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Abstract—The question “Can big data and HPC infrastructure
converge?” has important implications for many operators and
clients of modern computing. However, answering it is challeng-
ing. The hardware is currently different, and fast evolving: big
data uses machines with modest numbers of fat cores per socket,
large caches, and much memory, whereas HPC uses machines
with larger numbers of (thinner) cores, non-trivial NUMA
architectures, and fast interconnects. In this work, we investigate
the convergence of big data and HPC infrastructure for one of
the most challenging application domains, the highly irregular
graph processing. We contrast through a systematic, experimental
study of over 300,000 core-hours the performance of a modern
multicore, Intel Knights Landing (KNL) and of traditional big
data hardware, in processing representative graph workloads
using state-of-the-art graph analytics platforms. The experimen-
tal results indicate KNL is convergence-ready, performance-wise,
but only after extensive and expert-level tuning of software and
hardware parameters.

I. INTRODUCTION

Currently, the HPC and big data communities are not
convergent [1]: they operate different types of infrastructure
and run complementary workloads. As computation demand
and volumes of data to be analyzed are constantly increasing,
the lack of convergence is likely to become unsustainable:
the costs of energy, computational, and human resources far
exceed what most organizations can afford. The community
has started to address the software convergence problem,
discussing joint HPC-big data software-stacks [1], [2], [3],
proposing techniques for software-integration [4], and aug-
menting big-data software-frameworks with efficient HPC
libraries [1], [5], [6]. We envision a form of deep convergence,
across both the software level and the infrastructure level.
However, the case for deep convergence needs pragmatic
arguments. Addressing the lack of performance studies for
the deep convergence problem, in this work we conduct
the first performance study of processing a representative
workload on big-data software-platforms running on modern
HPC infrastructure.

In our vision, the deep convergence of HPC and big data
entails defining common software and hardware ecosystems,
catering to the needs of both worlds. This could enable:
(1) efficient operation of software and hardware, which is
currently available only to the HPC community, for a wider-
audience including the big data community, (2) sustainable
development of new solutions, addressing the human-resource
scarcities affecting both communities, and (3) innovation,
especially for more efficient software-and-hardware solutions,

exploiting the full capability of modern hardware, and avoiding
the consequences of lack of convergence already observed by
practitioners [5], [6], [7].

To address the convergence problem, the community
focuses already on porting big-data software to HPC-
infrastructure [4], or, conversely, porting and integrating HPC-
software into big-data infrastructure [1], [5], [6]. These al-
ternatives pose research and engineering challenges related
to portability: not only code has to be re-written for new
hardware, but also intricate software parameter tuning and
customization must be performed. (The alternative explored
in this work only requires the latter.) We see an emerg-
ing alternative: deploying big-data software directly to HPC-
hardware. To this end, we see KNL [8], the de-facto processor
for three of the top ten Top500 [9] systems, as currently an
important representative of an emerging class of processors.
That is, with massively parallel multicore and high-bandwidth
on-chip memory, but also with full x86-compatibility, and self-
booting and reconfiguration capabilities that allow supporting
efficiently different workloads.

Moreover, KNL, and HPC-friendly processors (e.g., Sun-
way, BlueGene PowerPC) are highly representative for the
top ten of the Top500, and significantly different from typical
processors in big data (i.e., the Intel Xeon family). KNL
is designed for HPC-like workloads, but is also functionally
capable to run big-data software, out-of-the-box. What remains
unknown is if relevant big-data workloads can run with good
performance on a KNL-based infrastructure. As discussed in
Section VI, previous performance studies of first-generation
Intel MICs explore much of the performance-space, but KNL
has a significantly different architecture and its performance-
space remains largely unexplored beyond HPC.

To answer the question Can big data and HPC infras-
tructure converge?, we propose in this work to take a first
step toward understanding the performance of KNL-based
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Fig. 1. Diverse performance results in the hardware-software parameter space
of (a) GraphX, (b) Powergraph, and (c) GAP, running on KNL or Xeon.
(Dataset: DFB79. Workload: PageRank. Vertical axes differ.)



infrastructure, focusing on processing power, for an important
class of applications that lie at the intersection of big-data and
HPC: graph analytics. Although both the HPC and the big data
fields are vast, with many more workload categories, our study
takes a needed step in an otherwise under-explored direction
that could apply to many existing distributed ecosystems [10].
Therefore, for the scope of this article we restrict our study to
graph processing. Graphs already represent data in a variety
of application domains (see Section III-B), and are currently
processed with various generic and x86-compatible big-data
solutions (e.g., GraphX [11], Powergraph [12], Apache Gi-
raph [13]), and with performance-centric HPC solutions (e.g.,
CuSHA [14] and Gunrock [15] on GPUs, Polymer [16] on
multi-core NUMA architectures).

In this work, we explore the performance-interaction be-
tween KNL and graph-processing platforms (wide range of
interactions, exemplified by Figure 1). This is a highly com-
plex endeavor: the community has firmly established that per-
formance depends non-trivially on the interaction of software-
platform, algorithm, and dataset (“the PAD triangle”) [17],
[18], [19], [20]. Additionally, we identify that running graph-
processing workloads on KNL-based infrastructure adds a
hardware dimension of complexity, to form the hardware-
platform-algorithm-dataset (HPAD) performance-space.

To this end, we contrast the performance achieved by KNL
and by typical big data processors (e.g., the Intel Xeon-family).
The impact of the H-dimension (the hardware parameter-
space) is suggested by the much wider range of performance
results for KNL-based than for Xeon-based deployments,
which Figure 1 summarizes and Section V-A explains. Overall,
the figure shows evidence that ill-chosen configurations for
the hardware and software parameters can generate a wide
range of workload response times; this indicates difficulties
for performance portability.

