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S U M M A R Y
We consider isotropic elastic wave propagation with continuous mass-lumped finite elements
on tetrahedra with explicit time stepping. These elements require higher-order polynomials
in their interior to preserve accuracy after mass lumping and are only known up to degree 3.
Global assembly of the symmetric stiffness matrix is a natural approach but requires large
memory. Local assembly on the fly, in the form of matrix-vector products per element at
each time step, has a much smaller memory footprint. With dedicated expressions for local
assembly, our code ran about 1.3 times faster for degree 2 and 1.9 times for degree 3 on a
simple homogeneous test problem, using 24 cores. This is similar to the acoustic case. For a
more realistic problem, the gain in efficiency was a factor 2.5 for degree 2 and 3 for degree
3. For the lowest degree, the linear element, the expressions for both the global and local
assembly can be further simplified. In that case, global assembly is more efficient than local
assembly. Among the three degrees, the element of degree 3 is the most efficient in terms of
accuracy at a given cost.

Key words: Numerical modelling; Computational seismology; Wave propagation.

1 I N T RO D U C T I O N

Finite-difference modelling of seismic wave propagation has be-
come the workhorse of the industry for imaging hydrocarbon reser-
voirs. The spectral finite-element method plays a similar rôle in
seismology. Higher-order finite-difference methods have problems
with sharp material contrasts and topography, because they assume
differentiability where it does not hold. Modifications can alleviate
the decrease in accuracy, but at a cost in terms of complexity and
compute time. Finite-element methods have an inherently larger
computational cost, but do not suffer from a loss of accuracy if
the mesh follows the interfaces between different materials and the
topography. Because of their better accuracy, they may outperform
the finite-difference method in some cases (e.g. Mulder 1996; Wang
et al. 2010; Moczo et al. 2011; Zhebel et al. 2014). However, mesh
generation can sometimes be difficult.

Spectral finite elements (Orszag 1980; Patera 1984; Maday &
Rønquist 1990; Seriani et al. 1992; Komatitsch & Tromp 1999) re-
quire hexahedral meshes. Tetrahedral elements offer more flexibility
in gridding, for instance, near pinch-outs. Suitable schemes are dis-
continuous Galerkin (DG) methods (e.g. Rivière & Wheeler 2003;
Dumbser & Käser 2006; Käser & Dumbser 2006; Etienne et al.
2010; Wilcox et al. 2010), rectangular spectral elements mapped to
triangles or tetrahedra (Sherwin & Karniadakis 1995; Mercerat et al.
2006), hybridized versions (Cockburn et al. 2009; Giorgiani et al.
2013), finite-volume methods (Dumbser et al. 2007; Brossier
et al. 2008), mixed methods (Bécache et al. 2002; Cohen &
Fauqueux 2005) or continuous mass-lumped finite elements, which

we will consider here. DG methods offer the advantage that they
can mix orders and types of elements on, for instance, hexahe-
dra, tetrahedra and prisms, and also can work on non-conforming
meshes. However, the fluxes required to impose continuity increase
the computational cost. Since the mass matrix is block diagonal, its
inversion is not costly.

Continuous mass-lumped triangular or tetrahedral finite elements
avoid the cost of inverting a large sparse mass matrix by lumping
the mass matrix into a diagonal one. Fried & Malkus (1975) noted,
however, that with quadratic 2-D triangular elements, the lumping
decreases the order of accuracy. They considered the heat equation,
but the same holds for the acoustic and elastic wave equations in
second-order form. Augmenting the element with polynomials of
a higher degree in the interior can repair this deficiency (Fried &
Malkus 1975). For the element of degree 2 in 2-D, a bubble function
that vanishes on the edges suffices. Tordjman (1995) and Cohen
et al. (1995) used this idea to construct a 2-D element of degree 3
on the edges and a bubble function times a polynomial of degree
1 in the interior, leading to an interior degree of 4. Cohen et al.
(2001) provide error estimates. Mulder (1996) found an element of
degree 4 and interior degree 5. Chin-Joe-Kong et al. (1999) found
several elements of degree 5. The highest degree for mass-lumped
triangular elements known so far is 6 (Mulder 2013).

