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A practical method for determining wavefront aberrations in optical systems based on the acquisition of an
extended, unknown object is presented. The approach utilizes a conventional phase diversity approach in com-
bination with a pupil-engineered, helical point spread function (PSF) to discriminate the aberrated PSF from
the object features. The analysis of the image’s power cepstrum enables an efficient retrieval of the aberration
coefficients by solving a simple linear system of equations. An extensive Monte Carlo simulation is performed to
demonstrate that the approach makes it possible to measure low-order Zernike modes including defocus, primary
astigmatism, coma, and trefoil. The presented approach is tested experimentally by retrieving the two-dimensional
aberration distribution of a test setup by imaging an extended, unknown scene. © 2020 Optical Society of America

https://doi.org/10.1364/AO.396140

1. INTRODUCTION

Optical aberrations limit the performance of imaging and illu-
mination systems in terms of resolution and signal-to-noise ratio
(SNR). Even well-optimized and toleranced optical designs may
still be subject to severe aberrations when put into practice.
Depending on the particular application scenario, this is due
to external effects such as mechanically or thermally induced
deformations, atmospheric turbulence or residual misalignment
(i.e., for segmented mirrors), and manufacturing tolerances.
These effects can be mitigated by means of adaptive optics
or dedicated image post processing, which generally require
detailed knowledge of the aberrations and ultimately the wave-
front. The most common concepts for measuring the wavefront
utilize interferometers or Shack–Hartman sensors. An alterna-
tive approach with a lower hardware complexity relies on the
direct analysis of the effect of the aberrations on the point spread
function (PSF) of the system. Existing methods are based mainly
on iterative Fourier transform or maximum-likelihood estima-
tion (MLE) methods that determine the wavefront phase from
a single PSF image or a through-focus PSF stack [1–4]. The
estimation can be performed with high numerical efficiency
in the approximation of small aberrations and low-NA optical
systems using a linear system approach [5–8]. Machine learning
offers alternative approaches that have gained increased interest
in recent years. Using proper training sets and artificial neural
networks, it has been shown that aberrations can be retrieved
from image intensity measurements [9–13]. Yet, most of the
proposed intensity based methods are applicable only to point
sources [3–12], and only a few consider simplified objects such

as a sphere or single letters [13]. Moreover, they provide the
aberration information for only a single dedicated field point.

Such distinct objects, however, are not always available in
applications such as surveillance, microscopy, or Earth obser-
vation. Also, the respective optical systems feature an extended
field of view with field dependent aberrations. In order to esti-
mate the (field dependent) aberrations for an unknown scene,
the object features need to be separated from the PSF, which
provides the information on the aberration. One widely studied
method to accomplish this is phase diversity (PD) [14,15],
which is based on a MLE [14–17], image contrast optimiza-
tion [18], or other metrics [19,20]. It has been applied for the
co-phasing of segmented mirrors [19,21] or high-resolution
coronagraphic imaging [22]. In general, the PD methods that
consider an extended object scene necessitate numerically
expensive, iterative optimization procedures that prohibit
real-time (snapshot) measurements. Moreover, they require a
priori assumptions on the object spectrum, as well as a careful
choice of optimization parameters and regularization mea-
sures [17], which significantly influence their performance. A
modified PD method is based on the analysis of the change in
image intensity distribution introduced by an adaptive optical
component [23,24]. The approach requires little a priori knowl-
edge of the object but necessitates specialized adaptive-optical
hardware and multiple, iterative image acquisition steps. A
linear aberration retrieval model that eliminates the need for
an iterative optimization in the case of an extended object has
been proposed by Mocoeur et al. [25]. However, the applicabil-
ity of this method in practice is not demonstrated, since the
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authors neither provide a general numerical demonstration
of the method for multiple sets of objects and aberrations, nor
perform an experimental proof of concept. A recently proposed,
non-iterative aberration retrieval method for extended scenes
utilizes a combination of PD and deep learning [26]. Yet, the
approach can be applied only if image noise is negligible, as
otherwise the incorporated image processing routine becomes
numerically unstable. Additionally, the approach has been
demonstrated experimentally for simplified extended objects,
i.e., single numbers, only.

In this paper, we introduce a novel approach that extends
the conventional PD concept using helical PSFs, which are
used for three-dimensional localization and imaging [27–29].
These PSFs typically consist of a number of well-identifiable
sub-peaks that rotate around the focal point as a function of
defocus. In Ref. [30], it is shown that aberrations distort the PSF
sub-peak positions and ultimately influence their rotation angle.
Therefore, they deteriorate the depth measurement accuracy
of such pupil engineered (PE) systems. In contrast to previous
work, this dependency is actually exploited in the approach pre-
sented here in order to retrieve information on the aberrations
that are present.

At first, the general concept of PEPD using helical PSFs is
introduced. A linear model is derived, which enables the direct
retrieval of aberrations without the need for iterative optimiza-
tion or blind deconvolution. Then, a numerical assessment is
conducted for an exemplary PEPD system, which quantifies the
performance of the proposed method considering low-order
aberrations for unknown, natural objects. In particular, we ana-
lyze theoretical precision limits provided by the Cramér–Rao
lower bound (CRLB) as well as the aberration retrieval success
rate (SR), which represents a suitable figure of merit for practical
imaging applications. Finally, an experimental proof of concept
is demonstrated by measuring low-order aberration coefficients
for a misaligned optical system considering a point source as well
as an extended object.

2. PUPIL ENGINEERED PHASE DIVERSITY

The general PD concept for measuring an aberrated wavefront
is based on capturing a number of M images of the same object
distribution o(x). Each of these images im(x) is obtained by
introducing a known phase distribution φd ,m(u), referred to
as PD. Here, x and u denote the image plane and pupil plane
coordinates, respectively. The imaging process for each con-
figuration m, referred to as channels, can be described by the
following convolution:

im(x)= Kmonorm(x) ∗ hm(x)︸ ︷︷ ︸
ĩm (x)

+νm(x), (1)

where onorm(x) is the normalized object distribution, and
ĩm(x) is the signal of the mth channel in the absence of noise.
The number of photons per channel is denoted by Km , the
image noise is described by νm(x), and hm(x) is the PSF. The
latter is obtained by taking the absolute square of the Fourier
transformation of the pupil function g m(u) according to

hm(x)= |F[g m(u)]|
2

=
∣∣F[A(u) exp [i(φm(u)]]

