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ABSTRACT

The higher order boundafy element (HOBE) method is dis-
cussed in the context of a new formulation of the forward speed
problem. In particular, after reviewing the different forward
speed formulations considered in the literature a formulation
which includes the interaction of the steady and unsteady wave
systems is proposed. Since the proposed formulation assiimes
solution is possible using a Green Function Matching (GFM)
technique this method is investigated in the context of the zero
speed problem. The hmisphere—- and barge examples presented
will indicate the type and level of the different numerical prob-
lems to be overcome if the HOBE based GFM technique is to be
successfully applied to the proposed forward speed formulation.

INTRODUCTION

" The forward speed fluid-structure interaction analysis is re-
quired to analyse structures steadily advancing in an incident
wave gystem, and to provide improved predictions of the be-
haviour of moored structures in a random seaway [1]. For fine-
form ship structures the forward speed may be included implic-
itly using different strip-theory based methods [1,2,3]. However,
for moored ships the generalised strip-theory of reference (1] was
found to be inadequate for predicting the second order quantities
of added resistance and surge low frequency damping. For barges
and other offshore floating structures a general 3D method is nec-
essary [4]. Therefore in this paper it is implicit throughout that
3D rather than 2D formulations are being discussed.

The motivation for the research reported stems from the
recognised need to improve the prediction of the second-order
forces and moments experienced by moored floating structures
(1,4]. Improvements in the hydrodynamic modelling leads to dis-
tinctly different estimates of the horizontal excursions of moored
structures in a random seaway [5]: In this respect the influence
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" of choice regarding the selection of combinations of first-order

interaction analysis solvers and second-order force and moment
predictors is another important issue [6,7]. Thus the improve-
ments sought are not driven by a need to improve first-order
solvers per se, but. to improve second-order analyses which are
dependent upon the quality of the first-order solvers used.

A thorough review of the formulation of the forward-speed
Ruid-structure interaction has recently been presented by the au--
thor [8]. In particular, the wetted surface and free-surface bound-
ary conditions were discussed in the light of including the inter-
action between the steady and unsteady motions experienced by
an advancing body. If this interaction is neglected then the more
common forward speed analysis formulation [9] is retrieved. In
this case direct application of Green’s second identity provides
a number of different fluid-structure interaction formulations in
terms of velocity potential or source strength [10]. The Green
function associated with each of the alternative Fredholm inte-
gral equation based formulations is dependent upon:

. implicit or explicit inclusion of forward speed effécts

. automatic satisfaction, or otherwise, of free-sirface,
seabed and radiation boundary conditions.

Similarly the size and extent of the solution domain is dependent
upon the extent to which the selected Green function satisfies the
latter cited group of conditions.

Solution of the Fredholm integral equations has generally
been solved, within the Newcastie hydromechanics research group,
using boundary element techniques. Both open water and con-
fined water (in-tank) applications are. solvable using either the
Sommerfeld radiation condition or a far-field eigenfunction ex-
pansion solution matching condition on the .radiation surface
[11]. The explicit inclusion of forward speed effects introduces
waterline contour integrals in the velocity potential and source
strength formulations. Hence more sophisticated numerical solvers:
are required if the free-surface contour contributions are to be
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quantity over the boundary element. Here, ‘serendipity elements’,

in the terminology of finite elements [12], are used. In such ele-

ments the approximations used only depend upon the support of
‘nodes’ on the boundary of the element. The interpolation func-
tions or shape functions used are simple polynomials in terms of
the local curvilinear coordinates over each element. Such ideas
were introducedbby Hess nearly twenty years ago [13,14,15] for
analysing both non-lifting and lifting 2D aerofoil sections. Hearn
& Donati [16] extended the applii:aﬁon of HOBE methods to 2D
free-surface fluid-structure interaction analyses. In developing
sezkeeping applications Hearn & Donati found Hess’ conclusion,
that the order of the shape functions describing the higher or-
der boundary element geometry,and the unknown behaviour of

~ the fluid over the elements, must be one degree different, un-
necessary. Hearn & Lau {17 then extended the ideas of Hearn
& Donati [18] to 3D fluid-structure interaction analyses using a
non-interacting steady-unsteady formulation.

In the remainder of this paper we shall discuss the modified
forward speed problem and its possible solution using a HOBE
based GFM technique. Numerical problems associated with this
technique will be hlghllghted by solving sm.\pler problems.

