (2006, 2007). The extended finite element formulation was

also used in Vitali and Benson (2006, 2009) with classical kinetic friction laws in

a Multi-Material Arbitrary Lagrangian Eulerian (MMALE) formulation. Recently,

Liu and Borja (2010a) used an XFEM formulation to model frictional cracks in

elastoplastic solids. They considered mechanisms including the combined opening

and frictional sliding in initially straight, curved and S-shaped cracks with or without

bulk plasticity. Liu and Borja (2010b) also employed XFEM to address instability

issues existing in classical contact formulations.

Grain boundaries in polycrystals In the classical finite element approach,

modelling grain boundaries in polycrystals relies on designing a mesh which conforms

with the topology of grains (Weyer et al., 2002; Kuprat et al., 2003). This poses

challenging demands already at the discretization stage of the polycrystals. The

singularities at the grain junctions require relatively refined meshes that must fit the

grain boundaries while considering the aspect ratio of the elements within acceptable

ranges. These requirements are not always easily achieved. Meshing around the grain

junctions can also be difficult and expensive and it may lead to a large number of

elements when the angle between the branches is small.

As proposed in Sukumar et al. (2003) and Simone et al. (2006), the enrichment

concept defined in the partition of unity approach can also be used to facilitate

the modelling of grain boundaries. The proposed approaches do not require a mesh

generator to mimic the grains geometry. It is enough to have an arbitrary background

mesh in which the grain boundaries are superimposed, as shown in Figure 2.1. For

cells intersected by grain boundaries, the classical finite element approximations are

enriched by adding discontinuous enrichment functions corresponding to the enriched

degrees of freedom. In contrast to the standard finite element method, no limitation

exists on grain shapes and the number of grain boundaries meeting at junctions.

Decoupling the underlying mesh from the grains structure allows to model irregular

polycrystals in an efficient way.

2.1.2 Applications in fluid mechanics

Problems with discontinuous solutions also exist in fluid mechanics. Modelling

two-phase flow and fluid-structure interaction are two examples of this type of

problem which have a lot of applications in the real engineering world. Modelling

two-phase flow appears in oil and gas reservoirs and underground water flows (Aziz

10 Chapter 2 Partition of unity methods

+ =

grain topology background mesh partition of unity mesh

Figure 2.1 The partition of unity approximation for the modelling of polycrystals (adapted from
Simone et al. (2006)).

and Settari, 1979; Levy, 1995; Helmig, 1997). Designing aircraft, cars, bridges and

dams are examples of engineering problems in which fluid-structure interaction

plays an important role (Bungartz and Schäfer, 2006; Wang, 2008). An overview

on the application of the partition of unity approaches in the modelling of these two

problems is presented in the following.

Two-phase flow Two-phase flow occurs in a system containing gas or liquid with

a meniscus separating phases. XFEM is a promising method in the modelling of

immiscible two-phase flows, a coupled problem between velocity fields and pressure

fields. The velocity and pressure fields can be either weakly or strongly discontinuous

in a domain. If a field is strongly discontinuous, then the field and its derivatives are

discontinuous in the domain. However, if a field is weakly discontinuous, then the field

itself is continuous but its derivatives are discontinuous in the domain. The velocity

fields are weakly discontinuous across the interfaces, while the pressure fields may

be considered either weakly or strongly discontinuous based on the surface-tension

effects over the interfaces. Interested readers are referred to Fries (2008) to see how

the two-phase flow can be modeled using a partition of unity formulation.

A fractional step method was used in Chessa and Belytschko (2003a,b) to uncouple

the pressure and velocity fields in the XFEM framework. In their works, the velocity

fields were assumed the sole enriched fields. Another approach was used in Groß and

Reusken (2007) and Reusken (2008) in which the pressure fields were assumed to be

enriched instead. However, they have not enriched the velocity field; on the contrary,

they only refined the underlying mesh near interfaces.

Fluid-structure interaction Fluid-structure interaction plays an important role

in the design of many engineering systems. Failing to consider the effects of

oscillatory interactions can be catastrophic, especially in structures comprising

materials susceptible to fatigue. A famous example of failure of such structures is

2.2 A discretized form of an elasticity problem with discontinuities 11

the Tacoma Narrows bridge (Ross, 1984; Billah and Scanlan, 1991).

The XFEM framework has also been used for the modelling of fluid-structure

interaction (Legay et al., 2006; Wang et al., 2008; Gerstenberger and Wall, 2008a,b).

The level set method has been used to represent fluid and solid interfaces implicitly.

Based on the interfacial condition between solid and fluid phases, the tangential

components of velocity across the interface can be assumed either weakly or strongly

discontinuous.

Recently, a three-dimensional framework, combining the dual mortar contact

formulation and the extended finite element method, to model fluid-structure

interaction has been proposed in Mayer et al. (2009, 2010). The combined XFEM

Fluid-Structure-Contact Interaction method (FSCI) allows to compute contact of

arbitrarily moving and deforming structures embedded in an arbitrary flow field.

2.2 A discretized form of an elasticity problem with
discontinuities

To clarify issues specific to the partition of unity enrichment formulations, as a

canonical example a formulation for an elasticity problem with discontinuities is

presented in this section. In this problem, a discontinuity surface in an elastic body

is modeled independently of a mesh using a partition of unity formulation.

Γd

H = 0

H = 1

n

Ω

Figure 2.2 A physical domain Ω containing a discontinuity surface Γd whose unit normal vector
denoted by n.

A domain Ω ⊂ R
d, where d denotes the geometric dimension, is considered. This

domain is intersected by a discontinuity surface Γd, as illustrated in Figure 2.2. The

governing equations and boundary conditions for the elastic body Ω crossed by the

12 Chapter 2 Partition of unity methods

cohesive discontinuity surface Γd read

−∇ · σ = f in Ω, (2.1)

σ ·m = h on Γt, (2.2)

σ+ · n = t on Γd, (2.3)

u = 0 on Γu, (2.4)

JσK · n = 0 on Γd, (2.5)

where u is displacement field, σ is stress tensor, f : Ω → R
d is a sufficiently regular

body force and h : Γt → R
d is a boundary condition and t : Γd → R

d is a traction

force across the discontinuity surface. The traction t may be prescribed or may

be determined via a constitutive model. The normal vectors to the discontinuity

surface Γd and the external boundary ∂Ω are expressed as n and m, respectively.

Furthermore, Γu and Γt are Dirichlet boundary and Neumann boundary domains,

respectively. These domains are defined such that Γu∪Γt = ∂Ω and Γu∩Γt = Ø. The

domains on different sides of the discontinuity surface are denoted as Ω− and Ω+.

Note that Ω− ∪Ω+ ∪ Γd = Ω. The jump operator is defined as J(·)K = (·)+ − (·)− to

represent fields restricted to the discontinuity surface that may have different values

on the positive and negative sides of the discontinuity surface.

The constitutive law for the elastic domain can be written by

σ = C : ǫ, (2.6)

where C is a fourth-order tensor and ǫ is a second-order strain tensor that is defined

as

ǫ =
1

2
(∇u+∇uT). (2.7)

A variational formulation of this problem reads: find u ∈ V such that

∫

Ω\Γd

σ(u) : ∇v dΩ+

∫

Γd

t(JuK) · JvK dΓ =

∫

Ω

f · v dΩ

+

∫

Γt

h · v dΓ ∀v ∈ V, (2.8)

where the function space V reads

V =
{

vh ∈
(

L2 (Ω)
)d

∩
(

H1 (Ω\Γd)
)d
,uh = 0 on Γu

}

. (2.9)

A finite–dimensional formulation of this problem using the extended finite element

2.2 A discretized form of an elasticity problem with discontinuities 13

basis functions, which does not require considering discontinuity surfaces in the

triangulation of Ω, is now considered. To describe the displacement jump over the

discontinuity surfaces, the Heaviside function operating on a smooth and continuous

function is used. This leads to decompose the finite element solution uh in the

domain Ω as

uh = ūh +Hdûh, (2.10)

where ūh and ûh are the “standard” and “enriched” parts of the displacement

approximation whose corresponding function spaces are respectively defined as

V̄ =
{

ūh ∈ (H1 (Ω))d, ūh|E ∈ (Pk1
(E))d ∀E : uh = 0 on Γu

}

, (2.11)

V̂ =
{

ûh ∈ (H1 (Ωd))
d, ûh|E ∈ (Pk2

(E))d ∀E ∈ Ωd : ûh = 0 on Γu ∩ ∂Ω+
}

,

(2.12)

where Ωd ⊂ Ω is a “small” region around the discontinuity surface Γd. More precisely,

Ωd is the union of the supports of all basis functions whose support is intersected by

the discontinuity surface. Moreover, Pki
(E) denotes a space of Lagrange polynomials

of degree ki on element E.

The Heaviside function, Hd, is defined as

Hd =

{

1 x ∈ Ω+,

0 x ∈ Ω−.
(2.13)

Decomposing the test function vh similarly, a finite element variational problem is

expressed as: find ūh ∈ V̄ and ûh ∈ V̂ such that

∫

Ω\Γd

ǭh : C : ∇v̄h dΩ+

∫

Ω+

ǫ̂h : C : ∇v̄h dΩ+

∫

Ω+

ǭh : C : ∇v̂h dΩ

+

∫

Ω+

ǫ̂h : C : ∇v̂h dΩ+

∫

Γd

t(ûh) · v̂h dΓ =

∫

Ω

f · v̄h dΩ+

∫

Ω+

f · v̂h dΩ

+

∫

Γt

h · v̄h dΓ +

∫

Γt
+

h · v̂h dΓ ∀v̄h ∈ V̄ , ∀v̂h ∈ V̂ , (2.14)

where ǭh and ǫ̂h are respectively the “standard” and “enriched” parts of the

approximated strain tensor ǫh, defined using a similar decomposition presented in

Equation (2.10). The partition of unity formulation for the elasticity problem is now

complete.

In the definition of the finite element spaces, the use of different order functions

for ūh and ûh (k1 6= k2) is deliberately permitted. However, except for a few

formulations (see for example Duarte et al. (2007)), the majority of the partition of

14 Chapter 2 Partition of unity methods

unity formulations use the same function spaces for the standard and enriched parts

(k1 = k2). By this assumption, a compact notation for the finite element space can

be used as

V =
{

vh ∈ (L2 (Ω))d ∩ (H1 (Ω\Γd))
d,vh|E ∈ (Pk (E\Γd))

d ∀E
}

(2.15)

for a finite element function vh ∈ V which is discontinuous across surfaces.

To construct a discretized form of the variational problem, the finite element

approximations are inserted to the weak governing equations. This yields the

variational formulation, presented in Equation (2.14), to be expressed as a system

of linear equations

KU = f , (2.16)

where K and f are a global stiffness matrix and a global right-hand side vector,

respectively. The unknown vector containing both the standard and enriched degrees

of freedom is given as U . If a linear traction-separation constitutive law across the

discontinuity surface is assumed

t = T : JuK , (2.17)

where T is a constant second-order tensor. An expanded form of the system of linear

equations, presented in Equation (2.16), then reads

[
∫

Ω
B̄TCB̄ dΩ

∫

Ω+

d

B̂TCB̄ dΩ
∫

Ω+

d

B̄TCB̂ dΩ
∫

Ω+

d

B̂TCB̂ dΩ+
∫

Γd
N̂TTN̂ dΓ

][

Ū

Û

]

=

[

∫

Ω
N̄Tf dΩ+

∫

Γh
N̄Th dΓ

∫

Ω+

d

N̂Tf dΩ+
∫

Γ+

h

N̂Th dΓ

]

. (2.18)

where C is the elasticity matrix. In this equation, B̄ = LN̄ and B̂ = LN̂ where

N̄ and N̂ contain the basis functions corresponding to the “standard” part of

the degrees of freedom Ū and the “enriched” part of the degrees of freedom Û ,

respectively. In 3D, the matrix L contains differential operators:

L =



















∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x



















. (2.19)

2.3 Implementation aspects 15

If the same finite element basis for the “standard” and “enriched” components (k1 =

k2 in Equations (2.11) and (2.12)) are used, B̄ = B̂ and N̄ = N̂ .

As can be observed in the expanded form of the system of linear equations in

Equation (2.18), adding the enriched degrees of freedom changes the structure

of the discretized system of equations. The entries corresponding to the enriched

degrees of freedom in the element matrix and the right-hand side vector require

additional works, because the evaluation of these entries on the positive side of

the domain cannot be performed using standard quadrature rules. Special attention

must also be devoted to the evaluation of terms corresponding to the integration

along discontinuity surfaces.

In the elasticity problem presented in this section, all coefficient functions (e.g.

f and h) are defined on the continuous function spaces. However, the coefficient

functions may be also defined on the enriched function spaces. For example, in

nonlinear problems, the solution from the previous converged stage is represented as

a coefficient function defined on the enriched function space. For this reason, terms

corresponding to the standard degrees of freedom in the element tensor should be also

evaluated in the positive side of a domain. This makes obtaining a discretized system

of equations for these types of variational formulations more difficult, especially for

the coupled nonlinear problems.

2.3 Implementation aspects

There are some issues specific to the partition of unity enrichment methods which

make their implementations more complex than the conventional finite element

methods. This poses challenges in extending existing finite element packages to

model discontinuities in the partition of unity framework. The variable number of

degrees of freedom, the integration of the enriched cells and surface representations

are amongst the implementation aspects that require attention in designing software

packages for the partition of unity methods.

2.3.1 Variable number of degrees of freedom

An issue which requires special treatment is the variable number of degrees of

freedom for cells depending on their positions with respect to discontinuity surfaces.

The total number of degrees of freedom will change during a simulation of an evolving

discontinuity surface. This is an obstacle to adjust current finite element software

packages to support the partition of unity framework in modelling discontinuity

surfaces.

A simple approach is to assume that all cells are enriched with the maximum

possible extra degrees of freedom, depending on the number of intersecting

16 Chapter 2 Partition of unity methods

discontinuity surfaces. In this approach, a local element tensor whose dimension

is doubled – if a cell is intersected by one discontinuity surface – as the dimension

of the standard element tensor is constructed. However, since the enriched degrees

of freedom are limited to the cells intersected by discontinuity surfaces, the number

of enriched degrees of freedom is considerably smaller than the number of standard

degrees of freedom. Nevertheless, this approach significantly increases the size of the

element tensors; therefore, it lacks efficiency.

Another approach is to design a framework such that it can handle different

numbers of degrees of freedom for each cell. Because only a subset of the nodes

is enriched, each cell falls into one of the following groups. The element is either� a standard finite element if none of the element nodes are enriched; or� an enriched finite element if part or all of the element nodes are enriched.

The majority of cells falls in the first category in which element tensors are identical

to the element tensors computed using the standard finite element framework. For

the cells belonging to the second group, the dimension of the element tensor changes

and extra entries are evaluated inside the element tensor. To design a powerful

software package for modelling discontinuities in the partition of unity approach,

an efficient framework should be designed to evaluate element tensors with variable

numbers of degrees of freedom. This framework is also used to assemble the global

tensor using local element tensors.

2.3.2 Integration of the intersected cells

In the classical finite element methods, the evaluation of the element stiffness matrix

and the right-hand side vector generally requires the quadrature of functions which

are polynomials. For polynomial functions, using quadrature rules is adequate to

perform the numerical integrations in the standard finite element approximations.

However, when the continuous function space is enriched by a singular or a

discontinuous function, the quadrature rule is not sufficient for numerical integration.

Using the standard quadrature rules may lead to inaccurate results, poor convergence

and singular systems. Moreover, because a discontinuity surface may change during

simulation, the integration schemes cannot be pre-computed in advance and they

should also be evaluated at run-time.

To overcome this issue, different approaches have been proposed in literature.

Here, a brief review of three approaches is presented.� Using a higher order quadrature rule was an approach used to compute the

additional entries appearing in the weak form. However, it has been shown

that this approach performs poorly and has an adverse effect on the accuracy

of the approximated solutions (Strouboulis et al., 2000a).

2.3 Implementation aspects 17� The subdomain quadrature is a common approach to perform numerical

integration in the partition of unity framework (Belytschko and Black, 1999;

Moës et al., 1999). In this approach, cells intersected by a surface are

sub-divided into subdomains whose boundaries are aligned with the surface.

The fixed order of the Gauss quadrature is used inside each subdomain. Note

that no additional degrees of freedom have been introduced and the newly

added subdomains are just for numerical integration purposes.� Another approach has been proposed in Ventura (2006) to avoid the

sub-division of intersected cells. In this approach, enrichment functions are

mapped to equivalent polynomials which can be computed by numerical

integration using standard quadrature rules. These polynomials, constructed

on the whole cell domain, are defined using coefficients which are functions of

surface locations in cells. A similar approach computing quadrature weights of

the given quadrature rule based on the position of the discontinuity surface has

been proposed in Holdych et al. (2008). A draw-back of this approach is that

the definition of the equivalent polynomials is strongly coupled to enrichments

and element types. Therefore, for each element type and enrichment type in

given weak forms, a new set of equivalent polynomials must be computed.

2.3.3 Surface representations

The accurate description of surface interfaces is an important topic in the partition

of unity enrichment framework. Surface representations are used to determine the

enriched degrees of freedom and to compute modified quadrature rules for cells

intersected by discontinuity surfaces. The surface representations are also coupled

with the integration scheme used to compute the traction–like quantities across the

discontinuity surfaces.

Surface interfaces can be represented via either implicit or explicit surface

descriptions. As an example of explicit surface representations, cracks in

two-dimensional domains are parametrized in real element geometry as presented

in Belytschko and Black (1999) and Moës et al. (1999). A similar approach has

been also used in Sukumar et al. (2000) and Duarte et al. (2001) to model cracks

in three-dimensional domains in which the crack surfaces are described by a set

of connected planes. However, determining the intersection of the parameterized

lines/surfaces with the mesh is not an easy task

Explicit surface representations are also used to model propagating surfaces

in two-dimensional and three-dimensional domains using the partition of unity

framework. In a two-dimensional setting, the orientation of an element discontinuity

is determined by its reference normal vector N and a single point P to characterize

the connection to the next element discontinuity. However, unlike two-dimensional

18 Chapter 2 Partition of unity methods

Figure 2.3 Unique connecting point P for the two-dimensional case and averaged connecting points
Pi depending on the adjacent cracked elements for the three-dimensional case (Jäger et al., 2008b)

problems, the orientation of element discontinuities in three-dimensional problems

is not uniquely defined, as shown in Figure 2.3.

The tracking of a discrete surface can be performed in several conceptually

different ways. Areias and Belytschko (2005) used a local tracking algorithm to

model three-dimensional propagating surfaces. In their approach, a surface extends

from neighboring surface points and proceeds in a direction normal to the maximum

principal stress. As this concept would eventually render non-smooth surfaces,

Areias and Belytschko (2005) have suggested to adjust the crack plane normal

based on neighboring crack intersection points. However, their approach to represent

discontinuity surfaces by the connected polygons was not general enough and it was

limited to the planer or slightly kinked discontinuity surfaces.

To overcome this issue, another approach was presented in Gasser and Holzapfel

(2005). In this approach, a non-local tracking algorithm was used to track

three-dimensional propagated surfaces. By averaging surface plane normals over a

certain neighborhood, they ensured that the generated failure surface was smooth in

an averaged sense. This approach can be used for a wide range of three-dimensional

propagating discontinuity surfaces. However, this algorithm is computationally

expensive and does not give continuous discontinuity surfaces. A comparative study

between different approaches for representing three-dimensional evolving surfaces

has been performed in Jäger et al. (2008a).

Discontinuity surfaces may also be represented implicitly using the level set

method (Sethian, 1999; Osher and Fedkiw, 2003). This method defines surfaces by

means of the zero levels of scalar functions within the domain and it can be used to

represent various types of surface interfaces including open surfaces like cracks and

shear bands which usually end inside the domain.

2.3 Implementation aspects 19

Figure 2.4 The level set description of a three-dimensional crack (Gasser and Holzapfel, 2006).

The level set method has been used to model cracks in the partition of unity

framework in Stolarska et al. (2001) and Belytschko et al. (2001). In case of the

level set description of a crack, the crack surface is defined using two scalar level set

functions: φ and ψ. The crack is then represented as

Γd = {x : φ(x) = 0 and ψ(x) ≤ 0}. (2.20)

The first function φ is a signed-distance function which is zero on the crack

surface. The second function ψ is constructed such that it is zero on the crack

boundaries (crack tips). For a three-dimensional crack, the level set functions and

their definitions are illustrated in Figure 2.4.

For discretized domains, the values of level set functions are interpolated using

finite element shape functions inside the domain. Therefore, the approximated level

set functions read

φh(x) =
∑

j

φjNj(x), (2.21)

ψh(x) =
∑

j

ψjNj(x). (2.22)

where Nj is a basis function corresponding to node j from the finite element mesh

and φj and ψj are the values of level set functions at node j.

20 Chapter 2 Partition of unity methods

To model crack propagation using the level set method, the level set functions

φ and ψ should be updated in each step. Stolarska et al. (2001) presented an

algorithm for these updates in two-dimensional problems. A similar algorithm for

the non-planar surface evolution in three dimensional problems was also presented

in Moës et al. (2002) and Gravouil et al. (2002). An overview of different level set

approaches to represent and update surface geometries is given in Duflot (2007).

Nevertheless, none of these methods can handle the surface evolution in

three-dimensional problems in a reliable way. Finding a suitable approach to

represent surfaces is still a challenging topic among researchers. Recently, NURBS

and the Bezier splines (Piegl and Tiller, 1997; Prautzsch et al., 2002) have been used

to represent surfaces in the partition of unity framework. A primary work in this

direction has been presented in a recent paper by Moumnassi et al. (2011).

Chapter 3 An overview on the automated
computational mathematical modelling

Numerical techniques are widely used to solve mathematical problems expressed

by partial differential equations (PDEs). The finite element method (Zienkiewicz

et al., 2005; Hughes, 2000; Cook et al., 2002) is one of these numerical techniques.

The mathematical base of this method often involves theorems from functional

analysis (Oden, 1979; Reddy, 1991). This method discretizes weak forms of a PDE on

a mesh and reduces solving PDEs to computing the solutions of algebraic equations.

After solving the system of algebraic equations on some discrete points, the solution

on the whole domain is obtained by interpolating values on discrete points using the

finite element basis functions.

The finite element method has advantages over other numerical analysis methods

like the finite difference method (Mitchell and Griffiths, 1979; Smith, 1985) and the

finite volume method (Eymard et al., 2000; LeVeque, 2002). Most of the success of

the finite element method is because of its generality which allows one to use it for a

wide range of physical problems without any restriction on geometrical shapes and

boundary conditions. This generality makes the finite element method appealing

for real engineering problems where complex geometries with different boundary

conditions may exist.

However, implementing finite elements models can be a difficult and error-prone

task and requires significant time investment. Automation of the finite element

method seems to be a possibility to overcome implementation problems. Today,

a number of projects exist that try, at least in part, to automate the finite element

method using novel techniques. These projects combine domain specific languages

and symbolic computing with finite element methods to achieve the automation

goal. Analysa (Bagheri and Scott, 2003), Sundance (Long et al., 2010, 2012),

GetDP (Dular and Geuzaine, 2012), FreeFEM++ (Pironneau et al., 2010), Life

(Prudhomme, 2007) and COMSOL (2012) are a few examples of such projects.

Recent developments in finite element code generation (Kirby, 2004, 2006)

indicate a significant step in the direction of automating the finite element

method. The FEniCS project (Logg et al., 2012f), which is somehow similar to

the above-mentioned projects, uses a concept of the code generation to automate

solutions of finite element models. FEniCS allows one to decouple assembly

algorithms from the implementation of variational forms and finite element bases.

22 Chapter 3 An overview on the automated computational mathematical modelling

This separation allows rapid development of finite element models for a wide range

of physical problems.

This chapter continues by the elaboration of the FEniCS project. The key

components of this project are explained and it has been shown how these

components are combined to provide a framework to automate the developments

of finite element models. Then, a number of examples are presented to show the

application of FEniCS in automated modelling of different linear/nonlinear physical

problems using scalar/mixed finite element function spaces. Finally, the automated

framework for solving partial differential equations is summarized.

3.1 FEniCS project

The FEniCS project is a collaborative project toward developing a framework

and its required tools to achieve goals of Automated Computational Mathematical

Modelling (ACMM), which are efficiency, simplicity, generality and reliability in

modelling and simulation. This project provides required tools to facilitate solving

partial differential equations in an automated way. All components of the FEniCS

project are available under GNU open source licenses and they can be downloaded

freely from the FEniCS project homepage (www.fenicsproject.org).

FEniCS relies on novel techniques for the automatic code generation which allows

one to combine a high level of expressiveness with efficient computation. Finite

element variational forms are expressed in near mathematical notations, from which

low-level code is automatically generated, compiled and seamlessly integrated with

efficient implementations of other general-specific components of finite element

models like computational meshes and linear algebra.

3.1.1 Design of the automated framework

To provide a framework to use automatic code generation for modelling variational

problems in an efficient way, problem inputs are divided into two sub-sets: (i) input

1, which represents an underlying partial differential equation and (ii) input 2,

which contains a computational domain (mesh), boundary conditions, coefficients

and material properties. The FEniCS Form Compiler, FFC, (Kirby and Logg, 2006,

2007; Logg et al., 2012b) or SyFi (Alnæs and Mardal, 2012) receives the differential

equations (input 1) as high-level code based on UFL (Alnæs, 2012; Alnæs and Logg,

2012) which is close to the mathematical notations and generates C++ low-level

code compatible with UFC (Alnæs et al., 2012). The generated code combined with

the second part of the problem input (input 2) are then used in DOLFIN (Logg

and Wells, 2010; Logg et al., 2012e) to solve the given variational problem. This

procedure is presented schematically in Figure 3.1. More information about different

www.fenicsproject.org

3.1 FEniCS project 23

Figure 3.1 The design of the automated system performed using different components of the
FEniCS project (Logg et al., 2009).

components of FEniCS is given in the following sections.

3.1.2 Key components

The FEniCS project comprises several components which can facilitate developing

finite element models for various physical problems. These components work together

to provide an automated framework in computational mathematical modelling.

Moreover, each component must not only be compatible with the whole project

to achieve generality and simplicity goals, but it must also be an independent entity

such that it can be used as a separate package inside other open-source projects.

Code reuse improves the generality and thus increases the reliability of code.

Figure 3.2 shows different components of the FEniCS project, their classifications

into different layers and their relations within layers. As depicted, the components

of FEniCS are divided into four layers: application, interface, core components

and external libraries. In the following, more information is given about the core

components of the FEniCS project. Amongst the core components, UFL, FFC, UFC

and DOLFIN are elaborated in more details in this section. These components have

been extended to support the modelling of discontinuities inside FEniCS. A brief

explanation will also be given for the other components at the end of this section.

Unified Form Language (UFL)

The Unified Form Language (UFL) is a domain specific language to declare finite

element discretizations of variational formulations and functionals. UFL provides

a flexible user interface which might be used to represent finite element function

spaces and variational weak forms in a notation close to mathematics. The UFL

implementation also provides functionalities to simplify the compilation process used

inside form compilers.

24 Chapter 3 An overview on the automated computational mathematical modelling

Figure 3.2 FEniCS software map (Logg et al., 2009)

The development of UFL has been motivated by a number of factors (Alnæs, 2012).

A first factor was introducing a richer form language than the built-in form language

which already existed as part of the FEniCS Form Compiler. This language facilitates

expressing mathematical formulations for a wide range of problems. A second factor

was the necessity of supporting automatic differentiation which alleviates obtaining

the Jacobian of weak forms for nonlinear problems. The last factor was related to the

improvement of the form compiler’s efficiency to handle more complicated problems.

UFL supports tensor algebra, index notations, several nonlinear operators and

functions to facilitate expressing a wide range of the finite element variational

formulations in an efficient and simple way. The notation, definitions and operators to

3.1 FEniCS project 25

define finite element spaces and variational forms in the UFL notation are explained

in following.

Defining finite element spaces UFL provides a syntax for finite element spaces

declarations of predefined basic element families. The set of predefined element

family names in UFL includes “Lagrange”, representing scalar Lagrange finite

elements, “Discontinuous Lagrange”, representing scalar discontinuous Lagrange

finite elements and a range of other families that can be found in the UFL manual

(Alnæs and Logg, 2009). Basic scalar elements can be combined to construct vector

elements or tensor elements. Furthermore, elements can also be combined in arbitrary

mixed element hierarchies. To present a UFL interface declaring the finite element

spaces, consider the extract of following code:

P = FiniteElement("Lagrange", triangle , 1)

V = VectorElement("Lagrange", triangle , 2)

M = V*P

In the first line, a scalar finite element space P for a first order Lagrange basis on

triangular cells is declared. Then a quadratic vector Lagrange element V on triangles

is defined. The code proceeds to declare a mixed finite element M. This mixed element

is created by combining the vector element V and the scalar element P. This mixed

element can be alternatively obtained by using MixedElement(V, P).

Most of UFL deals with how to declare integrand expressions used in variational

formulations. The most basic expressions are form arguments, which do not depend

on other expressions. Any other expression can be constructed using the form

arguments in combination with other expressions called operators. Form arguments

include basis test and trial functions and coefficient functions which are represented

by TestFunction, TrialFunction and Coefficient classes, respectively.

v = TestFunction(V)

u = TrialFunction(V)

f = Coefficient(V)

These basic arguments can be used to define linear and bilinear forms of the

variational forms.

Defining forms UFL defines different operators that can be used for composing

expressions using the basic form arguments. The elementary algebraic operators +, -,

*, / are used between UFL expressions with a few limitations. Moreover, dot(a, b),

inner(a, b) and outer(a, b) are three often used operators between a and b,

two arbitrary rank tensors. The dot product of a and b is a summation over the

last index of the first tensor and the first index of the second tensor. The inner

26 Chapter 3 An overview on the automated computational mathematical modelling

product is a summation over all indices of a and b. The outer product is a tensor

product between a and b. This product results in a matrix if a and b are both

first order tensors (vectors). Other common tensor operators like transpose(a) (or

a.T), tr(a), det(a) and inv(a), which respectively define the transpose, trace,

determinant and inverse of a, are also supported inside UFL.

UFL also implements derivatives with respect to different kinds of variables.

The most common one is derivatives with respect to spatial coordinates that can

construct compound spatial derivatives like gradient and divergence. Expressions

can also be differentiated with respect to arbitrary user defined variables. This type

of derivatives is useful for several tasks, from the differentiation of material laws to

computing sensitivities. The final type of derivatives is form or functional derivatives

with respect to coefficients of a discrete function. This functionality may be used

to linearise nonlinear residual equations (linear form) automatically for use in the

Newton-Raphson method.

More detail on implementation issues as well as some general information on

the application of UFL for representing various PDEs can be found in Alnæs and

Logg (2009) and Alnæs (2012). This information is useful for ordinary users as well

as advanced users, who may want to develop their own software packages using

functionalities provided by UFL.

FEniCS Form Compiler (FFC)

The automatic code generation is a key feature of FEniCS for computing general

and efficient solutions of finite element variational problems. The automatic code

generation depends on a form compiler for the compilation of code for variational

forms. FFC (Kirby and Logg, 2006; Logg et al., 2012b,c) is one of the compilers

supported inside FEniCS (the other compiler is SFC (Alnæs and Mardal, 2012)

which is not discussed in this thesis).

FFC receives weak variational forms as input and returns as output low-level

C++ code for the evaluation of element tensors and degrees of freedom mapping

corresponding to the finite element variational formulations. At the beginning,

FFC was using a built-in form language as an input interface. However, after the

introduction of a new form language UFL in 2009 which supports some appealing

functionalities, FFC now uses UFL as the form language to represent variational

formulations. The generated code is also compatible with UFC (Alnæs et al., 2012).

This compatibility allows one to use any assembler which supports the UFC interface.

The structure of UFC will be explained in more detail in the next section.

The form compiler also supports a wide range of finite element spaces. FFC relies

on FIAT (Kirby, 2012c) for the evaluation of finite element basis functions and their

derivatives. At this moment, the following families of finite elements are supported

3.1 FEniCS project 27

inside FFC (Logg and Wells, 2010).� H1-conforming finite elements:

– CGq, arbitrary degree continuous Lagrange elements.� H(div)-conforming finite elements:

– RTq, arbitrary degree Raviart–Thomas elements (Raviart and Thomas,

1977);

– BDMq, arbitrary degree Brezzi–Douglas–Marini elements (Brezzi et al.,

1985); and� H(curl)-conforming finite elements:

– NEDq, arbitrary degree Nédélec elements (first kind, Nédélec (1980)).� L2-conforming finite elements:

– DGq, arbitrary degree discontinuous Lagrange elements; and

– CR1, first degree Crouzeix–Raviart elements (Crouzeix and Raviart,

1973).

Note q is an arbitrary integer to represent the order of polynomials defining finite

element spaces.

Form representations FFC supports two different methods to compute element

tensors: the tensor contraction representation and the standard quadrature

representation. The tensor contraction was the first representation supported inside

FFC (Kirby and Logg, 2006) and there were a couple of attempts to improve its

performance for code generation (Kirby and Logg, 2007, 2008).

The tensor contraction approach is based on the decomposition of an element

tensor into two parts: a reference tensor and a geometry tensor. The reference tensor

depends on the underlying PDE and the chosen finite element space and can be

computed prior to run-time while the geometry tensor depends on the geometry of

a cell and it must be computed at run-time. During assembly the geometry tensor

is updated for each cell based on its coordinates.