∣∣2, (2)

i.e., we assume incoherent imaging conditions. The ampli-
tude function A(u) corresponds to a circular transmission
window and is assumed to be equal for all channels. The pupil
phase φm(u) of each channel is a result of the superposition
of the wavefront aberration φa and the introduced diversity
φd ,m . In accordance with the conventional PD approach,
both contributions are decomposed into Zernike modes Zn

according to

φm(u)= φa (u)+ φd ,m(u)

=

∑
n

(αn +1n,m)Zn(u), (3)

where n labels the different contributing Zernike modes. The
aberration retrieval using the conventional PD method then
corresponds to retrieving the coefficients αn , which are equal
for all channels m, by introducing known diversity coefficients
1n,m . The first three Zernike modes (piston, tip, and tilt) are
excluded, as they cannot be accessed directly using PD, which
is a common limitation of the technique. In order to retrieve
higher-order coefficients, multiple estimation approaches
based on MLE [14,16], image contrast optimization [18], or
alternative metrics [19,20] have been introduced and applied.
All of these require iterative optimization procedures that
prohibit fast, real-time measurements (e.g., in a closed-loop)
for high-resolution images with a sampling on the order of
megapixels.

We propose the use of pupil engineering to overcome these
restrictions of conventional PD. To this end, an additional phase
term φPE(u) is added to Eq. (3), and the pupil phase φm(u) of
the mth channel is then given by

φm(u)=
∑

n

(αn +1n,m)Zn,m(u)+ φPE(u). (4)

The PE term φPE(u) is assumed to be equal for all channels. It
can thus be realized using a single phase element, which sim-
plifies the practical implementation and eliminates systematic
errors due to different tolerances of the elements. The most
common diversity implementation, which is also assumed for
the PEPD method proposed here, incorporates a known defocus
aberration 14 between M = 2 different imaging configura-
tions. The choice of this configuration is motivated primarily
by practical considerations, as this can be realized relatively
easily by a sequential shift of the image distance or by using a
beam splitting configuration, which allows for capturing the
two images at the same time. The PEPD configuration is shown
schematically in the top part of Fig. 1.

Here, the goal of the additional phase termφPE in Eq. (4) is to
eliminate the need for iterative retrieval methods by generating
a PSF that makes a decoupling of object and aberration (PSF)
information possible. This can be achieved using phase elements
[i.e., computer generated holograms (CGHs)], which lead to
helical PSFs that rotate through defocus, because of two unique
characteristics of such a PSF. First, helical PSFs provide a dis-
tinct shape distortion in the presence of low-order aberrations
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Fig. 1. Top: schematic setup overview of the proposed PEPD approach for aberration retrieval. Bottom: PSF dependency on the defocus diversities
14 for different pupil functions that generate (a) nominal PSF, and (b) double- and (c) triple-helix PSFs.

that can be retrieved even in the case of an extended object. In
conventional PD, the required image diversity is introduced by
an aberration dependent blurring of the PSF, which depends
on the defocus coefficient 14,m . In general, the complex rela-
tionship between this blur and the aberrated pupil phase φm(u)
necessitates the use of iterative blind deconvolution methods
for an extended, unknown object distribution. In contrast,
helical PSFs exhibit distinct shifts of the PSF peaks as described
in Ref. [30] depending on the particular aberration coefficient
αn and the defocus diversity 14,m . These shifts are encoded in
the acquired images im(x) of the extended object and can be
retrieved using the cepstrum approach presented in Ref. [31].
The second unique characteristic of helical PSFs is illustrated
in the bottom part of Fig. 1 for two particular examples of
double- and triple-helix PSFs. The PSFs provide an inherent
peak rotation for different amounts of defocus diversities 14,m

while preserving the confined shape of the individual peaks.
This feature can be utilized to diversify the PSF response to indi-
vidual aberration coefficients αn and to eliminate ambiguities
by acquiring two images with different diversities 14,m . All
things considered, these two properties enable a unique retrieval
of aberration coefficients αn by measuring peak shifts for two
defocus diversities. The idea of using helical PSFs for aberration
retrieval based on a through-focus measurement has been pre-
viously applied in Ref. [32]. The practicality of that approach
is limited since it requires the acquisition of three subsequent
image stacks (M > 30) and it is applicable only to point objects.

3. LINEAR ABERRATION RETRIEVAL MODEL

The aberration retrieval is based on exploiting the effect of
different aberrations on the PSF shape. Aberrations generally
lead to a spreading of a conventional PSF. It turns out, however,
that low-order aberrations lead to a shift of the individual peaks
in the case of a helical PSF [30]. In particular, defocus, astig-
matism, and spherical aberration lead to an overall rotation of a
double-helix PSF. In contrast to previous work, which analyzed
only the aberration effect on the overall PSF rotation angle,
the individual location (x PSF

j , y PSF
j ) of each PSF peak is now

considered.
In the PEPD approach described in the previous section,

the PSF hm(x ) is not directly accessible from the measured
image irradiance im(x ) when an unknown, extended object is
considered. However, the approach described in Ref. [31] can
be utilized to obtain the helical PSF peak locations (x PSF

j , y PSF
j ).

It is based on retrieving the location (x c
j , y c

j ) of peaks in the
power cepstrum distribution of the acquired, PE image. These
peaks can be associated with the helical PSF peak positions,
if the object contains small spatial features with a size that is
comparable to or smaller than the helical PSF (projected in
object space) as elaborated in Ref. [31]. Under this condition,
the aberration retrieval method proposed here is based on ana-
lyzing the change of the power cepstrum’s peak positions due to
aberrations. In general, a larger number J of PSF peaks results
in a larger number of degrees of freedom. Yet, the larger the peak
number J , the more complex the cepstrum analysis, which
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contains J (J − 1)/2 peaks to be identified. Further, a larger
value for J results in a smaller maximum range of aberration
coefficients that can be retrieved without ambiguities. Only
triple-helix PSFs are therefore considered here, which provide a
practical compromise between the maximization of the number
of degrees of freedom and robust cepstrum peak identification.