Mulder (1996) made the generalization to tetrahedral elements
with an element of degree 2 on the edges, 4 on the faces as
product of a cubic bubble function and a polynomial of degree
1, and degree 4 in the interior as a product of a quartic bubble
function and a constant polynomial. Lesage et al. (2010) and
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Global assembly or not 415

Zhebel et al. (2011) applied that element to acoustic wave prop-
agation modelling. Chin-Joe-Kong et al. (1999) constructed two
elements of degree 3. The second one allows for a larger time
step than the first (Zhebel et al. 2011, 2014) and will be used in
the current paper. Elements of higher degree have not been found
so far. Mulder et al. (2014) list stability estimates for the known
tetrahedral lumped elements of degrees 1 to 3 as well as for the
symmetric interior-penalty discontinuous Galerkin method up to
degree 4.

Bao et al. (1998) worked with the classic linear tetrahedral mass-
lumped elements for elastic wave propagation modelling. Here, we
will also include elements of degrees 2 and 3.

With explicit time stepping, we can consider two approaches for
assembling the stiffness and diagonal, lumped mass matrix: global
assembly or local assembly on the fly. Global assembly is a standard
approach with finite elements. The elements of the lumped mass
matrix or its inverse can be represented by one value per node. For
the symmetric global stiffness matrix, we store the symmetric block
diagonal and the block upper triangular part separately, the latter
in Block Compressed Sparse Row format. With local assembly on
the fly, the contribution of each element to the solution update is
treated independently. The displacement components on the nodes
of one element are copied from a global vector and multiplied by
pre-computed stiffness matrices on the reference element, nine in
total. The results are then combined by geometrical factors that
handle the map from the reference element to the actual element,
multiplied by the inverse mass matrix, and used to increment the
global solution vector for the new time level.

One might expect global assembly to produce results quicker than
local assembly, at the expense of considerably larger storage, but as
it turns out, this does not appear to be the case for the acoustic wave
equation. The main question we address here is if a similar result
also holds in the elastic case. To obtain performance figures within
the same order of magnitude, we derive dedicated expressions for
the matrix-vector multiplications that are part of the local assembly
on the fly.

In Section 2, we describe the discretization and provide expres-
sions for global assembly and local assembly for the general case.
Simpler expressions are provided for linear elements. Section 3
presents results for global and local assembly on 24 cores. We start
with the linear element. Then, we briefly consider the acoustic case,
where local assembly outperforms global assembly for degree 3, be-
fore turning towards degrees 2 and 3 for the isotropic elastic case.
The section ends with a slightly more realistic example. Section 4
summarizes the main conclusions.

2 M E T H O D

2.1 Discretization

The elastic system of wave equations for an isotropic medium in
second-order form is

ρ
∂2um

∂t2
=

3∑
j=1

[
∂

∂xm

(
λ

∂u j

∂x j

)
+ ∂

∂x j

{
μ

(
∂um

∂x j
+ ∂u j

∂xm

)}]
+ sm .

The displacement in coordinate direction xm, m = 1, 2, 3, is
um(t, x) as a function of time, t, and position, x. The material
properties are density ρ(x) and Lamé parameters μ(x) = ρv2

s and
λ(x) = ρv2

p − 2μ, with P-wave velocity vp(x) and S-wave veloc-
ity vs(x). The forcing source function is typically of the form
sm(t, x) = fmw(t)δ(x − xs), with wavelet w(t) and force amplitude

fm at a source position xs . The domain consists of a subset of the
Earth, bounded by a free surface. In exploration geophysics, ab-
sorbing boundaries are usually implemented on the sides where the
domain is truncated.

The domain is meshed by tetrahedra, preferably such that the
element size scales with the shear velocity, vs (Kononov et al. 2012;
Mulder et al. 2014). As wavelength scales with velocity, this pro-
vides a more or less uniform resolution over the entire mesh.

Here, the material parameters are assumed to be constant per
element.