The tensor contraction representation has been shown to be efficient for classes of

problems, but it also has some limitations. This approach cannot be extended to the

non-affine isoparametric mapping in an efficient way and it is also not suitable for

a class of problems in which functions do not come from finite element spaces (like

trigonometric and logarithmic functions). Moreover, the tensor contraction approach

does not scale well for moderately complicated and complicated forms. Furthermore,

28 Chapter 3 An overview on the automated computational mathematical modelling

this representation can also not be used for problems in which a reference element

is not uniquely defined. For example in modelling discontinuities using the partition

of unity enrichment approaches, reference elements are not unique and they depend

on the location of their corresponding cells to discontinuity surfaces.

To overcome these limitations, support for the standard quadrature representation

was added to the compiler (Ølgaard and Wells, 2010, 2012a). As the name suggests,

the evaluation of the local element tensor for this approach involves a loop over

integration points and then adding the contribution from each quadrature point to

a local element tensor.

The performance of these two representations has been studied in Ølgaard and

Wells (2010). To assess performance quantitatively, the code generation time,

the number of FLoating-point OPerations (FLOP) in the generated code, the

compilation time of the generated code inside the solver and the assembly time for

each representation have been considered. The results showed that the performance

greatly depends on the type of problem being solved. For less-complicated PDEs

even with a high order finite element basis, the tensor contraction is considerably

faster. However, the tensor contraction for some other PDEs with a higher order of

derivatives and a larger number of coefficients does not perform efficiently and the

quadrature representation is more favorable for such PDEs. In general, the more

complex the form (in terms of the number of derivatives and the number of function

products), the more likely the quadrature representation is to be preferred.

FFC supports the automatic selection for the “best” possible element tensor

representation. The best representation is a representation which is believed to give

the best run-time performance. The detail of implementing this strategy to select

the best representation inside FFC is explained in Ølgaard and Wells (2010).

Unified Form-assembly Code (UFC)

Another key component of the FEniCS project is UFC (Alnæs et al., 2012). UFC

is an interface layer between problem-specific and general-purpose components of

finite element programs. The UFC interface defines the structure of the generated

code using a form compiler which will be included in a solver. UFC can be employed

as an interface in a wide range of finite element methods including the standard

Galerkin finite element method and the discontinuous Galerkin finite element

method. Generated code that supports the UFC interface can be used with different

solver libraries which may differ significantly in their designs. For this reason, the

UFC interface is independent of any other FEniCS components and it only consists

of a small collection of C++ base classes with pure virtual functions. Data are passed

through plain C arrays for minimum dependencies.

Abstract C++ classes defined by UFC can represent common components for

3.1 FEniCS project 29

Figure 3.3 A schematic overview of the relation among the UFC classes. Dependencies are shown
with arrows. All classes are defined in the ufc namespace (Alnæs et al., 2012).

assembling tensors using the finite element method. Moreover, they also provide

some components to represent degrees of freedom mapping and finite element spaces.

The communication between a mesh and a coefficient function data

as arguments are provided by introducing ufc::mesh, ufc::cell and

ufc::function classes. Every argument of a variational form including

basis functions (test and trial functions) and coefficient functions

is expressed by a ufc::finite element object and a ufc::dof map

object. The ufc::cell integral, ufc::interior facet integral, and

ufc::exterior facet integral classes are used to represent the integrals

defined in the variational weak formulations. At the end, a core class called

ufc::form is defined.

Subclasses of the ufc::form class implement member functions which may

be called to create ufc::cell integral, ufc::exterior facet integral and

ufc::interior facet integral objects. These objects in turn know how to

compute their respective contributions from a cell or a facet during assembly. The

ufc::form class also specifies functions for creating ufc::finite element and

ufc::dof map objects for the finite element function spaces of the variational form.

A schematic overview which shows the relation among different components of UFC

is depicted in Figure 3.3.

More information on member functions of the abstract UFC classes and

implementations of some member functions of derived classes, generated

automatically using the form compiler approach, are presented in Alnæs et al. (2009,

2012).

30 Chapter 3 An overview on the automated computational mathematical modelling

Figure 3.4 A schematic overview of different functionalities inside DOLFIN and their corresponding
classes (Logg et al., 2012d)

DOLFIN

DOLFIN is a C++/Python solver library that functions as the main user interface

of the FEniCS project. DOLFIN provides a problem solving environment for finite

element models based on partial differential equations and implements some core

functionalities of FEniCS, including algorithms for manipulating meshes and finite

element assembly. At the beginning, DOLFIN was a monolithic and object-oriented

C++ finite element library similar to the traditional object-oriented libraries like

deal.II (Bangerth et al., 2007) and Diffpack (Langtangen, 2003). Since then, there

have been some major improvements inside DOLFIN. It is now designed to rely on

code generation for PDE-specific parts of a problem. DOLFIN also uses external

libraries to perform some tasks such as sparse linear algebra.

Figure 3.4 presents an overview of the most important classes of the DOLFIN

library schematically and classifies these classes in different groups based on their

functionalities. DOLFIN contains member classes which provide a range of linear

algebra objects and functionality, including vectors, dense and sparse matrices,

3.1 FEniCS project 31

various solvers including direct and iterative solvers as well as eigenvalue solvers.

For most of this functionality, DOLFIN relies on third-party libraries like PETSc

(Balay et al., 2012), Epetra (Herox et al., 2005), uBLAS (Walter et al., 2012)

and MTL4 (Gottschling and Lumsdaine, 2011). Nevertheless, a common interface

is implemented inside DOLFIN to facilitate communications with these external

algebraic libraries.

To manipulate meshes, a mesh library has been implemented inside DOLFIN.

The mesh library provides data structures and algorithms for manipulating

meshes including the computation of mesh connectivities, mesh refinements, mesh

partitioning and mesh intersections. The mesh library includes a collection of classes

and it has been optimised to minimize storage requirements and to enable an efficient

access to mesh data. More information about the mesh library and its components

can be found in Logg (2009).

The interfaces for DOLFIN are provided both in the form of a C++ library

and a Python module. These two interfaces are almost identical but in some cases

particular features of either C++ or Python cause some minor differences in the

interfaces. Except for a few extensions written in Python manually, the bulk of

the Python module are generated automatically from the C++ code using SWIG

(Beazley et al., 2012).

To use the DOLFIN C++ interface in the solution of partial differential equations,

finite element variational problems must be expressed in the UFL form language.

This is done by entering the variational forms into separate .ufl files and then

compiling them using the form compiler FFC. The generated code, which is UFC

compatible C++ code, is then included in a DOLFIN-based C++ solver.

The DOLFIN Python interface offers users to employ an intuitive high-level

scripting language, similar to the MATLAB language, as well as the strength of

an object-oriented language. The Python interface provides some functionalities

which are not accessible from the C++ interface. In particular, the UFL form

language is consistently embedded inside the Python interface and code generation

is automatically handled at run-time. This allows one to obtain the solution of the

partial differential equations using a unique file which contains both the variational

formulation and the real solver.

More detail on the design considerations and implementations, as well as a number

of examples in which DOLFIN has been used as application code, can be found in

Logg and Wells (2010) and Logg et al. (2012d).

Other components

A brief introduction is provided for other components of FEniCS in this subsection.

FIAT (Kirby, 2012c), which is one of the first FEniCS projects, implements a

32 Chapter 3 An overview on the automated computational mathematical modelling

mathematical framework to construct a general class of finite elements on reference

domains as a Python module. This framework permits one to construct simplicial

finite elements with very complicated bases automatically. FIAT provides the basis

function back-end for the form compiler and enabling high-order H1, H(div) and

H(curl) elements. FIAT can also tabulate quadrature points and quadrature weights

required for the numerical integration. More information about the design of FIAT

and its supported functionalities can be found in Kirby (2004, 2006, 2012a).

FErari (Kirby, 2012b) is another component of FEniCS which provides an option

within the form compiler to apply optimizations at compile-time. This optimization

improves the run-time evaluations of forms represented by the tensor contraction

representation. FErari examines the structure of the tensor contraction to check

whether it can be performed in a reduced number of arithmetic operations. Interested

readers are referred to Kirby et al. (2005), Kirby and Scott (2007) and Kirby and

Logg (2012) for more information about FErari.

FEniCS also uses Instant (Westlie et al., 2012) as a Just-In-Time (JIT) compiler.

Instant can accept C/C++ code and therefore it can be combined with the code

generating tools in DOLFIN and FFC. Instant generates wrapper code needed for

making the C/C++ code usable from Python (Wilbers et al., 2012). Moreover,

Viper (Skavhaug, 2012) has been introduced as a built-in application for the

graphical post processing of functions and meshes.

3.2 Examples

To exhibit the power of the automatic code generation in modelling different physical

problems, a number of examples are presented in this section. These examples cover

a wide range of mathematical formulations including a Poisson problem, a linear

elasticity problem, a nonlinear hyperelasticity problem and a coupled incompressible

elasticity problem.

To avoid lengthy and intricate definitions of case-specific function spaces,

variational forms of examples in this thesis are presented for the case of homogeneous

Dirichlet boundary conditions, despite the computed problems possibly using more

elaborate boundary conditions. For each example, a bilinear form a, a linear form

L, and a function space V are defined and the discretized fields are indicated by ”h“

subscripts.

3.2 Examples 33

3.2.1 Poisson problem

As a canonical example, a solution of the Poisson equation using the H1-conforming

Galerkin approach is presented. The relevant function space reads

V =
{

vh ∈ H1 (Ω) , vh|E ∈ Pk (E) ∀E
}

, (3.1)

where Ω ⊂ R
d is a domain with a geometrical dimension d and Pk (E) denotes the

space of the polynomials of degree k on element E from a finite element mesh. The

bilinear and linear forms read

a (u, v) =

∫

Ω

∇u · ∇v dx, (3.2)

L (v) =

∫

Ω

fv dx, (3.3)

where f is a source term. The aim is to find uh ∈ V such that

a(uh, vh) = L(vh) ∀vh ∈ V. (3.4)

The given variational formulation is used to model a three-dimensional problem with

the following definitions of a computational domain, a boundary condition and an

input function. The computational domain, a unit cube domain, is defined as

Ω : (1, 0, 0)× (0, 1, 0)× (0, 0, 1), (3.5)

with a Dirichlet boundary condition

u = 0 on Γu = (x, y, 0) ⊂ ∂Ω, (3.6)

where ∂Ω denotes the boundary of the unit cube. A source term

f = sin(x) sin(y) sin(z), (3.7)

is adopted.

UFL input

The first step is the definition of the variational problem as a UFL input. To define

the variational problem, the relevant function space is declared. For this example, a

continuous piecewise quadratic Lagrange element defined on tetrahedrons is used:

V = FiniteElement("Lagrange", tetrahedron , 2)

Next, the test and trial functions are declared on the above space:

34 Chapter 3 An overview on the automated computational mathematical modelling

Finite element function space

V = FiniteElement("Lagrange", tetrahedron , 2)

Test and trial functions and source term

u, v = TrialFunction(V), TestFunction(V)

f = Coefficient(V)

Linear and bilinear forms

a = dot(grad(u), grad(v))*dx

L = f*v*dx

Figure 3.5 Complete UFL input for the Poisson problem in three dimensions using quadratic
Lagrange elements.

u, v = TrialFunction(V), TestFunction(V)

A coefficient corresponding to the source term is also declared on the same space:

f = Coefficient(V)

It has been assumed that the source term f is interpolated in the function space

represented by V. Finally, the bilinear and linear forms are defined according to the

variational weak formulations as given in Equations (3.2) and (3.3):

a = dot(grad(u), grad(v))*dx

L = f*v*dx

The complete UFL input is presented in Figure 3.5.

The input file is then compiled using FFC to generate a low-level code compatible

with UFC. The generated code contains subclasses of the UFC classes which are

used to compute integrals, degrees of freedom mappings and finite element spaces.

The generated code is then included inside a C++/DOLFIN solver to complete the

variational formulations.

C++ Solver

To complete the variational problem, problem-specific data are also required. These

data include information about a mesh, coefficient functions, boundary conditions

and algebraic solvers. The C++/DOLFIN solver provides these functionalities for

the automated framework.

The solver starts with including the automatically generated file and the DOLFIN

header file. From the automatically generated header file, Poisson::FunctionSpace,

Poisson::BilinearForm and Poisson::LinearForm classes are used. These classes

contain data that are specific to the given variational forms.

The Dirichlet boundary, presented in Equation (3.6), is implemented by a subclass

of the SubDomain class from the DOLFIN library:

3.2 Examples 35

// Sub domain for Dirichlet boundary condition

class DirichletBoundary : public SubDomain

{

bool inside(const Array<double>& x, bool on_boundary) const

{

return x[2] < DOLFIN_EPS && on_boundary;

}

};

The source term f is supplied with a class from Expression subclass:

// Source term (right -hand side)

class Source : public Expression

{

void eval(Array<double>& values , const Array<double>& x) const

{

values[0] = sin(x[0])*sin(x[1])*sin(x[2]);

}

};

Inside the main function, the mesh discretizing the domain is declared by using an

instance of the UnitCube class:

// Create mesh

UnitCube mesh(9, 9, 9);

This mesh, that contains 9× 9× 9× 6 = 4374 tetrahedra, is then used to initialise

the function space:

// Create Function Space

Poisson::FunctionSpace V(mesh);

The Dirichlet boundary condition is created by using the DirichletBC class. To

create an object of DirichletBC, three arguments are required: a function space

that the boundary condition applies to, a value of the boundary condition (which is

zero in this case) and it is represented by the Constant class and a subdomain on

which the boundary condition is applied. The definition of the boundary condition

is as follows:

// Create boundary condition

Constant u0(0.0);

DirichletBoundary boundary;

DirichletBC bc(V, u0 , boundary);

At the next step, the bilinear and linear forms, which have been generated using FFC,

are initialized using the function space V and any necessary coefficient functions are

then attached:

// Define variational problem

36 Chapter 3 An overview on the automated computational mathematical modelling

Poisson::BilinearForm a(V, V);

Poisson::LinearForm L(V);

Source f; L.f = f;

Now, the linear and bilinear forms have been initialized and the solution of the

variational problem is considered. The solution of this problem is represented using

an object of Function which lives on the function space V. To solve this problem,

the solve function is called with a == L, u and bc as arguments.

// Compute solution

Function u(V);

solve(a == L, u, bc);

The solution of the variational problem can be manipulated in different ways. It may

passed to another variational problem as a coefficient or it can be saved to a file. In

this example, the computed solution is saved in the VTK format for visualization

purposes using the File class.

// Save solution in VTK format

File file_solution("poisson.pvd");

file_solution << u;

The complete C++ solver interface for the Poisson problem is presented in

Figure 3.6.

3.2.2 Discontinuous Galerkin approach to linearised elasti city

The form compiler supports the integration on interior cell facets, which means

that code for the discontinuous Galerkin finite element methods can also be

generated (Ølgaard et al., 2008). As a simple example, the modelling of an elastic

domain Ω ⊂ R
d is assumed in the automated way using a discontinuous Galerkin

approach with an interior penalty formulation. The domain Ω is discretized using

finite element meshes whose internal facets are denoted by Γ0. The external boundary

of the domain Ω is also denoted by ∂Ω.

The relevant function space V for the L2-conforming discontinuous Galerkin

approach reads:

V =
{

vh ∈ (L2 (Ω))d,vh|E ∈ (Pk (E))d ∀E
}

. (3.8)

For a discontinuous interior penalty formulation of the elasticity equation, the

bilinear and linear forms with homogeneous Dirichlet boundary conditions read

3.2 Examples 37

#include <dolfin.h>

#include "Poisson.h"

using namespace dolfin;

// Sub domain for Dirichlet boundary condition

class DirichletBoundary : public SubDomain

{

bool inside(const Array<double>& x, bool on_boundary) const

{

return x[2] < DOLFIN_EPS && on_boundary;

}

};

// Source term (right -hand side)

class Source : public Expression

{

void eval(Array<double>& values , const Array<double>& x) const

{

values[0] = sin(x[0])*sin(x[1])*sin(x[2]);

}

};

int main()

{

// Create mesh

UnitCube mesh(9, 9, 9);

// Create Function Space

Poisson::FunctionSpace V(mesh);

// Define boundary condition

Constant u0(0.0);

DirichletBoundary boundary;

DirichletBC bc(V, u0, boundary);

// Define variational problem

Poisson::BilinearForm a(V, V);

Poisson::LinearForm L(V);

Source f; L.f = f;

// Compute solution

Function u(V);

solve(a == L, u, bc);

// Save solution in VTK format

File file_solution("poisson.pvd");

file_solution << u;

}

Figure 3.6 Complete C++ solver for the Poisson example.

38 Chapter 3 An overview on the automated computational mathematical modelling

(Nguyen, 2008):

a(u,v) =

∫

Ω

σ(u) : ∇v dx−

∫

Γ0

JuK · 〈σ(v)〉n+ ds

−

∫

Γ0

〈σ(u)〉n+ · JvK ds+

∫

Γ0

Eα

〈h〉
JuK · JvK ds−

∫

∂Ω

u · σ(v)n ds

−

∫

∂Ω

σ(u)n · v ds +

∫

∂Ω

Eα

h
u · v ds, (3.9)

and

L(v) =

∫

Ω

f · v dx, (3.10)

where σ(u) = 2µ(∇u+(∇u)T)+λtr(∇u)I is the stress tensor, µ and λ are the Lamé

parameters and f is the body force acting on the domain. The penalty parameter

for the discontinuous Galerkin formulation is denoted by α. Moreover, h and n are

assumed an average cell size and an outward unit normal vector to the interior facets

Γ0, respectively. In the discontinuous Galerkin formulation, the average operator

〈·〉 and the jump operator J·K on the interior facets Γ0 are respectively defined as

((·)+ + (·)−)/2 and (·)+ − (·)− where “+” and “−” superscripts denote the positive

and negative sides of the domain intersected by Γ0, respectively.

The given variational problem is used to model the deformation of a cantilever

beam. The domain of the cantilever beam is defined as Ω = (0, 0.5)×(2, 0). The beam

is fully clamped at the left hand side (u = 0 at x = 0) and subjected to body force

f = (0.0,−10.0)N. The Young’s modulus and the Poisson ratio are E = 2 × 105Pa

and ν = 0.3, respectively.

The form compiler input for this problem in two dimensions using second order

discontinuous Lagrange elements is presented in Figure 3.7. Definitions of the facet

normal and the cell size using built-in functions inside UFL in the UFL input and

using avg and jump operators to represent averages and jumps over internal facets

are also included. Inside the linear and bilinear forms, the integration over cells,

external facets and internal facets are respectively represented by *dx, *ds and *dS.

After providing PDE-specific data as UFL input, a computational domain,

boundary conditions and coefficients are also defined inside the solver to complete

the variational problem. The complete C++ solver used for modelling the

cantilever beam is presented in Figure 3.8. Similar to the previous example,

after including the automatically generated code and declaring subclasses for

the Dirichlet boundary subdomain and the body force, the mesh as an instance

of Rectangular from the DOLFIN library is defined. This mesh is used to

3.2 Examples 39

Define continuous and discontinuous spaces

element = VectorElement("Discontinuous Lagrange", triangle , 2)

Create test and trial functions

v, u = TestFunction(element), TrialFunction(element)

Compute material properties

E, nu = 2000000.0, 0.3

mu, lmbda = E/(2*(1 + nu)), E*nu/((1 + nu)*(1 - 2*nu))

Facet normal component , cell size and source term

n, h = element.cell().n, element.cell().circumradius

f = Coefficient(element)

Penalty parameters

alpha = 4.0

Stress

def sigma(v):

return 2.0*mu*sym(grad(v)) \

+ lmbda*tr(sym(grad(v)))*Identity(v.cell().d)

Bilinear and linear forms

a = inner(sigma(u), grad(v))*dx \

- inner(jump(u), avg(sigma(v))*n('+'))*dS \

- inner(avg(sigma(u))*n('+'), jump(v))*dS \

+ (E*alpha/avg(h))*inner(jump(u), jump(v))*dS \

- inner(u, sigma(v)*n)*ds - inner(sigma(u)*n, v)*ds \

+ (E*alpha/h)*inner(u, v)*ds

L = inner(f, v)*dx

Figure 3.7 The UFL input for the elasticity equation using the discontinuous Lagrange formulation.

initialise DG Elasticity::Functionspace, which is an automatically generated

class from the UFL input. This function space object is then used to declare

DG Elasticity::BilinearForm and DG Elasticity::LinearForm objects. After

attaching the source term as a coefficient function to the linear form, the variational

problem is solved using the bilinear form, the linear form and the Dirichlet boundary

condition and its solution is saved as an instance of the Function class. Finally, the

Function object is saved in the VTK format for visualization purposes.

3.2.3 Continuous Galerkin formulation for hyperelasticity

FEniCS provides functionalities which can facilitate modelling nonlinear problems.

As an example of a nonlinear problem, modeling a hyperstatic domain subjected

to static loads is presented. The boundary value problem for the static hyperelastic

problem can be expressed as a minimisation problem (Ølgaard and Wells, 2012b).

40 Chapter 3 An overview on the automated computational mathematical modelling

#include <dolfin.h>

#include "DG_Elasticity.h"

using namespace dolfin;

// Sub domain for clamp at the left end

class boundary : public SubDomain

{

bool inside(const Array<double>& x, bool on_boundary) const

{

return std::abs(x[0]) < DOLFIN_EPS && on_boundary;

}

};

// Body force term

class BodyForce : public Expression

{

public:

BodyForce () : Expression(2) {}

void eval(Array<double>& values , const Array<double>& x) const

{

values[0] = 0.0;

values[1] = -10.0;

}

};

int main()

{

// Create mesh and function space

Rectangle mesh(0, 0, 2.0, 0.5, 44, 11);

DG_Elasticity::FunctionSpace V(mesh);

// Define boundary condition

Constant u0(0.0, 0.0);

DirichletBoundary boundary;

DirichletBC bc(V, u0, boundary);

// Define variational problem

DG_Elasticity::BilinearForm a(V, V);

DG_Elasticity::LinearForm L(V);

BodyForce f; L.f = f;

// Compute solution

Function u(V);

solve(a == L, u, bc);

// Save solution in VTK format

File file("dg_elasticity.pvd");

file << u;

}

Figure 3.8 The complete C++ solver for the elasticity equation using the discontinuous Galerkin
formulation.

3.2 Examples 41

The relevant function space V reads

V =
{

vh ∈
(

H1 (Ω)
)d
,vh|E ∈ (Pk (E))

d
∀E
}

. (3.11)

The goal is to find u ∈ V which minimises the total potential energy Π:

min
u∈V

Π, (3.12)

where the potential energy Π defined on a reference domain Ω ⊂ R
d reads

Π =

∫

Ω

ψ(u)dx−

∫

Ω

f · udx−

∫

∂Ω

h · uds, (3.13)

where ψ(u) is an elastic energy stored in a unit reference domain. Furthermore, f

and h are the body force and traction force on the reference domain, respectively.

Various stored elastic energy density functions ψ(u) can be considered. For this

example, a compressible neo-Hookean model is used. To express the neo-Hookean

model, the deformation gradient F and the right Cauchy-Green tensor C,

F = I +∇u, (3.14)

C = F TF , (3.15)

and the Jacobian of the deformation gradient and the first invariant of C,

J = det(F), (3.16)

Ic = tr(C), (3.17)

are used. The stored energy for the neo-Hookean model then reads

ψ =
µ

2
(Ic − 3)− µ ln(J) +

λ

2
ln(J)

2
, (3.18)

where µ and λ are material properties.

A minimisation is achieved by computing directional derivatives of the potential

energy Π in the direction of v and setting it equal to zero:

F (u;v) = DvΠ =
dΠ(u+ ǫv)

dǫ

∣

∣

∣

∣

ǫ=0

= 0 ∀v ∈ V. (3.19)

The functional F is linear in v but nonlinear in u. The solution for this problem can

be obtained using the Newton-Raphson method, which requires the computation of

42 Chapter 3 An overview on the automated computational mathematical modelling

the Jacobian of F . The Jacobian is computed as:

dF (u; du,v) = DduF =
dF (u+ ǫdu;v)

dǫ

∣

∣

∣

∣

ǫ=0

. (3.20)

The Jacobian of F (the stiffness matrix) is used to complete the solution algorithm

for the Newton-Raphson method.

The derivation of an analytical expression for the Jacobian can be lengthy

and error prone. For this task, the exact automatic differentiation is particularly

attractive. Firstly, it eliminates a source of errors. Secondly, it means that if details

of the equation of interest are changed, there is no need to re-evaluate the Jacobian by

hand. UFL provides a useful functionality for the automatic differentiation and the

directional derivative feature can be used to compute the Jacobian from a functional,

with the Jacobian filling the role of the bilinear form in the linearised system.

If the C++ interface is chosen for a DOLFIN-based solver, the implementation

is divided into two separate files. Figure 3.9 shows the complete code for the

implementation of the neo-Hookean model for a hyperelastic domain in UFL using

linear Lagrange elements on tetrahedrons. Notice the close relation between the

mathematical formulations and the UFL input. In particular, note the automated

differentiation of both linear and bilinear forms. This means that a new material

law can be implemented by simply changing ψ and the rest of the input file remains

unchanged.

After compiling the UFL input file, the generated output is included in

the main solver to model a three-dimensional hyperelastic unit cubic domain

with given boundary conditions. The extract of C++ solver is presented in

Figure 3.10. Note that FunctionSpace, LinearForm, and BilinearForm declared

inside HyperElasticity namespace are automatically generated classes which

contain PDE-specific information. After initializing the function space, the linear

and bilinear forms are also initialized and corresponding functions are attached using

the automatically generated classes. Then the solve function is called to solve the

nonlinear variational problem. For nonlinear problems, this function receives F ==

0, u, bcs and J as input arguments. The solution u can be saved in an instance of

File or it can be visualised directly using the plot function.

In the case of a Python-based solver interface, the whole solver is implemented

inside a single Python file. This file contains both the variational forms and the solver.

An extract of the solver with the Python interface is presented in Figure 3.11. As can

be seen, the Python interface is similar to the C++ interface components presented

in Figures 3.9 and 3.10. At the first step, the DOLFIN module is imported. Then

the mesh is defined which is used to declare the corresponding function space using

VectorFunctionSpace. The function space is used to define the basis and coefficients

3.2 Examples 43

Finite element space

element = VectorElement("Lagrange", "tetrahedron", 1)

Trial and test functions

v, du = TestFunction(element), TrialFunction(element)

Displacement from previous iteration , body force per

unit mass and traction force on the boundary

u = Coefficient(element)

B, T = Coefficient(element), Coefficient(element)

Kinematics

I = Identity(element.cell().d) # Identity tensor

F = I + grad(u) # Deformation gradient

C = F.T*F # Right Cauchy -Green tensor

Invariants of deformation tensors

J = det(F)

Ic = tr(C)

Elasticity parameters

mu, lmbda = Constant("tetrahedron"), Constant("tetrahedron")

Stored strain energy density (compressible neo -Hookean model)

psi = (mu/2)*(Ic - 3) - mu*ln(J) + (lmbda/2)*(ln(J))**2

Total potential energy

Pi = psi*dx - inner(B, u)*dx - inner(T, u)*ds

First variation of Pi (directional derivative

about u in the direction of v)

F = derivative(Pi , u, v)

Compute Jacobian of F

dF = derivative(F, u, du)

Figure 3.9 The UFL input for the hyperelasticity equation with the neo-Hookean material law
using linear Lagrange elements on tetrahedrons.

functions. The automatic differentiation is called to construct the residual and the

Jacobian of a nonlinear variational problem in the next step. To obtain the solution

of the variational problem, the solve function is used. The solution u is then saved

in a file for visualisation purposes.

3.2.4 Incompressible elasticity

Incompressible elasticity (or Stokes flow) is a coupled problem in which displacement

(velocity) and pressure fields are unknowns. Here, an incompressible elasticity

example serves as a demonstration of the ease with which multi-physics problems

using different function spaces can be dealt with using automated code generation.

44 Chapter 3 An overview on the automated computational mathematical modelling

// Create mesh and function space

dolfin::UnitCube mesh(16, 16, 16);

HyperElasticity::FunctionSpace V(mesh);

// Solution function

dolfin::Function u(V);

// Create linear form

HyperElasticity::LinearForm F(V);

F.mu = mu; F.lmbda = lambda; F.B = B;

F.T = T; F.u = u;

// Create Jacobian dF = F' (for use in nonlinear solver).

HyperElasticity::BilinearForm dF(V, V);

dF.mu = mu; dF.lmbda = lambda; dF.u = u;

// Solve nonlinear variational problem F(u; v) = 0

solve(F == 0, u, bcs , J);

// Save solution in VTK format

dolfin::File file("hyper_elasticity.pvd");

file << u;

// plot solution

plot(u);

Figure 3.10 The C++ code extract for the solver of the three-dimensional hyperelasticty problem.

The partial differential equations for the incompressible elasticity on a domain Ω ⊂

R
d consist of a pair of the momentum balance and the incompressibility condition

equations:

−µ∆u+∇p+ f = 0 in Ω, (3.21)

∇ · u = 0 in Ω, (3.22)

where u, p, µ and f are the displacement field, the pressure field, a shear modulus

and a source term, respectively. By applying zero Neumann boundary conditions,

the standard variational form of the incompressible elasticity equations reads: find

(u, p) ∈ V ×W such that

a (u; p,v; q) = L (v; q) ∀ (v, q) ∈ V ×W, (3.23)

where V and W are function spaces for the displacement and the pressure fields,

3.2 Examples 45

from dolfin import *

Create mesh and define function space

mesh = UnitCube(16, 16, 16)

V = VectorFunctionSpace(mesh , "Lagrange", 1)

Define boundary conditions , body force , traction force

and material properties

[...]

Define functions

du = TrialFunction(V) # Incremental displacement

v = TestFunction(V) # Test function

u = Function(V) # Displacement from previous iteration

Kinematics

I = Identity(V.cell().d) # Identity tensor

F = I + grad(u) # Deformation gradient

C = F.T*F # Right Cauchy -Green tensor

Invariants of deformation tensors

Ic = tr(C)

J = det(F)

Elasticity parameters

mu, lmbda = Constant(E/(2*(1 + nu))), \

Constant(E*nu/((1 + nu)*(1 - 2*nu)))

Stored strain energy density (compressible neo -Hookean model)

psi = (mu/2)*(Ic - 3) - mu*ln(J) \

+ (lmbda/2)*(ln(J))**2

Total potential energy

Pi = psi*dx - dot(B, u)*dx - dot(T, u)*ds

Compute first variation of Pi (directional derivative about

u in the direction of v)

F = derivative(Pi , u, v)

Compute Jacobian of F

dF = derivative(F, u, du)

// Solve nonlinear variational problem F(u; v) = 0

solve(F == 0, u, bcs , J);

Save solution in VTK format

file = File("displacement.pvd");

file << u;

Figure 3.11 The code extract for the Python-based solver of the three-dimensional hyperelasticity
problem using Linear Lagrange elements.

46 Chapter 3 An overview on the automated computational mathematical modelling

respectively. The bilinear and linear forms are defined as

a (u; p,v; q) =

∫

Ω

µ∇u · ∇v − p∇ · v + (∇ · u)q dx, (3.24)

L (v; q) =

∫

Ω

f · v dx. (3.25)

In the context of the finite element analysis, stability requirements pose restrictions

on the allowable combinations of finite element spaces for the displacement

and pressure fields. Developing different finite element spaces for this system is

challenging due to the Ladyzhenskaya-Babuška-Brezzi compatibility condition, see

Brezzi and Fortin (1991) for details. For example, it is well known that using equal

order Lagrange basis functions for the displacement and pressure fields leads to an

unstable formulation.

In this example, two families of stable finite element spaces for modelling

incompressible elasticity equations are considered. The first family of the stable finite

element spaces are the well-known Taylor–Hood elements (Taylor and Hood, 1973).

They include a Pk element for the displacement field and Pk−1 for the pressure field

with k > 1. One instance of the Taylor-Hood elements is using a continuous piecewise

quadratic Lagrange basis for the displacement field and continuous piecewise linear

Lagrange basis for the pressure field on simplices. The relevant function spaces for

the Taylor-Hood elements read

V =
{

vh ∈
(

H1 (Ω)
)d
,vh|E ∈ (P2 (E))

d
∀E
}

, (3.26)

W =
{

ph ∈ H1 (Ω) , ph|E ∈ P1 (E) ∀E
}

. (3.27)

The second family of stable elements considered is a first order Crouzeix–Raviart

CR1 element (Crouzeix and Raviart, 1973), a non-conforming element that uses

integral moments over the cell facets, as a basis for the displacement field and a

discontinuous constant space P0 for the pressure field. For this case, the relevant

function spaces read

V =

{

vh ∈
(

L2 (Ω)
)d
,vh|E ∈ (P1(E))d ∩

∫

F

JvhK ds = 0 ∀E, ∀F

}

, (3.28)

W =
{

ph ∈
(

L2 (Ω)
)

, ph|E ∈ P0(E) ∀E
}

, (3.29)

where J(·)K denotes a jump across an internal facet F of the triangulation of Ω.

The automated approach allows users to easily switch between formulations

corresponding to different function spaces. A UFL input for variational formulations

using the Taylor-Hood elements is presented in Figure 3.12. Note the mixed finite

3.2 Examples 47

Finite element spaces for displacement and pressure fields

P2 = VectorElement("Lagrange", "triangle", 2)

P1 = FiniteElement("Lagrange", "triangle", 1)

Taylor -Hood element

S = P2 * P1

Test and Trial functions for displacement and pressure

(v, q) = TestFunctions(S)

(u, p) = TrialFunctions(S)

Source term and shear modulus

f = Coefficient(P2)

mu = Constant("triangle")

Linear and bilinear forms

a = (inner(mu*grad(u), grad(v)) - p*div(v) + div(u)*q)*dx

L = dot(f, v)*dx

Figure 3.12 The UFL input for the incompressible elasticity equations using P2 elements for the
displacement field and P1 elements for the pressure field.

