
TI3800 Bachelorproject

Android Tor Tribler Tunneling

Final Report

Authors:
Rolf Jagerman

Laurens Versluis

Martijn de Vos

Supervisor:
Dr. Ir. Johan Pouwelse

Project coach:
Ir. Egbert Bouman

June 23, 2014

Abstract

Tribler is a decentralized peer-to-peer file sharing system. Recently the Tribler development team
has introduced anonymous internet communication using a Tor-like protocol in their trial version.
The goal of our bachelor project is to port this technology to Android devices. This is a challenging
task because cross-compiling the necessary libraries to the ARM CPU architecture is uncharted
territory. We have successfully ported all dependencies of Tribler to Android. An application
called Android Tor Tribler Tunneling (AT3) has been developed that tests whether these libraries
work. This application downloads a test torrent and measures information such as CPU usage and
download speed. Based on this information we have concluded that it is currently not viable to
run the anonymous tunnels on an Android smartphone. Creating circuits with several hops that
use encryption is very computationally expensive and modern smartphones can hardly keep up.
By using optimized cryptographic libraries such as gmp or with the recently announced ARMv8
architecture which supports hardware-accelerated AES encryption, creating such circuits might
become possible.

Preface

This document describes the bachelor project we performed at the TU Delft. Without the help
of certain people at the TU Delft (and outside), this project would not be possible. In particular,
we would like to thank the following people:

Johan Pouwelse, for his excellent guidance, deep insights and feedback.

The Tribler team, for always being able to help us with problems and questions.

Jaap van Touw, for taking the time to review our final report.

Steeve Morin, who visited Delft to help us with libtorrent.

Arvid Norberg, who helped us fix the libtorrent segmentation fault.

1

Contents

Abstract 1

Preface 1

1 Introduction 5

2 Problem Definition 6
2.1 Motivation . 6
2.2 Tribler Play . 7
2.3 Android . 7

3 Prior Work 8
3.1 Python for Android . 8
3.2 Tor . 8
3.3 Tribler . 9

3.3.1 Downloading files . 9
3.3.2 Anonymous tunnels . 10
3.3.3 Security . 11
3.3.4 Dispersy . 12

3.4 The Global Square . 12

4 Software architecture 14

5 Scrum iteration 1: creating a basic application 17
5.1 Goals . 17
5.2 Python for Android . 17
5.3 Porting the anonymous tunnels to Android . 19
5.4 Attempt to compile libtorrent for Android . 19

5.4.1 Source code modifications . 19
5.4.2 Boost Jam . 20
5.4.3 Automake . 20

5.5 Creating a Graphical User Interface with Kivy . 21
5.6 Sprint evaluation . 21

6 Scrum iteration 2: unit testing, relaying and libtorrent 22
6.1 Goals . 22
6.2 Jenkins . 22
6.3 Libtorrent . 23

6.3.1 Testing libtorrent with a simple application 23
6.3.2 Compiling Python bindings . 23
6.3.3 Segmentation faults on other devices . 24

6.4 Downloading over the anonymous tunnels . 24
6.5 Shell script unit tests . 24

2

6.6 Sprint evaluation . 25

7 Scrum iteration 3: stabilizing libtorrent and experiments 26
7.1 Goals . 26
7.2 Application tests . 26
7.3 RUTracker libtorrent . 26

7.3.1 Python bindings . 27
7.4 Libtorrent RC2 progress . 27
7.5 Updating the Tribler package . 27
7.6 Relaying and downloading over multiple hops/multiple circuits 28
7.7 Sprint evaluation . 28

8 Experiments 29
8.1 Theoretical analysis . 29

8.1.1 Required bitrate . 29
8.1.2 Factors that impact the download speed . 29

8.2 Set-up . 30
8.3 Measurements . 30
8.4 Conclusion . 31

9 Our contributions to the open source community 33
9.1 Python for Android . 33
9.2 Libtorrent . 33
9.3 Tribler . 34

10 Conclusion 35
10.1 Future work . 35
10.2 Reflections . 36

10.2.1 Reflection Rolf . 36
10.2.2 Reflection Laurens . 36
10.2.3 Reflection Martijn . 36

A Plan of Action 38
A.1 Assignment . 38

A.1.1 Assignment . 38
A.1.2 The client . 38
A.1.3 Contacts . 38
A.1.4 The final product . 39
A.1.5 Requirements and risks . 39

A.2 Approach . 40
A.2.1 Scrum methodology . 40
A.2.2 MoSCoW . 41
A.2.3 Tools . 41
A.2.4 Planning . 41

A.3 Project structure . 41
A.3.1 Members . 41
A.3.2 Reporting . 42

A.4 Quality assurance . 42
A.4.1 Testing . 42
A.4.2 Code review . 42
A.4.3 Version control . 42

B Dependency graph of AT3 43

C Original project description 44

3

D Compiling libtorrent 45
D.1 Setting up the environment . 45
D.2 Compiling Boost . 46
D.3 Compiling libtorrent . 47

4

Chapter 1

Introduction

In recent years, censorship has become more and more apparent. In countries like China and
North Korea, freedom of speech is at issue and the Internet is censored. Other countries such as
Syria or Ukraine, which are currently in a state of turmoil, have their internet communications
strictly monitored by both the military and the government. Freedom of speech is practically non-
existent in those countries. To make sure people are still able to freely communicate, anonymity
is of paramount importance. A popular protocol for anonymous internet communication is Tor1.
However, Tor has disadvantages which limits its possibilities. More about this, can be read in the
paper of Dingledine et al. [14]

Tribler is a fully decentralized peer-to-peer file sharing system developed by the Parallel and
Distributed Systems group2 at Delft University of Technology3. The Tribler development team4

has recently introduced the anontunnels5, a Tor replacement in a single Dispersy[20] commu-
nity. The decentralized nature of the anontunnels makes it an interesting alternative to Tor for
anonymous file sharing.

Mobile phones are increasingly being used for browsing the Internet and streaming video.
Smartphones have surpassed 1 billion active users and are expected to double that amount by 2015
[19]. Popular mobile applications like WhatsApp have billions of users [8, 9]. Smartphones serve
as an excellent platform for video recording and sharing due to their mobility and connectivity.
Tribler’s usage and popularity can be increased by supporting the smartphone operating system
Android6.

In this project we work towards achieving anonymous video streaming on Android smartphones.
Our goals are to get Tribler and the anontunnels working on Android devices. Since Tribler is
written in the Python programming language, it is very important to get Python working on
Android. Additionally, we want to get all Tribler dependencies such as libtorrent and Dispersy –
which are the key components for downloading – working on Android.

This thesis describes the prototype we have built and explains the steps we have taken to
analyze our prototype. In Chapter 2, a problem definition is provided and we motivate the
research question. In Chapter 3, we explain the prior work that has been done, regarding our
project. In Chapter 4, we elaborate our software architecture. Chapters 5, 6 and 7 show our
scrum iteration reports and explain in each scrum sprint what we have achieved and what not.
Chapter 8 presents the experiments we have conducted with our prototype. In Chapter 9 we sum
up our contributions to the open source community and explain what other people can use from
our work. Finally, we conclude this thesis in Chapter 10. We recommend the reader to first read
our plan of action which can be found in Appendix A.

1www.torproject.org/
2www.pds.ewi.tudelft.nl/
3www.tudelft.nl/en/
4www.tribler.org/trac
5www.github.com/Tribler/tribler/wiki/Anonymous-Downloading-and-Streaming-specifications
6www.android.com/about/

5

https://www.torproject.org/
http://www.pds.ewi.tudelft.nl/
http://www.tudelft.nl/en/
http://www.tribler.org/trac
https://github.com/Tribler/tribler/wiki/Anonymous-Downloading-and-Streaming-specifications
http://www.android.com/about/

Chapter 2

Problem Definition

In this bachelor project we want to answer the following question:

Can we anonymously download and stream videos on Android smartphones?

Our focus within this question is on anonymous communication. We want to get Tribler, the
anontunnels and all necessary dependencies working on Android smartphones. For the project to
succeed, the following criteria must be met:

1. We must be able to run Python code on Android because Tribler is written in the Python
programming language.

2. We must compile the following necessary dependencies to run on Android devices using the
ARM1 architecture:

• libtorrent2

• OpenSSL3

• M2Crypto4

• PyCrypto5

• APSW6

• netifaces7

3. We must be able to successfully download a file over the anonymous tunnels using the ported
code.

2.1 Motivation

The reason why we are choosing Android, is because the platform is open source. Android is less
restricted than closed source systems such as iOS8. Additionally, Android had a market share of
81% in the third quarter of 2013[2]. As stated in the introduction, there are more than one billion
active mobile users. This means Tribler can reach a huge audience by going Android. Moreover,
Tribler can scale because it uses Dispersy, where Tor is restricted to 1.2 million nodes [18]. If
mobile devices would start to serve as relay nodes, Tribler is ready for it.

1www.arm.com
2www.rasterbar.com/products/libtorrent/
3www.openssl.org
4pypi.python.org/pypi/M2Crypto
5www.dlitz.net/software/pycrypto/
6www.github.com/rogerbinns/apsw
7pypi.python.org/pypi/netifaces
8www.apple.com/ios/

6

http://www.arm.com/
http://www.rasterbar.com/products/libtorrent/
http://www.openssl.org/
https://pypi.python.org/pypi/M2Crypto
https://www.dlitz.net/software/pycrypto/
https://github.com/rogerbinns/apsw
https://pypi.python.org/pypi/netifaces
http://www.apple.com/ios/

2.2 Tribler Play

Another bachelor project group is working on an application that is closely related to our applica-
tion. This application is called Tribler Play. It can search for torrent files using the decentralized
Dispersy network. Media files can be streamed using the torrent protocol and the built-in VLC for
Android player9. More information about the project can be found on their GitHub repository10.

To create the ultimate anonymous experience, our two applications will be merged at the end
of the project. This final application could make anonymous streaming of video on the Android
smartphone possible.

2.3 Android

In our preceding research question, we specifically want to research the possibility of an anonymous
video streaming application on Android. Android is one of the most popular mobile operating
systems available.

Writing applications for Android is traditionally done in Java. Google provides the Android
SDK11 and Android NDK12 which contain the necessary tools to compile and build Android
application packages (APKs). Several popular Integrated Development Environments (IDEs) are
available such as Eclipse and Android Studio which should make the development process easier.
An IDE allows developers to have a clear overview of the code and dependencies.

9www.videolan.org/vlc/download-android.html
10www.github.com/wtud/tsap
11developer.android.com/sdk/index.html
12developer.android.com/tools/sdk/ndk/index.html

7

http://www.videolan.org/vlc/download-android.html
https://github.com/wtud/tsap
http://developer.android.com/sdk/index.html
https://developer.android.com/tools/sdk/ndk/index.html

Chapter 3

Prior Work

In this chapter, we will describe existing frameworks and software we can use. The largest anony-
mous network available now is Tor. We look at the advantages and disadvantages of Tor. Another
way to anonymously share files, can be found in the Tribler software.

Since Tribler is written in Python, we need a framework that executes Python code on an
Android device. Python for Android provides these tools and we will explain why and how we are
using it in Section 3.1. In Section 3.2 we will review Tor, the current standard to communicate
anonymously. Next, in Section 3.3 we will talk about Tribler. Tribler has implemented its own
Tor-like protocol and aims for complete decentralization. Finally, The Global Square will be
discussed in Section 3.4. The Global Square contributed to both Python for Android and the
Tribler project.

