
ABSTRACT

The higher order boundary element (ROBE) method is dis-
cussed in the context of a new formulation of the forward speed

problem. In particular, after reviewing the different forward
speed formulations considered in the literature a formulation
which inclùdes the interaction of the steady and unsteady wave
systems is proposed. Since the proposed formulation assumes
solution is possible using a Green Function Matching (CFM)
technique this method is investigated in the context of the zero
speed problem. The hemisphere and barge examples presented
will indicate the type and level of the different numerical prob-
lems to be overcome if the ROBE based GFM technique is to be
successfully applied to the proposed forward speed formulation.

INTRODUCTION

The forward speed fluid-structuie interaction analysis is re-
quired to analyse structures steadily advancing in an incident
wave system, and to provide improved predictions of the be-
haviour of moored structures in a random seaway RI. For fine-

form ship structures the forward speed may be included implic-
itly using different strip-theory based methods 11,2,31. However,

for moored ships the generalised strip-theory of reference 111

found to be inadequate for predicting the second order quantities
of added resistance and surge low frequency damping. For barges
and other offshore floating structures a general 3D method is nec-

essary 141. Therefore in this paper it is implicit throughout that
3D rather than 2D formulations are being discussed.

The motivation for the research reported stems from the
recognised need to improve the prediction of the second-order
forces and moments experienced by moo±ed floating structures
[1,4J. Improvements in the hydrodynamic modelling leads to dis-

tintly different estimates of the horizontal excursions of moored
structures in a random seaway f5J In this respect the influence

Seior Lecturer and Hei4 of Hydiomechanice Reeearch Group.

Higher Order Boundáry Elements: A Facilitating Technique
for Advancing the Modelling of the Forward Oscillating

Vessel Interaction Analysis

Grant E. Ream'

Hydromechanics Research Group,
Marine Technology Department,

University of Newcastle ùpon Tyne,
NEI 7RU, U.K.

TEcHNIScHE UNIVajJ
I.aboratodwn voor

2, 29 co Deift5- 78 Fwc 015e 781825

of choice regarding the selection of combinations of first-order
interaction analysis solvers and second-order force and moment
predictors is another important issue [6,7]. Thus the improve-
ments sought are not driven by a need to improve first-order
solvers per se, but. to improve second-order analyses which are
dependent upon the quality of the flÌst-order solvers used.

A thorough review of the formulatiOn of the forward-speed

fluid-structure interaction has recently been presented by the au-
thor [8]. In particular, the wetted surface and free-surface bound-

ary conditions were discOssed in the light of including the inter-
action between the steady and unsteady motions experiénced by.
an advancing body. If this interaction is neglected then the more
common forward speed analysis formulatIon [9] is retrieved. In
this cse direct application of Green's second identity provides
a number of different fluid-structure interaction formulations in
terms of velocity potential or source strength [10]. The Green
function associated with each of the alternative Fredholm ¡ate-
gral equation based formùlÁtions is dependent upon:

implicit Or explicit inclusion of forward speed effects

automatic satisfáction, or otherwise, of free-súrface,
seabed and radiation boundary conditions.

Similarly the size and extent of the solution domain is dependent

upon the extent to which the selected Green function satisfies .the
latter cited group of conditions.

Solution of the Fredholm integral equations has generally
been solved, within the Newcastle hydromechanics research group,

using boundary element techniques. Both open water and con-
fined water (in-tank) applications are soiváblè using either the
Sommerfeld radiation condition or a far-field eigenfunction ex-
pansion solution matching condition on the radiation surface
[il]. The explicit inclusion of forward speed effects introduces

waterline contour integrals in the velocity potential and source
strength formulations. Hence more sophisticated numerical solvers

are required if the free-surface contour contributions are to be

-
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To this end a HOBE based

Creennctiàtid a HOBE Creen function matching

si4O'f curved boundary elements
rW14b p7esentation of the unknown
quantity over the boundary element. Here, 'serendipity elements',

in the terminology of finite elements 1121, are used. In such ele-
ments the approximatiOns used only depend upon the support of

'nodes' on the boundary of the element. The interpolation func-
tions or shape functions used are simple polynomials in terms of

the local curvilinear coordinates over each element. Such ideas
were introduced by Hess nearly twenty years ago 113,14,151 for

analysing both non-lifting and lifting 2D aerofoil sections Beam

& Donati 1161 extended the applkation of HOBE methods to 2D
free-surface fluid-structure interaction analyses. In developing
seákeepiìig applications Resin & Donati found Hess' conclusion,
that the order of the shape functions describing the higher or-
der boundary element geometry,and the unknown behaviour of
the fluid over the elements, must be one degree different, un-
necessary. Resin & Lau 1171 then extended the ideas of Heath

& Doñati (181 to 3D fluid-structure interaction analyses using a
non-interacting steady-unsteady formulation.

