
DEVELOPMENT OF A SYSTEM FOR THE

INVESTIGATION OF SPINNAKERS USING FLUID

STRUCTURE INTERACTION METHODS





DEVELOPMENT OF A SYSTEM FOR THE

INVESTIGATION OF SPINNAKERS USING FLUID

STRUCTURE INTERACTION METHODS

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op maandag 12 februari 2018 om 12:30 uur

door

Hannes Florian RENZSCH

Diplom-Ingenieur (Fachhochschule) Schiffbau,
Fachhochschule Kiel, Kiel, Duitsland,

geboren te Bonn, Duitsland.



Dit proefschrift is goedgekeurd door de

promotor: prof. dr. ir. R.H.M. Huijsmans
copromotor: dr. ir. M.I. Gerritsma

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. ir. R.H.M. Huijsmans, Technische Universiteit Delft
Dr. ir. M.I. Gerritsma, Technische Universiteit Delft

Onafhankelijke leden:
Prof. dr. G. Thomas University College London
Prof. Dr.-Ing. K.U. Graf University of Applied Sciences Kiel
Prof. dr. P.A. Wilson University of Southampton
Prof. dr. A.E.P. Veldman Rijks Universiteit Groningen
Prof. dr. ir. M.L. Kaminski Technische Universiteit Delft
Prof. ir. J.J. Hopman Technische Universiteit Delft, reservelid

Keywords: FSI, CFD, FEA, Membrane, Sails

Copyright © 2018 by H.F. Renzsch

An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


CONTENTS

Summary ix

Samenvatting xi

Nomenclature xiii

1 Introduction 1
1.1 Sails and Sail Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Sail Analysis and Optimisation . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Problem definition and objectives . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 State of the art 5
2.1 Experimental testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Flow Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Structural Simulation . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Fluid-Structure-Interaction . . . . . . . . . . . . . . . . . . . . . 7

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Structural Simulation Theory 13
3.1 Finite Element Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 FEM Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.2 The CST Element . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Membrane Wrinkling Analysis . . . . . . . . . . . . . . . . . . . . 22

3.2 Solution of System of Equations. . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Minimisation of Total Potential Energy. . . . . . . . . . . . . . . . 30
3.2.2 Dynamic Relaxation with Kinetic Damping . . . . . . . . . . . . . 31

3.3 Solution Stability and Convergence . . . . . . . . . . . . . . . . . . . . . 35
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Fluid-Structure-Interaction 39
4.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.1 Interface Condition . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Sequential Coupling . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.3 Solution Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.4 Boundary Interpolation . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Steady State Implementation . . . . . . . . . . . . . . . . . . . . . . . . 44
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

v



vi CONTENTS

5 Verification and Validation 47
5.1 Wind Tunnel Experiment on Spinnaker . . . . . . . . . . . . . . . . . . . 48
5.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 Verification Methods . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.2.2 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2.3 Flow Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.4 Fluid-Structure-Interaction . . . . . . . . . . . . . . . . . . . . . 61

5.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.1 Structural Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2 Flow Simulation Method . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.3 Fluid-Structure-Interaction Simulation Method . . . . . . . . . . . 80

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6 Application 91
6.1 Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Calculation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7 Conclusions, recommendations and outlook 101
7.1 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2 Recommendations and outlook. . . . . . . . . . . . . . . . . . . . . . . 102
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Acknowledgements 105

A Validation Data 107
A.1 Planar Bending of a Pre-Tensioned Beam-Like Membrane . . . . . . . . . 107
A.2 Bending of a Pressurised Membrane Cylinder. . . . . . . . . . . . . . . . 108
A.3 Wilkinson Testcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

B Flow Simulation Method 113
B.1 Navier-Stokes Equation Theory and Reynolds Averaging . . . . . . . . . . 113
B.2 Turbulence Modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.2.1 Eddy Viscosity Turbulence Models . . . . . . . . . . . . . . . . . . 115
B.2.2 The Baseline Explicit Algebraic Reynolds Stress (BSL-EARSM) Model

118
B.3 Volume Discretisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
B.4 Solution of System of Equations. . . . . . . . . . . . . . . . . . . . . . . 122

C Code Implementation 123
C.1 Fluid-Structure-Interaction-Coupling. . . . . . . . . . . . . . . . . . . . 123

C.1.1 User CEL Routine . . . . . . . . . . . . . . . . . . . . . . . . . . 124
C.1.2 Junction Box Routine . . . . . . . . . . . . . . . . . . . . . . . . 126

C.2 Structural Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
C.2.1 Data Preparation and Setting Up of System of Equations. . . . . . . 126
C.2.2 Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



CONTENTS vii

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Curriculum Vitæ 131

List of Publications 133





SUMMARY

While historically sailmaking and saildesign were considered as arts, in the 20th century,
mainly from the 1980s onwards, engineering sciences have started to play an impor-
tant role. Two fields are of particular interest: structural and fluid mechanics. Initially,
the sails were tested in the wind tunnel, aggregate flow forces measured and the inter-
action of flow and structural behaviour implicitly captured by visual observation. No
quantitative structural assessment was available in these experiments. With the advent
of affordable powerful personal computers, programs were developed to compute the
flow around sails and the structural reaction to the resulting forces. These programs
were based on significantly simplified assumptions about the fluid mechanics - poten-
tial flow - as well as the complete neglect of any unsteady behaviour of flow or coupled
result. These simplifications limit the applicability of these programs to upwind sails, es-
sentially this airfoils working at small angles of attack. As downwind sails do not comply
with these limitations they are still tested in the wind tunnel with the associated scale
effects and limited outcome of quantitative results.

Within this thesis a method is being developed to capture the interaction between
the complex viscous flow around downwind sails and compute the structural answer to
the resulting forces. First a structural model suitable for downwind sails is developed.
This is coupled to a commercial solver for simulations of viscous flow. The individual
parts (structural and flow simulation as well as coupling) and the entire method are ver-
ified and validated. Finally an application example is given.

First, the structural model and coupling to the flow solver are developed. The partic-
ular challenge regarding the structural model is the requirement to compute the com-
plex behaviour of downwind sails. By design these sails have negligible bending stiff-
ness with the material being stiff in tension but without any meaningful compressive
stiffness. To this end the classic CST-element is extended by a wrinkling model, a ro-
bust solver able to capture the resulting non-linearities is implemented. This model is
coupled to a commercial RANS solver by a bespoke coupling algorithm. This algorithm
ensures the conservative transfer of forces and deformations while keeping the coupled
simulation stable.

Next, to ensure applicability of the structural and flow simulation models as well as
the coupling, they are verified for grid and time step dependency and validated against
analytical or experimental data. As no experimental data was freely available on the
particular case of downwind sails, wind tunnel tests were conducted to provide at least
aggregate flow forces and flying shapes. Particularly the structural simulation and cou-
pling were successfully verified and validated, the simulation of partially separated flow
around highly curved surfaces like downwind sails exhibited a strong sensitivity to e.g.
small changes of the angle of attack. Validation of the flow simulation was hampered by
uncertainties in the experimental data.

ix



x SUMMARY

Finally, the method is used to compare three sail designs on a hypothetical yacht
based on the AC90-rule. The impact of the sail design changes is clearly shown with
small variations in sail (profile) depth resulting in very much different optimal angles of
attack.

Improvements to the method could in particular be achieved by implicit or strong
coupling of flow and structural simulation, this would yield time-accurate information
on the sails unsteady behaviour. Further, even more involved flow simulation methods,
e.g. large or detached eddy simulation instead of turbulence modelling might improve
the accuracy of the flow simulation.



SAMENVATTING

Historisch wordt het ontwerpen en produceren van zeilen voor zeiljachten gezien als een
kunst. Vanaf de jaren 1980 is echter de ontwikkeling ingezet om diverse geavanceerde
rekenmethoden te ontwikkelen en gebruiken om meer grip te krijgen op dit complexe
proces. Twee vakgebieden zijn hierin met name van belang: mechanica en stromings-
leer. Voor het eerste onderzoek werden windtunnels gebruikt om zeilen op modelschaal
te testen; de uitgeoefende krachten werden gemeten en de zeilvorm werd visueel vastge-
steld. Het was echter niet mogelijk om een kwalitatieve analyse van deze vervorming te
maken. Met het toenemen van de rekenkracht van computers werd het mogelijk om de
stroming van de wind om de zeilen te berekenen, samen met de uitgeoefende krachten
op de constructie. Beide delen van de software waren gebaseerd op vereenvoudigde mo-
dellen, zowel voor de stroming – potentiaal code – als voor de interactie tussen de stro-
ming en de zeilen zelf. Deze vereenvoudigen beperken het gebruik van deze software
tot aandewindse condities waarin de vleugelprofielen alleen onder kleine invalshoeken
kunnen werken. De zeilen voor ruimewindse koersen vallen niet binnen de aannames
van de software en moeten daardoor nog steeds in windtunnels getest worden; dit met
inachtname van alle schaaleffecten en beperkte beschikbaarheid van kwalitatieve resul-
taten.

In deze promotie is een methode ontwikkeld om de interactie te beschrijven tussen
de complexe viskeuze stroming rondom ruimewindse zeilen en vervorming van de zei-
len als het gevolg van deze stroming. Allereerst is een mechanisch model ontwikkeld
die geschikt is voor de ruimewindse zeilen. Deze is vervolgens gekoppeld aan een com-
merciële stromingssoftware die geschikt is voor het simuleren van viskeuze stromingen.
Beide individuele delen van de software (zowel om de vervorming van de zeilen als de
stroming te beschrijven) zijn afzonderlijk van elkaar én samen geverifieerd en gevali-
deerd. Vervolgens wordt er aan de hand van een voorbeeld getoond hoe het ontwikkelde
model kan worden toegepast.

Om een correcte beschrijving van de modellen te toetsen zijn deze geverifieerd voor
rekenrooster- en tijdsafhankelijkheid tegen beschikbare analytische of experimentele
data. Aangezien er geen experimentele data beschikbaar was voor ruimewindse zei-
len werden de resultaten vergeleken met de gemeten krachten en geobserveerde vor-
men van de zeilen bij modeltesten. Met name de vervormings- en koppelingsmodellen
werden succesvol geverifieerd en gevalideerd. Het loslaten van de stroming om sterk
gekromde oppervlakken, zoals het geval is bij ruimewindse zeilen, zorgt voor een hoge
gevoeligheid voor kleine verschillen in zeilvorm. Het valideren van de stromingssimu-
latie werd daarnaast bemoeilijkt door onzekerheden in de beschikbare experimentele
data.

Tenslotte is het bovenstaand beschreven model toegepast om drie ontwerpen van
zeilen met elkaar te vergelijken voor een niet bestaand AC90 zeiljacht. De invloed van
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xii SAMENVATTING

verschillen in de zeilontwerpen zijn duidelijk zichtbaar; kleine wijzigingen in zeil (pro-
fiel) diepte resulteerden in sterk verschillende optimale invalshoeken.

Het bovenstaande model kan verbeterd worden door de de koppeling tussen het
vervormings- en stromingsmodel aan te passen. Dit zal leiden tot een nauwkeurige be-
schrijving van het dynamische gedrag van de zeilvorm in de tijd. Daarnaast zal het toe-
passen van meer ontwikkelde, en meer nauwkeurige stromingsmodellen, zoals de Large
Eddy Simulation of Detached Eddy Simulation de turbulentie beter kunnen beschrijven
en daarmee dus ook leiden tot een betere voorspelling van de zeilvorm.



NOMENCLATURE

AWA Apparent Wind Angle; Resultant incident wind angle from true wind and headwind a moving
sailing yacht encounters

AWS Apparent Wind Speed; Resultant incident wind speed from true wind and headwind a moving
sailing yacht encounters

Ax, Ay Force Areas; Flow forces normalised by dynamic pressure head from incident flow

CFD Computational Fluid Dynamics; Numerical method to calculate flow behaviour

Co Courant Number; In finite volume methods: The ration between volumeflux through a cell face
per timestep and the cells volume

FEM Finite Element Method; Numerical method to compute behaviour of structures under load

FSI Fluid-Structure-Interaction; Numerical simulation coupling flow forces acting on a body and
the structural behaviour of the body resulting thereof to account for effects acting both ways

Re Reynolds Number; The ratio between flow velocity times flow length on surface and fluid kine-
matic viscosity

Spinnaker Headsail for use with the wind aft of the beam; resembling a triangular cutout of a balloon,
attached to the boat only via the three corners

SST-Model Shear-Stress-Transport turbulence model; developed by Menter, based on the near wall mod-
elling of the k-ω turbulence model and the far-field modelling of the k-ε turbulence model

TFWT Twisted flow wind tunnel; Wind tunnel with flow conditioning to mimic the atmospheric bound-
ary layer and incident flow angle distribution a moving sailing yacht encounters

VMG Velocity Made Good; Effective velocity of a yacht relative to a certain direction, typically directly
up- or downwind

VPP Velocity Prediction Program; Program to determine the achievable velocity of a yacht for a given
set of wind conditions

xiii





1
INTRODUCTION

1.1. SAILS AND SAIL DESIGN
Historically, sails are one of the major propulsion methods for yachts and ships. De-
spite this, due to the limitations of the available materials, little effort has been put into
the optimisation of sails until the 20th century. Until the 1950s sails were made out of
hemp or cotton. The cut of these sails was based purely on experience, the sails had to
be "broken in" and regularly recut to correct for stretch and deformation. Only the ar-
rival of synthetic sailcloth enabled the sailmakers to design sails to a particular shape.
Still, due to the limited engineering possibilities in those days, sailmaking was more an
art than a science. The arrival of computers, powerful enough to perform the necessary
calculations for three-dimensional design by dedicated CAD programs and the involved
engineering calculations, enabled the sailmakers to optimise the sails during the design
stage and not only by trial and error later on. Major drivers of the development of dedi-
cated software were international competitions like the America’s Cup, where significant
research and development budgets were available.

Generally, sails can be classed in two categories: those creating driving force by act-
ing like a wing and those acting like a drag body. Historically this difference separated
upwind sails like main and jib / genoa from downwind sails like a spinnaker. In fluid me-
chanical terms this separation is akin to creating lift by attached flow and creating drag
by separated flow. Recently this distinction has been vanishing as spinnakers are now
typically designed to operate at smaller wind angles with at least partially attached flow.

From a design viewpoint the challenge designing upwind sails is to keep the designed
airfoil-like shape despite the large and varied stresses acting on the material. The actual
displacement of the sail under load and the strains are quite small in design-conditions.
On a downwind sail a major challenge is to achieve an effective flying shape under wind
loads as the sail behaves like a section cut out of a balloon. The only fixed points known
are the leads of halyard, tackline / aftguy and sheet. The remainder of the sail can basi-
cally take any shape possible within the limits of the sails cut. The stresses and strains on
a downwind sail are usually only a small fraction of the allowable stress of the material,
the displacement from the originally designed shape often quite large.

1
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1.2. SAIL ANALYSIS AND OPTIMISATION
As in any engineering application, testing, evaluation and optimisation are major parts
of the way to a successful sail design. While the design of a typical sail for the aver-
age cruising yacht is still based mostly on experience, in racing yacht application more
involved methods are required to obtain optimal performance. Typically, these are ex-
perimental testing and numerical simulation. The analysis of sails is complicated by the
fact, that they are flexible structures with their flying shape being determined by the in-
teraction of flow forces and structural behaviour. Therefore, evaluation of flow as well as
structural behaviour has to be carried out in unison to achieve a correct result for both.

For the choice of the method used, typically a distinction is made between upwind
and downwind sails, as above. Basically it can be stated that, with the sails trimmed for
optimal efficiency, the flow around upwind sails is mostly attached. The flow around
downwind sails is typically characterised by spontaneous, possibly periodic separation
with the sails trimmed for maximum lift. Structurally, upwind sails can be described as
highly loaded membranes with little curvature and little displacement under load com-
pared to the designed shape. Due to this, small errors in the replication of the structure
can lead to significant errors of the sails flying shape. The structure of downwind sails is
characterised by much higher curvature, significantly smaller loads and large displace-
ments of the sails surface compared to the designed shape. Due to this, small errors in
the replication of the structure have little impact on the flying shape.

Due to the small models necessitated by wind tunnel size, the major shortcomings of
wind tunnel testing are scale effects of flow and structural behaviour. Using reasonably
scaled structural elements of rigging it is impossible to achieve Reynolds similarity of the
flow. Still, complicated flow features, like separation, are captured quite accurately. Simi-
larly, structural similarity usually can not be achieved. Due to manufacturing constraints
of the models, usually the panellisation of the sails surface is significantly simplified, a
correct stress-strain-weight relationship of the cloth usually can not be achieved either.
The advantages of wind tunnel testing are that flow around and structure behaviour of
the sails are directly interdependent like at full scale and that the sails can be trimmed
like on the boat.

Simulations are typically carried out in full scale. While for upwind sails the major
challenge is accurate structural modelling, for downwind sails it is the correct predic-
tion of flow separation and the sails large displacements. The attached flow around up-
wind sails can be satisfactorily simulated using inviscid flow modelling,. e.g. by Vortex-
Lattice-Methods. The partially detached flow around downwind sails necessitates high
fidelity modelling of the viscous flow using RANS methods with involved turbulence
models to correctly capture the near wall behaviour. To achieve the correct flying shape,
in the case of upwind sails, all structural features have to be modelled correctly. This
requires high grid resolutions and advanced model element libraries, yet, with current
finite element programs, it is perfectly feasible. For spinnakers the structural model can
be somewhat simplified, yet it has to be able to cope with significant geometrical non-
linearities due to the large displacements and correctly model the structurally non-linear
behaviour of sail cloths under compression.

For the reasons stated above, numerical simulation currently is the major design tool
for upwind sails. Downwind sails are still mostly tested in wind tunnel experiments. The
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aim of this thesis is to develop a method that allows the accurate modelling of downwind
sail using Fluid-Structure-Interaction methods, attempting to rival or surpass the value
of wind tunnel experiments for downwind sail design.

1.3. PROBLEM DEFINITION AND OBJECTIVES
The value of evaluating downwind sails by testing scale models in the wind tunnel is
limited by several factors. Mainly these are scale effects, affecting the accuracy of trans-
ferring the measured forces to full scale and the need to build a new model of the sail for
every change in sail cut. Further the structural layout of the sail is usually significantly
simplified for the model. Simulation of viscous flow and of a non-idealised structure
allows to evaluate the flow around a sail or its structural behaviour in a timely manner
without the influence of scale effects. To assess the quality of a sail, the computation of
flow and structure have to be coupled to evaluate not only the separate aspects but the
interaction thereof.

The aim of the present work is therefore to develop a system that allows the accurate
coupled simulation of the flow around and the structural behaviour of downwind sails in
full scale. This includes the development of a finite element code capable of simulating
the highly non-linear behaviour of such sails in a robust and efficient fashion and the
interface coupling this FE-code to an existing RANS flow code in an efficient manner.

1.4. OUTLINE OF THE THESIS
Within this thesis first the current state of the art of experimental and numerical sail
testing is presented in Chapter 2. Due to simulation methodology the separate reviews
are given for flow and structural simulation and fluid-structure-interaction coupling.

The mathematical model for the structural simulation is discussed in Chapter 3,
starting with the classical triangular membrane element and continuing with extensions
of the model for the computation of wrinkling behaviour. Following that, two different
solution strategies employed during the present work are discussed.

A short synopsis of the two typical approaches to coupling of flow and structural
simulation is given in Chapter 4.

As any simulation is only as good as its validation, in-depth validation of flow and
structural simulation and the coupled approach is given in Chapter 5. While validation is
based on literature data as far as possible, some wind tunnel experiments were required
to generate suitable data. These are presented in detail.

An application example of the method developed within this work is presented in
Chapter 6. To demonstrate the capabilities of the method several parametrically varied
asymmetric spinnaker designs for the stillborn AC90 class are compared.

Finally, the results are discussed and recommendations are given in Chapter 7.





2
STATE OF THE ART

2.1. EXPERIMENTAL TESTING
First steps to quantify sail performance were taken by Davidson [1] in 1936 by measuring
driving and side force and heeling moment on the sails of the yacht Gimcrack at full scale,
resulting in the so-called Gimcrack-Coefficients, the first set lift and drag data for sailing
yacht rigs. Modern methods of sail testing in a wind tunnel were mostly developed at the
MIT by Hazen [2] in the context of the MHS ocean racing handicapping project and at the
Wolfson Unit, Univ. of Southampton’s wind tunnel by Marchaj [3] and Claughton et al.
[4]. These developments focussed mostly on measurement techniques and generation
of generalised data for evaluation of yacht sails without individual tests.

A major advance on testing method of downwind sails was achieved by the com-
missioning of the University of Auckland’s Twisted Flow Wind Tunnel by LePelley et al.
[5]. While upwind sails encounter a comparatively homogeneous flow field, the incident
flow on downwind sails has major vertical gradients of velocity and direction. Modelling
this flow field by selective blockage of the flow and directional vanes allows to evaluate,
and in consequence design, downwind sails for these particular flow conditions.

The next major advance came from Auckland as well by the introduction of real-time
velocity prediction into the evaluation of the generated forces and moments (LePelley et
al. [6]). Commonly, during wind tunnel tests, the sails were either trimmed for maximum
drive, optimal lift to drag ratio or the trim systematically varied to generate response
surfaces. Real-time velocity prediction allows to include the boat’s particulars into wind
tunnel testing. This effectively limits the allowed heeling moment, requiring the wind
tunnel operator to trim for maximum boat speed for given true wind angle and speed.

One of the most recent advances is the introduction of flying shape capturing meth-
ods at various wind tunnels and on full scale sails (LePelley et al., Graf et al., Mausolf et al.
[7–9]), based on various kinds of photogrammetric techniques. These techniques have
been further extended by shape capturing in a time series and simultaneous pressure
measurements on these sails, e.g. by Motta et al. [10] and Deparday et al. [11, 12].

A significant challenge is the acquisition of good validation data, measurements of

5
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two-dimensional flow around sail-like profiles were presented by Collie and Wilkinson
[13, 14].

Flow forces for parametrically varied spinnaker-like three-dimensional shapes were
presented by Lasher [15]. Unfortunately local flow behaviour was not captured during
these measurements and the models were quite small.

During an intensive study of pressure distributions on various sail configurations in
2009 and 2010 Viola et al. produced a copious amount of qualitative data [16–19]. Sig-
nificant further research has been invested into the understanding of the particular local
properties of the flow around downwind sails or similar two-dimensional sections (e.g.
Flay et al. [20] or Viola et al. [21]).

2.2. SIMULATION

A program for simulations using Fluid-Structure-Interaction (FSI) basically consists of
three major parts: Flow simulation, structural simulation and coupling. Applied to the
analysis of downwind sails these are the simulation of viscous, turbulent, possibly de-
tached single phase flow, the structural behaviour of thin, flexible, anisotropic materials
undergoing large displacements and the two-way coupling thereof.

2.2.1. FLOW SIMULATION

Fluid flow can be simulated using two basic paradigms: ideal, inviscid fluids or viscous
fluids. Initial application of CFD to sails were limited to inviscid Vortex-Lattice-Methods
(Thrasher et al. [22]), sometimes with empirical extensions (Register et al. [23]). A com-
parison of measured and simulated forces of upwind sails was presented by Milgram et
al. [24]. While the inviscid approach holds quite well for the simulation of flow around
upwind sails where little or no flow separation occurs it is not suitable to simulate the
flow in any sailing state where flow separation has a significant impact on the flow’s be-
haviour. With the above mentioned empirical extensions it may be possible to detect the
onset of flow separation, yet the correct calculation is impossible.