Toward qualitatively and quantitatively assessing the practi-
cality of HPC and big data convergence for graph processing,
we make in this work a five-fold contribution:
1) We propose a method for analyzing the performance of

modern graph-processing platforms on KNL-based infras-
tructure (Section III). Our experimental method uses sen-
sitivity analysis to explore the impact of the entire HPAD
performance-space. To account for advances in graph-
processing, the method explores three classes of platforms.

2) We design, around the method at point 1, a practical, yet
comprehensive process to conduct a comparative perfor-
mance study of graph processing using KNL- and Xeon-
based infrastructure (Section IV). We use state-of-the-art
workloads, datasets, and software for graph analytics.

3) We use the practical process at point 2 to quantify and
explore the large hardware parameter-space of the In-
tel KNL, and to showcase its interaction with the PAD
triangle (Sections V-A for un-tuned and V-F for tuned
platforms). Our analysis navigates the complex parame-
ter space of hardware-software interaction, using about
300,000 compute-core hours (significantly less than the
exponential design).

4) We present guidelines for tuning representatives of the
three classes of graph-processing platforms considered in
this work (Sections V-B, V-C, and V-D). We identify, for
each representative, critical parameters and their values for
achieving good performance on the KNL, when running
state-of-the-art graph-analytics platforms.

5) We study and compare the strong scaling of the three
classes of graph-processing platforms (Section V-E). We
find strong scaling where it exists, and identify an important
challenge for performance engineering.

II. HARDWARE FOR GRAPH PROCESSING

In this section, we present a comparative analysis of hard-
ware typically used for graph-processing platforms across
big data and HPC. We further present Intel KNL, the HPC
hardware that could bridge the big data-HPC gap.

A. Big Data Hardware for Graph Processing

We investigate what is the typical software-hardware for
graph processing, in big data ecosystems. To find this, we
conduct a systematic survey of distributed graph-processing
platforms. We choose the most highly-cited, community- and
industry-driven, platforms of the previous 8 years, published
in top-tier venues (data source: Google Scholar).

Table I summarizes our findings, in chronological order. The
entries marked “—” are either not specified by the authors, or
cannot be inferred due to virtualization. We find that the most
cited community-driven graph processing systems are Pow-
ergraph, GraphX, Giraph (highly tailored towards addressing
Facebook’s needs [21]), and GraphMat. Further, we identify
two industry-driven platforms: PGX.D (Oracle) and SystemG
(IBM). With the exception of SystemG, all selected platforms
were published in top-tier venues, such as VLDB, SC, and
OSDI. We find that the typical big-data hardware is represented
by general purpose, x86-based commodity CPUs, with modest
numbers of fat cores per socket, large L3 caches, and large
amounts of memory per core. Memory is the resource with
the fastest increasing trend.

B. HPC Hardware for Graph Processing

To determine HPC software-hardware commonly used for
graph processing, we conduct a similar survey: we search
for the most highly-cited publications of graph-processing
platforms in the HPC domain.

Our study reveals that the highest-cited HPC approaches
for graph processing are: Medusa [25], Gunrock [15],
CuSHA [14], Totem [26], Polymer [16], and Mosaic [27]. We
find that the most commonly used hardware for HPC graph
analytics is massively parallel, using high-speed interconnects,
and/or with intricate NUMA hierarchies. Such hardware is pri-
marily designed to achieve high peak performance (hundreds
of GFLOPS or TFLOPS) for compute-intensive applications.
However, due to the constant increase in memory bandwidth,
these platforms also provide good performance for highly-
dynamic, memory-intensive big-data applications.



TABLE I
GRAPH-PROCESSING PLATFORMS AND HARDWARE USED IN PEER-REVIEWED WORK. (THE SYMBOL ‘—’ DENOTES UNAVAILABLE INFORMATION.)

System
Citations

(March ’18)
Year Developer Sockets

Cores/
socket

Cache Memory Architecture

Powergraph [12] 869 2012 Community 2 4 12 MB (L3) 30 GB Intel Xeon
GraphX [11] 482 2014 Community — 8 — 68 GB Virtualized, Amazon EC2
Giraph [21] 121 2015 led by Facebook — 16 — — —
GraphMat [22] 69 2015 led by Intel 2 12 30 MB (L3) 60 GB Intel Xeon
PGX.D [23] 35 2015 Oracle 2 8 20 MB (L3) 256 GB Intel Xeon
SystemG [24] 0 2018 IBM 4 24 8/16 MB (L3/L4) 2 TB IBM S824L, PowerPC

Fig. 2. KNL architecture. (Adapted from [8, p. 143].)

C. Convergence and the Intel KNL

We identify two options to achieve HPC and big data
convergence for both hardware and software: (1) porting HPC
software to big data hardware and (2) porting big data software
to HPC hardware, yet none of these approaches is feasible
without expert knowledge and engineering effort, mainly due
to divergent infrastructure. Until recently, HPC infrastructure
was not prepared to execute general-purpose big data software
out-of-the-box; when porting is attempted, significant research
and engineering efforts are required, not only for code re-
writing, but also for parameter tuning (e.g., porting Spark on
GPUs [28]). Similarly, highly-specialized, highly-tuned HPC
software, typically written for different kinds of accelerators,
is incompatible with regular big-data hardware without signif-
icant effort invested in porting and tuning.

Due to emerging hardware, such as Intel’s Knights Landing
(KNL) architecture, it is now possible to directly run big data
software on HPC hardware. KNL is a hybrid many-core, with
up to 72 thin cores on a single socket, 4 hyperthreads per
core, a large, fast on-chip memory (16GB) and wide (512B)
vector registers. Despite its HPC features, KNL can execute
general-purpose x86 code, and is capable of self-booting and
running an operating system. As such, big-data graph analytics
platforms are directly portable to KNL, cutting down the
software re-writing efforts, but still leaving large hardware
and software parameter space to be explored. This portability
makes Intel KNL a prime candidate for exploring big data and
HPC convergence. Therefore, in this work, we conduct the
first comprehensive performance study on the implications of
running representative graph-processing workloads on big-data
software-platforms, on Intel KNL.