In the following, the influence of the first eight Zernike
aberrations (excluding piston, tip, and tilt) on the cepstrum
peak positions (x c

j , y c
j ) with j = [1, 2, 3] is assessed. These

aberrations are defocus (Z4), primary astigmatism (Z5, Z6),
coma (Z7, Z8), trefoil (Z9, Z10), and spherical aberration
(Z11). The cepstrum distribution of the aberrated PSF is cal-
culated for each individual aberration coefficient in a range of

Fig. 2. Dependency of cepstrum peak location shift (δx c
j , δy c

j ) on the coefficients αn of low-order Zernike aberrations (N ≤ 8), excluding piston,
tip, and tilt.
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αn = [−0.16, 0.16]waves rms. The peak positions are extracted
by processing the cepstrum distribution and performing a
Gaussian peak fit as described in Ref. [31]. The dependencies
of the position changes (δx c

j , δy c
j ) are exemplarily plotted in

Fig. 2 for an in-focus diversity channel (14 = 0 waves). The
same set of parameters describing the optical system will be used
throughout the theoretical and numerical investigations in this
paper.

It can be seen that the aberration coefficientsαn lead to a close
to linear change of the PSF parameters for the coefficient range
of approximatelyαn = [−0.1, 0.1]. Hence, the PEPD approach
is described by a linear system model, and the effect of an aberra-
tion vector α on the PSF peak locations (xc , yc )m of a particular
channel m is approximated by a linear transfer matrix T̂m accord-
ing to (

xc (α)

yc (α)

)
m
=

(
xc

yc

)
m,0
+

(
δxc (α)

δyc (α)

)
m

=

(
xc

yc

)
m,0
+ T̂m · α, (5)

where (xc , yc )m,0 denotes the nominal cepstrum peak loca-
tion when no aberrations are present. Note that the size of
the transfer matrix T̂m is 6× N, where N is the number of
Zernike modes to be retrieved. The determination of the linear
model parameters, which include the nominal cepstrum vector
(xc , yc )m,0 as well as the elements of the transfer matrix T̂m ,
can be understood as a necessary calibration procedure for the

PEPD system. These parameters could be obtained experimen-
tally by introducing a set of known aberrations to the system.
Although this approach provides a high robustness with respect
to intrinsic tolerances of a real system, such a pre-defined set is
not always accessible. An alternative approach is based on using
a theoretical model of the optical system design and performing
purely numerical simulations of the aberration influence as per-
formed in Fig. 2. To this end, the nominal peak vectors as well
as the transfer matrix can be obtained by fitting linear functions
to the simulated dependencies (x c

j (α), y c
j (α)m) for each peak i

and channel m. We consider a particular aberration coefficient
fit range of approximately αn = [−0.1, 0.1]waves rms, where a
close to linear dependency is maintained for all Zernike modes
under consideration. As can be seen in Fig. 2, the deviation from
this linear approximation is significantly increased for larger
coefficients, i.e., for spherical aberration, coma, and trefoil,
which results in a reduced accuracy of the linear aberration
retrieval model.

An aberration vector α can now be estimated based on
only two calculation steps using the linear model described
by Eq. (5). First, the PSF peak locations (xc (α), yc (α))m are
calculated for the measured images im(x) using the cepstrum
approach described in Ref. [31]. Second, the linear system in
Eq. (5) is solved by taking the pseudo-inverse of the transfer
matrix T̂. This direct approach enables fast aberration retrieval
even for high-resolution images. The obtained solution may
be subject to a large estimation error though, if the linear sys-
tem is not well conditioned. The condition number provides a
measure to compare the relative estimation errors for different

Fig. 3. Dependency of the condition number CN(T̂) on the defocus diversity14 for retrieving up to N Zernike modes and considering different
PD configurations. (a) Single channel, (b) two asymmetric channels, and (c) two symmetric channels.
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PEPD scenarios and to assess under what condition an aberra-
tion vector α cannot be retrieved reliably. Figure 3(a) shows the
dependency of the condition number CN(T̂m) on the defocus
diversity 14 for a single-channel PEPD aberration retrieval of
up to N Zernike modes. Note that only positive values of 14

are plotted in view of the symmetry of CN(T̂m). The depend-
ency is analyzed only for defocus diversities up to 14 = 1.2
waves. Larger defocus values lead to significant spreading of
the triple-helix PSF, which prevents a reliable cepstrum peak
identification. The graphs in Fig. 3(a) show that a low condi-
tion number is provided only for the retrieval of up to three
modes throughout the entire defocus diversity range of interest.
In other words, only defocus and astigmatism can be reliably
retrieved using the proposed PEDP approach based on a single
measurement. In fact, the depth retrieval approach described
in Ref. [31] represents the particular case of retrieving the defo-
cus aberration only, where other aberrations are considered
negligible.

In order to retrieve more than three Zernike orders, at least
two channels need to be considered because with a single chan-
nel, there are not enough degrees of freedom in the linear PSF
peak shift model and the solution becomes ambiguous. This
is analogous to the conventional PD approach. To this end,
the linear model in Eq. (5) is extended by simply combining
the rows of the measured peak positions (xc (α), yc (α))m , the
nominal peak positions (xc , yc )m,0, and the transfer matrix
T̂m . Figure 3 shows the dependency of the condition number of
the extended transfer matrix for two commonly investigated,
two-channel PD configurations (M = 2). The asymmetric
configuration [Fig. 3(b)] utilizes one channel in focus and one
channel that is defocused by the amount 14. Conversely, the
symmetrical approach [Fig. 3(c)] is based on two image planes
around the nominal focus location, which are subject to a defo-
cus diversity of ±14, respectively. Both configurations result
in significantly reduced condition numbers for N = [5, 7]
compared to the single-channel configuration. The symmetrical
configuration provides the lowest, overall condition number of
CN(T̂)= 1.4 at14 = 0.8 waves for the retrieval of up to N = 7
modes and the defocus range of interest. A reduced condition
number for N = 8 modes, which includes spherical aberration,
can be obtained only using the asymmetrical configuration and
defocus diversities14 > 0.5 waves. Yet, the corresponding min-
imum achievable condition number of CN(T̂)= 5.5 already
indicates that the retrieval using the proposed PEPD approach is
subject to considerable estimation errors in that case.