3.1 Python for Android

The capability of running Python applications on Android devices is of paramount importance
to the success of this project. Tribler is written in the Python programming language and has
dependencies on many Python libraries. Fortunately a tool called Python for Android allows us
to build and bundle Python code and its dependencies into standalone Android APK packages.

Python for Android uses Scripting Layer 4 Android1 (SL4A) to run Python in an Android
environment. For performance reasons this layer uses the CPython2 binary compiled for the ARM
architecture. This means that running python scripts will not work on other mobile architectures
such as the Intel Atom x863 architecture. This restriction however allows us to focus the devel-
opment solely on the ARM architecture. This mitigates some of the difficulty of getting Tribler
dependencies such as libtorrent to work on different CPU architectures.

3.2 Tor

Tor, the second generation onion router, is a privacy-enhancing overlay network. Onion routing
was first described by Chaum in his paper ”Untraceable electronic mail, return addresses, and
digital pseudonyms” [13]. Tor is the most widely used and secure implementation of onion routing.
It was first implemented in 1996 by the U.S. Navy Research Laboratory as a means to protect
government and military communications from digital and physical attacks [15].

Tor uses the principle of onion routing to ensure secure communication between parties. Net-
work traffic is encrypted and forwarded over a circuit of nodes, see Figure 3.1. Each node in this
circuit only knows the previous and next node. The communicating parties stay hidden when this
circuit consists of at least three independent nodes [17].

1www.github.com/damonkohler/sl4a
2www.python.org
3www.intel.com/content/www/us/en/processors/atom/atom-processor.html

8

https://github.com/damonkohler/sl4a
https://www.python.org/
http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html

User

Internet

Directory
Server

Guard
Node

Relay
Node

Exit
Node

Figure 3.1: The components of the Tor network. After downloading the node list from the directory
server, the user creates a circuit through a guard node, a relay node and an exit node. This circuit
is used to communicate (anonymously) with the Internet.

There are several drawbacks to the current implementation of Tor. Centralized components,
such as the directory server, act as a bottleneck and limit the number of possible users [17]. Since
anonymity in a network such as Tor is directly linked to the number of active users this is an
alarming situation.

3.3 Tribler

In this section an overview of Tribler and its components is presented. We describe the new trial
version that uses anonymous tunnels in depth. Furthermore, we look at what specific dependencies
Tribler relies on.

Tribler is a fully decentralized peer-to-peer file sharing system developed by the Parallel and
Distributed Systems group at Delft University of Technology. It has been in development for over
nine years and has a mature and well-established code base. It allows users to search for and share
files in a fully decentralized way. The decentralized nature of Tribler has several advantages over
existing file sharing systems. The lack of a centralized component makes it scalable and practically
impossible to bring down.

An experimental version of Tribler is currently available that includes a Python implementation
of a Tor-like protocol. This enables users to share files anonymously. By encrypting and routing
traffic over a circuit of nodes, it ensures the communicating parties are oblivious of each other’s
virtual and physical location.

3.3.1 Downloading files

Tribler uses the torrent protocol4 for downloading files. Torrent files contain metadata about
the files that will be downloaded. The torrent protocol is peer-to-peer, which means that users
download from each other. Users that provide files for their peers are called seeders. Tribler is

4www.bittorrent.org/beps/bep 0003.html

9

http://www.bittorrent.org/beps/bep_0003.html

using the libtorrent library as an implementation of the torrent protocol. This library is licensed
as open source software and we are allowed to use or modify it.

Torrent files can be found using the graphical user interface (GUI) of Tribler. Users enter their
search query in a search bar and Tribler will return the results matching the search criteria. A
family filter has been added to Tribler to filter out adult content. The underlying search is done
using Dispersy which will be described in Subsection 3.3.4. In Figure 3.2 a general overview of
the download process is given. The individual components like Dispersy and the anontunnels are
described in more detail in the following sections.

Dispersy (elastic database)

libtorrent

Tribler

anontunnel

Download torrent
over anontunnels

(anonymity)

Torrent Swarm

Download directly from
the torrent swarm

(no anonymity)

Search community

1. Search for content

Get results
and peer information

3. Download the torrent

2. Obtain the torrent �le
from the peer that has it

Swift

Figure 3.2: An overview of downloading a file using Tribler.

3.3.2 Anonymous tunnels

Recently, the research team of Tribler started to work on the implementation of anonymous down-
loads. Pull request5 525 on the Tribler GitHub page [6] is an experimental build of Tribler with
the implementation of anonymous communications. The anonymous communication is achieved
by using a Tor-like protocol. This protocol uses a three-hop circuit for anonymous communication.
A circuit is a route from source to destination running over relay nodes (also called hops). Three-
hop means that data travels over three nodes before it reaches the destination, to add anonymity.
Note that Tribler does not use the Tor network, only a Tor-like protocol with UDP connections6.

The Python module Tribler.community.anontunnel7 contains the implementation of the
anonymous tunnels.. Taking the code as reference, we now describe various details of the anony-
mous tunnels.

• The circuit setup is using the Diffie-Hellman8 key exchange protocol to establish a secure
connection. The M2Crypto library which is explained in Subsection 3.3.3, performs the
Diffie-Hellman key exchange.

• The experimental code is using the Socks59 protocol for communication (see Figure 3.3).

5oss-watch.ac.uk/resources/pullrequest
6www.erg.abdn.ac.uk/ gorry/eg3561/inet-pages/udp.html
7www.github.com/Tribler/tribler/tree/devel/Tribler/community/anontunnel
8www.ietf.org/rfc/rfc2631.txt
9www.ietf.org/rfc/rfc1928.txt

10

http://oss-watch.ac.uk/resources/pullrequest
http://www.erg.abdn.ac.uk/~gorry/eg3561/inet-pages/udp.html
https://github.com/Tribler/tribler/tree/devel/Tribler/community/anontunnel
http://www.ietf.org/rfc/rfc2631.txt
http://www.ietf.org/rfc/rfc1928.txt

• Dispersy is used as a data synchronization system.

In order to test the anonymous connections and the download speed, a special anonymous tab
has been built into Tribler. Clicking on this tab brings up a graph of the current anonymous
network as a graph (see Figure 3.4). It also logs the circuit events such as when extending or
creating a circuit. When enough nodes are online, a 50 MB test download file starts to download.

Figure 3.3: The onion encryption and decryption used by the anontunnels. Taken from
www.github.com/Tribler/tribler/wiki/Anonymous-Downloading-and-Streaming-specifications

3.3.3 Security

Tribler makes use of cryptographic functions to encrypt data and make secure communication
possible. Security is a big issue in the world of peer-to-peer networks. Not only do we want
anonymous downloads, we also want confidentiality and integrity of our data. Confidentiality
means that unauthorized parties cannot see the content of the information. This could be achieved
by encrypting the data. Integrity of the data means that the data is protected from being modified
by other parties or the network. Integrity is important when verification of the data is required.

Some well-known open source frameworks exist for these cryptographic tasks. An example
is OpenSSL [10]. OpenSSL implements the popular SSL and TLS protocols10. These are cryp-
tographic protocols that provide security when communicating over the internet. Besides that,
OpenSSL provides libraries for various encryption and decryption protocols such as 3DES11, RSA12

and RC413. OpenSSL also supports key exchange protocols such as Diffie-Hellman14.
OpenSSL is written in the C programming language. To use the OpenSSL libraries in Python,

Tribler uses M2Crypto [4]. The M2Crypto library, which acts a wrapper for OpenSSL, provides
many implementations of popular cryptographic protocols that are used for secure communication.

10tools.ietf.org/html/rfc5246
11tools.ietf.org/html/rfc2420
12www.ietf.org/rfc/rfc2437.txt
13tools.ietf.org/html/rfc4757
14www.ietf.org/rfc/rfc2631.txt

11

https://github.com/Tribler/tribler/wiki/Anonymous-Downloading-and-Streaming-specifications
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc2420
http://www.ietf.org/rfc/rfc2437.txt
http://tools.ietf.org/html/rfc4757
http://www.ietf.org/rfc/rfc2631.txt

Figure 3.4: The graphical user interface in Tribler that shows the anonymous network.

3.3.4 Dispersy

Tribler makes use of Dispersy. As elaborated by Zeilemaker et al; Dispersy [20] is a fully decentral-
ized system for data bundle synchronization. This means that data is exchanged between peers to
make sure they are up-to-date with the same information. The system is designed in such a way
that it is capable of running in a challenging network environment. Such an environment is often
characterized by:

• Nodes randomly joining and leaving.

• Delays in the network.

• Nodes having different networking speeds (Edge, 3G, WiFi).

• Nodes often being behind routers that use Network Address Translating (NAT) and firewalls.

All communication done by Dispersy uses UDP. Because up to 64% of the Internet is behind
a NAT, Dispersy has to use UDP NAT-firewall puncturing mechanisms[20].

In Dispersy, each node has a candidate list. A candidate list is a list of active connections
within the node’s overlay. Using this candidate list, a node can exchange data with its peers.

3.4 The Global Square

One of Tribler’s contributors is The Global Square15. This organization has made contributions
to Dispersy and libswift16. They also worked on the Python for Android library and documented
the necessary steps to compile the libraries used by Tribler in Python for Android. Currently,
TGS has become inactive and are no longer contributing.

Roarmag, an online journal writing about the global struggle for democracy, published a pro-
posal in 2011 describing The Global Square: an online platform for our movement [11]. Their
proposal is to make an online platform where people of all nations can come together as equals.
This platform could be used to participate in the coordination of collective actions. It could
provide the following tools:

15www.global-square.net
16www.libswift.org

12

http://www.global-square.net/
http://libswift.org/

• An interactive map that lists all ongoing assemblies around the world.

• A search option to find squares and events.

• Individual pages for each local square/assembly where they can organize events and share
information.

• A public and private messaging system so individual users and groups can communicate with
each other.

Traditional social media such as Facebook and Twitter, only allow to share and promote content,
while TGS encourages the active participation of citizens and the consolidation of working groups
in a local and global context between individuals and assemblies.

TGS has their own GitHub repository where they host contributions to various projects [5].
Notable are the contributions to the libswift and Dispersy projects. The last commits to these
projects are over a year ago.

Another important contribution has been made to the Python for Android project. TGS has
added the libswift, netifaces and M2Crypto libraries to the Python for Android project, making
it possible to create an Android application bundle with these libraries included. This is an
important contribution because it can be used as a first step to implement Tribler or anonymous
tunnels on an Android device.

13

Chapter 4

Software architecture

Much of our work is focused on porting software libraries such as the Tribler core, the anontunnels
and libtorrent to Android. We are not developing a typical software product. Instead, this
bachelor project is more research-oriented. That means that we try to research our problem
definition described in Chapter 2, with the help of a prototype application. We have developed
an Android application called Android Tor Tribler Tunneling (AT3), a research prototype that we
use to test Tribler and especially the anontunnels on Android (see Figure 4.1). Additionally, this
software makes it possible to perform experiments such as bandwidth or CPU measurements, see
Chapter 8.

Figure 4.1: The AT3 application.