Next, we define the geometrical components (e.g. Zienkiewicz
& Taylor 2000, chapter 9). Let the four vertices of the tetrahe-
dron be denoted by xk , k = 0, 1, 2, 3. In terms of reference element,
x = ∑3

k=0 xkφk(x) with the basis functions, φk, of the linear element.
The natural coordinates on the tetrahedron are ξ k =φk for k = 1, 2, 3,
augmented with φ0 = ξ 0 = 1 − ξ 1 − ξ 2 − ξ 3. The coordinate trans-
formation is x = x0 + ξ1(x1 − x0) + ξ2(x2 − x0) + ξ3(x3 − x0) =∑3

k=0 ξkxk with Jacobian matrix J = dx
dξ

= (xa, xb, xc).
It is convenient to define relative vertex positions

xa = x1 − x0, xb = x2 − x0, xc = x3 − x0,

and the cross products

g1 = xb × xc, g2 = xc × xa, g3 = xa × xb.

Then, det J = J0 = xa · g1 = 6V , with V the volume of the tetrahe-
dron. The matrix F = J0J−T has gk , k = 1, 2, 3, as columns.

Note that

g1 × g2 = J0xc, g2 × g3 = J0xa, g3 × g1 = J0xb.

The mass matrix A on the reference element has elements

A j,k =
∫ 1

0
ξ1

∫ 1−ξ1

0
dξ2

∫ 1−ξ1−ξ2

0
dξ3 φ j (ξ )φk(ξ ),

for j, k = 0, 1, 2, 3. Mass lumping replaces this matrix by
a diagonal one with the row sums as the diagonal elements:
AL

j,k = δ j,k
∑3

k=0 A j,k .
The nine stiffness matrices Bm,n on the reference element are

Bm,n
j,k =

∫ 1

0
dξ1

∫ 1−ξ1

0
dξ2

∫ 1−ξ1−ξ2

0
dξ3

∂φ j

∂ξm

∂φk

∂ξn
.

They are symmetric: Bn,m = (Bm,n)T.
For the higher order mass-lumped finite elements, the coordinate

permutations listed in Appendix can simplify the implementation.
Then, the code only has to define two arrays with pre-computed
values on the reference element, for instance, B1,1 and B1,2, and the
other seven follow from permutations and symmetries.

The stiffness matrix B for the isotropic elastic system of equations
per element can be constructed from the above Bm,n. To obtain a
matrix, the displacement components are taken as fastest index and
the nodes as slowest. Then, the matrix elements are

J0 Bm+3 j,n+3k =
3∑

p,q=1

Fm,p Fn,q

(
λB p,q

j,k + μB p,q
k, j

)

+ μ δm,n

3∑
p,q,r=1

Fr,p Fr,q B p,q
k, j . (1)
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Here m and n run over the 3 components of the displacement,
whereas j and k run over the nodes of the element: m, n = 1, 2, 3 and
j, k = 0, 1, . . . , Np − 1. The number of nodes for the mass-lumped
elements is Np = 4 for degree 1, 23 for degree 2 and 50 for degree
3. The global stiffness matrix follows from the contributions of B
per element.

The upper triangular part of the sparse symmetric block matrix
is stored in Block Compressed Sparse Row format, with 3 × 3
full blocks. The block diagonal is treated separately, as the small
3 × 3 blocks are symmetric and only 6 values need to be stored
per element. Somewhat to our surprise, we found that our code,
using OpenMP, outperformed the Intel Math Kernel Library routine
mkl_cspblas_scsrsymv() that also uses OpenMP.

With local assembly, we can exploit the fact that the stiffness
matrices Bm,n on the reference element have a zero row sum and,
since they are symmetric, also a zero column sum. The zero row
sum implies that the application of a stiffness matrix to a constant
produces zero. We therefore define

vm
k = um

k − um
0 , (2)

for nodes k = 1, . . . , Np − 1 and components m = 1, 2, 3, subtracting
the values of the displacement components at the first vertex that
corresponds to k = 0. Note that any node of the element can be
selected here, with the first or last as a convenient choice.