FORWARD SPEED MODELLING

Assuming no interaction between the steady (wave-making
resistance) potential §, and the ‘unsteady’ (seakeeping) potential
®,, the standard formmlation of the first-order forward speed
problem is

V3%, =0 everywhere in the fluid,

[ o % U— ,]Q.—O on S,,-fheﬁeeésurfue,

%[¢+¢s] 0 on S .
%4’* = — fwenip 4+ Umy on Su,
- gpon assuming that
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and the éncounter wave frequency, w, and the incident wave

frequency, w, satisfy
-wr=w—%Ucosﬁ. o (3)

The terms n; and m, associated with the wetted-surface radia-
tion bounda.ry conditions for the radiation potentials, @*, are de-
‘pendent on the description of the normal velocity of the wetted-
surface, Sy. Setting U = 0 obviously provides the corresponding
gero speed formulation. '

To include the steady and unsteady wave interaction the
dynamic free-surface condition is derived by applying Bernoulli’s
equation in the form

_ 1D, 1.
n= g[mo+51v¢| s (4)
with the Lorentz operator,
_D %}
=% +Ve,.V (s)

Us'mg- these equations and neglecting higher order terms of V@,
the new proposed free-surface boindary condition may be writ-
)(v», V#,) =0 on S;.

ten [19] as
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The first compound term of this free-surface condition is similar
to the non-interacting free-surface boundary condition of Equa-
tion (1). However, Equation (6) differs from the composite free-
surface condition of Grue & Palm {20, and Zhao & Faltinsen
[21), as they used a corrected non-linear Bernoulli equation and
a linearised kinematic free-surface condition to generate the cor-
responding compogite free-surface boundary condition.

To determine the wetted-surface boundary conditions two '
distinct reference systems are considered, namely the inertial
(space-fixed) reference system Ozyz and the body-fixed refer-
ence system O'2y’# considered to be coincident with the inertial
reference system when the structure is at rest. The origin O is
located in the undisturbed free-surface, z = 0. If the pos_m?n of
O' with respect to O i8 £ = (£1,£2,£s), then the position vectors
of a generic point satisfy

x = D(x - 9) . (7)
X= (z) ' Z) or (31,32,33), (8)
X = ("¢, 2) or (2,25, 73), (9)

and D represents a rotational transformation. If the rotation is
finite and the order of rotation is roll, pitch and yaw, say, with

respective amplitudes £, 55 and &, then D = C B A, with A,
B and C satisfying
1 0 0 ’
A=]0 cos& sinéy " (20)
0 -sinfq cos&y) -
cosfy 0 —sinés o
B=| o 1 o (11)
ginfs 0 cosés
and .
cosfs sinfe O
C=]| -sinfs cosés O]. (12)
0 0 1

The order of the rotation operators A, B and C must be pre-

served.




: By expanding the sine and cosine functions higher-order
fepresentations of the vessel displacement due to rotations may
be derived. In particular, we inay write,

X=X+[+anX|+eHX +0(¢) . (13)

where g =: (£, &, &s)»
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and the term O(¢%) indicates that cubic and higher order terms
and products have been neglected.

KV ,and Y denote the velocity of the structure and the
fluid velocity respectively, then continuity of velocity across the
instantaneous wetted surface S' requires

(vi+d-ve)-a=0, (25)

where U is the‘sgeed of the vessel, § is the unit vector associ- -

ated with the forward speed, d = £ + a A X' is the first-order
displacement vector of Equation (13), and

®=Ux, + &, (16)
Rea.rra.ngink, it follows that . ‘
(;1 V&, = zz) .n=0on &, ()

where W = V¢, = U V(x —z) and z is the direction.of the
structure’s uniform translation, as measured with respect to S,
the wetted-surface described with respect to Ozyz. Since

W-n=0on S, (18)
only when the vessel is purely translating, then

ao (19)

The equivalent boundary condition applicable on Sy, is deter-
mined following Newman [22]. Taking into account the rotation
and gradient effects npon W the. eqmva.lent first-order represen-
tatxon becomes

a¢.

i or(anm)] men Su 0

upon appealing to Equation (18). This form of the boundary
condition was originally derived by Timman & Newman (23] to
account, in a consistent manner, for the interaction between the
steady and oscillatory 8ow fields. In many earlier ship-motion
analyses an incomplete form of Equation (20) was used and this
led to an erroneous asymmetry between the couplinig of heave
and piteh.