4. NUMERICAL PERFORMANCE ASSESSMENT

A. Monte Carlo Analysis

The following numerical investigations are based on the opti-
cal layout shown in Fig. 1. The optical design parameters are
selected based on the experimental demonstration system
that is used in Section 5. The optical system is characterized
by an aperture stop diameter of 10 mm, which is located in
front of a focusing lens with a focal length of 150 mm. A wave-
length of 540 nm is considered, and the object is assumed to
be located 1.8 m in front of the aperture stop, which results
in an image space F-number of 15.9. The applied pixel size of

3.45 µm ensures a proper sampling with a Nyquist sampling
frequency of 145 lp/mm above the optical cutoff frequency
of ρcut - off = 117 lp/mm. The triple-helix PSF phase element
shown in Fig. 1 is used as a baseline for the PEPD approach
evaluation. In addition, a double-helix PSF is considered for
comparison purposes. The particular designs of both phase
elements are equal to the designs used in Ref. [30]. Figure 1
shows the dependency of the conventional as well as the PE PSFs
on the defocus diversity14. Note that a geometrical image shift
of 1 mm corresponds approximately to an rms defocus value of
14 = 0.27 waves.

In addition to the image noise νm(x), the precision of the
PD aberration retrieval depends strongly on the specific PD
settings including the amount of defocus diversity 14, the
particular aberrations to be estimated α, as well as the observed
object distribution o(x). Accordingly, a numerical Monte Carlo
type analysis is performed in order to compare different PD
settings and to assess general performance limits of the proposed
PEPD method. So far, numerical studies in this area assumed
either solely additive Gaussian noise [33–35] (i.e., camera
readout noise) or pure Poisson noise [34] (photon shot-noise).
Furthermore, only idealized point sources or a single, dedicated
object [33–37] were investigated. This stands in contrast to
the PEPD approach presented in this paper, where the main
motivation is to apply aberration retrieval in the context of
imaging arbitrary extended objects. Therefore, the Monte Carlo
analysis in Ref. [33] is extended and performed for a statistical
ensemble that comprises a combination of Gaussian and Poisson
noise considering different sets of aberrations as well as different
object distributions.

In general, five sets of aberrations are considered, which
comprise a combination of N different Zernike modes with a
maximum mode number N = [1, 3, 5, 7, 8], excluding piston,
tip, and tilt. Each consecutive set includes an additional Zernike
mode starting with pure defocus (Z4) followed by primary astig-
matism (Z5, Z6), coma (Z7, Z8), trefoil (Z9, Z10), and spherical
aberration (Z11). Each set contains 500 randomly generated
aberration vectors α. The coefficients αn (n = 1, 2, . . . , N)
of the individual aberration vectors α are based on uniformly
distributed random variables, which are normalized to result in a

pre-defined pupil-averaged rms phase errorαtotal =

√∑N
n=1 α

2
n .

The set of considered object distributions is extracted from
the ImageNet library [38], which is used widely as an image
resource in the area of machine learning and object recogni-
tion. The library provides an extensive variety of natural object
distributions that can be considered as representative exam-
ples for the aberration measurement scenario addressed here.
We extract a subset of 500 random images of the latest library
addition, which contains the newest 5500 images of the overall
image library. These images are further processed before they
are applied for the Monte Carlo analysis. Initially, each of the
eight-bit RGB images is converted to a grayscale format. The
resulting images are subsequently cropped to fit a square format
and rescaled using a linear interpolation to provide a common
resolution of 512× 512 pixels.

All calculations consider a combination of idealized
(Gaussian) camera readout noise, which is determined by
an rms value σr , and photon shot-noise, which depends on the
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number of photons Km per channel. A fixed rms readout noise
σr = 10 photons per pixel is assumed for all simulations. The
number of photons Km is selected by a pre-defined image SNR.
For an extended scene sampled by P × P pixels, the SNR is
defined as the ratio between the average signal and the standard
deviation of the signal. It can be expressed for the idealized case
of a uniform (white) object distribution by

SNR=
Km/P 2√

Km/P 2 + σ 2
r

. (6)

The following numerical investigations analyze two different
figures of merit for the Monte Carlo performance evalu-
ation. First, the CRLB performance is analyzed, which is
commonly used in order to quantify and compare the highest-
achievable precision limit. Second, the aberration retrieval SR is
investigated as an alternative, practical figure of merit.

B. CRLB Performance

The analysis of Fisher information and the CRLB has been
applied previously in the context of PD for optimizing the
amount of defocus diversity [33,35,37] or for comparing dif-
ferent diversity modes [34]. It provides the precision limit of
the phase retrieval in the presence of image noise in terms of a
statistical process. The CRLB with respect to PD aberration
measurement has, so far, been investigated only for objects
that are known a priori [33–35,37]. In contrast, the aberration
estimation problem for an unknown object is comparable to a
blind deconvolution problem.

The Fisher matrix for a multi-channel, blind deconvolu-
tion problem has been derived in the context of orientation
estimation for imaged space objects [39]. It can be expressed as

[F(β)]kl =
∑

m

∑
x

1

ĩ(x)+ σ 2
r

∂ ĩm(x)
∂βk

∂ ĩm(x)
∂βl

, (7)

considering the PD imaging system described in Section 2.
Here, β is the set of unknown system parameters, and σr is the
rms value of the additive Gaussian noise. The parameters βk

can be divided into two subsets for the general PD wavefront
measurement with an unknown object described here. The first
subset consists of the previously introduced Zernike aberration
coefficients αn (n = 1, 2, . . . , N). The second subset is dedi-
cated to the object distribution described by a set of adequate
basis functions. Although the object distribution itself shall
not be estimated in the frame of this work, it is nevertheless
important to take these parameters into consideration, which
can be referred to as nuisance parameters. They need to be esti-
mated jointly with the actual parameters of interest (explicitly or
implicitly), if a priori information on the object is not available
[39–41], which we will assume in the following. In this case, we
will show that CRLB performance of the aberration estimation
is significantly degraded due to the unknown object. One par-
ticular set of basis functions to describe the object distribution,
which has been used to assess the CRLB for blind deconvolution
problems [42], is provided by delta distributions that simply
correspond to the discrete sampling locations xk of the object.
However, this basis results in very large Fisher matrices with a
total size of (P 2

+ N)2 elements. Considering the resolution of

512× 512 pixels of the image set used here and seven Zernike
aberration modes to be retrieved, a double precision matrix
would have a size of 512 GB, which cannot be efficiently han-
dled numerically. In order to reduce the numerical complexity,
a transition into the Fourier domain is performed, and a general
property of natural objects is exploited. In particular, their
power spectral density significantly decreases with higher spatial
frequencies, and most of the object information is contained in a
low spatial frequency sub-region of the spectrum. Accordingly,
it is sufficient to consider only low spatial frequency coefficients
�k of the object spectrum to obtain an adequate approximation
of the CRLB. The coefficients �k comprise a real part �<k and
an imaginary part �=k , since the Fourier transform �=F(o)
of the object distribution is complex valued. Yet, only half of
the Fourier coefficients are considered, because the real valued
object distribution o implies that its Fourier transform � is
Hermitian.

