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Editorial

Since we started with the issuing of this series of
research progress reports in April 1990, this is the
tenth volume in the series, and we are happy to
present this jubilee-edition to our colleagues, friends
and contacts around the world. Again, this tenth
volume shows a wide range of aspects in both funda-
mental and applied subjects in systems and control
engineering,.

Taking a look at the two main application areas of
the research in our group, (mechanical) motion con-
trol systems and industrial/(petro)chemical produc-
tion processes, the first branch of research seems to
be dominantly present in this issue. Six papers dis-
cuss applications of control aspects in mechanical
motion control systems, such as CD player, wafer
stepper and Stewart platform. The balance between
the two application areas will intended to be re-
stored in forthcoming issues.

Taking a look at ‘newcoming’ authors, we would like
to welcome Mario Milanese and Michele Taragna
from the Polytecnico di Torino in Italy. The joint
paper that is incorporated is the result of a research
project supported by the European Community in
the scope of the Human Capital and Mobility Pro-
gram “SIMONET”.

Marco Dettori is a Ph.D.-student working in a re-
search project in cooperation with and supported
by the Philips Research Laboratories in Eindhoven,

vi

The Netherlands. The paper presented here involves
also Vladimir Prodanovie who finished his M.Sc.-
studies in the scope of this project.

Rob Tousain is a new Ph.D.-student whose contribu-
tion here reflects work that has been done as part of
his M.Sc.-studies, performed at the Philips Research
Laboratories in Limeil Brevannes, France. We ac-
knowledge also here the contribution of his “indus-
trial” supervisors, Jean-Christophe Boissy, Mein-
dert Norg and Maarten Steinbuch.

The other authors have appeared -regularly- in pre-
vious issues of this magazine, and so we assume
them to be known to our regular readership.
Additional information on the activities of our
group, as well as reprint versions of the papers in
this and previous volumes of our progress report,
can be found on our WWW-site:

wWww—-sr .wbmt . tudelft.nl/sr

Finally we would like to wish all our colleagues,
friends and contacts a happy and properous 1998.

Okko Bosgra
Paul Van den Hof
Carsten Scherer
Editors

o.h.bosgra@wbmt.tudelft.nl
p.m.j.vandenhof@wbmt.tudelft.nl

c.w.scherer@whbmt.tudelft.nl




©Delft University Press Selected Topics in Identification, Modelling and Control

Vol. 10, December 1997

Identification of a fluidized catalytic cracking unit:
an orthonormal basis function approach

Edwin T. van Donkelaar!, Peter S.C. Heuberger® and Paul M.J. Van den Hof

Mechanical Engineering Systems and Control Group
Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
E-mail: e.t.vandonkelaar@wbmt.tudelft.nl

Abstract. Multivariable system identification of a model IV fluidized catalytic cracking
unit is performed using a linear time invariant model parametrization based on orthonor-
mal basis functions. This model structure is a linear regression structure which results
in a simple convex optimization problem for least squares prediction error identification.
Unknown initial conditions are estimated simultaneously with the system dynamics to
account for the slow drift of the measured output from the given initial condition to
a stationary working point. The model accuracy for low frequencies is improved by a
steady-state constraint on the estimated model and incorporation of prior knowledge of
the large time constants in the model structure.

The model accuracy is furthermore improved by an iteration over identification of a high
order model and model reduction. First a high order model is estimated using an or-
thonormal basis. This model is reduced and used to generate a new orthonormal basis
which is used in the following iteration step for high order estimation.

With the approach followed accurate models are estimated with only a limited amount
of data.

Keywords. System identification, orthonormal basis functions, multivariable systems.

1 Introduction large interaction between the several input/output-
channels. Characteristic for this system is the com-
bination of fast and slow physical phenomena. Both
frequency ranges need to be estimated accurately for
high performance control design. This means, how-
ever, that long data sequences at a high sampling
rate need to be used to capture both slow and fast
phenomena in the data.

Also the working point in which open-loop identifi-
cation is performed is generally not be a stationary
point. This causes the measured variables to drift
from the working point to the nearest stationary
point. These drifts can cause a problem for pre-
diction error identification as these methods assume
the signals to be quasi stationary.