To correctly simulate partially separated flow viscous fluid models have to be used.
The earliest RANS calculations of the flow around sails in downwind conditions were
carried out in 1996 by Hedges et al. [25], showing the necessity of taking viscous flow
behaviour into account. Collie et al. carried out a large scale investigation of the impact
of the choice of turbulence models and grid parameters on the simulated flow around
upwind [26, 27] and downwind [13, 28, 29] sails using 2-D profile slices of the sail. Sev-
eral authors have simulated the three dimensional flow around upwind sails including
geometry optimisation or permutation methods using RANS methods [30–32]. An in-
depth investigation of the effect of grid resolution in three-dimensional downwind cases
was presented by Viola [33].

Most recent research in the simulation of viscous flow around downwind sails, e.g.
Nava et al. [34], shows that turbulence resolving methods like LES have the potential
to significantly improve the capturing of separation points compared to RANS methods,
albeit at a significantly higher computational effort (by a factor of 120).



2.2. SIMULATION

2

7

2.2.2. STRUCTURAL SIMULATION

To simulate the structural behaviour of the sail using a finite-element method basically
two models can be used: shell or membrane elements. Shell elements have in-plane as
well as bending stiffness, typically modelled by solving for six degrees of freedom (DoF)
per node (Levy et al. [35]) or by introducing a hinge stiffness at the edges (Grinspun,
Wardetzky et al. [36, 37]). Membrane elements have only in-plane stiffness, reducing the
degrees of freedom to three per node (Zienkiewicz [38]. In a strict sense the shell element
is the correct description, however, if the ratio between bending and direct stiffness ap-
proaches zero, as it typically does for sailcloths used for downwind sails, the difference
between shell and membrane elements vanishes.

Very important for the correct simulation of the sail’s structural behaviour is the abil-
ity of the model to correctly model the behaviour of the material under compressive
stress as shown by Heppel [39]. In the case of shell elements this is done by a buck-
ling analysis with the buckling strain approaching zero as the bending stiffness vanishes.
This buckling analysis, if done correctly, actually captures the out of plane deformations
of the material, yet it requires a fine enough discretisation of the surface and is quite ex-
pensive computationally. For membrane elements typically a wrinkling model is imple-
mented keeping the direct stresses equal or larger than zero. The wrinkles are assumed
to be on sub-element scale, therefore resulting out of plane deformations of the real ma-
terial are not represented. In this thesis, we will limit ourselves to wrinkling models.

Historically, first wrinkling models were formulated by Stein et al. and Miller et al.,
based on properties observed during experiments with isotropic membranes [40, 41].
In these models the material properties were modified, giving uniaxial stress-strain be-
haviour. In later models the strain vector is modified by introducing a wrinkling strain,
artificially shortening the surface normal to the wrinkles, to capture the actual structural
behaviour of the surface (Kang et al., Lu et al. [42, 43]). Validation data can be found in
various published experiments experiments (Stein et al., Wong et al. [40, 44])

In 2002 a promising approach to the solution of FEA cases with large deformations,
even structural failure, was proposed by Hao et al. [45]. In the proposed Moving Particle
Finite Element Method it is attempted to combine the advantages of a classical finite
element approach with those of a meshfree method. In the paper application examples
indicating the suitability for the simulation of large deformations are shown. Evaluating
the applicability of such a method to the particular issues of sail structures is beyond the
scope of this thesis.

2.2.3. FLUID-STRUCTURE-INTERACTION

Due to the progress of development of flow simulation techniques, starting with poten-
tial flow methods, first FSI applications on sails were for upwind sails. One of the first
methods published was by Fukasawa et al. [46]. LeMaître et al. [47, 48] developed a
model where the structural behaviour of the sail was based solely on string elements,
the aerodynamic loads were initially mimicked by a simple analytical distribution, later
by an inviscid flow model. The first practical applications of a FSI code coupling the FEA
model of the sails with a solver for inviscid flow were reported by Heppel and Ranzenbach
et al. [39, 49, 50]. Current applications have for example been published by Malpede et
al. [51].
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Since the beginning of work on this thesis the work on RANS-based sail-FSI has gath-
ered pace internationally. The first report prior to the author’s work was by Richter et al.
[52]. In this case the two solvers (RANS and FEA) were coupled in a so-called batch mode,
having an external script trigger two separate programs with data exchange by file.

Since the first publication of the author on the work documented within this the-
sis [53] various practitioners have published approaches to the problem of RANS-based
sail-FSI. Basically, two general approaches can be distinguished: Fully explicit coupling
by batch mode and attempts at capturing the sail’s dynamics to some extent. The most
relevant publications regarding batch-mode coupling were by work-groups associated
to Heppel et al. [54, 55]. Examples of the second group can be found in the work of
Lombardi et al. [56] and Durand et al. [57]. While Lombardi et al. use Aitken underre-
laxation to stabilise the coupling, Durand et al. have modified the batch mode coupling
approach by introducing an approximation of the flow Jacobian matrix, calculated by
potential flow methods, into the structural solution.

A different focus is present in the work of Trimarchi et al. [58], here the relevance lies
in the application of specialised thin shell elements for the structural modelling instead
of the usual membrane elements.

The author’s work is present in various publications ([8, 53, 59–62]), several of the
above authors have based parts of their work on the author’s publications.
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3
STRUCTURAL SIMULATION THEORY

To calculate the structural behaviour of the sail a Finite Element approach is used. This
means that the sail is discretised into small elements for which the structural behaviour
can easily be computed. Due to the nature of discretising this approach always remains
an approximation of the real behaviour, yet, by making the elements small enough, a
satisfactory representation of the real behaviour can be achieved.

3.1. FINITE ELEMENT MODELLING
In published finite element theory several approaches to the modelling of thin, essen-
tially two-dimensional, materials are given; membrane, plate and shell elements. A
membrane element is characterised by having two degrees of freedom per node, the
in-plane displacements. Plate elements, based on Kirchhoff’s plate theory have three
degrees of freedom per node, the out of plane displacement and rotation about two per-
pendicular axes lying within the elements plane. Shell elements have six degrees of free-
dom per node; displacement in and rotation about all three axes of a Cartesian coordi-
nate system. Typically the rotation about an axis normal to the element’s plane is omit-
ted reducing it to five degrees per node. Due to their characteristics membrane and shell
elements are particularly suited to the modelling of sails and similar structures as plate
elements are not capable of capturing the in-plane stresses. When using membrane ele-
ments it is assumed that the material’s bending stiffness has no noteworthy influence on
the structure’s behaviour. The shell element takes all these effects into account, however,
when bending stiffness is approaching zero, it effectively becomes a membrane element.

3.1.1. FEM NOMENCLATURE
To properly describe the behaviour of the finite elements used in the simulations a par-
ticular nomenclature is required, differentiating between undeformed as well as deformed
element states and world, element and material coordinate systems.

Lower case italics indicate scalar values, lower case bold a vector and upper case bold
a matrix.
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Roman letters:

x location of node
u displacement of node
H Hessian matrix
T transformation matrix
C transformation matrix triangular element
c cosine
s sine

Greek letters:

α corner angle
ε strain
φ potential energy
ϕ strain energy density
σ stress
θ angle between two two-dimensional coordinate systems

Symbols and subscripts:

ˆ material coordinate system
¯ element coordinate system
˜ coordinate system aligned with principal stresses respectively wrinkling direction

i node i

j edge j

xx stress or strain in world coordinate x

yy stress or strain in world coordinate y

xy shear stress or strain in world coordinates

3.1.2. THE CST ELEMENT
For the modelling of the sail Constant Stress Triangle (CST) elements are used. These
elements were first described by Zienkiewicz in 1971 [1]. These triangular elements are
characterised by assuming that

a) The individual stress components are constant over the whole element
b) The stress-strain relationship is linear
c) The strains are only dependent on the element’s in-plane deformations.
Based on these assumptions the degrees of freedom of a singular element can be

reduced to the relative in-plane displacement of the three nodes forming the element
with the initial location of a node i being given as x̄i and its displacement as ūi .

In total, the following formulae are based on four coordinate systems:

• A three-dimensional cartesian "global" coordinate system (x, y, z) which is con-
stant for the entire structure. Within this coordinate system each node has three
translational degrees of freedom.
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• A two-dimensional cartesian element coordinate system given by (x̄, ȳ). This co-
ordinate system exists per element and lies in the element plane. Within this co-
ordinate system each node has two translational degrees of freedom. Any nodal
displacement normal to the element plane leads to a re-orientation of the coordi-
nate system versus the global coordinate system.

• A two-dimensional cartesian material coordinate system given by (x̂, ŷ). This co-
ordinate system lies in the element plane as well and aligned with the materials
principal axes.

• A fictitious two-dimensional cartesian wrinkled coordinate system given by (x̃, ỹ),
see Section 3.1.3.

Starting with an arbitrary two-dimensional cartesian coordinate system (x, y), the
generalised stress-strain relationship can be written as

σ= Hε , (3.1)

with the Hessian matrix H being the partial derivative of the stress by the strain compo-
nents:

H =


∂σxx
∂εxx

∂σxx
∂εxx

∂σxx
∂εx y

∂σy y

∂εxx

∂σy y

∂εy y

∂σy y

∂εx y
∂σx y

∂εxx

∂σx y

∂εy y

∂σx y

∂εx y

 . (3.2)

Usually this Hessian or stiffness matrix is given in the material oriented coordinate
system, e.g. for woven orthotropic fabrics aligned with warp and fill direction, see Figure
3.1.

Figure 3.1: Typical material oriented coordinate system for orthotropic material.

For the finite element simulation, the sail’s surface will be discretised using triangular
elements as shown in Figure 3.2. Please note that side 3 is parallel to the x-axis of an ele-
ment coordinate system (x̄, ȳ). This does not induce any loss of generality but simplifies
the following derivations.
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Figure 3.2: Triangular element in element coordinate system.

As the finite elements each have their own element oriented coordinate system (see
Figure 3.2), first the material oriented stress-strain relationship has to be transformed
into the element oriented coordinate system. The following derivation closely follows
the procedure outlined by Arcaro [2].

In an arbitrary two-dimensional cartesian coordinate system (x, y), the strain in an
infinitesimal line segment in direction of a unit vector v (see Figure 3.3) can be written
as

εv = c2
i εx̄ x̄ + s2

i εȳ ȳ +2ci siεx̄ ȳ , (3.3)

with v =
[

c
s

]
, c = cosθ and s = sinθ, θ as given in Figure 3.3.

Figure 3.3: Unit vector v in coordinate system (x, y).

Figure 3.4: Relation between material (x̂, ŷ) and element (x̄, ȳ) coordinate systems.

Applying (3.3) to the situation given in Figure 3.4 yields the following transformations
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of strain and stress: εx̂ x̂

εŷ ŷ

εx̂ ŷ

=
 c2 s2 2cs

s2 c2 −2cs
−cs cs (c2 − s2)

εx̄ x̄

εȳ ȳ

εx̄ ȳ

⇒ ε̂= Tε , (3.4)

σx̂ x̂

σŷ ŷ

σx̂ ŷ

=
 c2 s2 2cs

s2 c2 −2cs
−cs cs (c2 − s2)

σx̄ x̄

σȳ ȳ

σx̄ ȳ

⇒ σ̂= Tσ . (3.5)

For numerical convenience the formulae are manipulated as follows:

ε̂=
 εx̂ x̂

εŷ ŷp
2εx̂ ŷ

 , ε=
 εx̄ x̄

εȳ ȳp
2εx̄ ȳ

 ,

σ̂=
 σx̂ x̂

σŷ ŷp
2σx̂ ŷ

 , σ=
 σx̄ x̄

σȳ ȳp
2σx̄ ȳ

 ,

T =
 c2 s2

p
2cs

s2 c2 −p2cs
−p2cs

p
2cs (c2 − s2)

 ,

c = cosθ, s = sinθ .

Therefore in a material coordinate system (3.1) can be written as:

σ̂= Ĥε̂ , (3.6)

as well as in an element coordinate system:

σ= Hε . (3.7)

Given that TTT = I or TT = T−1 respectively, applying (3.4) and (3.5) to (3.1) yields the
following for the stress - strain relationship in an element coordinate system:

σ= TT ĤTε , (3.8)

and
H = TT ĤT . (3.9)

As stated above, the aim of applying the above described stress-strain relationship to
a discrete finite element is to obtain an equation for nodal forces as a function of nodal
displacements. To this end we have to describe strain as a function of these nodal dis-
placements and compute the resulting stress from these. Typically this is done using
so-called shape functions, these give a direct relation between nodal displacements and
strain in the element coordinate system. This relation has to be transformed to a global
coordinate system based on the elements current orientation at each step of the solu-
tion.

As the elongation and resulting strain in the elements edges can easily be calculated
in element as well as global coordinate system from relative node displacements without
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transformation between these coordinate systems, a formulation for strains based on
edge elongations is derived.

In Figure 3.2 the following geometrical relationships can be observed:

θ1 +α2 =π⇒
{

c1 =−cosα2

s1 =+sinα2

θ2 =α1 +π⇒
{

c2 =−cosα1

s2 =−sinα1

, (3.10)

with θ1 and θ2 being the rotation of edges 1 and 2 against the x̄-axis (keeping in mind
that edge 3 is parallel to x̄).

Using these relations in (3.3) for each edge j ( j = 1 to 3) yields the strains ε j :ε1

ε2

ε3

=
cos2α2 sin2α2 −p2cosα2 sinα2

2

cos2α1 sin2α1 +p2cosα1 sinα1
2

1 0 0

 εx̄ x̄

εȳ ȳp
2εx̄ ȳ

⇒ ε= Cε , (3.11)

with

ε=
ε1

ε2

ε3

, C =
cos2α2 sin2α2 −p2cosα2 sinα2

cos2α1 sin2α1 +p2cosα1 sinα1

1 0 0

 .

It can be shown that the determinant |C| is given by

|C| =p
2sinα1 sinα2 sinα3 , (3.12)

and the inverse C−1 by

C−1 = 1

|C|

 0 0
p

2sinα1 sinα2 sinα3p
2cosα1 sinα1

p
2cosα2 sinα2 −p2sinα1 sinα2 sinα3

−sin2α1 sin2α2 sin(α1 −α2)sinα3

 . (3.13)

The edge strains ε j , j = 1, ..., 3, can as well be computed directly from the nodal dis-
placements ui . The displacement of the entire element in the global coordinate system
by vectors ui is show in Figure 3.5, the deformation of a single edge due to displacement
in Figure 3.6.

In Figure 3.5the individual components of the displacement vectors ui are defined
as follows:

u1 =
u1

u2

u3

, u2 =
u4

u5

u6

, u3 =
u7

u8

u9

 .

For the purpose of describing the behaviour of a single edge, in Figure 3.6 the unde-
formed edge is defined by λe, with e being a unit vector in direction of the undeformed
edge and λ the edge’s length, the deformed edge by l, and the nodal displacements by p
and q. From these vectors the following relations can be formulated (see [2]):

λe+q− l−p = 0 , (3.14)



3.1. FINITE ELEMENT MODELLING

3

19

Figure 3.5: CST element in undeformed and deformed state with displacement vectors [2]

Figure 3.6: Element edge in undeformed and deformed state with displacement vectors [2]
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or
l =λe+q−p . (3.15)

By defining the normalised deformation of the edge

z = q−p

λ
, (3.16)

with q − p being the relative displacement of the two nodes describing the edge, and
therefore its deformation vector, the vector of the deformed edge l can be written as

l =λ (e+z) . (3.17)

Squaring the normalised vector of the deformed edge (e+z) results in

1+δ= (e+z)2 = 1+2eT z+zT z ⇒ δ= 2eT z+zT z . (3.18)

Then (3.17) gives:
|l|2 = lT l =λ2 (1+δ) . (3.19)

Generally, applying the above equations to an edge j of an element, u j is the unitary
vector parallel to the undeformed edge j and λ j the corresponding undeformed length.

For the calculation of strain as a function of above deformations, Green’s strain defi-
nition is used. Generally Green’s strain of a material line is defined as

εG = 1

2

(
`2 −L2

L2

)
, (3.20)

where εG is the Green strain, L the original length of the material line and ` its deformed
length.

Applying (3.19) to the Green strain definition (3.20) results in:

εG = lT l−λ2

2λ2 = δ

2
. (3.21)

Computation of resulting nodal forces as reaction to nodal displacements is based on
the concept of potential energy. While external potential energy is calculated as nodal
displacement times opposing force

φext =−FT u , (3.22)

the internal potential energy or potential strain energy resulting from a deformation
of an element due to external forces is calculated as the integral of strain energy density
over the element’s volume:

φi nt =
∫

v
ϕd v = 1

2
ε̄T σ̄At , (3.23)

with

ϕ= 1

2
ε̄T σ̄ , (3.24)



3.1. FINITE ELEMENT MODELLING

3

21

and At being the element’s un-deformed volume. As membrane elements are consid-
ered, t is assumed to be constant and small. Combining (3.22) and (3.23), the nodal
reaction forces resulting from a deformation of an element due to nodal displacements
can be calculated as the derivative of the potential strain energy by these displacements.

Applying (3.7), (3.9) and (3.11) yields

ϕ= 1

2
ε̄T H̄ε̄ , (3.25)

which expands to

ϕ= 1

2
εT (

TC−1)T
Ĥ

(
TC−1)ε⇒ϕ= 1

2
εT Hε=ϕ (ε1,ε2,ε3) , (3.26)

with
H = C−T HC−1 , (3.27)

and
H = TT ĤT . (3.28)

Applying (3.26) to (3.28) to (3.23) yields

φ= 1

2
εT (H)εAt = 1

2
εT (

TC−1)T
Ĥ

(
TC−1)εAt . (3.29)

Using the edge strains ε j in (3.23), the gradient of the potential strain energy by a
nodal displacement component ui can be calculated by

φ=
∫
ϕ (ε1,ε2,ε3)d v ⇒ ∂φ

∂ui
=

(
∂ϕ

∂ε1

∂ε1

∂ui
+ ∂ϕ

∂ε2

∂ε2

∂ui
+ ∂ϕ

∂ε3

∂ε3

∂ui

)
At . (3.30)

(3.26) can be differentiated by ε as

ϕ= 1

2
εT Hε⇒


t ∂ϕ
∂ε1

t ∂ϕ
∂ε2

t ∂ϕ
∂ε3

= (Ht )ε . (3.31)

Then (3.1) yields
σt = (Ht )ε . (3.32)

The gradient of the potential strain energy can be written as

∂φ

∂ui
=

(
σT ∂ε

∂ui

)
At . (3.33)

Differentiating the edge strains ε j with respect to the components k of displacement
vectors p and q (see Figure 3.6) gives

∂ε j

∂pk
=− 1

λ
(ek + zk ) ,

∂ε j

∂qk
=+ 1

λ
(ek + zk ) .

(3.34)
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For each individual edge j the above equations are:

z1 = u3 −u2

λ1
,δ1 = 2(e1)T z1 + (z1)T z1 ,ε1 = δ1

2
,∇ε1 = 1

λ1

 0
− (e1 +z1)
+ (e1 +z1)

 ,

z2 = u1 −u3

λ2
,δ2 = 2(e2)T z2 + (z2)T z2 ,ε2 = δ2

2
,∇ε2 = 1

λ2

+ (e2 +z2)
0

− (e2 +z2)

 ,

z3 = u2 −u1

λ3
,δ3 = 2(e3)T z3 + (z3)T z3 ,ε3 = δ3

2
,∇ε3 = 1

λ3

− (e3 +z3)
+ (e3 +z3)

0

 .

(3.35)

3.1.3. MEMBRANE WRINKLING ANALYSIS
Basically, for typical simple finite elements the same stress-strain relationship under in
plane extension and compression is assumed. The CST element described above is no
exception. Unfortunately this does not correctly describe the behaviour of materials like
sailcloth which are quite stiff under in plane extension but simply fold under compres-
sion. While the resulting geometry of a wrinkled fabric in reality depends on various
factors like the (very small) bending stiffness and the actual principal strains, the folds
that form due to compression in the simulation of a discretised membrane depend on
size and shape of the finite elements as well as the orientation of their edges. These folds
are essentially numerical artefacts, not an actual representation of the geometry (Heppel
[3]). In some cases, depending on grid orientation, long folds can appear in the geom-
etry, effectively inducing bending stiffness into the geometry, a so-called grid-locking
effect (Pitkäranta [4]).

Typically, in finite element analyses, two different methods are used to include this
material non-linearity; either shell elements coupled with a buckling analysis or mem-
brane elements together with a wrinkling model.

Shell elements have at least five degrees of freedom per node to include bending
moments into the element equation. This allows to detect the onset of buckling and the
buckling mode by performing an eigenvalue analysis of the stiffness matrix. For prob-
lems where the material’s bending stiffness is of significance to the results this approach
is assumed to be the correct one. The onset and mode of wrinkling are highly dependent
on the material’s bending stiffness and the stress parallel to the wrinkles (Wong et al. [5]).
Examples of these problems include localised analyses of highly loaded corners and cut-
outs. Correct computation of the resulting wrinkles requires sufficiently fine resolution
of the surface.

For problems where the bending stiffness can be safely assumed to be negligible in
the context of the analysis, a simpler approach can be used. If the bending stiffness is
set to zero for a shell element and all rows and columns of the stiffness matrix contain-
ing only zeros are removed, the shell element reduces to a membrane element, e.g. the
CST element. Due to the lack of bending stiffness the eigenvalue analysis would become
non-defined and the wrinkling frequency infinite. As for these problems the acute geo-
metrical shape of the wrinkles is typically of no concern to the global solution, the out
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of plane displacements due to the wrinkles are disregarded and the system of equations
modified in a way that both principle stresses are equal or larger than zero. This happens
due to a so-called wrinkling model (Miller et al., Kang et al., Heppel, Lu et al. [3, 6–8]).
Typical examples of these problems include global analyses of sails, parachutes and tent
roofs. Usage of the wrinkling model allows to capture wrinkles smaller than the elements
used.

For the purpose of this thesis the CST element, as described in the previous chapter,
extended by a wrinkling model, is chosen. Several wrinkling models are presented in
literature, based on different approaches (Miller et al., Liu et al., Kang et al., Lu et al.
[6–9]).

Initial wrinkling models, as presented by Miller et al. [6], modified the element stiff-
ness matrix to the extent that stiffness is only present in the direction of the first (larger)
principal strain. Due to the condition of principal stresses and strains having to be
aligned this approach is limited to isotropic materials. Furthermore, in regions of fully
slack cloth, the stiffness matrix may become singular, effectively preventing calculation
of a valid solution. A solution to the latter shortcoming was presented by Liu et al. [9].
They introduced the concept of a penalty parameter. Instead of setting the stiffness in
the direction of the second principal stress to zero, it is divided by this penalty parame-
ter, resulting in a very small stiffness, which is still sufficient to ensure numerical stability
of the solver.

Kang et al. and Lu et al. [7, 8] argued that the modification of the element’s stiff-
ness matrix is physically incorrect as the material properties do not change in reality.
They introduced a wrinkling strain, modifying the element strain until negative prin-
cipal stresses vanish. For isotropic materials the effect is exactly the same as in the
approach given by Miller et al. [6]. Due to the non-alignment of principal strains and
stresses in anisotropic materials the wrinkling angle in these cases has to be found nu-
merically.