In the remainder cf this paper we shall discuss the modified
forward speed problem and ita possible solution using a ROBE
based GFM technique. Numerical problems associated with this

technique will be highlighted by salving simpler problems.

FORWARD SPEED MODELLING

Assuming no interaction between the Steady (wave-making

resistance) potential 4' and the 'unsteady' (seakeeping) potential
, the standard formulation of the first-order forward speed

problem is

and the encounter wave freqùency, w, and the incident wave
frequency, w, satisfy

2rr W - Tucosß.

The terms k and m associated with the wetted-surface radia-

tion boundary conditions for the radiation potentials, are de-

pendent on the description of the normal velocity of the wetted-

surface, S. Setting U = O obviously provides the corresponding

zero speed formulation.

(3)

To include the steady and unsteady wave interaction the
dynamic free-surface condition is derived by applying Bernoulli's'

equation in the form

1D 1

"= + Iv$Il 1

with the Lorentz operator,

DO
Using these equations and neglecting higher order terms of V1
the new proposed free-surface boundary condition may be writ-

ten [19] as

_u)(v..v.) = o on S1.
(6)

The first compound term of this free-surface condition is similar
to the non-interacting free-surface boundary condition of Equa-
tiOn (1). However, Equation (6) differs from the composite free-
surface conditiòn of Grue & Palm (20], and Zhao & Faltinsen
1211, as they used a corrected non-linear Bernoulli equation and
a linearised kinematic free-surface condition to generate the cor-

responding composite free-surface boundary condition.

To determine the wetted-surface boundary conditions two
distinct reference systems are considered, namely the inertial
(space-fixed) reference system Ozyz and the body-fixed refer-
encè system O'z'y'I considered to be coincident with the inertial
reference system when the structure la at rest. The origin O is
located in the undisturbed free-surface, z =0. If the position of
O' with respect to O is = (Ei,Es,$), then the position vectors

of a generic point satisfy

(T)

The order of the rotation operñtors A, B and C must be pre-

served.

respective amplitudes ¿, ¿ and ¿, then D = CBA, with A,
B and C satisfying

f' O O

4= Jo coaE4 sinE4 (10)
O -8inE4 C044

f coaa O 8ines
B=J.O 1 O (11)

O cose5

and
I cos sirie5 O

C (_sinCs co4e O). (12)
0 0 1

ro (a
V34',, =0 everywhere in the fluid,

on S1,the freesurface,
(1)

;
[#1 + =0 on SW,

= - iWfl ± Urn5 on SW,

upon assuming that

s =[ + + Eii5]exp(iwit) (3)

with
X = (z,y,z) or (zi,z,z3), (8)

X' = (z',y',z') or (9)

and P represents a rotational transformation. If the rotation is
finite and the order of rotation is roll, pitch and yaw, say, with



By expanding the sine and cosine functions higher-order
representations of the vessel displacement due to rotations may

be derived. In particular, we may write,

Z=X+L+2AX'I+53HX'+O(13)

where 2= (,es,ee)

1fW+e) o o \
- I (e+e) o
2 2eee -2esee (a+e))

and the term O() indicates that cubic and higher order terms
and products have been neglected.

If } and .1 denote the velocity of the structure and the
fluid velocity respectively, then continuity of velocity across the

instantaneous wetted surface S' requires

(U1+-V4').n=Oi (15)

where U is the speed of th,e vessel, j is the unit vector associ-
ated with the forward speed, = + A .' is the first-order
displacement vector o! Equation (13), and

t2H =

4' Uy + 4',.