Finite element spaces for displacement and pressure fields

P2 = VectorElement("Crouzeix -Raviart", "triangle", 1)

P1 = FiniteElement("Discontinuous Galerkin", "triangle", 0)

Mixed element space

S = P2 * P1

Figure 3.13 The UFL input for the definition of finite element spaces corresponding to CR1

elements for the displacement field and DG0 elements for the pressure field.

element space is constructed by simply multiplying the spaces of the displacement

and pressure fields and then the test and trial functions are defined on that space.

To switch to a formulation of the first order Crouzeix–Raviart element for the

displacement field and the discontinuous constant space for the pressure field, the

function spaces in the input for the form compiler are simply re-defined. The form

compiler input for declaring the function spaces with the Crouzeix–Raviart element

for the displacement field and the discontinuous constant space for the pressure field

is shown in Figure 3.13.

Terrel et al. (2012) have performed a comparative study using different stable

finite element spaces including Taylor-Hood elements and CR1/DG0 elements in the

modelling of incompressible elasticity (Stokes flow) equations. They showed that the

compiler approach can speed up the development of finite element codes for different

models for incompressible elasticity equations. This is because the development of

separate and special-purpose code for each model can be avoided by automatic code

generation.

48 Chapter 3 An overview on the automated computational mathematical modelling

3.3 Summary

The FEniCS project as a framework to automate computational mathematical

modelling is presented in this chapter. The design and core components of FEniCS

are also studied. Among the core components, UFL, UFC, FFC and DOLFIN

are elaborated in more details. At the end of this chapter, examples of using the

automated framework are also presented. It is demonstrated that the automated

framework facilitate the development of the finite element models and hides the

implementation details from users.

In the following chapters, a similar framework will be presented to model

discontinuity surfaces in the partition of unity framework. This framework provides

a Problem Solving Environment (PSE) on top of FEniCS. It uses components of

the FEniCS project for general purposes which are not specific to the partition of

unity method. The required specific functionalities for the automated modelling of

problems with discontinuities have been implemented inside a compiler and a solver

library which will be elaborated in chapter 4 and chapter 5, respectively.

Chapter 4 A form compiler for modeling
discontinuities

A form compiler has been developed to facilitate the modelling of domains with

discontinuities in the partition of unity framework. The form compiler generates

low-level code for modelling discontinuities for a range of physical problems with

different underlying partial differential equations and underlying finite element

function spaces by using variational forms as an input. This approach is appealing

for coupled problems in which different combinations of continuous/discontinuous

finite element function spaces are often used. The required code for each combination

is obtained by small modifications to the finite element space definitions inside the

input for the form compiler.

The partition of unity method compiler, hereafter PUM compiler, will be

developed as a black-box for users. As illustrated in Figure 4.1, it receives input

as weak forms of partial differential equations based on the partition of unity

framework in the UFL syntax (Alnæs and Logg, 2012) and returns low-level C++

code compatible with UFC (Alnæs et al., 2012). The generated low-level code

contains components to manipulate degrees of freedom maps, to compute the entries

of element tensors, and to evaluate functions defined on the enriched function

spaces. The generated code also includes wrapper classes which facilitates using

the generated code inside solvers.

The PUM compiler is built on the top of FFC (Logg et al., 2012b). This

compiler is licensed as open source software and it can be downloaded from

http://www.launchpad.net/ffc-pum. Early implementations of the PUM compiler

did not use UFL and therefore the compiler was relatively slow in compiling

inputs for complicated nonlinear equations (Nikbakht and Wells, 2009). However,

with the introduction of UFL which provides a flexible interface for declaring

finite element spaces and expressions of weak forms in mathematical notations,

Compiler
PDEs containing possible

discontinuities

Code for element tensor

evalution in PUM

Figure 4.1 Input/output of the PUM compiler. The compiler receives the variational formulations
in the UFL syntax as input and generates automatically required C++ code compatible with UFC.

http://www.launchpad.net/ffc-pum

50 Chapter 4 A form compiler for modeling discontinuities

complicated equations can be handled without losing computational efficiency in

both code generation and solving stages.

Partition of unity methods can be applied to a variety of problems with

non-smooth solutions. At this moment, the automated code generation for the

partition of unity methods is restricted for problems that involve discontinuous

solutions across surfaces.

This chapter is organized as follows. In the first section, design requirements for

the PUM compiler are explained and specific issues related to generating code for

the automated modelling of discontinuities are presented. The UFL-based input of

the PUM compiler is elaborated in the next section. The UFL syntax provides a

powerful and user friendly interface to represent variational formulations defined in

the partition of unity framework. The given input file is manipulated inside the PUM

compiler to generate low-level C++ code. Later on, the structure of the compiler

is explained and different steps of generating C++ code from the UFL input are

examined. At the end, the core components of the generated code using the PUM

compiler are elaborated.

4.1 Design requirements

To design a form compiler that can generate the required code for modelling

discontinuities, the first step is designing an interface to represent the variational

formulations. There are three issues that are specific to the variational formulations

in the partition of unity framework. The first issue is the definition of function spaces

that are discontinuous and restricted to subdomains that contain discontinuity

surfaces. These function spaces are created by enriching the standard function spaces

with additional function spaces.

Functions defined in domains with discontinuity surfaces may have different values

on the positive and negative sides of a discontinuity surface. For functions appearing

in surface integrals, it is required to define a restriction syntax which allows the

definition of functions on each side of a surface. The second issue is about defining

this restriction syntax to represent the discontinuous functions.

The last issue is the computation of surface integrals for problems in which flux-like

quantities exist on the discontinuity surfaces. In these problems, a number of terms,

appearing in the variational formulations, are integrated along discontinuity surfaces.

The form compiler input should be designed such that it can represent the surface

integrations.

In the second step, components of the PUM form compiler are designed to

manipulate the given variational formulations via a UFL input to generate low-level

code. The PUM form compiler is built as an extension of the FEniCS Form

Compiler (Logg et al., 2012b); therefore, it follows not only a structure similar to the

4.2 Form compiler input 51

structure of FFC, but it also re-uses functionalities and Python modules provided

by FFC. Special code is required only for a small number of cells which are close to

discontinuity surfaces. Therefore, the FFC functionality can be used for cells away

from surfaces without any modification.

For the partition of unity framework, the possible representation for element

tensors is limited. This is due to discontinuity surfaces being defined globally in

terms of the real coordinates, unlike the shape functions which are usually defined

on reference cells. This eliminates the possibility of using the tensor contraction

approach (Kirby and Logg, 2007, 2008) which relies on all functions being defined

on the reference cell to pre-compute reference element tensors. For this reason, the

PUM compiler only supports the conventional quadrature representation (Ølgaard

and Wells, 2010, 2012a) for the evaluation of element tensors.

The PUM compiler generates code which is independent of surface representations.

This allows one to use the generated code without modification for different surface

representations. To permit this decoupling, information related to the surfaces is

transferred using objects of an interface layer to the generated code. The objects

of the interface layer are responsible to handle extra information (e.g. enriched

degrees of freedom and intersected cells) related to the modelling of surfaces in

the partition of unity framework. This interface layer is implemented as a base class

called GenericPUM inside the solver library. The details of the GenericPUM class is

explained in the next chapter. However, the design of the automated framework is

such that the objects of the interface layer are not exposed to users and they are

automatically initialized inside the generated code.

4.2 Form compiler input

The PUM compiler uses UFL as an input interface to represent variational

formulations defined in the partition of unity framework. To elaborate the input

interface, a variational problem corresponding to the modelling of discontinuities

in a Poisson problem using the partition of unity formulation is considered. The

variational problem is defined in a domain Ω ⊂ R
d containing a discontinuity surface

Γd. A flux across the discontinuity surface is qd = k JuK, where k > 0 and J·K

represents jumps over the surface. The bilinear and linear forms read

a (u, v) =

∫

Ω\Γd

∇u · ∇v dx+

∫

Γd

k JuK JvK ds, (4.1)

L (v) =

∫

Ω

fv dx−

∫

Γt

gv ds, (4.2)

52 Chapter 4 A form compiler for modeling discontinuities

where f is a source term on the domain Ω and g is a flux acting on a Nuemann

boundary Γt ⊂ ∂Ω. The enriched finite element function space reads

V =
{

vh ∈ H1 (Ω\Γd) , vh|E ∈ Pk (E\Γd) ∀E
}

. (4.3)

An important aspect in the partition of unity formulation is the definition of

enriched elements. The UFL interface supports defining these types of elements.

More classical examples, in which the enriched space concept in UFL is used, are

the enrichment of the Lagrange element with bubble functions for use with the

Stokes equations or the Raviart–Thomas element for linear elasticity (Arnold et al.,

1984a,b).

A finite element function space whose functions are discontinuous across the

discontinuity surface (discontinuous function space) is defined by restricting a

continuous function space over subdomains around discontinuity surfaces denoted by

dc. Inspired by the decomposition of the variable field to continuous/discontinuous

parts represented in Equation (2.10), uh = ūh +Hdûh, a continuous function space

is locally enriched with a space that contains a discontinuity. This is done by adding

continuous and discontinuous function spaces to create an “enriched” space E:

Ec = FiniteElement(family , shape , order)

Ed = RestrictedElement(E0, dc)

E = Ec + Ed

In the above, Ec is a continuous scalar finite element space defined by three

arguments in which family represents a finite element type, shape denotes triangle

or tetrahedron for two- or three- dimensional problems, respectively. order is an

arbitrary positive integer determining the order of the approximation polynomials.

Ed is an instance of RestrictedElement and it is created by restricting a continuous

space E0 to a subdomain dc which contains a discontinuity surface. The geometry of

the surface across which functions are discontinuous will only be known at runtime,

hence details of the restriction can only be determined then. An enriched element E is

created by summation of Ec and Ed. Unlike the expression E = Ec*Ed, which creates

a mixed finite element space, the expression E = Ec + Ed results in a scalar finite

element space. Although different function spaces can be used for Ec and E0, the

majority of the partition of unity formulations use the same space for the continuous

function spaces, i.e. Ec = E0.

Once an enriched finite element is declared, basis and coefficient functions can be

defined on this function space. For example, enriched test and trial functions, and

an enriched coefficient function are defined by

v = TestFunction(E)

u = TrialFunction(E)

f = Coefficient(E)

4.2 Form compiler input 53

In the partition of unity formulations, some terms in the variational forms may be

integrated across discontinuity surfaces (see for example the second term in Equation

(4.1)). Functions appearing in surface integrals are restricted to discontinuity

surfaces. The syntax for the surface restriction appearing in the surface integrals

is identical to the UFL restrictions on the interior facets. However, the surface

restriction syntax is interpreted differently from the interior facet restriction syntax

inside the PUM form compiler and thus results in different generated code. For

a function u appearing in the surface integrals, u(’+’) and u(’-’) are used to

restrict it on the positive and negative sides of discontinuity surfaces, respectively.

The restriction may be applied to functions from any finite element space but will

only affect expressions that are discontinuous across surfaces. To introduce jump

and average of the function u on a discontinuity surface, jump(u) and avg(u) are

used. The jump and average operators are defined as

jump(u) = u('+') - u('-')
avg(u) = (u('+') + u('-'))/2

To support the integration over discontinuity surfaces, a new notation (measure)

*dc inside UFL is defined. Adding *dc enables UFL to represent a wider range of

variational forms including those defined in the partition of unity framework. In

summary, there are four types of integrals supported in the UFL language:� a cell integral:
∫

Ω
(·) dx ↔ (·)*dx,� an exterior facet integral:

∫

∂Ω
(·) ds ↔ (·)*ds,� an interior facet integral:

∫

Γ0
(·) dS ↔ (·)*dS,� a surface integral:

∫

Γd
(·) dc ↔ (·)*dc,

where Ω, ∂Ω and Γ0 represent the domains of cells, external facets and internal facets

of meshes, respectively. Moreover, Γd denotes the discontinuity surfaces.

Defining enriched spaces, representing surface integrals and restricting functions

to discontinuity surfaces are issues specific for representing the variational forms of

the partition of unity framework. For the rest, variational forms inside UFL can be

expressed just as they are for conventional problems (Alnæs and Logg, 2009; Alnæs,

2012).

To complete this section, UFL input for the partition of unity formulation of the

Poisson equation in a two-dimensional domain is presented. The bilinear and linear

forms for this formulation are given at the beginning of this section in Equations (4.1)

and (4.2), respectively. The UFL input for this problem using third order Lagrange

elements on triangles is shown in Figure 4.2. The definition of the Lagrange enriched

element and the new integration syntax for the surface integrals defined in the

partition of unity framework in the UFL input is emphasized.

54 Chapter 4 A form compiler for modeling discontinuities

Define continuous and discontinuous spaces

elem_cont = FiniteElement("Lagrange", triangle , 3)

elem_discont = RestrictedElement(elem_cont , dc)

Define enriched space

element = elem_cont + elem_discont

Define test and trial functions

v, u = TestFunction(element), TrialFunction(element)

Source term , traction force and surface stiffness

f, g = Coefficient(elem_cont), Coefficient(elem_cont)

k = Constant(triangle)

Define bilinear and linear forms

a = dot(grad(u), grad(v))*dx + k('+')*jump(u)*jump(v)*dc
L = f*v*dx - g*v*ds

Figure 4.2 The UFL input for a variational formulation for the Poisson equation using the partition
of unity framework presented in Equations (4.1) and (4.2).

UFL Form
Preprocessed UFL

 form
Intermediate Representation

 Optimized

Intermediate Representation
C++ Code C++ Code

files(.h/.cpp)

Stage I:
Analysis

Stage II:
Code Representation

Stage III:
Optimization

Stage IV:
Code Generation

Stage V:
Code Formating

Figure 4.3 The PUM compiler structure and its corresponding data flow.

4.3 Structure of the form compiler

To generate low-level code for modeling discontinuities required for an assembly

library, the FEniCS Form Compiler (Logg et al., 2012b) is extended to support new

functionalities specific to the partition of unity framework. The extended FEniCS

form compiler, PUM compiler, generates the required code to evaluate enriched

element tensors corresponding to cell integrals, interior facet integrals, exterior facet

integrals and surface integrals. It also generates code to evaluate enriched finite

element functions that do not satisfy the interpolation property.

The compilation process is divided into five stages, which are illustrated in

Figure 4.3. The initial input is UFL input and the final output is C++ code files

and the output generated at each stage serves as input for the following stage. In the

following, the functionalities performed in each stage are explained in more detail.

4.3 Structure of the form compiler 55

Before starting the compilation, a pre-processing stage is performed. This stage

includes interpreting and parsing Python code or a .ufl file and storing it as a UFL

Abstract Syntax Tree (AST). While Python handles the actual parsing, the operator

overloading in UFL implements the transformation of the compiler input to a UFL

object.

4.3.1 Analysis of the form language input

This stage involves the analysis of the UFL abstract syntax tree and extracting

form metadata (FormData). The form metadata includes elements used to define

forms, corresponding element maps, coefficients in the forms and integrals for each

subdomain. The raw UFL input is preprocessed to obtain a form which can be more

easily manipulated by the compiler.

For function spaces defined in the partition of unity framework, FormData also

includes components to divide the function spaces into standard and enriched parts.

The enriched part is used to initialize interface layers (GenericPUM objects) which

are responsible to transfer information specific to the enriched degrees of freedom

data to the generated code.

4.3.2 Intermediate code representation

The PUM compiler receives the preprocessed input in this stage and generates

all intermediate representations necessary for code generation. Intermediate

representations are computed for finite element spaces and degrees of freedom

maps, integrals and forms. These forms contain interfaces to finite elements, degrees

of freedom mappings and integrals. While the PUM compiler uses a number of

modules from FFC to generate intermediate representations for the standard parts

of variational formulations, intermediate representations for the enriched parts are

computed using modules from the PUM compiler. The intermediate representations

for the enriched parts are used to extract information specific to the partition of unity

framework. This information includes the number of enriched spaces corresponding

to the finite element function spaces, the standard parts of finite element spaces and

a map to determine the configuration of standard and enriched parts inside mixed

function spaces.

The intermediate representations are stored as a Python dictionary, mapping

names of functions to the data needed for the generation of corresponding code. In

some simple cases like ufc::finite element::topological dimension, this data

may be a positive integer (like 2 for a finite element space in a two dimensional

domain). In other cases like ufc::cell tensor::tabulate tensor, the data may

be a complex data structure which contains data for both standard and enriched

entries of element tensors.

56 Chapter 4 A form compiler for modeling discontinuities

To compute the intermediate representations for integrals, a Transformer class

provided by UFL is used. This class is a base class for a visitor-like algorithm

design pattern (Gamma et al., 1995) to transform an expression tree from one UFL

representation to another UFL representation (Alnæs, 2012). The UFL expression

tree is a Directed Acyclic Graph (DAG) (Christofides, 1975) which represents the

basic arguments (basis functions, coefficient functions and constants) and operators

(linear algebra and derivatives) as components of the graph.

Inside the PUM compiler, three sub-classes of the Transformer class have been

defined to obtain the intermediate representations corresponding to the integrals in

the partition of unity framework. A first transformer is QuadratureTransformer

which is a slightly modified version of the QuadratureTransformer class from FFC.

This transformer computes the intermediate representations for the standard parts

of integrals which will be used to generate code for the standard entries of element

tensors. EnrichedTransformer is another transformer that is responsible to compute

intermediate representations for the enriched parts of integrals.

However, if any coefficient function is defined on enriched function spaces

(e.g. a solution from the previous converged stage for a nonlinear problem

with discontinuities), the computed intermediate representations are not adequate

and extra intermediate representations must also be computed. Since for this

type of problem, in addition to element tensor entries corresponding to the

enriched degrees of freedom, a number of expressions appearing in the element

tensor entries of standard degrees of freedom should also be evaluated using the

modified quadrature rules. To obtain the intermediate representations for these

entries, a third transformer called ExpansionTransformer is defined. An object

of the ExpansionTransformer class performs the algebraic expansions of the UFL

expressions. It receives standard UFL expressions as input and returns expanded

expressions as a summation of simple terms. The expanded output is then passed to

a function to extract discontinuous terms. These discontinuous terms are then used

to generate the intermediate representations for the enriched terms appearing in the

standard entries.

4.3.3 Optimisation of the intermediate representations

The automatic code generation provides scopes for employing optimisation that may

not be feasible in a hand-generated code. Inside the FEniCS Form Compiler, different

strategies for the optimisation are performed based on the chosen representation for

the element tensor evaluation (Kirby, 2006, 2012a; Ølgaard and Wells, 2010). As

stated before, the supported representation for the PUM compiler is limited to the

quadrature representation. For the PUM form compiler, a same optimisation as the

symbolic optimisation, used inside FFC for the quadrature representation, has been

4.4 Components of the generated code 57

employed.

The FFC optimisation modules, as discussed in Ølgaard and Wells (2010), are

used to optimise the evaluation of standard entries of element tensors. No other

optimisation is performed for the evaluation of the enriched entries of element tensors

at this moment.

4.3.4 Code generation from the intermediate representation s

The PUM form compiler uses the intermediate representations to generate the actual

C++ code for the body of the generated code in this stage. The code is stored as

a Python dictionary, mapping names of generated functions to strings containing

C++ code for the body of each function. The generated dictionary contains codes

for elements, degrees of freedom mappings and integrals.

Most of the code generation for the standard entries is performed using modules

from FFC. The code for mapping the standard entries to the local element tensor,

as well as computing enriched entries of the local element tensor and evaluating

enriched finite element spaces are generated using the PUM compiler.

4.3.5 Code formatting

This stage examines the generated C++ code and formats it according to the UFC

interface (Alnæs et al., 2012). At this stage, the actual generation of the C++ files

takes place and the generated code inside the Python dictionary from the previous

stage is inserted into UFC templates to obtain C++ files.

4.4 Components of the generated code

The generated low-level code, using the PUM compiler, contains components that

facilitate modelling discontinuities in the partition of unity framework by removing

the need for hand-generated code for the innermost assembly loop. This considerably

increases the speed of developing partition of unity models. The generated classes are

conformed to the UFC specifications that allow the separation of the problem-specific

data from the general-specific data.

4.4.1 The UFC-based classes

In the context of the partition of unity methods, the computation of element matrices

and vectors and the degree of freedom maps are affected by the discontinuity surfaces.

To utilise the UFC specifications, a standard C++ polymorphic design is followed

and sub-classes of the classes defined in the UFC specification are generated. The

automatically generated classes are initialised with GenericPUM objects (the design

58 Chapter 4 A form compiler for modeling discontinuities

of the GenericPUM interface is described in the next chapter). The GenericPUM

objects are used to compute extra information, such as enriched degrees of freedom

and intersected cells, which are required to compute element tensors in the partition

of unity framework. These objects provide the data which is dependent on the

presence of discontinuity surfaces and it is necessary to build element matrices and

vectors for the partition of unity models.

The key classes generated by the PUM compiler are derived classes from UFC

like ufc::finite element, ufc::dof map and ufc::form. Depending on the given

mathematical formulation, the initialization of sub-classes of ufc::cell integrals,

ufc::exterior facet integrals or ufc::interior facet integralsmay also be

required.

To clarify the structure of the automatically generated code, the core components

of generated code for the UFL input of the Poisson equation, presented in Figure 4.2,

are considered. The generated code contains classes for the bilinear and linear forms,

finite element spaces, degrees of freedom mappings and integrals defined in the

variational formulations.

Generated code for the forms

The PUM form compiler generates code to initialise the bilinear and linear forms

objects. These objects are sub-classes of the ufc::form class and receive as input

pum objects which is a std::vector containing pointers to the GenericPUM objects.

poisson_form_0 a(pum_objects);

poisson_form_1 L(pum_objects);

The postfixes “0” and “1” indicate forms with different ranks – “0” for bilinear

forms and “1” for linear forms. The forms are self-aware of various properties, such

as their rank and are able to create the relevant degree of freedom maps, integral

objects and finite elements. These forms are the main interface through which an

application developer interacts with the automatically generated code.

Generated code for the finite element spaces

For each finite element space used in a variational statement, the PUM form compiler

generates a class derived from the ufc::finite element class. An object of this class

also receives pum objects as input.

poisson_finite_element_2 finite_element(pum_objects);

The ufc::finite element objects provide functionalities, supported in the UFC

specification, such as the evaluation of basis functions and their derivatives at the

given point, the computation of the space dimension and value rank of the finite

4.4 Components of the generated code 59

element function space and the interpolation of vertex values from the degrees of

freedom values.

To interpolate vertex values of functions defined on enriched finite element spaces,

the contribution of enrichment functions to the vertex values must be also considered.

This contribution is computed using a member function of the GenericPUM class

which tabulates basis of enrichment functions at vertices.

Generated code for the degrees of freedom maps

The PUM compiler also generates code to tabulate degrees of freedom. Two different

approaches have been examined for the degrees of freedom tabulation in the PUM

compiler. At the earlier implementations of the PUM compiler (Nikbakht and Wells,

2009), the required code for both standard and enriched parts of the degrees of

freedom was generated inside subclasses of ufc::dof map. This was achieved by

passing pum objects to subclasses of ufc::dof map.

However, this approach encountered some problems, most notably in the

evaluation of coefficient functions defined on the enriched function spaces (e.g.

solutions from the previous converged step in the the nonlinear variational

formulations). To avoid these problems, a second approach was developed. In

this approach, the PUM form compiler is only used to generate required code to

manipulate the standard part of degrees of freedom for each finite element space.

The generated code contains a ufc::dof map class. For the Poisson example, an

object of degrees of freedom map is initialized as

poisson_dof_map_2 dof_map;

This object can be used to compute the global dimension and the maximum local

dimension of the standard part of degrees of freedom map. It also tabulates the

local-to-global map and the local-to-local map from facet degrees of freedom to cell

degrees of freedom for the standard part of degrees of freedom.

The enriched degrees of freedom are evaluated using GenericPUM objects

corresponding to the enriched spaces. For each enriched space, a GenericPUM object

is constructed to compute required information about the enriched degrees of

freedom. To manipulate all degrees of freedom, including the standard and enriched

parts, a class called DofMap is defined inside the solver library. This class receives the

automatically generated sub-classes of ufc::dof map and the GenericPUM objects

to compute the total degrees of freedom.

Generated code for the integrals

To compute a local element matrix or vector, the form compiler generates subclasses

of the integral classes of UFC. To evaluate the local element tensor for integrands

60 Chapter 4 A form compiler for modeling discontinuities

containing the cell integration dx, one can create an object for the Poisson example

as

poisson_cell_integral_0 cell_integral(pum_objects);

This object can compute a cell element tensor whose size may vary based on the

position of discontinuity surfaces. If a cell is far from the discontinuity surfaces, then

the local element tensor is computed without any enriched entries. However, if the

support of any node belonging to the cell is intersected with discontinuity surfaces,

the enriched entries are also computed in addition to standard entries of the element

tensor.

Algorithm 1 presents a framework for the evaluation of the local element tensors

for cell integrals. Besides member functions defined in the UFC specifications for

the integrals, a private member function called tabulate regular tensor has been

introduced. This member function is responsible for computing the standard entries

of the element matrix or vector (the terms which are evaluated on the whole domain).

This function contains the standard FFC code with some minor modifications to map

the regular entries to the correct positions in the local element tensor.

Inside the tabulate tensor member function, which is the main interface, the

tabulate regular tensor function is called at the first step. Inside this function,

values of the basis functions and/or their derivatives are tabulated at pre-defined

Gauss quadrature points. The entries of the local element tensor corresponding to the

standard part of degrees of freedom are computed by looping over these pre-defined

quadrature points computed at compile-time by FFC. These entries are then mapped

into suitable positions in the local element tensor.

The number of enriched degrees of freedom is then checked for the current cell.

This number is computed using a member function from the GenericPUM interface

for each discontinuous space. If no enriched degrees of freedom exist, the evaluation

of the cell element tensor is completed. Otherwise, the enriched part of the element

tensor (the terms that are evaluated on the positive side of the domain) must be

computed.

To generate the required code for the enriched entries, relevant

ufc::finite element objects are initialised. These objects are used to evaluate

values of the basis functions and/or their derivatives at run-time, when the details of

discontinuity surfaces are known. After tabulating the standard Gauss quadrature

weights and points in the reference cell, a member function of GenericPUM receives

these tables and computes modified Gauss quadrature weights and points in the

physical cell.

To compute the enriched entries of the element tensor, a loop over the modified

quadrature points is defined. Before entering to the quadrature loop, a member

function from the GenericPUM interface is used to tabulate the basis of enrichment

4.4 Components of the generated code 61

Algorithm 1 The local element tensor evaluation for the cell/surface integrals.

1: compute and map the standard entries to the local element tensor for the current
cell

2: if no enriched dof for the current cell then
3: End
4: else

5: if the current cell is intersected then

6: compute the modified Gauss quadrature rule on the physical domain
7: else

8: map the standard Gauss quadrature rule to the physical domain
9: end if

10: for all Gauss quadrature points on the current cell do
11: tabulate values of the basis functions and/or their derivatives
12: if any coefficient defined on the discontinuous space then

13: compute the standard entries affected by discontinuous coefficients
14: end if

15: compute the enriched entries
16: end for

17: if any integration over discontinuity surface (*dc) then
18: compute the Gauss quadrature rule along surfaces
19: for all Gauss points on surfaces do
20: tabulate values of the basis functions and/or their derivatives
21: compute the enriched entries
22: end for

23: end if

24: end if

functions at quadrature points. Inside the quadrature loop, the basis functions

and/or their derivatives are tabulated for each quadrature point using member

functions of ufc::finite element. Parameters for evaluating coefficient functions

are also initialised at this step. The tables for the (derivatives of) basis functions and

the coefficient parameters in addition to the enrichment functions values (computed

outside the quadrature loop) are then used to compute the contributions of the

enriched entries of the element tensor at the current quadrature point.

If a surface integral *dc exists in the variational formulation, the required code

to compute its contribution to the local element tensor is also generated inside

sub-classes of ufc::cell integral. The terms appearing in the surface integral

are restricted to discontinuity surfaces and they are computed using a quadrature

rule defined along the discontinuity surfaces. The required surface quadrature rule

is obtained using a member function from the GenericPUM interface.

62 Chapter 4 A form compiler for modeling discontinuities

The framework for the evaluation of surface integrals is designed such that it

can compute surface integral contributions for functions restricted on the either

positive side or negative side of discontinuity surfaces. The restricted terms may

have contributions to both standard and enriched parts of the local element tensor.

If there is any coefficient defined on the enriched spaces, the required code is also

generated to compute terms inside the standard entries of element tensors which

must be evaluated using modified quadrature rules. These terms are obtained using

the expansion transformer (which was explained in the previous section). Because

the expanded UFL integrands have their own numbering scheme for coefficients, new

coefficient parameters are required inside the quadrature loop. These new parameters

are then used to evaluate enriched expressions corresponding to the standard degrees

of freedom.

To evaluate element tensors for the exterior/exterior facet integrals, the

required code may also be generated. The global element tensor corresponding to

interior/exterior integrals is obtained by looping over all interior/exterior facets of

a corresponding mesh. A similar framework to the previous framework has been

designed for this purpose and it is presented in Algorithm 2.

Algorithm 2 The local element tensor evaluation for the interior/exterior integrals.

1: compute and map the standard entries to the local element tensor for the current
facet

2: if no enriched dof for the current facet then
3: End
4: else

5: if the facet is intersected then

6: compute the modified Gauss quadrature rule on the physical domain
7: else

8: map the standard Gauss quadrature rule to the physical domain
9: end if

10: for all Gauss quadrature points on the facet do
11: tabulate values of the basis functions and/or their derivatives
12: if any coefficient defined on the discontinuous space then

13: compute the standard entries affected by discontinuous coefficients
14: end if

15: compute the enriched entries
16: end for

17: end if

Chapter 5 A Partition of Unity Method library

The design of a partition of unity method library is presented in this chapter.

This library provides required functionalities to implement DOLFIN-based solvers

to model discontinuities in the partition of unity framework. The DOLFIN-based

solvers use the automatically generated code by the PUM form compiler to compute

element tensors and degrees of freedom maps. The partition of unity method library,

hereafter PUM library, is composed of C++ classes to support the partition of

unity framework. It addresses the representation and visualization of surfaces, the

management of data related to the enriched degrees of freedom, the definition of

enriched function spaces and the evaluation of functions defined on the enriched

spaces.

An object oriented design using the polymorphic approach for the PUM library

is used. The object oriented design is a design approach organized around “objects”

rather than “actions” and “data” rather than “logic”. The first step of designing an

object oriented library is identifying all required objects for manipulation and their

relations to each other. The object oriented programming concepts provide some

important benefits for designing mathematical software packages like abstraction

for a proper design by using the class concept (Shapira, 2006).

The PUM solver library is built on top of DOLFIN (Logg et al., 2012e)

and it is licensed as open source software and it can be downloaded from

http://www.launchpad.net/dolfin-pum.

This chapter is organized as follows. At the first step, the design requirements of

the PUM library are explained. This section is then followed by the implementation

details and an overview on the main components of the PUM library. The interfaces

of two base classes of the solver library which allow the implementation of various

types of surfaces and different enrichment functions are explained in more details.

Using the base classes, components have been developed to model problems with

non-branching surfaces with discontinuous solutions. These components are also

explained in the next sections. In order to use the generated code inside solvers

developed using the components of the PUM library and DOLFIN, solver wrapper

classes should be generated using the PUM form compiler. The components of the

solver wrapper classes are explained at the end of this chapter.

http://www.launchpad.net/dolfin-pum

64 Chapter 5 A Partition of Unity Method library

5.1 Design considerations

The PUM library, which is built on top of DOLFIN, has been designed such that

a consistent solver interface with the solver interface for DOLFIN-based solvers is

obtained. This allows to develop finite element solvers for modelling discontinuities

using the well-designed and well-thought interface of the standard problems with

some minor modifications.

To use the automatically generated code to model discontinuity surfaces in

DOLFIN-based solvers, new functionalities must be introduced inside FEniCS. These

functionalities include:� managing data and tools related to the partition of unity method, which

includes evaluating enriched degrees of freedom and modified quadrature rules;� interacting with the code generated by the form compiler to compute enriched

entries of element tensors and local to global mappings to assemble global

element tensors;� representing surfaces such that different approaches can be supported;� extending surfaces for evolving surface geometry that may happen during

simulation; and� visualizing functions with discontinuities.

Some generic details of how these features are implemented and components of the

PUM library are provided in the following sections.

5.2 Core components of the PUM library

The PUM library is designed such that it provides appropriate functionalities specific

to the partition of unity framework. The PUM library includes some C++ classes

that are defined in the pum namespace. These classes together with components

of DOLFIN can be used to construct the partition of unity solvers using the

PDE-specific code, that is generated by the PUM form compiler.

These member functions, defined in the pum namespace, together with components

of DOLFIN can be used to construct the partition of unity solvers using the

PDE-specific code, that is generated by the PUM form compiler.