To deal with the large dynamic range of the sys-
tem and the transients in the measured output, an

The fluidized catalytic cracking (FCC) process is
used to crack crude oil into lighter and more valuable
components. The overall economic performance of a
refinery largely depends on the economic operation
of the FCC unit (Tatrai et al, 1994). Therefore
accurate modelling and control of this process is of
large importance.

In this report multivariable system identification of
a Model 1V fluidized catalytic cracking unit is de-
scribed. The nonlinear simulation model described
in McFarlane el al. (1993) is used as the process
to be identified. The system is multivariable with

'The research of Edwin van Donkelaar and Peter
Heuberger is supported by the Dutch Technology Founda-
tion (STW) under contract DWT55.3618

$Peter Heuberger is on partial leave from the Dutch

National Institute of Public Health and the Environment
(RIVM)

approach is applied which utilizes system-based or-
thonormal basis functions (Heuberger et al. (1995),




Van den Hof et al. (1995), Ninness and Gustafson
(1994), Ninness et al.(1995)). In this approach sys-
tem poles are chosen on the basis of prior knowl-
edge or prior identification results. With these poles
a complete orthonormal basis for stable dynamical
systems is generated. The model is parametrized in
terms of these basis functions, resulting in a model
structure which is linear in the parameters. A least
squares identification criterion is used to obtain op-
timal parameter values which can be calculated ef-
ficiently using linear regression technigues.

Initial conditions are estimated simultaneously with
the system dynamics without loosing the linear re-
gression structure. This is to account for slow drifts
of the measured output, which is present because
measurements are taken in a nonstationary working
point. This improves the estimation of the system
dynamics.

To improve the static behaviour of the estimated
model, the static gain is fixed. Fixing the static
gain of the model amounts to a linear constraint
on the parameters. This constraint can be incorpo-
rated as a hard constraint or as a soft. constraint. In
both cases linear regression techniques can be used
to calculate the optimal parameter efficiently.

The estimation is further improved by iterating
over high order identification with orthonormal ba-
sis functions and model reduction. The reduced or-
der model is used to generate a basis for the high
order identification in the next iteration step.

The outline of this report is as follows. First, in sec-
tion 2 the process under consideration is discussed.
Next, in section 3 both the preliminary experiments
and the experiments for parametric identification
are described. In section 4 the parametric identifi-
cation procedure is described and also the validation
results are given. Section 5 concludes this report.

2 The process

The system to be identified is the nonlinear FCCU
model deseribed in McFarlane et al. (1993). In fig-
ure 1 a flow sheet is given of a typical Model IV
fluidized catalytic cracking unit is shown. The sys-
tem consists basically of two subsystems: the riser
or reactor and the regenerator.

In the reactor fresh feed of crude oil and hot cata-
lyst coming from the regenerator is mixed which in-
duces the cracking reaction which makes the crude
oil to fall down into lighter and more valuable com-
ponents. These components leave the reactor at the
top as gas and are separated in the downstream sep-
arators. In the reaction the catalyst is contaminated
with carbonaceous material (coke). The spent cat-
alyst is transported to the regenerator to be regen-
erated.

In the regenerator spent catalyst is regenerated by
means of air injection provided by the air blowers
(figure 1). The air injection fluidizes the catalyst
and removes the coke by a exothermal reaction. The
heat induced by this reaction is used to supply the
heat for the endothermic reaction in the reactor.
Hence, no additional heat is supplied to the reac-
tor. Because of this, the reactor and the regenerator
are highly coupled. The multivariable system shows
large interaction between the several input-output
channels.

The system also shows both fast and slow dynamic
behaviour. The fast behaviour comes from flow and
pressure phenomena while the slow behaviour stems
from the fact that it takes a long time to reach a
thermal equilibrium.