Rearranging, it follows that

(d_v.-a).n=o on s',

(14)

where E= V4'. U V( - z) and z is the direction of the
structure's uniform translation, as measured with rmpect to Sm,

the wetted-surface described with respect to Ozijz. Since

En mO Ofl Sm (18)

only when the vessel is purely translating, then

on S'.
On

Thé equivalent boundary condition applicable on Sm is deter-

mined following Newman 1221. Taking into account the rotation

and gradient effects upon E the equivalent first-order represen-

tation becomes

84',, r. i \1 -l+VA(2tEJlfl'0flSm, (20)
Qn L \ Ii

upon appealing to Equation (18). This form of the boundäj'
condition was originally derived by Timman & Newman [23] to

account, in a consistent manner, for the interaction between .the
steady and oscillatory flow fields. In many earlier ship-motion
analyses an incomplete form ofEquatiön (20) was used and this
led to an erroneous asymmetry between the coupling of heave
and pitch.

Reduction of Equation(20) to appropriate scalar radiation
wetted-surface boundary conditions leads to

8 .4 =rwn.+m.
On

(19)

The outward normal j and the generalised direction cosine are
given respectively by

These wétted-surface conditions now include the interaction be-
tween the steady and unsteady waves. A discussion of the singu-
lar nature of the me' terms for 2D flows solved using low order
boundary elements has been presented by Zhao & Fait insen ]24].

If x, the wavernaking velocity potential1 is now ignored1

then E -Uj, and m6' k = 1,2,3,4 becomes zero and m5'
and rr&5' satisfy the well known expressions

m' = +Un3 and m' = -Un2. (26)

Comparison of Equation (1) with Equations (21) to (25) implies
that rn6' Um& when the steady-unstea.dy interactions are ne-

glected.

BOUNDARY ELEMENT FORMULATIONS

The general boundary is assumed to c nsist of the wetted-
surface S, the radiatiön or control surface S,, the free-surface
S1 and the sea-bed S6. Since the formulations now presented are
primarily for deep water, the seábed impermeability condition
and thé behaviour of the Green function G will usually remove
S from the integral equation formulations generated.

Zeró Speed FormuIaton

Assuming the velocity potential is to be determined directly

then the choice of second kmd Fred]iolm mtegral equations to be

considered is

_a#+Js4dá=JCvftd8, (27)

when G satisfies all the required boundary conditions except the
wetted-surface boundary condition, on which v = , and

- C]ds

- Q]d3 =Ja vSa

when the Simpler Rankine source Green fûnction, G = , is se-
lected. Here r is the distance between the fluid singularity piñt
and some generic point in the fluid. The term on S, in Equa-
tioñ (28) is now modelled using either the SOmmerfeld radiation

condition expressed in the form

(21) = Iù, - Ài
8 L 2r

= (n1,n3,n3),. (22)

X'A=(n4,ns,n),
and the forward speed related terms m6' satisfy

(23)

-(nS V)B1 = (mj', rn2, m31)

and

m'E -(n.V)('AE)=(m4',m',me').

(24)

(25)



or, specified using some other matching technique. Here ¡' is the
wavenumber.

The equivalent source strength formulation corresponding to Equa-

tion (27) is

aa= I odev,,,
'Sw 8n
r 8G.

(30)

with

= 15w
oGds. (31)

Standard Forward Speed Formulation

The corresponding translating and pulsating source based
Green function integral equations for and u are respectively

-cz#+f ds-
S än

+
j2 I f
g JLvtôx

and

au = I oda + njady -
IS,1, 8n gIL0' ön
r 8G U2r 8G

with recoverable from

= fS
oGdi.

The contour 'L0 is the undisturbed free-8urface waterline. h
this formulation the Timman-Newman [23] reverse flow symme-
try relationship for G has been used to reduce the free-surface
contribution to the equivalent wateriine contour integral.

Unit e.ady-Steady Ir&teràcting Forwaed Speed Fo,múlation

The generality of the free-Surface and wetted-surface bound-

ary conditions expressed in EqUations (6) and (21)-(25) respec-
tively do not readily lead to a convenient all embracing Green
functibn. Therefore the solution domain ¡s split into an inner
and outer region. in the inneî region the proposed governing
equation is

a# + 4da + I [ - Gjda

+1 L__GJda=I Gv,,ds

JS 8n 'Sr 8n 8n
r 8G r r 8G

trâG 8i t
8n On

(35)

and G is assumed to be the Rankine source Green function. Here
the controlsurface, S, is an 'open box' consisting of some vertical
arbitrary 'shaped cylindrical wall and a fiat bottom. Eìternal
to the 'box' còntröl surface the fluid is infinite in extent '(both
radially and with depth). It is now assumed that the non-linear
nature of the unsteady-steady interactiònis less dominant as the
observer moves further and further from the wetted surface of
the structure, S,,,. Thus in the outer region we may consider the
flow as being modelled by the standard forw rd speed integral
equation of Equation (32) with S,,, and L,, now corresponding to

the 'box' control surface and its intersection with the free-surface.