‘Reduction of Equation(20) to appropriate scalar radiation
wetted-surface boundary conditions leads to
a

;# = —fwnp + my'. (21)

The outward normal n and the generalised direction cosine are
given respectively by

= ("h'!z,"a),- (22)
";:F)';"v"i‘ w n= X! An= (nh ns, ﬂ.g), (23)

and the forward speed related terms m,' satisfy
m’ = —(n * V)ﬂ = (ml’v mﬁlv mSI) (24)

and

o' = —(a-V)(X' AK) =
These wetted-surface conditions now include the interaction be-
tween the steady and unsteady waves. A discussion of the singu-
lar nature of the m,' terms for 2D flows solved using low order
boundary elements has been presented by Zhao & Faltinsen [24].

(md'ims', f"o')- (25)

If x, the wavemaking velocity potential, is now ignored,
then W = —Ui, and m;' : k = 1,2,3,4 beconies zero and mg'

and mg' satisfy the well known expressions

mig' = +Uny and m¢' = —Ung. ' (26) '

Comparison of Equation (1) with Equations (21) to (25) implies
that m;' = Um; when the steady-unsteady interactions are ne-
glected. ’
BOUNDARY ELEMENT FORMULATIONS

The general boundary is assumed to consist of the wetted-
surface S.,, the radiation or control surface S;, the free-surface
Sy and the sea-bed S,. Since the formulations now presented are
primarily for deep water, the seabed impermeability condition
-and the behaviour of the Green function G will usually remove .
Sy from the integral equation formulations generated.

Zero Speed Formulation

Assuming the velocity potential is to be determined directly
then the chéice of second kind Fredholm integral equations to be
considered is ‘

—ag+ [ ¢aa—g¢s - /sw G onds, @a7)
when G satisfies all the required boundary conditions except the
wetted-surface boundary condition, on which v, = g-!, and

—ap+ [ 6554+ [ 455 - c3¢las
/[¢a—c-£¢a]¢a / G vads

when the sunpler Rankine source Green fanction, G =
lected. Here r is the distance between the fluid singularity point
and some generic point in the fluid. The term $2 on S, in Equa-
tion (28) is now modelled using either the Somnerfeld radiation
condition expressed in the form

R=2_[v-5 Je (39)

. (28)

1 is se




or, specified using some other matching technique. Here v is the

wavenumber.

The equivalent source strength formulation corresponding to Equa-
tion (27) is 2G
—ag = /s o5 =, (30)
‘with ) ,
= oGds. 31
o= [, (31)

Standard Forward Speed Formulation

The corresponding translating and pulsating source based
Green function integral equations for ¢ and o are respectively

-a¢+/ ¢ da 2gﬂf Gédy

, (32)
U oG . .
L 65 -cotay= [ Coas

wd vy 3G

—ao = /;w an fk r_uaﬁdy —vg, '- (33)
with ¢ recoverable from

= Gds . 34
¢=f. ¢ (34)

The contour 'Ly is the undisturbed free-surface waterline. In
this formulation the Timman-Newman (23] reverse flow symme-
try relationship for G has been used to reduce the free-surface
contribution to the equivalent watetline contour integral.

Unsteady-Steady Interacting Forward Speed Forinulation

The generality of the free-surface and wetted-surface bound-
ary conditions expressed in Equations (6) and (21)~(25) respec-
tively do not readily lead to a convenient all embracing Green
function. Therefore the solution domain is split into an inner
and outer region. In the inner reglon the proposed governing
equation is

—ap+ [ 652 as +/3'[¢a—q - Gﬂ]a

) 35

+[ [65 98 a¢G]da / G Unds (33)

s

and G is assumed to be the Rankine source Green function. Here
the control'surface, S;, is an ‘open box’ consisting of some vertical
arbitrary shaped cylindrical wall and a flat bottom. External
to the ‘bax’ control surface the fuid is infinite in extent (both
radially and with depth). It is now assumed that the non-linear
nature of the unsteady-steady interaction is less dominant as the
observer moves further and further from the wetted surface of
the gstructure, S,. Thus in the outer region we may consider the
flow as being modelled by the standard forward §peed ini.egra.l
equation of Equation (32) with Sy, and L, now corresponding to
the ‘bax’ control surface and its intersection with the freesurface.
A'cmss the ‘box’ control surface the inner and outer solutions
must be matched to provide continuity of ¢-and normal velocity.