Let r = Bu = Bv per element.
The zero column sum of the stiffness matrix implies

rm
0 = −

Np−1∑
k=1

rm
k , m = 1, 2, 3. (3)

This means that we can drop the first three rows and columns of the
local elastic stiffness matrix B, work with vm

k for k = 1, . . . , Np −
1 and m = 1, 2, 3, and reconstruct the first three entries of rm

k by
eq. (3). The result has to be multiplied by the pre-computed inverse
of the diagonal global mass matrix and can then be used to increment
the solution. Repeating this for all tetrahedra accomplishes the time
step, together with the source term and interpolation to obtain the
receiver traces at selected positions.

We can further simplify the evaluation of Bv.
Let Fλ = λ

J0
F, Fμ = μ

J0
F and define the symmetric 3 × 3 matrix

Cμ = μ

J0
FTF = FTFμ. Define a set of 9 vectors for p = 1, 2, 3 and

q = 1, 2, 3 with elements

σ
p,q;n
j =

Np−1∑
k=1

B p,q
j,k

(
un

k − un
0

) =
Np−1∑
k=1

B p,q
j,k vn

k ,

for components n = 1, 2, 3 and nodes j = 1, . . . , Np − 1, ignoring
node 0. Compute

α
p
j =

3∑
n,q=1

(
Fλ

n,qσ
p,q;n
j + Fμ

n,qσ
q,p;n
j

)
.

Then,

rm
j =

3∑
p=1

Fm,pα
p
j +

3∑
p,q=1

Cμ
p,qσ

q,p;m
j .

for nodes j = 1, . . . , Np − 1 and components m = 1, 2, 3. Finally,
use eq. (3) to obtain the values at node j = 0, multiply by the subset
of the global inverse matrix on the element and update the solution.
For degrees higher than one, the main computational effort consists
in the nine matrix-vector products between the matrices Bp,q of the
reference element and the vector v.

Table 1. Pseudo-code in Matlab style for the evaluation of the stiffness
matrix B per element for linear basis functions on a tetrahedron, with glamba
as gλ and gmu as gμ, defined in the text. Unknowns are taken as triples of
displacements on vertices 0 to 3.

glamba = (lambda/(6*J0))*g; gmu = (mu/(6*J0))*g;

B = zeros(12,12);

for k1=0:3:9,

for k2=0:3:k1,

s = 0;

for m2=1:3,

for m1=1:3,

h1 = gla(k1+m1)*g(k2+m2);

h2 = gmu(k1+m1)*g(k2+m2);

B(k1+m1,k2+m2) = h1+h2;

if(m1 == m2), s = s+h2; end

end

end

for m=1:3,

B(k1+m,k2+m) = B(k1+m,k2+m)+s;

end

if(k2 < k1),

for m2=1:3,

for m1=1:3,

B(k2+m2,k1+m1) = B(k1+m1,k2+m2);

end

end

end

end

end

The standard second-order time stepping scheme reads

un+1 = 2un − un−1 + (
t)2M−1(f − Kun),

with global stiffness matrix K and diagonal global mass matrix
M. The inverse of mass matrix can in principle be avoided by
considering the diagonal scaling

D = 
tM−1/2, ũ = D−1u, f̃ = Df,

and the symmetric matrix

K̃ = D K D,

leading to

ũn+1 = 2ũn − ũn−1 + f̃ − K̃ũn .

However, we have not used this approach for the numerical exper-
iments reported further on as it complicates reading off receiver
data. The required storage then consists in the solution at two time
instances, which requires three times the number of nodes, the in-
verse mass matrix multiplied by (
t)2, also with a size equal to the
number of nodes, and either the globally assembled sparse matrix
or, with local assembly, the average of λ and of μ per element.

2.2 Linear element

The above expressions hold for any degree. For the linear element,
we derive simpler expressions that will speed up the code.