Across the 'box' control surface the inner and outer solutions
must be matched to provide continuity of and normal velòcity.

Since is not known a' priori on the 'box' control sUrface then'
the indicated modified form of Equation (32) must 'be used to
provide the required normal derivative on the box. Thus' the
Fredholm equation is now treated as first kind, whereas when
using it to determine 4i it is second kind. This is possible, see
below, because G is known (under the assumptions made) in the
outer problem and continuity of across the control surface is
a natural boundary condition on S,. This approach has been
designated the Green functiòn matching (GFM) approa.ch

Clearly, prior to solving this more complù problem it is
prudent to investigate whether the simpler standard zero speed

and standard forward speed problems can be satisfactorily solved
using the HOBE GFM technique.

Green Function Matching Technlquè Formulations

Matching inner and outer solutions is not an uncommon
procedure [il]. Often in offshore engineering analysis an inner
finite element solution is matched to an outer boundary element
solutIon to reduce the finite element solution domain and to pro-

vide automatic satisfaction of the far-field radiation boundary
condition. Here, letting S, denote the described 'box' control
surface, we now reformulate the zero speed and standard for-
ward speed problems in the context of the proposed GFM tech-
nique. In all the presented inner problem formulations the Rank-

me source form of Green function is to be used.

Zero Speed Formulation

Here the inner problem formulation is exactly the same as
the alternative zero speed formulation of Equátion (28), viz

(38)

+Js1[4,,_Ç#G]d8=1sGvnda'

but now rather than specify on S, using a Sommerféld ra-
diation condition, or some öther matching condition [il[, the
required contrOl boundary derivátive is úow determined using
the relationship

t3flJ L J LJ L- FG]' 14v' (3V)

which is generated by treating the Fredholm integral equation

a#' ¡ .V2da =f G±.da.
.9, On s, On

(38)

as a first-kind integral equation for the required derivative.The
negative sign correctly accounts for the différence in the sign of
the outward normal on S, for the inner and outer problems and

is the outer solution.

2i j G*dy

G1dy=fGvdâ
(32)



Standard Forward Speed Formulation

The inner Rankine source based formulation is now a gen-
eralisation of Equation (36), vii

a#J0Ls+J [_G]ds
Sw öTi Sr ön ö71

+ f
- + ÍU! JG]da = f G

Sj 8n g 8z Svi

whereas the outer integral equation is Equation (32) modified to
reflect the new free-surface boundary condition, that is,

a#' + fe,, 'ds
u3, ,ac+, [#-9JL, 8x

where G is now the velocity potential of a pulsating translating
source. Equation (40) is treated as a first-kind integral equation
in terms of the normal derivative of the velocity potential on the
radiation boundary Sr.

Unsteady-Steady Interacting Forward Speed Formulation

The inner formulation requires satisfaction of Equation (6)
on the free-Súrface. Thus direct substitution intö Equation (35)
yields

- j [ - u]'
+[_uä-](v..v)] c]a
=fGviids

and the outer integral equation formúlatiOn (under the stated as-
sumptions) is the same as Equation (40) with the same pulsating
translating source Green function.

HOBEs AND THE GFM TECHNIQUE

In a number of the Green function based formulations pre,
sented the solutions áre generated using flat panéls and the as-
sumption that the sought unknown velocity potential or source
strength is invariant over the individual panels. However, given
the complexity of the free-surface boundary conditions, in par-
ticula.r the occurrence of first and second order derivatives of the
unknown velocity potential in the above GFM formulations, the
use of HOBEa provides an obvious way of processing such terms

using the associated shape functiòns and their derivatives [10,17].

Within the developed zero speed and Standard forward speed
HOHE Green function and HOBE GFM codes both quadratic
and. cubic representations of the unknown functiOn over quadri-
lateral and triangular elements are provided. The number of
nodes per element are therefore 8 and 6, and 12 and 10 for
the quadratic and cübic representations respectively. For plane
boundary elements one node is located at the element centroid.

In Equation (41) the derivatives of the steady wave-making

potential are required to formulate the wetted-surface bound-
ary conditions. If the wave-making resistance formulation is lin-
earised then the governing integral equation for a Green function
formulation will be analogous to the zero speed seakeeiñg for-
mufìtÌoù with the wavenumber k = w'/g being replaced by g/U2.
Hence appropriate modification of the zero HOBE analysis can
be used to provide 4 and its derivatives. Thereafter the. HOBE

GFM approach is used as indicated.