The general overview of the application is given in Figure 4.2. The AT3 application is a simple
application used to test Tribler and the anontunnels on Android. It uses an Android service to
run the anontunnels in the background. The service is a separate process and continues running
even when the application is closed.

The main functionality is contained within the Tribler package, where we have created an
additional androidinterface.py script. This script serves as an interface between the AT3
application and Tribler. It is used by the application’s Android service to start the anontunnels,
download torrents using Tribler and obtain status information about the torrent files that are
being downloaded.

14

Tribler

Tribler Core

Anontunnel

androidinterface.py

AT3 Application

Main

Screens

Kivy Framework

Android Service

Libtorrent

Figure 4.2: A high level overview of the application

The AT3 application uses Kivy. Kivy1 is a cross-platform application development framework
written in Python. Kivy includes Python for Android, a build tool that can generate standalone
Android applications that run Python code. We chose to use Kivy for the development of the
application because all existing Tribler and anontunnel code is written in Python. Therefore,
this framework offers the most seamless integration with existing code. Kivy handles everything
related to the user interface. It hides all the complexity of handling user input and displaying
output.

Tribler handles everything related to managing torrent downloads. The anontunnels, which
are a part of Tribler, handle the anonymous tunnels over which we will download a test file. These
two components form the core part of our application. Tribler is dependent on several Python
modules. A package dependency graph for Tribler can be found in Appendix B. One of the most
important dependencies here is libtorrent, which is the library that handles torrent downloads.

The main functionality of the AT3 application is running the anontunnels and starting a test
download. To do this, the application contains a start button which starts the anonymous tunnels
and triggers a test download of 50 Megabyte. The sequence of this process is displayed in Figure
4.3.

Periodically, we want to obtain information about the status of the test download. Using
a timer, the application will request this information every second from the Android interface.
Because the AT3 application and the Android service run as different processes, the communication
between them is facilitated by the Kivy OSC library2. The sequence diagram of this process is
displayed in Figure 4.4.

1www.kivy.org
2www.github.com/kivy/kivy/blob/master/kivy/lib/osc/oscAPI.py

15

http://kivy.org/
https://github.com/kivy/kivy/blob/master/kivy/lib/osc/oscAPI.py

Android Service

AT3 Application

Tribler

androidinterface.py

on press start

run
start tribler session

start anonymous tunnels

trigger test download

handle to
AndroidInterface

Figure 4.3: The sequence diagram of starting the anontunnels and triggering a 50 Megabyte torrent
download

Android ServiceAT3 Application Tribler

androidinterface.py
status()

get anontunnels information

get torrent download status

status information
 GUI updates using the

Kivy OSC library

triggered every
second

Figure 4.4: The sequence diagram of obtaining status information from the anontunnels and the
test download

16

Chapter 5

Scrum iteration 1: creating a basic
application

In this chapter we describe our first sprint that lasted two weeks.

5.1 Goals

During this sprint, we had the following goals:

1. Get Python code working on Android. We must evaluate and set up Python for Android
(must have feature because this is the foundation of our whole project).

2. Get all packages that are needed to run the anonymous tunnels working on Android (should
have, we should have most packages working but if there are some packages that do not work
yet, it is manageable).

3. Implement a basic GUI to test with. This GUI should be created with Kivy (could have, we
can use logcat – the Android logging tool – if we do not have a GUI available).

5.2 Python for Android

The Python for Android framework allows developers to add existing Python packages by creating
recipes (for more information about recipes, see Section 9.1). As most of the packages were not
available, we had to build a lot of these recipes ourselves.

Python for Android builds these packages for the ARM architecture. By using the push arm

and pop arm commands in the recipe files, compilation for the ARM architecture can be triggered.
Below are the packages described we use in our application and in most cases had to create a

recipe for. We describe the functionality of each package in our application and which dependencies
it has.

• Kivy
We use the Kivy framework for creating the Graphical User Interface (GUI). Kivy is an open
source software library for creating GUI applications. It is easy to use and cross-platform,
allowing users to create a GUI on their PC and then integrate it in their products (we
integrate it in our Android application). As Kivy uses Python for Android, it is a natural
choice to use it. Kivy is dependent on Python, as it is a Python package.

• OpenSSL
OpenSSL is the world’s most well-known open source cryptography toolkit, also available for
Python. As our application makes use of PyCrypto and M2Crypto which are both dependent

17

on openSSL, we have to include it in our app. More information about OpenSSL can be
found in Subsection 3.3.3.

• M2Crypto
Dispersy and Tribler are dependent on M2Crypto as it has some security features which
M2Crypto implements such as elliptic curves cryptography1. As the anonymous tunnels,
our core function of the application, are dependent on both Dispersy and Tribler we also
need M2Crypto. M2Crypto itself is dependent on Python and OpenSSL as it is a Python
package using the OpenSSL implementation.

• PyCrypto
PyCrypto is a Python library which implements certain cryptography functions used by the
Tribler package. PyCrypto itself depends on functionality of the OpenSSL package.

• Boost2

The libtorrent library is used to download torrent files with the Tor protocol. To compile
libtorrent, the Boost package is required. Boost is a C++3 library which provides code for
multithreading, regex, math and asynchronous operations. We have to compile the Boost
library with Python bindings enabled so we can invoke the library from Python code.

• netifaces
The netifaces package provides methods for resolving addresses in a network. It is dependent
on Python and used by the Dispersy package.

• Zope4

Zope is an open source web framework for object-oriented web application servers. The
Twisted package makes use of this framework for asynchronous networking tasks.

• Twisted5

Twisted is an extensible framework for asynchronous networking written in Python. The
framework has special focus on event-based network programming and multi-protocol inte-
gration. It has dependencies on the Zope framework. In the Tribler software, Twisted is
used for callbacks of network events.

• anontunnels
This package is the core of our application and contains the code needed for the anonymous
tunnels. This package actually contains another package: the support for the Socks5 proxies.
The files for this package come from pull request 525 on the Tribler GitHub page.

We made some minor changes to this code: we have changed the master key of the anontunnel
community to create our own testing environment. Several paths have been changed to
ensure the anontunnels run on Android.

• Tribler
This package has been obtained from the Tribler devel branch6. Changes to the source code
were necessary to run this package on Android. In later versions these changes were reverted
and the only modifications were to the Tribler path variables.

• Dispersy
Since the code of the anonymous tunnels is using Dispersy for node discovery and data
synchronization, we have created a Python package with all the code that is needed for
Dispersy. This package can be run standalone.

1www.stanford.edu/class/cs259c/syllabus.html
2www.boost.org
3www.isocpp.org
4www.zope.org
5www.twistedmatrix.com/trac/
6www.github.com/Tribler/tribler

18

http://www.stanford.edu/class/cs259c/syllabus.html
http://www.boost.org/
http://isocpp.org/
http://www.zope.org/
https://twistedmatrix.com/trac/
https://github.com/Tribler/tribler

The files we have bundled are from pull request 525 on the Tribler GitHub. We did not use
the files from the official Dispersy GitHub because this build was missing some classes we
needed (for example, the decorator.py). Besides that, some changes in the pull request
have been made to the Dispersy core to add support for the anonymous tunnels.

5.3 Porting the anonymous tunnels to Android

One of our first challenges was to port the code that sets up the anonymous communication to
the Android device, using Python for Android. We started by inspecting the current code from
pull request 525 and dived into the dependencies this code has with the Tribler core and Dispersy.
We decided to create three packages: one package with the Dispersy code, one package with the
files we needed from the Tribler core and one package containing the anonymous tunnels code.

After we created these packages, we had to find out which other packages we needed to run
everything. To do this, we imported the dependencies in our application and ran it on the device.
Each test run, we examined the import error and added the missing dependency. We used various
packages that The Global Square has ported such as M2Crypto and netifaces.

Import errors were not the only issue we ran into: we had some problems with the netifaces
package. Since this package is copied into the final APK file as a Python egg7, it will be extracted
on the device. This failed because the application did not have writing permissions. To solve this,
we specified the egg extraction path and made sure the application has writing permissions to
that path.

We also found out that some files were missing and not copied into the APK. The curves.ec

file was missing and is needed by the cryptography classes found in the Tribler core. We also
needed the configuration file of the logger, logger.conf. To make sure these files are part of the
application, we copied them into the final application in our build script.

5.4 Attempt to compile libtorrent for Android

To get libtorrent working on Android there are several big obstacles:

• Compiling Boost for the ARM architecture.

• Compiling libtorrent for the ARM architecture.

• Compiling libtorrent Python bindings for the ARM architecture.

The official documentation of libtorrent states multiple ways to build libtorrent. The first way
is using Boost’s build system Jam. The second way is using automake8. However, before we can
compile the libtorrent source code with either of these methods, several modifications had to be
applied.

5.4.1 Source code modifications

We found several modifications to the source code to be necessary to compile libtorrent. These
modifications are described below.

• INT64 MAX is not defined for Android, so we have to specifically define it.

• Multiple environments are defined in include/libtorrent/config.hpp. We add an envi-
ronment for ANDROID, which sets the following options:

– FALLOCATE is disabled

– ICONV is disabled

7www.mrtopf.de/blog/en/a-small-introduction-to-python-eggs
8www.gnu.org/software/automake/

19

http://mrtopf.de/blog/en/a-small-introduction-to-python-eggs/
http://www.gnu.org/software/automake/

– IFADDRS is disabled

– MEMALIGN is enabled

• Instead of <sys/statvfs.h> we include <sys/vfs.h>, and redefine statvfs and fstatvfs.
This is necessary because the Android libraries only have sys/vfs.h and not sys/statvfs.

• Finally, we add an include for <sys/syscall.h> and redefine lseek to lseek64.

5.4.2 Boost Jam

Boost Jam9 is a build environment created specifically for Boost. However, it can be used to build
other software. It is often included as a build option for software that is dependent on Boost, such
as libtorrent.

Running Boost Jam is straight forward. After executing bootstrap.sh we can run b2 or bjam
to compile Boost itself. With this command we specify the architecture which is described in
more detail in the user-config.jam configuration file. The resulting compiled library files are
compatible with the ARM architecture.

Compiling libtorrent using this method is more advanced. We again specify a user-config.jam
with appropriate settings. However, the build process fails during compilation. The source for
libtorrent will have to be modified in several places, because the ARM compiler and libraries differ
from the normal GNU10 compiler. After modifying the source code, the build still fails. Linker
errors occur when we try to compile the Python bindings. The standard Unix11 libraries pthread
and util do not have to be linked on Android, yet the Boost Jam environment forces these options
for the Python bindings compilation. Due to the complexity of Boost Jam build environment, we
decided to try using automake.

5.4.3 Automake

Automake is a standard set of tools for Unix-based systems that makes it more convenient to
configure and compile software on a wide variety of systems. The tools are designed in such a way
that it is possible to configure the build process using a simple script.

Following libtorrent’s official documentation12 we first run bootstrap.sh. Now, in order to
configure and compile we will have to set up an environment in which it will use the Android GNU
ARM compiler. To do this, we set the following environment variables:

export SYSROOT=$ANDROIDNDK/ plat fo rms / android−14/arch−arm
export PATH=/usr / l o c a l /gcc−4.8.0−arm−l inux−andro ideab i / bin :$PATH
export CC=arm−l inux−androideabi−gcc
export CXX=arm−l inux−androideabi−g++
export CROSSHOST=arm−l inux−andro ideab i
export CROSSHOME=/usr / l o c a l /gcc−4.8.0−arm−l inux−andro ideab i

Note that we have set up a custom NDK toolchain. More information about setting up a
custom toolchain can be found in Appendix D.

