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Abstract— Human joint impedance is a fundamental property 

of the neuromuscular system and describes the mechanical 

behavior of a joint. The identification of the lower limbs’ joints 

impedance during locomotion is a key element to improve the 

design and control of active prostheses, orthoses, and 

exoskeletons. Joint impedance changes during locomotion and 

can be described by a linear time-varying (LTV) model. Several 

system identification techniques have been developed to retrieve 

LTV joint impedance, but these methods often require joint 

impedance to be consistent over multiple gait cycles. Given the 

inherent variability of neuromuscular control actions, this 

requirement is not realistic for the identification of human data. 

Here we propose the kernel-based regression (KBR) method 

with a locally periodic kernel for the identification of LTV ankle 

joint impedance. The proposed method considers joint 

impedance to be periodic yet allows for variability over the gait 

cycles. The method is evaluated on a simulation of joint 

impedance during locomotion. The simulation lasts for 10 gait 

cycles of 1.4 s each and has an output SNR of 15 dB. Two 

conditions were simulated: one in which the profile of joint 

impedance is periodic, and one in which the amplitude and the 

shape of the profile slightly vary over the periods. A Monte Carlo 

analysis is performed and, for both conditions, the proposed 

method can reconstruct the noiseless simulation output signal 

and the profiles of the time-varying joint impedance parameters 

with high accuracy (mean VAF ~ 99.9% and mean normalized 

RMSE of the parameters 1.33-4.06%). 

The proposed KBR method with a locally periodic kernel allows 

for the identification of periodic time-varying joint impedance 

with cycle-to-cycle variability. 

I. INTRODUCTION 

To improve the design and control of active prostheses, 

orthoses, and exoskeletons, the need for a model of the lower 

limbs’ mechanical properties during locomotion is advocated 

in the literature [1,2,3]. Having an accurate model of lower 

limbs’ joint impedance during locomotion is a key element to 

render the assistive devices more natural and versatile.  

Commonly, human joint impedance is used to provide an 

intuitive description of the mechanical behavior of a joint. 

Joint impedance is a fundamental property of the 

neuromuscular system [1] and is defined as the dynamic 

relationship between the angular deviation of a human joint 

and the resulting torque acting about it [4]. In other words, 

joint impedance describes how much a joint resists angular 

perturbations. During movements, the human joint impedance 
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varies depending on factors such as the joint angle and the 

muscular activation level. Therefore, under a modeling 

perspective, joint impedance during locomotion can be 

described by a linear time-varying (LTV) system.  

Accurate LTV modeling of the human joint impedance 

during locomotion remains a challenge, partially due to the 

inherent variability and complexity of the neuromuscular 

control actions. A first attempt of identification during 

locomotion was performed by [1], where ankle impedance 

was identified from the pre-swing phase to the early-loading 

response using an LTV ensemble technique and from the late-

loading response to terminal stance using multiple LTI 

estimations. The devices used were, respectively, an orthotic 

device capable of applying small-amplitude perturbations to 

the joint, and a platform which applies ramp perturbations at 

specific phases of the gait cycle. In these approaches, joint 

impedance was described with an inertia-spring-damper 

model. The results provide a valuable indication of how joint 

damping and stiffness of the ankle vary during the gait cycle. 

In addition, several studies have been carried out in which 

joint impedance identification was tested in simulation or in 

simplified experimental conditions where the joint of interest 

was perturbed while the subjects maintained a stationary 

position. A valuable example is given in [5], where a complex 

hybrid LTV estimation technique was developed to identify 

the intrinsic and reflexive properties of the ankle impedance, 

giving a full picture of the neuromuscular processes affecting 

the mechanical properties of the joint. The method is currently 

applied for human joint impedance identification during 

experimental conditions where the periodicity of the human 

behavior is assumed to repeatable. However, given the 

inherent variability of neuromuscular control actions, during 

periodic actions such as locomotion, the periodicity of the 

joint impedance over the gait cycle is subject to variations. 

In this article, an LTV method is proposed which exploits 

the periodicity of the joint impedance yet does not require an 

exact repeatability of the joint impedance over periods.  

The joint impedance is represented by an inertia-spring-

damper model, where the inertia, damping, and stiffness are 

retrieved using a Bayesian probabilistic approach, named the 

kernel-based regression (KBR) method.  