WRINKLING CRITERIA

To define mathematically if wrinkling occurs, a criterion to evaluate the state of the ele-
ment has to be defined. Generally three states can be observed: taut, slack and wrinkled.
Literature (e.g. Liu et al. [9]) gives three different criteria defining these states: stress
based, strain based and mixed stress-strain criterion. These criteria are as follows:

1. Stress based criterion

• σ2 > 0 ⇒ taut

• σ1 ≤ 0 ⇒ slack

• σ1 > 0 and σ2 ≤ 0 ⇒ wrinkled

2. Strain based criterion

• ε2 > 0 ⇒ taut

• ε1 ≤ 0 ⇒ slack

• ε1 > 0 and ε2 ≤ 0 ⇒ wrinkled
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3. Mixed Stress-Strain criterion

• σ2 > 0 ⇒ taut

• ε1 ≤ 0 ⇒ slack

• ε1 > 0 and σ2 ≤ 0 ⇒ wrinkled

with σ1, σ2, ε1 and ε2 being the larger respectively smaller of the principal stresses and
strains, calculated without application of the wrinkling model.

As, for example, Hooke’s law for an isotropic material in two dimensions, aligned
with the principal strains, respectively stresses, is given by[

σ1

σ2

]
= E

1−ν2

[
1 ν

ν 1

][
ε1

ε2

]
, (3.36)

strain and stress in the two principal directions are coupled by the Poisson ratio ν. Due to
this coupling, the stress resulting from a principal strain close to zero can be significantly
affected when the absolute value of the other principal strain is relatively large. This can
even lead to a change of sign. These effects are further explained blow.

The effect of these different criteria can be depicted by a Mohr’s circles, see Figures
3.7 to 3.9.

Figure 3.7: Mohr’s circle for the stress based criterion [9]

As can be derived from Equation (3.36), both criteria based solely on stress or strain
have significant shortcomings in the prediction of wrinkling:

1. In cases where ε1 is slightly larger and ε2 significantly smaller than zero, Hooke’s
law without consideration of wrinkling might predict negative values forσ2 as well
asσ1, while in factσ1 would be slightly above zero in the wrinkled membrane. This
effect is missed by the stress based criterion which would predict a slack instead
of wrinkled membrane in this case.
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Figure 3.8: Mohr’s circle for the strain based criterion [9]

Figure 3.9: Mohr’s circle for the mixed criterion [9]
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2. Similarly, in cases where ε1 is significantly larger than zero and ε2 IS in fact slightly
negative, but σ2 calculated according to Hooke’s law would in fact be positive, the
strain based criterion would predict a wrinkled instead of taut membrane.

3. The mixed criterion captures the above exceptional cases and represents the most
accurate description of the state of the membrane. It is used for the simulations
described in this thesis.

WRINKLING MODEL

The description of the numerical model given in this section closely follows the approach
given by Kang et al. [7].

As stated above, a membrane model is not capable of modelling the actual wrinkled
surface. To circumvent this limitation, we define the fictitious non-wrinkled membrane
which has a smooth surface, representing the average surface which would be attained
after the wrinkles were removed.

Assuming a small element under homogeneous deformation in the state of wrin-
kling, as shown in Figure 3.10, this element would be in a state of uniaxial tension. In
the deformed configuration, the direction of this tension would be perpendicular to the
wrinkling direction. Assuming a material point of an element in non-wrinkled configu-
ration κ0 at the location (x1, x2, x3) in a global coordinate system with x1 and x2 being in
the material plane and x3 perpendicular to it, the same point in a wrinkled configuration
κw has the global coordinates (X1, X2, X3). Further, by defining a local reference frame
(x̃1, x̃2) on the element in κ0 in a way that the x̃1-axis is aligned with the direction of uni-
axial tension in κw , x̃2 being perpendicular to x̃1 is aligned with the wrinkling direction.
The axis X̃1 of the corresponding coordinate system (X̃1, X̃2) in state κw is aligned with
the direction of uniaxial tension as well. Similarly, a material line element aligned with
x̃1 in κ0 is aligned with X̃1 in κw . However, a material line element aligned with x̃2 in κ0,
is only aligned with X̃2 in κw , if all shear strain with respect to (x̃1, x̃2) in κ0 vanishes.

Defining ei , Ei , ẽi and Ẽi as the base vectors along xi , Xi , x̃i and X̃i respectively,
under the assumption of small strain, the stress-strain relationship in reference frame
(x̃1, x̃2) can be written as

σI J = CI JK LεK L , (3.37)

with the stress σI J , the strain εK L and the stiffness matrix CI JK L .

Assuming a membrane element ABCD in state κ0 is deformed to shape A”B”C”D”
in state κw , this deformation can be seen as a sequence of several individual deforma-
tions. First we define rigid rotation from ABCD to ĀB̄C̄D̄. Next follows the deforma-
tion by uniaxial tension from ĀB̄C̄D̄ to A’B’C’D’. Last is the pure wrinkling deformation
from A’B’C’D’ to A”B”C”D”. To distinguish the state of uniaxial tension without wrinkling
(A’B’C’D’) from the state of uniaxial tension where wrinkling may occur (A”B”C”D”),
(A’B’C’D’) will from here on be called the state of natural uniaxial tension. A”B”C”D”
is the genuine final state of uniaxial tension in the presence of wrinkling. In Figure 3.10
the initial and final states ABCD and A”B”C”D” are shown as well as the fictitious non-
wrinkled membrane replacing the wrinkled one.
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Figure 3.10: Coordinate systems for undeformed and wrinkled membrane states as well as fictitious non-
wrinkled membrane.
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From the collapsed representation of 3.37 σ̃11

σ̃22p
2σ̃12

=
 C̃11 C̃12

p
2C̃13

C̃21 C̃22
p

2C̃23p
2C̃31

p
2C̃32 C̃33

 ·
 ε̃11

ε̃22p
2ε̃12

 , (3.38)

with C̃ I J being the stiffness matrix in the x̃ frame, it is important to note that,due to the
uniaxial nature of the stress in the wrinkled membrane element, σ̃22 = σ̃12 = 0. Applying
this condition and solving for ε̃11 yields:

σ̃11 = a · ε̃11 , (3.39)

with

a = 1

C̃23C̃32 − C̃22C̃33

[
C̃11

(
C̃23C̃32 − C̃22C̃33

)
+C̃12

(
C̃21C̃33 − C̃23C̃31

)+ C̃13
(
C̃31C̃22 − C̃21C̃32

)]
.

(3.40)

As flexural stiffness of the membrane element is assumed to be neglegible, inducing
wrinkling from state A’B’C’D’ to A”B”C”D” does not change the stresses within the mem-
brane element. Therefore the stress-strain relationship given in (3.39) remains valid for
the state of uniaxial tension under the occurance of wrinkling A”B”C”D” as well as the
state of natural uniaxial tension A’B’C’D’.

Similarly, inserting the condition for natural uniaxial tension - ε̃′22 and ε̃′12 giving
exactly slack state normal to ε̃′11, but no wrinkling - together with (3.39) into (3.38):

ε̃′22 =
C̃21C̃33 − C̃23C̃31

C̃23C̃31 − C̃22C̃33
ε̃′11 , (3.41)

and p
2ε̃′12 =

C̃22C̃31 − C̃21C̃32

C̃23C̃31 − C̃22C̃33
ε̃′11 . (3.42)

By Kang et al. [7] it is shown for the purely wrinkling deformation from A’B’C’D’ to
A”B”C”D” that

ε̃′11 = ε̃′′11 and ε̃′12 = ε̃′′12 but ε̃′22 6= ε̃′′22 . (3.43)

Therefore from (3.42) it follows that

p
2ε̃′′12 =

C̃22C̃31 − C̃21C̃32

C̃23C̃31 − C̃22C̃33
ε̃′′11 , (3.44)

(3.43) implies that (3.42) respectively (3.44) remain valid regardless of the amount of
wrinkling. Therefore (3.42) and (3.44) are invariant to the magnitude of wrinkling and
valid for the wrinkled state as well as the state of natural uniaxial tension, while (3.41) is
only valid in the state of natural uniaxial tension.

From the above formulae and observations the direction of the uniaxial tension can
be determined. This direction is coincident with the x̃1 axis in Figure 3.10. Note that
ε̃11 is the strain component along this axis in case of wrinkling. The angle of rotation
between x1 and x̃1 β can be found as follows:
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1. Assume an angle β∗

2. Transform the strain components εi j to the components ε∗i j in the x∗
1 frame by

rotation from x1 by β∗

3. Check whether ε∗11 > 0

4. If ε∗11 > 0, set ε̃11 = ε∗11

5. Calculate ε̃22 and ε̃12 from ε̃11 using (3.41) and (3.42)

6. Find β=β∗ such that ε̃12 = ε∗12 and ε̃22 ≥ ε∗22

Due to symmetry we need to find β only for 0 ≤ β < π. Key is finding the root of the
equation f (β) = ε̃12 −ε∗12, where β is implicit, by a numerical method.

To find above root, Ridder’s method [10, 11] - a combination of Regula Falsi and
approximation by an exponential function - has been chosen. The advantage of this
method above other - possibly more efficient - approaches lies in the fact that conver-
gence even for not well-behaved functions is guaranteed due to the bracketing inherent
to the Regual Falsi. For well-behaved functions, the rapid convergence (m = 20.5) due to
the approximation of the function using exponential factors is realised.

When the conditions relevant for the chosen wrinkling criterion (Section 3.1.3, stress,
strain or mixed criterion) are satisfied, there exists only one solution forβ. The wrinkling
strain εw = ε̃22 −ε∗22 is a measure of the amount of wrinkling. In the wrinkled state, εw is
always larger than zero.

3.2. SOLUTION OF SYSTEM OF EQUATIONS
The equations given above describe the stiffness matrix for a singular element. Classi-
cally in finite element analysis these individual element stiffness matrices are assembled
to a global stiffness matrix, inverted and with the external forces solved for the nodal
displacements. Unfortunately this approach does not work for the membrane equations
given above for the following reasons:

1. Due to calculating only in-plane forces from the membrane stresses, the structure
is not statically defined in the non-stressed state.

2. The geometrical as well as material behaviour of the structure is highly non-linear

These two peculiarities introduce the following requirements: An alternative to the clas-
sic stiffness matrix determined solely by the element properties has to be found. The
method has to be iterative by nature to approximate the non-linear behaviour by small
linearised steps.

Some examples for approaches fulfilling these requirements are:

• Finding a criterion for the solution different from force equilibrium (Arcaro [2]). A
typical criterion would be the minimisation of the total potential energy of the sys-
tem. The total potential energy is the sum of the element stresses times strains less
the sum of external nodal forces times nodal displacements. This approach lends
itself to a Newton type solution as well. Of particular elegance is the possibility to
solve without the need for a global stiffness matrix.
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• Modelling the structure as a pseudo-dynamic system (Barnes [12]). In this ap-
proach virtual masses are allocated to the nodes. These masses undergo accel-
eration due to the differential of external and internal nodal forces. To enable con-
vergence measures to dampen the nodal motions are introduced. This approach
is used quite regularly for highly non-linear FE solutions(e.g. ANSYS LS-Dyna, RE-
LAX [3]) and works without a global stiffness matrix as well. Nodal velocities and
displacements are obtained by integration over time using appropriate integra-
tions schemes.

• Introducing artificial springs at each node at the beginning of the solution process
(Heppel et al. [13]). With increasing external loads during the progress of the solu-
tion, as the system described by the membrane elements becomes stable in itself
due to stress-stiffening, the stiffness of the springs is gradually reduced to zero.
This approach lends itself to a Newton or implicit solution approach.

During the development of the program the first and second of the approaches men-
tioned above were implemented and will be described in more detail below.

3.2.1. MINIMISATION OF TOTAL POTENTIAL ENERGY
The first approach mentioned above is based on the minimisation of potential energy. To
this end two different sources of pontential energy need to be defined: External potential
energy as calculated by a displacement times an opposing force:

φext =−FT u , (3.45)

and internal potential energy or potential strain energy contained within an deformed
element, as described in Section 3.1.2. This is calculated as the integral of strain energy
density over element volume:

φi nt =
∫

V
ϕd v

=
∫

V

(
1

2
ε ·σ

)
d v .

(3.46)

(3.45) and (3.46) indicate that, when an element is deformed by an external force,
yielding to this force and simultaneously increasing stress and strain, the external po-
tential energy is reduced while the internal potential energy increases. Equilibrium for a
system is found at the minimum of the total potential energy of the entire system

φtot al =
∑

el ement s
φi nt −

∑
nodes

FT u . (3.47)

To solve this system, it is necessary to calculate the gradient of total potential energy
by the individual nodal displacement components:

∇φtot al =
∑

el ement s
∇φi nt −

∑
nodes

F . (3.48)

Based on (3.47) and (3.48) the system can be solved e.g. by using a Newton method.
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While providing an elegant approach to the solution of the present system of equa-
tions, it was not possible to obtain stable solutions by minimisation of potential energy
when including a wrinkling model. Most probably, this is caused by lack of a well defined
gradient of potential energy in wrinkled or slack areas of the membrane structure.

3.2.2. DYNAMIC RELAXATION WITH KINETIC DAMPING
The second approach mentioned above is called Dynamic Relaxation. In this approach
the structure is modelled as a pseudo-dynamic system, oscillating around the nodal
equilibrium positions. To obtain a static solution this oscillation has to be dampened.
Typically two different methods are used to this end:

Viscous Damping An artificial viscosity is introduced, mimicking a damped spring-mass
system.

Kinetic Damping The total kinetic energy of all nodes is traced. If a peak is detected, all
motions are stopped, then the nodes are released again.

In the program kinetic damping is used, the following description closely follows the one
given by Barnes [12].

The idea behind the method of dynamic relaxation is based on Newton’s second law
of motion:

Ri (t ) = mi · üi (t ) , (3.49)

where Ri (t ) is the total force (sum of internal and external) acting on node i at time t, mi

is the nodes virtual mass and üi (t ) is the resulting acceleration. As a static equilibrium
(üi (tend ) = 0) and not an accurate description of dynamic behaviour is sought, the virtual
masses are calculated to ensure fast and stable convergence.

(3.49) is solved for all nodes i in the structure by explicitly integrating time by centred
finite differences. The acceleration term üi (t ) can then be written as:

üi (t ) = u̇i (t +∆t/2)− u̇i (t −∆t/2)

∆t
. (3.50)

Similarly the geometry at time t +∆t/2 can be written as:

ui (t +∆t ) = ui (t )+∆t · u̇i (t +∆t/2) . (3.51)

Substituting (3.50) into (3.49) yields the following equation for the velocities at time t +
∆t/2:

u̇i (t +∆t/2) = u̇i (t −∆t/2)+ Ri (t )

mi
∆t (3.52)

The explicit update of the nodes’ velocities and displacements is calculated without the
need for a global stiffness matrix. Actually the updated velocity of a node only depends
on the previous velocity and residual force acting on it. Therefore it is not influenced
by the current (t +∆t/2) updates of the other nodes. Resulting from the updated nodal
locations at time t +∆t , the residual forces acting on the nodes are updated:

Ri (t +∆t ) = Fi ,ext (t +∆t )+∑
Fi ,i nt (t +∆t ) , (3.53)
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with
∑

Fi ,i nt being the sum of all forces acting on node i by elements connected to node
i. Fi ,ext is the external force acting on node i, e.g. due to pressure.

The solution is found by iterating until the residual forces are smaller than a given
tolerance. The iteration scheme can be summarised as follows:

1. Set all nodal velocity components and the respective kinetic energies to zero

2. Compute external forces acting on nodes

3. Compute internal forces acting on nodes

4. Sum external and internal nodal forces to residuals

5. Reset residuals affecting nodal constraints to zero to enforce these contraints

6. Calculate nodal velocities and positions using (3.51) and (3.52). Determine the
sum of kinetic energy (KE) for the entire system at t +∆t/2

7. If current KE is greater then at t −∆t/2, return to stage 3

8. If current KE is smaller then at t −∆t/2, compute small corrections to nodal posi-
tions to correctly capture the kinetic energy peak

9. Return to stage 1 and repeat entire process until residuals are sufficiently small

At the beginning of the solving process or after reinitialisation the velocities u̇i (−∆t/2)
as required in (3.52) are unknown. Therefore it is assumed that
u̇i (−∆t/2) =−u̇i (∆t/2)
which is equivalent to u̇i (0) = 0. This yields:

u̇i (∆t/2) = Ri (0)

2mi
∆t . (3.54)

At stage 8 the nodal positions are supposed to be corrected to the time of the kinetic en-
ergy peak, t∗. As shown in Figure 3.11, a quadratic approximation can be fitted through
the current value of KE and the two preceding ones. From this fit t∗ can be determined.

The time offset δt∗ as indicated in Figure 3.11 can be computed by

δt∗ =∆t · E

E −D
=∆t ·q , (3.55)

with E = B −C , D = A−B and q = E
E−D . The nodal displacements are reset based on the

computed nodal velocities of the latest two time levels:

ui (t∗) = ui (t +∆t )−∆t · u̇i (t +∆t/2)−δt∗ · u̇i (t −∆t/2) . (3.56)

Substituting (3.51), (3.52) and (3.55) yields:

ui (t∗) = ui (t +∆t )−∆t (1+q) · u̇i (t +∆t/2)+ ∆t 2

2
·q · Ri (t )

mi
. (3.57)
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Figure 3.11: Determination of δt∗ by quadratic approximation [12]

As a quasi-steady solution is searched for and transient states are of no consequence,
selection of timestep length and virtual masses is basically arbitrary. Therefore, these
values are set to ensure stability and optimise convergence. As mentioned above, nu-
merically an oscillating system is modelled. Stability of such a system can be guaranteed,
if the timestep length is smaller than the smallest eigenperiod of the system. Conver-
gence will be optimal, if the timestep is as large as possible under the stability criterion.
A schematic of the shortest eigenperiod is given in Figure 3.12. In this Figure each node,
connected by structural links to the adjacent ones, is moving in the opposite direction to
both adjacent ones.

Figure 3.12: Motion of adjacent nodes at minimum Eigenperiod [12]

The Eigenfrequency of such a system can easily be determined under the following
conditions:

• The direct stiffness S of all links between nodes is the same

• The motion of all nodes is in line with the links, all nodes i are moving in the same
direction at velocity u̇i , all nodes j are moving in the opposite direction at velocity
u̇ j

• The virtual mass m of all nodes is identical
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From (3.52) the velocity at t +∆t/2 can be written:

u̇i (t +∆t/2) = u̇i (t −∆t/2)+ Ri (t )

m
∆t . (3.58)

Similarly for t +3∆t/2:

u̇i (t +3∆t/2) =u̇i (t +∆t/2)

+∆t

m

[
Ri (t )−S ·∆t

(
u̇i (t +∆t/2)− u̇ j (t +∆t/2)

)]
.

(3.59)

The term in square brackets is equivalent to Ri (t +∆t ).
Combining the above equations to eliminate Ri (t ) yields:

− u̇i (t +3∆t/2)+2u̇i (t +∆t/2)− u̇i (t −∆t/2)

= ∆t 2

m
·S

(
u̇i (t +∆t/2)− u̇ j (t +∆t/2)

)
u̇ .

(3.60)

Similarly for nodes j :

− u̇ j (t +3∆t/2)+2u̇ j (t +∆t/2)− u̇ j (t −∆t/2)

= ∆t 2

m
·S

(
u̇ j (t +∆t/2)− u̇i (t +∆t/2)

)
u̇ .

(3.61)

Introducing relative nodal velocities u̇i j between nodes and subtracting the two above
equations yields:

− u̇i j (t +3∆t/2)+2u̇i j (t +∆t/2)− u̇i j (t −∆t/2) = ∆t 2

m
·S · u̇i j (t +∆t/2)u̇ . (3.62)

From this equation the critical timestep length can be identified. It occurs when the rel-
ative velocity of a node to the adjacent ones at the current timestep is equal and opposite
to the velocity at the previous timestep. At larger timesteps increase of total velocity and
divergence of the solution may occur. By setting
u̇i j (t +3∆t/2) =−u̇i j (t +∆t/2) = u̇i j (t −∆t/2),
(3.62) reduces to:

∆t =
√

2m

S
. (3.63)

If the dynamic behaviour of the nodes were of interest and the masses m were realistic
masses, (3.63) would give the maximum allowable timestep for the entire system, based
on the node with the smallest∆t . As in this case a quasi-static solution is sought and the
timestep length and virtual masses are just a means of solution, an arbitrary timestep
length ∆t is chosen and the individual virtual masses mi are calculated accordingly by:

mi = ∆t 2

2
·Si , (3.64)

with Si being the largest direct stiffness node i is subjected to.
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3.3. SOLUTION STABILITY AND CONVERGENCE
Commonly, stability of a time dependent discretised system of equations is evaluated
according to stability theory, e.g. by Von Neumann stability analysis [14] commonly split
into analysis of stability of time continuous discretised equations and time integration
(see Westhuis [15] for example).

In the particular case of the above approach, the system of equation (commonly
called stiffness matrix) is replaced by pseudo-time integration of equations of motion.
Time integration is accomplished by the well-known leapfrog method (see Section 3.2.2).
The stability of this method has bee well covered in literature (e.g. by Birdsall et al. [16])
where it has been shown that this method is stable for undamped oscillatory motion if
the time step ∆t is constant and ∆t ≤ 2/ω. Actually, the calculation of the virtual nodal
masses (Eqn. 3.64) for a given pseudo-time step is based on these criteria.

The actual stability of the code can be evaluated by numerical experiment: Based on
the assumption that a fully converged solution is the exact solution to a particular case,
it can be argued that any non-converged state of this case is the exact solution plus a
perturbation. If during the progress of the computation (advancement of pseudo time
step) this perturbation remains constant or reduce the simulation can be said to be sta-
ble. Figure 3.13 gives the RMS of the nodal displacement (solution variable) and the total
force residual of the case (perturbation). As can clearly be seen, the RMS displacement
converges to a constant value with most of the displacement taking place within the first
iterations. Similarly, the force residual reduces strongly at the beginning of the simu-
lation, with further convergence down to the given residual criterion. Obviously, this
behavior fulfills the above criteria for stability. A similar pattern has been observed in
the large number of simulations carried out using the code.

(a) RMS displacement (b) Force residual

Figure 3.13: Progress of nodal RMS displacement and total force residual over outer iterations

The sole free variable of solver control is the virtual mass factor acting a multiplier
to virtual masses computed according to (3.64) with a factor of one corresponding to
the critical case given in the derivation of this equation. Theoretically, a factor equal
and larger than unity should therefore result in an unconditionally stable system, while
a smaller factor might lead to divergence of the solution if the actual Eigenperiod of the
oscillation of one node is actually smaller than twice the time step.
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In table 3.1 the convergence behaviour of the FE-code on a simple case is shown.
On the abscissas the outer iterations are plotted, on the ordinates the RMS of nodal dis-
placement, the total kinetic energy contained within the model and the force residual,
respectively. Plots are for added mass factors of 0.8 to 1.8. While theoretically the solu-
tion of the system should diverge with a added mass factor smaller than unity, a valid
solution is still reached given a factor of 0.8. This can be explained by a conservative as-
sumption during the calculation of the added mass, basing this on the maximum single
stiffness relative to opposing nodes a node may encounter. In practice, the system seems
to be far more docile, indicating that the maximum stiffness encountered is quite a bit
smaller.