The inputs that can be manipulated for identifica-
tion purposes are given by

u(t) = [Fa(t) Tolt) Fa(t) pa(t) Ap(t)]”

where the F3(t) is the fresh feed flow, T,(t) is the
temperature of the fresh feed flow, Fy(t) is the lift
air flow, ps(t) is the pressure in the riser and Ap(t)
is the pressure difference between regenerator and

riser. The measured output vector is given by
y(8) = [lsp(t) Treg(t) Tr Oze (t) Vir (6)]"

where [l5p,(t) is level in the stand pipe of the riser,
Treq(t) is the temperature in the regenerator, T)(t)
is the temperature in the reactor, O, (1) is the con-
centration oxygen in the stack gas coming out of the
regenerator and Vi, (f) is the valve position at the
point where the wet gas is sent to the main separa-
tors. The number of inputs and outputs are denoted
as n, and n, respectively.

The disturbances acting on the system are the fol-
lowing. A measurable disturbance is the ambient
temperature T, () and a disturbance that is not
measurable is the changing coking factor Y g(t) of
the incoming fresh feed. The minimum sample time
is AT = 10 sec., which is the sample time of the
measurement devices.

3 Experiments

First preliminary experiments are performed to as-
sess disturbance dynamics, assessment of linearity of
the system and to obtain rough system knowledge.
The preliminary experiments that are performed are
freeruns and step response experiments.
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Fig. 1. Schematic of a Model IV fluid catalytic cracking unit (McFarlane et al., 1993)

3.1 Freerun experiments

First several freerun experiments are conducted to
assess disturbance dynamics. In figure 2 the outputs
of 5 freeruns are given. From these experiments the
following observations were made:

e an initial condition disturbance is present.
The disturbance is approximately equal for all
freeruns that are performed, only a variation
of dynamics due to the ambient temperature
is observed. This nonlinearity is not accounted
for in the identification because rather small ex-
periment lengths are used in parametric identi-
fication such that the variation in ambient tem-
perature is limited.

e substantial changes of the coking factor occur
once every 5-7 hours which has a large influ-
ence on the measured output. The coking fac-
tor is a disturbance which is not measurable. If
parametric identification is performed on data
which is disturbed by a changing coking factor,
a considerable bias can be expected. For this
reason only the first part of the data will be
used in parametric identification.

It is important for the identification approach to
account for the transients in the data. Especially
the transient in the temperature in the regenerator
and the reactor are severe.

3.2 Step response experiments

Step response experiments are performed to assess
nonlinearity and obtain a first indication of system
dynamics. This knowledge is needed to choose an
appropriate sampling time and experiment length.

The inputs are successively excited with a step
function and the five outputs are measured. The
experiments are performed with the amplitudes;
Uamp = [2.4 12.5 0.90 0.11 0.10], 2%gmp, —Uamp and
‘_2uﬁ mp*

The measured step responses are detrended for the
initial condition disturbance with the mean of sev-
eral freeruns. By comparison of the results with dif-
ferent step sizes, it can be concluded that the system
behaves fairly linearly apart from possible activation
of valve constraints. It becomes clear that the sys-
tem has very fast phenomena, therefore decimation
is not possible. In figure 3 the measured step re-
sponses are given.

3.3 Experiments for parametric identifica-
tion

The following experiments for parametric identifica-
tion are performed.

e Pseudo random binary sequence (PRBS) ex-
periments (Ljung, 1987). With this input sig-
nal the high frequent behaviour of the system
is dominantly present in the data because the
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Fig. 2: Measured output for five freerun experi-
ments and corresponding ambient tempera-
ture

data length is approximately 5 hours, while the
slowest settling time is approximately 2 hours
(in the transfer to the temperature of the re-
generator and the reactor).

e Random binary sequence (RBS) experiments.
To emphasize the low frequent behaviour more,
RBS experiments are used with a low switching
probability (Tulleken, 1990).

An important aspect of multivariable experiment
design is that the inputs are as much uncorrelated as
possible to keep the identification problem well con-
ditioned. If different realizations of the signals men-
tioned above are used for the different input chan-
nels, this is approximately satisfied.

4 Parametric identification and vali-
dation

The aim of the identification approach is to identify
a model which accurately describes all the data that
is present: the response to the PRBS signal which
contains the high frequent behaviour more than the
low frequent, the response to the RBS signal which
emphasizes the low frequent behaviour more and the
step response data with a major emphasis on low
frequent dynamics.

The approach followed here involves basically three
steps:

1. a realization algorithm based on step response
data is used to obtain a rough parametric model
of the system.