Compiling libtorrent with this set-up works, but the Python bindings still gives linker errors.
These are the same errors as Boost Jam is showing. The linker tries to link pthread and util,
which are not required on Android.

We will move two items involving libtorrent to the next scrum iterations:

• Compiling Python bindings for libtorrent

• Creating a proof-of-concept application to test if libtorrent works natively and with Python
bindings.

9www.boost.org/boost-build2/doc/html/bbv2/jam.html
10gcc.gnu.org
11www.unix.org
12www.libtorrent.org/manual.html

20

http://www.boost.org/boost-build2/doc/html/bbv2/jam.html
http://gcc.gnu.org
http://www.unix.org
http://libtorrent.org/manual.html

5.5 Creating a Graphical User Interface with Kivy

The first version of AT3 used the standard output for printing status information. This required
the phone to be connected to a computer so we can examine the log with the ADB13 logcat tool.
That is why we decided to create a Graphical User Interface (GUI) for our application. The
purpose of this application is to provide a button to start the tunneling and a log to display the
status of the application.

Creating a GUI was a small step for us: we already included the Kivy package in our Python
for Android distribution. Creating interfaces in Kivy is similar to creating user interfaces for
Android with Java: the layout is specified in Kivy files which have the .kv extension. In Python
this interface file is loaded.

5.6 Sprint evaluation

During this sprint, we did not manage to complete all the goals set for this sprint. We did not
succeed in compiling the libtorrent library. However, because we worked in parallel, we did start
with some tasks we had set for the next sprint.

We have talked with Jaap van Touw, a member of the Tribler team. He told us that in his 20
weeks of work, he never managed to get the latest libtorrent to compile for Android. Currently
he runs an old and modified libtorrent version. We managed to get in contact with Steeve Morin.
He got the latest version of libtorrent working with Go bindings on Android. He gave us advice
on compiling libtorrent on Android, possibly with Python bindings. We have set the libtorrent
package as a separate goal for the next sprint.

13developer.android.com/tools/help/adb.html

21

http://developer.android.com/tools/help/adb.html

Chapter 6

Scrum iteration 2: unit testing,
relaying and libtorrent

In this chapter we describe our second sprint that lasted two weeks.

6.1 Goals

During this sprint, we had the following goals:

1. Get libtorrent from the first sprint working (must have, libtorrent is a high priority and we
need libtorrent for our further work).

2. Set up a testing environment on Jenkins (should have, applications must be tested thoroughly
to ensure everything is in order).

3. Get the anontunnels running, relaying and downloading (should have, we should investigate
how these tunnels are working and how we can trigger a download, even if libtorrent is not
working yet).

4. Merge our work with the other group to create a first prototype of the complete application
(would have, this is very dependent on the progress of the other group).

6.2 Jenkins

In this sprint we decided to make use of the continuous integration system called Jenkins1, which
is already in use by the Tribler development team. Jenkins automatically runs specified tests when
a build has been changed or a pull request comes in / has changed. This is a good addition to
improve and maintain the (code) quality of our application.

Jenkins provides an environment to run tests in, which is perfect for our set-up. Currently
Jenkins executes the following steps:

1. Jenkins cleans the environment when a build starts, so previous test runs do not influence
the outcome of the test.

2. It then clones our repository and the Python for Android framework from GitHub.

3. If one of the tests fail, Jenkins will mark the build as failed. Otherwise the build succeeds.

1www.jenkins-ci.org

22

http://jenkins-ci.org

4. Finally, once the tests are done, the Tribler IRC2 bot (an automated program that can insert
message into an IRC chat group) reports the results of the test in our IRC chat group.

Because this is done for every change and pull request, we can closely monitor if changes have
unexpected side effects. If they do, we can address them immediately to prevent the problem from
spreading or growing more complex if the number of dependencies increase.

6.3 Libtorrent

We have continued working on libtorrent in this sprint and have made major progress in getting
it to work on Android devices. Using Steeve’s help from last sprint we were able to get a basic
version of libtorrent to compile and link for Android. In this sprint we wanted to test the compiled
version and build Python bindings.

6.3.1 Testing libtorrent with a simple application

We have built a simple test application with JNI3 C++ bindings in order to test whether libtorrent
actually works. This application does the minimal work required for downloading a torrent:

• It sets up a session.

• It starts listening.

• It opens a torrent file.

• It keeps looping while requesting status updates to keep track of the progress.

This very simple torrent client turned out to work well on a Galaxy S2 device. We were able to
download the official Ubuntu4 14.04 distribution without problems. By manually checking the
MD55 checksum of the file we were able to verify that it was downloaded successfully. We have
chosen to download this particular torrent because it has many seeders and is big enough for a
good test run.

6.3.2 Compiling Python bindings

To compile Python bindings, one has to add the --enable-python-binding to the configure

call. However, doing that in our case causes the configure process to fail. The gcc-arm toolchain
can not link with -lpthread and -lutil.

After more investigation we have found out what causes this. Essentially the configure process
calls a bunch of .m4 6 files which try to find out the Python compilation settings automatically.
This is done by running a Python interpreter and printing specific values obtained from distutils7.
However, it turns out that the python process that gets run is the system Python installation (from
Ubuntu). This does not match the same settings of Python for Androids its interpreter. To solve
this we had to set some environment variables to point to the Python for Android interpreter:

• PYTHON = /path/to/python-for-android/build/python/Python2.7.2/hostpython

• PYTHON CPP FLAGS="-I/path/to/python-for-android/python/Python2.7.2/Include"

After setting this, the configure and compilation process runs fine and is able to create a
libtorrent.so file with Python bindings. The compiled library works on a Galaxy S2 device.
We created a simple Python application that downloads the Ubuntu distribution. This application
runs without problems on a Samsung Galaxy S2.

2tools.ietf.org/html/rfc1459.html
3docs.oracle.com/javase/7/docs/technotes/guides/jni/
4www.ubuntu.com
5www.ietf.org/rfc/rfc1321.txt
6www.gnu.org/software/m4/m4.html
7docs.python.org/2/library/distutils.html

23

http://tools.ietf.org/html/rfc1459.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jni/
http://www.ubuntu.com
http://www.ietf.org/rfc/rfc1321.txt
https://www.gnu.org/software/m4/m4.html
https://docs.python.org/2/library/distutils.html

6.3.3 Segmentation faults on other devices

Running libtorrent, either the native JNI/C++ or the Python bindings version results in seg-
mentation faults on some devices. For example, the Sony Xperia Z throws segmentation faults
frequently, whereas this never occurs on the Samsung Galaxy S2. After a lot of debugging it is
still not exactly clear what triggers these segmentation faults.

6.4 Downloading over the anonymous tunnels

One of the goals of this sprint was to find out how we can trigger a download of a torrent. We
started to do this shortly after the libtorrent library worked on Android.

We found that modifications to our existing code were necessary because we discovered that a
Tribler session is required to start the download of torrent files. The download itself is managed in
the LibtorrentMgr class which is part of the Tribler package. The Tribler session is initialized when
starting up Tribler with the GUI. This session also initializes Dispersy and handles the loading of
the proxy community (among other communities). Once everything is running we download a file
and verify its contents.

Our next step was to port this code to Android. After several import errors (for example, we
had to remove the ncurses import and use apsw for the database transactions), they started to
run. We first tried to download a torrent file with the computer as proxy. In some cases, this
download triggers a segmentation fault which means that something goes wrong with regards to
the libtorrent library (or the Python bindings). The error does not always show up: most of the
time it occurred during the download. The application crashes and the download is stopped.

This is a serious issue we should further look into. Since the occurrence of the segmentation
fault is random, it is hard to debug. We had several attempts to trace down the error, by disabling
the anonymous download and using the Tribler session with minimal settings but our application
still crashes during the download process.

6.5 Shell script unit tests

As we make use of shell scripts to set up variables, run checks and build the application with, we
created unit tests.

The first thing we had to do is look for a shell script test framework. As no official test
framework is available, we had to search for one that suits our needs. After comparing some
frameworks, we decided to go with the shUnit28 test framework. This framework is lightweight and
has some of the standard testing functions such as AssertEqual, AssertTrue and AssertFalse

which are all we need.
In total we have created fourteen tests that check the following points:

• The required export variables.

• Whether certain necessary files exist.

• Build the application and test if everything runs correctly.

These tests cover all functions present in our build script and all possible subroutines. All
of these tests are integrated in Jenkins as described in Section 6.2. This means whenever a pull
request comes in that modifies code or packages that the application is dependent on, it will run
the test to ensure the application still can be built and does not throw errors while building.

8shunit.sourceforge.net

24

http://shunit.sourceforge.net

6.6 Sprint evaluation

This sprint was a setback for us. Even though libtorrent throws a segmentation fault from time
to time, we still managed to complete some download runs. Now that we have Jenkins up and
running, we can focus on writing more automatic tests to measure changes and maintain a working
prototype. The shell script tests we wrote during this sprint should provide a good way to ensure
that our builds are correctly configured.

For the next sprint, we will look into the issue of the segmentation faults. As for Jenkins, we
will write unit tests to test our written Python code and we will use the Kivy recorder to apply
application tests on our application. These tests will also be sent to the Software Improvement
Group (SIG) for evaluation.

25

Chapter 7

Scrum iteration 3: stabilizing
libtorrent and experiments

In this chapter we describe our third sprint that lasted two weeks.

7.1 Goals

During this sprint, we had the following goals:

1. Write unit tests for our Python code and application tests for our application (must have:
applications must be tested thoroughly to ensure all possible settings are working correctly).

2. Send our tests to SIG (must have: this is required for the bachelor project).

3. Investigate the segmentation fault and check for alternative solutions (should have: libtorrent
is close to being stable, but due to time constraints we give priority to writing tests for SIG).

4. Update our application to use the new Tribler code (should have: while it is not a critical
feature, it is good practice to keep the code up to date).

5. Measure CPU usage and download rates of our application (should have: while it is not
needed in order to run the application, it is good to have some performance measurements).

7.2 Application tests

In order to verify that the application is working correctly we have our tests running on Jenkins.
Using the default unit test framework provided by Python and the Kivy recorder we were able
to set up basic user interface tests. These tests run the application, perform a series of user
actions such as clicking buttons, and finally assert the state of the application. The tests currently
run successfully on Jenkins, which means that future additions to the code will automatically be
tested.

7.3 RUTracker libtorrent

Since we would like to have a stable libtorrent library that downloads a torrent without segmenta-
tion faults, we decided to try out the libtorrent that Jaap van Touw used in his bachelor project.
This is an older version of libtorrent but has proven to be successful in his project. Jaap van Touw
provided us with a link to a GitHub page that contains instructions on how to build libtorrent from

26

source1. This libtorrent version is used in an Android application called RUTracker2, an Android
application that allows users to download torrent files in the background. We are confident that
this version of libtorrent is stable.