The main components of the PUM library can be divided into four groups. The

first group contains classes to represent discontinuity surfaces. These classes provide

functionalities like defining surfaces and visualizing them. This group includes the

following classes:

5.2 Core components of the PUM library 65� pum::GenericSurface is an abstract base class to define discontinuity

surfaces. Sub-classes of this class implement functionalities like evaluating the

position of a point with respect to the given surface, computing normal and

tangential vectors on the surface, computing various intersections between

different mesh entities and the surface. A wide range of surfaces can be

represented using derived classes from this class. The implementation details

are hidden from the users and the communication between surface objects and

the rest of solver is performed using the interface of the base class.� pum::VTKFile is a class whose objects are used to visualize surfaces using a

VTK format. The VTK (Visualization ToolKit) is an open-source C++ library

for visualization (Schroeder et al., 2006).

In the second group, a class for handling enriched degrees of freedom is considered.

This class acts as a glue layer between the solver and the generated code.� pum::GenericPUM is an abstract base class to handle enriched degrees of

freedom for each discontinuous field. Subclasses derived form the base class

provide functionalities like tabulating enriched degrees of freedom, tabulating

enrichment functions and computing modified quadrature rules for intersected

cells or facets.

To define coefficient functions on the enriched function spaces, the following classes

have been considered.� pum::DofMap is a derived class from dolfin::GenericDofMap to compute

degree of freedom mappings including the standard and enriched parts of

degrees of freedom. Inside this class, the mapping for the standard part of

degrees of freedom are computed using automatically generated ufc::dof map

objects and the mapping for the enriched parts of degrees of freedom are

computed using the pum::GenericPUM objects.� pum::FunctionSpace is a class derived from dolfin::FunctionSpace

to represent an enriched finite element function space. The enriched

finite element function space is created using a dolfin::Mesh object,

a dolfin::FiniteElement object, a dolfin::GenericDofMap object and

pum::GenericPUM objects.� pum::SubSpace is a class derived from pum::FunctionSpace to return the

sub-components of mixed enriched function spaces.� pum::Function is a derived class from dolfin::Function and supports

defining functions on enriched function spaces with variable number of

66 Chapter 5 A Partition of Unity Method library

Figure 5.1 The UML diagram of the core components of the PUM library defined in the pum

namespace.

degrees of freedom. These enriched function spaces are represented by

pum::FunctionSpace objects.

The last group contains a common class to perform computations on geometry.� pum::GeometryTools is a class with static member functions to perform

geometrical calculations. This class covers functionalities like computing

volumes or areas of geometrical entities, determining equations of surfaces

passing through two, three or four points, computing intersection points

between two lines or a line and a plane and computing sub-triangulations

for a cell or a facet intersected by a surface.

A UML diagram showing the relation among the core components of the PUM

solver library is presented in Figure 5.1. It is worth to re-emphasize that all classes

are defined in the pum namespace to avoid any name duplication with classes existing

in the standard DOLFIN library. These classes can also represent mixed elements,

in which case it is possible to obtain pum::Function, pum::FunctionSpace and

pum::DofMap objects for each sub-element in a hierarchical manner.

The pum::GenericPUM and pum::GenericSurface classes are two abstract base

5.2 Core components of the PUM library 67

classes defined in the library. In the following, these two classes are elaborated in

more detail.

5.2.1 pum::GenericPUM base class

The pum::GenericPUM class defines an abstract interface through which the

generated code can retrieve necessary data from the solver library. Together with

the UFC specification, it can define an interface for interactions between the

generated code and the solver environment. The objects derived from subclasses of

pum::GenericPUM provide all required functionality to evaluate extra data related

to the enriched degrees of freedom in the generated code.

Design considerations

The pum::GenericPUM class should provide interfaces to transfer the required

information of the partition of unity framework to the generated code. The

pum::GenericPUM interface should support the degree of freedom manipulation, and

specifically the management of the enriched degrees of freedom. For this purpose, the

enriched degrees of freedom and their coordinates for each cell must be tabulated.

The total number and the maximum number of enriched degrees of freedom for cells

in the computational mesh as well as the number of enriched degrees of freedom for

each cell must also be computed.

The pum::GenericPUM interface should also support the manipulation of

enrichment functions. The values of enrichment functions are required to

compute enriched element tensors and to post-process functions defined on

discontinuous spaces. The post-processing of discontinuous functions are performed

by interpolating discrete values of discontinuous functions defined on nodal points

to the cell vertices.

To evaluate enriched entries corresponding to the cells intersected with

discontinuity surfaces, the pum::GenericPUM interface provides information about

modified quadrature rules. The interface layer contains member functions that

indicate when a modified quadrature is required on a given cell or facet. There should

be also member functions to return tailored quadrature schemes for the intersected

cells or facets. Note that most of the computations related to the modified quadrature

rules are performed in a class related to representing surfaces and the interface layer

just provides access to this information in the generated code.

In the partition of unity framework, local dimensions of element tensors may

change during a simulation as a surface evolves. This change is because of the

introduction of new enriched degrees of freedom for the evolved surface. Therefore,

pum::GenericPUM should be able to update data corresponding to the enriched

68 Chapter 5 A Partition of Unity Method library

degrees of freedom to compute new entries of element tensors and map these entries

to appropriate positions.

Interface

The interface of the pum::GenericPUM class is presented in Figures 5.2 and 5.3. The

member functions of pum::GenericPUM perform the basic types of functionalities

explained in the preceding. For tabulating enriched degree of freedom maps and

their coordinates, tabulate enriched dofs, tabulate enriched local dofs

and tabulate enriched coordinates member functions have been

introduced. To compute the number of enriched degrees of freedom locally

and globally, enriched global dimension, enriched local dimension,

enriched max local dimension member functions have been designed. For

numerical integration, pum::GenericPUM provides modified quadrature,

facet quadrature rule, cell quadrature rule and surface quadrature rule.

From the pum::GenericPUM interface, tabulate enriched basis is the member

function which computes enriched function values. update member function inside

the base class is used to modify data related to the enriched degrees of freedom

when a surface evolves.

5.2.2 pum::GenericSurface base class

Surface representation is an active area of research in the context of the partition of

unity framework and the pum::GenericSurface interface permits a high degree of

flexibility in this respect. The use of the base class pum::GenericSurface permits

different surface representations to be used interchangeably with the generated

code. Moreover, the implementation details of different surface representations

are hidden from the users and the communication between surface objects and

the rest of the solver is performed using the pum::GenericSurface interface.

The pum::GenericSurface interface also provides various functions for querying

a surface object.

Design requirements

To design an abstract class which can support different surface representations,

the following functionalities should be supported inside subclasses derived from

pum::GenericSurface: determining surface geometry, computing intersections

and evaluating modified quadrature rules. Determining surface geometry is an

important functionality which must be supported inside pum::GenericSurface.

This functionality includes checking whether a given point is on the surface,

5.2 Core components of the PUM library 69

using namespace dolfin;

using namespace pum;

class GenericPUM

{

public:

/// Return total number of enriched dofs

virtual unit enriched_global_dimension () const = 0;

/// Return number of enriched extra dofs for the given cell

virtual unit enriched_local_dimension(const ufc::cell&

cell) const = 0;

/// Return the maximum number of 'enriched ' dofs for a cell

virtual unit enriched_max_local_dimension () const = 0;

/// Tabulate enriched dofs for the current cell

virtual void tabulate_enriched_dofs(unit* dofs ,

const ufc::cell& ufc_cell , unit local_offset = 0,

unit global_offset = 0) const = 0;

/// Tabulate values of the enriched basis at points in a cell

virtual void tabulate_enriched_basis(std::vector<double>&

values , const std::vector<double>& points ,

const ufc::cell& ufc_cell) const = 0;

/// Tabulate local enriched dofs

virtual void tabulate_enriched_local_dofs(std::vector<unit>&

local_dofs , const ufc::cell& ufc_cell) const = 0;

/// Tabulate coordinates of enriched dofs

virtual void tabulate_enriched_coordinates(std::vector<double>&

coordinates , const ufc::cell& ufc_cell) const = 0;

/// Indicate whether modified quadrature is required for

/// a given cell

virtual bool modified_quadrature(const ufc::cell&

ufc_cell) const = 0;

/// Compute modified quadrature of a cell.

virtual void cell_quadrature_rule(QuadratureRule& modified ,

ConstQuadratureRule& standard ,

const ufc::cell& ufc_cell) const = 0;

Figure 5.2 The pum::GenericPUM class interface (part 1)

computing the normal distance of a point from the surface and computing normal

and tangential vectors of the surface at a given point.

Obtaining information about intersections of a surface with various mesh entities

(e.g. edges, faces and cells) must also be supported for pum::GenericSurface.

70 Chapter 5 A Partition of Unity Method library

/// Compute quadrature rule for discontinuity surface

virtual void surface_quadrature (QuadratureRule& modified ,

ConstQuadratureRule& standard ,

const ufc::cell& ufc_cell) const = 0;

/// Indicate whether modified quadrature is required on a

/// given local facet index

virtual bool modified_quadrature(const ufc::cell& ufc_cell ,

unit facet) const = 0;

/// Compute modified quadrature for a facet of cell.

virtual void facet_quadrature_rule (QuadratureRule& modified ,

ConstQuadratureRule& standard ,

const ufc::cell& ufc_cell ,

unit facet) const = 0;

/// Update GenericPUM data for changes in surface

virtual void update () = 0;

};

Figure 5.3 The pum::GenericPUM class interface (part 2)

Checking whether a given cell or a given edge (face) of a cell is intersected, checking

whether a given cell lies on the boundary of the surface and computing intersection

points of a given edge of a cell with the surface are amongst functionalities supported

in this category. Note that intersection points between the surface and edges are

computed for each cell separately and thus intersection points for an edge might be

different within different cells sharing this edge. This allows the support of surfaces

that are discontinuous within cells (see for example Gasser and Holzapfel (2005))

using objects of classes derived from the pum::GenericSurface class.

For the cells intersected with surfaces, pum::GenericSurface must also compute

modified quadrature rules to perform numerical integrations. Computing modified

quadrature schemes to sub-cells or sub-facets of intersected cells, computing

quadrature schemes for intersection surfaces, computing sub-volumes of intersected

cells are functionalities that are performed for numerical integrations inside

pum::GenericSurface. Member functions of pum::GenericSurface should receive

standard quadrature rules on reference elements and return modified quadrature

rules on physical elements.

Interface

Figures 5.4 and 5.5 present the interface of the pum::GenericSurface class. The

member functions on surface, f0 eval, normal and tangent are used to implement

functionalities for surface geometry. For functionalities related to the intersection

between surfaces and meshes, intersects, intersects boundary, intersections

5.2 Core components of the PUM library 71

using namespace dolfin;

using namespace pum;

class GenericSurface

{

public:

typedef std::pair<const std::vector<double>,

const std::vector<double> > ConstQuadratureRule;

typedef std::pair<std::vector<double>,

std::vector<double> > QuadratureRule;

/// Check whether a point is on the surface

virtual bool on_surface(const Point& p) const = 0;

/// Check whether a point is on the surface

virtual bool on_surface(const Point& p,

const Cell& cell) const = 0;

/// Evaluate the signed function f0 = 0 on surface , f0 < 0

/// on one side , f0 > 0 on the other side

virtual double f0_eval(const Point& p,

const Cell& cell) const = 0;

/// Normal vector to the surface at a point

virtual void normal(std::vector<double>& n,

const Point& p) const = 0;

/// Tangent vector to the surface at a point

virtual void tangent(std::vector<double>& t,

const Point& p) const = 0;

/// Normal vector to the surface at a point in a cell

virtual void normal(std::vector<double>& n, const Point& p,

const Cell& cell) const = 0;

/// Tangent vector to the surface at a point in a cell

virtual void tangent(std::vector<double>& t, const Point& p,

const Cell& cell) const = 0;

/// Determine whether cell and discontinuity intersect

virtual bool intersects(const Cell& cell) const = 0;

Figure 5.4 The pum::GenericSurface class interface (part 1)

and volumes member functions are introduced. For the numerical integrations,

surface quadrature, facet quadrature and cell quadrature member functions

are defined.

72 Chapter 5 A Partition of Unity Method library

/// Check whether a facet is intersected by discontinuity

/// surface

virtual bool intersects(const Facet& facet ,

uint cell_index) const = 0;

/// Determine whether cell contains discontinuity boundary

virtual bool intersects_boundary(const Cell& cell) const = 0;

/// Determine whether edge and discontinuity intersect

virtual bool intersects(const Edge& edge ,

uint cell_index) const = 0;

/// Intersection point with an edge

virtual dolfin::Point intersection(const Edge& edge ,

uint cell_index) const = 0;

/// Compute volume of cell on either side of the surface

virtual std::pair<double , double>

volumes(const Cell& cell) const = 0;

/// Apply quadrature scheme to the intersection surface

virtual void surface_quadrature (QuadratureRule& output_rule ,

ConstQuadratureRule& input_rule ,

const Cell& cell) const = 0;

/// Apply quadrature scheme to sub -cells on either side

/// of a surface

virtual void cell_quadrature(QuadratureRule& output_rule ,

ConstQuadratureRule& input_rule ,

const Cell& cell) const = 0;

/// Apply quadrature scheme to sub -facets on either side

/// of a surface

virtual void facet_quadrature(QuadratureRule& output_rule ,

ConstQuadratureRule& input_rule ,

const Facet& facet ,

uint cell_index) const = 0;

};

Figure 5.5 The pum::GenericSurface class interface (part 2)

5.3 Enriched degrees of freedom manipulation

As an example of enriched degrees of freedom manipulation, the design of an interface

layer between the generated code and the solver for modeling problems whose

solutions exhibit jumps on surfaces is presented in this section. For these problems,

the Heaviside function is used as the enrichment function to enhance the classical

finite element approximations.

5.3 Enriched degrees of freedom manipulation 73

using namespace dolfin;

using namespace pum;

class PUM : public GenericPUM

{

public:

/// Constructor

PUM(const std::vector<const GenericSurface*>& surfaces ,

const Mesh& mesh , const dolfin::DofMap& standard_dof_map ,

const std::string& support_type = "vertex");

/// Destructor

~PUM();

/// GenericPUM implementation

[...]

private:

/// surfaces , mesh , standard dof map and support type

const std::vector<const GenericSurface*> surfaces;

const Mesh& mesh;

const dolfin::DofMap& standard_dof_map;

const std::string support_type;

[...]

};

Figure 5.6 A code extract from the pum::PUM class interface.

5.3.1 Implementation

To implement the interface layer that is required to communicate between the

generated code and the solver library for the problems with discontinuous solutions

over surfaces, a pum::PUM class is introduced. This class is derived from the abstract

base pum::GenericPUM class. An extract of the pum::PUM class interface is presented

in Figure 5.6. Considering the interface of the pum::PUM class, an instance of this

class for each discontinuous field is created by

pum::PUM pum_object(surfaces , mesh , standard_dof_map ,

support_type);

where surfaces is a standard template library vector (std::vector) for pointers of

pum::GenericSurface objects, mesh is a mesh, standard dof map is an object of the

dolfin::DofMap class containing information of the nodal mapping for the standard

degrees of freedom and finally support type is a string that denotes the support

type for the underlying finite element space. For continuous Lagrange elements,

discontinuous Lagrange elements and H(div)/H(curl) elements, corresponding

74 Chapter 5 A Partition of Unity Method library

supports are defined vertex-wise, cell-wise and facet-wise, respectively. To consider

different support types, "vertex", "cell" or "facet" can be passed as an input

argument for support type. The default argument for support type is "vertex"

(which is the support type for the Lagrange elements).

For a problem with multiple discontinuous fields, such as a three-dimensional

incompressible elasticity problem, a pum::PUM object is associated with each field

(one for each displacement component plus one for the pressure field),

std::vector<const pum::GenericPUM*> pum_objects;

pum_objects.push_back (& pum_object_u);

pum_objects.push_back (& pum_object_u);

pum_objects.push_back (& pum_object_u);

pum_objects.push_back (& pum_object_p);

where pum object u and pum object p are instances of the pum::PUM class

corresponding to each component of the displacement fields and the pressure

field. The container of pum::GenericPUM objects is passed to the generated code

to compute enriched entries of the element tensors and the degrees of freedom

corresponding to the incompressible elasticity problem.

As already alluded in 5.5, with the current design of the PUM compiler, details

of initializing the pum::PUM objects are hidden from users. These objects are

automatically initialized in the wrapper classes inside the generated code. All

required information to create the pum::PUM objects including the dolfin::DofMap

objects and the support type are automatically determined for each object at compile

time.

5.4 Non-branching continuous surface representation

An approach to represent non-branching discontinuity surfaces using simple

mathematical functions is discussed in this section. This is not the most general

approach to represent all possible geometrical configurations but it does permit a

wide range of initial surface paths to be considered. The non-branching surfaces are

expressed in the physical coordinates. Intersections between various mesh entities

and the surfaces are computed explicitly. The surface evolution is also achieved by

adding new sub-surfaces to the initial configuration of the non-branching surfaces.

These sub-surfaces are defined on cells in the neighborhood of the discontinuity

surface boundaries

5.4 Non-branching continuous surface representation 75

(a) (b) (c)

Figure 5.7 Different configurations for the intersections between a discontinuity surface and a
tetrahedron cell: (a) with three edge intersection points (b) with four edge intersection points
dividing the cell into two parts such that each part has two vertices (c) with four edge intersection
points dividing the cell into two parts such that one part with one vertex and the other part with
three vertices.

5.4.1 Surface representation

Discontinuity surfaces are approximated by continuous sub-surfaces within

computational cells. For triangular cells, discontinuity surfaces are approximated

using straight line segments within cells. For tetrahedron cells, a discontinuity surface

for each cell (sub-surface) is approximated using a tri-linear equation:

ax+ by + cz + dxyz + f = 0, (5.1)

where a, b, c, d and f are constants and x, y and z are Cartesian coordinates. Note

that this equation can also be used to represent plane surfaces if d = 0.

For tetrahedron cells, three different configurations for sub-surfaces exist based

on the number of edge intersection points and the arrangement of intersected edges.

If a surface intersects edges of a tetrahedron cell in three points, the generated

sub-surface is a plane as presented in Figure 5.7(a). However, If the surface intersects

four edges of the tetrahedron cell, sub-surfaces can not always be represented by

a single plane but they can be approximated by two intersecting planes. Two

different configurations for this case with four intersection points exist based on the

arrangement of the intersected edges. Figure 5.7(b) shows a configuration in which

the cell is divided into two parts such that each part has two vertices. Figure 5.7(c)

represents another configuration where the cell is divided into two parts such that

one part has one vertex and the other part has three vertices.

76 Chapter 5 A Partition of Unity Method library

Surface evolution

A discontinuity surface may evolve during simulation. An approach to represent

discontinuity surfaces must be designed such that it can update the initial

configurations to consider the possible evolution. For two-dimensional problems,

discontinuity surface evolutions have been well-studied and they have been used

in a wide range of problems (see for example Wells and Sluys (2001a)). However, the

evolution of discontinuity surfaces in three-dimensional problems is not easy. Using

a similar approach to two-dimensional problems eventually yields a non-smooth

surface in three-dimensional settings. Different algorithms exist for the evolution

of three-dimensional surfaces, see for example Areias and Belytschko (2005) and

Gasser and Holzapfel (2005).

In this work, an evolution algorithm called extended local evolution is developed.

Using this algorithm helps to represent the evolved surfaces by continuous

sub-surfaces, defined by the tri-linear equations. This algorithm is somehow an

extension of the local evolution algorithm, presented in Areias and Belytschko (2005).

But unlike the local evolution algorithm, which was limited to coplanar or slightly

kinked surfaces, the proposed algorithm can be used to evolve a larger group of

surfaces including relatively kinked surfaces which have a large gradient of surface

normal vectors.

Figure 5.8 illustrates different configurations that may happen during a surface

evolution in a tetrahedron cell. A configuration presented in Figure 5.8(a) may

happen at the first step of the surface evolution when there is no initial discontinuity

surface. In this case, the evolved surface is a plane and it is determined using a

given normal n. The given normal n may be determined by external conditions (for

example the stress fields in the crack propagation problems). If one face is already

intersected, the evolved surface can be either triangular or quadrilateral depending

on the direction of the evolution, as presented in Figure 5.8(b). In this case, the

evolved surface is determined using two pre-existing edge intersection points and a

modified normal nm. The modified normal nm is computed by adjusting the given

normal n to satisfy the continuity restriction (Areias and Belytschko, 2005):

nm = n−
n · (A−B)

‖(A−B)‖2
(A−B), (5.2)

where A and B are two pre-existing edge intersection points. In the remaining cases,

evolved surfaces are independent of the normal n and they are fully determined by

geometrical restrictions imposed by the pre-existing surfaces. If two faces are already

intersected, the evolved surfaces can be either a triangle or a quadrilateral based on

the arrangement of the existing intersected edges. If the intersected edges meet each

other at one vertex, then the evolved surface is triangular as depicted in Figure 5.8(c).

5.4 Non-branching continuous surface representation 77

A

B B

C
A

(a) (b) (c)

A

B

C

A

B

C

D

B

C

A

D

(d) (e) (f)

A

B

C

D

A

C

D

B

propagated surface

existing surface

(g) (h)

Figure 5.8 Different configurations for a surface evolution inside a tetrahedron cell.

Otherwise, the evolved surface is quadrilateral as presented in Figure 5.8(d).

When three faces are already intersected, evolved surfaces cannot always be

represented by a single plane. These evolved surfaces are approximated by two

intersected planes as illustrated in Figure 5.8(e) and Figure 5.8(f). In some cases

for the three-dimensional surface evolutions, it is also possible to have all four faces

78 Chapter 5 A Partition of Unity Method library

already intersected. In these cases when the surface evolves, no newly intersected

face is introduced as presented in Figure 5.8(g) and Figure 5.8(h). The tri-linear

equations given in Equation (5.1) are used to represent these non-planar evolved

surfaces.

5.4.2 Implementation

The non-branching discontinuity surface has been implemented inside

the pum::NonBranchingSurface class. This class inherits from the

pum::GenericSurface class and implements the functionalities defined inside the

base class. To evolve surfaces that are represented by pum::NonBranchingSurface

objects, another class called pum::SurfaceExtender with static member functions

has been implemented. The interface of pum::NonBranchingSurface is designed

such that other parts of the PUM solver library and the generated code are

unaffected by the approach with which the surface is represented internally.

An extract of the interface for the pum::NonBranchingSurface class is presented

in Figure 5.9. In two dimensions, a discontinuity surface (a line) can be constructed

in two ways. A curved discontinuity surface is defined by a mesh, end points and a

user-defined function.

pum::NonBranchingSurface d(mesh , end_points , shape);

where mesh is a dolfin::Mesh object, end points is a pair containing end points

and shape is a user-defined function representing shape which is given as an

object of dolfin::Expression. Careful attention must be devoted to the functions

representing the shapes since the surface path cannot be “double back”. For

the special case of a straight line, a pum::NonBranchingSurface object can be

constructed with only a mesh and end points.

pum::NonBranchingSurface d(mesh , end_points);

In three dimensions, a surface location is determined using two level set functions

φ and ψ which are scalar functions of x, y and z as Cartesian coordinates. A point

on the surface is characterized by φ < 0 ∩ ψ = 0 and a point on the boundary of the

surface (crack–tip if the surface represents a crack) is characterized by φ = 0 ∩ ψ = 0.

For three-dimensional problems, a surface instance is created by

pum::NonBranchingSurface d(mesh , shape , boundary);

where mesh is a mesh, shape and boundary are user defined functions representing

scalar level set functions. In both two and three dimensions, the functions used to

describe the surface make use of the dolfin::Expression abstraction in DOLFIN.

The interface to the pum::NonBranchingSurface class is designed such that it is

dimension-independent.

5.4 Non-branching continuous surface representation 79

using namespace dolfin;

using namespace pum;

class NonBranchingSurface : public GenericSurface

{

public:

/// Constructor for a surface (line) in a 2D space.

/// A point (x, y) on the surface satisfied f0(x,y) = 0.

/// The boundary of the surface is defined by the end points.

NonBranchingSurface(const Mesh& mesh ,

const std::pair<Point ,Point>& end_points ,

const GenericFunction& f0);

/// Constructor for a surface (straight line) in a 2D space.

/// The boundary of the surface is defined by the end points.

NonBranchingSurface(const Mesh& mesh ,

const std::pair<Point ,Point>& end_points);

/// Constructor for a surface in a 3D space. A point (x,y,z)

/// on the surface satisfies f0(x,y,z) = 0 and f1(x,y,z) <= 0.

NonBranchingSurface(const Mesh& mesh , const GenericFunction&f0 ,

const GenericFunction& f1);

/// Destructor

~NonBranchingSurface ();

/// GenericSurface implementation

[...]

private:

/// Underlying mesh

const Mesh& mesh;

/// Start and end points for a surface (line) in 2D

const std::pair<Point , Point>* end_points;

/// Signed distance function (f0(x)=0 -> possibly on surface)

const GenericFunction* f0;

/// Signed distance function (for x such that f0(x)=0,

/// f1(x) <=0 -> on surface)

const GenericFunction* f1;

[...]

};

Figure 5.9 A code extract from the pum::NonBranchingSurface class interface.

80 Chapter 5 A Partition of Unity Method library

To compute modified quadrature rules for surfaces represented by the

pum::NonBranchingSurface class, a separate class called pum::SurfaceQuadrature

with static member functions has been defined. This class provides the following

functionalities:� computing the modified quadrature schemes for sub-cells or sub-facets on either

side of a surface; and� computing quadrature schemes for the intersection interfaces between surfaces

and cells.

For surface evolutions, another class called pum::SurfaceExtender with

static member function is defined. This class is a friend class of the

pum::NonBranchingSurface class; thus, it can modify private data of the

pum::NonBranchingSurface class. Inside the pum::SurfaceExtender class, the

extension of a surface is handled by updating the corresponding level set functions.

Discontinuity surfaces can be extended within either one cell or a pre-determined

neighborhood in front of the surface boundary. If a surface evolution within just one

cell is desired, one can call a member function of pum::SurfaceExtender, extend,

with the following arguments

pum::SurfaceExtender::extend(surface , mesh , normal , cell_index);

where surface is an evolving pum::NonBranchingSurface instance, mesh is a

mesh, normal is a normal vector determining the direction of the evolved surface

and cell index is the index of a cell containing the boundary of surface in

which the evolution happens. The discontinuity surfaces can also be extended in

a pre-determined neighborhood in front of the surface boundary by

pum::SurfaceExtender::extend(surface , mesh , normal , distance);

where surface, mesh and normal are defined as before and distance determines a

neighborhood in which extension happens.

To illustrate this approach for a surface evolution, an example of a

three-dimensional surface evolution inside a unit cube is presented in Figure 5.10.

The initial surface, represented by level set functions ψ = z − 0.34 = 0 and

φ = (x − 0.5)2 + (y − 0.5)2 − 0.08 ≤ 0, evolves freely with an initial normal

equal to (0.00, 0.392, 0.920) until it reaches to the external faces of the domain.

As can be observed, the evolved surface is not flat and it is continuous in the whole

domain. Furthermore, the normal of the evolved surface is not constant and changes

considerably during evolution. The normal vectors are mostly determined by the

constraints imposed from surfaces within the neighboring cells.

5.4 Non-branching continuous surface representation 81

(a) (b)

(c) (d)

(e) (f)

Figure 5.10 Different stages of an evolution of a surface inside a unit cube.

82 Chapter 5 A Partition of Unity Method library

5.5 The solver wrapper classes

To develop the finite element solvers using the automatically generated code

by the PUM form compiler, wrapper classes can be generated. The wrapper

classes facilitate the communication between the UFC-based generated code

and the solver library. Inside these wrapper classes, some objects of classes

from both the solver library and the DOLFIN library (e.g. pum::GenericPUM,

dolfin::FiniteElement, pum::DofMap, dolfin::DofMap, pum::FunctionSpace

and dolfin::FunctionSpace) are initialized. These intialisations are performed

using automatically information from the generated UFC-based classes. To generate

these wrappers, a suitable flag is added to the command line when compiling the

input file with the PUM compiler. For example to generate wrapper classes for the

DOLFIN-based solver, -l dolfin is added to the command line.

ffcpum -l dolfin foo.ufl

Components of the solver wrappers are divided into two main groups. A first group

contains classes which are used to declare the function spaces of coefficients and

basis functions. These wrapper classes are derived from the pum::FunctionSpace

or dolfin::FunctionSpace classes. Inside a wrapper class, a function space

object is initialised using a mesh, a finite element defined by an object of the

ufc::finite element class and a local to global mapping of the degrees of freedom

defined by an object of the ufc::dof map class. For the enriched function spaces,

the pum::GenericPUM objects are also initialized internally to compute data related

to the enriched degrees of freedom. Because of the internal initialisation, the

pum::GenericPUM objects are not exposed to the users and they are automatically

generated inside the wrapper classes (unlike earlier implementations of wrapper

classes in Nikbakht and Wells (2009)).

A second group of the solver wrapper classes are those representing forms

defined inside the variational formulations. These wrapper classes are subclasses

of the dolfin::Form class that is a base class for the UFC-based generated code

for the DOLFIN-based solver. The form wrapper classes are generated for the

forms with different ranks. BilinearForm, LinearForm and Functional classes are

generated for the forms with rank two, one and zero, respectively. From these forms,

the objects of the ufc::finite element, ufc::dof map, ufc::cell integrals,

ufc::exterior facet integrals and ufc::interior facet integrals classes

are accessible using specific member functions. These forms are passed to the

assembler inside a solver library to compute global system matrices, the global

system vectors or functional values.

Chapter 6 Applications in modelling different
physical problems

A PUM form compiler and a PUM library on top of FEniCS components have

been introduced in Chapters 4 and 5. These two components allow one to develop

DOLFIN-based solvers to model physical problems in domains with stationary and

propagating discontinuity surfaces in an automated framework. This automatic

framework relies on automated code generation to develop finite element models

based on the partition of unity methods.

In order to use the automated approach to model problems with discontinuous

solutions, the PDE-specific input data is passed as weak forms of variational

formulations to the PUM form compiler at the first stage. The generated output from

the compiler is then included in a C++ solver which provides required functionalities

to define problem-specific data. The problem-specific input data includes a mesh,

boundary conditions, coefficient functions and discontinuity surfaces. The criteria

for the evolution of surfaces can also be defined in the C++ solver interface. The

C++ solver uses components of DOLFIN and the PUM library to solve variational

formulations defined in the partition of unity framework.

Examples are presented in this chapter to demonstrate the use of the automated

code generation for modeling physical problems with discontinuity surfaces. Through

these examples, generality, simplicity, efficiency and reliability of the proposed

framework have been illustrated. The proposed framework is not only limited

to the traditional conforming Galerkin formulations, but it can also be used for

the discontinuous Galerkin formulations. To show the generality of the proposed

framework in using different families of elements, the examples are chosen such

that they cover a wide range of basis functions including continuous Lagrange,

discontinuous Lagrange, H(div) and/or H(curl) families of finite elements. More

examples can also be found in Nikbakht and Wells (2009, 2012a).

6.1 H
1-conforming primal approach to the weighted Poisson

equation

As a canonical example, the weighted Poisson equation is presented in which the

solution u defined on Ω ⊂ R
d is discontinuous across a surface Γd. The flux across the

surface is equal to k (u+ − u−), where k is a parameter and u+ and u− are the values

84 Chapter 6 Applications in modelling different physical problems

of u on the positive and negative sides of the discontinuity surface, respectively. The

relevant function space reads

V =
{

vh ∈ H1 (Ω\Γd) , vh|E ∈ Pk (E\Γd) ∀E
}

, (6.1)

and the bilinear and linear forms read

a (u, v) =

∫

Ω\Γd

w∇u · ∇v dx+

∫

Γd

k JuK JvK ds, (6.2)

L (v) =

∫

Ω

fv dx, (6.3)

where f and w are a source term and a weight coefficient.

A unit cube domain Ω = (1, 0, 0)×(0, 1, 0)×(0, 0, 1) with two disjoint discontinuity

surfaces is considered as the computational domain. The first discontinuity surface

is defined using ψ = z − 0.14 = 0 and φ = (x − 0.5)2 + (y − 0.5)2 − 0.09 ≤ 0 as

level set functions. For the second discontinuity surface, ψ = x2 + z2 − 0.6 = 0 and

φ = x2 +0.1y2 +0.2z2 − 0.5 ≤ 0 are used. For this example, f = sin(x) sin(y) sin(z),

w = 1 + ex
2

and k = 1. A zero Dirichlet boundary condition (u = 0) is applied at

z = 0. The remaining boundaries are flux-free.

The complete UFL input representing the variational formulation using the

partition of unity framework is presented in Figure 6.1. The relevant enriched finite

elements are created by adding the linear Lagrange elements on tetrahedral cells

to the restricted linear Lagrange elements by the discontinuity surfaces. While the

source term and the weight coefficient functions are defined using linear Lagrange

elements, the test and trial functions are constructed on the enriched finite elements.

At the end of the UFL input, the linear and bilinear forms are defined using

coefficient and basis functions. Note the notation *dc has been used to represent

the surface integral in the bilinear form.

The automatically generated code is then included inside a C++ solver.

The C++ solver is designed following the DOLFIN style of mirroring

mathematical abstractions and keeping the code compact. The code for the

Poisson::FunctionSpace, Poisson::BilinearForm and Poisson::LinearForm

objects is PDE-specific and has been generated by the PUM form compiler, whereas

the other elements in the C++ solver are standard DOLFIN objects, unless prefaced

with the pum namespace.