KNL Architecture. Figure 2 presents the Intel KNL archi-
tecture. The processor is composed of up to 36 2-core tiles (38

physically printed on die, 2 disabled), interconnected by a 2D
mesh. Each core is able to run 4 hardware threads and contains
2 vector processing units (VPUs), able to perform 512-bit
SIMD operations. Pairs of cores on a tile share a 16-way
associative 1MB L2 cache and a caching home-agent (CHA),
which is a distributed tag directory for cache coherence.

High-bandwidth MCDRAM. KNL is equipped with a
16GB high-bandwidth multi-channel dynamic random access
memory (MCDRAM), connected to the chip via the EDC
controller. The MCDRAM is capable of achieving bandwidths
of over 400GB/s. However, as reported by Ramos and Hoe-
fler [29], its latency is higher than system DRAM, due to the
multiple hops generated by the distributed tag directory.

Clustering and Memory Modes. At boot time, the KNL
user can select from a number of clustering and memory
modes [8]. The former refer to how memory lines are mapped
in the distributed tag directory of the L2 cache, while the latter
refer to how the on-chip MCDRAM is exposed to the user.
The clustering modes operate as follows:
1) All-to-all (A): addresses are hashed uniformly over
all CHAs. This scheme delivers uniform performance for all
memory accesses, irrespective of thread placement.
2) Quadrant (Q): the 2D mesh is split into four regions
which are spatially local to groups of memory controllers.
Memory accesses are guaranteed to be served by a tag
directory local to the quadrant, thus reducing latency.
3) Hemisphere (H): similar to Quadrant, but the mesh is
split spatially into two regions.
4) SNC-4 (S4): mode is similar in behavior to Quadrant,
but it also exposes the 4 partitions as NUMA nodes to the
operating system, allowing NUMA-aware optimizations.
5) SNC-2 (S2): similar to SNC-4, but with 2 regions.

The memory modes operate as follows:
1) Flat (F): the MCDRAM is exposed as a separate
NUMA node. In this setup, the user decides (through the use
of software libraries or numactl) where the program memory
is allocated: in the system memory or in the MCDRAM.
2) Cache (C): the MCDRAM acts as a last-level cache
between the KNL and the system DRAM. In this setup, the
entire address space of the DRAM is cached transparently into
the MCDRAM, without the intervention of the programmer.
3) Hybrid (H): the MCDRAM is partitioned into a cache
region and flat region, exhibiting the properties of the C and
of the F modes, respectively.



III. METHOD FOR ASSESSING PERFORMANCE IN MODERN
GRAPH PROCESSING

In this section, we present our method for analyzing the
performance of graph-processing platforms on Intel KNL.
Our method is experimental in nature and aims to quan-
tify the entire hardware-platform-algorithm-dataset (HPAD)
performance-space (Section III-A). To this end, our method
is based on sensitivity analysis: comprehensive parameter tun-
ing and experimental exploration, and state-of-the-art datasets
(Section III-B) and workloads (Section III-C). We also propose
a conceptual framework to describe modern graph-processing
platforms, with three classes (Section III-D). Overall, our
method focuses on quantifying the impact of KNL’s hardware
complexity on the performance of different classes of graph-
processing platforms.

A. Exploring the HPAD Performance-Space

Several studies [18], [19], [20] show that characterizing
the performance of graph-analytics performance is complex:
performance depends, non-trivially, on the platform-algorithm-
dataset interaction (the PAD triangle). Running graph process-
ing workloads on KNL adds the hardware (H) dimension to
the complexity of the problem. Thus, in contrast to previous
studies, in this work we focus on empirically quantifying the
complexity of the entire HPAD space.

Our main method adds to the state-of-the-art PAD analy-
sis a sensitivity-analysis of the hardware-related parameters,
extracted from KNL’s hardware features (Section II-C). By
design, this sensitivity analysis will help uncover other, non-
trivial KNL parameters that impact the performance of graph-
analytics platforms, further allowing us to characterize the
HPAD interaction. We highlight our main findings regarding
these parameters, which implicitly indicate the interactions of
the H and PAD dimensions, in our evaluation (Section V).

B. PAD: Graph-Processing Datasets

Graphs are powerful abstractions that enable rich data anal-
ysis. Such analyses range from traditional graph algorithms
(e.g., graph search, shortest paths, transitive closures), to
modern machine learning [30] and to deep learning on graph
data [31]. Such large variety of datasets and workloads lever-
age a high societal impact. Graph processing has been used
for combating human trafficking [32], monitor wildfires [33],
study the human brain [34] and drug discovery [35].

A recent study [36] from Broido and Clauset presents evi-
dence that scale-free networks are rare. This finding is in con-
trast with typical graph datasets used in practice to assess the
performance of graph analytics systems, which are generally
scale-free, powerlaw datasets, such as the Graph500 [37], or R-
MAT [38]. To align with the finding of Broido and Clauset, we
curate our input datasets and consider both scale-free and non-
scale-free graphs. For the former, we use Graph500 datasets,
while for the latter we use Datagen [39], [40] graphs, which
closely follow real-world social networks structure, through
modeling the communities that emerge in social networks.

Fig. 3. Difficulty of use vs. Performance for graph processing platforms: the
closer to the hardware, the more difficult to use, and especially to port.