Completeness of the proposed formulations requires explicit

definitions of the outer domain associated zero speed pulsating
and forward speed translating pulsating Green functions. These
may be found in many references and therefore details are not
provided here.

TESTING HOBE GFM TECHNIQUES

To assess new procedures some baseline solutions are re-
quired. Here, wé éhail examiñè the ROBE GFM technique by
comparing prediétions with

s the MATTHEW 3D Diffraction Analysis Suite,

s the HOHE Green Function Solver.

The MATTHEW 3D diffraction analysis, developed by the
author, has been thoroughly tested within industry (UK and
overseas) analysing realistic offshore situations: Also many, un-

(41) dergraduate and research students at Newcastle University and
other Universities have used the MATTHEW suite.

The direct ROBE Green function analysis has been used
in different indústrial collaborative research programmes [17,25].

Th H'OBE GYM computer code can also be invoked in a Som-
merfeld radiatiOn coñditiön matching mode using Equation (29).

Comparisons of predictions based on both of these analyses

and the ROBE GYM predictions are made for a heaving and
surging hemisphere. Next the ROBE Green function and' ROBE
GFM predictions of the hydrodynamic reactive coefficients for
an offshore barge, previously studied in reference [4) as Barge C

are compared.

-

-

Satisfactory comparisons of low order and high order bound-

ary element predictions of added resistance and drift forces for
the Pinkster semi-sùbmersible and Pinkster barge were reported
earlier [10]. In this.study only first order quantities are reported
for the indicated geometries. In presenting any subset of a large
'number of calculations undertaken, it is easy to select results
which place a numerical procedure in 'a particularly good or bad.
light, depending upon the conclusión preferred. In the limited
space available I will endeavour to avoid this dilemma by present..

ing only those resultà which demonstrate a particular poteñtial
numerical problem. I shall therefore deliberately omit the more

readily acceptable results.

2i± ¡ G'dy

GJ dy
= ¡S, c

(40)



PRESENTATION OF RESULTS

In the calculations undertaken onè plàne of geometric sym-

metly has been exploited in the ROBE calculations and two ge-
ometric planes of symmetry were exploited in the MATTHEW

predictions.

The Hemisphere Predictions

Figures 1 and 2 present discretisations of the inner zero
speed formulation for a hemisphere of radius 10m. The first
discretisatión, designated C, was considered the natural discreti-
sation by a colleague, whereas the second discretisation, F, was
considered the more natural discretisation according to the au-
thor. This clearly demonstrates the point that the discretisation
process la very subjective. Other cruder discretisations of the
hemisphere which reflect the personal preferences of C & F were

designated A & B and D & E respectively. These applications are
not discussed in any detail. However, onecan note that only dis-

cretisatioñ C has a third band of free surface (inner formulation)

boundary elements.

For discretisatiön F the differences between the ROBE Green

function, the Sommerfeld matching, the ROBE CFM and the
MATTHEW results are negligibly small for the heave reactive
coefficients. However, either an ill conditioned formulation or
an irregular frequency occurs near 1.6 rad./sec. for the ROBE
Creen Function predictions. For discretisation C the ROBE
Green function and ROBE GFM heáve predictions are sand-
wiched betwoen the MATTHEW (highest) and SOMMERFELD
(lowest) results, which differ by 8% to 10%. If the Sommerfeld
matching results are rejected (a reasonable response) this spread

in the results drops to about 2% with the MATTHEW and the
ROBE GFM results very close. The location of the 'focal point'
in the hemisphere discretisationradically affects the performance
of the Sommerfeld matching technique, and yet the C and F
discretisations of the actual hemisphere are simple rotations of
identical representations. Since the MATTHEW predictions are
invariant it appears that the ROBE Green Function analysis is
a little more sensitive to the discretisation process.

The surge added mans predictions show common trends,
with the SOMMERFELD & GFM predictions and the MATTHEW
& ROBE Green function predictións naturally pairing in a dis-
tinct matter at the higher frequencies, see Figures 3 and 4. The
corresponding surge fluid damping coefficients again exhibit ill
conditioned formulatiOns or irregular frequencies for the Some
merfied & ROBE GFM predictions presented in Figures 5 and
6. The second peaks in Figures 5 and 6 would be very much
narro*ér were more points included in the plots. In presenting
the results a general curve fitting routine rather than straight line
linking of the actual predictions was used. This tends to generate

non-physical artificially exaggerated sweeps in the plots.