2. an orthonormal basis function model is iden-
tified using the parametric model obtained in
the first step to generate an initial basis. The
model is iteratively improved.

3. The previous steps are performed for five multi-
input /single-output (MISO) problems. In the
last step a full multivariable model is estimated
with a basis generated by the identification re-
sults of the previous step.

These steps are describe in the sequel of this section.
i
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Fig. 3: Step responses of the system transfer of 41th
order model obtained with step response
based realization algorithm (solid) and mea-
sured step responses (dashed).
4.1 Step response realization algorithm

First the realization algorithm described in Van Hel-
mont et al. (1990) is used to obtain a state-space de-
scription directly from the step response coefficients.
The algorithm is similar to the algorithm of Kung
(1978) but does not act on the Hankel matrix with
pulse response coefficients but with step response co-
efficients. This has the advantage that no discrete
differencing has to be applied fo the step response
data to obtain impulse response coeflicients, which
increases the influence of disturbances. The empha-
sis of the obtained models is more on the low fre-
quent behaviour than with the algorithm of Kung.
The identification of the MIMO model is split into 5
separate MISO identification problems. The reason
for this is that the identification problem becomes
computationally more tractable. Also the input and
output weighting and compensation for time delays
can be performed on each transfer function sepa-
rately. This flexibility is necessary to obtain accu-
rate models.

In figure 3 the resulting model is given. The order
of the estimated models are: from w to y;(¢) 10th
order, 6th to ya, 9th to y3, 10th to y4 and 6th order
to y5. This makes a 41st order MIMO model.

The MISO realization models describe the step re-
sponse data accurately. However, the models are
not capable of predicting the output of the PRBS
and RBS data well.




4.2 ORTFIR identification

In identification with orthonormal basis functions
the following parametrization is used

G(2.0) = D(6) + > LT(9)fi(2) (1)

i=1

This is a finite sum of functions f;(z) € RH;**"
which are chosen a priori and the direct feedthrough
D(f) and the expansion coefficients L;(d) € IR™ *™
are to be estimated. The functions f;(z) are cho-
sen such that they form a basis for all stable ratio-
nal transfer functions functions in ]R.H;"X"”. The
simplest choice for the basis functions is given by
fi(z) = 27" In this case the model structure (1) is
equivalent to the well known finite impulse response
model structure (Ljung,1987). Also more specific
choices for the orthonormal basis functions can be
made, where prior knowledge of the system dynam-
ics can be incorporated; see e.g. Van den Hof et al.
(1995) and Ninness and Gustafson (1994). In this
article the approach presented in Van den Hof et al.
(1995) will be followed.

In Van den Hof et al. (1995) orthonormal basis func-
tions are generated using prior knowledge of the sys-
tem in terms of rough pole locations or an identi-
fied model, of which only the state space matrices
{A,C} or {A, B} are used. From this prior knowl-
edge an inner system G (2) is constructed with bal-
anced state space realization {4y, By, Cy, Dy }. Now,
an orthonormal basis is constructed as follows

filz) = (2T = &) ' ByGy '(2), 1=1,2,... (2)

With this choice, the parametrization (1) coincides
with the series connection of filters given in 4. Here
zi(t) denotes the balanced state of the filter,

u(t) Co(a)

xa(t)

“u(q)
za(t)

“4(q)
I'J-'l(”

PJT(H){ LIy |L3(9)

\J.J
©

Fig. 4: Model parametrization with generalized or-
thogonal basis functions

From (2) it can be seen that if the {4,, B} is chosen
correctly, only the state space matrices {C, D} need
to be estimated. Hence, if the prior knowledge of the
system dynamics is accurate, only a limited number
of coefficients needs to be estimated. This results in
models with limited bias and variance.