C. PAD: Graph-Processing Workloads

Although graph analytics workloads are extremely diverse,
they are highly challenging from a computational perspec-
tive. First, a vast majority of these algorithms perform little
computation, rendering them heavily memory-bound. Second,
they require traversing links between graph entities, which
leads to irregular memory access patterns. This irregularity
is challenging in massively parallel or distributed setups, as
it leads to low bandwidth utilization [41], large amounts of
cache misses [18], and network communication [42]. The exact
impact of such behavior on the observed performance depends
heavily on the algorithm and its internal data structures and
representation (e.g., edge lists, adjacency lists, sparse matrices
and their storage formats), on the programming model (e.g.,
Pregel, GAS [12], sparse matrix operations [43]), on the
dataset [44], and even on the partitioning scheme [45].

In this work, we build upon comprehensive performance
analysis work such as GAP [46], [41], and LDBC Graphalyt-
ics [19], which uncover through diverse tests the intricacies of
understanding the performance of graph-analytics platforms.
They both consider a varied portfolio of workloads, and their
common subset is used in this study.

D. PAD: Graph-Processing Platforms

To address the growing diversity of graph datasets and
graph analysis problems, developers and system integrators
have created a large variety of graph-processing platforms,
tailored to specific needs and use-cases. We have analyzed
representative graph-processing platforms, popular in both
industry and academia, to understand their main features,
performance behavior, and difficulty of use. This analysis
lead us to identify three main classes of graph-processing
platforms: (1) managed multi-node, (2) native multi-node, and
(3) low-level single-node implementations; their behavior is
presented in Figure 3 and detailed in the following paragraphs.

(1) Managed multi-node: These platforms run in a multi-
node managed environment, such as the Java virtual machine,
or Microsoft .Net, and are built to be easily portable, running
on most types of big data infrastructure. Common examples
include GraphX [11] and Giraph [13]. At such a high level
of abstraction, platforms cannot exploit underlying hardware



TABLE II
KNL VS. XEON MACHINES USED IN OUR EXPERIMENT DESIGN.

Xeon E5-2630v3 Xeon Phi 7230

Cores 16 (32 hyperthreads) 64 (256 hyperthreads)
Frequency (GHz) 2.4 1.3
Network 56Gbit FDR InfiniBand 56Gbit FDR InfiniBand
Memory 64GB DDR4 96GB DDR4
OS Linux 3.10.0 Linux 3.10.0

properties and therefore cannot be tuned to match the under-
lying hardware. Their tuning options focus on the high-level
mapping of model’s abstractions to a high-level, simplistic
model of the hardware platform, and are typically limited to
choosing the number of threads per worker, tweaking the data
partitioning per worker, or the file system block size.

(2) Native multi-node platforms run in a multi-node native
environment. They are typically programmed in C/C++, closer
to the hardware and inherently much harder to tune for a given
architecture than the managed platforms. Common examples
include Powergraph [12], GraphMat [22], and PGX.D [23].
Despite being closer to the hardware, such platforms are still
general enough to permit portability. Moreover, they promise
to achieve superior performance to managed platforms. Possi-
ble tuning options include choosing the appropriate numbers
of threads per worker, and pinning threads to cores.

(3) Low-level single node: These are single-node na-
tive platforms which are performance-oriented and include
architecture-dependent optimization [47]. As a consequence,
such implementations are able to exploit better the hardware
capability, leveraging good performance, but the programming
and tuning efforts are high and, more importantly, portability
is difficult to achieve. Common examples include: Graph-
BIG [18], CRONO [48], and GAP [46]. The performance
of such platforms is expected to be higher than that of
the (single-node) native platforms. Possible tuning options
include choosing the appropriate number of running threads,
changing pinning patterns, the choice of appropriate compiler
and enabling/disabling vectorization.

Our HPAD analysis covers all three classes of graph pro-
cessing platforms, by selecting one representative from each
class. For each representative platform, we compare KNL’s
performance against the reference, Xeon-based versions of
these platforms. Further, we correlate the platform tuning pa-
rameters to KNL’s hardware-related parameters, and leverage
our sensitivity-analysis to determine the most impactful ones.

IV. EXPERIMENT SETUP

In this section we describe our experiment setup, from
design to hardware, software, datasets, workloads, and metrics.

1) Experiment Design: To assess the practicality of big
data and HPC convergence, we design a comprehensive
experiment to evaluate and tune KNL’s performance (our
HPC-hardware platform) for representative graph-processing
software and workloads (our big-data software). Our empiri-
cal study features real-world workloads, as proposed by the
LDBC Graphalytics [19] and GAP [46] benchmark suites,
a total of 8 datasets (3 scale-free, 4 synthetic graphs that

TABLE III
SELECTED SOFTWARE PLATFORMS, ACCORDING TO SECTION III-D

TAXONOMY.

Platform Type Model Language Version

GraphX Managed multi-node Spark Scala 1.6.0
Powergraph Native multi-node GAS C++ 2.2
GAP Low-level single-node OpenMP C++ 1.0

closely model real-world network structures [36], and 1 very
large real-world network [49]), and three representative graph-
processing platforms (GraphX, Powergraph, and GAP). We
choose GraphX and Powergraph due to their popularity and ex-
tensive use (see: Table I). However, through the LDBC Graph-
alytics drivers, one could replace these two platforms with
other candidates. Regarding Low-level platforms, we selected
the reference implementation of the GAP benchmark which,
according to our tests, provides more stable behavior and
superior performance to alternatives such as GraphBIG [18]
and CRONO [48]. Table V summarizes our experiment design.
A full performance-space exploration would be too expensive:
our selected experiments, in Section V, spanned over 300,000
compute-core hours.