Let g0 = −g1 − g2 − g3 and define a linear array gm+3k = gm
k ,

with nodes k = 0, 1, 2, 3 and components m = 1, 2, 3. Note that
gm

k = Fm,k for k = 1, 2, 3. Let gλ = λ/(6J0)g and gμ = μ/(6J0)g.
Table 1 lists pseudo-code in Matlab style for the evaluation of the
local stiffness matrix, B. When recoded in a language like C or
C++, this code is more efficient than that of Alberty et al. (2002),
which is geared towards use with Matlab.

 at D
elft U

niversity of T
echnology on Septem

ber 27, 2016
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Global assembly or not 417

For local assembly, let

sm =
3∑

k=1

Fm,kv
m
k , wm,m = 2

μ

6J0
sm,

and

wm,n = wn,m = μ

6J0

3∑
k=1

(
Fm,kv

n
k + Fn,kv

m
k

)
,

for m < n. Then, a simpler expression is

rm
k = Fm,k

(
wm,m + λ

6J0

3∑
n=1

sn

)
+

3∑
n=1
n �=m

Fn,kwm,n,

for nodes k = 1, 2, 3 and components m = 1, 2, 3. Eq. (3) provides
the values at node k = 0.

2.3 Acoustics

For the acoustic case, which we will briefly consider later on, it is
convenient to define symmetric matrices

C = J0J−1J−T = J −1
0 FTF,

and

B̃p,q = Bp,q + Bq,p = Bp,q + (Bp,q )T.

The contribution of an element to the stiffness matrix is

B
acou =

3∑
p=1

⎛
⎝C p,pBp,p +

3∑
q=p+1

C p,q B̃p,q

⎞
⎠ , (4)

where Bp,p and B̃p,q are symmetric matrices on the reference ele-
ment, containing pre-determined numerical values only, and C deals
with the geometry of the actual tetrahedron. For the linear element,
the simplified expressions presented by Zhebel et al. (2014) are more
efficient. For degrees 2 and 3 and with local assembly, the evalu-
ation of B

acou
u per element was implemented as six matrix-vector

multiplications, namely Bp,pu and B̃p,q u. The vector u contains the
pressure values on the nodes of the element. The matrices corre-
spond to those in eq. (4) and were hardcoded from numerical values
computed with Mathematica.

3 R E S U LT S

3.1 Linear element

As a test problem, we chose a homogeneous problem for
which the exact solution is readily available. The constant
material properties were a density ρ = 2 g cm−3, a P-
wave velocity vp = 2 km s−1 and an S-wave velocity vs =
1.2 km s−1. The domain had a size [−2, 2] × [−1, 1] × [0, 2] km3

and was divided into cubes with an edge length of 20 m. Each cube
was partitioned into 6 tetrahedra, leading to 12 000 000 tetrahedra
and 2 050 401 vertices. The cube has six possible tetrahedral de-
compositions. We used the periodic one, with matching diagonals
on opposite faces and one diagonal to the cube’s centre.

A vertical force source was placed at the centre of the domain. A
line of receivers was located at a depth of 800 m with y = 0 m and x
between −1925 and +1925 m, using a 50 m interval. The time steps
started at −0.3875 s to let the 3.5 Hz Ricker wavelet peak at zero

Table 2. Performance on linear elements with global assembly of the stiff-
ness matrix and with local assembly. For the latter, the wall-clock time with
24 threads is doubled in this particular example but less storage is needed.

Assembly Threads Assembly Stepping Total Storage

Global 24 7.9 s 9.2 s 17.0 s 3.0 GB
12 7.9 s 10.7 s 18.6 s
6 8.2 s 16.8 s 25.1 s

Local 24 30.0 s 30.0 s 2.1 GB
12 57.8 s 57.8 s
6 114 s 114 s

Figure 1. Ratios for compute time (drawn line) and storage (dashed) with
linear elements as a function of N1/3, where N is the number of nodes on the
mesh. The results for the globally assembled case were divided by those for
locally assembled stiffness matrices. The latter requires less storage, but is
slower. The obtained reduction in storage does not seem to justify the larger
compute times with linear elements.

time. The time step, 
t = 0.003125 s, corresponded to 0.77 per cent
of CFL-limit. Data were recorded up to 0.6 s at a 5 ms interval. We
used the natural (free-surface) boundary conditions all around for
simplicity.