Instead of using a custom toolchain like we did to compile libtorrent-rasterbar, we used the
toolchain that ships with the NDK. The first step was to build some Boost libraries libtorrent
depends on (Boost.filesystem, Boost.system and Boost.thread). We used the Boost for An-
droid project3 to build Boost 1.49. After that, we compiled libtorrent according to the instructions
that Jaap van Touw provided for us. We linked against the Boost libraries we just compiled and
we got a library file that we can use in our Android application.

7.3.1 Python bindings

After writing a small example to test the stability of libtorrent, we came to the conclusion that it
does not crash. Since this libtorrent version looked promising, we delved into the Python bindings
that we need to communicate between Python and a native C library. Importing this library
without Python bindings, results in an error that an initializer function could not be found.

For the Python bindings, it is convenient to use the Boost.python library. This library contains
several macros and methods to easily define Python calls. The macro BOOST PYTHON MODULE,
declared in boost/python.hpp, initializes our Python library and makes it ready for an import
in Python. However, when running a minimal Python script that only imports libtorrent, a
segmentation fault is thrown. This means that we are unable to use this version of libtorrent in
Python. We are not sure what the cause of this error is. If the initialization and import of the
library would work correctly, we could write our own bindings for the libtorrent functions and
methods that we need in Tribler.

7.4 Libtorrent RC2 progress

While we were working on the Russian libtorrent version, we also kept working on the second
Release Candidate (RC24) of libtorrent we originally tried. The first step we took, was to compile
libtorrent with asserts on. We did this to gain a better understanding in why the segmentation
fault occurred. An assert had indeed triggered: in the destructor of the Torrent class, the m abort
variable should be true but it was false. This could mean that the Torrent object is released too
soon.

We decided to post the issue to the official libtorrent bug tracker5 where we got in contact with
a libtorrent developer named Arvid Norberg. He helped us fix the error and gave us the advice to
compile with the BOOST SP USE PTHREADS flag. When we tried to compile with this flag we still
got the segmentation fault. We took a closer look at what this flag exactly does. It turns out
that this flag is responsible for the shared pointers: according to Arvid Norberg, with this define,
the shared pointers are using mutex operations instead of atomic operations. He had some bad
experience with atomic operations on embedded devices. Using this flag we were able to compile
a stable version of libtorrent.

7.5 Updating the Tribler package

One of the goals of this sprint was to update the Tribler package we are using. The Tribler
repository was updated. Twisted was updated to version 14.0.0, certain callbacks were removed
and a Twisted Reactor6 was introduced. When we began updating, we discovered that the default

1www.github.com/javto/tribler-streaming
2softwarrior.googlecode.com/svn/tags/RutrackerDownloader/2.6.5.5/
3www.github.com/MysticTreeGames/Boost-for-Android
4www.sourceforge.net/projects/libtorrent/files/libtorrent/
5code.google.com/p/libtorrent/issues/detail?id=627
6twistedmatrix.com/documents/12.0.0/core/howto/reactor-basics.html

27

https://github.com/javto/tribler-streaming
http://softwarrior.googlecode.com/svn/tags/RutrackerDownloader/2.6.5.5/
https://github.com/MysticTreeGames/Boost-for-Android
http://sourceforge.net/projects/libtorrent/files/libtorrent/
https://code.google.com/p/libtorrent/issues/detail?id=627
https://twistedmatrix.com/documents/12.0.0/core/howto/reactor-basics.html

recipe in the Python for Android framework required adaptation, upgrading the version number
did not work. After inspecting the recipe we asked for advice on the Kivy repository, and they
provided us with an updated recipe for Twisted 13.1.0. The updated recipe was also compatible
with the latest Twisted release.

The next step was updating the Tribler package. Previously, we downloaded the package and
adapted it. Because it was not forked on GitHub we could not automatically update it. We
decided to fix this issue immediately and thus created a fork of the main Tribler branch. From
this fork we modified the Tribler path variables to make the new Tribler code compatible with our
application. This is necessary because several files that get opened by Tribler assume the working
directory is the Tribler root. This does not work when executing on more exotic environments
such as Android, where the working directory might be different.

Since our package is now a fork, future updates are more easy to merge into our package using
the GitHub merge functionality.

7.6 Relaying and downloading over multiple hops/multiple
circuits

In our last sprint, we had some issues with downloading and relaying over multiple hops / multiple
circuits. Downloading the 50 MB test file was working correctly over one circuit with one hop,
however, adjusting the values of the minimum amount of circuits required for the downloading
and the length of the hop would not work.

To debug this issue, we got in contact with the original authors of the anontunnels code.
They suggested to place loggers when receiving messages from other nodes and look closely to the
incoming messages while disabling the encryption. We logged the messages but we could not find
anything that could cause the application to reject circuits. The same code, when executed on a
laptop, can successfully download over multiple circuits with multiple hops.

At this time, we were quite some commits behind the devel branch of Tribler. After updating
and merging our package with the newest code, we tried again and the downloads were starting.
We immediately tried to download the anonymous test file over four circuits and three hops and
it worked fine. Also other lengths and other amounts of circuits were working correctly. During
the tests (see Chapter 8) we came to the conclusion that three hop encryption is too heavy for a
smartphone.

In order to verify the stability of relaying and downloading, even with encryption disabled,
we decided to write a test application that can keep running overnight. We can start some
anontunnel instances on our own computers and let the test application download the torrent.
After the download is finished, the application restarts and the process starts over. The output is
redirected to a log file so we can see issues or problems that occurred during the download.

7.7 Sprint evaluation

We managed to stabilize libtorrent, updated our Tribler package and made preparations to apply
future updates more easy. Furthermore we managed to identify the problem with our download
and relaying issue with multiple hops and multiple circuits. The stable environment and the option
to download via multiple hops and circuits allowed us to gather data and generate graphs.

The additional unit tests contributed to the stability and robustness of our application. These
new tests along with the previous ones from iteration 2 were sent to SIG for evaluation.

Looking back we can conclude that this sprint was successful. The most difficult challenges
have been overcome.

28

Chapter 8

Experiments

In this chapter, we will discuss several experiments we have conducted. Since our application will
be used for anonymous downloading and streaming of videos, we are interested in how our final
application will perform and whether it is feasible to stream and watch videos on an Android
smartphone. Our measurements can be divided in two categories: an analysis of the CPU usage
and an analysis of the download speed.

First, a theoretical analysis is given in Section 8.1, which states the minimum performance
required for video streaming. Next, we discuss how we have set up the experiments in Section 8.2.
The actual measurements are provided in Section 8.3. Finally, we discuss our findings in Section
8.4.

8.1 Theoretical analysis

To make sure a video can be downloaded in a reasonable amount of time or streamed instantly, the
application must achieve certain minimum bitrates. In the following Subsections, we will discuss
the bitrate we need to stream a movie.

8.1.1 Required bitrate

Most smartphone screens do not have a high resolution, therefore we do not need to be able to
stream very high resolution videos. The additional quality is negligible on such a small screen and
therefore a waste of resources. For a smartphone, a resolution of 480p (854x480 pixels) or 720p
(1280x720 pixels) is appropriate.

YouTube1, a major video streaming platform, has published recommendations on the various
bitrates for different resolutions[7]. The recommended bitrate for 480p is 1000 Kb/s and for 720p
it is 2500 Kb/s. These values serve as an indication for the bitrates we will need to achieve.

8.1.2 Factors that impact the download speed

There are some factors that cause the download speed to increase or decrease. When downloading
a torrent, one of the most important factors that influences the download speed is the amount of
seeders. When we do not have enough seeders, we generally can not expect high download speeds.
Another factor is the strength of each seeder: it is possible that some seeders have their upload
rate limited or have a bad connection.

When downloading over anontunnels, an important factor is the amount of circuits. When we
download over more circuits, the download should be faster. In general, the length of the circuits
negatively impacts the download speed. When circuits are longer, there is a higher chance that

1www.youtube.com

29

https://www.youtube.com/

there is a bottleneck in the circuit. The maximum speed of the download over one circuit is as
fast as the slowest hop.

Another important factor we should take into account, is the possibility of random disconnects
of peers during the download. When a seeding peer disconnects, the download speed of the torrent
will decrease. When a circuit drops, our application will try to set up a new circuit or connect to
an existing one. During this period, a decrease in download speed will occur.

Since there are many variables that influences the download speed, we cannot expect the speed
rate to be stable. When streaming movies, these changing download rates could be problematic.
A video should buffer to take these variable download speeds into consideration.

8.2 Set-up

To measure the performance of the anontunnels running on an Android device, we decided to
make use of the Tribler test torrent. This test downloads a 50 MB test file on a Sony Xperia Z
(C6603) connected to the eduroam Wi-Fi network. Running multiple times, each with a different
setting of variables such as amount of hops or circuits, we can measure how these variables impact
the performance of the CPU usage and download rates.

We are interested in the impact of the amount of hops and circuits on the performance of the
anontunnels. The following four configurations were chosen to measure this:

1. Download the test file with 1 hop and 1 circuit.

2. Download the test file with 1 hop and 3 circuits.

3. Download the test file with 3 hops and 1 circuit.

4. Download the test file with 3 hops and 3 circuits.

CPU usage is measured with the psutil Python module2. During the tests we shut down all
other applications running on the smartphone. This minimizes the impact other applications have
on the CPU measurements.

Bandwidth is measured using the download status obtained from Tribler. This provides us
with information about the test file we are downloading. This includes current speed (in KB/s)
and the current progress (in percentage) of the download.

We run 10 stand-alone anontunnels on a MacBook Pro 7.1 running Ubuntu 14.04. This com-
puter is connected to the Internet over an ethernet cable with a speed of 100 Mb/s.

During our experiments we found that the download would not start when enabling cryp-
tography. CPU usage during these attempts would stay at 100%. This means that either the
implementation of the cryptography is bad or the device’s hardware is not powerful enough. For
this reason we were forced to run the experiments with cryptography disabled.

8.3 Measurements

Using the set-up described in section 8.2, we have performed several experiments.
By looking at the CPU usage we can determine whether running the anontunnels is too com-

putationally expensive for the application of video streaming. Even without cryptography, we are
seeing a CPU utilization of about 75% when downloading (see Figure 8.1). Due to the fact that we
are not using cryptography, the amount of hops or circuits does not impact the CPU performance.

It is also interesting to look at the download speed of the application. This indicates whether
we can accomplish the necessary bitrate to stream video, which is about 1000 Kb/s (see Subsection
8.1.1). We managed to achieve a download speed on our test set-up of around 500 - 600 KB/s,
which corresponds to 4000 - 4800 Kb/s (see Figure 8.2). This is sufficient for the application of

2pypi.python.org/pypi/psutil

30

https://pypi.python.org/pypi/psutil

1 hop, 1 circuit 3 hops, 1 circuit 1 circuit, 3 hops 3 hops, 3 circuits
Different tunnel configurations

0

20

40

60

80

100
CP

U
us

ag
e

(%
)

CPU usage for various tunnel configurations without cryptography
looking for tunnels
downloading over tunnels

Figure 8.1: CPU measurements for various tunnel configurations without cryptography.

video streaming. Due to the fact that all stand-alone anontunnels are running on the same com-
puter, they will all perform equally well. Not a single tunnel will act as a bottleneck. Additionally,
the computer running the anontunnels is connected to the internet with a high speed connection
of 100 Mb/s. Because of these factors, the impact of the amount of circuits or hops is negligible.
The computer is capable of relaying data fast enough to not impact the download speed of the
Android device.