Still, the diagrams show a consistent pattern: With increasing added mass factor a
decreasing number of outer iterations until convergence (based on max. residual crite-
rion) is required. Further, total kinetic energy as well as force residual show less scatter
with increasing added mass factor.Especially with an added mass factor of 0.8 the plots
look particularly "noisy".
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Table 3.1: Convergence behaviour of FE-code depending on virtual mass factor (left column) plotted over outer
iterations.



4
FLUID-STRUCTURE-INTERACTION

Generally, the interaction between fluid flow around and structural behaviour of a body
takes place at the interface between fluid and solid (see 4.1).

For numerical implementation and analogue to the CFD and FEA methods described
in the previous chapters the coupling needs to be discretised in space and time. As the
interface is infinitely thin, this results in surface elements with known location of the
elements’ centres or corners at the completed time steps.

Based on these discretisations the fluid-structure-interaction problem can either be
solved using a monolithic approach with fluid and solid domain simulated in one single
solver or in a segregated approach by splitting the problem at the interface between fluid
and solid into two sub-problems solved by appropriate programs (e.g. CFD and FEA).

By splitting into two sub-problems the need arises for the two solvers to communi-
cate in an organised fashion. Usually this means both solvers work sequentially, trans-
ferring only the required data at the interface to the other solver. The coupling of both
domains needs to be ensured by appropriate boundary conditions at the interface (see
Section 4.1.1).

Given the typical implementation of simulation codes for transient behaviour, con-
sisting of a time-loop containing an "outer" loop (e.g. SIMPLE-loop in a RANS code)
within which the linearised system of equations is solved repeatedly, three different lev-
els of coupling between flow and structural simulation are described in literature (e.g.
Hou et al. [1]).

At the closest coupling level, commonly called "monolithic", the equations describ-
ing the linearised behaviour of the flow and those describing the linearised behaviour of
the structure are part of a single system of equations and are solved together. Therefore,
the actual coupling step - an interface between a flow and a structural simulation code -
is unnecessary in this kind of implementation.

Hou et al. [1] describe the inherently implicit coupling and guarantee of fulfilling the
interface conditions described in Section 4.1.1 as the main advantages of the monolithic
coupling approach. The need to develop a bespoke FSI code instead of being able to
re-use existing CFD and FEA solvers is given as the main disadvantage.

39
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A segregated coupling approach, using separate CFD and FEA solvers, allows re-
using existing solutions by using a bespoke interface implementation. Obviously, the
separation of the solution into two domains requires iterations to ensure a valid state of
the interface due to non-linearities not accounted for (see Förster et al. [2]) in the data
exchange and solvers. Given a segregated coupling approach where separate solutions
for flow and structural behaviour are coupled by an interface, two coupling levels are
described:

At the tightest of these two coupling levels the coupling between the two codes is
located within the "outer" loop, typically at the beginning, allowing an update of the
interface (the boundary) for each "outer" iteration. In principle, this yields a fully con-
verged coupled system per time step. This kind of coupling is commonly called "strong"
or "semi-implicit".

The loosest of these two coupling levels the coupling is located within the time-loop,
typically at the beginning. This results in an update of the interface once per time step.
Obviously, the update in this kind of coupling is only an extrapolation of the previous
timestep’s result, therefore it can only describe a valid transient result if the effects of the
interaction are limited (a "weak" interaction) and linearisation is a valid approximation.
This kind of coupling is commonly called "weak".

If we consider the flow to be almost steady, a (quasi-)static approach can be consid-
ered. Essentially, this is a weak coupling in which the time derivative is disregarded and
only the final result is of interest. This can for example be achieved by alternating call-
ing steady flow and structural solutions with the interface updated in between or a weak
coupling where the interface is updated only every n-th time step.

In the following, this thesis will focus on the sequential approach.

4.1. THEORY

4.1.1. INTERFACE CONDITION
In any fluid-structure-interaction simulation, regardless of the coupling approach, the
interaction of fluid and solid domain takes place only at the interface between those
two. Based on this assumption, these two domains can be coupled by an appropriate
description of boundary conditions. Assuming balance of stresses and equality of ve-
locities, as argued by Wall et al. [3], these can be written as dynamic and kinematic
boundary conditions:

σs ·n =−σ f ·n , (4.1)

ẋs = ẋ f , (4.2)

with σ being a stress tensor acting on the interface at a location x, n the interface nor-
mal at this location and subscript s denoting structural and subscript f denoting fluid
domain quantities.

The dynamic boundary condition as given in (4.1) represents a Neumann condition
of transferring stresses acting on the interface from fluid to structural domain contain-
ing steady (e.g. due to shape of geometry) as well as transient (e.g. due to motion of
geometry) components. The kinematic boundary condition as given in (4.2) is a Dirich-
let condition transferring surface velocities from structural to fluid domain, ensuring a
no-slip condition of the fluid side of the interface.
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4.1.2. SEQUENTIAL COUPLING
In a sequential coupling approach it is assumed that each code, CFD as well as FEA,
is only connected to the other one by the boundary conditions at the interface, as de-
scribed above. The individual codes do not have (or need) any information about the
other beyond this boundary condition. Therefore, the coupling algorithm handling the
data exchange at the interface is responsible for ensuring the validity and stability of the
solution at this interface. Due to the nature of this coupling, with each code requiring
boundary data from the other, the codes have to solve their respective system of equa-
tions in turn, while iteratively approaching a converged common solution. A flow chart
of this coupling is given in Figure 4.1.

Figure 4.1: Generalised flow chart of sequential FSI coupling

Without advancing time from one iteration to the other this coupling results in a
converged steady solution. When advancing simulated time from one iteration to the
next it results in an explicit or weak transient coupling. In this case, the domain first
solved in the time/iteration loop (CFD in Figure 4.1) is always reacting on an explicitly
extrapolated solution of the other domain from the previous time step. Due to lack of
corrector loops, time accuracy of the coupling is lost when using this approach as soon
as non-linear behaviour in time is present at one or both sides of the interface.

If time accuracy is required for such a problem, it requires strong or (semi-)implicit
coupling. The iteration loop - at constant time - has to be included in an outer time
advancing loop with convergence of the iteration loop achieved at each time step. Such
an approach is depicted in Figure 4.2.

Even in this approach an explicit component is always present, leading to particular
issues as described below.

4.1.3. SOLUTION STABILITY
Due to the separation into two codes calculating in turn with input data from the previ-
ous results of the other code a significant explicit component is introduced (see Förster
et al. [2]). This separation introduces an effect called "artificial added mass". This "arti-
ficial added mass" manifests itself in a significant flow force acting in opposite direction
to the preceding boundary displacement. The artificiality of the added mass will be ex-
plained below.

The effect of this added mass can actually be compared to physical added mass im-
posed on a geometry being accelerated through a fluid and, for a given acceleration, is
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Figure 4.2: Generalised flow chart of (semi-)implicit sequential FSI coupling

of similar magnitude as this actual physical added mass. Due to the explicit component
the boundary displacement (and corresponding acceleration) of the non-converged so-
lution is often significantly larger than of the converged solution. Therefore the added
mass and resulting forces are significantly larger than for the converged solution.

Whilst the impact of this effect is small as long as the structure has significant phys-
ical mass, keeping the ratio between added and body mass significantly below unity, it
can fully destabilise the solution if the structure is light enough for the mass ratio to be
equal or larger than unity. Looking at membrane structures, respectively sails in partic-
ular, the mass ratio can reach 40 and larger.

Stabilisation of the solution can be achieved in the most basic way by under-relaxation
of velocities within the time step. Proof given by Xing [4] for rigid body motion shows
that this kind of relaxation effectively introduces an added mass into the computation of
accelerations of body mass divided by relaxation factor.

For a single node of a discretised flexible structure this can be derived in similar fash-
ion with the equation of motion of the node given as:

ẍ = f

m
, (4.3)

with f containing internal (structural) as well as external (flow) forces and m being the
mass of the associated part of the structure.

Applying an implicit trapezoidal time integration scheme yields for the motion of this
node at iteration i+1 of time step t+1:

ẋi+1
t+1 = ẋt +

ft + fi+1
t+1

2m
∆t

= ẋt + ft

m
∆t + fi+1

t+1 − ft

2m
∆t ,

(4.4)

with ẋt and ft being the velocity and total force at the end of the converged time step t.
Introducing under-relaxation by factor β against the result of iteration i yields:
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ẋi+1
t+1 =β

[
ẋt +

(
ft + fi+1

t+1

m

)(
∆t

2

)]
+ (

1−β)
ẋi

t+1

= ẋt + β∆t

2m

(
ft + fi+1

t+1

)
+ (

1−β)(
ẋi

t+1 − ẋt

)
.

(4.5)

Adding an added mass term madd to (4.3) the equation of motion becomes:

(m +madd ) ẍ = f+madd ẍ . (4.6)

Again applying implicit trapezoidal integration, it can be obtained that:

ẋi+1
t+1 = ẋt + ∆t

m +madd

(
ft + fi+1

t+1

2
+madd

ẋi
t+1 − ẋt

∆t

)

= ẋt + ∆t

2(m +madd )

(
ft + fi+1

t+1

)
+ madd

m +madd

(
ẋi

t+1 − ẋt

)
.

(4.7)

Comparing (4.5) and (4.7) it becomes apparent that

β∆t

2m
= ∆t

2(m +madd )
or 1−β= madd

m +madd
⇒ β= m

m +madd
. (4.8)

As argued by Xing [4] and Soeding [5], the relaxation factor β needs to be chosen
smaller than the ratio of body mass and the sum of body and added mass (see (4.8)). For
very light structures, like membranes, this results in very small relaxation factors (e.g.
≤ 0.025 for a ratio of e.g. 40), requiring large numbers of iterations per time step until
convergence with the associated computational effort.

Looking at the last two term of (4.7) and considering(
ft + fi+1

t+1

)
2m

as

(
ẋi+1

t+1 − ẋt
)

∆t
, (4.9)

the average acceleration during the time step from solution i+1, it becomes apparent
that the effect of the added mass vanishes when convergence is reached and ẋi+1

t+1 = ẋi
t+1.

Therefore madd can be considered as artificial as it is introduced into the computation
of the motion to counter the solution-method induced instability. In the converged state
the effect of the physical added mass is included in the forces resulting from the compu-
tation of the flow.

4.1.4. BOUNDARY INTERPOLATION
When using two separate simulation codes (as in sequential coupling) various data have
to be transferred at the interface. These data are not present as continuous field func-
tions but discretised in space depending on the respective simulation grids for each do-
main. These simulation grids can either be conforming or non-conforming (see Hou
et al. [1]) meaning, having common nodes at the interface or being entirely different.
This is further complicated by CFD and FEA codes usually having a different use of the
grid with CFD-codes mostly being finite volume based (see Appendix B) and structural
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simulations mostly based on finite elements (see Section 3.1). While the CFD-code uses
cell-centered data, valid for the entire cell, the FEA-code uses node-centered data with
element values in between calculated by a shape function (e.g. linear interpolation).
This discrepancy usually results in the need for interpolation of data from one boundary
grid to the other, while requiring conservativity of stresses and velocities (see above).

In the particular coupling discussed in this thesis, some peculiarities of the codes
involved can be used to simplify the coupling significantly. Except for beam elements
not accounted for in the CFD simulation, the FEA-code is based entirely on triangular
elements with external forces and resulting displacements only given at the nodes. The
CFD code uses the dual of the volume mesh (see Figure B.1) for computation of volume
integrals, resulting in triangular surface elements with data stored at the nodes when
used in combination with a tetrahedron-based mesh.

As the CFD-code returns the surface stresses at the nodes, not the forces, some inter-
polation is required here. To this end the normal stresses (= pressure) acting on each tri-
angular element are computed by averaging the stresses given at the three nodes defin-
ing this element (4.10), the forces on the nodes are computed by distributing the forces
on the element resulting from these stresses to the nodes again (4.11):

Pel ement =
1

3

∑
nodes

Pnode , (4.10)

considering only the three nodes defining the particular element and

Fnode =
1

3

∑
el ement s

Pel ement nel ement Ael ement , (4.11)

considering all elements attached to the particular node, with nel ement being the ele-
ment normal and Ael ement its area.

4.2. STEADY STATE IMPLEMENTATION
As stated before, due to the requirement for short computational times and reliable con-
vergence, in this work only the converged steady state result is of interest. This reduces
the kinematic boundary condition of the interface (4.2) to continuity of displacements

xs = x f . (4.12)

Similarly, first and second order time-dependent components of (4.1) are supposed to
vanish, meaning that σs and σ f should contain only deformation respectively shape
dependent components.

In principle, due to this simplification, the time loop could be omitted from the cou-
pling (see Section 4.1.2). In this case transient behaviour would not be of interest in the
CFD or FEA codes. While this assumption is used to simplify the FE code, solving only for
a steady state result per FSI-iteration (see Section 3), the peculiarities of the employed
CFD code require using a pseudo-transient CFD simulation, with an arbitrary time step
length as required for a stable CFD-solution, to enable mesh deformation. Obviously, on
the CFD side this re-introduces the first and second order time dependent components



REFERENCES

4

45

in (4.1) and (4.2), with ẋ f computed within the CFD code, requiring under-relaxation of
deformations according to (4.8).

In practice, on the CFD side the coupling is only included every n-th CFD time step
(e.g. every 5th) to allow dynamic effects in the CFD solution to subside. The nodal dis-
placement calculated by the FE-code is strongly under-relaxed to ensure solution stabil-
ity (see Section 4.1.3). This results in a weakly coupled FSI-approach disregarding any
time-accuracy but giving quick convergence towards a stable result (see above).

The typical convergence behaviour is shown in Figure 4.3 with one iteration being
one pseudo-time step. As can be clearly seen, the majority of the boundary displacement
takes place within the first 100 CFD iterations (20 FE iterations). Beyond that, the RMS
of the displacement as well as the forces are quite constant with an oscillation about
every 80th CFD iteration, probably induced by instationary flow behaviour in the CFD
solution.

Figure 4.3: Typical convergence behaviour of the weakly coupled FSI simulation
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5
VERIFICATION AND VALIDATION

As any simulation method based on spatial and temporal discretisation is only an ap-
proximation modelling the physical reality, the errors and sensitivities due to modelling
and discretisation as well as the accuracy compared to the physical reality have to be
assessed and quantified. This is done by verification and validation. During verifica-
tion, the sensitivity to temporal and spatial discretisation is evaluated. During validation
the verified models are compared to physical reality to assess the impact of simplifica-
tions in describing the complex physical reality by mathematical models. This results
in guidance on model-selection as well as a measure for achievable accuracy. Success-
ful verification and validation of models and computational setup allows to confidently
simulate cases without the existence of experimental data, if the case is similar enough
to the verified and validated case.

To quantify the accuracy and reliability of a simulation several measures have to be
defined (see Stern et al. [1]):

• The simulation error δS as difference between simulation result S and the truth T
(objective reality):

δS = S −T = δSM +δSN , (5.1)

where δSM and δSN are the additive modelling and the numerical error, respec-
tively

• The simulation uncertainty
U 2

S =U 2
SM +U 2

SN (5.2)

• Under certain conditions, for simulations it it possible to estimate the numerical
error both in sign and magnitude δ∗SN :

δSN = δ∗SN +εSN , (5.3)

where εSN is the error in the estimate

47
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• From this the corrected simulation value SC = S −δ∗SN is calculated as numerical
benchmark, leading to the corrected simulation error and uncertainty equations:

δSC = SC −T = δSM +εSN , (5.4)

U 2
SC

=U 2
SM +U 2

SC N , (5.5)

with USC N being the uncertainty estimate for εSN

Within this section, first wind tunnel tests conducted to provide a validation database
are described. Further, the implemented models and setups are verified and validated
by appropriate methods (e.g. Method of Manufactured Solution (MMS) for models or
Convergence Studies for the assessment of discretisation sensitivities) and comparison
against experimental, or where appropriate, analytical data. Model selection is evaluated
and discussed and accuracy measures are given.

A detailed description of published experiments and analytical models used for ver-
ification and validation is given in Appendix A.

5.1. WIND TUNNEL EXPERIMENT ON SPINNAKER
As little quantitative experimental data on downwind sail aerodynamics and structural
behaviour is available, testing of a setup of spinnaker and mainsail was conducted at the
Yacht Research Unit Kiel twisted flow wind tunnel. For these measurements an aerody-
namic model of a generic 40’ yacht was fixed to a 6-DOF balance situated on a turntable.
The yacht was fitted with mainsail and spinnaker. The sails have kindly been provided
by Segelmacherei Holm, Schleswig,Germany. Table 5.1 gives the main particulars of wind
tunnel and model.

TFWT measurement section width 3500m
TFWT boundary layer section height 2400mm
TFWT, distance BL-section - model 1800mm

TFWT reference velocity 5m/s
Model height 1800mm
Model length 1200mm

Model freeboard 105mm
Model fore triangle base (J) 460mm

Model fore triangle height (I) 1440mm
Model main sail area 0.49m2

Model spinnaker area 0.91m2

Model spinnaker leech lengths 1430mm

Table 5.1: Main particulars of TFWT and model

The general layout of the wind tunnel and an impression of the measurement setup
is given in figure 5.1.

Incident flow in the wind tunnel is conditioned to resemble in velocity and direc-
tion the apparent wind profile encountered by a sailing yacht. The wind profile without
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Figure 5.1: Layout oft the YRU-Kiel TFWT

model has been measured using 3-D hot wire anemometry. Concurrent flow velocity
measurements upwind of the masthead during sail testing was conducted using a 1-D
hot wire anemometer. During the measurements the sails shapes were recorded using
photogrammetry after optimal trim for a given apparent wind angle had been estab-
lished.

For automated image detection model and sails were fitted with coded targets. The
photos were taken by four simultaneously triggered cameras of type Canon EOS 350D
placed around the model. Processing of the photos was done using the Photo Modeler
Pro, EOS Systems Inc., Canada software. The detected targets were exported as point
clouds, NURBS surfaces were generated using Rhinoceros 4.0, Robert McNeel and Asso-
ciates CAD software.

Tests were conducted over an AWA range of 67.5 to 180◦ in steps of 7.5◦. In figure
5.2 driving and side force areas over AWA resulting from the TFWT tests are shown. The
jump of force areas between 120◦ and 127.5◦ AWA is quite conspicuous, it can probably
be explained by a change from a regime of mostly attached flow to one of detached flow.

The experimental setup is exemplarily shown in figure 5.3, a comparison of design
and flying shape is given in figure 5.4

Due to the presence of twisted flow the actual flow field can not be assumed to follow
a prescribed mathematical distribution of velocity and direction but has to be measured
for use in simulations. Figures 5.5 a to c indicate the measured flow quantities.

For the purpose of validating the fluid structure interaction model, additionally the
settings of all adjustable sail trim variables were recorded, these being:

• spinnaker sheet

• spinnaker aftguy

• spinnaker downhaul
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• spinnaker sheet lead

• main sheet

• main vang

Figure 5.2: Driving and side force areas over AWA as measured in the twisted flow wind tunnel.

Figure 5.3: Measurement setup in the twisted flow wind
tunnel.

Figure 5.4: Comparison of design and flying
shape.
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(a) Wind speed

(b) Twist angle

(c) Wind speed deviation

Figure 5.5: Measured Flow conditions in YRU-Kiel twisted flow wind tunnel
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5.2. VERIFICATION

5.2.1. VERIFICATION METHODS
As in any CFD or FEA simulation spatial and temporal physical reality have to be approx-
imated by discretisation, the errors introduced by this have to be evaluated, depending
on step size. To this end convergence studies are carried out. As time step and grid size
cannot be made infinitesimally small, the basic idea of this convergence studies is to
compute a control variable as function of step size and extrapolate this to a step size of
zero. This is then taken as grid invariant solution. Based on this result the errors intro-
duced by the discretisation are evaluated.

Various methods have been published for the verification of numerical simulations.
Two of the most widely accepted are presented and used in the following sections.

CONVERGENCE STUDY

By Convergence Studies (see Stern et al. [1]) the magnitude of discretisation errors in
numerical simulations is determined. To this end the kth input parameter ∆xk (e.g. el-
ement size or time step length) is systematically varied, typically by a factor of

p
2 or 2,

while keeping all other input parameters fixed at the finest level. Based on changes of
a selected solution variable for medium to fine parameter εk21 = Ŝk2 − Ŝk1 and coarse to
medium parameter εk32 = Ŝk3 − Ŝk2 the convergence ratio for three refinement steps is
defined:

Rk = εk21

εk32

, (5.6)

where Ŝk1 , Ŝk2 and Ŝk3 correspond to the selected result with fine, medium and coarse
input parameter. From this convergence ratio the convergence condition is determined:

• Monotonic convergence: 0 < Rk < 1

• Oscillatory convergence: Rk < 0; |Rk | < 1

• Monotonic divergence: Rk > 1

• Oscillatory divergence: Rk < 0; |Rk | > 1

In case of monotonic convergence a generalised Richardson extrapolation (see below) is
used to estimate the uncorrected and corrected convergence uncertainties Uk and Ukc

as well as the sign and magnitude of the convergence error δ∗. In case of oscillatory
convergence, given that the mean value of results is not drifting as a function of input
parameter size, the uncertainty is determined based on oscillation minimums SL and
maximums SU :

Uk = 1

2
(SU −SL) . (5.7)

To obtain an accurate estimate, observed values need to occur near minimums/maximums
of the oscillation, therefore it might be necessary to compute more than three samples.
For diverging conditions, errors and uncertainties cannot be estimated.

The Generalised Richardson Extrapolation is used in the case of monotonic conver-
gence to estimate the error δ∗k and order-of-accuracy pk due to the selection of the kth
input parameter. With m = 3 solutions (as typically used) only the leading term of the
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error and order of accuracy for the finest input parameter k1 can be evaluated, leading
to one-term estimates:

δ∗REk1
= εk21

r pk
k −1

, (5.8)

pk = l n(εk32 /εk21 )

ln(rk )
, (5.9)

with the uniform parameter refinement ratio rk . Unless the solution is in the asymptotic
range (pk > 1) (5.8) only gives a poor estimate of the rate of convergence.

To improve the estimate of δ∗REk1
and estimate the numerical error and uncertainty

δSN and USN (see (5.1) and (5.2)) the correction factor Ck is calculated based on (5.8)
and (5.9). To this end the numerical error is defined as

δ∗k1
=Ckδ

∗
REk1

=Ck
εk21

r pk
k −1

, (5.10)

where Ck is calculated from (5.10) with δ∗REk1
based on (5.8), but replacing observed pk

with an improved estimate pkest :

Ck =
r pk

k −1

r
pkest
k −1

. (5.11)

Here pkest is an estimate for the limiting order-of-accuracy of the first term (see above)
as ∆xk goes to zero and the asymptotic range is reached (Ck → 1). (5.11) gives a rough
estimate of higher order terms by replacing pk with pkest in (5.10) for an improved single-
term estimate:

δ∗k1
= εk21

r
pkest
k −1

. (5.12)

As only εk21 is present in (5.12) only two solutions are evaluated, however all three solu-
tions are considered in the evaluation of Uk since Ck is part of its definition. The uncor-
rected and corrected uncertainty estimates Uk and Ukc are computed according to Stern
et al. [1], depending on Ck , by:

Uk =
[9.6(1−Ck )2 +1.1]|δ∗REk1

| |1−Ck | < 0.125

[2|1−Ck |+1]|δ∗REk1
| |1−Ck |1 0.125,

(5.13)

Ukc =
[2.4(1−Ck )2 +0.1]|δ∗REk1

| |1−Ck | < 0.25

[|1−Ck |]|δ∗REk1
| |1−Ck |1 0.25.