The KBR method has been previously applied to the 

identification of joint impedance in [6]. In the current study,  
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Figure 1.  First column: Profile used in the simulation of the damping 

(first row) and stiffness (second row) in function of the percentage of the 

gait cycle. Second column: Example of a profile of the damping (first 

row) and stiffness (second row) used in the simulation for the locally 

periodic condition. The profiles are in function of time. 

 

the method is modified to be applicable to ankle joint 

impedance identification during (quasi)periodic data, like 

locomotion. Under a Bayesian probabilistic perspective, we 

express that the damping and the stiffness parameters are 

likely to be approximately periodic. The KBR method, briefly 

described in Section II.B, is applied to the identification of a 

simulation model representative of ankle impedance during 

locomotion.  

II. METHOD 

A. Simulation 

A simulation is performed in which the dynamics of the 

ankle joint are represented by a second-order inertia-spring-

damper model. The equation used to represent the system is 

given by:  

𝜏(𝑡) = 𝐼
𝑑2(𝜙(𝑡))

𝑑𝑡2 + 𝐵(𝑡)
𝑑(𝜙(𝑡))

𝑑𝑡
+ 𝐾(𝑡)𝜙(𝑡) + 𝑛(𝑡) () 

Where 𝜏(𝑡) is the simulated output torque, 𝜙(𝑡) is the input 

angular position, 𝑛(𝑡) is the additive zero-mean Gaussian 

noise, 𝐼 is the inertia, 𝐵(𝑡) and 𝐾(𝑡) are the time-varying 

damping and stiffness. The profiles for the damping and 

stiffness during one gait cycle, shown in the first column of 

Fig.1, are representative of the values during locomotion and 

are based on [1,7]. The simulated inertia, representing the 

time-invariant inertia of the foot, is set to 0.02 Nms2/rad.  

The model is simulated for 14 s and is composed of the 

repetition of 10 gait cycles of 1.4 s each. The length of the gait 

cycle is chosen to represent slow-walking [8]. The input of 

the system is a random phase multisine, with root-mean-

square amplitude 0.03 rad and a period of length 0.35 s. This 

corresponds to 4 repeated periods of the multisine for each 

gait cycle. The maximum excitation frequency is ~17 Hz. 

Zero-mean Gaussian noise is added to the torque, resulting in 

a signal-to-noise ratio of around 15 dB. The sampling 

frequency is 2000 Hz. Two conditions for the damping and 

stiffness are chosen:  

 

Figure 2.  Input angular position and simulated output torque signals after 

preprocessing for one realization obtained using the locally periodic 
condition. The first row represents the signals in the frequency domain and 

the second row the signals in the time domain.   

 

i) Periodic condition (PC): The damping and the 

stiffness are periodic and the profile for one gait 

cycle is repeated at every gait cycle. This condition 

provides a framework to test the accuracy of the 

estimation method.  

ii) Locally periodic condition (LPC), Fig. 1: A cycle-to-

cycle variability of the damping and stiffness 

profiles is introduced. The shape of the profiles is 

roughly the same for every gait cycle, although there 

is variability in the vertical and horizontal position 

of the peak values. The variability is random for 

every gait cycle and each peak can have a maximum 

deviation of 4% from the nominal value. This 

condition is more realistic for human experiments, 

where variability is expected, and it provides a 

framework to check the robustness of the 

identification method. 

For both the periodic and the locally periodic conditions, 

100 input/output realizations are obtained in simulation, 

creating a dataset for Monte Carlo analysis. The data is then 

preprocessed: the first 4.2 s are removed from the input/output 

to avoid the transient effects, the data is resampled to 200 Hz 

and converted to the frequency domain. Only the bins in the 

frequency band between 0 and 25 Hz are used for the 

identification. An example of the data after preprocessing is 

given in Fig. 2.  

B. Identification method 

A second-order differential equation is used to model the 

system (1). The model parameters are the damping and 

stiffness, represented by smooth functions of time, and the 

constant (i.e. time-invariant)  inertia. The model parameters 

are retrieved using the KBR method. The approach is 

intuitively explained below, following the interpretation 

given in [9], while an extensive and analytical description can 

be found in [10].  
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Figure 3.  Kernel matrices used for the periodic (left) and locally periodic 

(right) condition, representing the covariance between the time-varying 
parameter at time τ1 and at time τ2. The matrices are composed of an array of 

scalars ranging from 0 (dark blue) to 1 (yellow). 