2) Workloads: The workloads we use are the intersection
of LDBC Graphalytics [19] and GAP [46] algorithms:
• Breadth-first search (BFS): for a given source, measures the

minimum number of “hops” to reach all vertices.
• Weakly-connected components (WCC): determines the

weakly-connected component each vertex belongs to.
• Single-source shortest paths (SSSP): for a given source,

computes the path of minimum cost to reach all vertices.
• PageRank [50] (PR): determines the rank of each vertex.

3) Metrics: In our experiments we report only processing
time (Tp), as it is generally the only parallel part, i.e.,
Powergraph and GAP perform single-threaded graph loading
and building.

4) Systems Software: Graph-processing software-platforms
depend on underlying systems software (e.g., compilers, vir-
tual machines, runtimes, libraries) to run efficiently. For native
platforms we used two compilers, icc (18.0.2, 15.0.4) and
gcc (6.4.0, 5.2.0), and Intel MPI 18.0.2 for message passing.
We found that performance varies between compilers, but the
impact of different compiler versions is minimal. Thus, for
GAP and Powergraph, the results presented in Section V are
the best results achieved with the icc compiler (unless oth-
erwise stated). For GraphX, we used Oracle JDK 1.8.0 162.

5) Hardware: We use two hardware plaforms (Table II):
KNL is our HPC hardware of choice for assessing the conver-
gence feasibility, while Xeon is representative for typical big
data hardware. The KNL clustering and memory modes used
in our experiments are depicted in Table V. We do not consider
the SNC-2 and Hemisphere modes, because their behavior is
similar to SNC-4 and Quadrant, respectively; we also do not
use the Hybrid memory mode since it is a mere combination
of Flat and Cache. All experiments except strong horizontal
scalability use single-node deployments.



TABLE IV
REAL-WORLD (FRI) AND SYNTHETIC DATASETS USED IN OUR

EXPERIMENT DESIGN.

Dataset Type Scale |V | |E|
Degree
distribution

DFB79 Datagen Small 1.4M 85.7M Facebook
DZF82 Datagen Medium 43.7M 106.4M Zipfian
DFB86 Datagen Large 5.7M 422.0M Facebook
DZF87 Datagen Large 145.1M 340.2M Zipfian

G24 Graph500 Medium 8.9M 260.4M Power law
G25 Graph500 Large 17.1M 523.6M Power law
G26 Graph500 Extra large 32.8M 1.1B Power law
FRI Friendster Extra large 65.6M 1.8B Real-world

6) Platform Tuning: We iteratively tuned the software
platforms’ parameters to get the best performance for both
KNL and Xeon. We employed a “guided parameter search”
with the human expert in the loop, as otherwise the cost and
time to run all possible configurations would be too high. For
all the experiments presented in this paper, including tuning,
we used over 300,000 compute-core hours. More than 80% of
this time was spent on the KNL, as the Xeon was much easier
to tune.

7) Relevance: We report performance results using the
guidelines of Hoefler and Belli [51]. For all experiments, we
have performed at least five repetitions. As we found that the
results are deterministic, with minimal variability for the same
parameters (below 5%), all our plots report averages and do
not include error bars.

V. GRAPH ANALYTICS ON KNL AND XEON

In this section we present the results of KNL and Xeon ex-
periments, based on the setup designed in Section IV. Table V
summarizes the goal and configuration of each experiment.
Our main findings are the following:
MF1 Convergence: for graph processing, the KNL-based in-

frastructure can deliver better performance than Xeon-
based infrastructure, per machine. This makes KNL a
candidate-part of converged HPC-big data infrastructure.

MF2 The H in HPAD: relatively to Xeon, the KNL introduces
the hardware-dimension for performance engineering: the
KNL clustering and memory modes impact significantly
and non-trivially the performance achieved for graph pro-
cessing. In particular, the platform-hardware interactions
are different across the three classes of platforms.

MF3 The H-P interaction: the platforms closer to the hard-
ware deliver better performance, in general, but require
significantly more and/or more complex tuning.

MF4 Tuning: to reach better performance than Xeon-based
infrastructure, the KNL-based infrastructure requires de-
tailed control over many system-parameters and extensive
effort (and, for native platforms, expertise). The tuning
results we present and guidelines we formulate should
inform practitioners.

MF5 Scaling: We find the following technical constraints and
affordances of KNL: (i) KNL exhibits strong vertical

scalability; (ii) KNL does not scale well horizontally; (iii)
CPU-intensive algorithms, such as PageRank, favor KNL
over typical big data hardware when scaling.

A. Quantifying the impact of the hardware parameter space

We start with the results from Figure 1 (Section I). To un-
derstand the range of performance results for the three classes
of graph-analytics platforms, we measure the performance of
each platform, across all hardware and software parameters
studied in this work (see Table V and Sections V-B–V-D),
when running on each of the hardware platforms. We only
use results obtained for single-node deployments.

Figure 1 summarizes the performance results, per software
platform and per hardware deployment, as “box-and-whiskers”
(that is, IQR box, median bar, min-max whiskers). The results
coalesce detailed performance results obtained for all config-
urable parameters (both software and hardware in the KNL
case, and only software in the Xeon case) of each platform,
which are first-class candidates for tuning the performance of
graph-analytics platforms. The ranges depicted in the figure
are larger for KNL-based deployments than for Xeon-based
deployments.

The results in Figure 1 indicate that, for KNL-based de-
ployments, an untrained practitioner or a naı̈ve deployment
can lead to either good or bad performance, anywhere in
the broad range of empirical results; whereas, for Xeon-based
deployments, the expected performance is much more stable
regardless of expertise. This gives evidence that the perfor-
mance range for KNL-based deployments (HPC-friendly) is
much broader than for Xeon-based deployments (typical big
data hardware). We conclude that the results of this analysis
support the main finding MF2.