On one hand, the partial derivatives of ĩ(x) with respect to
the aberration coefficients αn for a particular PD channel m are
derived in Ref. [33] and given by

∂ ĩm(x)
∂αn

=−2Kmonorm(x) ∗
(
Im
{
G∗m(x; α +1m)

· F [g m(u; α +1m)Zn]
})

. (8)

Note that G∗m denotes the complex conjugate of the Fourier
transform of the pupil function g m(u) as defined in Eq. (2).
On the other hand, the partial derivatives with respect to the
real part�<k of the object’s Fourier coefficients can be obtained
using Eq. (1):

∂ ĩm(x)

∂�<k
=

∂

∂�<k
[o(x) ∗ hm(x)]

=
∂

∂�<k
[F{�(u) · Hm(u)}]

=
∂

∂�<k

[
F
{∑

l

(
�l · Hm,l · δ(u− ul )

)}]
, (9)

where the Fourier spectrum of �(u)Hm(u) is decomposed
into discrete sampling frequencies ul using the delta distri-
bution δ(u). Next, the Hermitian symmetry of �(u) and
Hm(u) is exploited to derive the final expression of the derivative
according to

∂ ĩm(x)

∂�<k
=F

{(
Hm,k · δ(u− uk)+ H∗m,k · δ(u+ uk)

)}
= 2 · <

{
Hm,k · e 2π i(uk ·x)

}
. (10)

The derivative with respect to the imaginary part �=k can be
derived in an equivalent manner, which results in

∂ ĩm(x)

∂�=k
= 2 · =

{
Hm,k · e 2π i(uk ·x)

}
. (11)

The Fisher matrix can now be calculated using Eq. (7) and
considering the derivatives provided in Eqs. (8), (10), and (11).
The lower bounds εk of the mean square error of an unbiased
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estimate of the parametersβ = {α, �<, �=} can be found in the
diagonal element of the inverted Fisher matrix according to

ε2
k =Var(βk)≥

[
F −1(β)

]
kk. (12)

The CRLB for the measurement of the entire set of N aber-
ration coefficients {α} can then be obtained by the sum of the
lower bounds

∑N
k=1 ε

2
k that correspond to the CRLBs of the

N individual Zernike coefficients αn . We emphasize again that
the CRLB of the aberration estimation is affected by the object
spectrum coefficients �k , even if the object itself is not being
retrieved. This is due to the inversion of the overall Fisher matrix
F in Eq. (12), which, in general, contains non-zero, off-diagonal
elements.

Accordingly, the CRLB for the aberration estimation depends
on the particular object distribution o(x) as well as the actual
aberration coefficients αk . In order to obtain a general figure
of merit of the PEPD aberration measurement scenario, we
follow the Monte Carlo type approach presented in Ref. [33].
In particular, the CRLBs of an entire, previously defined set,
which contains 500 different aberration vectors α and object
distributions o , are averaged, and the final CRLB performance
measure is given by

ε2
=

1

L

L∑
l=1

[
N∑

k=1

ε2
k,l

]
. (13)

This approach can be considered as a suitable method to evalu-
ate the mean-square error performance of the phase estimation
for a particular statistical class of aberrations and objects.

The following calculations consider the PEPD system
presented in Section 4 for the symmetrical as well as the asym-
metrical PD configuration. The analysis is performed for the
previously defined set of object distributions and limited to
one of the five aberration sets with N = 7 modes. It is shown in
the next section that this represents the maximum number of
modes that can be reliably estimated using the proposed linear
retrieval model. An equal photon count of K = 1.2 · 108 is
assumed for each channel, which corresponds to a SNR of 20 for
a uniform object according to Eq. (6). Furthermore, an overall
rms aberration error of αtotal = 0.2 waves is applied. In addition
to the engineered double- and triple-helix PSF designs shown in
Fig. 1, the CRLB is investigated for a conventional PSF without
a phase element.

Initially, the dependency of the CRLB performance measure
ε2 on the size of the considered low spatial frequency sub-region
of the object is investigated for a single defocus diversity value
of 14 = 0.7 waves. In particular, the radius ρ of the circular
sub-region is varied with respect to the optical cutoff frequency
ρcut - off = 117 lp/mm. The corresponding plot is shown in
Fig. 4(a). It can be seen that the CRLB significantly increases if
a non-zero spatial frequency sub-region is taken into considera-
tion. This indicates that the aberration measurement accuracy
for an unknown object is deteriorated in comparison to the
case of a known object (ρ = 0). The CRLB performance of all

Fig. 4. (a) CRLB dependency on the radius ρ of considered low spatial frequency sub-region of the object for different phase PD aberration
retrieval scenarios (14 = 0.7 waves). (b),(c) CRLB dependency on the selected defocus diversity14 for the same PD scenarios based on a known and
an unknown object distribution, respectively, and considering a low spatial frequency region with ρ = 0.5 · ρcut−off.
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considered PD scenarios converges for radii ρ > 0.5 · ρcut - off.
Accordingly, the subsequent simulations consider only Fourier
coefficients �k below this limit to calculate the Fisher matrix,
which is considered a suitable approximation of the CRLB
performance in order to limit the numerical complexity.
Figures 4(b) and 4(c) show the dependency of the corresponding
CRLB on the applied defocus diversity 14 in comparison to
a known (ρ = 0) and an unknown object (ρ = 0.5 · ρcut−off),
respectively. Note that only positive diversity values 14 are
plotted here, due to the symmetric CRLB performance, which
arises from the uniformly distributed aberration coefficients.

The CRLB analysis for a known object distribution in
Fig. 4(b) reveals that the conventional PSF provides a superior
performance with respect to the lowest achievable CRLB. The
minimum CRLB is approximately a factor of two better than
for the triple-helix and a factor of 2.5 better than the double-
helix configuration. Note that the symmetrical configuration
provides a better minimum CRLB value for all considered pupil
functions, which is in agreement with previous results in the
literature for the case of a nominal PSF [33]. The results for
an unknown object in Fig. 4(c) demonstrate that the CRLB is
increased over the entire diversity range in comparison with the
case of a known object. Yet, the conventional PSF still provides
a superior CRLB performance compared to the helical PSFs.