The output prediction with this model structure can
be conveniently expressed with

y(t,0) = D(8) + C(8)(zI — A)~' Bu(t)

where {A, B} is a state-space realization of the se-
ries connection given in figure 4. This is a model
structure that is linear in the parameter. This can
be made clear by writing the prediction of a single
output as

§(t,0) = [u” () @ (t) -k (t — n))o

where i;(t) = fi;(q)u(t) are filtered versions of the
input and # € IR"™ "™ is the parameter that is to
identified from the data.
The optimal parameter vector is obtained by mini-
mization of the least squares prediction error crite-
rion
1 &
§ = argmin — Z e2(t, 0
gmin = > €°(t,6)

=1

with the prediction error defined by =(t,8) = y(t) —
y(t,0). The optimal parameter estimate is equal
to the least-squares optimal solution of the overde-
termined set of equations ¥ = ¢, where Y7 =
[y"(1)---y"(N)] and the rows of ¢ are given by
[uT(t) @f(t)---aL(t — n)]. The analytic solu-
tion of this optimization problem is given by § =
(¢79)'p"Y.

Hence, because the model structure is linear in the
parameter, the optimal parameter vector is unique
and can be calculated analytically.

Estimation of initial conditions

In the measured data of the FCCU a transient is
present due to an initial condition that is not a sta-
tionary working point. To account for this, the ini-
tial condition is estimated simultaneously with the
system dynamics. This can be done without loos-
ing the linear regression structure as follows. The
model structure is extended to

§(t,0) = (D(8) + Clql — A)~'B(8))u(t) + CA* 'ug
(3)
where {A,C}' are a priori chosen state-space ma-
trices and D(f), B(f) and z(0) are the parameters
that are to be estimated from the data. This boils
down to solving the least-squares optimal parameter
vector for the overdetermined set of equations

Y= {gﬁ f}‘J,;n] [ ] e Qf’ea:fgeﬂ

f
Iy

INote, that the {A,C} is used as prior information rather
than {A, B} without loosing the linear regression structure.




where the rows of ¢,o are given by CA'~! Estima-
tion of initial conditions can be used to reduce the
bias due to unknown initial conditions at the ex-
pense of an increased variance.

The estimated transient of the initial condition and
the measured output for the reactor temperature are
given in figure 5. The transient due to the nonsta-
tionary initial condition is fitted accurately.

o

200 400 800 BOO 1000 1200 1400 1600 1800
time (hour)

Measured data T,(t) with RBS experiment
(dotted) and the estimated initial condition
contribution (solid).

Fig. 5:

Enforcement of the static gain

The low frequent and static behaviour of the sys-
tem is barely present in the RBS data due to the
relatively short data length compared to the slowest
time constant. Therefore the static gain of the es-
timated models can be inaccurate. To remedy this,
the static gain is enforced on the model by means
of a constraint, that is linear in the parameter vec-
tor. Therefore the linear regression structure is pre-
served. The static gain of the model 1 is given by

Ky (0) =D@)+C( —A)~'B@O)=Q8 (4)

Any static gain K,, can be enforced on the esti-
mated model by using the Lagrangian of the con-
strained optimization problem. This boils down to
solving

@(Trfér'r-‘ {(2 U)I H"'If = Hérrr}—
(Q 0) 0 Ae g il

where A is the Lagrange multiplier. This is uniquely
solvable because the matrix on the left hand side is
square and invertible,

The constraint is enforced on the model such that
the steady-state gain is equal to the specified one.
However, the steady-state gain taken from the step
response data is not accurate; therefore possibly un-
natural behaviour is enforced on the model. To alle-
viate this, soft constraints are used, which are con-
straints that can be violated. A soft constraint can
be implemented by adding one or more equations of
the type (4) to the overdetermined set of equations
that has to be solved for the unconstrained problem.

Figure 6 shows the measured step responses, to-
gether with the step response of the model resulting
from applying no static state constraint as well as
from using a soft constraint. The model with the
soft constraint fits the measured step response well,
while the model with no constraint has a consider-
able deviation in the steady state gain.

tima (hour)

Measured step response for the input w(t)
and the output T,(t) (dotted). Step re-
sponses of the estimated models with no
static gain constramnt (dashed), and a with
a soft constraint (solid).

Iterative model enhancement

For further improvement of the model, an itera-
tive scheme of ORTFIR. identification and balanced
model reduction (Moore, 1981) is applied. In this
iteration the following steps are applied:

Step 1. generate basis functions,

Step 2. estimate a high order model with the
ORTFIR model structure (1),

Step 3. reduce the high order model with e.g. bal-
anced reduction, and use the reduced order
model to generate a basis in the first step.