(5.14)

For both estimates formulae are given for Ck -values sufficiently close to one (i.e. nearly
input parameter-independent) as well as for Ck -values farther away from one, result-
ing in an increased factor of safety. The uncorrected uncertainty estimate Uk (5.13) is
based on the absolute value of the corrector estimate plus the amount of the correc-
tion. The uncertainty estimate for a corrected solution (i.e. a numerical benchmark
Sc = S −Ckδ

∗
REk1

) Ukc (5.14) is based on the absolute value of the amount of the correc-

tion.
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METHOD OF MANUFACTURED SOLUTION

The idea behind the Method of Manufactured Solution is to provide a possibility to track
the individual error sources (e.g. discretisation or iteration) during the verification pro-
cess by imprinting a continuous, mathematically defined starting solution of a generic
flow variable φ, φexact , on the discretised model and compare the result of the discreti-
sation process φi to this continuous solution (see Eça et al. [2]).

The normalised error e is defined as

e = φi −φexact

φexact
. (5.15)

To assess the error induced by spatial discretisation, for example, usually the RMS of the
nodal errors of all grid cells or elements is evaluated:

RMS(φ) =

√√√√√ nnodes∑
i=1

(φi −φexact )2

nnodes
. (5.16)

This approach allows to quantify an error without the need to calculate an integral result
as used in Section 5.2.1.

5.2.2. STRUCTURAL MODEL

VERIFICATION CASE

For verification of the structural model a simple case is considered at various systemat-
ically varied grid resolutions. The results are evaluated by Generalised Richardson Ex-
trapolation, if applicable (see Section 5.2.1), and the discretisation error determined. In
this evaluation the planar bending of a pre-tensioned beam-like membrane as described
by Stein et al. [3] (see Appendix A.1) is chosen:

A rectangular membrane is pre-tensioned by forces applied to its left and right edges.
Then equal and opposite moments are applied to these edges to induce bending. If the
moments are applied as depicted in Figure 5.6, wrinkles start to form at the lower edge
when negative horizontal stresses due to the moment cancel out the pretension. The
comparison to analytically determined results is given in Section 5.3.1

Figure 5.6: Topology and applied forces and moments [3]
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To assess grid dependence of the structural simulation method the same case was
simulated on three systematically refined grids and with as well as without wrinkling
model. The results are evaluated by generalised Richardson extrapolation according to
the publication by Stern et al. [1]. The cases used for verification are described in Table
5.2. The medium grid is shown in Figure 5.7, the finer grids are systematically generated
by halving all edge length from one grid to the next.

For a description of the variables, please see Appendix A.1.

Width of membrane 1000 mm
Height of Membrane 200 mm

E*t 100 N/mm
Applied stretch 0.5 mm

Applied rotation 0.01 rad
No. of elements, coarse 160 -

No. of elements, medium 640 -
No. of elements, fine 2560 -

Table 5.2: Cases for verification of structural simulation method

Figure 5.7: Medium grid used for verification of structural code

RESULTS

The computed control parameter (normalised bending moment)

2M

Ph
, (5.17)

with M being the applied moment for a given rotation of the ends of a membrane of
height h under pre-tension P is evaluated as function of grid refinement according to
the procedure given in Section 5.2.1. The results are given in Table 5.3 and Figure 5.8.
As can be seen, monotonic convergence is achieved with as well as without wrinkling
model.

CONCLUSION

In the cases described above, the effect of grid resolution on the computed results in
simulations with and without wrinkling model is investigated. In both cases the results
indicate monotonic convergence in the asymptotic range. For the results on the finest
grid an uncertainty of 1.3% is estimated with a discretisation error of 0.3% respectively
0.5% and nearly second-order convergence. Based on these results, the solution on the
finest grid can be considered as verified.
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Unwrinkled Wrinkled
Parameter ratio r12 2.0 2.0
Parameter ratio r23 2.0 2.0

Normalised moment delta ε12 0.014 0.007
Normalised moment delta ε23 0.054 0.023

Convergence ratio R 0.251 0.301
Error δ? 0.005 0.003

Order of accuracy p 1.992 1.732
Uncertainty U12 0.013 0.013
Uncertainty U23 0.051 0.041

Table 5.3: Convergence parameters of grid dependence study, wrinkled and unwrinkled

5.2.3. FLOW SIMULATION
Verification of the flow model by systematic grid variation is carried out for two- as well
as three-dimensional flow. The effect of grid resolution on forces acting on the respective
geometries is evaluated as described in Section 5.2.1.

VERIFICATION OF FLOW MODEL FOR TWO-DIMENSIONAL FLOW

The verification of the flow model for two-dimensional flow is based on the geometry
used by Wilkinson in his PhD-Thesis [4] (see Appendix A.3). For the purpose of veri-
fication, the flow forces acting on this geometry (not measured in the experiment) are
evaluated as function of grid resolution and time step length.

The geometry consists of a section mimicking a horizontal cut through a mast and
main-sail combination. To assess the effect of grid resolution (given by triangular ele-
ment edge length T respectively by T normalised by chord length C (700mm)) on these
flow forces the grid is systematically refined while keeping all other solution parame-
ters fixed. Similarly, the time step size ∆t is varied while keeping all other parameters
fixed. Table 5.4 gives the parameters used in this study. These are the element size T ,
respectively element size normalised by chord length T /C , the time step length ∆t and
resulting from these the average and maximum Courant numbers Coav g and Comax . In
all cases used for this verification study 2nd order spatial interpolation and time inte-
gration methods, the SST-turbulence model and an incident turbulence level of 5% are
used.

The results of a formal analysis of grid dependence for edge lengths 4mm, 8mm and
16mm (grid 1, 2 & 3) and time step sizes of 0.00375s, 0.0075s and 0.015s (time steps 1, 2
and 3) following the method by Stern et al. [1], are given in Table 5.5. In this tabel lift and
drag forces depending on grid resolution respectively time step length are given, further
the resulting convergence parameters, corrected solution and uncertainty estimates.

The convergence ratios R paint a mixed picture. While harmonic convergence is indi-
cated depending on time step size for lift as well as drag and grid convergence is present
for lift, oscillatory divergence is indicated for drag depending on grid resolution. Still,
even the larger force delta ε12 is less than 2% of of the actual solutions, indicating depen-
dency on flow effects not harmonically dependent on grid resolution. A closer look at the
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(a) Without Wrinkling (b) With Wrinkling

Figure 5.8: Grid convergence of bending membrane verification case

flow patterns present around the geometry (see Figure 5.9) indicates significant areas of
separated flow, probably unsteady, which may have this effect. A representation of the
results is given in Figure 5.10. The Relative step size is in each case the varied parameter
normalised by the finest variation, the Control parameter ratio is the result depending
on the Relative step size normalised by the solution for the finest variation. Solutions 1
to 3 as well as the corrected solution Sc , if applicable, are shown.

Figure 5.9: Flow pattern around mast and sail.

VERIFICATION OF FLOW MODEL FOR THREE-DIMENSIONAL FLOW

Similar to the above validation exercise the simulation of the three-dimensional flow
around a boat-like geometry consisting of hull, main sail and spinnaker is verified. The
grid parameters are given in Table 5.6, cell size T is normalised by the spinnaker’s mid
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(a) Normalised lift over grid resolution (b) Normalised drag over grid resolution

(c) Normalised lift over time step (d) Normalised drag over time step

Figure 5.10: Convergence plots for verification of two-dimensional flow simulation model
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Setup T T /C ∆t Coav g Comax

[-] [mm] [-] [s] [-] [-]
1 16 2.29e-02 0.015 78.99 526.8
2 16 2.29e-02 0.0075 39.45 262.3
3 16 2.29e-02 0.00375 19.70 130.0
4 8 1.14e-02 0.00375 31.60 304.3
5 4 5.71e-03 0.00375 26.10 513.4

Table 5.4: Parameter variation for two-dimensional flow verification

Control Parameter : Lift(Grid) Drag(Grid) Lift(TS) Drag(TS)
Solution 1 S1 38.462 1.549 39.831 1.564
Solution 2 S2 38.512 1.572 39.918 1.565
Solution 3 S3 39.831 1.564 40.096 1.579

Parameter ratio r12 2.0 2.0 2.0 2.0
Parameter ratio r23 2.0 2.0 2.0 2.0

Force delta ε12 0.050 0.023 0.087 0.002
Force delta ε23 1.319 -0.009 0.178 0.014

Convergence ratio R 0.038 -2.676 0.486 0.111
Error δ? 1.98E-03 - 0.082 0.000

Corrected Solution Sc 38.460 - 39.749 1.564
Order of accuracy p 4.718 - 1.041 3.167

Uncertainty U12 5.15E-05 - 2.06E-03 1.21E-04
Uncertainty U23 5.15E-05 - 4.22E-03 1.08E-03

Table 5.5: Results of grid and time step dependence study, two-dimensional flow

girth C of 768mm. Further, element counts of the surface meshes on the individual parts
of the geometry are given. Inflation layers on the surfaces are designed for an estimated
y+ value of one. Simulations are performed at time step lengths of 0.025, 0.05 and 0.1s.
The corresponding average and maximum Courant numbers for each grid are given in
Table 5.7.

The results of a formal investigation of grid and time step sensitivity following the
method by Stern et al. [1] are given in Figure 5.11. Interestingly, the results indicate har-
monic divergence for lift depending on grid resolution, but harmonic convergence for
all other cases. For time step dependence the asymptotic region has been reached. Still,
computed and extrapolated force values depending on grid convergence lie within 5% of
the finest grid’s results. Deviation from the smallest time step’s lift value is significantly
larger for the large time step at 10% with drag values deviating by only 1% for the large
time step. These results indicate strong unsteady effects affecting the lift force results.
The convergence parameters for this study are given in Table 5.8
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(a) Normalised lift over grid resolution (b) Normalised drag over grid resolution

(c) Normalised lift over time step (d) Normalised drag over time step

Figure 5.11: Convergence plots for verification of three-dimensional flow simulation model



5.2. VERIFICATION

5

61

Grid No. T T /C nTr i ,Spi nTr i ,M ai n nTr i ,Hull

[-] [mm] [-] [-] [-] [-]
1 16 2.08E-02 3.32E+04 1.66E+04 1.71E+04
2 32 4.17E-02 1.02E+04 4.88E+03 4.58E+03
3 64 8.33E-02 5.20E+03 2.30E+03 1.87E+03

Table 5.6: Base parameters for 3-D flow validation

Grid No. Time Step Coav g Comax

[-] [s] [-] [-]
1 0.1 77.67 2490
1 0.05 37.26 1274
1 0.025 18.63 636.9
2 0.1 64.98 2854
2 0.05 32.47 1425
2 0.025 16.23 712.2
3 0.1 75.42 7015
3 0.05 37.72 3508
3 0.025 18.87 1754

Table 5.7: Time step lengths and corresponding Courant nos.

CONCLUSION

From the verification exercises on the simulation of two- and three-dimensional flow is-
sues with convergence of forces depending on grid resolution are obvious. Looking at the
details of the flow it becomes apparent that in both cases the flow pattern is dominated
by separation phenomena. Various studies (e.g. Rodi [5]) indicate that these separation
phenomena are particularly difficult to simulate correctly and reliably using methods
based on Reynolds-averaging of turbulent phenomena ((U)RANS) and that the assump-
tion of monotonous convergence towards grid or time step insensitive resolution does
not necessarily hold in these cases (Eça [2].

5.2.4. FLUID-STRUCTURE-INTERACTION

VERIFICATION APPROACH

The verification of the coupling algorithm - after removal of any effects induces by the
CFD or FE solution - reduces to the evaluation of the transfer of an arbitrary scalar or
vectorial variable between the two codes. As the coupling algorithm contains no time-
dependent functions, this verification reduces to the evaluation of grid dependency.

To this end an approach similar to Method of Manufactured Solution as described in
Section 5.2.1 is used. Due to the significantly reduced complexity of the present case as
compared to the papers by e.g. Eça et al. [2], the evaluation reduces to the RMS error of
the transferred variable.

To mimic the pressure field as usually calculated by the CFD code and transferred to
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Control parameter : Lift(Grid) Drag(Grid) Lift(TS) Drag(TS)
Solution 1 S1 23.730 19.159 23.730 19.159
Solution 2 S2 23.084 18.753 23.770 19.183
Solution 3 S3 22.470 18.198 26.201 19.367

Parameter ratio r12 2.0 2.0 2.0 2.0
Parameter ratio r23 2.0 2.0 2.0 2.0

Force delta ε12 -0.646 -0.407 0.039 0.024
Force delta ε23 -0.614 -0.554 2.431 0.184

Convergence ratio R 1.051 0.734 1.61E-02 0.129
Error δ? - -1.121 6.42E-04 3.54E-03

Corrected Solution Sc - 20.280 23.730 19.156
Order of accuracy p - 0.447 5.955 2.951

Uncertainty U12 - -5.85E-02 2.71E-05 1.85E-04
Uncertainty U23 - -8.15E-02 1.68E-03 1.43E-03

Table 5.8: Results of grid and time step dependence study, three-dimensional flow

the FE code, a scalar variable is calculated by

φ= x · (x2 + y2 + z2) (5.18)

on part of a sphere oriented and sized as follows, here shown by the coarse grid:
Due to the particular CFD and FE codes used, the variable is calculated at each node

of the grid on the CFD side and interpolated to element-based variables on the FE side
(see Section 4.1.4). As described above (see Section 4.1.4) the interpolation is based on
the way the dual mesh is generated in the CFD code. To evaluate the effect this particular
coupling including interpolation has on the variable respective simulations were carried
out on three grids with a refinement factor of two in between.

RESULTS

The variables calculated at the element centres (exact solution) φexact and interpolated

to the element centres φi as well as the error e(φ) = φi−φexact
φexact

is given for all three grids in
Figure 5.13. While the decrease of the local interpolation error is already clearly visible
from the plots, the global RMS of the error is calculated and further the conservativity is
defined by

C(φ) = ∑
i=1

nnodes (φi −φexact )ni (5.19)

for elements i with ni being the element normal. As
∑
φnx and

∑
φny are are four to six

orders smaller than
∑
φnz (as they should be, due to symmetry), only Cz (φ) is evaluated.

The results are given in Table 5.9. The decay of the error with increasing grid refinement
can nicely be seen with the error decreasing by a factor of almost ten for a refinement of
factor four. The decrease of the conservativity error is even more pronounced, reducing
from 0.39% to 0.02% by refinement of factor four.

Transferring a vectorial variable mimicking the displacement field in the reverse di-
rection (FE to CFD) yields exactly the same displacement at the CFD side as entered at
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Figure 5.12: Geometry used for verification of coupling, coarse grid

Figure 5.13: Calculated and interpolated variable values and interpolation error on all three grids; errors are at
different scales, depending on actual value range.
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Grid Grid size RMS(φ) RMS(φ) Cz (φ) Cz (φ)
factor error factor error

1 (coarse) 4 3.57E-03 9.47 4.42E-03 0.39%
2 (medium) 2 9.54E-04 2.53 1.09E-03 0.09%

3 (fine) 1 3.77E-04 1.00 2.61E-04 0.02%

Table 5.9: Grid dependency of interpolation error

the FE side. This is due to this direction of the coupling being fully explicit and entirely
node-based without any interpolation.

CONCLUSION

The accuracy and conservativity of the coupling algorithm depending on grid resolution
are successfully shown by a demonstration case isolating coupling effects. The decay
of interpolation as well as conservativity errors with increasing grid resolution is clearly
evident, reducing to negligible values (0.02%).

5.3. VALIDATION
After the errors introduced by discretisation have been quantified in the verification pro-
cess, the computed results have to be validated against reality, i.e. physical measure-
ments. Comparing a discrete computed variable (e.g. a force) against measurements,
the simulation error can be quantified, comparison of global behaviour of different setup
choices against measurement aid in the selection of the correct setup.

5.3.1. STRUCTURAL MODEL
To validate the Finite Element code and assess its capabilities and accuracy two cases
well documented in literature are chosen:

• Planar bending of a pre-tensioned beam-like membrane (Stein et al., Lu et al. [3,
6]).

• Bending of a pressurised membrane cylinder (Stein et al. [3]).

PLANAR BENDING OF A PRE-TENSIONED BEAM-LIKE MEMBRANE

For this validation exercise the same geometry and material properties as used in the
verification exercise for the structural code (Section 5.2.2) are chosen. To assess the ac-
curacy of the simulations on the finest grid used in Section 5.2.2 in comparison to the
analytical results, several cases with different combinations of pretension and bending
moment are evaluated, both with and without wrinkling model. To this end the ends
of a membrane "beam" of 0.2m height, pretensioned by 50 N/m (10 N pull) are rotated
by prescribed angles while keeping the total force between the ends constant (see Table
5.10).

The computed and analytical results are given in Figure 5.14, the deviation between
these is shown in Figure 5.15. Typically, a deviation of two to four percent can be found,
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case end rotation
[-] [rad]
1 0.00E+00
2 2.50E-03
3 6.25E-03
4 1.00E-02
5 1.50E-02

Table 5.10: Parameter variation for beam like planar bending of membrane

indicating satisfactory agreement. Figure 5.16 shows the stresses within the material.
While in case 2 , just still in the unwrinkled range, the results are extremely similar, sig-
nificant deviation can be found near the lower edges of case 5. Here a significant negative
stress is present without wrinkling model, while, with wrinkling model, the stresses are
always larger than 0.

Figure 5.14: Analytical and computed results with and without wrinkling model

BENDING OF A PRESSURISED MEMBRANE CYLINDER

Similar to the case discussed above, Stein et al. [3] (pp. 13 - 18) give an analytical solu-
tion and experimental data for the bending moment and wrinkling behaviour of a pres-
surised membrane tube, as depicted in Figure 5.17 (see Appendix A.2).

Simulations are performed on a membrane cylinder of 1000mm length, 100mm ra-
dius, 0.0001mm wall thickness and 1.00E+11N/mm2 Young’s modulus. Similar to the
beam like membrane, the cylinder is pre-tensioned and edge displacements are applied
to give specific amounts of wrinkling, described by the ratio of circumference of the
wrinkled region and radius of the cylinder b/r (see Figure 5.17). Additionally internal
pressure of 1Pa is applied. The following table gives the particulars of the simulation
cases.
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Figure 5.15: Deviation of normalised computed bending moments from analytical results with and without
wrinkling model (from Figure 5.14

Case b/r P M
[-] [-] [N] [Nm]
1 0.0 628.32 31.42
2 1/6π 553.45 30.51
3 1/3π 382.64 25.27
4 1/2π 200.00 15.71
5 2/3π 68.49 6.14

Analytical and simulated results are given in Figure 5.18, the deviation of simulated
from analytical results in Figure 5.19. The computed results for cases one and five are
given in Figure 5.20.

While, with wrinkling model the results show a deviation between computed and
analytical bending moments in the range of one percent for all cases, the errors with-
out wrinkling model are off the chart for cases four and five. This can be explained by
an effect called "grid-locking". Basically this means that the structure behaves like it is
constructed out of stiff triangles (which it numerically is) whose corners may displace
significantly out of the initial geometry. While this initially relieves the compressive
stresses in longitudinal direction, like wrinkling does, significant circumferential com-
pressive stresses occur which limit the nodal displacements. This effect can be seen in
Figures 5.20c to 5.20f. While in case 1 (Figure 5.20c) the computation results are simi-
lar, in case 5 strong compressive stresses on longitudinal lines can be observed (Figure
5.20d). Similarly, strong compressive circumferential stresses can be observed in case 5
without wrinkling model (Figure 5.20e). The surface deflection pattern shown in Figure
5.20f corresponds to this observation.
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(a) Case 2

(b) Case 5

Figure 5.16: Longitudinal stresses in bending membrane

Figure 5.17: Topology and applied forces and moments [3]
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Figure 5.18: Analytical and computed results with and without wrinkling model

Figure 5.19: Deviation of normalised computed bending moments from analytical results with and without
wrinkling model
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(a) Longitudinal stresses in tube, case 1. (b) Longitudinal stresses in tube, case 5.

(c) Longitudinal stresses in compressed side of tube,
case 1.

(d) Longitudinal stresses in compressed side of tube,
case 5.

(e) Circumferential stresses in compressed side of tube,
case 5.

(f) Deflection of compressed side of tube, normal to
compressive stress, case 5.

Figure 5.20: Computed stresses and surface deflections of bending tube case without (each upper Figure) and
with wrinkling model (each lower Figure).
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CONCLUSION

Good agreement between analytical and simulated data is achieved for various testcases
when using the membrane model with wrinkling model. Simulation results calculated
without wrinkling model display large differences to analytical results; an issue arising
due to shortcomings of the element model has been identified as the cause and is in fact
rectified by the usage of the wrinkling model. The computed results indicate no relevant
grid-dependency for the investigated cases.

As can bee seen from above validation cases, simulations with and without wrinkling
model can be correct as long as the assumption of presence or lack of wrinkling is phys-
ically correct in the respective case (see Section 5.3.1). As soon as wrinkling is present in
reality (bending beam without limitation to purely two-dimensional behaviour or fully
three dimensional case (see Section 5.3.1)) the inclusion of a wrinkling model is of ut-
most importance for the correct prediction of nodal displacements and material stresses.
Even more importantly, as shown on the pressurised tube, lack of a wrinkling model can
lead to unphysical stiffening of the structure, resulting in erroneous local and global be-
haviour (see Pitkäranta [7] as well).

5.3.2. FLOW SIMULATION METHOD
Validation of the flow simulation method is carried out in two stages. Simulation results
of essentially two-dimensional flow are compared to published wind tunnel measure-
ments, including detailed local pressure and flow velocity measurements. Flow forces
calculated by simulation of three-dimensional flow are compared to wind tunnel mea-
surements carried out especially for this purpose.

Data of two-dimensional flow around a sail-like section shape from wind tunnel ex-
periments is available from Wilkinson [4]. Despite lacking force measurements, detailed
pressure profiles indicating flow separation and reattachment areas as well as boundary
layer velocity profiles are given.

Validation of three-dimensional flow around a spinnaker is based on data from a
measurement campaign conducted within the scope of this thesis at the Yacht Research
Unit Kiel (YRU-Kiel) Twisted Flow Wind Tunnel as described in Section 5.1.

TWO-DIMENSIONAL FLOW AROUND SAIL-LIKE SECTION

As part of the research for his PhD-Thesis Stuart Wilkinson extensively tested a sail-
section-like geometry at the University of Southampton wind tunnel at various Reynolds
numbers and angles of attack (see Appendix A.3). During these tests the pressure distri-
bution on the geometry’s surface as well as boundary layer velocities (see Figure 5.22)
were measured. These measurements resulted in a zonal model to describe the flow
around the sail-like section (see Figure 5.21).

These zones are listed as:

I : Upper mast attached flow

II : Upper separation bubble

III : Upper reattachment

IV : Upper airfoil attached flow
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V : Trailing edge separation

VI : Lower mast attached flow

VII : Lower separation bubble

VIII: Lower reattachment

IX : Lower airfoil attached

Figure 5.21: Nine zones of flow around mast-sail combination as characterised by Wilkinson [4].