The Barge Predictions

Five discretisations, A to E, were used to represent the box
control surface. The disc retisation of the wetted-surface of the
barge remained invariant whereas the location of the flat bot-
tOm of the control surface was gradually lowered. In Figure 7
discretisation E is presented. Figures 8 and 9 present the heave
added mass predictions for ROBE calculations based on the Som-
merfeld matching and the GFM techniques respectively. As the
distance between the (1/100th scale) barge and the flat bottom
of the control surface is increased from 3m to 8m so the ROBE
Green function and Creen function matching technique converge
to*ards one another. JI the number of elements on the cylin-
drical wall of the control surface are doubled when the: bottom
control surface is 8m from the free-surface (results designated
Sommerfeld and Matching in Figures 8 & 9) there is negli-
gible improvement in the predictions. Thus it is the location of
the flat bottom which is causing the numerical problem and not
the number of elements used to represent the cylindrical control
surface. For large barge structures we may conclude that if the
flat 'bottom of the control surface is too near the structure spu-
rious solutions are generated by both forms of the ROBE Green
function matching technique.

Further improvements require increasing the distance be-
tween the sides 6f the barge and the vertical sides of the box
control surface. These observations also apply to the correspond-
ing surge fluid damping predictions of Figures 10 and 11.

FI?AL COMMENTS AND CONCLUSIONS

The Green function matching technique has been proposed
as a possible solution method for analysing the proposed for-
mulation of the steady-unsteady interacting forward speed prob-
lem. The differences between this formulation, the standard for-
ward speed formulation and the zero speed formulation can be
readily identified from Equations (41), (39) & (36) respectively.
The success or failure of the technique therefore rests with be-
ing able to adequately include the increasing complexity of the
free-surface boundary conditions and the generation of an appro-

priate outer Solution or matching technique. In an earlier papers
and reports (10,17,18] sufficient mathematical details were pro-
vided to demonstrate how the first and second order derivatives
of the free-surface boundary conditions could be dealt with us-
ing HOBE techniques. These details can be carried across to the
new proposed formulation.

In Reference (10] ROBE Green function second order force
predictions were generated which were comparable with other
researchers low order boundary element predictioñs and experi-

mental measurements. In this paper the Sommerfeld matching
technique has been shown to be a poor predictor of first or-
der results. This appears to contradict earlier published low
order boundaxyelement Sommerfeld matching applications 111],
although proximity of the control surface has always be a diffi-



cult factor to overcome when using Sommerfeld matching. Some
thpughtis required to explain the increased sensitivity of this
problem as a result of using HOBEs.

lt would appear that the break down of the Sommerfeld
matching procedure is also an indic ator of the failure of the
ROBE GFM tchnique. Where numerical resonaèürin
the Sommerfeld results it would appear that the ROBE GFM
method is likely to exhibit the same trend. However, whereas
the Sommerfeld matching procedure certainly is not suitable for
solving the fòrward speed problem the HOBE GFM has been
used successfully.

When analysing a semi-submersible, in earlier wOrk E
10J, we.

concluded that location of the matching coñtrol surface wasn't
too important. For barges this conclusion has clearly been re-
futed and this ¡8 most likély explained by the geometric differ-
ence. The free-surface effects are much stronger over the bottom
of the barge than over the legs of a semi-submersible.

The boundary element representation of the structure is
important in the GFM procedure, as the presented hemisphere
results show. In fact, whereas the MATTHEW and ROBE Green
function predictions were generally in agreement and insensitive
to the different discretisations, the ROBE GFM predictions os-
cillated between the two and could be made to match either
by modifying the discretisations. Whereas ¡h the direct Green
function methods (ROBE and LOBE) irregular frequencies, as
a cause of numerical resonances, are well understood it is not
so simplets explain the numerical resonances ¡n the GFM tech-
nique. It could be due to the implied operator of Equation (37),
required to provide the normal velocity on the control surface,
becoming ill-conditioned. The research must continue. Whereas
it is quite clear that overcoming the mathematical difficultim
of modelling the free-surface conditions can be achieved using
HOBEs, the numerical problems resulting from the coupling of
Fredholm.integral equations of first and second kind requires fur-
ther mathematical investigation and numerical studies.
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