Since g-s is not known a ‘ priori on the ‘box’ control surface then
the indicated modified form of Equation (32) must be used to
provide the required normal derivative on the box. Thus the
Fredholm equation is now treated as first kind, whereas when
using it to determine ¢ it is second kind. This is possible, see
below, because G is known (under the assumptions made) in the
outer problem and continuity of ¢ across the control surface is
a natural boundary condition on §,. This approach has been
designated the Green function. matching (GFM) approach.

Clearly, prior to solving this more complex problem it is
prudent to investigate whether the simpler standard zero speed
and standard forward speed problems can be satisfactorily solved
using the HOBE GFM technique.

Green Function Matching Techniqué Formulations

Matching inner and outer solutions is not an uncommon
procedure [11]. Often in offshore engineering analysis an inner
finite element solution is matched to an outer boundary element
solution to reduce the finite element solution domain and to pro-
vide automatic satisfaction of the far-field radiation boundary
condition. Here, letting S, denote the described ‘box’ control
surface, we now reformilate the zero speed and standard for-
ward speed problems in the context of the proposed GFM tech-
nique. In all the presented inner problem formulations the Rank-
ine source form of Green function is to be used.

Zero Speed Formulation

Here the inner problem formulation is exactly the same as
the alternative zero speed formulation of Equation (28), viz

‘—a¢+/s°¢‘aa—fdé+/;'[¢——G—]da

. . (se)
+/3{[¢-‘-’£-§¢G]a=/ G vads

but now rather than specify g—ﬁ on S, using a Sommerfeld ra-
diation condition, or somme other matching condition [11], the
required control boundary derivitive is now determmed using.
the relationship

a¢' -1 (3G :
23] =6 [5:][¢] (s7)
which is generated by treating the Fredholm integral equation
~ag' + ¢'aG¢a G‘;i ds. (38)

as a first-kind integral equation for the required derivative.The
negative sign correctly accounts for the difference in the sign of
the outward normal on S, for the inner and outer problems and

¢’ is the outer solution.




Standard Forward Speed Formulation

The inner Rankine source based formulation is now a gen--

eralisation of Equation (36), vis
oG oG o4y,
'_a¢+/s.,,¢ﬁd‘+/sr[¢5;—cxld‘ - igg)

: G .92 U
+/sl[¢ﬁ"%[wc+an—z] ¢G]da=/swcuuda

whereas the outer integral équation is Equation (32) modified to
reflect the new free-surface Boundary condition, that is,

—a¢ +/ ¢' dy

_fhw———c ]d —/ Ga¢'

where G is now the velocity potential of a pulsating translating
source. Equation (40) is treated as a first-kind integral equation
in terms of the normal derivative of the velocity potential on the
radiation boundary S,.

> (40)

Unsteady-Steady Interacting Forward Speed Formulat:'oﬁ )

The inner formulation requires satisfaction of Equation (6)
on the free-sirface. Thus difect substitution into Equation (35)
yields

+f o535 -val's
+[gr - U3s) (V4:-¥4)] G Jas
= /s., G vads

and the outer integral equation formulation (under the stated as-
sumptions) is the same as Equation (40) with the same pulsating
translating source. Green function.

HOBEs. AND THE GFM TECHNIQUE

In a number of the Green function based formulations pre-
sented the solutions are generated using flat panels and the as-
sumption that the sought unknown velocity potential or source
strength is invariant over the individual panels. However; given
the complexity of the free-surface boundary conditions, in par-
ticular the occurrence of first and second order derivatives of the
unknown velocity potential in the above GFM formulations, the
use of HOBEs provides an obvious way of processing such terms
using the associated shape functions and their derivatives [10,17].
Within the developed zero spéed and standard forward speed
HOBE Green function and HOBE GFM codes both quadratic
and. cubic representations of the unknown function over quadri-
lateral and triangular elements are provided. The number of
nodes per element are therefore 8 and 6, and 12 and 10 for
‘the .quadratic and cubic representations respectively. For plane:
boundary elements one node is located at the element centroid.