Figure 5.22: Locations for velocity measurements [4]

Of particular interest for the validation of the flow around spinnakers are the separa-
tion and reattachment zones on the upper (suction) side(III and V). The flow separation
on the lower (pressure) side is dominated by the presence of the mast at the leading edge
and is therefore not applicable to the flow around spinnakers

The flow around the sail section is simulated using the commercial RANS solver
ANSYS-CFX12.1. The domain size mimics the size of the high speed section of the Southamp-
ton University No. 1 wind tunnel of 2.10m length and 1.50m height normal to span. Do-
main size in spanwise direction is set at 0.256m, assuming fully two-dimensional flow.
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Grid resolution and time step length is based on the findings described in Section
5.2.3 (4 mm resp. 0.00375s). Particular care is taken during grid generation to keep the
prognosticised dimensionless wall scale (y+) below 2.0 and ensure a smooth transition
from prism to tetra volumes. A cut through a typical grid near mast and sail is shown in
Figure 5.23. Particular note should be paid to the highly refined grid in the area of strong
curvature around the mast. This refinement is deemed to be necessary to correctly cap-
ture the flow - attached and detached - in this region.

Figure 5.23: Slice through volume discretisation near mast and sail.

The base setup is based on second order modelling of temporal and spatial discreti-
sation and the Shear Stress Transport (SST) turbulence model (see Appendix B.2.1) with
5% incident turbulence. To assess the effect on the quantitative results, a first order ad-
vection scheme as well as a Reynolds stress based turbulence model and a lower turbu-
lence level are evaluated. Guidance for the choice of turbulence models is taken from
the work by Collie et al. [8]. The investigated setups are given in Table 5.11

Setup Turb. Int. Discret. Turb. Mod. CoAvg. CoMax.

[-] [-] [Order] [-] [-] [-]
1 5% 2nd SST 26.10 513.4
2 5% 1st SST 28.28 483.1
3 1% 2nd SST 26.02 512.5
4 5% 2nd BSL EARSM 25.30 519.1

Table 5.11: Parameter variation for 2-D flow validation

In Figures 5.24 and 5.25 the results of this investigation are given. While generally
all results capture the major quantitative trends of the measured data, some differences
are observable. Interestingly, all setups under-predict the amount of separation, respec-
tively recirculating flow, in Wilkinson’s zone II and indicate a further forward location of
zone III than measured. Considering this, it is remarkable that the onset location and
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extent of separation in zone V is captured quite well by most setups, the most notable
difference being setup 2.

Judging from Figures 5.24 and 5.25, the largest single impact on results is due to the
choice of order of advection scheme (1st order for setup 2 versus 2nd order for all other
cases). Compared to the other setups, pressure in zones I and IV (attached flow regime)
is captured best in setup 2 while separation effects (zones II, III and V) are largely lost and
pressure on the lower side is generally over-predicted in setup 2. Further the boundary
layer appears to be significantly thinner in the results of setup 2.

The results for zone IV computed using setups 1, 3 and 4 are similar to each other,
pressure is slightly under predicted while the velocity cuts show satisfactory agreement
to measurements. Pressure as well as recirculation are under-predicted in zones I to III
(even though less than with setup 2), indicating insufficient prediction of the separation
zone. Interestingly the pressure in zone V is under-predicted again, while the velocity
cuts indicate an over-prediction of recirculation. The most notable effect of turbulence
modeling (model as well as level) can be found in the velocity cuts in the separation areas
(profiles 1 and 5).

Comparing setups 1 and 3 the most notable difference can be seen on velocity cut 5
with the reduced turbulence level (setup 3) apparently resulting in an increase of recir-
culation, which is already over-predicted with setup 1. Changing the turbulence model
from SST to the Boundary Shear Layer Explicit Algebraic Reynolds Stress (BSL EARSM)
model (setup 4) - which is supposed to give better prediction of near wall (partially) sep-
arated flow due to computation of the anisotropic Reynolds stresses (see Appendix B.2.2)
- results in changes to the velocity profile on cuts 1 and 5. Comparing the velocities, the
reduction of recirculation in the near wall region on cut 1 as well as the increase of re-
circulation on cut 5 due to using the BSL EARSM model are evident. While no measure-
ment data are available for comparison for this part of cut 1, the velocities computed
using setup 1 are closer to the measured velocities than those computed with setup 4.

Calculations on the same experimental testcase were carried out by Paton [9] as well
as Trimarchi [10]. While Paton used an unstructured tetrahedral-prism grid as well, Tri-
marchi used a block-structured hexahedral grid with C-shape topology. The following
diagrams show the results of setup 1 overlayed on diagrams taken from Paton [9].

Looking at Figure 5.26, while the basic patterns of measured and both computed
pressure distributions are very similar, the most obvious difference between the com-
puted results is an almost constant offset on the upper side. While the pressure distri-
bution computed by Paton agreed with the measured one between 40 and 80% chord
and has an cP offset of about 0.2 for most of the remainder, the distribution computed
using setup 1 is offset by that value for the majority of the chord length. Major differ-
ences appear in both computations in front of 15% chord length (Wilkinson’s regions II
and III). Actually these, and the trailing edge, are the regions where spontaneous sep-
arations occur. These separations are notoriously hard to predict by CFD and can be
highly dependent on geometry imperfections, flow disturbances and turbulence in ex-
periments (Paton [9]). A possible reason for the constant cP offset occuring on the upper
side in setup 1 might be the domain size, which is larger by 30% than the actual wind-
tunnel used for the measurements. This reduces blockage effects, in turn reducing local
velocity and increasing pressure. On the lower side good agreement to measured values
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(a) Setup 1 (b) Setup 2

(c) Setup 3 (d) Setup 4

Figure 5.24: Measured and computed pressure coefficients for Wilkinson testcase
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(a) Setup 1

(b) Setup 2

(c) Setup 3

(d) Setup 4

Figure 5.25: Measured and computed relative velocities at five cuts near the sail’s surface, leading edge left.
Normalised velocities are given on the abscissae, normalised wall distance on the ordinates.
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Figure 5.26: Comparison of pressure coefficient as measured (triangles), as computed by Paton (continuous)
and as computed using setup 1 (dashed).

Figure 5.27: Comparison of relative velocity as measured (squares), as computed by Paton (continuous) and as
computed using setup 1 (dashed) at five lines near the surface, leading edge left.
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can be observed for both computations, with resulting values from setup 1 being slightly
closer to measurements for the majority of the chord length.

The boundary layer velocity cuts (Figure 5.27) show close agreement with measure-
ments for both computations in the region of attached flow (cuts 2 to 4). Near the lead-
ing edge (cut 1) Paton’s results show better quantitative agreement in the outer regions
(y/c > 0.035) while the trend is captured better by the computation using setup 1. Near
the trailing edge (cut 5) Paton’s results show too little flow separation, while it is over-
estimated by the computations using setup 1.

The difficulties in predicting spontaneous flow separation on a curved surface using
RANS methods are well documented in literature and an ongoing topic of research (see
e.g. Iaccarino et al. [11] or Xiao et al. [12]). Judging from the results given in literature it
seems that the main reason is the simplification of not resolving turbulent structures in-
herent to all RANS methods. This effect does not seem to be limited to turbulence mod-
els based on the Boussinesq approximation of isotropic turbulence but affects models
calculating anisotropic turbulent viscosity as well. A possible remedy might be found in
using models belonging to the Large Eddy (LES) family aimed at actually resolving the
turbulent structures. Such models were not investigated here due to currently not being
of practical interest to sail design due to excessively long computational times.

The above results indicate that, while still not perfect, the best results can be achieved
using second order discretisation of the advective term, the SST-turbulence model and
5% turbulence level. These findings are used for the validation of three-dimensional flow
simulation below.

FLOW AROUND RIGID THREE-DIMENSIONAL SAIL

To assess the accuracy of simulation of partially separated flow around an arbitrarily
shaped three-dimensional body, results of simulations of the flow around a setup of a
boat with mainsail and spinnaker at an apparent wind angle (AWA) of 90◦ are compared
to those from wind tunnel tests. Similarity of investigated geometries is ensured by cap-
turing the tested geometries under windload by photogrammetry (Graf et al. [13]), see
Figure 5.28 .

The flow around model and sails is simulated using ANSYS-CFX. The computational
domain extends 1.7 times model heights upwind of the model, 2.8 times downwind and
1.7 times upwards. The domain is discretised by an unstructured tetrahedron-prism
grid. The sails are modelled as infinitely thin surfaces, shaped according to the geome-
tries measured during the wind tunnel tests. The incident flow profile is based on that
measured in the wind tunnel. Figure 5.29 shows the measured velocities and the poly-
nomial fit applied to it for the simulations, AWS_TFWT is the measured velocity profile
in the wind tunnel, AWS_CFD and AWA_CFD are the idealised incident velocity and flow
angle used in the simulation. The setup is based on the findings of above cases and de-
scribed in Table 5.12. Experimental and computed results are given in Table 5.13.

Because the computed lift area shows a strong deviation from the measured result,
an issue with the correct prediction of flow separation might be present. A closer look
at the pressure distribution on the sail (Figures 5.30) shows suction side pressure coeffi-
cients close to -1.00 over major parts of the chord. This indicates the presence of mostly
separated flow on the leeward side, whereas large areas of attached flow were observed
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Figure 5.28: Measured flying shape.

Figure 5.29: Polynomial fit to measured incident flow properties.
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Incident Flow According to polynomial
Turb. Mod. SST

Turbulence Intensity 5%
Discretisation Order 2nd

Estimated y+ 1
dt 0.025s

Table 5.12: Simulation setup for validation of 3D-flow around fixed geometry

Lift Area Drag Area
[m2] [m2]

Measured 1.763 1.334
Calculated 1.644 1.328
Deviation -5.62% -0.45%

Table 5.13: Measured and calculated force areas at AWA = 90◦

during the wind tunnel tests at an AWA of 90◦. This might be an explanation for the large
differences in simulated and measured lift force area (lift force normalised by dynamic
pressure).

As, due to the twisted incident flow, some doubt about the actual flow direction in the
wind tunnel is present - to which the sails adjust in the experiment due to flexibility -, the
simulation is repeated at an AWA of 85◦ using the same geometry to assess the sensitivity
of the results to inflow conditions. Table 5.14 gives a comparison of the achieved lift and
drag areas in experiment and simulation. The computed results at the modified incident
flow angle of 85◦ indicate slightly larger lift and drag areas than the measurements. This
supports the assumption that too much flow separation is present in the simulation at
90◦ incident flow angle, respectively of an angle offset.

This issue indicates a strong sensitivity of the computed flow to accurate represen-
tation of incident flow and geometry. Especially due to the sharp leading edge, a small
deviation may already trigger flow separation close to the leading edge. As neither the
flow nor the geometry are measured as a continuum but only at a limited number of
locations this may well have happened here.

Lift Area Drag Area
[m2] [m2]

Measured 1.763 1.334
Calculated AWA 90◦ 1.644 1.328
Calculated AWA 85◦ 1.788 1.342
Deviation AWA 85◦ +1.42% +0.60%

Table 5.14: Measured and calculated force areas at AWA = 85 & 90◦
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Figures 5.31 give the pressure coefficients over chord length at various mitre girth
fractions for AWA 85◦ as well as measurement data kindly provided by Dr. Viola from
experiments conducted for his publications ([14, 15]).While the computed pressure dis-
tribution at the lowest chord (1/4) looks very much the same as at AWA 90◦, comparing
the data for the other mitre girth fractions at AWAs 90◦ and 85◦ indicates significantly
more attached flow in he case of the latter. Figures 5.32 and 5.33 show the wall shear
magnitude and direction on the suction (leeward) side at AWAs 90◦ and 85◦. The shear
vectors in the case of AWA 90◦ indicate mostly reversed, therefore separated, flow on
most of the sail’s area. In contrast, the shear vectors in the 85◦ case show a very specific
pattern, indicating attached flow over 2/3 of the girth in the lower regions with increasing
separation moving upwards.

The experimental results depict local pressure coefficients measured on a flat cut
asymmetric spinnaker at AWA 55◦. Unfortunately, no geometry is available to these pres-
sure measurements. Due to the difference in geometries and AWAs only a qualitative
comparison of pressure distributions is possible.As can be expected from the different
sail designs and test conditions the measured pressures indicate significantly more at-
tached flow on the suction side of the sail but general patterns are quite similar.

CONCLUSION

The results of the validation exercise on two- and three-dimensional flow support the
findings of the corresponding verification exercise, namely the difficulty in correctly pre-
dicting separation behaviour on a highly curved geometry. This is examplified by the de-
viation of computed from measured results in the two-dimensional case, and the varia-
tion thereof, depending on setup. While the salient features of the pressure distribution
and the velocity profile close to the sails surface are all visible in the best setup, some
quantitative difference is still apparent.

The results of the three-dimensional case further show the sensitivity of results to pa-
rameters like incident flow angle and precision of geometry capturing respectively, es-
pecially on a geometry with such a sharp leading edge. While no satisfactory agreement
is reached in the case based on the actual measurements, the results achieved by a slight
variation of incident flow angle are very close to the measured forces and observation
from the experiments.

Still, the capabilities of the flow simulation method have been shown and can be
considered to be satisfactory for the intended use as indicated by maximum deviation to
experimental results of about 5%.

5.3.3. FLUID-STRUCTURE-INTERACTION SIMULATION METHOD
The entire fluid-structure-interaction method is validated by correlating simulation re-
sults for a spinnaker of known design shape to corresponding experimental data. Gen-
erated forces and moments and flying shape are compared directly. Sails and measured
flying shapes are the same as in Section 5.3.2. As no facilities for flow or pressure mea-
surements during the experiment were available, correct pressure distribution is implic-
itly assumed if the flying shape is computed correctly. This approach is based on the
assumption of the sail having neglegible bending stiffness and therefore direct correla-
tion between pressure distribution and flying shape.
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(a) 1/8 mitre girth (b) 1/4 mitre girth

(c) 1/2 mitre girth (d) 3/4 mitre girth

(e) 7/8 mitre girth

Figure 5.30: Pressure coefficient cP over normalised chord c on spinnaker at various heights at AWA 90◦
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(a) 1/8 mitre girth (b) 1/4 mitre girth

(c) 1/2 mitre girth (d) 3/4 mitre girth

(e) 7/8 mitre girth

Figure 5.31: Comparison of computed (continuous) and measured (by I. M. Viola) (dashed) pressure coeffi-
cients cP over normalised chord c at various heights at AWA 85◦
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Figure 5.32: Wall shear magnitude and direction, suction side at AWA 90◦

Figure 5.33: Wall shear magnitude and direction, suction side at AWA 85◦
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SIMULATION SETUP

The flow around the setup of hull mainsail and spinnaker as well as the structural be-
haviour of the spinnaker are modeled. AWAs range from 90◦ to 180◦ in steps of 15◦. The
incident flow field is based on measurements of the actual wind tunnel flow field without
a model present, as above.

Material properties of the spinnaker are taken from the cloth manufacturer’s product
literature. To improve computation speed, the materials are assumed to be isotropic.
The material properties are given in Table 5.15.

Application Young’s Modulus Poisson no. weight/unit area
[-] [N/m2] [-] [N/m2]

Body of Sail 1.16E+05 3.00E-01 3.24E-01
Corner Patches 1.16E+06 3.00E-01 3.24E+00

Sheet (1mm Dia.) 1.568E+09 7.99E-03 [N/m]

Table 5.15: Material properties as used for simulation

The chosen domain size is the same as in Section 5.3.2, the grid parameters are based
on the findings described in that section. First layer heights are determined to keep y+

values between 1 and 4, in line with above findings. The time step is chosen to ensure
an average Courant number of about 30 for the resulting flow in the entire domain, the
reduction compared to above cases is necessary to keep the simulations stable. The de-
tailed parameters are given in Table 5.16. Trim settings are applied to mainsail and spin-
naker according to those recorded in the wind tunnel for each AWA. To ensure continuity
of grid quality despite the deformation of the spinnaker, the spinnaker is pre-deformed
by applying a constant pressure distribution and the actual trim settings. The grids are
generated using these pre-deformed sails. The inherent material stresses due to this
pre-deformation are taken into account during the FSI computations. Simulations are
carried out over a computed time of six seconds, forces are averaged over the last second.

Domain size 8.00 x 7.00 x 3.00 m
No. of FE-Elements 1.248E+04

Max. cell size 256 mm
Max. element size 16 mm

Number of prism layers on sail 3
First layer height on sail 1.1 mm

Time step length 3.75E-03 s

Table 5.16: CFD-Setup for FSI-Simulation

SIMULATION RESULTS

Below the measured and computed forces and flying shapes are compared and evalu-
ated. A comparison of measured and calculated forces, converted to lift and drag areas
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AL and AD by normalisation by the dynamic pressure, is given in Figure 5.34. TFWT
indicates measured, FlexSail simulated results. As can be seen, the trends found in the
wind tunnel are captured well by the simulations, albeit with offsets of about 0.05 to 0.10
m2. As can be clearly seen in Figure 5.34 two distinct regimes of lift and drag areas exist,

Figure 5.34: Lift and drag areas from wind tunnel tests and FlexSail simulations

separated at AWA = 120◦. Below 120◦ simulated lift areas are slightly smaller than mea-
sured ones but showing the same trend with drag areas from simulation results being a
bit smaller with varying offset. Above 120◦ the picture changes with the trends of sim-
ulated forces areas showing good agreement and simulated lift areas slightly larger and
simulated drag areas slightly smaller than measured ones. The largest differences arise
near 120◦.

This behaviour is indicative of mostly attached flow below 120◦ and mostly separated
flow above. Figure 5.35 shows the pressure distribution at an apparent wind angle of 90◦,
indicating mostly attached flow near the leading edge (indicated by strongly negative
pressure). A gentle rise of pressure towards the trailing edge indicates mostly attached
flow. Comparing these results to those shown in Section 5.2.3 indicates that the interac-
tion between flow forces and structure has a corrective effect to establish attached flow
where geometrically feasible, at least in this particular case.

In Figures 5.36 to 5.38 the measured and computed flying shapes at selected AWAs
are shown. Similar to the computed and measured forces, the flying shapes at AWAs 90◦
and 150◦ show very close agreement with the largest deviations being about 1.9% of the
respective edge. The largest difference can be found at AWA 120◦ where the profiles in
the lower half of the sail differ quite significantly. The computed results indicate a much
stronger suction peak near the leading edge, probably due to attached flow, while the
rounded profile of the measured shape might indicate fully separated flow in this area.
The deviations of the leeches and clew are given in Table 5.17.

Figure 5.39 gives an impression of the computed flying shape at AWA 90◦ with and
without wrinkling model as well as the resulting principal stresses. The impact of the
wrinkling model on the geometry, especially near the corners, can be nicely seen. The
qualitative depiction of S2 shows the effect of lack of wrinkling model with the associated



5

86 5. VERIFICATION AND VALIDATION

Figure 5.35: Pressure distribution on sail at AWA 90◦

Figure 5.36: Measured (dashed) and computed (continuous) flying shape at AWA 90◦
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Figure 5.37: Measured (dashed) and computed (continuous) flying shape at AWA 120◦

Figure 5.38: Measured (dashed) and computed (continuous) flying shape at AWA 150◦
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AWA Luff Leech Clew
90◦ 0.90% 1.63% 0.49%

105◦ 1.39% 2.16% 0.58%
120◦ 1.57% 2.41% 2.40%
135◦ 2.17% 1.66% 1.58%
150◦ 1.15% 1.86% 0.83%
165◦ 1.11% 2.34% 1.53%
180◦ 1.95% 4.52% 2.20%
Avg. 1.46% 2.36% 1.37%

Table 5.17: Max. deviation between measured and computed geometries in percent of leech length

impact on flying shape and S1. This comparison strongly underlines the need to use a
proper wrinkling model to compute a correct flying shape.

CONCLUSION

Due to the limitations of the measured data, only total forces and spinnaker flying shapes
can be compared. Similarly to the findings on the simulation of flow around fixed ge-
ometries, good agreement of pressure distribution on the sail, as indicated by the fly-
ing shape, can be found for cases in either a mostly attached or mostly separated flow
regime. Quite large deviations are present in cases with partially separated flow. The
computed forces generally show quite good agreement to measured forces with the largest
deviations arising in cases with partially separated flow as well. Judging from the results,
a self-corrective effect is present to establish mostly attached flow in cases where it is
feasible.

As the flying shapes and forces show a good agreement in most cases and the trends
of the force measurements are well captured, this method can be considered suitable to
support sail design decisions.
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(a) flying shape without wrin-
kling model

(b) Principle stress S1 without
wrinkling model

(c) Principle stress S2 without
wrinkling model

(d) flying shape with wrinkling
model

7

(e) Principle stress S1 with wrin-
kling model

(f) Principle stress S2 with wrin-
kling model

Figure 5.39: Flying shapes and principal stresses with (bottom) and without (top) wrinkling model
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6
APPLICATION

To demonstrate the capabilities of the method developed within the scope of this thesis,
a series of designs for asymmetric spinnakers for a yacht according to the proposed AC90
rule [1] are investigated. This rule provides the design limits for the originally proposed
type of yacht for the 33rd America’s Cup, resulting in boats of 27.4m length, 23t displace-
ment and an upwind sail area of about 500m2. Among the distinguishing features of this
design rule is the relative lack of constraints on spinnaker design. The only rules are the
definition of tack line and halyard lead points, the prescription of asymmetric sail design
and a maximum length of any edge of 50m. Compared to the usual constraints, limiting
the measured sail area, this significantly opens up the design space, requiring its thor-
ough evaluation. The main parameters of the proposed AC90 class are given in Table 6.1,
the rig plan and description of the abbreviations is given in Figure 6.2.

Measured Length [m] 27.40
Beam [m] 5.30
Draft [m] 6.50

Displacement [kg] 23000
P [m] 35.50
E [m] 11.39
I [m] 30.20
J [m] 10.70

ISP [m] 37.85
JSP [m] 15.50

SailareaMain [m2] 300

Table 6.1: Relevant design paramters for AC90 class, abbreviations see Figure 6.2
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6.1. GEOMETRY DEFINITION
To compare different spinnaker designs a generic setup of hull, rig and main sail accord-
ing to the design rules is developed. Preparatory to the design of the spinnakers, for a
range of true wind speeds (TWS) typical boat speeds (uB) and corresponding true and
apparent wind angles (TWA / AWA) for optimal velocity made good (VMG) on downwind
runs are determined using a velocity prediction program (VPP). Based on these apparent
wind angles a baseline spinnaker design is developed. These design conditions are given
in Table 6.2. Over a true wind speed range of 2 to 6m/s the apparent wind angle changes
just from 46◦ to 56◦. Due to this limited range only one series of spinnaker designs has
been investigated. A typical apparent wind profile is given in Figure 6.1

TWS TWA uB AWS AWA
[m/s] [deg] [m/s] [m/s] [deg]

2 138.97 2.98 1.95 46.12
4 138.94 5.64 3.68 49.48
6 140.57 7.67 4.81 56.35

Table 6.2: Design conditions for AC90 spinnakers

Figure 6.1: Apparent wind profile at TWS 6 m/s, TWA 140.6◦ and uB 7.67 m/s

Starting from a parent design (see Figure 6.3), child designs are developed by sys-
tematically scaling the mid-girth. Leeches, mitre seam and curvature are faired towards
head and foot, keeping the section shapes constant. The design parameters of the parent
sail are given in Table 6.3, the variations in Table 6.4. The generated designs are shown
in Figure 6.4.