With this the optimal criterion value is greatly im-
proved. In figure 7 the optimal criterion value is
given for a number of iterations for the estimation
of the transfer between the input and the temper-
ature of the reactor T).(t). The criterion value is
clearly improved during the iterations.

0.25 T T T . T T T

0.2

0.15

o 2 3 r 5 6 7 8 9

number of iterations

Fig. 7:

Optimal value of the criterion function for
9 iterations (low model order: 6, high model
order: 20) for the estimation of the transfer
between u(t) and Ty(t)




0.2

The high order is chosen such that all dynamical
phenomena are incorporated in the model. This can
be assessed by inspection of the estimated expan-
sion coefficients L;(f). Equivalent to the impulse
response coeflicients, these coefficients go to zero
for stable systems for high enough model order n
(Van den Hof et al., 1995). Therefore estimated ex-
pansion coefficients are denoted as the generalized
impulse response coefficients. An example is given
in figure 8.

AR

L .01 -2 "2
© 10 200 10 200 10 200 10 20 0 10 20
index

Fig. 8: Generalized impulse responses of the esti-
mated model with soft constraints for the
transfer from u(t) to Tn(t).

The aim of the iteration is to concentrate the energy
of the estimated model in the first few expansion co-
efficients such that a low order model can be derived.
This trend is indeed observed during the iterations
but can in general not be guaranteed.

Conditioning of the optimization problem

To calculate the optimal parameter vector the
Toeplitz matrix ¢ ¢ needs to be invertible. This
implies that ¢ must have full column rank to obtain
an estimate without numerical problems. There are
several reasons why this may not be the case.

First of all, this can occur if the dynamics present
in the basis functions is slow compared to the data
length. In that case the inputs filtered with the basis
functions forming the columns of ¢ may not be inde-
pendent. This can be detected by inspection of the
impulse responses of the basis functions. If the im-
pulse response has considerable energy outside the
time interval given by the data length, the orthogo-
nal basis functions are not orthogonal on the finite
time interval and numerical problems are likely to
oceur. This effect will be denoted the shifting of the
basis functions outside the data window.

Secondly, if a high number of repetitions of the ba-
sis dynamics n is used the energy in the impulse
response of the basis functions shifts to later time
instants. This makes the basis functions to shift out
of the data window, resulting in a badly conditioned
optimization problem.

To avoid numerical problems, the following strat-
egy is followed. Because slow dynamics is present
in the basis functions, the number of repetitions is
restricted to n = 1. Fast dynamics is added to the

dynamics of the basis functions to add extra flex-
ibility in the model. The added dynamics can be
any set of stable poles. In the identification of the
FCCU, poles are added in the origin.

The part of the regression matrix regarding the
initial conditions ¢, has another character than
the regression matrix for the dynamic part ¢: the
columns of the first consists of transient responses
and the columns of the second of responses to sig-
nal with mean value zero. Due to this difference the
number of repetitions n that can be used in ¢.g is
larger than that can be used in ¢ before bad condi-
tioning occurs. Therefore, the number of repetitions
of the basis functions in ¢, is taken to be n = 3 to
give the estimation of the transient extra flexibility.

4.3 The full MIMO model

The five identified MISO models, of order 5, 7, 7, 6
and 8 respectively, are combined into one MIMO
model. The dynamics of this model is used to
generate a basis for the full MIMO system. To
avoid numerical problems, only one group is used
to parametrize the model, i.e. n=1.

The optimal value of the identification cost function
could be improved from V,,, = 0.11 for the combina-
tion of the five MISO models to Vopr = 0.099 for the
MIMO model. For this an RBS data set is used as
identification data and a PRBS data set is used for
validation. Similar results are observed if an RBS
data set, other than the identification data, is used
as validation set.

The step responses of this model are given in figure
10 together with the measured step responses.
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Fig. 9: Measured output (solid) and output predic-
tion (dashed) for the 33rd order MIMO
model.