B. Tuning GraphX

We tune in this section GraphX, a platform representative
for the managed multi-node class. Overall, we find that
performance is sensitive of all parameters we explore, which
supports MF3 and the KNL-related parts of MF4.

Workers and Threads. We vary the number of Spark
workers (w) per node, and of threads per worker (t), such
that w × t = 128. The value 128 is the best possible for a
conservative setup: using all 256 hardware threads of the KNL
results intermittently in either poor performance or crashes.
This is expected, and Spark best-practices [52] suggest not to
use all compute resources. Instead, some threads should be left
for the OS, the JVM garbage collector, or internal management
(e.g., of Spark, Hadoop, HDFS, and other components of the
big data ecosystem).

Figure 4a depicts the results. The best-performing setups
are, depending on the algorithm, 1× 128 (for SSSP and BFS)
and 2 × 64 (for WCC and PR). Because PR is especially
compute-intensive, we use the 2 × 64 configuration for all
further GraphX experiments (workload-dependent guideline).

Data Partitions. Spark data-structures (i.e., RDDs [53]) are
partitioned across workers, and the number of partitions gives
the maximum amount of parallelism a job can exhibit. A small



TABLE V
SUMMARY OF EXPERIMENTS CONDUCTED IN SECTION V.

Section Description Hardware Platform Algorithm Dataset Platform params. No. of Nodes

§V-A Exploring performance range All All All All All 1
§V-B Tuning GraphX KNL, mode Q GraphX All DFB79, G24 Various (see §V-B) 1
§V-C Tuning Powergraph KNL, mode Q Powergraph All All Various (see §V-C) 1
§V-D Tuning GAP KNL, mode Q GAP All All Various (see §V-D) 1
§V-E Exploring strong scaling All All All DFB79, G25 Best found through tuning 1,2,4,8
§V-F Exploring KNL modes KNL, All modes All All DFB79 Best found through tuning 1
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number of partitions can lead to underutilization, whereas a
very large number of partitions can lead to overhead. Figure 5
shows the impact of the number of partitions on performance,
for various graph-processing workloads. The results indicate
that BFS and WCC favor 256 partitions (2 per KNL core), but
PR favors 512 partitions (4 per KNL core).

We derive from these results a guideline: for graph process-
ing, set the number of partitions higher than typically for big
data, with a ratio closer to 4/core than to 1/core.

Block Size. In a big data ecosystem, Spark typically inputs
data from a distributed datasource, such as HDFS, where the
input is split into blocks. HDFS best-practices [54, p. 315]
suggest block-sizes of 64 or 128 MB. To understand the impact
of block-size on performance, we stored the input-graph in
HDFS, and varied the block size of the input-graph files (i.e.,
containing vertices and edges), from 8 MB to 256 MB.

Figure 6 compares the performance achieved by GraphX,
when running on KNL and on Xeon, with varying block-
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Fig. 6. GraphX block-size analysis, KNL vs. Xeon. Values in matrix represent
the ratio of runtimes, KNL:Xeon. Algorithm: WCC. Dataset: G24. (Higher
values are worse. For values above 1, KNL is slower than Xeon.)

sizes. The cells in the comparative matrix represent ratios
between the performance of KNL and of Xeon, for the block-
size configuration corresponding to the row and the column
of the cell, respectively. From the set of values in any row,
which take as numerator the same KNL performance-result
and as denominator the performance obtained for each config-
uration on Xeon, we conclude that the best Xeon configuration
is 256 MB, which falls outside recommended best-practices.
Similarly, from the values in any column, we conclude that
KNL performs best on non-intuitive block sizes, i.e., lower
than 32 MB. This can be attributed to the fine-grained paral-
lelism of the KNL: in contrast to Xeon, KNL is composed
of many thin cores. This leads to the general guideline of
reconsidering best-practices for setting block-sizes, for graph
processing.

The results show that, for block-sizes of at least 64 MB,
Xeon performance is superior to KNL. Similarly, for block-
sizes of at most 32 MB, KNL performance is superior to Xeon.
As a guideline, the performance of KNL with 8 MB blocks and
of Xeon with 64–128 MB blocks are comparable.

C. Tuning Powergraph

We tune in this section Powergraph, a platform representa-
tive for the native multi-node class. Overall, as in Section V-B,
we find performance sensitivity, and thus support for MF3 and
MF4. Additionally, we find in this section that uncommon
expertise in performance engineering is required to achieve
good performance.

Workers and Threads. We vary the amount of (MPI)
workers, and the number of threads per worker, up to a
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total of r = w × t = 256 running threads. Figure 4b plots
the results. As guideline, Powergraph on the KNL strongly
favors w = 1 MPI-process that spawns t = 256 worker-
threads. When all threads run within a single MPI process,
they communicate through shared memory. Otherwise, with
multiple MPI processes, communication is achieved via the
MPI communication library, which adds overhead.

Thread pinning. Powergraph implements a mechanism of
pinning pthreads to hardware threads. However, this option is
not enabled by default or enabled for the user. We needed to
do source-code modifications and a full recompilation to en-
able this option. Because native-platforms contain significant
amounts of intricate performance-related code, this operation
requires both general expertise in performance engineering
and in-depth knowledge of the platform (e.g., we have used
Powergraph for several years).