At the first step, subclasses of dolfin::Expression are implemented to represent

the source term and the weight function:

// Define source term

class Source : public Expression

{ void eval(Array<double>& values , const Array<double>& x) const

6.1 H1-conforming primal approach to the weighted Poisson equation 85

Enriched function space

elem_cont = FiniteElement("Lagrange", tetrahedron , 1)

elem_discont = RestrictedElement(elem_cont , dc)

element = elem_cont + elem_discont

Test and Trial functions

u, v = TrialFunction(element), TestFunction(element)

Source term , weight coefficient and surface interface

f, w = Coefficient(elem_cont), Coefficient(elem_cont)

k = Constant(tetrahedron)

Bilinear and linear forms

a = w*dot(grad(u), grad(v))*dx + k('+')*jump(u)*jump(v)*dc
L = f*v*dx

Figure 6.1 The UFL input to model the discontinuity surfaces in a three-dimensional weighted
Poisson problem.

{ values[0] = sin(x[0])*sin(x[1])*sin(x[2]); }

};

// Define weight coefficient

class Weight : public Expression

{ void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = 1.0 + std::exp((x[0]*x[0])); }

};

Then the Dirichlet boundary is defined by providing a subclass of the

dolfin::SubDomain class from the DOLFIN library:

// Sub domain for Dirichlet boundary condition

class Bottom : public SubDomain

{ bool inside(const Array<double>& x, bool on_boundary) const

{ return x[2] < DOLFIN_EPS && on_boundary; }

};

In the next step, the level set functions of the discontinuity surfaces are represented as

subclasses of the dolfin::Expression class. As mentioned before, ψ = z−0.14 = 0

and φ = (x−0.5)2+(y−0.5)2−0.09 ≤ 0 have been assumed as the level set functions

for the first discontinuity surface. These level set functions are implemented as

// Define the surface and boundary of discontinuity #0

class Surface0 : public Expression

{

void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = x[2] - 0.14; }

};

class Boundary0 : public Expression

86 Chapter 6 Applications in modelling different physical problems

{

void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = pow(x[0] - 0.5,2) + pow(x[1] - 0.5,2) - 0.09; }

};

For the second discontinuity, the level set functions (ψ = x2 + z2 − 0.6 = 0 and

φ = x2 + 0.1y2 + 0.2z2 − 0.5 ≤ 0) are implemented as:

// Define the surface and boundary of discontinuity #0

class Surface1 : public Expression

{

void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = pow(x[0], 2) + pow(x[2], 2) - 0.6; }

};

class Boundary1 : public Expression

{

void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = x[0]*x[0] + x[1]*x[1]/10 + x[2]*x[2]/5 - 0.5; }

};

Inside the main solver, after defining the mesh, the objects of these classes are used

to initialise instances of the pum::NonBranchingSurface class. The pointers to the

pum::NonBranchingSurface objects are then collected inside surfaces, a container

of pum::GenericSurface objects.

// Define discontinuity surfaces and add them to a vector

Surface0 s0; Boundary0 b0;

Surface1 s1; Boundary1 b1;

pum::NonBranchingSurface d0(mesh , s0 , b0);

pum::NonBranchingSurface d1(mesh , s1 , b1);

std::vector<const pum::GenericSurface*>

surfaces = boost::assign::list_of (&d0)(&d1);

Note that the function space in the code extract is initialized with surfaces. This

is a convenience wrapper for the UFC function space, with the pum::PUM (derived

from GenericPUM) objects being created internally from the surfaces and then used

to initialize the UFC objects. The function space is then used to initialize Dirichlet

boundary conditions.

// Create function space and boundary condition

Poisson::FunctionSpace V(mesh , surfaces);

Constant u0(0.0); Bottom bot;

DirichletBC bc(V, u0 , bot);

The linear and bilinear forms are created using the function space and their

corresponding coefficients are attached.

// Create bilinear and linear forms

6.2 L2-conforming discontinuous Galerkin approach to the elasticity equation 87

Poisson::BilinearForm a(V, V);

Poisson::LinearForm L(V);

Weight w; Source f; Constant k(1.0);

a.k = k; a.w = w; L.f = f;

To solve the variational problem, an object of pum::Function is defined.

pum::Function is a subclass of dolfin::Function and implements primarily

restrictions of discontinuous coefficient functions for use in forms and the

interpolation of functions to cell vertices for use in the post-processing.

// Solve pde

pum::Function u(V);

solve(a == L, u, bc);

To visualise the discontinuity surfaces, a std::pair containing the pointers to the

pum::GenericSurface objects and the mesh object is created. This pair is then

passed to an object of pum::VTKFile to visualise surfaces.

// Save solution and surfaces to files for visualisation

File file("poisson.pvd");

pum::VTKFile file_surface("surface.pvd");

std::pair<std::vector<const pum::GenericSurface*>,

const Mesh*> out_surfaces(surfaces , &mesh);

file << u;

file_surface << out_surfaces;

The complete C++ solver for this problem is illustrated in Figures 6.2 and 6.3.

Figure 6.2 shows the implementation of the subclasses representing coefficients, the

Dirichlet boundary and level set functions. The main solver, which includes defining

a mesh and using the automatically generated linear and bilinear forms to solve the

variational problem, is shown in Figure 6.3.

A mesh on the unit cube and computed solution contours for this problem, with

the superimposed discontinuity surfaces, are shown in Figure 6.4. The impact of the

discontinuities on the computed solution contours can be clearly seen in the solution

contours.

6.2 L
2-conforming discontinuous Galerkin approach to the

elasticity equation

As shown in the example presented in Section 3.2.2, the FEniCS components can also

be used to model problems with discontinuous Galerkin formulations. By extending

FEniCS in the context of the partition of unity framework, it is now also possible

to include discontinuities across arbitrary surfaces in the discontinuous Galerkin

methods in an automated way.

88 Chapter 6 Applications in modelling different physical problems

#include <dolfin.h>

#include <PartitionOfUnity.h>

#include "Poisson.h"

using namespace dolfin;

// Define source term

class Source : public Expression

{ void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = sin(x[0])*sin(x[1])*sin(x[2]); }

};

// Define weight coefficient

class Weight : public Expression

{ void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = 1.0 + std::exp((x[0]*x[0])); }

};

// Sub domain for Dirichlet boundary condition at the bottom

class Bottom : public SubDomain

{ bool inside(const Array<double>& x, bool on_boundary) const

{ return x[2] < DOLFIN_EPS && on_boundary; }

};

// Define the surface and boundary of discontinuity #0

class Surface0 : public Expression

{

void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = x[2] - 0.14; }

};

class Boundary0 : public Expression

{

void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = pow(x[0] - 0.5, 2) + pow(x[1] - 0.5, 2) - 0.09; }

};

// Define the surface and boundary of discontinuity #1

class Surface1 : public Expression

{

void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = pow(x[0], 2) + pow(x[2], 2) - 0.6; }

};

class Boundary1 : public Expression

{

void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = x[0]*x[0] + x[1]*x[1]/10 + x[2]*x[2]/5 - 0.5; }

};

Figure 6.2 The C++ code for the solver of the weighted Poisson problem with discontinuities in
the solution (the class definitions).

6.2 L2-conforming discontinuous Galerkin approach to the elasticity equation 89

int main()

{

// Create mesh

dolfin::UnitCube mesh(50 , 50 , 50);

// Define discontinuity surfaces and add them to a vector

Surface0 s0; Boundary0 b0;

Surface1 s1; Boundary1 b1;

pum::NonBranchingSurface d0(mesh , s0, b0);

pum::NonBranchingSurface d1(mesh , s1, b1);

std::vector<const pum::GenericSurface*>

surfaces = boost::assign::list_of (&d0)(&d1);

// Create function space and boundary condition

Poisson::FunctionSpace V(mesh , surfaces);

Constant u0(0.0); Bottom bot;

DirichletBC bc(V, u0, bot);

// Create bilinear and linear Forms

Poisson::BilinearForm a(V, V); Poisson::LinearForm L(V);

Weight w; Source f; Constant k(1.0);

a.k = k; a.w = w; L.f = f;

// solve pde

pum::Function u(V);

solve(a == L, u, bc);

// Save solution and surfaces to files for visualisation

File file("poisson.pvd");

pum::VTKFile file_surface("surface.pvd");

std::pair<std::vector<const pum::GenericSurface*>,

const Mesh*> out_surfaces(surfaces , &mesh);

file << u;

file_surface << out_surfaces;

}

Figure 6.3 The C++ code for the solver of the weighted Poisson problem with discontinuities
in the solution (the main solver). The notation resembles closely DOLFIN code for conventional
problems.

The modeling of an elastic domain Ω with discontinuity surfaces Γd using a

discontinuous Galerkin approach with an interior penalty formulation is assumed. If

the discontinuity surfaces are in opening states and they are assumed traction-free,

the same bilinear and linear forms as those for the discontinuous Galerkin

formulation of the elasticity equation, presented in Equations (3.9) and (3.10), can

be used. To include discontinuities, it is just enough to redefine the function space

corresponding to the weak forms. The relevant function space V is redefined as

V =
{

vh ∈ (L2 (Ω))n,vh|E ∈ (Pk (E\Γd))
n ∀E

}

. (6.4)

90 Chapter 6 Applications in modelling different physical problems

(a) (b)

Figure 6.4 The Poisson problem in three dimensions with discontinuity surfaces: (a) the surface
mesh and (b) the solution contour.

To implement the relevant function space inside the form compiler input, it is enough

to redefine the corresponding function space in Figure 3.7 as

elem_cont = VectorElement("Discontinuous Lagrange", triangle , 2)

elem_discont = RestrictedElement(elem_cont , dc)

element = elem_cont + elem_discont

For the rest, the remaining parts including the definition of the bilinear and linear

forms remain unchanged.

After compiling the UFL input, the generated code is used to model the

deformation of a cantilever beam with discontinuity surfaces as shown in Figure 6.5.

This beam has the same dimensions, material properties and boundary conditions as

the beam presented in Section 3.2.2. Two vertical traction-free discontinuity surfaces

are embedded inside this beam. While the first surface Γd1 extends from (0.5, 0.1)

to (0.5, 0.5), the second surface Γd2 has (0.8, 0.2) and (0.8, 0.5) as end points.

The complete C++ solver interface is presented in Figures 6.6 and 6.7. Note the

definition of the discontinuity surfaces using the mesh and the end points.

The discontinuity surfaces embedded in the computational mesh and the computed

displacement contour on the magnified deformed mesh are presented in Figure 6.8.

The influence of discontinuity surfaces on the global stiffness of the beam can be

easily observed from the computed contours.

6.3 Continuous/discontinuous interior penalty formulation for the biharmonic equation 91

u = 0

Γd1

Γd2

f

x

y

Figure 6.5 A beam with two traction-free discontinuity surface that is restricted at the left edge
and subjected to a vertical body force.

#include <dolfin.h>

#include <ParitionofUnity.h>

#include "DG_Elasticity.h"

using namespace dolfin;

// Sub domain for clamp at the left end

class boundary : public SubDomain

{

bool inside(const Array<double>& x, bool on_boundary) const

{ return std::abs(x[0]) < DOLFIN_EPS && on_boundary ;}

};

// Body force term

class BodyForce : public Expression

{

public:

BodyForce () : Expression(2) {}

void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = 0.0; values[1] = -10.0;}

};

Figure 6.6 The complete C++ solver of the elasticity equation using the discontinuous Galerkin
formulation in combination with the partition of unity formulation (the class definitions).

6.3 Continuous/discontinuous interior penalty formulati on for
the biharmonic equation

The biharmonic equation is a fourth-order elliptic equation. The strong form reads

∇4u = f in Ω, (6.5)

92 Chapter 6 Applications in modelling different physical problems

int main()

{

// Create mesh

Rectangle mesh(0, 0, 2.0, 0.5, 44, 11);

// Define Discontinuity Surface #0

const Point p0_0(0.5, 0.1), p0_1(0.5, 0.5);

std::pair<Point , Point> end_points0(p0_0 , p0_1);

pum::NonBranchingSurface d0(mesh , end_points0);

// Define Discontinuity Surface #1

const Point p1_0(0.8, 0.2), p1_1(0.8, 0.5);

std::pair<Point , Point> end_points1(p1_0 , p1_1);

pum::NonBranchingSurface d1(mesh , end_points1);

// Create vector of discontinuity surfaces

std::vector<const pum::GenericSurface*>

discontinuities = boost::assign::list_of (&d0)(&d1);

// Define function space

DG_Elasticity::FunctionSpace V(mesh , discontinuities);

// Define boundary condition

Constant u0(0.0, 0.0);

DirichletBoundary boundary;

DirichletBC bc(V, u0, boundary);

// Define variational problem

DG_Elasticity::BilinearForm a(V, V);

DG_Elasticity::LinearForm L(V);

BodyForce f; L.f = f;

// Compute solution

pum::Function u(V);

solve(a == L, bc, u);

// Save solution in VTK format

File file("dg_elasticity.pvd");

file << u;

}

Figure 6.7 The complete C++ solver of the elasticity equation using the discontinuous Galerkin
formulation in combination with the partition of unity formulation (the main solver).

where f is a source term in domain Ω and ∇4 is the biharmonic operator defined as

∇2∇2. The boundary conditions for this problem read

u = 0 on ∂Ω, (6.6)

∇2u = 0 on ∂Ω, (6.7)

∇2u = 0 on Γd, (6.8)

6.3 Continuous/discontinuous interior penalty formulation for the biharmonic equation 93

(a)

(b)

Figure 6.8 (a) The mesh with discontinuity surfaces (b) the displacement contour (m) on the
magnified deformed mesh (50 times) for the beam restricted at the left edge and subjected to a
vertical body force.

where Γd denotes discontinuity surfaces and ∂Ω represents the external boundaries

of the domain Ω.

To obtain weak forms, the multiplication of the strong form by a test function,

integration over domain and application of twice integration by parts leads to a

problem with second-order derivatives. This problem would conventionally require

H2-conforming basis functions. However, such functions are difficult to construct in

the finite element context. If a discontinuous Galerkin formulation is selected, the use

of the expensive H2-conforming basis functions can be avoided. The discontinuous

Galerkin formulation allows the use of H1-conforming elements by imposing a weak

continuity of normal derivatives between finite element cells.

A so-called continuous/discontinuous Galerkin method for the biharmonic

equation was developed by Engel et al. (2002). The function space used for this

problem is the same as the function space presented in Equation (6.1). The bilinear

94 Chapter 6 Applications in modelling different physical problems

and linear forms read

a(u, v) =

∫

Ω\Γd

∇2u∇2v dx−

∫

Γ0

〈∇2u〉 · J∇vK ds

−

∫

Γ0

J∇uK · 〈∇2v〉 ds + α

∫

Γ0

1

h
JuK · JvK ds, (6.9)

and

L(v) =

∫

Ω

fv dx, (6.10)

where α is a penalty parameter, h is an average size of finite element cells and f

is a source term. The jump and average operators over the interior facets Γ0 are

defined as J∇uK = ∇u+ ·n+ +∇u− ·n− and 〈∇2u〉 = (∇2u+ +∇2u−)/2 where n is

an outward normal vector on Γ0. In the weak formulation, the boundary condition

∇2u = 0 is weakly enforced on the discontinuity surfaces Γd and ∂Ω. The interior

facet integrals provide the weak continuity of the normal derivative across interior

facets of the computational mesh, denoted by Γ0.

The given variational form is used to model a unit square domain Ω = (0, 1)×(1, 0)

subjected to a source term f = 4π4 sin(πx) sin(πy) with homogeneous Dirichlet

boundary conditions, defined in Equation (6.6). Two discrete discontinuity surfaces

are considered in the unit square domain. The first surface Γd1 is a straight line

which is defined by (0.2, 0.1) and (0.8, 0.4) as end points. The second surface Γd2

is a quadratic line represented by (0.3, 0.6) and (0.8, 0.8) as end points and φ =

y + 1.2
x−2.3 = 0 as a level set function. The discontinuity surfaces within the unit

square are presented in Figure 6.10(a).

The UFL input for the PUM compiler required to generate low-level code for

the biharmonic problem is given in Figure 6.9. This input can be used to model

discontinuity surfaces in the biharmonic problem using the partition of unity

framework. If this input is compared to the UFL input for modeling a biharmonic

problem in a domain without any discontinuity surface that is presented in Ølgaard

et al. (2008), a few differences are noticed. The important difference refers to

the definition of the finite element function space. In the UFL input presented in

Figure 6.9, the relevant finite element space is achieved by enriching scalar quadratic

Lagrange finite elements with discontinuous finite elements. In both UFL inputs,

the facet normal n and the cell size h are internally computed using UFL built-in

functions.

The generated output is used to model the unit square domain with the

discontinuities in a C++/DOLFIN solver. The solver provides required data

including discontinuity surfaces, the computational domain and the source term

6.3 Continuous/discontinuous interior penalty formulation for the biharmonic equation 95

Define continuous and discontinuous spaces

elem_cont = FiniteElement("Lagrange", "triangle", 2)

elem_discont = RestrictedElement(elem_cont , dc)

element = elem_cont + elem_discont

Create test and trial functions and source term

v, u = TestFunction(element), TrialFunction(element)

f = Coefficient(elem_cont)

Facet normal component and cell size

n, h = element.cell().n, element.cell().circumradius

Parameter

alpha = Constant(triangle)

Bilinear and linear forms

a = inner(div(grad(u)), div(grad(v)))*dx \

- inner(avg(div(grad(u))), jump(grad(v),n))*dS \

- inner(jump(grad(u),n), avg(div(grad(v))))*dS \

+ alpha('+')/avg(h)*inner(jump(grad(u),n), jump(grad(v),n))*dS

L = f*v*dx

Figure 6.9 The UFL input for the partition of unity formulation of the biharmonic equation.

(a) (b)

Figure 6.10 The biharmonic problem in two dimensions: (a) a unit square and Γd1 and Γd2

discontinuity surfaces, and (b) the solution u contour on the wrapped mesh.

to solve the variational problem. The result contour is depicted in Figure 6.10(b).

The results shows a discontinuity in the first derivative of the solution due to weakly

applied boundary conditions for the Laplacian of u across the discontinuity surfaces.

This example shows the possibility of using the automated framework to apply

boundary conditions on the surfaces which do not conform to the underlying mesh.

96 Chapter 6 Applications in modelling different physical problems

6.4 Mixed formulation for the Poisson equation

The PUM form compiler also supports code generation for the variational

formulations defined using non-Lagrange elements in combination with Lagrange

finite element bases. To demonstrate this ability, modelling discontinuities using the

partition of unity framework in a mixed Poisson problem is presented. The mixed

Poisson problem is a coupled problem between a scalar field u and a vector flux field

σ (Rognes et al., 2009).

The governing partial differential equations read:

σ −∇u = 0 in Ω, (6.11)

∇ · σ = −f in Ω, (6.12)

with boundary conditions

u = 0 on Γu, (6.13)

σ · n = 0 on Γd, (6.14)

where f is a source term in the domain Ω and n is an outward vector normal to

discontinuity surfaces Γd. The Dirichlet boundary of domain Ω is denoted by Γu.

After multiplying the strong forms presented in Equations (6.12) and (6.12) with

test functions τ and ω, integrating over the domain Ω and then integrating by parts,

one can obtain the following variational formulation: find σ ∈ V and u ∈ W such

that

a(σ, u; τ , ω) = L(τ ;ω) ∀τ ∈ V, ω ∈W (6.15)

where the bilinear form a and the linear form L read

a(σ, u; τ , ω) =

∫

Ω\Γd

σ · τ − u(∇ · τ) + (∇ · σ)ω dx+

∫

Γd

u±τ± · n± ds,

(6.16)

L(τ ;ω) =

∫

Ω

fω dx. (6.17)

The last term in Equation 6.16, which arises from integration by parts, requires

the evaluation of restricted functions on the positive and negative sides of the

surface. Furthermore, this term can also be used to weakly apply Dirichlet boundary

conditions on the discontinuity surface.

To obtain a stable discretized form of weak formulations, choosing suitable

finite element function spaces is important. One family of stable finite elements is

6.4 Mixed formulation for the Poisson equation 97

H(div)-conforming BDM elements (Brezzi et al., 1985) for the flux and discontinuous

Lagrange elements for the scalar field. Moreover, different combinations of

continuous/discontinuous finite elements also exist. If both scalar and vector fields

are assumed discontinuous across the surfaces, the function spaces for the flux and

the scalar field respectively read

V =
{

τh ∈ H (div,Ω\Γd) , τh|E ∈ (Pk (E\Γd))
d
∀E
}

, (6.18)

W =
{

ωh ∈ L2 (Ω) , ωh|E ∈ Pk−1 (E\Γd) ∀E
}

, (6.19)

where k > 1.

This formulation is used to model the mixed Poisson equation on a unit square

Ω = (1, 0)× (0, 1) containing a discontinuity surface. The discontinuity surface is a

curved line passing through the end points (0.5, 0.2) and (0.95, 0.5) with a level set

function defined as φ = y+ 4
3x

2 − 2.6x+0.767 = 0. The source term is also given as

f = 500.0e−((x−0.5)2+(y−0.5)2)/0.02.

The form compiler input for the mixed Poisson formulation is presented in

Figure 6.11. First, a mixed finite element space is defined. This mixed finite element

function space assumes discontinuities in both the scalar field and the flux. Note the

difference between UFL operators used for mixed elements and enriched elements (a

multiplication versus a summation). The mixed finite element space is created using

a UFL ‘‘*’’ operator which combines two enriched elements, that are created by

UFL ‘‘+’’ operators. Next, test functions and trial functions are defined on the

mixed finite element space. Further, two coefficients are defined to represent the

source term and the normal into the discontinuity surface. At the end, the linear

and bilinear forms are created that contain integrations over cells and discontinuity

surfaces.

The UFL input is compiled using the PUM compiler to generate low-level code.

The generated code will be included in a DOLFIN-based solver which defines the

mesh, discontinuity surfaces and coefficients. The extract of the DOLFIN-based

solver is presented in Figure 6.12. The discontinuity surface and a subclass of

dolfin::Expression to define the level set function φ are defined inside the solver.

Furthermore, the sub-functions for the flux and the scalar field u from the solution

of the variational problem are extracted and then used for post-processing purposes.

The solution contours for the scalar field u and the flux σ are presented in

Figure 6.13. As can be seen, both u and σ demonstrate jumps over the discontinuity

surface.

98 Chapter 6 Applications in modelling different physical problems

Define continuous spaces

BDM_c = FiniteElement("Brezzi -Douglas -Marini", "triangle", 2)

DG_c = FiniteElement("Discontinuous Lagrange", "triangle", 1)

Define discontinuous spaces

BDM_d = RestrictedElement(BDM_c , dc)

DG_d = RestrictedElement(DG_c , dc)

Create enriched spaces

BDM , DG = BDM_c + BDM_d , DG_c + DG_d

Create mixed element

mixed_element = BDM * DG

Trial and test functions

sigma , u = TrialFunctions(mixed_element)

tau , w = TestFunctions(mixed_element)

Source term

f = Coefficient(DG_c)

Discontinuity surface normal

element = VectorElement("Discontinuous Lagrange", triangle , 0)

n = Coefficient(element)

Bilinear form and linear forms

a = dot(sigma , tau)*dx - u*div(tau)*dx + div(sigma)*w*dx

+ (u*inner(tau , n))('+')*dc + (u*inner(tau , n))('-')*dc
L = f*w*dx

Figure 6.11 The UFL input for the mixed Poisson in a domain with discontinuities.

6.5 H(curl)-conforming elements for an electromagnetic
problem

To show the applicability of the automated approach for modelling discontinuity

surfaces using H(curl) elements, modelling magnetic fields is performed in a domain

Ω with a discontinuity surface Γd in which the solution exhibits jumps.

It is well known that using the Lagrange family of elements to represent electric

and magnetic fields causes several serious problems (Andersen and Solodukhov, 1978;

Rahman and Davies, 1984). The first problem is the occurrence of non-physical

or so-called spurious solutions. This is mainly because of the lack of enforcement

of the divergence condition. The second problem arises while imposing boundary

conditions at material interfaces as well as conducting surfaces. The third problem

is the difficulty of modelling conducting and dielectric edges and corners due to

the field singularities associated with these structures. Using H(curl)-conforming

elements overcomes these problems and provides a better approximation of field

6.5 H(curl)-conforming elements for an electromagnetic problem 99

// Level set function

class Shape : public dolfin::Expression

{

void eval(Array<double>& values , const Array<double>& x) const

{ values[0] = x[1] + (4.0/3.0)*x[0]*x[0] - 2.6*x[0] + 0.767;}

};

// Define a curved line with end points and a function

const Point p0_0(0.5, 0.2); const Point p0_1(0.95, 0.5);

std::pair<Point , Point> end_points0(p0_0 , p0_1);

const Shape shape;

Surface d0(mesh , end_points0 , shape);

// Create discontinuity surface vector

std::vector<const GenericSurface*> surfaces;

surfaces.push_back(d0);

// Define function Spaces

MixedPoisson::FunctionSpace V(mesh , surfaces);

// Normal of surface

DiscontinuityNormal n(surfaces , mesh);

// Define bilinear and linear forms

MixedPoisson::BilinearForm a(V, V);

MixedPoisson::LinearForm L(V);

a.n = n; L.f = f;

// Compute solution

pum::Function w(V);

solve(a == L, w);

// Extract components

pum::Function& sigma = w[0];

pum::Function& u = w[1];

// Save components for visualization

dolfin::File f3("sigma.pvd");

dolfin::File f4("u.pvd");

f3 << sigma;

f4 << u;

Figure 6.12 The extract of C++ solver code for the mixed Poisson problem for a unit square
domain subjected to homogeneous boundary conditions.

quantities in electromagnetic problems (Bossavit, 1989).

In electrodynamic problems, the behavior of electric and magnetic fields are

described by Maxwell’s equations (Jin, 2002; Smith, 1997). These partial differential

equations are used to solve different types of boundary value problems. For

time-harmonic fields, the vector Helmholtz wave equation derived form Maxwell’s

equations is used in terms of either an electric field E or a magnetic field H.

100 Chapter 6 Applications in modelling different physical problems

(a) (b)

Figure 6.13 The mixed Poisson problem in two dimensions: (a) the contour of u and (b) the contour
of flux σ.

In this example, the vector Helmholtz wave equation in terms of the magnetic

field H is chosen. The governing partial differential equation reads

∇×
1

µ
∇×H − k0

2ǫH −∇×
1

ǫ
J = 0 in Ω, (6.20)

where µ, ǫ and k0 are electric permitivity, magnetic permeability and wave number in

the free space, respectively. The magnetic field is induced by a given electric current

density, J . The discontinuity surfaces Γd and the boundaries of the domain ∂Ω are

assumed to be magnetically conducting surfaces, i.e.

n×H = 0 on ∂Ω, (6.21)

n×H = 0 on Γd, (6.22)

where n is an outward vector perpendicular to Γd and ∂Ω. For the given strong

form, one can obtain the corresponding weak form on suitable function spaces. The

linear and bilinear forms read

a(H,T) =

∫

Ω\Γd

1

µ
(∇×H) · (∇× T) dΩ−

∫

Ω\Γd

H · T dΩ (6.23)

L(T) =

∫

Ω

T · (∇×
1

ǫ
J) dΩ (6.24)

Note that because of the boundary condition presented in Equation (6.22) on

the discontinuity surface, no surface integral appears in the bilinear form. If a

6.6 H1-conforming primal approach to the hyperelasticity problem 101

H(curl)-conforming element is selected, the relevant function space reads

V =
{

τh ∈ H (curl,Ω\Γd) , τh|E ∈ (Pk (E\Γd))
d
∀E
}

. (6.25)

This variational formulation is used to model the electromagnetic problem on a

unit square domain with a linear discontinuity surface defined by (0.3, 0.4) and

(0.7, 0.4) as end points. This domain is subjected to an electric field defined as

∇× J = (1.0, 0.0)Vm−1. In this case, k0 = 1.0, µ = 1.0Fm−1 and ǫ = 1.0Hm−1.

The FEniCS Form Compiler supports the code generation for problems with

H(curl)-conforming formulations (Rognes et al., 2009). Similarly, the PUM form

compiler can also be used to generate low-level code for modeling discontinuity

surfaces with the H(curl)-conforming formulations. Figure 6.14 shows the PUM form

compiler input using a first type of Nédélec elements (Nédélec, 1980) on triangles

for the partition of unity formulation of the vector Helmholtz wave equation. Like

previous examples, an enriched finite element is defined. To obtain the enriched

finite element, a continuous linear first type of Nédélec element is enriched with a

discontinuous element that is defined by restricting the continuous Nédélec element

to the discontinuity surface. The test and trial functions are defined on this enriched

space. A linear Lagrange finite element space is also introduced on which the

coefficient representing curl(J) is defined. After defining coefficient functions and

constant values, linear and bilinear forms are defined at the end to complete the

variational formulation.

The generated code is used to model the discontinuity surface in the unit square

domain. The computed solution for the magnetic field is presented in Figure 6.15.

The influence of the discontinuity surface in the magnetic field can be easily observed.

Note that the discontinuity surface is a magnetically conducting surface.

6.6 H
1-conforming primal approach to the hyperelasticity

problem

Recall the modelling of the hyperelasticity problem presented in Section 3.2.3

using the components of FEniCS. The automated framework for the modelling

of discontinuities can be used to model pre-existing discontinuity surfaces for a

hyperelastic domain. A relevant function space in which the displacement field

exhibits jumps over discontinuity surfaces is defined as

V =
{

vh ∈
(

L2 (Ω)
)d

∩
(

H1 (Ω\Γd)
)d
,vh|E ∈ (Pk (E\Γd))

d
∀E
}

. (6.26)

If the discontinuity surfaces are not in closing states and they are traction-free,

the corresponding bilinear and linear forms are the same as those given in

102 Chapter 6 Applications in modelling different physical problems

Continuous / discontinuous H(curl) finite element space

EN_c = FiniteElement("Nedelec 1st kind H(curl)", "triangle", 1)

EN_d = RestrictedElement(EN_c , dc)

EN = EN_c + EN_d

Finite element space for curl_J

EL = VectorElement("Lagrange", "triangle", 1)

Test and trial functions

T = TestFunction(EN)

H = TrialFunction(EN)

A coefficient for curl_J and electromagnetic constants

curl_J = Coefficient(EL)

k0, epsilon = constant("triangle"), constant("triangle")

mu = Constant("triangle"),

Bilinear and linear forms

a = (1/mu)*inner(curl(H), curl(T))*dx \

+ (k0**2)*epsilon*inner(H, T)*dx

L = (1/mu)*inner(curl_J , T)*dx

Figure 6.14 The UFL input for the vector wave equation with discontinuous magnetic fields.

Figure 6.15 The magnetic field (Am−1) in a two-dimensional domain subjected to a constant
divergence of electric current density in the horizontal direction.

Equations (3.19) and (3.20) for the hyperelasticity problem without any discontinuity

surface. For this example, a neo-Hookean constitutive law for the stored potential

energy, similar to the one presented in Equation (3.18), is also selected. For the

UFL input, it is enough to redefine code lines corresponding to the definition of the

6.7 Cohesive crack propagation 103

function spaces inside the UFL input illustrated in Figure 3.9. To do so, the function

space that is defined as

element = VectorElement("Lagrange", "tetrahedron", 1)

is changed to

elem_c = VectorElement("Lagrange", "tetrahedron", 1)

elem_d = RestrictedElement(elem_cont , dc)

element = elem_c + elem_d

inside the UFL input and the rest of the input remains unchanged.

The compiled UFL input is used to model a unit cube Ω = (0, 0, 1) × (0, 1, 0) ×

(1, 0, 0) containing a discontinuity surface. The discontinuity surface is defined using

the scalar level set functions as ψ = z − 0.6 = 0 and φ = x2 + y2 − 0.36 ≤ 0. The

mesh on the faces of the unit cube along with the discontinuity surface is presented

in Figure 6.17(a).

The displacement field at a subdomain Γb = 0×(1, 0, 0)×(0, 1, 0) is set to zero and

relevant Dirichlet boundary conditions are applied on a subdomain Γt : 1×(1, 0, 1)×

(0, 1, 1) such that they can produce a 20-degree clock-wise rotation. This rotation

is around an axis parallel to the Cartesian z axis and passing through the center of

the cube. For this example, B = (0, 0,−0.5)Nm−3 and T = (0.1, 0, 0)Nm−2. The

Young modulus and the Poisson ratio are 10Pa and 0.3, respectively.

An extract of the DOLFIN/C++ code for solving this nonlinear problem is

presented in Figure 6.16. If the C++ code extract is compared with the one for the

standard problem presented in Figure 3.10, a number of differences can be merely

noticed including the definition of surfaces in which solutions are discontinuous and

the use of the pum::Function object to manipulate solutions defined on the enriched

function space.

The displacement contours are illustrated in Figure 6.17(b). Notice that the

contours are presented on the deformed configuration without any magnification.

6.7 Cohesive crack propagation

The automated framework may be used to model evolving surfaces whose geometry

changes during simulation. Similar to the modelling of static surfaces, the

PDE-specific data is passed to the form compiler to generate low-level code which

is used to model evolving surfaces. For modelling the evolving surfaces, the solver

interface provides required functionalities such as criteria for initiation of surface

evolutions and geometrical updates for the evolved surfaces.

In this example, an automated modelling of cohesive cracks in an elastic domain

using the partition of unity framework is studied. The problem is defined on a domain

104 Chapter 6 Applications in modelling different physical problems

// Define discontinuity surface

Surface surface;

Boundary boundary;

Surface d(mesh , surface , boundary);

// Create list of surfaces

std::vector<const GenericSurface*> surfaces;

surfaces.push_back (&d);

// Create function space

HyperElasticity::FunctionSpace V(mesh , surfaces);

// Create linear form

HyperElasticity::LinearForm F(V);

F.mu = mu; F.lmbda = lambda;

F.B = B; F.T = T; F.u = u;

// Create Jacobian dF = F' (for use in nonlinear solver).