Table 2 lists the timings and storage requirements using 24, 12
or 6 threads, all for the same mesh described earlier. Throughout
this paper, reported timings are the average of 5 runs. The table
shows that a smaller number of threads does not lead to a severe
performance drop with global assembly, because memory access is
the limiting factor. For local assembly on the fly, the performance
is limited by the available compute power, at least up to the avail-
able 24 cores. OpenMP directives handled the multi-threading. The
hardware consisted of a single board with two 12 core Intel Xeon
CPU E5-2680 v3 processors running at 2.50 GHz and had hyper-
threading disabled.

Fig. 1 shows the ratios between the runs with global assembly
and those with local assembly, in terms of the required compute
time and the maximum required storage, for a range of mesh sizes.
Global assembly requires about 40 per cent more storage, but the
gain in performance appears to amply justify that. Table 2 suggests
that we could have used less than 24 threads for local assembly, as
the computations are bound by memory access.

Note that the performance data should be taken as a rough indi-
cation, since the results strongly depend on code implementation,
optimization and compiler. We did not put a lot of effort in code
tuning for the specific compiler and hardware, but instead relied
on the basic formulation of the method and the optimization ca-
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418 W.A. Mulder and R. Shamasundar

Table 3. Ratio of compute time and memory with and with-
out global assembly for the acoustic case on 24 cores.

M Time Storage

1 0.38 1.2
2 1.0 11
3 1.9 26

pabilities of the Intel compiler and OpenMP. The use of templated
functions in terms of the number of nodes per element improved
the performance of our C++ code.

3.2 The acoustic wave equation

Before going to the higher-order elements for elastics, we briefly
review the acoustic case, which can serve as a point of reference for
the elastic problem. We consider the same test problem as before for
degrees M = 1, 2 and 3. Table 3 lists the ratios of the compute time
and of the required storage with and without global assembly, using
24 threads. The same tetrahedral mesh, derived from cubes with an
edge length of 20 m, was used for each degree. For the linear element
of degree 1, assembly of the global stiffness matrix reduces the re-
quired time significantly with only a 20 per cent increase of storage.
For degree 2, there is no performance gain and the required storage
is much larger. For degree 3, the scheme runs slower than with local
assembly on the fly and requires a lot more memory. For that reason,
Zhebel et al. (2011, 2014) only mentioned local assembly.

3.3 Higher orders

We now turn to the elastic case with discretizations of degrees 2
and 3, using the same homogeneous problem on meshes of different
size.

Fig. 2(a) plots the maximum observed error in the receiver data
for the vertical displacement component, scaled by the maximum
amplitude over all traces, as a function of the number of scalar
degrees of freedom or number of nodes. Fig. 2(b) depicts the same
errors as a function of the required compute time with 24 cores. The
actual number of degrees of freedom is 3N and equals the size of
the numerical displacement vector u. The element size scales with
N−1/3. The error is expected to behave as N−(M+1)/3 for degree M.
The numerical experiments more or less follow the expected trend.
The compute time only includes the wall-clock time for sparse
matrix assembly and time stepping, not the time spent on reading
and checking the mesh, setting up the nodes, the local-to-global
map, and locating source and receivers on the mesh. Because the
scheme for degree M = 1 was treated in a different way, it performs
quite well even with a large number of elements. If errors around
10 per cent are acceptable, it can be a viable alternative for the
scheme of degree 3.

Fig. 2(c) is similar to Fig. 2(b), but with the product of the ele-
ment stiffness matrix and element displacements evaluated on the
fly during each time step. To better illustrate the differences in per-
formance and memory usage, Fig. 3 plots the ratio in observed
compute time as well as required storage between global assembly
and local assembly for elements of degrees 1, 2 and 3. For degree 1,
repeated from Fig. 1, the differences are not that large. Global as-
sembly takes about 40 per cent more storage but runs more quickly.
For degree 2, local assembly is faster by a factor of about 1.3 on
24 cores. For degree 3, it is about 1.9 times as fast. The savings
in storage compared to global assembly are substantial. Therefore,
global assembly may only be attractive for degree 1.