Figure 7 presents the speedup achieved when pinning
threads, relative to no-pinning (the denominator of the
speedup-ratio), for different configurations of workers and
threads (r = w×t = 256 running threads). The results exceed
expert intuition about the KNL: speedups vary between 10 and
approximately 50X. In contrast, on Xeon, pinning attains a
speedup of at most 10%. These results also show that pinning
attains larger speedups for graph workloads that perform more
computation, WCC and PR, but also that pinning brings
important performance gains for BFS and SSSP. This leads
us to a guideline: use thread-pinning for Powergraph on KNL.
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Powergraph KNL vs. Xeon. We compare the best-
performing configurations of Powergraph on KNL and on
Xeon, when processing increasingly larger graphs. Figure 8
plots the results. For the Datagen graphs (names start with
“D”), KNL performs better on those with a facebook degree-
distribution (names include “FB”), whereas Xeon performs
better on graphs with zipfian degre-distribution (names include

“ZF”). This can be attributed to the facebook distribution
graphs being much denser than the zipfian graphs, and hence
requiring more computation per vertex.

We conclude that, generally, KNL obtains better perfor-
mance for larger graphs and for workloads that perform
more work. For PR, Figure 8 gives evidence that KNL-based
deployments can result in better performance than Xeon-based
deployments, an argument for convergence (MF1).

D. Tuning GAP

We tune in this section GAP, a platform representative for
the native low-level class. Overall, as in Section V-B, we
find support for MF3 and MF4. Additionally, we find in
this section that the licensed compiler of Intel can provide
a significant advantage over the free gcc.

TABLE VI
TUNING GAP: IMPROVEMENT DUE TO DIFFERENT CONFIGURATIONS FOR

COMPILER, THREAD-PINNING, AND VECTORIZATION.

Dataset icc vs.
gcc

spread vs.
close

AVX512 vs.
novec

DFB86 0.86 0.92 0.90
DZF87 0.59 1.03 1.10

G25 0.79 0.97 0.90
G26 0.83 0.99 0.94

Ratios above 1 (in bold) favor the denominator.
Compiler, pinning, vectorization. Many performance engi-

neering techniques can be used on low-level platforms. We run
GAP with code generated in turn by one of several compilers
(e.g., Intel icc and GNU gcc), with various OpenMP pinning
strategies (e.g., spread and close are the only strategies fine-
grained enough, working per core), and with AVX512 vec-
torization enabled or disabled. We used multiple datasets and
compared the performance at full parallelism (i.e., r = 256
running threads). Table VI summarizes the results. The icc
compiler achieves significantly better performance, on all
datasets. Compared with Powergraph, pinning strategies offer
little variance in performance, likely due to using OpenMP.
Moreover, enabling AVX512 on the Intel icc compiler shows
a maximum improvement of only 10% over no vectorization.
This can be attributed to GAP not being implemented to fully
use the KNL wide-vector registers. For best performance, our
guideline is to perform comprehensive (auto)tuning for all
these parameters.

DFB
79

DZF
82

G25 DFB
86

DZF
87

G26 FRI

Dataset

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

R
a
ti
o

PR

WCC

BFS

SSSP

Fig. 9. Ratio of KNL:Xeon runtimes for GAP, when processing different
graph datasets. Graph sizes increase towards right. Lower ratios are better for
KNL-based deployments. Ratio values below 1 mean KNL-based deployments
are faster than Intel-based deployments.

GAP KNL vs. Xeon. Similarly to the last experiment in
Section V-C, we compare here the best-performing configu-



rations of GAP on KNL and on Xeon, on increasingly larger
graphs. Figure 9 plots the results.

For DZF82 and DZF87, KNL attains speedups of up to
2X (ratio down to 0.5). For the larger graphs, G26 and FRI,
KNL obtains even better performance, relatively to Xeon, for
all workloads. This is consistent to the many extra cores KNL
offers relatively to Xeon, and supports MF1.

From the Datagen graphs (names start with “D”), KNL
performs better on those with a zipfian degree distribution,
while Xeon performs better on the graphs with facebook
degree distribution. This is in contrast with the Powergraph
results, which leads to our conclusion that the HPAD relation-
ship is non-trivial and significant (MF2).

E. Strong Scaling

Strong scaling keeps the workload fixed while adding re-
sources. Here, we consider, in turn, strong vertical scaling
(adding cores inside the same machine) and strong horizontal
scaling (adding cores across multiple machines). Overall, we
find evidence of good scalability, but also some limitations to
it, across the platforms–support for MF5 and MF2.
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Fig. 10. Strong vertical scalability on KNL, exponentially increasing the
number of threads. Dataset: DFB79. (Horizontal axes differ across subplots.)

Strong vertical scaling. We experiment with all three
platforms, using the DFB79 dataset. We increase the number
of running threads, in powers-of-two starting from 4, up to 128
for GraphX, and up to 256 for Powergraph and GAP. Figure 10
depicts the results. We find that, whereas Powergraph and
GAP show excellent scaling behavior, GraphX attains limited
vertical scalability.

Strong horizontal scaling. We assess the strong horizontal
scaling behavior of GraphX and Powergraph, on KNL and
Xeon, for an experiment doubling the number of machines
gradually, from 1 up to 8. (GAP operates only single-node.
Experimenting at larger scales was not possible with the
environment to which we had access.)

Figure 11 plots the results. (Some workloads do not com-
plete their operation in one hour and, according to benchmark
specifications, are considered failed.) On GraphX, the KNL
is competitive on 1 machine for all workloads that complete,
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Fig. 11. Horizontal scalability analysis on KNL vs. Xeon running algorithms
WCC, BFS, PR. Points depict the ratio of KNL:Xeon runtime. Lower is better
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on 2 machines only for WCC, on 4 machines only for PR. In
contrast, for Powergraph, KNL is competitive on 1 machine
for all workloads, and on 8 machines only for WCC and PR.

Overall, the results indicate the guideline: expect poor
horizontal scaling. We attribute the poor performance to poor
use of the network. GraphX and Powergraph are not optimized
to exploit the KNL parallelism for network communication,
as they assume typical, fat-core, big data hardware. However,
the thin cores of KNL do not perform well on single-threaded
network communication. In our setup, using the InfiniBand
network, single-threaded point-to-point communication be-
tween KNL nodes suffers from an up to 3X reduction in
bandwidth and an up to 8X increase in latency, compared to
Xeon. We conclude that expert-level performance engineering
is required to compensate for this situation (MF2).