HyperElasticity::BilinearForm dF(V, V);

dF.mu = mu; dF.lmbda = lambda; dF.u = u;

// Compute solution

solve(F == 0, bcs , u, dF);

// Save solution in VTK format

dolfin::File file("hyper_elasticity.pvd");

file << u;

Figure 6.16 The C++ code extract for the modelling discontinuities in a hyperelastic domain.

(a) (b)

Figure 6.17 The hyperelasticity problem in three dimensions (a) the mesh on the faces of the unit
cube and the discontinuity surface and (b) the contour of the displacement magnitude (m) on the
deformed body.

6.7 Cohesive crack propagation 105

Ω ⊂ R
d and it can be phrased in a variational format as: find u ∈ V such that

F (u;v) ≡

∫

Ω\Γd

σ(u) : ∇v dx−

∫

Ω\Γd

f · v dx

+

∫

Γt

g · v ds +

∫

Γd

t · JvK ds = 0 ∀ v ∈ V, (6.27)

where f and g are a source term on the whole domain Ω and a traction

force on the Neumann boundary Γt, respectively. Furthermore, t is a traction

force across a discontinuity surface Γd. The same function space as the one

presented in Equation (6.26) is used. Various traction–separation laws can be

defined to obtain traction forces on the discontinuity surfaces. For this example,

nonlinear traction–separation laws are assumed across the surfaces. An exponential

traction–separation law is utilized for the normal component, while a quadratic

constitutive law is used for the tangential component of the traction force. The

traction–separation law reads

t =

(

tn
ts

)

=

(

kne
−cJuK

n

ksJuKs
2

)

, (6.28)

where subscripts n and s denote the normal and tangential components on

discontinuity surfaces, respectively. Moreover, kn, c and ks are parameters of the

constitutive laws. Note that this law cannot capture the closure of cracks and thus

the loading for this example is selected such that the crack is always in an opening

state.

The functional F , presented in Equation (6.27), is linear in v but nonlinear in u.

A nonlinear problem posed in this format can be solved using the Newton-Raphson

method, in which F is driven to zero by solving a series of linear systems until

a prescribed tolerance is reached. The functional F , evaluated at the most recent

approximation of u, serves as the linear form and the Jacobian of F is used as the

bilinear form. The Jacobian is computed as Equation (3.20).

The traction-separation laws across the discontinuity surfaces can be implemented

using two approaches. The first approach is the implementation of the

traction-separation laws directly inside the UFL input. Figure 6.18 gives a UFL

input to generate required code to model cohesive cracks in an elastic domain. As

can be seen, the traction-separation law is defined inside the UFL input. Notice also

the definition of a zero-order discontinuous Lagrange vector element in the UFL

input. Since normal and tangent vectors of the discontinuity surfaces are assumed

constant for each cell, coefficients for the normal and tangent vectors are defined on

this element. Consider also the automatic differentiation to compute the Jacobian

106 Chapter 6 Applications in modelling different physical problems

Continuous and discontinuous spaces

elem_cont = VectorElement("Lagrange", "triangle", 1)

elem_discont = RestrictedElement(elem_cont , dc)

Enriched space

element = elem_cont + elem_discont

Test and trial functions

v, du = TestFunction(element), TrialFunction(element)

Function space and coefficients for normal and tangent

of discontinuity surface

elem = VectorElement("Discontinuous Lagrange", triangle , 0)

normal , tangent = Coefficient(elem), Coefficient(elem)

Source term , traction and solution from previous step

f, g = Coefficient(elem_cont), Coefficient(elem_cont)

u = Coefficient(element)

Material properties

mu, lmbda = Constant("triangle"), Constant("triangle")

Parameters for traction - separation laws of surfaces

Kt, Kn = Constant("triangle"), Constant("triangle")

c = Constant("triangle")

Stress

def sigma(v):

return 2.0*mu*sym(grad(v)) \

+ lmbda*tr(sym(grad(v)))*Identity(v.cell().d)

Jump over local coordinates of surfaces

def ljump(u):

return as_vector([inner(jump(u), normal('+')), \

inner(jump(u), tangent('+'))])
Traction - separation laws

def traction(u):

return as_vector([Kn('+')*exp(c('+')*ljump(u)[0]), \

Kt('+')*ljump(u)[1]**2])
Linear and bilinear forms

F = inner(sigma(u), grad(v))*dx - inner(f, v)*dx \

+ inner(g, v)*ds + inner(traction(u), ljump(v))*dc

dF = derivative(F, u, du)

Figure 6.18 A UFL input for an elastic domain with tractions across the surfaces computed inside
the UFL input.

of F for the bilinear form.

The second approach is the implementation of the traction-separation laws inside

the C++ solver and using them as coefficients for UFL inputs. This approach is

6.8 Partially saturated porous media problem 107

more general and can be used to implement a wide range of traction-separation

laws. Figure 6.19 shows the UFL input that depends on the traction-separation laws

defined inside the C++ solver. Note that the automatic differentiation is not used

to compute the Jacobian for this case. The tractions on the discontinuity surfaces as

well as the derivatives of the tractions are computed inside the C++ solver and they

are defined as coefficient functions on a zero-order discontinuous Lagrange vector

element. The derivatives of the tractions are used to compute the Jacobian. The rest

of the UFL input is the same as the UFL input presented in Figure 6.18, including

the definition of the function spaces, the stress and the local jump.

The UFL input (presented in Figure 6.18 or Figure 6.19) can be used to model the

failure of a rectangular specimen shown in Figure 6.20. The specimen is restricted

at the bottom and is subjected to a displacement controlled tension loading on the

top. The height and width of the specimen are 20 cm and 10 cm, respectively. An

initial imperfection is placed at the left edge 15 cm above the bottom edge. This

imperfection helps the initiation of a crack from this point. The material properties

are taken as: Young’s modulus E = 11.93 × 103 MPa, Poisson’s ratio ν = 0.49 and

the yield stress σ̄ = 100MPa. The parameters used for the constitutive relations

for discontinuity surfaces are as follows: ks = 1 × 104 Nm−2, kn = 1 × 104 N and

c = 1000m−1.

By increasing the tensile loading at the top, the crack starts to propagate until it

reaches the other side of the specimen. The crack propagation direction is fixed to

−45◦ with respect to the x-axis. The crack propagates if the Von Misses stress in

front of the crack tip reaches the yield stress. Since a linear approximation is used

for the displacement field, the Von Misses stress is constant in cells that are not

intersected by the crack. Therefore, the Von Misses stress can be easily computed by

the evaluation of a functional that is constructed using another UFL input. This UFL

input receives the computed displacement field as an input coefficient and computes

the Von Misses stress.

The computed displacement contours in magnified deformed meshes during the

failure simulation are presented in Figure 6.21. As shown, the crack propagates until

it reaches the other side of the specimen. Even after this moment, the specimen can

still be loaded because of the tractions existing on the crack surfaces.

6.8 Partially saturated porous media problem

Modelling coupled nonlinear problems, in which different fields exist and interact

with each other, is a challenging topic in the finite element framework. The solution

algorithms can be designed considering either weak or strong couplings. In order

to obtain stable solutions, careful considerations must be devoted to selecting

proper finite element spaces. The complexity of variational formulations and thus

108 Chapter 6 Applications in modelling different physical problems

Continuous and discontinuous spaces

elem_cont = VectorElement("Lagrange", "triangle", 1)

elem_discont = RestrictedElement(elem_cont , dc)

Enriched space

element = elem_cont + elem_discont

Test and trial functions

v, du = TestFunction(element), TrialFunction(element)

Function space and coefficients for normal and tangent

of discontinuity surface

elem = VectorElement("Discontinuous Lagrange", triangle , 0)

normal , tangent = Coefficient(elem), Coefficient(elem)

Source term , traction and solution from previous step

f, g = Coefficient(elem_cont), Coefficient(elem_cont)

u = Coefficient(element)

Material properties

mu, lmbda = Constant("triangle"), Constant("triangle")

Stress

def sigma(v):

return 2.0*mu*sym(grad(v)) \

+ lmbda*tr(sym(grad(v)))*Identity(v.cell().d)

Jump over local coordinates of surfaces

def ljump(u):

return as_vector([inner(jump(u), normal('+')), \

inner(jump(u), tangent('+'))])
Traction on the discontinuity Surface

Traction = Coefficient(elem)

The derivative of the traction on the discontinuity surfaces

(Obtained after linearisation)

dTraction_du = Coefficient(elem)

Linear and bilinear forms

F = inner(sigma(u), grad(v))*dx - inner(f, v)*dx \

+ inner(g, v)*ds + inner(traction , ljump(v))*dc

dF = inner(sigma(du), grad(v))*dx \

+ ljump(du)[i]*dtraction_du[i]*ljump(v)[i]*dc

Figure 6.19 A UFL input for the elastic domain with tractions across the surfaces computed offline
in the C++ solver.

obtaining element tensors increases significantly in the partition of unity enrichment

framework, where different combinations of continuous/discontinuous spaces may be

used.

6.8 Partially saturated porous media problem 109

�����������������������
�����������������������
�����������������������
�����������������������

u = 0

u = u(t)

Figure 6.20 The problem configuration for the cohesive crack propagation.

To show the applicability of the compiler approach in coupled nonlinear problems,

the modelling of discontinuities in a partially saturated porous medium in a domain

Ω with discontinuity surfaces Γd is presented. For the partially saturated porous

medium, the pore pressure and displacement fields are unknowns. These fields are

strongly coupled via a linear momentum balance equation and a mass balance

equation. The linear momentum balance equation reads

∇ · σ − α∇pw + ρg = 0 in Ω, (6.29)

where σ, α, pw, g are stress tensor, Biot coefficient, pore pressure and gravity vector,

respectively. The density of the solid, denoted by ρ, is defined as

ρ = (1− n)ρs + nSwρw, (6.30)

where n, ρs, Sw and ρw are solid porosity, density of solid, saturation level and

density of water, respectively. For the linear elastic material, the stress tensor reads

σ(u) = 2µǫ(u) + λtr(ǫ(u))I where µ and λ are material properties of the solid

skeleton and ǫ is the linearised strain tensor.

The mass balance equation for water in a partially saturated medium, neglecting

110 Chapter 6 Applications in modelling different physical problems

Figure 6.21 The evolution of displacement contours on the magnified deformed meshes. The
specimen can continue carrying the load even if the crack is fully developed.

the mass rate evaporation and the gradient of the water density (∇ρw = 0), reads

(

α− n

Ks
Sw

2 +
n

Kw
Sw

)

∂pw
∂t

+ αSw∇ ·

(

∂u

∂t

)

+

(

α− n

Ks
pwSw + n

)

∂Sw

∂t
+∇ ·

[

kkrw
µw

(−∇pw + ρwg)

]

= 0, in Ω,

(6.31)

where Ks is bulk modulus of the solid, Kw denotes bulk modulus of the fluid phase, t

is a time variable, µw is dynamic viscosity of water, k is a second-order permeability

tensor of the solid phase and krw is relative permeability of water. Unlike the fully

saturated porous media problems, Sw and krw are not constant and may change

during simulation.

The following boundary conditions are assumed on the boundaries of domain Ω

6.8 Partially saturated porous media problem 111

and the discontinuity surfaces Γd:

u = 0 on Γu, (6.32)

p = 0 on Γp, (6.33)

σ · n = t on Γt, (6.34)

kkrw
µw

(−∇pw + ρwg) · n = f on Γq, (6.35)

σ · n = t̄ on Γd, (6.36)

where Γu ∪ Γt = Γp ∪ Γq = ∂Ω and Γu ∩ Γt = Γp ∩ Γq = Ø. The outward vector

normal to the boundaries is defined as n. The traction over Γt and the flux over

Γq are respectively denoted by t and f . Moreover, t̄ defines a traction over the

discontinuity surfaces Γd.

To obtain weak formulations, the strong forms are multiplied by test functions w

and q, integrated over domain Ω and then integrated by parts. The weak formulations

for the linear momentum balance equation and the mass balance equation read:

∫

Γt

t ·w ds−

∫

Ω

∇σ : ∇w dx+

∫

Ω

αSw∇p ·w dx−

∫

Ω

ρg ·w dx

+

∫

Γd

t · JwK ds = 0, (6.37)

∫

Ω

(
α− n

Ks
Sw +

n

Kw
)Sw

∂p

∂t
q dx+

∫

Ω

αSw∇ ·

(

∂u

∂t

)

q dx

+

∫

Ω

(
α− n

Ks
pSw + n)

∂Sw

∂t
q dx+

∫

Ω

k

µw
krw∇p · ∇q dx

−

∫

Ω

k

µw
ρwkrwg · ∇q dx +

∫

Γq

fq ds = 0. (6.38)

To treat time derivatives, a θ-family formulation has been used for the time

discretization. The discretized forms of the weak variational formulations in the

time domain read

∫

Γt

ti+1 ·w ds−

∫

Ω

∇σi+1 : ∇w dx+

∫

Ω

αSw
i+1∇pi+1 ·w dx−

∫

Ω

ρi+1g ·w dx

+

∫

Γd

ti+1 · JwK ds = 0, (6.39)

112 Chapter 6 Applications in modelling different physical problems

∫

Ω

(
α− n

Ks
Si+θ
w +

n

Kw
)Si+θ

w

pi+1 − pi

dt
q dx+

∫

Ω

αSi+θ
w

∇ · (ui+1 − ui)

dt
q dx

+

∫

Ω

(
α− n

Ks
pi+θSi+θ

w + n)
Si+1
w − Si

w

dt
q dx+

∫

Ω

k

µw
krw

i+θSi+θ
w ∇pi+θ · ∇q dx

−

∫

Ω

k

µw
ρwk

i+θ
rw g · ∇q dx +

∫

Γq

f i+θq ds = 0, (6.40)

where dt is time step and (·)
i+θ

is a quantity evaluated at step i+θ that is defined as

(1− θ)(·)
i
+ θ(·)

i+1
, where θ denotes a time discretization parameter, (·)

i
and (·)

i+1

are these quantities evaluated at time step i and i+1. Notice that the first equation

is only evaluated at step i + 1. Equations (6.39) and (6.40) construct a nonlinear

system F and the goal is to find (ui+1, pi+1) ∈ V ×Q such that

F (ui+1, pi+1;w, q) = 0 ∀(w, q) ∈ V ×Q, (6.41)

where V and Q are suitable function spaces corresponding to the displacement and

pressure fields, respectively. To solve this system, linearisation of F is performed

which leads to the following equation:

J(dui+1, dpi+1) = −F (u0
i+1, p0

i+1;w, q) (6.42)

where the vector (dui+1, dpi+1) contains the unknowns and represents the increment

of the solutions at step i+ 1. Furthermore, the vector (u0
i+1; p0

i+1) is the solution

(at step i+ 1) from the previous time step and J is the Jacobian of F computed as

Equation (3.20).

For this example, a simple linear constitutive law has been assumed to compute

the traction over discontinuity surfaces from displacement jumps. The constitutive

law reads

t =

[

tn
ts

]

= T JuK =

[

kn 0

0 ks

] [

JuKn
JuKs

]

, (6.43)

where T represents a second order tensor and kn and ks denote corresponding surface

stiffnesses in the normal and tangential directions of the discontinuity surfaces,

respectively.

The constitutive laws for the saturation and the relative permeability as functions

of the pressure pw are also defined as

Sw(pw) = 1−
c0

c1 + c2pw
, (6.44)

krw(pw) = 1− c3e
c4pw , (6.45)

6.8 Partially saturated porous media problem 113

where c0, c1, c2, c3 and c4 are constant parameters.

The Taylor-Hood elements (Taylor and Hood, 1973) are used for the mixed space

of the displacement and the pressure fields. Two different formulations for modelling

discontinuities for this example are assumed, both involving a displacement field

which is discontinuous across surfaces. The first formulation involves a pressure field

which is permitted to be discontinuous across surfaces and the second formulation

involves a pressure field which is continuous across the surfaces. For the case in which

both the pressure and displacement fields are discontinuous across the surfaces,

the relevant function spaces for the Taylor-Hood element are defined. The function

spaces for the displacement field and the pressure field are same as function spaces

presented in Equations (6.26) and (6.1) and they are again redefined as

V =
{

vh ∈
(

L2 (Ω)
)d

∩
(

H1 (Ω\Γd)
)d
,vh|E ∈ (Pk (Ω) \Γd)

d
∀E
}

, (6.46)

Q =
{

ph ∈ L2 (Ω) ∩H1 (Ω\Γd) , ph|E ∈ Pk−1 (Ω\Γd) ∀E
}

, (6.47)

where k > 1. For the discontinuous displacement field and the continuous pressure

field, the relevant function space for the pressure filed, Q, requires re-definitions as

Q =
{

ph ∈ H1 (Ω) , ph|E ∈ Pk−1 (Ω) ∀E
}

. (6.48)

Each combination of continuous/discontinuous function spaces leads to a new

variational formulation which results in different element tensors with different

dimensions. For example, compare the formulation presented in Armero and Callari

(1999) for discontinuous displacement field and continuous pressure field to the

formulation for discontinuous pressure and displacement fields in Larsson and

Larsson (2000).

Using the compiler approach, one can switch trivially between two formulations

with the Taylor-Hood element. For the case of both discontinuous displacement and

pressure fields, an extract of the UFL input that closely resembles the formulation

explained here is shown in Figures 6.22 and 6.23. In the UFL input, an enriched

quadratic Lagrange vector finite element space and an enriched linear Lagrange

finite element space are defined. The two finite element spaces are combined to

create a Taylor-Hood element on which test functions and trial functions for the

displacement and pore pressure fields are defined. After definitions of coefficient

functions representing solutions from current and previous time steps, the saturation

and permeability, the linear form is defined. At the end, automatic differentiation is

used to construct the Jacobian (bilinear form) from the linear form.

Note that in order to use other constitutive models for the saturation and the

relative permeability as well as traction-separation laws on discontinuity surfaces, it

is enough to define these models inside the UFL input or to compute them inside

114 Chapter 6 Applications in modelling different physical problems

Define continuous and discontinuous spaces

u_elem_c = VectorElement("Lagrange", "triangle", 2)

p_elem_c = FiniteElement("Lagrange", "triangle", 1)

u_elem_d = RestrictedElement(u_elem_c , dc)

p_elem_d = RestrictedElement(p_elem_c , dc)

Define enriched spaces

u_elem , p_elem = u_elem_c + u_elem_d , p_elem_c + p_elem_d

Element = u_elem * p_elem

Figure 6.22 The UFL input for the definition of finite element spaces for discontinuous u and p.

the C++ solver and return results as coefficients to the UFL input, presented in

Figure 6.23. The rest of the input including the definition of bilinear and linear

forms are unchanged.

To switch to a formulation with continuous pressure, only the function spaces

in the PUM form compiler input, presented in Figure 6.22, need to be changed.

Figure 6.24 presents the UFL input for defining the finite element function spaces

for discontinuous u but continuous p.

Using both formulations, the behavior of a specimen, containing discontinuity

surfaces as slip planes, subjected to self-weight is studied. The specimen is a 3m×1m

rectangular sample with three disjoint linear slip planes restricted at the bottom for

the displacement field (u = 0 at y = 0) and subjected to zero pressures at the top

(p = 0 at y = 3). The end points for slip planes are defined as follows: (0.0, 0.8) and

(0.5, 1.1) for the first slip plane Γd1, (1.0, 1.9) and (0.7, 2.1) for the second slip plane

Γd2 and (0.3, 0.4) and (0.7, 0.4) for the last slip plane Γd3.

The problem configuration as well as a mesh with embedded slip planes are

illustrated in Figure 6.25. The slip planes are assumed to be impervious to the water

flow (zero flow flux across the slip planes). The sliding is also allowed along the slip

planes by assuming ks = 0.0Nm−1 and kn = 1× 107 Nm−1 for the constitutive law

presented in Equation (6.43). Some of the parameters related to the fluid and solid

phases as well as the time discretization are shown in Table 6.1. The parameters

for the constitutive laws for saturation and relative permeability are assumed as

c0 = 0.1, c1 = 1× 105, c2 = 0.01Pa−1, c3 = 1.0 and c4 = −1× 10−5 Pa−1.

The extract of the C++ solver is presented in Figure 6.26. The implementation

details of slip planes are given in the extracted code. Note the approach used to solve

the transient nonlinear problem. Inside each time step, the variational problem is

solved using the updated coefficients.

The computed solutions for the pressure and vertical displacement fields

considering discontinuities in both fields at different time steps are presented in

Figures 6.27 and 6.28, respectively. Although the pressure field is allowed to be

6.8 Partially saturated porous media problem 115

Test and trial functions , solutions from the previous

and current time step

w, q = TestFunctions(Element)

dU = TrialFunction(Element)

U0, U = Coefficient(Element), Coefficient(Element)

Extract solution for displacement and pressure for previous

and current time step

[u0 , p0], [u, p] = split(U0), split(U)

Traction and flux

T, flux = Coefficient(u_elem_c), Coefficient(p_elem_c)

Define constant variables related to fluid and solid phases ,

time -stepping and surface and coefficients for normal and

tangent of surface

[...]

Define Saturation

def Sw(p):

return 1 - c0/(c1 + c2*p)

Define permeability

def perm(p):

return 1.0 - c3*exp(-c4*p)

u_(n+theta), p_(n+theta), Sw_(n+theta) and krw_(n+theta)

u_mid = as_vector([(1-theta)*u0[i] \

+ theta*u[i] for i in range(len(u))])

p_mid = (1-theta)*p0 + theta*p

Sw_mid = (1-theta)*Sw(p0) + theta*Sw(p)

krw_mid = (1-theta)*prem(p0) + theta*prem(p)

Compute local jump and traction over discontinuity surface

def ljump(v):

return as_vector([inner(jump(v), normal('+')), \

inner(jump(v), tangent('+'))])
def traction(v):

return as_vector([kn('+')*ljump(v)[0], kt('+')*ljump(v)[1]])
Linear form

Fsolid = inner(T, w)*ds - (inner(sigma(u), grad(w))

+ alpha*Sw*inner(grad(p), w) - Rhu*inner(G(g), w))*dx

+ inner(traction(u), ljump(w))*dc

Ffluid = ((alpha-n)/Ks*Sw_mid+n/Kw)*Sw_mid*(p-p0)/dt*q*dx

+ alpha*Sw_mid*(div(u)-div(u0))/dt*q*dx

+ (((alpha-n)/Ks)*p_mid*Sw_mid+n)*(Sw(p)-Sw(p0))/dt*q*dx

+ k/mu_w*krw_mid*inner(grad(p_mid), grad(q))*dx

- k/mu_w*Rhuw*Krw_mid*inner(G(g), grad(q))*dx + flux*q*ds

F = Fsolid + Ffluid

Bilinear form

J = derivative(F, U, dU)

Figure 6.23 The extract of the UFL input for the equations of partially saturated porous media
with discontinuities

116 Chapter 6 Applications in modelling different physical problems

Define continuous / discontinuous spaces for displacement

u_elem_c = VectorElement("Lagrange", "triangle", 2)

u_elem_d = RestrictedElement(u_elem_c , dc)

u_elem = u_elem_c + u_elem_d

Define continuous space for pressure

p_elem = FiniteElement("Lagrange", "triangle", 1)

Mixed space

Element = u_elem * p_elem

Figure 6.24 The UFL input for the definition of finite element spaces for discontinuous u and
continuous p.

(a) (b)

Figure 6.25 The partially saturated porous media example: (a) the problem configuration and
assumed boundary conditions (b) a mesh with embedded slip planes.

Solid-skeleton Young modulus Es 1.3× 107 Pa
Solid-skeleton Poisson ratio ν 0.4
Density of solid skeleton ρs 2× 103 kgm−3

Density of water ρw 1× 103 kgm−3

Initial porosity n 0.2
Dynamic viscosity of water µw 1× 10−3 Nsm−2

Solid phase bulk modulus Ks 1.86× 107 Pa
Water bulk modulus Kw 2.2× 109 Pa

Biot coefficient α 1.0
Time step dt 0.01 sec

Time parameter θ 0.8
Table 6.1 Parameters considered in the porous media example.

6.8 Partially saturated porous media problem 117

// Create slip plane #0

const Point p0_0(0.0, 0.8);

const Point p0_1(0.5, 1.1);

std::pair<Point , Point> end_points0(p0_0 , p0_1);

Surface surface0(mesh , end_points0);

// Create slip plane #1

const Point p1_0(1.0, 1.9);

const Point p1_1(0.7, 2.1);

std::pair<Point , Point> end_points1(p1_0 , p1_1);

Surface surface1(mesh , end_points1);

// Create slip plane #2

const Point p2_0(0.3, 0.4);

const Point p2_1(0.7, 0.4);

std::pair<Point , Point> end_points2(p2_0 , p2_1);

Surface surface2(mesh , end_points2);

// Create vector of discontinuity surfaces

std::vector<const GenericSurface*> surfaces =

boost::assign::list_of (& surface0)(& surface1)(& surface2);

// Create FunctionSpace

porousPUM::FunctionSpace V(mesh , surfaces);

// solution functions

pum::Function U0(V);

pum::Function U(V);

// Define bilinear and linear forms and attach coefficients

porousPUM::BilinearForm dF(V, V);

porousPUM::LinearForm F(V);

a.U0 = U0; a.U = U; L.U0 = U0; L.U = U;

[...]

// Output files

File file_u("disp.pvd");

File file_p("pressure.pvd");

while (t < T)

{

// Update the displacement field from the previous time space

U0.vector () = U.vector ();

// Solve nonlinear variational problem

solve(F == 0, bcs , U, dF);

// Save solution in VTK format

file_u << U[0];

file_p << U[1];

// Move to next interval

t += dt;

}

Figure 6.26 The C++ code extract for the modelling of slip planes in the partially saturated
domain.

118 Chapter 6 Applications in modelling different physical problems

t = 0.0 s t = 0.02 s t = 0.1 s t = 1.0 s t = 3.0 s

Figure 6.27 The pressure contours (Pa) for the case in which pressure and displacement fields are
discontinuous in different time steps.

t = 0.0 s t = 0.02 s t = 0.1 s t = 1.0 s t = 3.0 s

Figure 6.28 The vertical displacement contours (m) for the case in which pressure and displacement
fields are discontinuous in different time steps.

discontinuous, it does not show any significant discontinuities in the computed

solutions. As it can be observed, the extra pore pressure disappears in time and

a hydrostatic pore pressure distribution is obtained as the specimen is drained.

If modelling with just discontinuous displacement is desired, it is just enough to

replace the automatically generated header file corresponding to this case in the C++

solver. Except for this small change, the C++ solver is exactly same as the C++

solver used for the formulation in which both the displacement and pressure fields are

6.8 Partially saturated porous media problem 119

t = 0.0 s t = 0.02 s t = 0.1 s t = 1.0 s t = 3.0 s

Figure 6.29 The pressure contours (Pa) for the case in which only displacement field is discontinuous
in different time steps.

t = 0.0 s t = 0.02 s t = 0.1 s t = 1.0 s t = 3.0 s

Figure 6.30 The vertical displacement contours (m) for the case in which only displacement field
is discontinuous in different time steps.

discontinuous. Figures 6.29 and 6.30 respectively present the pressure and vertical

displacement contours for this case in different time steps. Notice differences among

the pressure and displacement contours and the contours presented in Figures 6.27

and 6.28 especially in subdomains close to the slip planes. These differences around

the slip planes can cause different patterns for the evolved slip planes.

To compare two different formulations in more detail around the slip planes,

the evolutions of the pressure and displacement fields at a point in the domain

120 Chapter 6 Applications in modelling different physical problems

are computed. The pressure and displacement fields in different steps have been

evaluated at a point close to the end point of the slip plane Γd2, which is located

on 1.1m from the bottom line and 0.45m from the left edge. The pressure and

vertical displacement evolutions for these two different formulations are depicted in

Figure 6.31. As can be seen, the displacement and pressure fields at the point close

to Γd2 have converged to unique values for two different formulations as time passed

during simulation. Before reaching to the unique value, the pressure values showed

rapid decreases at the beginning before increasing again to reach to a constant value.

This example showed that the PUM form compiler can also be used to generate

low-level code for transient coupled nonlinear problems. Different conditions for

the continuity of underlying fields were considered which resulted in different

variational formulations in the partition of unity framework. As it shown, switching

between different formulations is trivial using the compiler approach and it is

done by modifying the UFL inputs that define finite element spaces. Using the

compiler approach enables users a fast development of partition of unity models for

complex coupled problems and moves focus from the implementation details to the

mathematical models.

6.9 Circular slip plane problem

As discussed in Section 2.3.3, surface representations play an important role in the

partition of unity framework. Different approaches exist to represent discontinuity

surfaces and dependent on a problem one specific surface representation may give

better results. Therefore, it is desirable to have a framework in which different surface

representations can be examined with minimum reworks.

The proposed automated framework for modeling discontinuities provides

possibilities of implementing different surface representations for finite element

models. Different surface representations can be implemented as subclasses of the

pum::GenericSurface base class. The UFL inputs are independent of the surface

representations and therefore the same automatically generated code for variational

formulations can be used with different surface representations. So, in order to

examine a specific surface representation for a problem, it is enough to implement

a subclass of pum::GenericSurface and no other change in the UFL input or the

PUM solver library is required.

To show the possibility of using different surface representations, the automated

framework is used to model a circular slip plane problem. For the circular slip plane

6.9 Circular slip plane problem 121

uuu/p discontinuous
uuu discontinuous, p continuous

Time (sec)

p
(p

a)

32.521.510.50

14000

12000

10000

8000

6000

4000

2000

(a)

uuu/p discontinuous
uuu discontinuous, p continuous

Time (sec)

u y
(m

)

32.521.510.50

-0.0005

-0.001

-0.0015

-0.002

-0.0025

-0.003

(b)

Figure 6.31 The evolution of (a) the pore pressure (Pa) (b) the vertical displacement (m) with time
at a point close to the end point of the slip plane Γd2 for different assumptions on the continuity
of spaces.

problem, the bilinear and linear forms read

a (u,v) =

∫

Ω\Γd

σ(u) : ∇v dx+

∫

Γd

t · JvK ds, (6.49)

L (v) =

∫

Ω

f · v dx, (6.50)

122 Chapter 6 Applications in modelling different physical problems

Figure 6.32 The problem configuration for the circular slip plane subjected to a torsional loading.

where σ is elastic stress tensor defined as Equation (2.6), t is traction force on

a slip plane Γd, and f is body force. For this problem, an equivalent function

space to the function space presented in Equation (6.26) is used for test and trail

functions. The linear traction-separation law is used for this example, as introduced

in Equation (6.43).

The computational domain, given in Figure 6.32, is a unit square Ω : (1, 0)× (0, 1)

with a circular slip plane Γd whose center is located at (1, 1) with a radius R = 0.5.

The Young’s modulus and the Poisson ratio are 2000Pa and 0.2, respectively. To

allow sliding along the slip plane, ks = 0.0Nm−1 and kn = 1 × 106 Nm−1 are

selected as the tangential and normal stiffnesses of the slip plane for the constitutive

law presented in Equation (6.43).

The following boundary conditions for this problem are assumed:

u = 0 on 0× (0, 1), (6.51)

u = 0 on (0, 1)× 0, (6.52)

u = 0 on (1, 1), (6.53)

uy = −0.1 on (0.9, 1), (6.54)

ux = 0.1 on (1, 0.9), (6.55)

ts = 0 on Γd, (6.56)

where ts is the tangential traction on the slip plane. Note that all parameters have

SI units. Considering these boundary conditions a pure rotation of the circular slip

6.9 Circular slip plane problem 123

Case I

Case II

Figure 6.33 Two different surface representations: case I and case II that represent the
approximated and exact representations, respectively. The quadrature points for each representation
and their corresponding surface normals are also indicated.

plane around a center point (1, 1) occurs.

An exact solution for the displacement field can be computed using this setting

for the boundary conditions. The exact displacement field reads

u(x, y) =

{

(1.0− y)i− (1.0− x)j if (x− 1.0)2 + (y − 1.0)2 −R2 ≤ 0,

0 otherwise.
(6.57)

where i and j are the unit vectors in the x and y directions. The maximummagnitude

of the displacement field that occurs on the boundaries of the slip plane is 0.5m and

the L2 norm of the displacement field is computed as 0.0245437m.

Two different surface representations for the circular slip plane, as shown in

Figure 6.33, are considered:� Case I: a surface within each cell is approximated by a straight line passing

through edge intersection points. By this assumption, the normal of the

surface is constant within each cell and it is perpendicular to the straight

line connecting the edge intersection points. The quadrature points used for

the evaluation of surface integrals are also located on these straight lines.� Case II: a surface within each cell is defined exactly by a circular arc passing

through edge intersection points. The normal of the surface is not constant

within cells and it is computed at quadrature points located on the circular

arcs using the equation of the circular slip plane. The radius of each arc is

equal to the radius of the slip plane.

As can be seen in Figure 6.33, the position of quadrature points and the normals

may change considerably with the approach chosen for the surface representation.

These differences are more apparent as the underlying mesh becomes coarser.

124 Chapter 6 Applications in modelling different physical problems

If the circular slip plane is approximated by straight lines (case I), spurious

tangential traction forces on the slip plane may appear in the finite element models.