In Equation (41) the deérivatives of the steady wave-making

‘potential ¢, are required to formulate the wetted-surface bound-

ary conditions. If the wave-making resistance formulation is lin-
earised then the governing integral equation for a Green function
formulation will be analogous to the zero speed seakeeping for-
mulation with the wavenumber k = w?/g being replaced by g/U?.
Hence ‘appropriate modification of the zero HOBE analysis can
be used to provide ¢, and ‘its derivatives. Thereafter the HOBE
GFM approach is used as indicated. '

Completeness of the proposed formulations requires explicit
definitions of the outer domain associated zero speed pulsating
and forward speed translating pulsating Green functions. These
may be found in many references and therefore details ‘are: not

provided here.

*TESTING HOBE GFM TECHNIQUES

To assess new procedures some baseline solutions are re-
quired. Here, we shall examine the HOBE GFM technique by
comparing predictions with

e the MATTHEW 3D Diffraction Analysis Suite,
. ‘the HOBE Green Function Solver.

The MATTHEW 3D diffraction analysis, developed by the
author, has been thoroughly tested within industry (UK and
overseas) analysing realistic offshore situations. Also many un-
dergraduate and research students at Newcastle University and
other Universities have used the MATTHEW suite. '

The direct HOBE Green function analysis hias been used
in different industrial collaborative research programmes [17,25].
Thé HOBE GFM computer code can also be invoked in a Som-
merfeld radiation condition matching mode using Equation (29).

Comparisons of predictions based on both of these analyses
and the HOBE GFM predictions are made for a heaving and
surging hemisphere. Next the HOBE Green function and HOBE

GFM predictions of the hydrodynamic reactive coefficients for

an offshore barge, previously studied in reference [4] as Barge C,
are compared.

Satisfactory comparisons of low order and high order bound-
ary element predictions of added resistance. and drift forces for
the Pinkster semi-stibmersible and Pinkster barge were reported
earlier [10]. In this.study only first order quantities are reported
for the indicated geometries. In presenting any subset of a large

‘number of calculations undertaken, it is easy to select results
which place a numerical procedure in a particularly good or bad .

light, depending upon the conclusion preferred. In the limited
space.available I will endeavour to avoid this dilemma by present-
ing only those results which demonstrate a particular poteritial
numerical problem. I shall therefore dehberately omit the more
readily acceptable results.




PRESENTATION OF RESULTS

In the calculations undertaken one plane of geometric sym-
metiy has been exploited in the HOBE calculations and two ge-
ometric planes of symmetry were exploited in the MATTHEW
predictions:

The Hemisphere Predictions

Figures 1 and 2 present discretisations of the inner zero
speed formulation for a hemisphere of radius 10m. The first
discretisation, designated C, was considered the natural discreti-
sation by a colleague, whereas the second discretisation, F, was
considered the more natural discretisation according to the au-
thor. This clearly demonstrates the point that the discretisation
process is very subjective. Other cruder discretisations of the
hemisphere which reflect the personal preferences of C & F were
designated A& B and D & E respectively. These applications are
not discussed in any detail. Howevér, one-can note that only dis-
cretisation C has a third band of free surface (inner formulation)

boundary elements..

For discretisation F the differences between the HOBE Green
function, the Sommerfeld .matching, the HOBE GFM and the
MATTHEW results are negligibly small for the heave reactive
coefficients. However, either an ill conditioned formulation or
an irregular frequency occurs near 1.6 rad./sec. for the HOBE
Green Function predictions. For discretisation C the HOBE
Green function and HOBE GFM heave predictions are sand-
wiched between the MATTHEW (highest) and SOMMERFELD
(lowest) results, which differ by 8% to 10%. If the Sommerfeld
matching results are rejected (a reasonable response) this spread

in the results. drops to about 2% with the MATTHEW and the

HOBE GFM results very close. The location of the ‘focal point’
in the hemisphere discretisation radically affects the performance
of the Sommerfeld matching technique, and yet the C and F
discretisations of the actual hemisphere are simple rotations of
identical representations. Since the MATTHEW predictions are
invariant it appears that the HOBE Green Function analysis is
a little more sensitive to the discretisation process. '

The surge added mass predictions show common trends,
with the SOMMERFELD & GFM predictions and the MATTHEW
& HOBE Green function predictions naturally pairing in a dis-
tinct matter at the higher frequenciés, see Figures 3 and 4. The
corresponding surge fluid damping coefficients again exhibit ill
conditioned formulations or irregular frequencies for the Som-
merfled & HOBE GFM predictions presented in- Figures 5 and
6. The second peaks in Figures 5 and 6 would be very much
narrower were more points included in the plots. In presenting
the results a general curve fitting routine rather than straight line
linking of the actual predictions was used. This tends to generate
non-physical artificially exaggerated sweeps in the plots.