Both cases demonstrate the existence of an optimum diversity
value 14 that provides a minimum CRLB performance. It is
pointed out that this optimum is shifted towards larger diversity
values for the PEPD systems.

In summary, the conventional motivation for using helical
PSFs is based on an improved CRLB for defocus measurements
[43–45]. However, the performed simulations indicate that
engineered PSFs are inferior when an entire set, i.e., N = 7, of
aberrations is measured for an extended scene. We note that
other authors claim to have found PE PSF designs with a supe-
rior performance [46,47] in comparison with the conventional
PSF. However, the results of the corresponding analyses are
limited. First, the simulations in Refs. [46,47] consider only
idealized point sources. On the other hand, the calculation
is performed for only a single, non-optimized diversity value
14. As can be seen from the simulation in Fig. 4, the proper
choice of this parameter is crucial when comparing different PD
approaches.

C. Aberration Retrieval Performance

The previously performed CRLB investigation aims at deter-
mining the precision limit of the measurement in the presence
of noise. In a practical adaptive optics or system integration/
alignment application scenario, however, it is rather important

Fig. 5. (a) Dependency of the success rate (SR) on the defocus diversity14 for the five different aberration sets and comparison between the asym-
metrical (solid line) and symmetrical (dashed line) PEPD configurations. (b) Histogram plot illustrating the number of samples of each aberration set
that provide a certain rms measurement error for the particular case of a symmetric configuration and14 = 0.7 waves. An overall wavefront error of
αtotal = 0.2 waves and a photon count of Km = 1.2 · 108 are considered.
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if the wavefront is correctly measured up to a certain accuracy
limit. A suitable limit for classical imaging systems is given by
the diffraction limit, which is commonly defined by a residual
rms wavefront aberration of λ/(8

√
3). Therefore, the aberra-

tion retrieval SR is considered for the following performance
investigation. It is defined as the relative number of samples of
a particular set of aberrations and object distributions with an
rms measurement error (deviation between the retrieved and
the actual wavefront) below the diffraction limit. Accordingly, it
can be interpreted as the probability for a successful aberration
retrieval in a practical application scenario, such as co-phasing a
segmented optical mirror [19,21].

In order to calculate the SR, the PEPD approach proposed
in Section 3 is applied for the previously defined statistical
sets of aberration vectors and object distributions. Initially, an
equal overall wavefront error of αtotal = 0.2 waves and photon
count K = 1.2 · 108 compared to the CRLB analysis is con-
sidered. The results of the Monte Carlo simulations are shown
in Fig. 5(a). The dependency of obtained SR on the defocus
diversity 14 is shown for the five different aberration sets and
in comparison to the symmetrical and the asymmetrical PEPD
configuration. The graphs show that the retrieval of up to three
Zernike modes (defocus + astigmatism) provides a SR close
to 100% in both scenarios and throughout almost the entire

defocus diversity range under investigation. Note that a similar
performance can be obtained using a single channel only. The
high SR validates that the cepstrum approach can be used to
retrieve the PSF parameters from the acquired images, which
confirms that the considered natural objects provide a sufficient
amount of small spatial features.

The SR drops for a retrieval of up to seven modes and features
distinct optimum diversity values of approximately 14 = 0.7
waves for both scenarios. The appearance of this optimum
can be related to the trade-off between the optimum CRLB
[Fig. 4(b)] and the condition number assessment [Figs. 3(b)
and 3(c)]. The symmetrical configuration provides a superior
performance with a SR of up to SR= 84% (N = 7), which is in
line with the significantly lower condition number compared
to the asymmetrical case. The SR deteriorates significantly
if spherical aberration is included for the aberration retrieval
(N = 8). Although, the asymmetrical configuration provides a
better performance, the maximum SR is only SR= 30%. The
histogram in Fig. 5(b) illustrates how many samples of each set
provide a certain rms measurement error for the particular case
of a symmetric configuration at14 = 0.65 waves. The plot indi-
cates that the mean as well as the variance of this error increase
with higher maximum mode numbers N. The large spreading
for N = 8 modes (including spherical aberration) demonstrates

Fig. 6. (a) Dependency of the success rate (SR) on the total wavefront error αtotal for asymmetrical (solid line) and symmetrical (dashed line)
configurations, considering the number of photons per channel Km = 1.2 · 108. (b) Dependency of the success rate (SR) on the signal-to-noise ratio
for asymmetrical (solid line) and symmetrical (dashed line) configurations, considering a total wavefront error of αtotal = 0.2 waves. The values are
obtained for an optimized defocus diversity of14 = 0.7 waves.
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that the relatively high condition number [Fig. 3(b)] in addition
to increased deviation of spherical aberration (Z11) from a linear
PSF response (Fig. 2) does not permit a reliable retrieval of that
particular mode.

Additional simulations are performed in order to gain
further insight into practical limitations of the proposed
PEPD approach by analyzing the SR dependency on the total
wavefront error αtotal and the SNR. Figure 6(a) illustrates the
dependency of the SR on the total wavefront error αtotal for
asymmetrical and symmetrical configurations. The particular
defocus diversity 14 = 0.7 waves is considered, which rep-
resents the previously obtained optimum value for N = 7. It
can be seen that wavefronts that are aberrated by defocus and
astigmatism (N = 3) can be reliably retrieved up to αtotal = 0.4
waves. The limit for the retrieval of up to N = 7 modes is
close to the previously considered total rms wavefront error
of αtotal = 0.2 waves. Figure 6(a) further indicates that wave-
fronts including spherical aberration (Z11) could be retrieved
in an asymmetrical PEPD configuration for small rms errors
of αtotal < 0.1 waves. Finally, the dependency of the SR on the
SNR is investigated in Fig. 6(b) for an equal defocus diversity
14 = 0.7 waves and αtotal = 0.2 waves. To this end, the SNR
is scaled by adjusting the number of detected photons Km per
channel according to Eq. (6). Wavefronts that are aberrated by
defocus and astigmatism (N = 3) can be reliably retrieved with
a SR greater than 80% down to a very low SNR≈ 5 for a sym-
metrical configuration. The same SR performance necessitates
SNR≈ 20 for N = 7. This result demonstrates the robustness
of the presented aberration retrieval approach in the presence
of considerable image noise. For comparison, the numerical
simulations performed for the validation of the deep learning
method proposed in Ref. [26] considered only a negligible noise
level that corresponds to SNR= 105.