Figure 2. Maximum error in the vertical displacement, scaled by the max-
imum amplitude, for elements of degree 1, 2 or 3, as a function of (a) N1/3,
where N is the number of degrees of scalar degrees of freedom, (b) compute
time with global assembly and (c) with local assembly. The extra set of three
short lines in (a) depicts the theoretical asymptotic error behaviour.
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Figure 3. Ratios between compute time (drawn lines) and required stor-
age (dashed lines) for global assembly and local assembly on the fly with
elements of degree 1, 2 or 3. Global assembly is faster for degree 1 at
40 per cent more storage. For degrees 2 and 3, local assembly is faster and
requires substantially less storage.

Table 4. Isotropic elastic properties: P- and S-wave veloci-
ties and densities are constant per layer.

vp (km s−1) vs (km s−1) ρ (g cm−3)

2.000 1.200 2.046
5.000 3.000 2.602
3.000 1.800 2.290
4.400 2.640 2.250
6.000 3.600 2.723
5.500 3.300 2.665

3.4 A more realistic example

We ran the code on the non-trivial model shown in fig. 10 of
Zhebel et al. (2014), which is slightly more realistic than a ho-
mogeneous problem. The material properties are constant per
layer and listed in Table 4 Fig. 4(a) displays a vertical cross
section of the P-wave velocity. The source, indicated by a red
star, is a vertical force at the surface, and has the signature
of a Ricker wavelet with an 8 Hz peak frequency. The vertical
displacement after 1 second in Fig. 4(b) shows strong Rayleigh
waves. The tetrahedral mesh has 1 528 595 vertices and 8 826 636
elements of degree 3. The time step was about 75 per cent of the
maximum value dictated by the CFL condition. Fig. 4(c) shows the
vertical displacement, measured at the surface along a line corre-
sponding to the earlier vertical cross section. The computation ran
up till a time of 2 s..

Fig. 5 plots the observed ratios between compute time and mem-
ory requirements with global and with local assembly on differ-
ent meshes using 24 cores. The behaviour is similar to that of
Fig. 3. Again, global assembly is only faster for the linear ele-
ments, whereas local assembly on the fly wins for degree 2 and 3.
For the latter, the performance gain now is about 2.5 and 3 times,
respectively.

4 C O N C LU S I O N S

We have compared the performance of mass-lumped tetrahedral fi-
nite elements on isotropic elastic wave propagation without and
with global assembly of the stiffness matrix. To preserve their

Figure 4. (a) P-wave velocities in km s−1. The red star denotes the source
positions and the yellow inverted triangles denote the receivers. (b) Vertical-
displacement wavefield after 1 s. (c) Seismogram with vertical displacement.
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Figure 5. Ratios between compute time (drawn lines) and required storage
(dashed lines) for global assembly and local assembly on the fly with ele-
ments of degree 1, 2 or 3. As in Fig. 3, global assembly is faster for degree 1
at 30–40 per cent more storage, whereas for degrees 2 and 3, local assembly
is faster and requires substantially less storage.

accuracy after mass lumping, the higher-order elements are aug-
mented with higher-degree polynomials in the interior of the faces
and the tetrahedron. For the lowest degree, the linear elements, this
is not necessary. For that case, we simplified the expression for the
stiffness matrix.

We ran performance tests on a homogeneous problem. The par-
allelization of the most compute intensive loops was performed by
OpenMP directives. With global assembly, this involved symmetric
sparse matrix assembly and the matrix-vector product during the
time stepping. With assembly on the fly, the local assembly and
local matrix-vector multiplication per element were parallelized in
a single OpenMP loop. Further code optimizations were left to the
compiler.

In the acoustic case, local assembly is more efficient than global
assembly, except for the lowest-order case with linear elements.
In the elastic case, the same appears to be true. For degree 1, the
code with global assembly ran faster and used about 40 per cent
more storage than with local assembly. For degree 2, the numerical
experiments with local assembly on the fly on 24 cores were about
1.4 times faster than with global assembly in one experiment and
about two times in another. For degree 3, the gain was a factor 1.9 in
one and 3 in the other. At the same time, the memory requirements
were smaller by at least on order of magnitude for degrees 2 and 3.