The output prediction of the MIMO model is given
in figure 9. This is based on a PRBS validation set.
The output prediction of the second output seems
inaccurate, however this is mainly due to the initial
condition disturbance in the validation set. This
is only accounted for by the mean of five freeruns
which is rather inaccurate. The other outputs are
predicted accurately.

As conclusion, the identified model with the de-
scribed approach is consistent with the step re-
sponse data, the RBS data set and the PRBS data
set.
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Fig. 10: Step responses of the 33th order multwari-
able model (solid), (dashed) and the mea-
sured step response (dotted).

5 Conclusions

In this paper the identification of a nonlinear sim-
ulation model for the Model IV catalytic cracking
unit is described. The model structure is based on
orthonormal basis functions where the basis func-
tions are chosen using prior knowledge of the system
dynamics obtained from identification based on the
step response data. This results in a linear regres-
sion model structure. To obtain an optimal param-
eter estimate, a least squares identification criterion
is used. Therefore the optimal parameter vector is
unique and can be calculated analytically.

The experimental conditions are such that data sets
can be obtained that have limited length with re-
spect to the slowest dynamical phenomena of the
system. Also the time domain amplitude of the in-
put signal is limited due to possible activation of
system constraints.

To account for a slow drift of the measured data
due to an initial condition which is not a stationary
working point. initial conditions are estimated si-
multaneously with the system dynamics. The static
and low frequent behaviour of the model is hardly
present in the data due to the limited data length.
To accuracy of the model in this frequency range
hard, soft or mixed steady-state constraints are in-
corporated in the identification procedure. This can
be implemented while preserving the linear regres-
sion structure.

The resulting model is consistent with both the step
response data and the input-output data. Hence,
both fast and slow dynamics are estimated accu-
rately. This is obtained with only a limited amount

of data by making fruitful use of prior knowledge of
the system.
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Abstract. The paper considers the problem of identifying uncertainty model sets, de-
fined by an approximated model of the plant to be identified and a frequency domain
bound on the modeling error. It is supposed that the measurements consist of time do-
main samples, collected in closed loop operations and corrupted by a power bounded
noise. The model is supposed to be used for robust control design, whose performance
is measured by a given closed loop H., norm, and the “goodness” of the model is mea-
sured by the discrepancy between the closed loop performance predicted by the model
and the one actually achieved on the plant. It is shown that identifying a model mini-
mizing this discrepancy is equivalent to finding the best approximated model of the dual
Youla parametrization of the plant in a suitably weighted H., norm. Then, an optimal
uncerfainty model is derived for the dual Youla parametrized plant, from which an un-
certainty model for the actual plant is obtained. Such uncertainty model is finally used
for designing a robust controller and evaluating the closed loop performance that can be
guaranteed when the designed controller is applied to the actual plant.
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1 Introduction for a single nominal model, but for all models ob-
tained by given perturbations of the nominal model.
Such model set, called uncertainty model, is intro-
duced to take into account that models derived by
any identification method are always affected by un-
certainty. A quite popular class of uncertainty mod-
els is obtained by considering dynamic perturba-
tions, bounded in the frequency domain. The sim-
plest case is the additive uncertainty model M de-
fined as the set:

In the past few years, a growing attention has been
devoted to set membership methodologies for sys-
tem identification (see e.g. Milanese et al. (1989),
Kurzhanski and Veliov (1994), Smith and Dahleh
(1994), Milanese et al. (1996)), largely motivated
by the important progress in robust control design
realized in the 80’s.

Robust control methodologies aim to design con-
trollers guaranteeing to meet the specifications not

MM W) ={ M(2) +A(2): | Wy () A(2)|| <1}

*The original version of this paper was presented at the ‘1
36th IEEE Conf. Decision and Control, 10-12 December (1)
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where M (z) is the transfer function of the nominal
model, A (z) is the transfer function of the pertur-
bation and Wy (2) is a known transfer function. A
large body of literature is available for designing ro-
bust controllers for such uncertainty models. How-




ever, in most practical applications, such models are
not directly available to the control designer and
have to be identified from actual measurements on
the unknown process Py to be controlled and from
available prior information (or assumptions) on Py
and on the noise corrupting the measurements.
Since the final goal is to guarantee high performance
of the controlled plant, it is of relevance to provide
an uncertainty model able to achieve this require-
ment. In Canale et al. (1998) and Canale et al.
(1996) it is shown how to derive tight uncertainty
models and evaluate the performance that can be
guaranteed in closed loop on the true plant Fy, us-
ing open loop experiments. The methods used in
those papers need that the plant F, to be identified
is asymptotically stable.