In summary, the performed numerical investigation of the SR
shows that the proposed PEPD approach provides an efficient
and practical method that can be applied to retrieve wavefronts
dominated by low-order Zernike modes up to N = 7 (excluding
piston, tip, and tilt).

5. EXPERIMENTAL RESULTS

An optical setup characterized by the same parameters as the
previously simulated system is implemented experimentally
using a commercially available lens (THORLABS achromate
AC254-150-A-ML) in combination with a commercially
available machine vision CMOS camera (IDS MuEye). The
camera provides a resolution of 2456× 2054 pixels with a size
of 3.45 µm. The iris aperture stop is placed 55 mm in front of
the lens. Note that the nominal system provides a diffraction
limited performance over the entire field of view. The same
phase element as used in Ref. [30] is placed inside the aperture
stop to generate the triple-helix PSF. The element consists of a
thin, surface structured borosilicate glass sample and provides
low intrinsic aberrations of the transmitted wavefront. A sketch
of the optical setup is shown in Fig. 7. A set of low-order, field
dependent aberrations is introduced into the experimental
optical setup by applying a combination of two different mea-
sures. On one hand, the achromatic lens is moved laterally in
x direction away from the optical axis defined by the center of

the aperture stop, as indicated in Fig. 7. The image shift, which
can be associated with tip and tilt aberrations, is neglected.
Only Zernike coefficients associated with defocus, coma, and
astigmatism are considered, which constitute the dominating
aberration modes that are introduced. On the other hand,
the achromatic lens is utilized in a reverse direction, which
results in an increased amount of first-order coma and astigma-
tism. Note that the spherical aberration as well as higher-order
modes remain negligible (αn <λ/50) due to the high system
F-number and small field of view. In summary, the aberrations
introduced to the experimental system by a certain lens shift
1x can be understood as a particular sample of the previously
investigated aberration set with N = 5. Note that the misalign-
ment of an optical system via introducing an element shift or
tilt is commonly used to practically evaluate the PD aberration
measurement performance [20,48].

The introduced aberrations are initially measured based
on imaging a point source object. This makes a quantitative
comparison possible between the proposed PEPD method and
a conventional aberration retrieval based on a least-square PSF
fit. Subsequently, an extended object scene is considered, and
the method’s capability for retrieving field dependent aber-
ration coefficients for an unknown object is tested. Only the
symmetrical PD scenario is considered for both experiments,
due to the superior performance compared to the asymmetric
configuration, as discussed in Section 4.C.

A. Point Object Approach Verification

A point object is experimentally realized by a combination of
a high-power LED source (λ= 540 nm) and a pinhole with a
diameter of 20 µm. This assembly is placed at a nominal dis-
tance of 1.8 m in front of the experimental setup, which results
in a demagnification factor of 11.9 between the object and the
image plane. The pinhole cannot be resolved by the optical
setup and therefore provides an adequate point source. A set of
20 images of the point object with different noise realizations is
acquired at two image planes, symmetrically located ±2.0 mm
around the nominal focus position, using the triple-helix PSF.
This distance from the nominal focus corresponds to a defocus
diversity of 14 = 0.53 waves, which is close to the optimum
value for N = 5 found in the numerical simulations for N = 5.
The average distributions of the acquired images are illustrated
in the top part of Fig. 8 for different amounts of introduced lens
shift1x .

The aberration coefficients for defocus, primary astigma-
tism, and coma are retrieved based on the proposed linear
PEPD approach. The simulated linear transfer matrix T̂ and
the nominal cepstrum peak position (xc , yc )m,0, obtained in
Section 3, are used. The bottom part of Fig. 8 shows the mea-
sured aberration coefficients αn of the relevant Zernike modes
(N = 5) as well as the total wavefront error αtotal depending on
the introduced lens shift up to 3.5 mm. The small errorbars,
which correspond to the statistical rms deviation of the retrieved
coefficients for the 20 images, indicate a high relative accuracy of
the retrieval.

In order to validate the proposed approach and to evaluate
the absolute precision, a comparison with a conventional MLE
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Fig. 7. Sketch of the optical setup applied for testing the PEPD method based on imaging (a) a point object and (b) an extended scene. Note that
the distance between the phase element and (a) the pinhole and (b) the extended screen is 1.8 m.

Fig. 8. Top: measured triple-helix PSF distributions for the two considered diversity channels and for different amounts of introduced lens shift
1x . Bottom: comparison of the retrieved Zernike aberration coefficientsαn and the measured total rms wavefront errorαtotal for different amounts of
introduced lens shift1x .

method is performed. In particular, the MLE aberration coef-
ficients are determined by minimizing the mean-square error
metric:

E =
2∑

m=1

∑
x

[
hm(x)− ĥm(x)

]2
, (14)

which is also used for conventional PD [14]. The measured and
the estimated PSFs are denoted by hm(x) and ĥm(x), respec-
tively. The latter is related to the aberrated, triple-helix pupil

function according to Eq. (4). In addition to the experimental
part, the validation of the PEPD method is performed by com-
paring the measured aberration coefficients to the coefficients
extracted from simulating the setup using a standard, optical
design software (OpticStudio). As can be seen in the bottom
part of Fig. 8, the values of the obtained coefficients using the
proposed PEPD method agree well with the reference values
obtained by the MLE and the simulations. The maximum
absolute deviation between the fit and the linear PEPD is on
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the order of λ/100 and, therefore, demonstrates a successful
aberration retrieval.

We emphasize that an accurate knowledge of the basic system
parameters is essential for a successful aberration retrieval, which
is a well-known practical limitation of PD. In particular, an
uncertainty in the nominal focus position leads to an equal
estimation error for the defocus aberration coefficient α4 [49].

Other system parameters that, in general, significantly influence
the PD retrieval accuracy include the exit pupil size and location
[49]. However, we find that a deviation of 10% between the
considered parameters and the true values leads to an additional
measurement inaccuracy on the order of only λ/100 for the
system investigated here, if the proposed PEPD method is
applied.