 

In traditional LTV regression methods the model 

parameters are described by a fixed set of basis functions, 

whilst in KBR the model parameters are described by a family 

of functions associated with the same covariance matrix. The 

covariance matrix, named the kernel matrix, depends on a set 

of hyperparameters that strongly affect the properties of the 

model parameters. Different kernels with different 

hyperparameters can be constructed depending on the 

expected time-varying behavior of the underlying system. 

Typical hyperparameters are smoothness and output variance. 

In this study, the periodicity is an additional hyperparameter 

since we analyze a (quasi)periodic time-varying systems. A 

locally periodic kernel is used, and the related kernel matrix 

is represented in Fig. 3 for the periodic (left column) and 

locally periodic (right column) conditions. The 

hyperparameters used for the periodic and locally periodic 

conditions can be extracted from the kernel matrix in Fig. 3 

as follows: 

 Periodicity length. The length of the periodicity 

corresponds to the distance between the yellow antidiagonal 

lines. For both conditions, the periodicity length is set to 1.4 s, 

which is the length of the gait cycle.  

 Periodicity consistency: The consistency of the periodicity 

is inversely proportional to the speed at which the covariance 

decreases over time. In the periodic condition, the periodicity 

is consistent, therefore the covariance is very close to 1 at 

periodic intervals, resulting in multiple yellow lines. In the 

locally periodic condition, the periodicity is more variable, 

resulting in a decay of the covariance over periods.  

 Smoothness of the time variation: The width of the main 

antidiagonal line is inversely proportional to the smoothness 

of the time variation. The parameter is roughly the same for 

the periodic and locally periodic conditions.    

 Output variance: The output variance, which is not directly 

observable from Fig. 3, is selected according to the SNR of 

the output after resampling.   

C. Performance indicators 

For each realization, the estimates of the inertia, damping, 

and stiffness parameters are computed using the KBR 

approach. The accuracy of the estimated parameters is 

expressed in terms of the average normalized root-mean-

square error (𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ) between the estimated and the 

simulated parameters. The formula is expressed in (2), where 

𝑃 = 𝐵, 𝐾 and the denominator serves as a normalization 

factor:  

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ =  √
(∑ ∑ (𝑃k(𝑡𝑖)−�̂�𝑘(𝑡𝑖))

2𝑁
𝑖=1

𝑁𝑚𝑐
𝑘=1

)

∑ ∑ (𝑃k(𝑡𝑖))
2𝑁

𝑖=1
𝑁𝑚𝑐
𝑘=1

∙ 100%       () 

Where 𝑁𝑚𝑐 is the number of Monte Carlo realizations, 𝑁 

the number of data points in each realization, 𝑃k(𝑡𝑖)  and 

�̂�𝑘(𝑡𝑖) represent, respectively, the simulated and the estimated 

values of the damping and stiffness at time 𝑡𝑖, for the Monte 

Carlo realization 𝑘. The average normalized root-mean-

square standard deviation (𝑆𝐷̅̅ ̅̅ ) and bias (𝐵𝑖𝑎𝑠̅̅ ̅̅ ̅̅ ) are computed 

as well in the same fashion and are such that 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ 2 = 𝑆𝐷̅̅ ̅̅ 2 +
𝐵𝑖𝑎𝑠̅̅ ̅̅ ̅̅ 2. Moreover, the variance-accounted-for (VAFk) 

between the simulated noiseless torque and the estimated 

torque is computed as: 

𝑉𝐴𝐹𝑘 = (1 −
𝑣𝑎𝑟(𝜏𝑘(𝑡)−�̂�𝑘(𝑡))

𝑣𝑎𝑟(𝜏𝑘(𝑡))
) ∙ 100%                      () 

Where 𝜏𝑘 and �̂�𝑘 are the simulated and estimated torque 

for the realization k, and 𝑣𝑎𝑟 the variance operation.  The 

average over the Monte Carlo realizations is computed, 

giving the 𝑉𝐴𝐹̅̅ ̅̅ ̅̅ .  

III. RESULTS 

TABLE I.  MONTE CARLO ACCURACY FOR THE PERIODIC AND 

LOCALLY PERIODIC CONDITIONS. 