The time between when the download is triggered and when it actually receives its first byte
is about 140 - 150 seconds when using one circuit. With three circuits, this takes about 180 - 190
seconds. This difference can be explained by the fact that more circuits take more time to set up.

8.4 Conclusion

We come to the conclusion that streaming video over the anonymous tunnels is possible, as long
as cryptography is disabled. The average download speed is capable of providing the necessary
bitrate for videos with a 720p resolution.

The unforeseen CPU bound that we encountered means that either the cryptographical imple-
mentation is bad or the current generation smartphones are not powerful enough. By compiling
and running gmpy3, a fast large number library for Python, we could see a large speedup during
the Diffie-Hellman handshake. Due to time constraints we were unable to compile and implement
this in the current version of the AT3 application.

It was announced that the new ARMv8 architecture will support AES hardware acceleration
[16]. Because the anontunnels use AES encryption, this would increase performance and reduce
the computational burden on the CPU.

Without a significant speedup of the cryptographic functions, our conclusion is that the anon-
tunnels will not be able to run with three hops and encryption enabled.

3www.gmpy.org

31

http://www.gmpy.org/

140 160 180 200 220 240 260 280 300 320
Time in seconds since the download was triggered (s)

0

100

200

300

400

500

600

700

Do
w

nl
oa

d
sp

ee
d

(K
B/

s)

Download speed for various tunnel configurations without cryptography

1 hop, 1 circuit
1 hop, 3 circuits
3 hops, 1 circuit
3 hops, 3 circuits

Figure 8.2: Download speed measured for various tunnel configurations without cryptography.
The plot has been smoothed with a moving average of 10 seconds.

32

Chapter 9

Our contributions to the open
source community

During our bachelor project, we used many open source libraries and frameworks. In addition, we
received help from several people including Steeve Morin who personally came to Delft to help us.
In this chapter, we will describe our contribution to the world of open source software, explain
what we have achieved and what we have done to make software people can use.

9.1 Python for Android

Python for Android enabled us to run Python code on Android. We made use of many Python
for Android recipes. A recipe downloads a package, extracts the contents and applies operations
on them when required. In addition, we updated some recipes and created our own. For example,
when Tribler started using the newest version of Twisted, we updated the Twisted recipe to version
14.0.0.

Examples of recipes we created are libtorrent and Tribler. The libtorrent recipe contains the
shared object file that is being copied to the final Python distribution on the Android device.
The Tribler package contains all Tribler code with some minor modifications to make it work on
Android. These two packages and our updated packages will be submitted to the official Python
for Android repository via a pull request because they have the potential to be used in other
Python for Android projects in the future.

Because of the separated nature of the recipe system of Python for Android, it is easy for
developers to add their own recipes. Several widely used packages such as gmpy, which is an
optional dependency of Tribler, are not available as a recipe yet. In the future, a contribution
could be to make a recipe of gmpy and submit it to the Python for Android repository via a pull
request.

9.2 Libtorrent

Our work was greatly dependent on one of the world’s most popular libraries: libtorrent. Since
so much time and effort has gone into libtorrent we decided to create a separate tutorial about
the compilation process. This guide is available in appendix D. This means that other people can
extend our work and use our building process to compile libtorrent for their own purposes. In the
future, a recipe that performs the compilation process of libtorrent can be made.

When compiling libtorrent, we used the Boost library that provides advanced C++1 fea-
tures such as memory management and support for multi-threading. We made use of libtorrent-
rasterbar’s Python bindings to invoke the libtorrent library in Python code.

1www.cplusplus.com

33

http://www.cplusplus.com

9.3 Tribler

Our created prototype provides the option to download anonymously using the experimental anon-
tunnels code. This application also uses the Tribler core code. A future goal is that our application
will be merged with the Tribler Play project. This means that we will have an application that
allows searching the Dispersy communities and anonymously download / stream torrent movies.
An extension of Tribler to the mobile platform could be a big step towards anonymity on the
internet.

During the process, we identified several issues regarding the anontunnels and Tribler itself.
Some of these issues were fixed and we contributed to the stability of Tribler. During the project,
we had close contact with the Tribler team and we spoke regularly with members over mail, IRC
or in person.

34

Chapter 10

Conclusion

We come to the conclusion that the current generation smartphones are not ready yet for anon-
tunnels. The project itself was successful; we managed to cross-compile all required libraries. The
anontunnels are running and downloading when the hop count is low. Downloading over multiple
circuits is possible and relaying of data works too. By creating a pull request, we provide Python
for Android with some useful recipes, contributing to the open source community. All of our work,
including this thesis, is open source and can be extended. Jaap van Touw, a master student cur-
rently working for the Tribler team, will merge our project with the other bachelor project group
Tribler Play, creating an application that allows anonymous and encrypted streaming of movies,
with a search and playback option.

We also contributed to the open source community. In particular we contributed to the fol-
lowing open source projects:

• Python for Android

• Tribler

• libtorrent

Once smartphones running on ARMv8 become available or if gmpy is integrated in the project,
we foresee that this application will be able to run with 3 hops and multiple circuits wile having
cryptography enabled. Once that is possible, Tribler takes a censorship-free internet to a new
level.

10.1 Future work

If one wishes to extend our work, we recommend to try and get gmpy to compile by creating
a recipe for it. This might speed up the cryptographic part, allowing for multiple hop with
encryption downloading.

We would also recommend working closely together with the Tribler team, as the application
integrates the code of the Tribler main code base. The Tribler team often can help with questions
or advise you on best practice regarding their code.

Finally, we recommend to keep up-to-date with dependencies whenever you can. The Tribler
code base changes regularly, so it is good practice to keep up-to-date. Other libraries such as
OpenSSL have had some fixes regarding the famous Heartbleed bug1. Applying patches like these
might be critical in terms of functionality or security.

1www.heartbleed.com

35

http://heartbleed.com/

10.2 Reflections

10.2.1 Reflection Rolf

In contrast to a traditional Bachelor project where one goes through a software development
process, we have decided to take a more research oriented approach. As I aim for an academic
career, this bachelor project fits my personal goals very well.

The team worked together excellently with no problems in cooperation. Despite working on
separate components simultaneously, everyone was kept up to date with the latest developments.
Throughout the project each member shifted focus to different parts of the problem. This allowed
every one of us to grasp different aspects of the project.

Our project was about porting and running bleeding edge experimental code on exotic devices
and systems. This was challenging in particular because it was uncharted territory. At the start of
the project it was not sure if it would be possible to get all Tribler code and dependencies working
on Android. I am glad that through hard work and effort we were able to accomplish this. Parts
of our work are going to be contributed to open source software and Tribler. Contributing to an
open and censorship-free Internet in this way is worth all the work we have put into this and I am
happy to have been a part of it.

10.2.2 Reflection Laurens

This project was interesting and challenging on certain points. We worked well together as a
team and it was very interesting to be in uncharted territory. This project was more of a research
project than a software development process.

I think some advice in a reflection could prove to be helpful. My first piece of advice would
be to not be afraid of asking for help. Just as we did libtorrent and the anontunnel code, ask the
authors or developers for help. If you are stuck on a certain area where expertise is required, you
can save a lot of time if you ask the right persons. Since you show interest in their project they
are often more than happy to help you. Without Arvid and Steeve, we most likely would still have
an unstable libtorrent library.

We chose to have a switch from time to time in tasks, so that every member is forced to look
into at least one other subject he is not currently working on. For example, I switched from
shell scripting and setting up Jenkins to the anontunnel code and measuring performance. In
turn, Martijn who has been working on the anontunnel code switched to investigating the Russian
version of libtorrent and Rolf took over Jenkins. This way, we all learned more about the system
and were forced to get an understanding of what the other was doing. If something was unclear
we made sure it was immediately fixed, commentated and if needed, refactored.

One thing we probably should have done more often, is asking for feedback on written work.
We had our thesis reviewed three times by our client. I believe more reviews allowed for more
smaller changes rather than a large amount of work towards the end. Since the client only has a
high level goal in mind, he / she often provides complementary feedback.

Concluding, I think this has been a huge step towards our client’s ultimate goal. It was a
real pleasure to work with Rolf and Martijn as well as the Tribler team. Since our project will
be merged with the other work of the other bachelor project group soon, our effort and work
will continue, which gives a content feeling. Once the encryption and decryption of data becomes
viable for smartphones, Tribler will take a censorship-free internet to a new level.

10.2.3 Reflection Martijn

Working together with the Tribler team was interesting and fun. Tribler is an interesting system
to work on and we had some challenging issues. The most important issue we had, was compiling
libtorrent for Android. When performing the cross-compilation, I learned more about the compi-
lation process and gained more insights in what exactly is going on when compiling. I think this
is a valuable experience because this knowledge can be used in other projects as well.

36

The Tribler team was always willing to lend us a hand. Our client visited us regularly and
introduced new people to us who might be interested in our work. During the project, I started
to realize how important it is to communicate clearly with other team members and the Tribler
team. In the past, several issues have emerged because there was no clear communication between
members. We wanted to avoid that so we did everything to keep the Tribler team up to date with
our latest progress and updates. They also got in contact with us when they had a new version
of Tribler or when a bug was introduced which could affect our work.

Working with bleeding edge code was sometimes a bit frustrating because there were some bugs
we had to deal with. Furthermore the code was updated quite frequently so we had to update and
modify our code too to be able to run it on Android. During the process, we tried to automate
these code updates so it became easier for us to keep up to date with the latest code. I recommend
everyone who works with very new code, to automate the code update process: in the long run,
it could save you a lot of time and effort.

Working with Python was a new experience for me: when I started with the project, I preferred
languages like C and Java but during the project, I started to see the power of using Python.
Changes to the code were very easy to make and could be integrated in our application quite fast.
I learned a few tricks about the library and package structure Python is using and this knowledge
can also be used in further projects. Working through the import errors learned us about the
libraries that Python for Android already included and which not. Creating our own recipes was
very fun to do and we were always glad when a new package was functioning correctly on the
Android phone, especially when we had a stable version of libtorrent running.

Overall, I liked the project. We did some very interesting tasks such as the compilation of
libtorrent and the code analysis of Tribler. I recommend students with a prior experience in
software engineering and those who are interested in doing research in new fields to work on the
team and do their thesis on the Tribler system. I hope that our application will eventually be
integrated with the application of the other bachelor thesis group. After all, our project will
be part of another greater system where Android users can use our applications to anonymously
stream movies.

37

Appendix A

Plan of Action

This plan of action is part of the bachelor project on anonymous video streaming on tablets. In
this project we attempt to get Tribler, a peer-to-peer file sharing application working anonymously
on Android using an already implemented Tor-like protocol.

In this appendix we outline the details of the assignment. We will describe the approach we
will use and how we will structure this project. Finally, we will describe how we maintain the
quality of our work.

A.1 Assignment

In this section we will describe our assignment, client, contacts, the problem we will address and
sketch out what product we will eventually deliver. This section will also contain some of the
critical requirements that we will have to meet along with the risk involved.