Fig. 9. (a), (b) Raw images of the extended screen captured by the experimental demonstration setup using the nominal PSF and a triple-helix PSF,
respectively, for an in-focus diversity channel (14 = 0 waves). (c) Reconstructed object distribution of the raw image shown in (b) using the Wiener
deconvolution approach presented in Ref. [31]. Note that the imaged object scene corresponds to an exemplary, grayscale satellite image printed onto
the extended screen with a size indicated by the scale bar in (a).

(a) defocus (α4) [rms waves] (b) astigmatism y (α5) [rms waves]

(c) astigmatism x (α6) [rms waves] (d) coma y (α7) [rms waves]

(e) coma x (α8) [rms waves] (f) wavefront error (αtotal) [rms waves]
Fig. 10. Comparison of the field dependent aberration coefficients obtained by the proposed linear PEPD model (right columns) and the cor-
responding values extracted from the optical design (left columns). The aberrations are introduced by shifting the inverted achromatic lens 1x =
3.5 mm away from the optical axis. The scale bar in (a) indicates the object field extension of the coefficient maps.
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B. Extended Scene

The point source assembly used in the previous experiment
is replaced by an extended screen that represents an extended
object distribution (see Fig. 7). An exemplary, grayscale satellite
image is printed onto to the extended screen, which is placed at
the same object distance of 1.8 m used in the previous experi-
ment. Imaging this particular object distribution may represent
a remote sensing application scenario. The printed object scene
is illuminated by the previously used high-power LED source.
Low-order optical aberrations dominated by defocus, primary
astigmatism, and coma are introduced to the optical setup in
an equivalent manner compared to the previous experiment by
shifting the inverted achromatic lens by 3.5 mm. Figures 9(a)
and 9(b) show in-focus, raw camera images of the aberrated
scene acquired with a nominal and a triple-helix pupil function,
respectively.

In comparison to the previous investigation of a point source,
a field dependency of the aberration coefficients αn needs to
be considered for the extended scene. In order to obtain a two-
dimensional map of the coefficients based on the proposed
power cepstrum analysis, the image segmentation approach
used for obtaining depth maps is applied [31]. In particular,
the cropped camera image with a size of 2048× 2048 pixels is
divided into smaller sub-images with a size of 512× 512 pixels
and a lateral separation of 128 pixels, which leads to an overall
aberration map sampling of 13× 13 pixels. The local aber-
ration coefficients are calculated for each sub-image based on
the proposed, linear PEPD approach using the simulated sys-
tem parameters T̂ and (xc , yc )m,0 and a defocus diversity of
14 = 0.53 waves. The obtained field distributions of the coef-
ficients αn as well as the total wavefront error αtotal are directly
plotted in Fig. 10. Note that no smoothing was applied. The
obtained results can be understood using third-order nodal
aberration theory [50]. In contrast to a conventional, rotational
symmetric optical system, the introduced lens shift generates
distinct nodal points away from the optical axis for field cur-
vature (field dependent defocus), coma, and astigmatism. In
particular, the individual image space nodal points for field cur-
vature and coma are located approximately 22 mm and 20 mm
away from the image center in negative x direction, respectively.
The two nodal points for astigmatism are located approximately
6 mm and 30 mm away from the image center in negative and
positive x directions, respectively. Accordingly, the nodal points
are located outside the considered sensor width of 7 mm and
cannot be observed directly in the plots shown in Fig. 10. The
comparison with the theoretical nodal fields extracted from
the optical design in Fig. 10, however, shows an agreement of
the absolute aberration coefficients and the field dependency.
The successful retrieval of field dependent wavefront aberrations
(for N = 5 up to αtotal ' 0.2 waves) is therefore demonstrated
experimentally. The arbitrary, extended scene provides a sig-
nificantly increased level of complexity in comparison to the
simplified objects considered for alternative machine learning
methods [13,26]. It is emphasized that the calculation of the
entire coefficient distributions can be performed in less than
7s using a conventional laptop due to the fast linear retrieval
model.

Depending on the particular application, the actual object
distribution o(x)may be of interest in addition to the measured
aberration coefficients αn . The obtained information on the
local PSF peak parameters (xc , yc ) can be used to reconstruct
the object distribution from the PE image. Figure 9(c) exem-
plarily shows the reconstructed object distribution for the raw
image in Fig. 9(b) using an adapted Wiener deconvolution,
as described in Ref. [31]. It can be seen that the effect of the
triple-helix PSF, which leads to an overlap of three shifted ver-
sions of the object, is removed, and small object features such as
individual buildings and roads are retrieved.

6. CONCLUSION

A novel concept that combines conventional PD aberration
retrieval with helical PSFs has been presented. It makes a fast
estimation of low-order aberration coefficients possible based
on imaging an arbitrary, extended (natural) object and solving
a linear system of equations. Numerical simulations have been
performed, which evaluate the performance of the presented
method based on the CRLB and the aberration retrieval SR. To
this end, an expression for the CRLB associated with the PD
aberration measurement was derived considering an unknown
object. Although the CRLB performance of the helical PSFs
is inferior in comparison to a conventional PSF, the proposed
approach provides a practical tool to estimate the coefficients of
up to seven Zernike aberrations with sufficient accuracy (i.e., up
to the diffraction limit) without the need for numerically
extensive, iterative phase retrieval procedures. The proposed
aberration retrieval has been demonstrated experimentally
by retrieving the field dependent aberration coefficients for
a misaligned optical system based on an unknown, extended
scene.

The proposed aberration retrieval method can be understood
as an extension of the application scope of helical PSFs. Previous
studies targeted the measurement of defocus aberration in order
to retrieve depth information. With the method presented
here, up to seven aberration modes can be retrieved fast and
reliably. The method is considered useful for practical applica-
tions including co-phasing of segmented optical mirrors [51],
general system alignment, and adaptive optical correction of
mechanically or thermally introduced aberrations [52], par-
ticularly for cases in which no point source is available. Here,
it can be applied to directly characterize and minimize field
dependent aberrations (e.g., in a closed loop). Alternatively,
it may be used to obtain a robust initial aberration estimate
for a conventional iterative PD aberration retrieval approach
[14,15]. The results here are obtained with a helical PSF that was
originally designed and optimized for depth imaging (defocus
measurement over a large range of interest). The performance
with respect to the CRLB and the aberration retrieval SR could
be further improved by incorporating PSFs that are tailored
to the PD problem. As an example, such PSF designs could be
optimized with respect to the spot size for only two dedicated
defocus diversity positions.
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