Monte 

Carlo 

Accuracy 

Damping Stiffness Torque 

𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅
[%] 

𝑺𝑫  ̅̅ ̅̅  
[%] 

𝑩𝒊𝒂𝒔̅̅ ̅̅ ̅
[%] 

𝑹𝑴𝑺𝑬̅̅ ̅̅ ̅̅ ̅
[%] 

𝑺𝑫 ̅̅̅̅  
[%] 

𝑩𝒊𝒂𝒔̅̅ ̅̅ ̅
[%] 

𝑽𝑨𝑭 ̅̅ ̅̅ ̅ 
[%] 

PC 1.33 0.69 1.15 2.53 1.86 1.61 99.98 

LPC 2.36 1.42 1.90 4.15 3.13 2.74 99.96 

 

The simulated damping and stiffness profiles and their 

estimates for the periodic condition are plotted in the first 

column of Fig. 4. The dotted black line represents the 

simulated value of the profiles, the orange line the mean of 

the estimates over the Monte Carlo realizations and the green 

area the standard deviation. The accuracy of the estimation is 

shown in Table I. The estimates track the simulated profiles 

with small errors (𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  of 1.33% for the damping and 

2.53% for the stiffness)  and the mean of the estimate is close 

to the simulated value, with a 𝐵𝑖𝑎𝑠̅̅ ̅̅ ̅̅  of 1.15% for the damping 

and 1.61% for the stiffness. The consistency of the estimator 

is high, and the standard deviation area is barely visible. The 

corresponding 𝑆𝐷̅̅ ̅̅   is 0.69% for the damping and 1.61% for 

the stiffness. In the first row of Fig. 5, the simulated noiseless 

torque from a single realization is plotted versus the estimated 

torque. The fit between the two signals is very close. The 𝑉𝐴𝐹̅̅ ̅̅ ̅̅  

is 99.98%.  

The second column of Fig. 4 represents the damping and 

stiffness estimate for the locally periodic condition. Since, in 

this case, the simulated profiles changed at every realization, 

the plot is given for a single realization. The estimates closely 

track the simulated value, with some small deviation,  
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Figure 4.  Simulated (dotted line) and estimated (continuous line) damping 
(first row) and stiffness (second row). For the periodic condition (first 

column), the estimate is shown for 100 realizations, and the mean (orange) 

and the mean ± standard deviation (green area) are represented. For the 
locally periodic condition, the estimate is shown for one realization (blue 

line). 

 

especially in the low amplitude areas. The 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  of the 

damping and the stiffness,  of respectively 2.36% and 4.15%, 

are higher than for the periodic condition. The 𝑆𝐷̅̅ ̅̅  are higher 

as well  (1,.42% and 3.13%), while the 𝑉𝐴𝐹̅̅ ̅̅ ̅̅  is comparable. 

The estimate of the inertia is not shown since it is equal to the 

simulated value for all the realizations. 

IV. DISCUSSION 

Even though in the KBR a fairly open structure for the time 

variation is used, the method could reconstruct the time-

varying damping and stiffness profiles with high accuracy in 

both of the tested conditions. This can be confirmed in Fig. 4, 

where a close tracking of the simulated profiles can be 

observed.  

As expected, the 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  for the locally periodic condition 

is higher than for the periodic one. A cause for this increased 

error is the presence of oscillations of the estimate around the 

simulated value, especially evident for the stiffness profile in 

the areas of low amplitude. The oscillations explain the 

increased  𝑆𝐷̅̅ ̅̅ . There is a bias of the estimate, which affects 

the accuracy as well. It can be concluded that the estimate of 

the profiles tracks the simulated value, although there is some 

small error, mainly because the estimate is less smooth than 

the simulated value. The small errors in the parameters had 

little effects on the estimation of the system output and the 

estimator is robust with respect to the variability of the 

periodic profiles.  

In the current simulation, the inertia is time-invariant, and 

the length of the gait cycle is constant over periods.  However, 

the presented KBR method can deal as well with time-varying 

inertia and a variable period length. Given the realistic 

simulation conditions, with low SNR, short measurement 

time and human-like time-varying damping and stiffness 

profiles, the presented method has good potentials to be 

applied to actual measurements from humans.  

A limitation of the presented study is that it does not 

consider the reflexive properties of the joint impedance. 

 

Figure 5. Estimated torque (orange) and simulated noiseless torque 
(dotted black line) for the periodic condition (first row) and the locally 

periodic condition (second row) on a single realization. 

V. CONCLUSIONS 

The study presents a proof of concept of the applicability 

of the KBR method with a locally periodic kernel to the 

identification of human-like intrinsic ankle impedance with 

cycle-to-cycle variability. The method shows promising 

results and additional work is being done to apply the method 

to real human experimental data, where the actual torque and 

angle profiles of the ankle joint during locomotion are 

reproduced.  
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