The Barge Predictions a

Five discretisations, A to E, were-used to represent the bax
control surface. The discretisation of the wetted-surface of the
barge remained invariant whereas the location of the flat bot-
tom of the control surface was gradually lowered. In Figure 7
discretisation E is presented. Figures 8 and 9 present the heave
added mass predictions for HOBE calculations based on the Som-
merfeld matching and the GFM techniques respectively. As the
distance between the {1/100th scale) barge and the flat bottom
of the control surface is increased from 3m to 8m so the HOBE
Green function and Green function matching technique converge
towards one another. If the number of elements on the cylin-
drical wall of the control surface are doubled when the bottom
control surface is 8m from the free-surface (results designated
Sommerfeld and Matching in Figures 8 & 9) there is negli-
gible improvement. in the predictions. Thus it is the location of
the flat bottom which is causing the numerical problem and not
the number of elements used to represent the cylindrical control

_surface. For large barge structures we may conclude that if the

flat bottom of the control surface is too near the structure spu-
rious solutions are generated by both forms of the HOBE Green
function matching technique.

Further improvements require increasing the distance be-
tween the sides of the barge and the vertical sides of the box
control surface. These observations also apply to the correspond-
ing surge fluid damping predictions of Figures 10 and 11.

FINAL COMMENTS AND CONCLUSIONS

The Green function matching technique has been proposed
as a possible solution method for analysing the proposed for-
mulation of the steady-unsteady interacting forward speed prob-
lem. The differences between this formulation, the standard for-
ward speed formulation and the zero speed formulation can be
readily identified from Equations (41), (39) & (36) respectively.
The success or failure of the technique therefore rests with be-:
ing able to adequately include the increasing complexity of the
free-surface boundary conditions and the generation of an appro-
priate outer solution or matching technique. In an earlier papers
and reports [10,17,18] sufficient mathematical details were pro-
vided to derhonstrate how the first and second order derivatives
of the free-surface boundary conditions could be dealt with us-
ing HOBE techniques. These details can be carried across to the
new proposed formulation.

.In Reference [10] HOBE Green function second order force
predictions were generated which were comparable with other
researchers low order boundary element predictions and experi- .
mental measurements. In this paper the Sommerfeld matching
technique has been shown to be a poor -predictor of first or-
der results. This appears to contradict earlier published low
order boundary element Sommerfeld matching applications [11],
although proximity of the control surface has always be a diffi-
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cult factor to overcome when using Sommerfeld matching. Some
thought is required to explain the increased semsitivity of this
proble:ﬂ as a result of using HOBEs.

It would appear that the break down of the Sommerfeld
matching procedure is also an indicator of the failure pf the
HOBE GFM téchnique. Where numerical resonance ‘oeeurs in
the Sommerfeld results it would appear that the HOBE GFM
method is likely to exhibit the same trend. However, whereas
the Sommerfeld matching procedure certainly is not suitable for
solving the forward speed problem the HOBE GFM has been
used successfully.

When analysing a semi-submersible, in earlier work (10}, we.
concluded that location of the matching control surface wasn't
too importa.nt. For barges this coﬁclusion has clearly been re-
futed and this i8 most likely explained by the geometric differ-
ences. The free-surface effects are much stronger over the bottom
of the barge than over the legs of a semi-submersible.

" The boundary element representaﬁon of the structure is

important in the GFM procedure, as the presented hemisphere .

results show. In fact, whereas the MATTHEW and HOBE Green
function predictions were generally in agreement and insensitive
to the different discretisations, the HOBE GFM predictions os-

cillated between the two and could be made to match either -

by modifying the discretisations. Whereas in the direct Green
function methods (HOBE and LOBE) irregular frequencies; as
‘a cause of numerical resonances, are well understood it is not
‘80 simiple to explain the numerical resonances in the GFM tech-
nique. It could be due to the implied operator of Equation (37),
required to provide the normal velocity on the control surface,
‘becoming illconditioned. The research must continue. Whereas

it is quite clear that overcoming the mathematical difficulties.

of modelling the free-surface conditions can be achieved using
HOBEs, the numerical problems resulting from the coupling of
Fredholm integral equations of first and second kind requires fur-
ther mathematical investigation and numerical studies.
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