We observed in a simple test problem that, for high accuracy,
augmented cubic elements performed best in terms of compute
time for a given accuracy. For low accuracy, the linear element may
still be attractive. In that case, its efficiency compensates the need
for a much finer mesh.
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Bécache, E., Joly, P. & Tsogka, C., 2002. A new family of mixed finite
elements for the linear elastodynamic problem, SIAM J. Numer. Anal.,
39(6), 2109–2132.

Brossier, R., Virieux, J. & Operto, S., 2008. Parsimonious finite-volume
frequency-domain method for 2-D P-SV-wave modelling, Geophys. J.
Int., 175(2), 541–559.

Chin-Joe-Kong, M.J.S., Mulder, W.A. & van Veldhuizen, M., 1999. Higher-
order triangular and tetrahedral finite elements with mass lumping for
solving the wave equation, J. Eng. Math., 35(4), 405–426.

Cockburn, B., Gopalakrishnan, J. & Lazarov, R., 2009. Unified hybridization
of discontinuous Galerkin, mixed, and continuous Galerkin methods for
second order elliptic problems, SIAM J. Numer. Anal., 47(2), 1319–1365.

Cohen, G. & Fauqueux, S., 2005. Mixed spectral finite elements for the
linear elasticity system in unbounded domains, SIAM J. Sci. Comput.,
26(3), 864–884.

Cohen, G., Joly, P. & Tordjman, N., 1995. Higher order triangular finite
elements with mass lumping for the wave equation, in Proceedings of the
Third International Conference on Mathematical and Numerical Aspects
of Wave Propagation, pp. 270–279, SIAM, Philadelphia.

Cohen, G., Joly, P., Roberts, J.E. & Tordjman, N., 2001. Higher order trian-
gular finite elements with mass lumping for the wave equation, SIAM J.
Numer. Anal., 38(6), 2047–2078.
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Dumbser, M., Käser, M. & de la Puente, J., 2007. Arbitrary high-order finite
volume schemes for seismic wave propagation on unstructured meshes in
2D and 3D, Geophys. J. Int., 171(2), 665–694.

Etienne, V., Chaljub, J., Virieux, J. & Glinsky, N., 2010. An hp-adaptive
discontinuous Galerkin finite elements method for 3-D elastic wave mod-
elling, Geophys. J. Int., 183(2), 941–962.

Fried, I. & Malkus, D.S., 1975. Finite element mass matrix lumping by
numerical integration with no convergence rate loss, Int. J. Solids Struct.,
11, 461–466.

Giorgiani, G., Fernández-Méndezand, S. & Huerta, A., 2013. Hybridizable
discontinuous Galerkin p-adaptivity for wave propagation problems, Int.
J. Numer. Methods Fluids, 72(12), 1244–1262.
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A P P E N D I X : P E R M U TAT I O N S

Given the symmetries of the node positions, we can define various
permutation arrays and their corresponding matrices. Let the Np

nodes of the element be xk , k = 0, . . . , Np − 1. The permutation
array p2,1 swaps their x and y coordinates with xp2,1(k) as result.
Likewise, p3,1 swaps x and z and p3,2 interchanges y and z.

To these arrays correspond matrices Pm,n with elements
Pm,n

k,pm,n
k

= 1 and zero otherwise. The inverse and transpose of the

permutation matrix equal the matrix itself:

(Pm,n)−1 = (Pm,n)T = Pm,n .

With these matrices, the stiffness matrices obey

B2,2 = P2,1B1,1P2,1, B3,3 = P3,1B1,1P3,1,

B1,3 = P3,2B1,2P3,2, B3,2 = P3,1B1,2P3,1.

Because (Bm1,m2 )T = Bm2,m1 , we have

B3,1 = P3,2B2,1P3,2, B2,3 = P3,1B2,1P3,1.

Also,

B1,2 = P2,1B2,1P2,1, B2,1 = P2,1B1,2P2,1,

B1,3 = P3,1B3,1P3,1, B3,1 = P3,1B1,3P3,1,

B3,2 = P3,2B2,3P3,2, B2,3 = P3,2B3,2P3,2.

In summary: with two matrices B1,1 and B1,2, computed on
the reference element, and three permutation vectors, p2,1,
p3,1, and p3,2, all nine element stiffness matrices Bp,q can be
determined.
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