The sails are assumed to be made from Contender SK90 spinnaker cloth, the sheet is
assumed to be Gleistein Mega twin Dyneema. The sail’s corner patches are assumed to
be built up of 10 layers of cloth. The material properties are given in Table 6.5.
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Figure 6.2: Generic rig plan of AC90 yacht including main design
parameters.

Figure 6.3: Parent design for AC90 spin-
naker.

6.2. CALCULATION SETUP
The simulation setup is based on the one resulting from the V&V process (see Section
5.3.3), with incident flow conditions as given in Table 6.2 and Figure 6.1. The discretisa-
tion grid is generated based on the same inpu parameters, resuting in 1.8E+06 volume
elements (tetrahedral and prism) with 8700 triangular elements on the spinnaker, see
Figure 6.5. For simplification purposes the spinnaker is assumed to be of isotropic ma-
terial with E*t = 130 N/mm2. Following usual practice on high-performance boats with
asymmetric spinnakers head, tack and lead position are assumed to be fixed with sail
trim variation limited to systematic change of sheet length.

6.3. RESULTS
Figure 6.6 shows the resulting driving and side forces over sheet length for the various sail
designs at TWS 6 m/s. Generally, three flow states can be observed: a too close-hauled
spinnaker (left side of diagram) results in leeward separation close to the leading edge,
together with a decrease of driving and side forces. An optimal sheeting of the spinnaker
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(a) Top

(b) Plan (c) Perspective

Figure 6.4: Parent (blue) and child asymmetric spinnaker designs



6.3. RESULTS

6

95

Luff [m] 42.230
Leech [m] 38.862

Foot 1/4 1/2 3/4 7/8
girth [m] 27.117 25.349 21.014 11.774 6.093

chord [m] 21.956 21.974 18.897 11.030 5.778
camber [%] 29.65 23.30 19.53 14.91 13.36

tMax [%] 42.18 44.31 45.40 42.96 41.90
twist [deg] 0.00 7.63 12.53 14.03 14.58

entry angle [deg] 81.36 72.75 62.57 43.97 35.65
exit angle [deg] 51.00 45.21 38.92 23.59 18.89

Table 6.3: Design parameters of parent AC90 spinnaker

Parent Var 1 Var 2 Var 3
Luff [%] 100 101.02 102.19 99.17

Leech [%] 100 102.55 104.25 98.49
Foot [%] 100 101.00 102.35 99.44

1/4 girth [%] 100 107.14 115.59 93.59
1/2 girth [%] 100 109.83 118.28 90.85
3/4 girth [%] 100 109.15 115.55 90.05
7/8 girth [%] 100 109.16 114.21 89.61

Table 6.4: Parameter variations on AC90 spinnakers relative to parent design

results in attached flow at the luff, giving maximum driving force. A too open sheet will
result in decreased forces due to windward separation at the luff, together with some luff
curl. A conventional spinnaker will tend to collapse soon with an obvious rapid drop of
driving force. However, the diagram shows only a smooth decrease of driving force. It
can be concluded that, due to luff tension, these asymmetric spinnakers have a more
stable luff and are less prone to collapsing than symmetric spinnakers. The diagram also
indicates that the spinnaker with the largest mid-girth provides maximum driving force
by a slight margin, though at the cost of the highest side force. Figure 6.7 gives the re-
spective efficiencies of the sails, allowing an interesting comparison. While the largest
spinnaker generates the highest driving force, the smallest is the most efficient. Compar-
ing all four spinnakers, a strong dependency between forces, respectively efficiency, and
mid girth is obvious. These differences and the necessity to haul the largest spinnaker
significantly tighter than the smallest one indicate a much more prominent presence of
separated flow.

Figures 6.8 show the resulting flying shapes and corresponding flow patterns from
simulations at TWS=6m/s and various trims . In Figures 6.8a to 6.8c the effect of the dif-
ferent trim settings on the flow patterns is clearly visible. While the entrance flow at the
luff of the optimally trimmed spinnaker is fully attached, one can clearly detect the sep-
aration on the windward side of the curling luff of the eased spinnaker. Similarly, on the
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Figure 6.5: Surface mesh on AC90 yacht, sails and water plane

Figure 6.6: Driving and Side Forces for the various spinnaker designs at 6 m/s TWS with trim variation
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Contender SK90
mass/area 48 g/m2

E*t Warp 130 N/mm
E*t Fill 60 N/mm

E*t Bias 55 N/mm
Gleistein Mega Twin Dyneema

Diameter 24 mm
mass/100m 39 kg

E 1.01E+03 N/mm2

Table 6.5: Material properties of spinnakers and sheets

Figure 6.7: Efficiency (driving by side force) for the various spinnaker designs at 6 m/s TWS with trim variation

close-hauled spinnaker, leeward flow separation at the luff is readily observable. While
the slight loss of increased velocity near the luff in Figure 6.8b explains the slight loss
in driving force due to easing the sheet, the leeward side flow separation in Figure 6.8c
explains the dramatic loss of driving force and increase of side force due to sheeting the
spinnaker too close. Figures 6.8d and 6.8e show flow and geometry detail near the luff at
optimal and eased trim. In Figure 6.8d a nice section shape at the luff and clean incom-
ing flow can be seen. In Figure 6.8e luff curl due to the eased sheet and corresponding
windward side flow separation are present. Near the clew some macro-scale wrinkles
(larger than element size), resulting from uni-directional stress in this area, can clearly
be seen (see Figure 6.9 as well). Obviously, the shape and size of these wrinkles is - to
some extent - determined by grid resolution and element orientation relative to these
wrinkles.
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(a) Optimal trim (b) Eased

(c) Hauled

(d) Luff detail, optimal trim

(e) Luff detail, eased

Figure 6.8: Flow patterns around spinnaker at different trim settings

(a) Macro-scale wrinkles (b) Principal stress 1 (c) Principal stress 2

Figure 6.9: Macro-scale wrinkles, resolved by grid
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6.4. CONCLUSION
In the above study, the capabilities of the method for the evaluation of a range of sail
designs as well as trim settings are demonstrated. The effect of spinnaker design as well
as trim on generated forces resp. efficiency can clearly be seen in the corresponding
force / efficiency plots. Further, the flow / geometry plots nicely show the effect of non-
optimal trim on the flow and, in reverse, the effect of resulting flow forces on flying shape.
The deformation of the sail’s surface, especially the occurance of macro-scale wrinkles,
gives valuable information on possible design improvements. The force / efficiency plots
provide valuable guidance to the sail designer as well as trimmer regarding sail (design)
selection and optimal trim settings.
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7
CONCLUSIONS,

RECOMMENDATIONS AND OUTLOOK

7.1. CONCLUSIONS
The present work was initiated to develop a novel method, compared to the present
batch mode coupled approaches based on potential flow theory, to evaluate the prop-
erties of downwind sails at the design stage based on simulation of viscous flow as well
as structural behaviour. With RANS-based viscous flow simulation methods gaining a
strong foothold in industrial application and their capabilities increasing from pure flow
simulation to include mesh motion and deformation, it was decided to couple an in-
dustrial RANS-solver to a purpose-written structural simulation code and evaluate the
prospects of this combination to complement or replace wind tunnel experiments.

While couplings between flow and structural solvers, so-called Fluid-Structure-Interaction
or FSI solvers were already in existence, their application was limited to upwind sails due
to neglecting viscous effects in the flow solution. In the present method this shortcoming
has been rectified by employing a flow simulation method based on the solution of the
Reynolds-averaged Navier-Stokes equations, in principle capable of simulating partially
or fully separated as well as attached flow. Within this study, these particular capabilities
of the selected flow simulation method are thoroughly evaluated as part of the verifica-
tion and validation (V&V ) exercise.

As no structural solver capable of simulating the structural behaviour of flexible, pos-
sible partially slack, membrane structures was readily available, such a solver has been
developed as part of this thesis (Chapter 3). Based on the classical CST-element, the ele-
ment was extended by the capability to capture sub-element scale membrane wrinkling.
A robust solution method has been implemented to solve the resulting system of equa-
tions. During the verification and validation exercise good agreement with experimental
resp. analytical data has been shown, the importance of sufficiently fine grids has been
clearly demonstrated. Further, the importance of a suitable wrinkling model has been
demonstrated for the simulation of the kind of membrane structures investigated in this
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thesis. Beyond the simulation of the structural behaviour of sails, this solver has since
been successfully used on the simulation of sun shades and tent roofs.

To establish the coupling between the flow and the structural simulation methods
a basic but robust data exchange method has been established (see Chapter 4). While,
due to being explicit, this coupling is not suitable for the time-correct simulation of tran-
sient behaviour, good agreement between time-averaged experimental and essentially
steady-state simulation results has been shown.

Preparing the V&V-phase it was found that detailed experimental data on flow around
and structural behaviour of flexible sails was sadly scarce. To rectify this shortcoming an
involved experimental series was undertaken at the YRU-Kiel twisted flow wind tunnel
(see Section 5.1). The results have been published by the author [1] for further reference
by other practitioners.

As part of the V&V exercise, the capabilities of a commercial RANS-solver to simulate
the behaviour of partially separated flow were evaluated (see Chapter 5). Even though
the results indicate shortcomings in the prediction of spontaneous flow separation, the
results provide valuable indicators on generally suitable computational setups as well
as the sensitivity of the flow simulation results to parameters such as grid resolution
and time step length. It has been shown that, while quite some error is observable for
quantitative force or local pressure values, trends like qualitative pressure or velocity
distribution are captured quite well.

Finally, the applicability of the present method to practical sail design has been demon-
strated (Chapter 6). A current 90’ high performance monohull design has been cho-
sen for this study, flow and structural behaviour have been evaluated at full scale. The
present simulation method is used to evaluate a range of parametrical variations of a ba-
sic sail design including the generation of trimming information. The effect of the design
variations on the usable apparent wind angle range as well as on optimal sail trim can
clearly be seen from the results. Further, the effect of non-optimal trim on total forces
resp. efficiency as well as on particular flow and structural behaviour can easily be eval-
uated from the results. Wind tunnel testing (at a scale of about 25 to 30) of said sail
designs would have required the creation of scale models of boat and all sails and would
have been affected by significant scale effects with regards to flow as well as structural
behaviour. Full scale testing would only be possible on the finished boat and require the
creation of huge (about 500m2), expensive, quite possibly non-optimal, sails with the
additional difficulty of usually non-repeatable non-laboratory conditions.

In total, in this thesis the development, verification and validation and application
of a fluid-structure-interaction simulation method for possibly separated flow around
highly flexible downwind sails is detailed. While various shortcomings are still evident,
in general, the present method is a significant improvement with regard to more sim-
ple methods solely applicable to upwind sails, expecting fully attached flow and small
deformations of the sails.

7.2. RECOMMENDATIONS AND OUTLOOK
As can be taken from above conclusions, the present simulation method still has some
significant limitations and uncertainties. To further improve the simulations of flow and
structural behaviour of downwind sails towards even more realistic results the following
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steps are recommended:

• Further research and development work is needed on the improvement of flow
simulation results for partially separated flows. The author is well aware that this
issue is very much an ongoing topic of research as it affects a wide range of appli-
cations including, but not limited to, aerospace and car industries.

• Large Eddy Simulations or derivations thereof actually resolve the turbulence field
and are supposed to be significantly more capable to correctly predict flow sep-
aration. While these methods are currently rendered impractical by their com-
putational requirements, the continuous increase of computational power might
resolve these issues in the near future.

• As the author could personally observe during actual usage, the behaviour of highly
flexible downwind sails when trimmed for maximum driving force, especially at
large apparent wind angles, is often quite dynamic. The current implementation
of the coupling is not able to resolve these dynamics in a time-accurate manner.
The practical value of computed results for these conditions would be significantly
improved by implementing implicit or strong coupling for time-accurate predic-
tion of transient behaviour.

• As the selection of available validation data is still limited, a public database con-
taining results of experimental investigations by various practitioners / research
establishments and on various geometries - two- as well as three-dimensional -
would be desirable.

• In this thesis only the downwind sail is considered to be flexible. To assess the
dynamics of the entire sailplan and rig, mainsail, mast and standing rigging would
have to be included not only in the flow but in the structural calculation as well.
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A
VALIDATION DATA

A.1. PLANAR BENDING OF A PRE-TENSIONED BEAM-LIKE MEM-
BRANE

This validation case is based on a description given by Stein et al. [1]: A rectangular
membrane is pre-tensioned by forces applied to its edges. Then equivalent and opposite
moments are applied to its vertical edges. If the moments are applied as depicted in
Figure A.1, wrinkles start to form at the lower edge from a moment depending on the
pretension.

Figure A.1: Topology and applied forces and moments [1]

Stein et al. [1] (pp. 9 - 12) derive the following relation between curvature κ, preten-
sion P and bending moment M :

2M

Ph
= 1− 2

3

√
2P

κEth2 , (A.1)
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with the membrane thickness t . The amount of wrinkling can be calculated by:

b

h
= 1−

√
2P

κEth2 . (A.2)

Such a setup, as shell-like structure, can be calculated as a bending beam with the fol-
lowing relation between curvature and bending moment, regardless of pretension:

M

E I
= κ , (A.3)

with κ being the curvature. With the sectional moment I being

I = h3t

12
, (A.4)

this yields the following relation for the normalised bending moment:

2M

Ph
= 1

3

κEth2

2P
. (A.5)

A.2. BENDING OF A PRESSURISED MEMBRANE CYLINDER
This validation case is based on a description given by Stein et al. [1] as well: An analytical
solution is given for the bending and wrinkling behaviour of a pre-tensioned, pressurised
tube subjected to a bending moment (Figure A.2). Even though experimental tests have
been conducted, no experimental results are given in literature.

Figure A.2: Topology and applied forces and moments [1]

The formulations given by Stein et al. [1] (pp. 13 - 18) are as follows: For a cylinder of
radius r and material thickness t , the state of the membrane is define by the axial pre-
tension P , the internal pressure p and the bending moment M . The amount of wrinkling
occurring is described by the ratio of circumference of wrinkling and radius b/r .

The following analytical relations are given for required pre-tension P and bending
moment M depending on curvature κ and amount of wrinkling b/r :

P = 2Etr 2κ

[
si n

b

r
+

(
π− b

r

)
cos

b

r

]
, (A.6)

M = Etr 3κ

(
π− b
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. (A.7)
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From classical engineering theory for a shell-like structure bending moment M would
be:

M

E I
= κ , (A.8)

with the sectional moment I for a thin-walled tube being:

I =πr 3t . (A.9)

A.3. WILKINSON TESTCASE
In 1984 Wilkinson tested a two-dimensional sail-like geometry with mast in front in the
7’ x 5’ high speed section of the No. 1 wind tunnel of the University of Southampton (UK)
[2]. The tests were designed to get an accurate measurement of flow separation and reat-
tachment phenomena on a sole mainsail in upwind condition in the presence of a mast.
During these tests the chord-wise pressure distribution and boundary layer velocity pro-
files in several locations were recorded. As a sail-like profile the NACA a=0.8 mean line,
belonging to the NACA six-series wing sections [3], was chosen to ensure comparability
to tests carried out by Milgram [4]. A circular mast in front of the sail was added to repli-
cate a typical mainsail setup. The sail has a chord length C of 0.70m and a camber of
12.5% C. The mast has a diameter of 4.03% C. The sail is rotated (eased) by 5◦ relative to
the boat’s centreline, its angle of attack is 5◦. The Reynold’s number based on the sail’s
chord length is 600000. The relative pressure is given along the chord of the sail, bound-
ary layer velocity profiles are given at five locations along the chord as shown in Figure
A.3.

Figure A.3: Schematic description of Wilkinson test-case and measurement points [2]

As a result of these measurements Wilkinson found a typical flow pattern which he
characterised by the nine zones shown in Figure A.4.

These zones are described as:

I : Upper mast attached flow

II : Upper separation bubble

III : Upper reattachment

IV : Upper airfoil attached flow
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V : Trailing edge separation

VI : Lower mast attached flow

VII : Lower separation bubble

VIII: Lower reattachment

IX : Lower airfoil attached

Figure A.4: Nine zones of flow around mast-sail combination as characterised by Wilkinson [2]

Static pressure distribution was measured by three parallel chordwise rows of 40
pressure taps both on the upper and lower side of the sail. Further eight pressure taps
were distributed around the mast at mid-span. Dynamic pressure measurements to
evaluate the boundary layer profile on the suction side were taken by three-tube yaw
probe. This yaw probe was traversed chordwise as well as normal to the sail’s surface
by a miniature robot to ascertain accurate probe location as well as a minimum of flow
disturbance. The experimental setup is shown in [2].

In Figures A.5 to A.7 (taken from Wilkinson [2]) the measured pressure distribution
as well as the boundary layer velocity profiles calculated from the dynamic pressure are
shown for the case described above (AoA = 5◦). The comparison of pressure distributions
at different Reynolds numbers indicates negligible influence of the Reynolds number on
the results (Figure A.5). The zonal model as described above(Figure A.4) corresponds
well to the boundary layer profiles (Figures A.6 and A.7).
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Figure A.5: Pressure distribution on sail section measured by Wilkinson at various Reynolds numbers [2].

Figure A.6: Normalised boundary layer velocity profile in regions with attached flow as measured by Wilkinson
[2].
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Figure A.7: Normalised boundary layer velocity profile in regions with separated flow as measured by Wilkin-
son [2].



B
FLOW SIMULATION METHOD

Coupled in a Fluid-Structure-Interaction method, the flow simulation is not only needed
to calculate the flow around the geometry and global forces, but also the local pressure
and shear forces used to generate the external forces for the structural loadcase. This
places a special emphasis on the correct prediction of local phenomena like flow sepa-
ration and reattachment locations.

The simulation of the viscous flow around sails in downwind conditions is a particu-
larly challenging problem in the area of flow simulation. At the Reynolds numbers typical
for the flow around sails (1E+06 < Re < 1E+07), the air can be assumed incompressible
and isothermal, but the boundary layer has to be taken into account. The flow around
the sails in these conditions is characterised by partial, often time dependent, separa-
tion on the highly curved surface. The occurrence and behaviour of this flow separation
is highly dependent on the boundary layer.

The boundary layer on a sail typically has a laminar area near the leading edge, fol-
lowed by a laminar separation bubble, transition to turbulent flow and reattachment
as turbulent boundary layer flow. Turbulence is characterised by a constant change of
flow velocity, direction and pressure in space and time. In principle this can be mod-
elled using a Navier-Stokes equation approach. In practice resolving the flow to model
all turbulent length and time scales, Direct Numerical Simulation (DNS) is, for the typical
Reynolds numbers of interest, impossible due to the computational effort necessary.

For this reason typically the turbulence is modelled in a time and space averaged
way using turbulence models. This approach yields the Reynolds Averaged Navier-Stokes
(RANS) equations. The following description of the flows simulation method closely fol-
lows the description given in the CFX Solver Theory guide [5].

B.1. NAVIER-STOKES EQUATION THEORY AND REYNOLDS AV-
ERAGING

The flow around the geometry is simulated by solving the Reynolds Averaged Navier
Stokes Equations (RANSE) for the surrounding fluid. Basically, these are transport equa-
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tions for mass, momentum and energy within the fluid. In the case of an incompressible,
isothermal fluid, as assumed in this case, the equations can be somewhat simplified,
variation of density and thermal energy do not need to be taken into account.

In a stationary coordinate frame the equation for the conservation of mass for an
infinitesimally small volume can be written as:

∇·U = 0 (B.1)

(B.1) states that all fluxes are balanced so that no mass can be lost or created. U is the
velocity vector, ∇ is the partial derivative by the coordinate axes in a Cartesian system.

Similarly the Navier-Stokes equation for the conservation of momentum can be writ-
ten as:

∂
(
ρU

)
∂t

+∇· (ρU⊗U
)=−∇p +∇·τ+SM (B.2)

With U being the same as above and ρ the density of the fluid (assumed to be constant in
this case). p is the pressure, τ the stress tensor acting on the boundaries of this volume
and SM any other momentum source acting on the volume. On the left hand side of
(B.2) the convective term depicts the transport of momentum. On the right hand side
the diffusive term depicts the pressure, friction and other body forces acting on the fluid.
The equation states that no momentum can be lost or generated, only transferred.

The stress tensor τ is related to the shear strain rate by

τ=µ
(
∇U+ (∇U)T − 2

3
δ∇·U

)
(B.3)

with µ being the dynamic (molecular) viscosity. δ is the Kronecker Delta or Identity Ma-
trix.

As stated above, turbulence is basically a chaotic state of fluid motion. To accu-
rately simulate turbulent flow, it would be necessary to resolve the turbulent structures
in space and time. As the computational effort for this is prohibitive, the fluctuations of
velocity and pressure due to turbulence are averaged over time, called Reynolds Averag-
ing. This is done by separating average and fluctuating parts of velocity by

Ui =U i +ui (B.4)

Ui denotes the actual velocity, U i the temporal average and ui the fluctuation. Similarly
the pressure is averaged. The averaged component of the velocity is given by

U i = 1

∆t

t+∆t∫
t

Ui d t (B.5)

∆t is a timescale which is large relative to the timescale of the fluctuation to average but
small relative to the timescale to which the equations are solved.

Substituting the averaged quantities into the original transport equations ((B.1) and
(B.2)) yields

∂

∂x j
U j = 0 (B.6)
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∂ρUi

∂t
+ ∂

∂x j

(
ρUiU j

)=− ∂p

∂xi
+ ∂

∂x j

(
τi j −ρui u j

)+SM (B.7)

where τ is the molecular stress tensor (including normal and tangential stress compo-
nents). The bars denoting averaged quantities are dropped in both above equations,
except for the products of fluctuating quantities. In (B.7) the turbulent flux terms ρui u j ,
the Reynolds stresses, are contained in addition to the molecular diffusive fluxes.These
Reynolds stresses are unknown at this point, therefore (B.7) lacks closure. During the
process of closure, an assumption has to me made regarding the instantaneous quanti-
ties of the Reynolds stresses.

B.2. TURBULENCE MODELLING
The effect of turbulence on flow and flow forces is modelled using turbulence mod-
els. These models present different ways to calculate the Reynolds stresses contained
in (B.7). In general these models can be classified by two different approaches:

• Modelling the turbulence as isotropic by introducing an additional turbulent vis-
cosity - Eddy Viscosity Turbulence Models

• Modelling the anisotropic transport of the Reynolds stresses - Reynolds Stress Tur-
bulence Models

Commonly turbulence models based on the additional turbulent viscosity approach
are used. Reynolds Stress turbulence models theoretically should give more accurate
results for complex flow, practice shows that they are often not superior to more involved
Eddy Viscosity turbulence models. However they require more computational effort.

B.2.1. EDDY VISCOSITY TURBULENCE MODELS
In 1877 Boussinesq [6] introduced the concept of modelling the Reynolds stresses by in-
troducing the so-called eddy viscosity. This concept is based on the assumption that tur-
bulence consists of small eddies which are continuously forming and dissipating, and in
which the Reynolds stresses are assumed to be proportional to the mean velocity gradi-
ents. This approach is formulated in a manner analogous to the relationship of stress
and strain tensors in a laminar Newtonian fluid:

−ρui u j =µt

(
∂Ui

∂x j
+ ∂U j

∂xi

)
− 2

3
δi j

(
ρk +µt

∂Uk

∂xk

)
(B.8)

where k is the turbulence kinetic energy, given by k = 1
2 u2

i and µt the turbulent viscosity
which must be modelled.