These spurious traction forces come from the mismatch between the normal to the

discretized slip plane (linear segments) and the radial vector normal to the circular

slip plane. This mismatch will decrease with mesh refinement. However, since the

discretization is not perfect and the normal of the discretized slip plane is never

equal to the radial vector and therefore spurious traction forces always remain.

To implement a solver for this problem, the variational problem is represented in

a UFL input at the first step. The compiler input file using linear Lagrange elements

on triangles to model the circular slip plane is presented in Figure 6.34. To model

the displacement field in the partition of unity framework a mixed enriched finite

element is created at the first step. Notice the definition of this finite element by first

enriching scalar elements and then creating a mixed element from two enriched scalar

elements. This syntax enables access to the sub-components of the displacement field

using functions defined in the solver library. These sub-components can be used to

apply Dirichlet boundary conditions or to post-process for the x or y component of

the displacement field, separately.

The generated code is included inside a DOLFIN-based solver. This solver models

the unit square domain with a zero tangential stiffness on the circular slip plane

with two different representations (case I and case II). Case I is represented using

an object of the pum::NonBranchingSurface class (which is already defined in the

PUM library). Case II is represented by an object of a new class overloading some

member functions of the pum::NonBranchingSurface class including those related

to computing surface quadrature rules and surface normal and tangent vectors. In

this case, the member functions for the cell quadrature rules are not overloaded and

the same rules as those for case I are used.

To compute the spurious tangential traction forces over the approximated slip

plane (case I), two coordinate frames across the slip plane have been defined. The

first coordinate system is aligned with the discretized slip plane. This coordinate

system is called the (n, s) coordinate system where ks = 0.0Nm−1 is enforced. The

other coordinate system is aligned with the real circumference of the circular slip

plane and is called the (r, t) coordinate system. In this coordinate system, the actual

traction forces (tr, tt) can be computed as

[

tr
tt

]

=

[

cosφ sinφ

− sinφ cosφ

] [

tn
ts

]

, (6.58)

where φ is the angle between r and n. The normal and tangential traction forces

across the approximated slip plane are given as tn and ts. The total spurious

tangential traction is then computed as
∫

Γd
tt ds. However, if the exact surface

6.9 Circular slip plane problem 125

Continuous and discontinuous function space

elem_cont = FiniteElement("Lagrange", "triangle", 1)

elem_discont = RestrictedElement(elem_cont , dc)

Enriched function space

element = (elem_cont + elem_discont)*(elem_cont + elem_discont)

Function space for source term , normal and tangent of surfaces

elem = VectorElement("Discontinuous Lagrange", triangle , 0)

Define test and trial functions

v, u = TestFunction(element), TrialFunction(element)

Material properties

mu, lmbda = Constant("triangle"), Constant("triangle")

Tangential and normal stiffnesses of slip surface

kt, kn = Constant("triangle"), Constant("triangle")

Strain tensor

def epsilon(v):

return 0.5*(grad(v) + grad(v).T)

Stress tensor

def sigma(v):

return 2.0*mu*epsilon(v) \

+ lmbda*tr(epsilon(v))*Identity(v.cell().d)

Slip surface normal , slip surface normal and source term

normal , tangent = Coefficient(elem), Coefficient(elem)

f = Coefficient(elem)

Local jump

def ljump(v):

return as_vector([inner(jump(v), normal('+')), \

inner(jump(v), tangent('+'))])
Traction force

traction = as_vector([kn('+')*ljump(u)[0], \

kt('+')*ljump(u)[1]])
Bilinear and linear forms

a = inner(sigma(u), epsilon(v))*dx \

+ inner(traction , ljump(v))*dc

L = inner(f, v)*dx

Figure 6.34 The UFL input to model the circular slip plane using linear Lagrange elements in a
two–dimensional problem.

representation for the slip plane (case II) is used, since the exact normal and

tangential surface vectors are used, there is no spurious tangential traction force

on the slip plane.

126 Chapter 6 Applications in modelling different physical problems

Continuous and discontinuous function space

elem_cont = VectorElement("Lagrange", "triangle", 1)

elem_discont = RestrictedElement(elem_cont , dc)

element = elem_cont + elem_discont

Approximate coefficients

v_pum = Coefficient(element)

L2 norm

M = inner(v_pum , v_pum)*dx

Figure 6.35 The UFL input to compute the L2 norm using the computed solution.

The computed displacement fields using these two different surface representations

are compared with the exact solution presented in Equation (6.57). To obtain a

measure to compare the computed displacement fields, a relative error e is defined

as

e =
|Lexact

2 − Lpum
2 |

Lexact
2

, (6.59)

where Lexact
2 is the L2 norm of the exact displacement field given by Equation (6.57)

and Lpum
2 is the L2 norm of the approximated displacement field. The Lpum

2 norm

can be evaluated using a functional which is given by a UFL input as presented in

Figure 6.35.

Four different mesh discretizations, as shown in Figure 6.36, are used for the

comparison between different models.

The relative errors of the computed solutions and the maximummagnitudes for the

approximated displacement field are presented in Table 6.2. Note that these results

are evaluated for two surface representations with different mesh discretizations. For

the approximated slip plane (case I), spurious tangential traction forces have been

also computed for different mesh discretizations.

The following remarks can be made about the results presented in this table.� The slip plane example shows the importance of surface representations in

the partition of unity based enrichment methods. From this table, it is

clear that surface representation plays an important role in the accuracy of

computed solutions. A better approximation can be achieved if a suitable

surface representation for the slip plane is chosen even with a coarse mesh.� The automated framework allows for decoupling the approaches representing

surfaces from the generated code and the rest of the library. Therefore, different

surface representations can be used without any change in the automatically

generated code.

6.9 Circular slip plane problem 127

(a) (b)

(c) (d)

Figure 6.36 Different mesh discretization for the circular slip plane example. A mesh with (a)
2× 19× 19 (b) 2× 29× 29 (c) 2× 49× 49 (d) 2× 59× 59 elements.

dofs mesh
Case I Case II

traction (N) e ∆max(m) e ∆max(m)
880 2× 19× 19 954.6 0.3985 0.34494 0.0665 0.47434
1920 2× 29× 29 755.3 0.2073 0.40967 0.0693 0.48074
5200 2× 49× 49 485.2 0.0868 0.45212 0.0563 0.48826
7400 2× 59× 59 428.2 0.0600 0.46240 0.0500 0.49046

Table 6.2 A table for the comparison of the maximum displacement magnitude in m and the relative
error for the circular slip plane using the approximated approach (case I) and the exact approach
(case II) for the surface representations. The spurious tangential traction forces in N on the slip
plane for case I are also presented.

128 Chapter 6 Applications in modelling different physical problems� If a surface is approximated by straight lines (case I), the surface approximation

improves significantly with the mesh refinement. For this case the finer

the mesh, the better the surface approximation. Although the computed

displacement field improves by mesh refinement and the tangential traction

forces decrease, the spurious tangential traction forces can not be completely

eliminated even with a very fine mesh. Therefore, some unwanted errors always

remain in the finite element models.� However, if the exact surface representation is used (case II), there are

no spurious traction forces on the slip plane. Therefore, the computed

results are less sensitive with respect to mesh discretization and acceptable

approximations are achieved even with a coarse mesh. For case II, the relative

error remains almost constant with the mesh refinement.� The circular slip plane example can be considered as a motivational example

to show the importance of using proper surface representations. For the

problems with curved surfaces, using better approximations like NURBS or

isoparametric surfaces may improve the computed results significantly.

Chapter 7 Conclusions and future works

7.1 Conclusions

An automated framework has been designed to model discontinuities in physical

problems independent of computational meshes in the context of partition

of unity enrichments. The discontinuity surfaces can be either pre-existing in

computational domains as initial geometrical boundaries or developed and evolved

during simulations (i.e. crack propagation). The automated framework relies on

a form compiler to generate low-level code for modeling discontinuity surfaces

and facilitating the use of partition of unity methods for users of computational

mechanics technology including engineers and researchers.

In this thesis, the following issues were addressed:� The partition of unity framework was explained in Chapter 2. A literature

review on the application of the partition of unity methods for modeling

problems with discontinuities was given. To clarify the implementation

aspects of partition of unity methods, a partition of unity formulation for

modeling an elastic domain with a discontinuity surface was elaborated. The

implementation issues specific to the partition of unity framework were also

studied at the end of this chapter.� The main idea behind the automated modeling of mathematical modeling

was addressed in Chapter 3. The design of the FEniCS project and its

key components as a framework to automate solving partial differential

equations using a compiler approach were explained. This chapter was closed

by presenting the modeling of different partial differential equations using

components of the FEniCS project.� The tools and functionalities provided inside the FEniCS project were

extended to support automated modelling problems with discontinuities. For

the automation of partition of unity models, three key components from the

FEniCS project were used.

– Firstly, the Unified Form Language (UFL) is used to express variational

statements (Chapter 4). Particular use is made of the concept of

“enriched” spaces and the UFL concept of a “restriction”. The latter is

130 Chapter 7 Conclusions and future works

the restriction of functions to a particular entity sub-domain. A notation

to represent surface integrals is also defined.

– To generate code for a finite element assembler and additional helper

functions, the FEniCS Form Compiler (Logg et al., 2012b) is extended.

The extended compiler, called the PUM compiler (Nikbakht and Wells,

2012c), is explained in Chapter 4. The PUM compiler received high-level

inputs resembling the mathematical notations of function spaces and

variational formulations defined in the partition of unity framework. The

compiler then return low-level C++ codes to evaluate enriched element

tensors, to compute local to global mapping, and to manipulate functions

defined on the enriched function spaces. The required information related

to the discontinuity surfaces is passed via an interface layer defined inside

a solver library.

– Finally, re-usable components for the implementations of the partition

of unity methods, including an interface layer to transfer the enriched

degrees of freedom data to the generated code, function spaces and surface

abstractions, are constructed upon DOLFIN (Logg et al., 2012e). These

functionalities are collected inside the PUM solver library (Nikbakht and

Wells, 2012b) as addressed in Chapter 5.� The automated framework has separated discretization of partial differential

equations from the partition of unity method implementation details. This

separation was achieved by designing the PUM form compiler to generate

low-level code from UFL input representing the PDEs and the interface layer

which transfered information related to the enriched degrees of freedom to the

automatically generated code. This interface layer was implemented inside the

GenericPUM base class as discussed in Section 5.2.1.� Surface representations were uncoupled from the rest of the solver library

and the automatically generated code. This was performed by introducing

GenericSurface as a base class to allow easy implementations of different

representations. The design of GenericSurface was explained in Section 5.2.2.� The GenericSurface and GenericPUM base classes can be used to implement

different surfaces and various enrichment strategies related to the enriched

degrees of freedom. In this thesis, the subclasses derived form base classes

were used to model problems whose solutions were discontinuous across

surfaces. A simple surface representation which approximates surfaces within

cells by minimum order polynomials passing through edge intersection points

was implemented as a subclass of GenericSurface and it is presented in

Section 5.4. The Heaviside function was also used as an enrichment function for

7.2 Recommendations for future 131

the cells crossed by discontinuities. This enrichment strategy was implemented

inside a class derived from GenericPUM as discussed in Section 5.3� Through different examples, presented in Chapter 6, it was shown that the

automated framework supports the rapid development of different models for

the simulation of discontinuity surfaces in a wide range of linear and non-linear

physical problems with various finite element spaces.

– It has been shown that the automated framework was not limited to

conforming Galerkin formulations but could be also used for discontinuous

Galerkin formulations as well. This allowed the modelling of problems

whose solutions were discontinuous not only on surfaces but also on

the internal facets of meshes. In Sections 6.2 and 6.3, examples of

automated modeling of discontinuities in the partition of unity method

in combination with the discontinuous Galerkin method were presented.

– A range of Lagrange/non-Lagrange finite element spaces were also

supported inside the automated framework for modeling problems with

discontinuities. The automated framework was not only limited to the

Lagrange family of finite elements, but it also supported H(div) and

H(curl) elements like BDM elements and Nédélec elements. Examples

of the application of such elements were shown in Sections 6.4 and 6.5.

– To facilitate the modeling of nonlinear problems with discontinuities,

automatic differentiations were used to obtain the Jacobian of functionals

(bilinear forms). Examples of such applications were presented in

Sections 6.6, 6.7 and 6.8.

7.2 Recommendations for future� In this thesis, the main focus was on the non-branching discontinuities

represented by continuous segments and the Heaviside function used as the

enrichment functions. As a future work, the framework can be relatively

easily extended to other types of discontinuities and enrichment functions.

For example to support branching and multiple discontinuity surfaces, it is just

required to add new derived classes from the GenericSurface and GenericPUM

classes, to represent these surfaces and manipulate the enriched degrees of

freedom.� The end points of the discontinuity surfaces, implemented in the PUM solver

library, should lie on cell boundaries. Therefore, only the Heaviside function is

adequate as an enrichment function in the partition of unity framework. As a

132 Chapter 7 Conclusions and future works

future work, discontinuity surfaces can be generalized such that the end points

can lie anywhere in the cells. For these surfaces, other enrichment functions like

asymptotic near-tip enrichment functions in addition to the Heaviside function

should be considered.� The automated framework has great potential in developing the partition

of unity models for 2D/3D discontinuities in coupled complex multi-physics

systems in which different combinations of the continuous/discontinuous spaces

can exist. Modelling failure in porous media, flow in fractured reservoirs and

hydraulic fracturing are amongst the problems where using the automated

framework facilitates modelling considerably.� Since enriched degrees of freedom are active only for a small subset, the

evaluation of the entries corresponding to the enriched degrees of freedom

in element tensors are not expensive in comparison to the evaluation of the

rest of entries of the element tensors. Nevertheless, the generated code for the

enriched entries can also be optimised to improve efficiency and to decrease

run-time and compile-time. One approach to optimise the generated code for

the problems with discontinuous solutions is flipping the sign for the Heaviside

function. This causes only element tensors for the cells that are intersected by

discontinuity surfaces to have enriched entries.� To improve the performance of the automated framework in modeling complex

problems, it is required to be able to parallelise the partition of unity models.

As a future work, the PUM library should be adapted to handle computing

enriched degrees of freedom in parallel for different subdomains.

References

M. S. Alnæs. UFL: a finite element form langauge. In A. Logg, K. A. Mardal, and

G. N. Wells, editors, Automated Solution of Differential Equations by the Finite

Element Method, chapter 17. Springer-Verlag, 2012. 22, 24, 26, 53, 56

M. S. Alnæs and A. Logg. UFL Specification and User Manual, 2009. URL:

http://launchpad.net/ufl/. 25, 26, 53

M. S. Alnæs and A. Logg. Unified form language: UFL.

http://launchpad.net/ufl/, 2012. 22, 49

M. S. Alnæs and K. A. Mardal. SyFi and SFC: symbolic finite elements and form

compilation. In A. Logg, K. A. Mardal, and G. N. Wells, editors, Automated

Solution of Differential Equations by the Finite Element Method, chapter 17.

Springer-Verlag, 2012. 26

M. S. Alnæs and K. A. Mardal. SyFi. URL: http://launchpad.net/syfi/, 2012.

22

M. S. Alnæs, A. Logg, K. A. Mardal, O. Skavhaug, and H. P. Langtangen. Unified

framework for finite element assembly. International Journal of Computational

Science and Engineering, 4(4):231–244, 2009. 29

M. S. Alnæs, H. P. Langtangen, A. Logg, K. A. Mardal, and O. Skavhaug. Unified

Form-assembly Code: UFC. URL: http://launchpad.net/ufc/, 2012. 22, 26,

28

M. S. Alnæs, A. Logg, and K. A. Mardal. UFC: a finite element code generation

interface. In A. Logg, K. A. Mardal, and G. N. Wells, editors, Automated

Solution of Differential Equations by the Finite Element Method, chapter 16.

Springer-Verlag, 2012. 29, 49, 57, 148

J. Andersen and V. Solodukhov. Field behavior near a dielectric wedge. Antennas

and Propagation, IEEE Transactions, 26(4):598–602, 1978. 98

P. Areias and T. Belytschko. Analysis of three-dimensional crack initiation and

propagation using the extended finite element method. International Journal for

Numerical Methods in Engineering, 63(5):760–788, 2005. 8, 18, 76

http://launchpad.net/ufl/
http://launchpad.net/ufl/
http://launchpad.net/syfi/
http://launchpad.net/ufc/

134 References

F. Armero and C. Callari. An analysis of strong discontinuities in a saturated

poro-plastic solid. International Journal for Numerical Methods in Engineering,

46(10):1673–1698, 1999. 113

D. N. Arnold, F. Brezzi, and J. Douglas, Jr. PEERS: a new mixed finite element for

plane elasticity. Japan J. Appl. Math., 1(2):347–367, 1984a. 52

D. N. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes

equations. Calcolo, 21(4):337–344, 1984b. 52

K. Aziz and A. Settari. Petroleum Reservoir Simulation. Applied Science Publishers

Ltd., London, 1979. 9

I. Babuška and J. M. Melenk. The partition of unity finite element method:

Basic theory and applications. Computer Methods in Applied Mechanics and

Engineering, 139(1-4):289–314, 1996. 3

I. Babuška and J. M. Melenk. The partition of unity method. International Journal

for Numerical Methods in Engineering, 40(4):727–758, 1997. 3

I. Babuška, G. Caloz, and J. E. Osborn. Special finite element methods for a class

of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal.,

31(4):945–981, 1994. 3

B. Bagheri and L. R. Scott. Analysa. URL:

http://people.cs.uchicago.edu/~ridg/al/aa.html, 2003. 21

S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. Mcinnes,

B. F. Smith, and H. Zhang. PETSc web page. http://www.mcs.anl.gov/petsc/,

2012. 31

W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – a general-purpose

object-oriented finite element library. ACM Transactions on Mathematical

Software (TOMS), 33(4):24–50, 2007. 30

Z. P. Bažant. Instability, ductility, and size effects in strain-softening concrete. ASCE

Journal of Engineering Mechanics, 102(2):331–344, 1976. 1

D. Beazley et al. Simplified wrapper and interface generator (SWIG).

http://www.swig.org/, 2012. 31

T. Belytschko and T. Black. Elastic crack growth in finite elements with minimal

remeshing. International Journal for Numerical Methods in Engineering, 45(5):

601–620, 1999. 1, 3, 7, 8, 17

http://people.cs.uchicago.edu/~ridg/al/aa.html
http://www.mcs.anl.gov/petsc/
http://www.swig.org/

References 135

T. Belytschko, J. Fish, and B. E. Engelmann. A finite element with embedded

localization zones. Computer Methods in Applied Mechanics and Engineering, 70

(1):59 – 89, 1988. 1, 2

T. Belytschko, N. Moës, S. Usui, and C. Parimi. Arbitrary discontinuities in finite

elements. International Journal for Numerical Methods in Engineering, 50(4):

993–1013, 2001. 19

T. Belytschko, R. Gracie, and G. Ventura. A review of extended/generalized finite

element methods for material modeling. Modelling and Simulation in Materials

Science and Engineering, 17(4), 2009. 7

K. Y. Billah and R. H. Scanlan. Resonance, tacoma narrows bridge failure, and

undergraduate physics textbooks. American Journal of Physics, 59(2):118–124,

1991. 11

T. Bittencourt, A. R. Ingraffea, and J. Llorca. Simulation of arbitrary, cohesive crack

propagation. Fracture Mechanics of Concrete Structures, pages 339–350, 1992. 1

S. Bordas, P. V. Nguyen, C. Dunant, A. Guidoum, and H. Nguyen-Dang. An

extended finite element library. International Journal for Numerical Methods in

Engineering, 71(6):703–732, 2007. 4

A. Bossavit. Simplicial finite elements for scattering problems in electromagnetism.

Comput. Methods Appl. Mech. and Eng., 76:299–316, 1989. 99

F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Springer-Verlag,

1991. 46

F. Brezzi, J. Douglas, Jr., and L. D. Marini. Two families of mixed finite elements

for second order elliptic problems. Numer. Math., 47(2):217–235, 1985. 27, 97

H. J. Bungartz and M. Schäfer, editors. Fluid-Structure Interaction: Modelling,

Simulation, Optimisation. Lecture Notes in Computational Science and

Engineering. Springer-Verlag, Berlin, 2006. 10

G. T. Camacho and M. Ortiz. Computational modelling of impact damage in brittle

materials. International Journal of Solids and Structures, 33(20-22):2899–2938,

1996. 1

B. J. Carter, C. S. Chen, A. R. Ingraffea, and P. A. Wawrzynek. A topology-based

system for modeling 3d crack growth in solid and shell structures. In Proceedings

of the Ninth International Congress on Fracture ICF9, pages 1923–1934. Elsevier

Science Publishers, Sydney, Australia, 1997. 1

136 References

R. Chamrová and B. Patzák. Object-oriented programming and the extended

finite-element method. Proceedings of the Institution of Civil Engineers:

Engineering and Computational Mechanics, 163(4):271–278, 2010. 4

J. Chessa and T. Belytschko. An enriched finite element method and level sets

for axisymmetric two-phase flow with surface tension. International Journal for

Numerical Methods in Engineering, 58(13):2041–2064, 2003a. 10

J. Chessa and T. Belytschko. An extended finite element method for two-phase

fluids. Journal of Applied Mechanics, Transactions ASME, 70(1):10–17, 2003b.

10

N. Christofides. Graph theory: an algorithmic approach. Academic Press, 1975. 56

COMSOL. COMSOL multiphysics, 2012. URL http://www.comsol.com. 21

R. D. Cook, D. S. Malkus, M. E. Plesha, and R. J. Witt. Concepts and Applications

of Finite Element Analysis. John Wiley and Sons, New York, 2002. 1, 21

M. Crouzeix and P. A. Raviart. Conforming and non-conforming finite element

methods for solving the stationary Stokes equations. R. A. I. R. O. Anal. Numer.,

7:33–76, 1973. 27, 46

C. Daux, N. Moës, J. Dolbow, N. Sukumar, and T. Belytschko. Arbitrary branched

and intersecting cracks with the extended finite element method. International

Journal for Numerical Methods in Engineering, 48(12):1741–1760, 2000. 8

R. de Borst, L. J. Sluys, H. B. Mühlhaus, and J. Pamin. Fundamental issues in

finite element analyses of localisation of deformation. Engineering Computations,

10(2):99–121, 1993. 1

J. Dolbow, N. Moës, and T. Belytschko. An extended finite element method for

modeling crack growth with frictional contact. Computer Methods in Applied

Mechanics and Engineering, 190(51-52):6825–6846, 2001. 8

C. A. Duarte, O. N. Hamzeh, T. J. Liszka, and W. W. Tworzydlo. A generalized

finite element method for the simulation of three-dimensional dynamic crack

propagation. Computer Methods in Applied Mechanics and Engineering, 190:

2227–2262, 2001. 8, 17

C. A. Duarte, L. G. Reno, and A. Simone. A high-order generalized fem for

through-the-thickness branched cracks. International Journal for Numerical

Methods in Engineering, 72(3):325–351, 2007. 13

http://www.comsol.com

References 137

M. Duflot. A study of the representation of cracks with level sets. International

Journal for Numerical Methods in Engineering, 70(11):1261–1302, 2007. 20

P. Dular and C. Geuzaine. GetDP: a general environment for the treatment of

discrete problems. URL: http://www.geuz.org/getdp/, 2012. 21

E. N. Dvorkin, A. M. Cuitino, and G. Gioia. Finite elements with displacement

interpolated embedded localization lines insensitive to mesh size and distortions.

International Journal for Numerical Methods in Engineering, 30(3):541–564, 1990.

ISSN 1097-0207. 2

G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larson, and R. L. Taylor.

Continuous/discontinuous finite element approximations of fourth-order elliptic

problems in structural and continuum mechanics with applications to thin beams

and plates, and strain gradient elasticity. Computer Methods in Applied Mechanics

and Engineering, 191(34):3669–3750, 2002. 93

R. Eymard, T. R. Gallouët, and R. Herbin. The finite volume method. In P.G.

Ciarlet and J.L. Lions, editors, Handbook of Numerical Analysis, volume 7, pages

713–1018. Elsevier, 2000. 21

T. P. Fries. The intrinsic xfem for two-fluid flows. International Journal for

Numerical Methods in Fluids, 60:437–471, 2008. 10

T. P. Fries and T. Belytschko. The extended/generalized finite element method: An

overview of the method and its application. International Journal for Numerical

Methods in Engineering, 2010. Article in press. 7

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley, 1995. 56

T. C. Gasser and G. A. Holzapfel. Modeling 3D crack propagation in unreinforced

concrete using pufem. Computer Methods in Applied Mechanics and Engineering,

194(25-26):2859–2896, 2005. 8, 18, 70, 76

T.C. Gasser and G.A. Holzapfel. 3d crack propagation in unreinforced concrete. a

two-step algorithm for tracking 3d crack paths. Computer Methods in Applied

Mechanics and Engineering, 195:5198–5219, 2006. 19, 148

A. Gerstenberger and W. A. Wall. Enhancement of fixed-grid methods towards

complex fluid-structure interaction applications. International Journal for

Numerical Methods in Fluids, 57(9):1227–1248, 2008a. 11

http://www.geuz.org/getdp/

138 References

A. Gerstenberger and W. A. Wall. An extended finite element method/lagrange

multiplier based approach for fluid-structure interaction. Computer Methods in

Applied Mechanics and Engineering, 197(19-20):1699–1714, 2008b. 11

E. Giner, N. Sukumar, J. E. Tarancòn, and F. J. Fuenmayor. An Abaqus

implementation of the extended finite element method. Engineering Fracture

Mechanics, 76(3):347–368, 2009. 4

P. Gottschling and A. Lumsdaine. The Matrix Template Library 4 Web page.

http://www.simunova.com/en/node/24, 2011. 31

A. Gravouil, N. Moës, and T. Belytschko. Non-planar 3d crack growth

by the extended finite element and level sets part ii: Level set update.

Int.J.Numer.Meth.Eng., 53(11):2569–2586, 2002. 20

S. Groß and A. Reusken. An extended pressure finite element space for two-phase

incompressible flows with surface tension. Journal of Computational Physics, 224

(1):40–58, 2007. 10

R. Helmig. Multiphase Flow and Transport in the Subsurface. Springer-Verlag,

Berlin, 1997. 10

M. A. Herox et al. An overview of the Trilinos project. ACM Trans. Math. Softw.,

31(3):397–423, 2005. 31

D. J. Holdych, D. R. Noble, and R. B. Secor. Quadrature rules for triangular

and tetrahedral elements with generalized functions. International Journal for

Numerical Methods in Engineering, 73(9):1310–1327, 2008. 17

T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite

Element Analysis. Dover, New York, 2000. 1, 21

A. R. Ingraffea and V. Saouma. Numerical modelling of discrete crack propagation in

reinforced and plain concrete. In Fracture Mechanics of Concrete, pages 171–225.

Martinus Nijhoff Publishers, Dordrecht, 1985. 1

P. Jäger, P. Steinmann, and E. Kuhl. Modeling three-dimensional crack propagation

- a comparison of crack path tracking strategies. International Journal for

Numerical Methods in Engineering, 76(9):1328–1352, 2008a. 18

P. Jäger, P. Steinmann, and E. Kuhl. On local tracking algorithms for the

simulation of three-dimensional discontinuities. Computational Mechanics, 42:

395–406, 2008b. 18, 148

http://www.simunova.com/en/node/24

References 139

J. Jin. The Finite Element Method in Electromagnetics. John Wiley and Sons, Inc.,

New York, 2nd edition, 2002. ISBN 0471438189. 99

M. Jiràsek. Comparative study on finite elements with embedded discontinuities.

Computer methods in applied mechanics and engineering, 188:307–330, 2000a. 2

M. Jiràsek. Conditions of uniqueness for finite elements with embedded cracks. In

Proceedings of the Sixth International Conference on Computational Plasticity.

Barcelona, Spain, 2000b. 2

M. Jiràsek and T. Belytschko. Computational resolution of strong discontinuities.

In Proceeding of Fifth World Congress on Computational Mechanics. Vienna,

Austria, 2002. 2

A. R. Khoei and M. Nikbakht. Contact friction modeling with the extended finite

element method (X-FEM). Journal of Materials Processing Technology, 177(1-3):

58–62, 2006. 9

A. R. Khoei and M. Nikbakht. An enriched finite element algorithm for numerical

computation of contact friction problems. International Journal of Mechanical

Sciences, 49(2):183–199, 2007. 9

R. C. Kirby. FIAT: A new paradigm for computing finite element basis functions.

ACM Trans. Math. Software, 30:502–516, 2004. 21, 32

R. C. Kirby. Optimizing FIAT with level 3 BLAS. ACM Trans. Math. Softw., 32

(2):223–235, 2006. 21, 32, 56

R. C. Kirby. FIAT: numerical construction of finite element basis functions.

In A. Logg, K. A. Mardal, and G. N. Wells, editors, Automated Solution of

Differential Equations by the Finite Element Method, chapter 13. Springer-Verlag,

2012a. 32, 56

R. C. Kirby. FErari, 2012b. URL: http://launchpad.net/ferari/. 32

R. C. Kirby. FIAT, 2012c. URL: http://launchpad.net/fiat/. 26, 31

R. C. Kirby and A. Logg. A compiler for variational forms. ACM Transactions on

Mathematical Software, 32(3):417–444, 2006. 4, 22, 26, 27

R. C. Kirby and A. Logg. Efficient compilation of a class of variational forms. ACM

Transactions on Mathematical Software, 33(3), 2007. 4, 22, 27, 51

R. C. Kirby and A. Logg. Benchmarking domain-specific compiler optimizations

for variational forms. ACM Transactions on Mathematical Software, 35(2):1–18,

2008. 27, 51

http://launchpad.net/ferari/
http://launchpad.net/fiat/

140 References

R. C. Kirby and A. Logg. FErari: an optimizing compiler for variational forms.

In A. Logg, K. A. Mardal, and G. N. Wells, editors, Automated Solution of

Differential Equations by the Finite Element Method, chapter 12. Springer-Verlag,

2012. 32

R. C. Kirby and L. R. Scott. Geometric optimization of the evaluation of finite

element matrices. SIAM J. Sci. Comput., 29:827–841, 2007. 32

R. C. Kirby, M. G. Knepley, A. Logg, and L. R. Scott. Optimizing the evaluation

of finite element matrices. SIAM J. Sci. Comput., 27(6):741–758, 2005. 32

M. Klisinski, K. Runesson, and S. Sture. Finite element with inner softening band.

Journal of Engineering Mechanics, 117(3):575–587, 1991. 2

A. Kuprat, D. George, G. Straub, and M. C. Demirel. Modeling microstructure

evolution in three dimensions with grain3d and lagrit. Computational Materials

Science, 28:199–208, 2003. 9

H. P. Langtangen. Computational Partial Differential Equations: Numerical Methods

and Diffpack Programming. Springer-Verlag New York, Inc., Secaucus, NJ, 2003.

30

J. Larsson and R. Larsson. Finite-element analysis of localization of deformation

and fluid pressure in an elastoplastic porous medium. International Journal of

Solids and Structures, 37(48-50):7231 – 7257, 2000. 113

R. Larsson, K. Runesson, and S. Sture. Embedded localization band in undrained soil

based on regularized strong discontinuity - theory and fe-analysis. International

Journal of Solids and Structures, 33(20-22):3081–3101, 1996. 2, 7

A. Legay, J. Chessa, and T. Belytschko. An eulerian-lagrangian method for

fluid-structure interaction based on level sets. Computer Methods in Applied

Mechanics and Engineering, 195(17-18):2070–2087, 2006. 11

R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge University

Press, UK, 2002. 21

S. Levy. Two-Phase Flow in Complex Systems. John Wiley and Sons, Inc., 1995. 10

F. Liu and R. I. Borja. Stabilized low-order finite elements for frictional contact with

the extended finite element method. Computer Methods in Applied Mechanics and

Engineering, 199(37-40):2456–2471, 2010a. 9

F. Liu and R. I. Borja. Finite deformation formulation for embedded frictional crack

with the extended finite element method. International Journal for Numerical

Methods in Engineering, 82(6):773–804, 2010b. 9

References 141

A. Logg. Efficient representation of computational meshes. International Journal of

Computational Science and Engineering, 4(4):283–295, 2009. 31

A. Logg and G. N. Wells. DOLFIN: Automated finite element computing. ACM

Transactions on Mathematical Software, 37(2), 2010. 22, 27, 31

A. Logg, H. P. Langtangen, and X. Cai. Past and future perspectives on scientific

software. In Aslak Tveito, Are Magnus Bruaset, and Olav Lysne, editors, Simula

Research Laboratory - by thinking constantly about it, chapter 23, pages 321–362.

Springer-Verlag, 2009. 23, 24, 148

A. Logg, K. A. Mardal, and G. N. Wells, editors. Automated Solution of Differential

Equations by the Finite Element Method. Springer-Verlag, 2012a. 4

A. Logg, K. B. Ølgaard, M. Rogners, et al. FEniCS Form Compiler: FFC.

http://launchpad.net/ffc/, 2012b. 6, 22, 26, 49, 50, 54, 130

A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. FFC: the FEniCS

form compiler. In A. Logg, K. A. Mardal, and G. N. Wells, editors, Automated

Solution of Differential Equations by the Finite Element Method, chapter 17.