A.1.1 Assignment

Our assignment is to implement a new feature of Tribler into a mobile android application. This
new feature allows the creation and usage of so called anontunnels. These tunnels allow anony-
mous download within a peer-to-peer network between devices, in our case Android smartphones.
As these tunnels run on Python code, we will have to be able to run Python on an Android
smartphone, along with all the libraries it depends on.

A.1.2 The client

Our client is Dr. Ir. Johan Pouwelse, the head of the Tribler group and Assistant Professor at the
Parallel and Distributed Systems Group of the Faculty of EEMCS, Delft University of Technology.
Pouwelse has measured and researched peer-to-peer networks for years and has been working on
Tribler for nine years.

A.1.3 Contacts

The Client:

Dr. Ir. Johan Pouwelse
J.A.Pouwelse@tudelft.nl
+31 (0)15 27 82539
Room: HB 07.290
Mekelweg 4
2628 CD Delft

38

TU Delft coach:

Ir. Egbert Bouman
E.Bouman@tudelft.nl
Room: HB 07.290
Mekelweg 4
2628 CD Delft

Bachelor Project Coordinator:

Dr. Martha A. Larson
M.A.Larson@tudelft.nl
+31 (0)15 27 87357
Room: HB 11.040
Mekelweg 4
2628 CD Delft

A.1.4 The final product

At the end of the bachelor project, we will deliver an Android application that allows users to
find and download content anonymously. This application makes use of the code from the Tribler
project, which is written in Python. Therefore, we will make sure that the Android application
will be able to run Python code.
The downloads that run through the anontunnels will be anonymous, just like the current Tor
protocol.

A.1.5 Requirements and risks

The final product will offer the features that are described in Subsection A.1.4 and should be
considered a prototype. The prototype will offer anonymous downloading using the anontunnels
mentioned earlier. The development of the prototype will be targeted to the Android platform.

The following requirements are set:

• Weekly Scrum evaluations. At the end of each Scrum iteration, we evaluate what we have
done and set the target for next week. This keeps the deadlines SMART1 and manageable.

• Weekly meeting with the client. Every two weeks we will implement a feature, but we will
show and discuss our progress each week with the supervisor.

• The members of the team will complete a prototype at the end of this project and will also
demonstrate this during a 30 minute presentation given in the last week of Q4.

The risks involved with this project include:

• Run Python code on an Android application. As the Tor-tunnel functionality is written in
Python code, we need to be able to run Python code on an Android device as well. A library
exist where you can write Python for Android, but we will still face a challenge when we
will try to combine other libraries.

1www.techrepublic.com/article/use-smart-goals-to-launch-management-by-objectives-plan/

39

http://www.techrepublic.com/article/use-smart-goals-to-launch-management-by-objectives-plan/

• As we are dependent on third party code, we might lose time to understand or read certain
parts of code or documentation as well as link pieces of code that belong to different parties
together.

A.2 Approach

In this section, we will describe the approach we are taking for this project. First, we will discuss
the methodology we are using (Scrum). After that, we will discuss the MoSCoW technique we are
using to classify requirements. Afterwards, we will give an overview of the tools we will be using
during this project. Finally, we will give our planning and milestones.

A.2.1 Scrum methodology

For the project, we will be using the Scrum methodology. We have used Scrum in various projects
already during our studies and it has proven to be a very efficient way of working. In this section,
we will discuss how we plan to use Scrum and what our Scrum iterations will look like. First we
will look at the different roles involved in the Scrum process. After that, we will describe how the
Scrum process is organized.

Scrum roles

There are three primary roles involved in Scrum:

• Product owner: the product owner represents the stakeholders and is the voice of the cus-
tomer. He is responsible for the success of the product. Johan Pouwelse is the product
owner.

• Development team: the development team consists of Rolf, Laurens and Martijn. We are
responsible for delivering the final product to the product owner.

• Scrum master: he guides the team by assuring the right choices are being made. He is
responsible for arranging the meetings. Rolf is our Scrum master.

The Scrum process

There are several steps involved in the Scrum process. First, we will create a product backlog.
This is a list with the functional demands the product owner has and it contains the items we still
have to do. In total, we have 5 sprints. At the end of each sprint, we will deliver a part of the
final product. The duration of each sprint is two weeks. At the beginning of each sprint, we will
create a sprint backlog. This backlog describes the functional demands, divided in each subtask
for this sprint.

Each morning, we will start the day with the daily Scrum. This is a short meeting where ev-
ery member of the development team answers the following question:

• What have you done yesterday?

• What are you going to do today?

• Are there any problems you ran into?

At the beginning of each sprint, we start with a meeting. This meeting is attended by all members
of the team and the supervisor. The purpose of this meeting is to evaluate the last sprint and
decide on the tasks that have to be done during the next sprint.

40

A.2.2 MoSCoW

MoSCoW is a technique that can be used to place importance on the delivery of each requirement.
During each sprint, we will classify the features in one category. The MoSCoW model has the
following categories:

• Must have: the requirement must be part of the final product to be considered a success.

• Should have: the requirement has a high priority and should be in the final product.

• Could have: the requirement is desirable but not necessary.

• Would have: the requirement is not implemented in a given release but is considered as a
requirement in the future.

At the start of each sprint, we evaluate the goals we want to achieve that sprint. After that, we
classify each goal into one of the categories above. Since we do not have everything clear at the
start of the project, it could happen that we prioritize the goals differently during each sprint.

A.2.3 Tools

For this project, we will use various tools, both hardware and software. First of all, we will be
using our own laptops for the development of the software. We will develop our software on the
Ubuntu platform. We are also using Android phones that we can rent from the Tribler team.

If we look at the software, we will make use of the Android SDK and NDK. The Android SDK
will allow us to build .apk files. The NDK allows to implement parts of an Android application
in C or C++. To be able to run Python code on an Android device, we will use the Python for
Android library.

A.2.4 Planning

Our planning can be found on GitHub. As for now, we have four milestones:

• 02-05-14: the literature research should be done and a report about the read literature should
have been written.

• 09-05-14: we should be able to compile the TGS for Android project and run it on an
Android device.

• 30-05-14: we should be able to send a packet between two Android devices over anonymous
tunnels.

• 13-06-14: a GUI for testing purposes should be designed and created.

• 27-06-14: the end presentation of our project.

A.3 Project structure

In this section the administrative aspects of the project are described.

A.3.1 Members

The members of the project are Rolf Jagerman, Laurens Versluis and Martijn de Vos. All members
will work 40 hours per week to ensure the mandatory 15 EC per student are utilized. The division
of labor is evenly distributed across all activities (analysis, documentation, implementation, etc.).

41

Contact Information
Rolf Jagerman - R.M.Jagerman@student.tudelft.nl
Laurens Versluis - L.F.D.Versluis@student.tudelft.nl
Martijn de Vos - M.A.Devos@student.tudelft.nl

A.3.2 Reporting

Weekly meetings with the client will be held in person. All documentation of the project will be
written in LATEX and will be provided as a PDF. The project material, including source code and
documentation, will be available throughout the project on the AT3 GitHub repository2.

A.4 Quality assurance

To assure a good quality of the delivered product, several agreements are made about which
methods should be used. In particular we look at testing, code review and version control.

A.4.1 Testing

All written software will be tested using Python unit tests. Additionally, test code coverage is
provided to ensure a majority of the code has been thoroughly tested.

A.4.2 Code review

All written code will be reviewed by at least one team member before pull requests are accepted.
This will ensure the code is comprehensible, working and correct. Additionally our code will
undergo a complete source review by SIG (Software Improvement Group).

A.4.3 Version control

To maintain a good overview and history of the code we write, we will use a version control system.
All our code will be stored on GitHub and therefore use the Git version control system.

2www.github.com/rjagerman/AT3

42

http://www.github.com/rjagerman/AT3/

Appendix B

Dependency graph of AT3

kivy

openssl

m2crypto

anon-
tunnel

dispersy

boost

libtorrent

pycryptonetifaces

setuptools

Tribler

pythonhostpython

twisted

zope

Figure B.1: The dependency graph of the AT3 application

43

Appendix C

Original project description

Project description[1]

In this project, a prototype of an anonymous P2P-based video-on-demand mobile application
will be realized, that will allow users to search for videos on the Internet. Once the user has
found a video to his or her liking, and issued a play command, the application will play the video
by means of streaming it through a P2P-based network. TOR is the market leading solution for
anonymous web access. The Tribler team has created a P2P implementation of the TOR prototo-
col and enhanced it with NAT puncturing and decentralized the directory service. Your task is to
take the existing operational Python code, initial Android code and make it ready for deployment
towards the Google Android Play app marketplace. Challenges are getting M2Crypto crypto li-
braries operational, Python wrappers, VLC playback integration, multi-device compatibility and
User Interface realization.

44

Appendix D

Compiling libtorrent

On of the major goals of our project was to create a stable version of libtorrent capable of running
on an Android device. To do this, we have to cross compile libtorrent for Android which contains
an ARM chipset. To compile libtorrent, we make use of a custom toolchain we created from the
tools that are bundled with the Android NDK.

D.1 Setting up the environment

To cross compile libtorrent for Android, we first need to create a custom toolchain. Before we do
that, please make sure you have the Android NDK and SDK installed. We compiled with NDK
r9d 32-bit and we also installed SDK version 14. We are not sure whether other versions of the
NDK / SDK are working. The compilation has been executed on a 64-bit Ubuntu 14.04 machine.
Please note that if you are compiling on a 64-bit machine, you need some 32-bit support packages
which can be installed with the following command.

sudo apt−get i n s t a l l ia32− l i b s

This should install the required 32-bit libraries needed for the cross-compilation. The next step
is to install Python for Android because we need the Python library from it. We cannot use the
Python distribution the system is using because that is compiled for an incompatible architecture.
The Python for Android framework comes with a distribute script that creates a distribution with
the supplied libraries. Executing the following commands from the Python for Android folder
should build the Python distribution that will eventually run on the device.

export ANDROIDSDK=’<path to your SDK f o l d e r >’
export ANDROIDNDK=’<path to your NDK f o l d e r >’
export ANDROIDNDKVER=r9d
export ANDROIDAPI=14
. / d i s t r i b u t e . sh −m kivy

An additional step is required: copy the pyconfig.h file to the Include folder in the build
directory of pythoninstall/Python2.7.2. This file is required by the compilation process of the
Python bindings.
The next step is to install the custom toolchain we create from the Android NDK. Execute
the following command. Your toolchain location can be anywhere on the computer but it is
recommended to install it in a location where you can access it easily.

<path to your NDK f o l d e r >/bu i ld / t o o l s /make−standalone−t o o l c h a i n . sh \
−−plat form=android−14 −− i n s t a l l −d i r=<your new t o o l c h a i n l o ca t i on>

This command should generate a custom toolchain in the location specified by the install-dir
argument.

45

Several export variables are required for compiling Boost and libtorrent, these are listed below.
The $ANDROIDNDK variable should already be defined from the previous steps.