F. KNL Modes Analysis

Using all the expert performance-engineering (best practices
and parameter tuning discussed in the previous sections),
we perform a parameter sweep over six KNL modes for
GraphX, Powergraph, and GAP. Figure 12 summarizes our
findings. The platforms closer to the hardware, Powergraph
and especially GAP, achieve the best performance. GraphX
favors the flat memory-mode over all clustering modes. This
behavior suggests that GraphX accesses memory with very
irregular patterns and triggers large amounts of high-latency



accesses to the on-chip memory. In contrast, Powergraph
achieves better performance using the cache memory mode,
over all clustering modes. For GAP, the behavior is similar
to Powergraph. Over all platforms, the Quadrant clustering-
mode achieves best performance. The SNC-4 clustering mode
is not competitive, because none of the platforms are optimized
to take into account the NUMA topology. We conclude that
platform-performance relates differently and non-trivially to
the KNL modes (MF2).

VI. RELATED WORK

We survey in this section two bodies of related work:
studies on enabling big-data software-platforms to run on
HPC hardware, and performance engineering studies for KNL.
Overall, ours is the first performance study of graph-processing
platforms running on KNL-based infrastructure.

1) Big data software on HPC hardware: Few studies on the
efficiency of running big-data software on modern hardware
have emerged so far. For example, [55] focuses on the JVM,
and by extension on JVM-based platforms, showing they
are not efficient in using accelerators; [56], [6] show how
Spark should be carefully tuned and augmented when running
on HPC hardware. Moreover, [57], [58], [59] demonstrate
how to augment existing big-data platforms with additional
communication primitives to efficiently cope with HPC-like
infrastructure; [5] even presents a specific plugin to enhance
the performance of MapReduce on KNL-based clusters. All
these studies identify shortcomings of big-data software run-
ning on HPC infrastructure, but are limited in scope by the
targeted software and/or workload. Our study is significantly
broader, covering the whole domain of graph processing
through representative datasets and software platforms.

2) Performance engineering for KNL: Due to its promising
design and software flexibility, KNL’s performance has been
investigated in several studies. For example, [60], [61] ana-
lyze the performance- and power-consumption for scientific
kernels, [62], [63], [29] focus on the performance impact
of MCDRAM and the memory modes, and [64] investigates
networking performance. These studies focus on HPC mini-
apps and benchmarks with different characteristics from graph
processing. Our performance study fills this gap.

Multiple studies showcase KNL-specific performance-
engineering techniques, successfully applied to scientific ap-
plications, from molecular dynamics simulations [65] to seis-
mic simulations [66]. Applying similar techniques to graph-
processing kernels leads to significantly lower performance
gain [67], due to inherent features of graph processing work-
loads (see Section III). Our optimization strategies are less
intrusive, as we approach the performance analysis and tuning
problem from the perspective of a regular, non-expert user.

A single performance study presents a somewhat detailed
characterization of KNL’s performance for graph processing
workloads [68]. Our study is significantly more extensive in
scope, and much more comprehensive in depth: we use orders
of magnitude larger graphs, we analyze representatives from

all three classes of graph analytics platforms (instead of one),
and we add the complex, multi-node scalability analysis.

VII. CONCLUSION

“Can big data and HPC infrastructure converge?” is a
pressing and challenging problem of the HPC and big data
communities. The current approaches seem build-first, and
raise the daunting challenge of solving portability for a broad
domain. In contrast, in this work we have advocated an
understand-first approach, and conducted the first performance
study of graph processing (a representative big-data workload)
on big-data software platforms running on HPC infrastructure
based on KNL (which can run graph processing workloads
out-of-the-box). In other words, we investigate KNL as a
hardware platform to achieve HPC-big data convergence.

We have proposed a method for conducting performance
studies of graph processing running on KNL-based infrastruc-
ture. The method focuses on the complex HPAD performance
space, and on three classes of modern software platforms
for graph processing. Around this method, we have designed
a practical experiment-design, balancing the needs of explo-
ration with the pragmatic cost (hundreds of thousands of core-
hours). We have put the method and the experiment design
in practice, by conducting a comprehensive performance-
study of GraphX (as a representative of managed multi-node
platforms), Powergraph (native multi-node), and GAP (low-
level single-node) running on KNL-based infrastructure.

Our results show that:
MF1 Convergence: performance-wise, KNL is promising for

the HPC-big data convergence: compared to typical big-
data hardware, KNL achieves good performance, espe-
cially on larger input sizes.

MF2 The H in HPAD: we found that the HPAD concept
captures very well the performance-space of graph pro-
cessing on KNL.

MF3 The H-P interaction: we found that the closer the
platform is to the hardware, and the less general is
its programming model, the better its performance is.
We showed strong evidence that none of the tested
platforms can fully utilize the KNL hardware, requiring
performance engineering beyond mere tuning.

MF4 Tuning: we showed that each type of platform interacts
differently with the KNL hardware, and requires different
types of tuning.

MF5 Scaling: we found KNL shows poor horizontal strong-
scaling, in particular for the less CPU-intensive algo-
rithms.

We envision that, with some adaptations (e.g., parallelizing
the communication engine), graph processing could fully uti-
lize HPC hardware similar to KNL. A graph-processing plat-
form, if KNL-enabled, will have to better utilize wide-vectors,
make better use of the high-bandwidth on-chip memory, and
improve cross-machine communication. We plan to further
assess how other classes of big-data applications perform on
KNL processors with HPC-grade I/O-hardware [6], [69].
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