Inserting (B.3) and (B.8) into (B.7) yields:

∂ρUi

∂t
+ ∂

∂x j

(
ρUiU j

)=−∂p ′

∂xi
+ ∂

∂x j

[
µe f f

(
∂Ui

∂x j
+ ∂U j

∂xi

)]
+SM (B.9)

µe f f is the effective viscosity given by µ+µt . p ′ is a modified pressure given by:

p ′ = p + 2

3
ρk + 2

3
µe f f

∂Uk

∂xk
(B.10)
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The last term in (B.10)
2

3
µe f f

∂Uk

∂xk
(B.11)

involves the divergence of velocity and can be neglected for incompressible fluids (see
(B.1)).

Two-equation turbulence models based on above Eddy Viscosity hypothesis are typ-
ically used in industrial flow simulation applications . Most common are the k-ε and k-ω
turbulence models with the Shear Stress Transport (SST) model being a combination of
both combining their individual advantages.

THE K-EPSILON TURBULENCE MODEL

Generally considered as the standard turbulence model for many industrial CFD appli-
cations, the k-ε turbulence model is based on the Eddy Viscosity assumption as formu-
lated in (B.9). In this turbulence model it is assumed that the turbulent viscosity is linked
to the turbulence kinetic energy and dissipation by the following relation:

µt =Cµρ
k2

ε
(B.12)

with Cµ being a constant.
The values for the turbulence kinetic energy k and turbulence dissipation rate ε for

incompressible, non-buoyant fluids come directly from the respective differential trans-
port equations:

∂

∂x j

(
ρU j k

)= ∂

∂x j

[(
µ+ µt

σk

)
∂k

∂x j

]
+Pk −ρε (B.13)

∂

∂x j

(
ρU jε

)= ∂

∂x j

[(
µ+ µt

σε

)
∂ε

∂x j

]
+ ε

k

(
Cε1Pk −Cε2ρε

)
(B.14)

where Cε1, Cε2, σk and σε are constants. Pk is the turbulence production term due to
the viscous forces, modelled by:

Pk =µt

(
∂Ui

∂x j
+ ∂U j

∂xi

)
∂Ui

∂x j
(B.15)

A scalable wall function approach is used in near wall flow modelling to provide flexibil-
ity regarding boundary layer resolution.

While being a robust and efficient model in free stream conditions, the k-ε turbu-
lence model has serious deficiencies e.g. when modelling spontaneous flow separation
or flow along curved surfaces.

THE WILCOX K-OMEGA TURBULENCE MODEL

A model with significantly improved near-wall flow prediction characteristics, especially
for spontaneous flow separation and reattachment, is the k-ω turbulence model. Being
based on (B.9) as well, the turbulent viscosity within this model is calculated by:

µt = ρ k

ω
(B.16)
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In this turbulence model transport equations for the turbulent kinetic energy k and
the turbulent frequency ω are solved. The transport equation for the turbulent kinetic
energy k and turbulent frequency ω, assuming incompressible, non-buoyant fluid, are:

∂

∂x j

(
ρU j k

)= ∂

∂x j

[(
µ+ µt

σk

)
∂k

∂x j

]
+Pk −β′ρkω (B.17)

∂

∂x j

(
ρU jω

)= ∂

∂x j

[(
µ+ µt

σω

)
∂ω

∂x j

]
+αω

k
Pk −βρω2 (B.18)

In the above equations α, β, β′, σk and σω are constants, Pk is computed according
to (B.15), like in the k-ε model. The unknown Reynolds stress tensor is computed ac-
cording to the eddy viscosity hypothesis, (B.8). Near wall treatment is by an automatic
switch from wall functions to low Reynolds wall treatment depending on boundary layer
resolution.

A well known problem with the Wilcox k-ω turbulence model is its sensitivity to free
stream turbulence conditions. Changing the value of ω at the inlet can result in signifi-
cant variations of results.

THE SHEAR STRESS TRANSPORT (SST) TURBULENCE MODEL

A model especially designed for application on curved surfaces and the prediction of
spontaneous separation on a smooth surface is the k-ω based Shear Stress transport
(SST) turbulence model. To this end a blending of near surface treatment by the k-ω
with free stream treatment by the k-ε model is implemented. To ensure the correct pre-
diction of onset and amount of flow separation the correct prediction of turbulent shear
stress transport is necessary. This is achieved by a limiter for eddy viscosity, preventing
its over-prediction as is typical for the k-ε and k-ω models.

For the development of this model the k-ε formulation is transformed to a k-ω for-
mulation. The Wilcox model is multiplied by a blending factor F1, the transformed k-ε
formulation correspondingly by a blending function 1−F1. The resulting functions are
added. This results in an application of the Wilcox model at the surface and the k-ε
model from the edge of the boundary layer outwards.

For the SST model the Wilcox model, assuming incompressible, non-buoyant fluid,
can be written as:

∂

∂x j

(
ρU j k

)= ∂

∂x j

[(
µ+ µt

σk1

)
∂k

∂x j

]
+Pk −β′ρkω (B.19)

∂

∂x j

(
ρU jω

)= ∂

∂x j

[(
µ+ µt

σω1

)
∂ω

∂x j

]
+α1

ω

k
Pk −β1ρω

2 (B.20)

Assuming the same conditions, the transformed k-ε formulation can be written as:

∂

∂x j

(
ρU j k

)= ∂

∂x j

[(
µ+ µt

σk2

)
∂k

∂x j

]
+Pk −β′ρkω (B.21)

∂

∂x j

(
ρU jω

)= ∂

∂x j

[(
µ+ µt

σω2

)
∂ω

∂x j

]
+2ρ

1

σω2ω

∂k

∂x j

∂ω

∂x j
+α2

ω

k
Pk −β2ρω

2 (B.22)
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with the additional constants αi , βi , σki and σωi , i being 1 or 2.
The above mentioned eddy viscosity limiter is formulated as follows:

νt = α1k

max(α1ω,SF2)
(B.23)

where
νt = µt

ρ
(B.24)

In these equations F2 is a blending factor similar in function and application to the
boundary layer to F1, S is an invariant measure of the strain rate.

The blending functions F1 and F2 are of critical importance to the success of the
method. The formulation of these blending functions is based on the distance to the
nearest surface and on the flow variables, giving a range from 0 to 1 over the thickness of
the boundary layer. They are given as:

F1 = tanh
(
ar g 4

1

)
(B.25)

with

ar g1 = min

[
max

( p
k

β′ωy
,

500ν

y2ω

)
,

4ρk

C Dkwσω2 y2

]
(B.26)

Here y is the distance to the nearest wall and ν the kinematic viscosity. Further:

C Dkw = max

(
2ρ

1

σω2ω

∂k

∂x j

∂ω

∂x j
,1.0×10−10

)
(B.27)

F2 = tanh
(
ar g 2

2

)
(B.28)

with

ar g2 = max

(
2
p

k

β′ωy
,

500ν

y2ω

)
(B.29)

Wall functions in the SST turbulence model are treated the same way as in the k-ω
turbulence model.

B.2.2. THE BASELINE EXPLICIT ALGEBRAIC REYNOLDS STRESS (BSL-EARSM)
MODEL

The Explicit Algebraic Reynolds Stress Model is an extension to the standard eddy-viscosity
based two equation models and, in this particular case, based on the Baseline k-ω (BSL)
turbulence model which is closely related to the SST-model described above. The differ-
ence is the computation of the non-linear relation between Reynolds stresses and mean
strain-rate and vorticity tensors instead of approximating the Reynolds stresses by the
Boussinesq-approach based on the isotropic turbulent viscosity. This modification is
aimed at rectifying shortcomings of the BSL-model against the SST model for example
in the prediction of secondary flows or flows with high streamline curvature. Due to the
higher-order terms included in the model, these and other flow phenomena are included
without the need to solve additional transport equations.
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The Reynolds stresses ui u j are related to the anisotropy tensor ai j by:

ui u j = k
(
ai j +2/3δi j

)
, (B.30)

where k is the turbulent kinetic energy and ai j is the anisotropy tensor. ai j is expressed
by:

ai j =β1Si j +β3

(
Ωi kΩk j −

1

3
I IΩδi j

)
+β4

(
Si kΩk j −Ωi k Sk j

)
+

β6

(
Si kΩklΩl j +Ωi kΩkl Sl j −

2

3
IV δi j

)
+

β9

(
Ωi k SklΩl mΩm j −Ωi kΩkl Sl mΩm j

)
.

(B.31)

The non-dimensional strain-rate and vorticity tensors Si j andΩi j are defined by

Si j = 1

2
τ

(
∂Ui

∂x j
+ ∂U j

∂xi

)
(B.32)

and

Ωi j = 1

2
τ

(
∂Ui

∂x j
− ∂U j

∂xi

)
. (B.33)

For a full description of the coefficients used in the above formulae see [5].

B.3. VOLUME DISCRETISATION
To solve the RANS equations for an arbitrarily shaped volume, this volume (or domain)
has to be divided into small, regularly shaped control volumes. Usually several millions
of these control volumes are used. Typical shapes for these control volumes are tetrahe-
dral (four nodes), pyramid (five nodes), wedge or prism (six nodes) or hexahedral (eight
nodes). To calculate the flow through these control volumes the formulations given in
Sections B.1 and B.2.1 are integrated over the control volume and transformed to surface
integrals on the boundary faces of the control volumes by applying Gauss’ Divergence
Theorem. Integrating the differential conservation equations for mass and momentum
in a Cartesian coordinate frame

∂

∂x j

(
ρU j

)= 0 (B.34)

∂

∂t

(
ρUi

)+ ∂

∂x j

(
ρU j Ui

)=− ∂P

∂xi
+ ∂

∂x j

[
µe f f

(
∂Ui

∂x j
+ ∂U j

∂xi

)]
(B.35)

yields the integrated equations ∫
s

ρU j dn j = 0 (B.36)

d

d t

∫
V

ρUi dV +
∫
s

ρU j Ui dn j =

−
∫
s

P dn j +
∫
s

µe f f

(
∂Ui

∂x j
+ ∂U j

∂xi

)
dn j +

∫
V

SUi dV

(B.37)
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where s and V denote surface and volume regions of integration, and dn j are the dif-
ferential Cartesian components of the outward normal vector of the individual control
volume faces.

After discretisation of volume and surface integrals, the above equations in integral
form become: ∑

i p
ṁi p = 0 (B.38)

V

(
ρUi − ρ̊Ůi

∆t

)
+∑

i p
ṁi p (Ui )i p =

∑
i p

(P∆ni )i p +∑
i p

[
µe f f

(
∂Ui

∂x j
+ ∂U j

∂xi

)
∆n j

]
i p

+SUi V

(B.39)

In the two above equations ṁi p = (
ρU j∆n j

)
i p , V is the control volume,∆t is the timestep

and ∆n j is the discrete outward surface vector. The subscript i p denotes evaluation at
the integration points of the control volume and the superscript˚refers to the old time
level of the timeseries. In the above equations a First Order Backward Euler scheme has
been assumed for simplicity, in practice a second order scheme is typically used for in-
creased transient result accuracy.

In simulations utilising mesh motion or mesh deformation (e.g. due to the defor-
mation of boundaries) it is necessary to take the motion and deformation of the control
volumes in time into account. For a variable φ this is done by the application of the
Leibnitz rule:

d

d t

∫
V (t )

φdV =
∫
V

∂φ

∂t
dV +

∫
s

φW j dn j (B.40)

with W j being the velocity of the control volume boundary.
Applying (B.40) to the conservative equations in integral form yields:

d

d t

∫
V (t )

ρ dV +
∫
s

ρ
(
U j −W j

)
dn j = 0 (B.41)

d

d t

∫
V (t )

ρUi dV +
∫
s

ρ
(
U j −W j

)
Ui dn j =

−
∫
s

P dn j +
∫
s

µe f f

(
∂Ui

∂x j
+ ∂U j

∂xi

)
dn j +

∫
V

SUi dV

(B.42)

On the left hand side of both above equations the transient terms include the rate of
change of volume of the deforming control volume while the advective terms include
the net flux through the moving and deforming control volume’s boundaries. During the
motion and deformation of a control volume the Geometric Conservation Law d

d t

∫
V (t )

dV =∫
s

W j dn j has to be satisfied. This Geometric Conservation Law simply states that the

change of volume has to be equal to the net flux through the boundaries.
A peculiarity of the RANS solver used (CFX) is the handling of these control volumes.

Instead of taking the control volumes as they are, new control volumes are built around
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the nodes. Figure B.1 indicates how these new control volumes are generated. These
control volumes have more faces than the original cells, theoretically increasing isotropy
of the mesh and accuracy of the solution.

Figure B.1: Generation of new control volumes in CFX (reduced to 2-D) [5]

For each sector of the newly generated control volume in Figure B.2 the volume inte-
grals are discretised and accumulated. On each face of the newly generated polyhedral
control volume the surface integrals are discretised at the integration points (i pn).

Figure B.2: Determination of integration points on control volume faces [5]

The RANS solver used (CFX) supports wholly unstructured meshes of various geo-
metric control volume types, provided one-to-one cell face connectivity is maintained,
i.e. no Split-Cartesian meshes. Typically the computational meshes consist of tetra-
hedral elements for the majority of the domain with prism or wedge elements for the
resolution of boundary layers. Pyramid elements may be present in transition regions
between the other two element types. Hexahedral elements are usually not used in this
kind of unstructured meshes.
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B.4. SOLUTION OF SYSTEM OF EQUATIONS
The system of equations generated from above equations is usually solved by utilising a
segregated approach. In this approach the equations for momentum are solved based
on a guessed pressure field, the pressure field is subsequently solved based on the com-
puted momentum field and the momentum field corrected. Typical variants of this ap-
proach are the SIMPLE and PISO methods (Ferziger et al. [7]. To obtain a stable, conver-
gent solution, solvers based on this kind of approach require a large number of iterations
and small timestep lengths.

Untypically, ANSYS-CFX utilises a fully coupled approach to the solution of the sys-
tem of equations [5]. In this approach a coefficient matrix is assembled from the lin-
earised equations and solved using Algebraic Multi-Grid accelerated Incomplete Left-
Upper factorisation. While requiring significantly more computational effort per timestep,
timestep length for transient simulations can be significantly greater and residual reduc-
tion per timestep is significantly improved.



C
CODE IMPLEMENTATION

The program system, named FlexSail, is designed as an extension to the Navier-Stokes
equation based flow solver ANSYS-CFX. ANSYS-CFX is the commercial result of the SEMPA-
project conducted at the Munich Technical University 1995 - 1998 [8].

In the following the implementations generated within the scope of this thesis will
be described.

C.1. FLUID-STRUCTURE-INTERACTION-COUPLING
The simulation of fluid-structure-interaction is based on the observation that flow-forces
lead to a deformation of a body, which in turn affects the flow around it. Ideally, this in-
teraction would be modelled in a single system of equations, describing the behaviour
of the fluid medium as well as the solid body. Except for some simple cases, such a direct
coupling has not yet been carried out. Typically, in fluid-structure-interaction simula-
tions, two separate systems of equations are coupled by sequential exchange of infor-
mation at the fluid-solid boundary.

This coupling at the boundary can be of different closeness. In cases where defor-
mation of the solid boundary is deemed to be sufficiently small to not affect the flow
behaviour, one-way coupling where only the flow-forces are transferred may suffice. In
cases where the flow’s behaviour is deemed to change due to the boundary’s deforma-
tion, flow forces as well as changed boundary shape have to be transferred by two-way
coupling.

Similarly, in a time-series, the coupling can either be weak or strong. In weak, or
explicit, coupling, information transfer only takes place once per timestep per direction
or even more seldom. This kind of coupling can be used if no time dependent solution
is desired. In strong, or implicit, coupling, the information exchange is iterated within a
timestep until transient solutions for both systems of equation are satisfied. This kind of
coupling allows to simulate time-dependent processes.

In the program developed within the scope of this thesis a weak two-way coupling is
implemented. Every few timesteps, nodal pressure data is communicated from the CFD-
code to the FE-code, the resulting deformation of the sail is computed and transfered
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back to the CFD-code. Based on this deformation, the boundaries representing the sail
and the associated volume mesh are deformed.

ANSYS-CFX provides two interfaces for communication with external routines: User
CEL (CFX Expression Language) routines and Junction Box routines. Both interfaces are
designed to call user provided external subroutines with FORTRAN-77 being the pre-
ferred language. A range of ANSYS-provided F77 files can be included in the external
code to provide standardised variables and access to various parts of ANSYS-CFX’s data
structure. To be able to use the more versatile features of FORTRAN-90, the files to be
included were translated to F90 standard.

User CEL routines are based on User CEL functions defined in ANSYS-CFX, allow-
ing communication of prescribed data in and out of CFX as calling arguments. As User
CEL functions relate directly to variables computed during the iterative solution process
(like mesh deformation), these routines and as a result associated User CEL functions
are called from within ANSYS-CFX when appropriate for the computation of the related
variable. They allow limited access to the ANSYS-CFX Memory Management System
MMS. Data communicated are proprietary to each partition in parallel runs.

Junction Box routines are called from within ANSYS-CFX at user-defined points of the
solving process. This can be at globally defined points like beginning of calculation or
local points within each iteration. When calling a Junction Box routine it is not possible
to communicate data as calling argument, instead full access to the MMS of the calling
partition is granted. It is possible to communicate between Junction Box routines called
by different partitions by using ANSYS-CFX’s Parallel Virtual Machine (PVM) communi-
cation system.

Both kinds of interfaces provided are used in the implementation of the Fluid-Structure-
Interaction coupling. Data communication in and out of ANSYS-CFX is accomplished
on partition level by a User CEL routine called at the beginning of the mesh deformation
step of each iteration. Data communicated are nodal pressures, current location and a
side identifier as calling arguments, new nodal coordinates are received. Similarly, at
each mesh deformation step a Junction Box routine is called to faciliate the communica-
tion between partitions and call the Finite-Element code. In the following sections both
routines will be described in more detail.

C.1.1. USER CEL ROUTINE
The User CEL routine is called at the beginning of the mesh deformation calculation of
each timestep on each partition. The following data are communcated as calling argu-
ments:

• number of affected nodes in current partition

• number of variables pernode passed as arguments

• number of variables per node returned as arguments

• array of calling arguments

• array of return arguments

• result qualifier: good / bad
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• MMS stack pointers

The calling arguments array contains current nodal positions, nodal pressure, com-
ponent index of displacement vector and sail’s side. The return arguments array contains
the new nodal position components related to the displacement vector index. The sides
identifier indicates windward or leeward side.

The User CEL routine consists of various subroutines as per Figure C.1.

Figure C.1: Diagram of subroutines of User CEL routine.

The routine loc_store is called by ANSYS-CFX with arguments as described above. On
the first call on each partition, storage space for the argument variables is allocated in
the local MMS by prep_store and the initial nodal coordinates are stored by store_coord.
Within ANSYS-CFX the update frequency for the sail’s flying shape is defined as every n-
th timestep. At every timestep before the n-th, the storage space for the nodal pressures
is initialised by ini_force and the current pressures stored by store_force. On each call
the nodal coordinates stored within the MMS at that time are read by return_crdvx and
returned to the calling routine. The coordinates stored in the MMS are regularly updated
by the Junction Box routine according to the FEM calculations.
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C.1.2. JUNCTION BOX ROUTINE

The Junction Box Routine is called at user-defined locations of the ANSYS-CFX iteration,
right before the beginning of the mesh deformation computation. By definition, no ar-
guments are passed, except for pointers to the ANSYS-CFX MMS stacks. The structure of
the Junction Box Routine is shown in Figure C.2.

The Junction Box routine’s master routine par_comm first checks whether ANSYS-
CFX is running in sequential or parallel mode. In case of sequential, execution is stopped.
For conveniences sake the execution is limited to parallel, as it is impossible to handle
meaningful mesh sizes in sequential mode. Older versions designed for sequential exe-
cution exist. At the second time step the inter-partition communication is set up, hump-
backing on ANSYS-CFX’s PVM system. This is done by calling mastercom respectively
slavecom and includes setting up the data areas required for the exchange within the
user part of the MMS. Similarly the nodal coordinates attached to the sail are communi-
cated to the master from each partition.

At the third time step the reference mesh in initial and pre-deformed state is read
from file by the master partition by calling read_structure. Nodal and facial mappings
are generated on the master partition by calling node_map and face_map.

At every n-th time step (e.g. every tenth) the locally stored current nodal pressure
data are communicated from the slave partitions to the master partition by calling force_com.
On the master partition they are assembled for the whole surface mesh and stored by
calling sort_force. Subsequently the FEA routine is called on the master partition by call-
ing subroutine flexsail. After sucessfully running the FEA routine, the new nodal coordi-
nates are distributed to all concerned partitions by calling coord_com on all partitions.

C.2. STRUCTURAL CODE
The structural code is implemented in FORTRAN90. Basically, two versions of the struc-
tural code exist, a stand-alone version, calculating a flying shape based on a pre-defined
pressure distribution, and one version linked to ANSYS-CFX. Generally, both versions
are similar, therefore they will be described as one, with the differences pointed out. The
structure is depicted in Figure C.3.

The structural code is controlled by routine flexsail_pre, respectively subroutine flex-
sail. In the stand-alone version the user is prompted whether a pressure distribution
should be read from a file, if not, for a constant pressure difference between both sides
of the sail.

C.2.1. DATA PREPARATION AND SETTING UP OF SYSTEM OF EQUATIONS

Next, both versions call read_loadcase. In the stand-alone version, read_loadcase reads
the surface mesh, structural and solution parameters from file, if prompted the pressure
distribution as well. In the FSI-version the initial and current (deformed) mesh as well
as nodal pressures are read from the MMS, structural and solution parameters are read
from file.

Next, subroutines get_structure and vmasses are called. By these subroutines element
data as required for the formulae given in Section 3.1.2 and virtual masses as described in
Section 3.2.2 are calculated. Nodal forces are calculated from pressure data and element
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Figure C.2: Diagram of subroutines of Junction Box routine.
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Figure C.3: Diagram of program FlexSail.
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areas and normal vectors by subroutine ext_forces. In the FSI-version the global node-
displacement vector is updated to the current geometry.

C.2.2. SOLVING
The solving part is, again, the same for both versions. For simplicity’s sake it is contained
in the main routine flexsail, respectively flexsail_pre. It basically consists of two nested
loops: An inner loop between kinetic energy peaks and an outer loop for global conver-
gence.

At the beginning of each outer loop, nodal velocities and correspondingly total ki-
netic energy are initialised to zero. Following that, external forces based on the current
deformed geometry are computed by calling ext_forces. During the first 101 outer loops
displacements of boundary conditions and prescribed element deformations (e.g. sheet
length changes) are applied by a ramping process.

At the first time step (first inner loop) per outer loop, the internal nodal forces from
element deformations are computed and yield, together with the external forces, the left
hand side of (3.49). Nodal velocities are computed according to (3.54). The new nodal
positions are computed by (3.51). Following that, total kinetic energy and residuals are
computed.

At the beginning of each following time step a left hand side of (3.49) is computed by
calling ext_forces. Nodal velocities and positions are computed by (3.52) and (3.51). Total
kinetic energy and residuals are computed. During the time step-iterative procedure
total kinetic energy is traced. If a maximum is detected, the pseudo-time of the actual
maximum is computed by (3.55) and nodal displacements corrected accordingly. At this
point the inner loop is terminated and the outer loop advances by one. If the residuals
fall below a predefined threshold, the solution is deemed to be converged and the outer
loop terminates as well. Last the subroutine output is called.
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