Custom paths
export ANDROIDNDK=’<path to your NDK f o l d e r >’
export SYSROOT=$ANDROIDNDK/ plat fo rms / android−14/arch−arm
export PYTHON= \
<path to your Python f o r Android>/bu i ld /python/Python−2.7.2/ hostpython
export PYTHON CPP FLAGS= \
”−I<path to your Python f o r Android>/bu i ld /python/Python−2.7 .2 \
−I<path to your Python f o r Android>/bu i ld /python/Python−2.7.2/ Inc lude ”

Custom ARM t o o l c h a i n
export SYSROOT=$ANDROIDNDK/ plat fo rms / android−14/arch−arm
export PATH=/usr / l o c a l /gcc−4.8.0−arm−l inux−andro ideab i / bin :$PATH
export CC=arm−l inux−androideabi−gcc
export CXX=arm−l inux−andro ideabi−g++
export CROSSHOST=arm−l inux−andro ideab i
export CROSSHOME=/usr / l o c a l /gcc−4.8.0−arm−l inux−andro ideab i

It is recommended to create a shell script file with these exports and load it using the source
command.
You should now have a custom toolchain ready to be used and the right environment variables set
up.

D.2 Compiling Boost

Libtorrent is using the Boost library for threading and memory management. This means that we
first need to cross compile Boost for Android. The Boost for Android project on GitHub looked
promising but we decided to use our custom toolchain and manually compile Boost so we have
more control over the compilation process. First, download the official Boost source code and save
it to your computer (we used Boost 1.55). Navigate to the folder containing Boost and execute
the following command.

. / boots t rap . sh

This command will execute the bootstrap and configures the Boost building environment for
the compilation. Libtorrent is using shared pointers that are using spinlocks, however, these
spinlock shared pointers are not working correctly on embedded devices. To disable spinlock
mechanics, some additional compilation flags are needed. Edit the user config.jam file in your
Boost directory, located in build/tools/v2 to contain the following:

us ing gcc : android : arm−l inux−androideabi−g++ :
<comp i l e f l ag s>−DBOOST SP USE PTHREADS
<comp i l e f l ag s>−DBOOST AC USE PTHREADS

;

Now we can build the required Boost libraries with b2.

. / b2 t o o l s e t=gcc−android a r c h i t e c t u r e=arm l i n k=s t a t i c thread ing=mult i \
−−with−system −−with−f i l e s y s t e m −−with−python i n s t a l l \
−−p r e f i x=<path to your custom too l cha in>

The b2 command builds and installs the system, filesystem and Python libraries in the directory
specified by the prefix. We create a static library with support for multithreading. The include
files and binaries are copied to your custom toolchain.
At this point, Boost should be installed in your custom toolchain. Please verify the presence of

46

Boost in your toolchain because these files are needed for the compilation of libtorrent in the next
step.

D.3 Compiling libtorrent

With the Boost libraries compiled and in place, we are now able to compile libtorrent. First
download the official libtorrent-rasterbar library from their website [12]. At time of writing, the
second release (RC2) candidate of libtorrent is used. Navigate to the folder where libtorrent is
located and execute the following command:

. / c o n f i g u r e −−host=$CROSSHOST −−p r e f i x=$CROSSHOME \
−−with−boost=$CROSSHOME −−with−boost− l i b d i r=$CROSSHOME/ l i b \
−−enable−s t a t i c −−d i sab l e−shared −−enable−debug −−enable−l o gg ing \
−−enable−python−binding

This command configures the makefiles and configuration scripts. We specify that we are using
our Android host and we tell the script where Boost can be found. We also specify that we are
creating a static library and not a shared library. Debug symbols and logging are turned on and
we pass the enable-python-binding flag to the script so we can use the libtorrent library in Python.
We also need to set compiler flags again so Boost is not using the spinlock mechanics.

export CFLAGS=”−g −DBOOST SP USE PTHREADS −DBOOST AC USE PTHREADS”
export CXXFLAGS=$CLFAGS

Libtorrent is now ready to be compiled. Execute the following commands to start the compilation
process.

make c l ean
make
make i n s t a l l

For faster execution, you can pass the j flag to compile on multiple cores. For instance, if your
computer has four cores, you can execute make -j 4 to speed up the compilation process.
The libtorrent shared object file is now located in your custom toolchain and is ready to be used in
Python for Android or other (Android) applications. We have created our own recipe that copies
the precompiled library to the site-packages directory of Python for Android. Due to limitations
in time, the compilation process is not executed in our recipe script.
The final libtorrent shared object file can also be used in a native Java Native Interface (JNI)
application however, to decrease the final application size, it is recommended to leave out the
Python bindings. Compilation without the Python bindings can be achieved by leaving out the
enable-python-binding flag when running the configuration script of libtorrent. When compiling
Boost, the with-python flag is not necessary anymore.
A basic JNI application that loads and uses libtorrent can be found on our GitHub repository we
created for this purpose [3].

47

Bibliography

[1] Bepsys anonymous hd video streaming for tablets. http://bepsys.herokuapp.com/

projects/view/4. Accessed: 2014-06-18.

[2] Forbes android dominates market share, but apple makes all the
money. http://www.forbes.com/sites/tonybradley/2013/11/15/

android-dominates-market-share-but-apple-makes-all-the-money/. Accessed:
2014-04-29.

[3] GitHub hellolibtorrent, a sample project using libtorrent for android. https://github.com/
rjagerman/HelloLibtorrent. Accessed: 2014-06-18.

[4] GitHub me too crypto. https://github.com/martinpaljak/M2Crypto. Accessed: 2014-04-
29.

[5] GitHub the global square. https://github.com/GlobalSquare. Accessed: 2014-04-29.

[6] GitHub tribler pull request #525. https://github.com/Tribler/tribler/pull/525. Ac-
cessed: 2014-04-29.

[7] Google live encoder settings, bitrates and resolutions. https://support.google.com/

youtube/answer/2853702?hl=en. Accessed: 2014-06-16.

[8] Google play instagram. https://play.google.com/store/apps/details?id=com.

instagram.android. Accessed: 2014-05-12.

[9] Google play whatsapp messenger. https://play.google.com/store/apps/details?id=

com.whatsapp. Accessed: 2014-05-12.

[10] Openssl website. http://www.openssl.org. Accessed: 2014-04-29.

[11] Roarmag the global square: an online platform for our movement. http://roarmag.org/

2011/11/the-global-square-an-online-platform-for-our-movement/. Accessed: 2014-
04-29.

[12] Sourceforge libtorrent rasterbar. http://sourceforge.net/projects/libtorrent. Ac-
cessed: 2014-06-18.

[13] David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

[14] Roger Dingledine and Steven J Murdoch. Performance improvements on tor or, why tor is slow
and what we’re going to do about it. Online: http://www. torproject. org/press/presskit/2009-
03-11-performance. pdf, 2009.

[15] David M Goldschlag, Michael G Reed, and Paul F Syverson. Hiding routing information. In
Information Hiding, pages 137–150. Springer, 1996.

48

http://bepsys.herokuapp.com/projects/view/4
http://bepsys.herokuapp.com/projects/view/4
http://www.forbes.com/sites/tonybradley/2013/11/15/android-dominates-market-share-but-apple-makes-all-the-money/
http://www.forbes.com/sites/tonybradley/2013/11/15/android-dominates-market-share-but-apple-makes-all-the-money/
https://github.com/rjagerman/HelloLibtorrent
https://github.com/rjagerman/HelloLibtorrent
https://github.com/martinpaljak/M2Crypto
https://github.com/GlobalSquare
https://github.com/Tribler/tribler/pull/525
https://support.google.com/youtube/answer/2853702?hl=en
https://support.google.com/youtube/answer/2853702?hl=en
https://play.google.com/store/apps/details?id=com.instagram.android
https://play.google.com/store/apps/details?id=com.instagram.android
https://play.google.com/store/apps/details?id=com.whatsapp
https://play.google.com/store/apps/details?id=com.whatsapp
http://www.openssl.org
http://roarmag.org/2011/11/the-global-square-an-online-platform-for-our-movement/
http://roarmag.org/2011/11/the-global-square-an-online-platform-for-our-movement/
http://sourceforge.net/projects/libtorrent

[16] Richard Grisenthwaite. Armv8 technology preview. http://www.arm.com/files/

downloads/ARMv8_Architecture.pdf, 2011.

[17] Rolf Jagerman, Wendo Sabée, Laurens Versluis, Martijn de Vos, and Johan Pouwelse (course
supervisor). The fifteen year struggle of decentralizing privacy-enhancing technology. CoRR,
abs/1404.4818, 2014.

[18] Jon McLachlan, Andrew Tran, Nicholas Hopper, and Yongdae Kim. Scalable onion routing
with torsk. In Proceedings of the 16th ACM conference on Computer and communications
security, pages 590–599. ACM, 2009.

[19] Jun Yang. Smartphones in use surpass 1 billion, will dou-
ble by 2015. http://www.businessweek.com/news/2012-10-17/

smartphones-in-use-surpass-1-billion-will-double-by-2015, 2012. Accessed:
2014-06-17.

[20] Niels Zeilemaker, Boudewijn Schoon, Johan Pouwelse, Rahim Delaviz Aghbolagh, Niels Zeile-
maker, Johan Pouwelse, Dick Epema, Niels Zeilemaker, Mihai Capota, Arno Bakker, et al.
Dispersy bundle synchronization. IFIP Networking 2013, 4820:203–214, 2013.

49

http://www.arm.com/files/downloads/ARMv8_Architecture.pdf
http://www.arm.com/files/downloads/ARMv8_Architecture.pdf
http://www.businessweek.com/news/2012-10-17/smartphones-in-use-surpass-1-billion-will-double-by-2015
http://www.businessweek.com/news/2012-10-17/smartphones-in-use-surpass-1-billion-will-double-by-2015

	Abstract
	Preface
	Introduction
	Problem Definition
	Motivation
	Tribler Play
	Android

	Prior Work
	Python for Android
	Tor
	Tribler
	Downloading files
	Anonymous tunnels
	Security
	Dispersy

	The Global Square

	Software architecture
	Scrum iteration 1: creating a basic application
	Goals
	Python for Android
	Porting the anonymous tunnels to Android
	Attempt to compile libtorrent for Android
	Source code modifications
	Boost Jam
	Automake

	Creating a Graphical User Interface with Kivy
	Sprint evaluation

	Scrum iteration 2: unit testing, relaying and libtorrent
	Goals
	Jenkins
	Libtorrent
	Testing libtorrent with a simple application
	Compiling Python bindings
	Segmentation faults on other devices

	Downloading over the anonymous tunnels
	Shell script unit tests
	Sprint evaluation

	Scrum iteration 3: stabilizing libtorrent and experiments
	Goals
	Application tests
	RUTracker libtorrent
	Python bindings

	Libtorrent RC2 progress
	Updating the Tribler package
	Relaying and downloading over multiple hops/multiple circuits
	Sprint evaluation

	Experiments
	Theoretical analysis
	Required bitrate
	Factors that impact the download speed

	Set-up
	Measurements
	Conclusion

	Our contributions to the open source community
	Python for Android
	Libtorrent
	Tribler

	Conclusion
	Future work
	Reflections
	Reflection Rolf
	Reflection Laurens
	Reflection Martijn

	Plan of Action
	Assignment
	Assignment
	The client
	Contacts
	The final product
	Requirements and risks

	Approach
	Scrum methodology
	MoSCoW
	Tools
	Planning

	Project structure
	Members
	Reporting

	Quality assurance
	Testing
	Code review
	Version control

	Dependency graph of AT3
	Original project description
	Compiling libtorrent
	Setting up the environment
	Compiling Boost
	Compiling libtorrent