Springer-Verlag, 2012c. 26

A. Logg, G. N. Wells, and J. Hake. DOLFIN: A C++/Python finite element

library. In A. Logg, K. A. Mardal, and G. N. Wells, editors, Automated Solution of

Differential Equations by the Finite Element Method, chapter 10. Springer-Verlag,

2012d. 30, 31, 148

A. Logg, G. N. Wells, et al. Dynamic Object-oriented Library in FINite element

method: DOLFIN. URL: http://launchpad.net/dolfin/, 2012e. 22, 63, 130

A. Logg, G. N. Wells, et al. FEniCS project. http://feincsproject.org, 2012f.

4, 5, 21

K. Long et al. Sundance. URL: http://www.math.ttu.edu/~klong/Sundance/html/,

2012. 21

K. R. Long, R. C. Kirby, and B. G. van Bloemen Waanders. Unified embedded

parallel finite element computations via software-based frechet differentiation.

SIAM Journal on Scientific Computing, 32(6):3323–3351, 2010. 21

H. R. Lotfi and P. B. Shing. Embedded representation of fracture in concrete

with mixed finite elements. International Journal for Numerical Methods in

Engineering, 38(8):1307–1325, 1995. 2, 7

http://launchpad.net/ffc/
http://launchpad.net/dolfin/
http://feincsproject.org
http://www.math.ttu.edu/~klong/Sundance/html/

142 References

U. M. Mayer, A. Gerstenberger, and W. A. Wall. Interface handling for

three-dimensional higher-order xfem-computations in fluid-structure interaction.

International Journal for Numerical Methods in Engineering, 79(7):846–869, 2009.

11

U. M. Mayer, A. Popp, A. Gerstenberger, and W. A. Wall. 3D fluid-structure-contact

interaction based on a combined xfem fsi and dual mortar contact approach.

Computational Mechanics, 46(1):53–67, 2010. 11

A. R. Mitchell and D. F. Griffiths. The finite Difference Methods in Partial

Differential Equations. John Willy, NewYork, 1979. 21

N. Moës and T. Belytschko. Extended finite element method for cohesive crack

growth. Engineering Fracture Mechanics, 69(7):813–833, 2002. 8

N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth

without remeshing. International Journal for Numerical Methods in Engineering,

46(1):131–150, 1999. 3, 7, 8, 17

N. Moës, A. Gravouil, and T. Belytschko. Non-planar 3d crack growth

by the extended finite element and level sets part i: mechanical model.

Int.J.Numer.Meth.Eng., 53(11):2549–2568, 2002. 20

M. Moumnassi, S. Belouettar, E. Béchet, S. P. A. Bordas, D. Quoirin, and

M. Potier-Ferry. Finite element analysis on implicitly defined domains: An

accurate representation based on arbitrary parametric surfaces. Computer

Methods in Applied Mechanics and Engineering, 200(5-8):774 – 796, 2011. 20

J. C. Nédélec. Mixed finite elements in R
3. Numer. Math., 35(3):315–341, 1980. 27,

101

T. D. Nguyen. Discontinuous Galerkin formulations for thin bending problems. PhD

thesis, Delft university of technology, The Netherlands, 2008. 38

M. Nikbakht and G. N. Wells. Automated modelling of evolving discontinuities.

Algorithms, 2(3):1008–1030, 2009. 49, 59, 82, 83

M. Nikbakht and G. N. Wells. Modelling evolving discontinuities. In A. Logg, K. A.

Mardal, and G. N. Wells, editors, Automated Solution of Differential Equations

by the Finite Element Method, chapter 30. Springer-Verlag, 2012a. 83

M. Nikbakht and G. N. Wells. Partition of Unity Solver Library.

http://www.launchpad.net/dolfin-pum, 2012b. 130

http://www.launchpad.net/dolfin-pum

References 143

M. Nikbakht and G. N. Wells. Partition of Unity Form Compiler.

http://www.launchpad.net/ffc-pum, 2012c. 130

J. T. Oden. Applied Functional Analysis. Prentice-Hall, Englewood Cliffs, N. J.,

1979. 21

K. B. Ølgaard and G. N. Wells. Optimizations for quadrature representations of

finite element tensors through automated code generation. ACM Transactions on

Mathematical Software, 37(1), 2010. 28, 51, 56, 57

K. B. Ølgaard and G. N. Wells. Quadrature representation of finite element

variational forms. In A. Logg, K. A. Mardal, and G. N. Wells, editors, Automated

Solution of Differential Equations by the Finite Element Method, chapter 7.

Springer-Verlag, 2012a. 28, 51

K. B. Ølgaard and G. N. Wells. Applications in solid mechanics. In A. Logg, K. A.

Mardal, and G. N. Wells, editors, Automated Solution of Differential Equations

by the Finite Element Method, chapter 26. Springer-Verlag, 2012b. 39

K. B. Ølgaard, A. Logg, and G. N. Wells. Automated code generation for

discontinuous Galerkin methods. SIAM Journal on Scientific Computing, 31(2):

849–864, 2008. 36, 94

J. Oliver. Modelling strong discontinuities in solid mechanics via strain softening

constitutive equations. part 1: Fundamentals. part 2: Numerical simulation.

International Journal for Numerical Methods in Engineering, 39:3575–3624, 1996.

2, 7

M. Ortiz, Y. Leroy, and A. Needleman. A finite element method for localized

failure analysis. Computer Methods in Applied Mechanics and Engineering, 61

(2):189–214, 1987. 1, 2

S. Osher and R. P. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.

Springer, 2003. 18

L. Piegl and W. Tiller. The NURBS Book (2nd ed), volume XIV of Monographs in

Visual Communication. Springer, 1997. 20

O. Pironneau, F. Hecht, A. L. Hyaric, and K. Ohtsuka. FreeFEM. URL:

http://www.freefem.org/, 2010. 21

H. Prautzsch, W. Boehm, and M. Paluszny. Bezier and B-Spline Techniques, volume

XIV of Mathematics and Visualization. Springer, 2002. 20

http://www.launchpad.net/ffc-pum
http://www.freefem.org/

144 References

C. Prudhomme. Life: Overview of a unified C++ implementation of the finite and

spectral element methods in 1d, 2d and 3d. In In Proceedings of the International

Conference on Applied Parallel Computing. Lecture Notes in Computer Science.

Springer Berlin/Heidelberg, Germany, 2007. 21

B. M. A. Rahman and J. B. Davies. Penalty function improvement of waveguide

solution by finite elements. IEEE Trans. Microw. Theory and Techni., MTT-32

(8):922–928, 1984. 98

P. A. Raviart and J. M. Thomas. A mixed finite element method for 2nd order

elliptic problems. pages 292–315. Lecture Notes in Math., Vol. 606, 1977. 27

J. N. Reddy. Applied Functional Analysis and Variational Methods in Engineering.

Krieger Pub Co, Malabar, Florida, 1991. 21

J. J. C. Remmers, R. de Borst, and A. Needleman. A cohesive segments method for

the simulation of crack growth. Computational Mechanics, 31(1-2 SPEC.):69–77,

2003. 8

A. Reusken. Analysis of an extended pressure finite element space for two-phase

incompressible flows. Computing and Visualization in Science, 11(4-6):293–305,

2008. 10

M. E. Rognes, R. C. Kirby, and A. Logg. Efficient assembly of H(div) and

H(curl) conforming finite elements. SIAM Journal on Scientific Computing, 36

(6):4130–4151, 2009. 96, 101

S. Ross. Tacoma Narrows 1940. MCGrow Hill, 1984. 11

W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit An

Object-Oriented Approach To 3D Graphics. Kitware, Inc. publishers, New York,

4th edition, 2006. 65

J. A. Sethian. Level Set Methods and Fast Marching Methods (2nd edn). Cambridge

University Press, 1999. 18

Y. Shapira. Solving PDEs in C++: Numerical Methods in a Unified Object-Oriented

Approach. SIAM, Society for Industrial and Applied Mathematics, 2006. 63

J. C. Simo and J. Oliver. A new approach to the analysis and simulation of strain

softening in solids. In Z. P. Bažant, Z. Bittnar, M. Jiràsek, and J. Mazars, editors,

Proceeding of Fracture and Damage in Quasibrittle Structures, E and FN Spon.

London, UK, 1994. 2

References 145

J. C. Simo, J. Oliver, and F. Armero. An analysis of strong discontinuities induced

by strain-softening in rate-independent inelastic solids. Computational Mechanics,

12(5):277–296, 1993. 2, 7

A. Simone, C. A. Duarte, and E. Van der Giessen. A generalized finite element

method for polycristals with discontinuous grain boundaries. International

Journal for Numerical Methods in Engineering, 67(8):1122–1145, 2006. 9, 10

O. Skavhaug. Viper. http://launchpad.net/fenics_viper/, 2012. 32

L. J. Sluys and A. H. Berends. Discontinuous failure analysis for mode-i and mode-ii

localization problems. International Journal of Solids and Structures, 35(31-32):

4257 – 4274, 1998. 2

G. D. Smith. Numerical solution of partial differential equations: finite difference

methods, Third edition. Oxford University Press, UK, 1985. 21

G. S. Smith. An Introduction to Classical Electromagnetic Radiation. Cambridge

University Press, 1997. 99

M. Stolarska, D. L. Chopp, N. Moës, and T. Belytschko. Modelling crack growth

by level sets in the extended finite element method. International Journal for

Numerical Methods in Engineering, 51:943–960, 2001. 19, 20

T. Strouboulis, I. Babuška, and K. Copps. The design and analysis of generalized

finite element method. Computer Methods in in Applied Mechanics and

Engineering, 181:43–69, 2000a. 16

T. Strouboulis, K. Copps, and I. Babuška. The generalized finite element method: An

example of its implementation and illustration of its performance. International

Journal for Numerical Methods in Engineering, 47(8):1401–1417, 2000b. 4, 7

T. Strouboulis, K. Copps, and I. Babuška. Computational mechanics advances. the

generalized finite element method. Computer Methods in Applied Mechanics and

Engineering, 190(32-33):4081–4193, 2001. 4, 7

N. Sukumar, N. Moës, B. Moran, and T. Belytschko. Extended finite element method

for three-dimensional crack modelling. International Journal for Numerical

Methods in Engineering, 48(11):1549–1570, 2000. 8, 17

N. Sukumar, D. J. Srolovitz, T. J. Baker, and J. Prévost. Brittle fracture

in polycrystalline microstructures with the extended finite element method.

International Journal for Numerical Methods in Engineering, 56(14):2015–2037,

2003. 9

http://launchpad.net/fenics_viper/

146 References

D. V. Swenson and A. R. Ingraffea. Modeling mixed-mode dynamic crack

propagation using finite elements: Theory and applications. Computational

Mechanics, 3(5):381–397, 1988. 1

C. Taylor and P. Hood. A numerical solution of the Navier-Stokes equations using

the finite element technique. Internat. J. Comput. and Fluids, 1(1):73–100, 1973.

ISSN 0045-7930. 46, 113

A. R. Terrel, L. R. Scott, M. G. Knepley, R. C. Kirby, and G. N. Wells. Finite

elements for incompressible fluids. In A. Logg, K. A. Mardal, and G. N. Wells,

editors, Automated Solution of Differential Equations by the Finite Element

Method, chapter 17. Springer-Verlag, 2012. 47

M. G. A. Tijssens, L. J. Sluys, and E. Van der Giessen. Numerical simulation

of quasi-brittle fracture using damaging cohesive surfaces. European Journal of

Mechanics, A/Solids, 19(5):761–779, 2000a. 1

M. G. A. Tijssens, E. Van Der Giessen, and L. J. Sluys. Modeling of crazing using

a cohesive surface methodology. Mechanics of Materials, 32(1):19–35, 2000b. 1

G. Ventura. On the elimination of quadrature subcells for discontinuous functions in

the extended finite-element method. International Journal for Numerical Methods

in Engineering, 66(5):761–795, 2006. 17

E. Vitali and D. Benson. Kinetic friction for multi-material arbitrary lagrangian

eulerian extended finite element formulations. Computational Mechanics, 43(6):

847–857, 2009. 9

E. Vitali and D. J. Benson. An extended finite element formulation for contact in

multi-material arbitrary lagrangian-eulerian calculations. International Journal

for Numerical Methods in Engineering, 67(10):1420–1444, 2006. 9

J. Walter et al. uBLAS web page. http://www.boost.org/, 2012. 31

H. Wang, J. Chessa, W. K. Liu, and T. Belytschko. The immersed/fictitious element

method for fluid-structure interaction: Volumetric consistency, compressibility and

thin members. International Journal for Numerical Methods in Engineering, 74

(1):32–55, 2008. 11

X. Wang. Fundamentals of Fluid-Solid Interactions: Analytical and Computational

Approaches. Monograph Series on Nonlinear Science and Complexity. Elsevior

B.V., Amsterdam, 2008. 10

http://www.boost.org/

References 147

G. N. Wells and L. J. Sluys. A new method for modelling cohesive cracks using

finite elements. International Journal for Numerical Methods in Engineering, 50

(12):2667–2682, 2001a. 8, 76

G. N. Wells and L. J. Sluys. Three-dimensional embedded discontinuity model for

brittle fracture. International Journal of Solids and Structures, 38(5):897–913,

2001b. 2, 7

M. Westlie, K. A. Mardal, and M. S. Alnæs. Instant: Inlining of C/C++ in Python,

2012. URL: http://launchpad.net/instant. 32

S. Weyer, A. Fröhlich, H. Riesch-Oppermann, L. Cizelj, and M. Kovac. Automatic

finite element meshing of planar voronoi tessellations. Engineering Fracture

Mechanics, 69:945–958, 2002. 9

I. M. Wilbers, K. A. Mardal, and M. S. Alnæs. Instant: just-in-time compilation of

C/C++ in Python. In A. Logg, K. A. Mardal, and G. N. Wells, editors, Automated

Solution of Differential Equations by the Finite Element Method, chapter 14.

Springer-Verlag, 2012. 32

P. Wriggers. Computational Contact Mechanics. Springer-Verlag, Berlin, 2nd

edition, 2006. 8

A. Yazid, N. Abdelkader, and H. Abdelmadjid. A state-of-the-art review of the x-fem

for computational fracture mechanics. Applied Mathematical Modelling, 33(12):

4269–4282, 2009. 7

G. Zi and T. Belytschko. New crack-tip elements for xfem and applications to

cohesive cracks. International Journal for Numerical Methods in Engineering, 57

(15):2221–2240, 2003. 8

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The Finite Element Method: Sixth

Edition. Elsevier, Burlington, MA, 2005. 1, 21

http://launchpad.net/instant

148 List of Tables and Figures

List of Figures

2.1 The partition of unity approximation for modelling polycrystals. . . 10

2.2 A physical domain Ω containing a discontinuity surface Γd whose unit

normal vector denoted by n. 11

2.3 Unique connecting point P for the two-dimensional case and averaged

connecting points Pi depending on the adjacent cracked elements for

the three-dimensional case (Jäger et al., 2008b) 18

2.4 The level set description of a three-dimensional crack (Gasser and

Holzapfel, 2006). 19

3.1 The design of the automated system performed using different

components of the FEniCS project (Logg et al., 2009). 23

3.2 The FEniCS software map . 24

3.3 A schematic overview of the relation among the UFC classes.

Dependencies are shown with arrows. All classes are defined in the

ufc namespace (Alnæs et al., 2012). 29

3.4 A schematic overview of different functionalities inside DOLFIN and

their corresponding classes (Logg et al., 2012d) 30

3.5 Complete UFL input for the Poisson problem in three dimensions

using quadratic Lagrange elements. 34

3.6 Complete C++ solver for the Poisson example. 37

3.7 The UFL input for the elasticity equation using the discontinuous

Lagrange formulation. 39

3.8 The complete C++ solver for the elasticity equation using the

discontinuous Galerkin formulation. 40

List of Tables and Figures 149

3.9 The UFL input for the hyperelasticity equation with the neo-Hookean

material law using linear Lagrange elements on tetrahedrons. 43

3.10 The C++ code extract for the solver of the three-dimensional

hyperelasticty problem. 44

3.11 The code extract for the Python-based solver of the three-dimensional

hyperelasticity problem using Linear Lagrange elements. 45

3.12 The UFL input for the incompressible elasticity equations using P2

elements for the displacement field and P1 elements for the pressure

field. 47

3.13 The UFL input for the definition of finite element spaces

corresponding to CR1 elements for the displacement field and DG0

elements for the pressure field. 47

4.1 Input/output of the PUM compiler. The compiler receives the

variational formulations in the UFL syntax as input and generates

automatically required C++ code compatible with UFC. 49

4.2 The UFL input for a variational formulation for the Poisson equation

using the partition of unity framework presented in Equations (4.1)

and (4.2). 54

4.3 The PUM compiler structure and its corresponding data flow. 54

5.1 The UML diagram of the core components of the PUM library defined

in the pum namespace. 66

5.2 The pum::GenericPUM class interface (part 1) 69

5.3 The pum::GenericPUM class interface (part 2) 70

5.4 The pum::GenericSurface class interface (part 1) 71

5.5 The pum::GenericSurface class interface (part 2) 72

150 List of Tables and Figures

5.6 A code extract from the pum::PUM class interface. 73

5.7 Different configurations for the intersections between a discontinuity

surface and a tetrahedron cell: (a) with three edge intersection points

(b) with four edge intersection points dividing the cell into two parts

such that each part has two vertices (c) with four edge intersection

points dividing the cell into two parts such that one part with one

vertex and the other part with three vertices. 75

5.8 Different configurations for a surface evolution inside a tetrahedron cell. 77

5.9 A code extract from the pum::NonBranchingSurface class interface. 79

5.10 Different stages of an evolution of a surface inside a unit cube. . . . 81

6.1 The UFL input to model the discontinuity surfaces in a

three-dimensional weighted Poisson problem. 85

6.2 The C++ code for the solver of the weighted Poisson problem with

discontinuities in the solution (the class definitions). 88

6.3 The C++ code for the solver of the weighted Poisson problem

with discontinuities in the solution (the main solver). The notation

resembles closely DOLFIN code for conventional problems. 89

6.4 The Poisson problem in three dimensions with discontinuity surfaces:

(a) the surface mesh and (b) the solution contour. 90

6.5 A beam with two traction-free discontinuity surface that is restricted

at the left edge and subjected to a vertical body force. 91

6.6 The complete C++ solver of the elasticity equation using the

discontinuous Galerkin formulation in combination with the partition

of unity formulation (the class definitions). 91

List of Tables and Figures 151

6.7 The complete C++ solver of the elasticity equation using the

discontinuous Galerkin formulation in combination with the partition

of unity formulation (the main solver). 92

6.8 (a) The mesh with discontinuity surfaces (b) the displacement contour

(m) on the magnified deformed mesh (50 times) for the beam

restricted at the left edge and subjected to a vertical body force.

. 93

6.9 The UFL input for the partition of unity formulation of the

biharmonic equation. 95

6.10 The biharmonic problem in two dimensions: (a) a unit square and Γd1

and Γd2 discontinuity surfaces, and (b) the solution u contour on the

wrapped mesh. 95

6.11 The UFL input for the mixed Poisson in a domain with discontinuities. 98

6.12 The extract of C++ solver code for the mixed Poisson problem for a

unit square domain subjected to homogeneous boundary conditions. 99

6.13 The mixed Poisson problem in two dimensions: (a) the contour of u

and (b) the contour of flux σ. 100

6.14 The UFL input for the vector wave equation with discontinuous

magnetic fields. 102

6.15 The magnetic field (Am−1) in a two-dimensional domain subjected

to a constant divergence of electric current density in the horizontal

direction. 102

6.16 The C++ code extract for the modelling discontinuities in a

hyperelastic domain. 104

152 List of Tables and Figures

6.17 The hyperelasticity problem in three dimensions (a) the mesh on the

faces of the unit cube and the discontinuity surface and (b) the contour

of the displacement magnitude (m) on the deformed body. 104

6.18 A UFL input for an elastic domain with tractions across the surfaces

computed inside the UFL input. 106

6.19 A UFL input for the elastic domain with tractions across the surfaces

computed offline in the C++ solver. 108

6.20 The problem configuration for the cohesive crack propagation. 109

6.21 The evolution of displacement contours on the magnified deformed

meshes. The specimen can continue carrying the load even if the crack

is fully developed. 110

6.22 The UFL input for the definition of finite element spaces for

discontinuous u and p. 114

6.23 The extract of the UFL input for the equations of partially saturated

porous media with discontinuities 115

6.24 The UFL input for the definition of finite element spaces for

discontinuous u and continuous p. 116

6.25 The partially saturated porous media example: (a) the problem

configuration and assumed boundary conditions (b) a mesh with

embedded slip planes. 116

6.26 The C++ code extract for the modelling of slip planes in the partially

saturated domain. 117

6.27 The pressure contours (Pa) for the case in which pressure and

displacement fields are discontinuous in different time steps. 118

6.28 The vertical displacement contours (m) for the case in which pressure

and displacement fields are discontinuous in different time steps. . . 118

List of Tables and Figures 153

6.29 The pressure contours (Pa) for the case in which only displacement

field is discontinuous in different time steps. 119

6.30 The vertical displacement contours (m) for the case in which only

displacement field is discontinuous in different time steps. 119

6.31 The evolution of (a) the pore pressure (Pa) (b) the vertical

displacement (m) with time at a point close to the end point of the

slip plane Γd2 for different assumptions on the continuity of spaces. 121

6.32 The problem configuration for the circular slip plane subjected to a

torsional loading. 122

6.33 Two different surface representations: case I and case II that

represent the approximated and exact representations, respectively.

The quadrature points for each representation and their corresponding

surface normals are also indicated. 123

6.34 The UFL input to model the circular slip plane using linear Lagrange

elements in a two–dimensional problem. 125

6.35 The UFL input to compute the L2 norm using the computed solution. 126

6.36 Different mesh discretization for the circular slip plane example. A

mesh with (a) 2×19×19 (b) 2×29×29 (c) 2×49×49 (d) 2×59×59

elements. 127

154 List of Tables and Figures

List of Tables

6.1 Parameters considered in the porous media example. 116

6.2 A table for the comparison of the maximum displacement magnitude

in m and the relative error for the circular slip plane using the

approximated approach (case I) and the exact approach (case II) for

the surface representations. The spurious tangential traction forces in

N on the slip plane for case I are also presented. 127

Summary

Although computers were invented to automate tedious and error-prone tasks,

computer programming is a tedious and error-prone task itself. This is a well-known

paradox in the field of computational mathematical modelling. Recently, automatic

code generation has been proposed to solve this paradox. In this approach, a required

code to model physical problems is generated by compiling an input file which mimics

mathematical notations.

In this thesis, the automatic code generation has been extended to support

developing models for problems with discontinuities. Examples of this kind of

problems in real world are cracks, slip planes and singularities in materials as well

as phase interfaces in multiphase flows.

This framework is designed in the context of the FEniCS project, an open source

project in the Automation of Computational Mathematical Modelling (ACMM). The

automated framework has been implemented in two packages which are licensed as

open source software and they can be downloaded for free.� A compiler (in Python) for generating C++ low-level code to model

discontinuities from the high-level code close to mathematical notations

https://launchpad.net/ffc-pum� A solver library (in C++) to use the generated code from the PUM

compiler in combination with other reusable components of DOLFIN to model

discontinuities https://launchpad.net/dolfin-pum

This framework provides required tools and functionalities to fast and efficient

development of the partition of unity models for physical problems represented

by partial differential equations in domains with discontinuity surfaces. Developing

such models especially for coupled problems, in which different combinations of

continuous/discontinuous spaces may exist, is a time consuming and difficult task.

Using the automated framework moves the focus from implementation to modeling.

Therefore, different models can be simulated and tested quickly with minimum

reworks.

The examples, presented in this thesis, were limited to non-branching discontinuity

surfaces with the Heaviside enrichment function. A novel algorithm is also proposed

to keep track of three-dimensional propagating surfaces. However, the solver library

https://launchpad.net/ffc-pum
https://launchpad.net/dolfin-pum

156 Summary

is designed such that it can be relatively easily extended to support other types of

problems.

Samenvatting

Hoewel computers zijn uitgevonden om lastige, foutgevoelige taken te automatiseren,

is computer programmeren zelf een lastige en foutgevoelige onderneming. Dit is

een bekende paradox in het domein van de numerieke modellering. Automatische

code-generatie is recent voorgesteld als uitweg uit deze paradox. Met deze aanpak

wordt een model voor het oplossen van fysische problemen gegenereerd door een

invoerbestand in abstracte wiskundige notatie automatisch te compileren.

In dit proefschrift is de automatische code-generatie uitgebreid voor het

ontwikkelen van modellen voor problemen met discontinuiteiten. Voorbeelden

hiervan in de praktijk zijn scheuren, slip-vlakken en singulariteiten in materialen

en eveneens fase-grenzen in meerfase stromingen.

Dit raamwerk is ontworpen in de context van het FEniCS project, een open

source project in de Automation of Computational Mathematical Modeling (ACMM).

Het geautomatiseerde raamwerk is gëımplementeerd in twee pakketten die als open

source software zijn gelicenseerd en die vrij te downloaden zijn.� Een compiler (in Python) die laag-niveau code voor het modelleren van

discontinuiteiten genereert vanaf een hoog-niveau code die bij benadering gelijk

is aan wiskundige notatie https://launchpad.net/ffc-pum� Een solver library (in C++) om de gegenereerde code in combinatie met

andere herbruikbare componenten te kunnen gebruiken voor het modelleren

van discontinuiteiten https://lanchpad.net/dolfin-pum

Dit raamwerk levert de nodige tools en functionaliteiten voor het snel en

efficiënt ontwikkelen van partition of unity modellen voor fysische problemen die

beschreven kunnen worden met partiele differentiaalvergelijkingen in domeinen met

discontinuiteiten. Het ontwikkelen van zulke modellen is een veeleisende en moeilijke

taak, in het bijzonder voor gekoppelde problemen waar verschillende combinaties van

continue en discontinue ruimtes kunnen voorkomen. Het geautomatiseerde raamwerk

verschuift de inspanning van de implementatie naar het modelleren. Daarom kunnen

verschillende modellen snel doorgerekend en getest worden met een minimum aan

dubbel werk.

De voorbeelden die in dit proefschrift worden gepresenteerd beperken zich tot

niet-vertakkende discontinuiteiten met een Heaviside enrichment-functie. Er wordt

ook een nieuw algoritme voorgesteld waarmee de groei van oppervlakken in drie

https://launchpad.net/ffc-pum
https://lanchpad.net/dolfin-pum

158 Samenvatting

dimensies bijgehouden kan worden. De solver library is zodanig ontworpen dat deze

relatief eenvoudig uit te breiden is om ook andersoortige problemen op te lossen.

Propositions

1. Although computers were invented to automate tedious and error-prone tasks,

computer programming itself is a tedious and error-prone task. This paradox

in the field of computational mathematical modelling can be overcome largely

by automatic code generation.

2. Utilizing code of others helps software developers to avoid spending their time

on developing software which has already been developed. Why reinventing a

wheel which already exists?

3. Object oriented programming languages provide the required equipment to

design well organized, easily expandable finite element software packages.

4. The structure of computational mathematical modelling software must follow

the same structure and abstractions used for mathematics.

5. Learning programming languages is a steady and trial and error process. One

cannot be a good programmer by just reading books – experience has no

shortcut.

6. Implementing mathematical models takes a lot of time of PhD students in

computational mechanics subjects. Automation can help them to rapidly

develop finite element models by shifting the focus from implementation to

modelling.

7. Behind any successful computational model lies strong mathematics.

8. “Human being are members of a whole,

In creation of one essence and soul.

If one member is afflicted with pain,

Other members uneasy will remain.

If you’ve no sympathy for human pain,

The name of human you cannot retain!” – Sa’adi; Persian poet, thinker, and

philosopher, 13th century.

9. “Free software is a matter of liberty, not price. To understand the concept,

you should think of free as in free speech, not as in free beer.” – Richard M.

Stallman, the founder of GNU.

160 Propositions

10. Life has its own governing partial differential equation (PDE) with its

boundary conditions which may change in time. The more you experience,

the better you know your own PDE and more accurate you can predict the

boundary conditions. .

11. To stay motivated during a PhD-project, it is important to divide the project

into small sub projects which can help to measure progress in each stage.

12. Although communication tools have been progressed considerably in recent

years (e.g. emails and phones), none of them can replace direct and face-to-face

meetings.

The propositions are regarded as opposable and defendable, and have been approved

as such by the supervisors, Prof. dr. ir. L. J. Sluys and Dr. G. N. Wells.

Stellingen

1. Hoewel computers zijn uitgevonden om lastige, foutgevoelige taken te

automatiseren, is computer programmeren zelf een lastige en foutgevoelige

onderneming. De oplossing voor deze paradox van de numerieke modellering

kan voor een groot deel gevonden worden in automatische code-generatie.

2. Door code van anderen te gebruiken kunnen software-ontwikkelaars hun tijd

besteden aan het ontwikkelen van programmatuur die reeds ontwikkeld is.

Waarom het wiel opnieuw uitvinden?

3. Objectgeoriënteerde programmeertalen leveren het noodzakelijke

gereedschap om goed gestructureede, eenvoudig uit te breiden

eindige-elementenprogramma’s te ontwerpen.

4. De structuur van numerieke modelleringssoftware behoort de structuur en

abstracties van de onderliggende wiskunde te volgen.

5. Het leren van programmeertalen is een gestaag proces van vallen en opstaan.

Iemand wordt nooit een goed programmeur door het lezen van boeken – er is

geen kortere weg dan die van de ervaring.

6. Veel tijd van promovendi in de numerieke mechanica wordt besteed aan het

implementeren van wiskundige modellen. Automatisering kan hen helpen om

snel eindige-elementenmodellen te ontwikkelen waardoor de inspanning kan

verschuiven van implementatie naar modellering.

7. Aan elk geslaagd computermodel ligt sterke wiskunde ten grondslag.

8. “Ieder mens is lid van een geheel,

Zo geschapen als één ziel.

Als één lid getroffen wordt door leed,

Behoudt de rest onmogelijk de vrede.

Als je niet meevoelt met andermans smart,

ben je het niet waard mens genoemd te worden.” –Sa’adi; Perzische dichter,

denker en filosoof, 13e eeuw.

9. Free software is een kwestie van vrijheid, niet van geld. Om het concept te

doorgronden kan beter gedacht worden aan free speech dan aan free beer.

162 Stellingen

10. Het leven heeft zijn eigen partiële differentiaalvergelijking (PDV) met

randvoorwaarden die kunnen veranderen in de tijd. Hoe meer je meemaakt, hoe

beter je je eigen PDV leert kennen en hoe nauwkeuriger je de randvoorwaarden

kunt voorspellen.

11. Om gemotiveerd te blijven gedurende een promotieproject is het belangrijk

het project te verdelen in kleine sub-projecten die kunnen helpen om in ieder

stadium voortgang te kunnen meten.

12. Hoewel communicatiemiddelen in de laatste jaren een enorme vooruitgang

geboekt hebben (bijv. emails en telefoons) kan geen van deze middelen directe

ontmoetingen vervangen.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig

goedgekeurd door de promotoren, Prof. dr. ir. L. J. Sluys en Dr. G. N. Wells.

Curriculum vitae

August 1st, 1980 Born in Mianeh, Iran, as Mehdi Nikbakht

1994 – 1998 Diploma in Mathematics and Physics, Roshd High School,

Tehran, Iran.

1998 – 2002 Bachelor of Science in Civil Engineering, Sharif University

of Technology, Tehran, Iran.

2002 – 2004 Master of Science in Structural Engineering, Sharif

University of Technology, Tehran, Iran.

2004 – 2005 Structural Engineer, Namvaran Engineering and

Management Company, Tehran, Iran.

2006 – 2011 PhD candidate at the Computational Mechanics group in

the Faculty of Civil Engineering and Geosciences, Delft

University of Technology, The Netherlands.

2008 – 2010 Visiting PhD candidate at the Mechanics, Materials

and Design division of the Engineering Department, the

University of Cambridge, The United Kingdom.

Since 2011 Metrology Design Engineer at ASML, Veldhoven, The

Netherlands.

	Introduction
	Background
	Motivations and objectives
	Thesis outline

	Partition of unity methods
	Application
	Applications in solid mechanics
	Applications in fluid mechanics

	A discretized form of an elasticity problem with discontinuities
	Implementation aspects
	Variable number of degrees of freedom
	Integration of the intersected cells
	Surface representations

	An overview on the automated computational mathematical modelling
	FEniCS project
	Design of the automated framework
	Key components

	Examples
	Poisson problem
	Discontinuous Galerkin approach to linearised elasticity
	Continuous Galerkin formulation for hyperelasticity
	Incompressible elasticity

	Summary

	A form compiler for modeling discontinuities
	Design requirements
	Form compiler input
	Structure of the form compiler
	Analysis of the form language input
	Intermediate code representation
	Optimisation of the intermediate representations
	Code generation from the intermediate representations
	Code formatting

	Components of the generated code
	The UFC-based classes

	A Partition of Unity Method library
	Design considerations
	Core components of the PUM library
	pum::GenericPUM base class
	pum::GenericSurface base class

	Enriched degrees of freedom manipulation
	Implementation

	Non-branching continuous surface representation
	Surface representation
	Implementation

	The solver wrapper classes

	Applications in modelling different physical problems
	H1-conforming primal approach to the weighted Poisson equation
	L2-conforming discontinuous Galerkin approach to the elasticity equation
	Continuous/discontinuous interior penalty formulation for the biharmonic equation
	Mixed formulation for the Poisson equation
	H(curl)-conforming elements for an electromagnetic problem
	H1-conforming primal approach to the hyperelasticity problem
	Cohesive crack propagation
	Partially saturated porous media problem
	Circular slip plane problem

	Conclusions and future works
	Conclusions
	Recommendations for future

	References
	List of Figures
	List of Tables
	Summary
	Samenvatting
	Propositions
	Stellingen
	Curriculum vitae