In this paper, a method is proposed to achieve the
same goals using closed loop experiments, thus al-
lowing to identify uncertainty models for unstable
plants. An approach is followed that is closely re-
lated to the one in Van den Hof et al. (1996). Here,
in particular, the focus is on deriving tight uncer-
tainty models for the case of measurements cor-
rupted by power bounded noise.

Another interesting feature, shared with few oth-
ers papers (Van den Hof et al., 1996; Hakvoort and
Van den Hof, 1995: De Callafon and Van den Hof,
1997), is that the uncertainty models are tuned to
the closed loop measure of performance that is un-
derlying the control design.

2 Problem formulation

As a general set-up, the linear time-invariant feed-
back interconnection of Fig. 1 is considered, where
u and y are the measurable input and output of the
plant, 71 and ry are reference signals and e is a dis-
turbance signal.

Fig. 1: Feedback configuration.

P,

A performance function of a closed loop configu-
ration composed of plant Py and controller €' is a
system property, such as a sensitivity function, a
complementary sensitivity function, ete. This con-
trol performance function can be formalized as an
element J (Fy, C') in some normed (Banach) space.
The control performance cost is then measured by
the norm ||J (P, C)||, and a corresponding control
design method will provide a controller that mini-
mizes this cost. Many control design methods are
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based on the minimization of a particular perfor-
mance cost. In the paper, the following ones are con-
sidered in detail (Van den Hof and Schrama, 1995):

- Mized sensitivity optimization. The mixed sensi-
tivity design is reflected by the choice

Vil + RC)~

T8O | proiwne)!

€ RHZX!
(2)
with weighting functions Vi, V5 € RH,,, and
the corresponding control performance cost is
|J (Po, C)|| - In the sequel, RH denotes the
set of real rational stable transfer functions.

- H., design based on robustness optimization. This
control design scheme proposed in McFarlane
and Glover (1990) is reflected by the choice

J(Py,C)= m (I+CPR)7'[C I] e RHZ?

(3)
and the corresponding control performance cost
is |7 (Fo, C)

Il oo -

For given model M and controller C' designed on the
basis of M, it holds that:

[ | (M, C)|| — I (Po,€) — J (M, C)
< (P, Ol £
< ||I(M,C)||, + I (Po,C) = J (M, C)|| -
(4)

lesd S

The following terms can be distinguished:

IIJ (P, C)||, is the achieved performance when the
compensator C' is applied to the true plant Pp;

|J (M, C)||, is the designed performance when
the compensator C is applied to the identified

model M;

| (P, C) — J (M, C)|| 4 1s the performance degra-
dation, due to the fact that C has been designed
from M rather than from Fj.

One aims at minimization of the upper bound of the
performance cost in (4). However, this simultane-
ous optimization over both M and C is intractable
by common identification and control design tech-
niques, because they can optimize either the model
or the controller, each while the other element is
fixed. This has led to the introduction of several
iterative schemes making use of separate stages of
identification and control design, see e.g. (Van den
Hof and Schrama, 1995; Zang et al., 1995; Bitmead
et al., 1997) and the references therein. In the iden-
tification stage of the i-th iteration, a new model M;




is obtained by minimizing the performance degra-
dation ||J (Po,Ci-1) — J (M, Ci-1)||,, where Ci_;
is the controller designed in the previous iteration.
In the control design stage, a new controller C; is
designed by minimizing the designed performance
[|J (M, O)|| o
Indeed, a major motivation for iteration is due to
the fact that a caution factor is introduced in con-
trol design based on model M; only. This factor is
used in order to prevent that the designed perfor-
mance is high while the achieved performance may
be poor and even the closed loop stability may be

not achieved. The caution factor is progressively re-
duced as iterations go on and, hopefully, modeling
error decreases.

In order to have a more systematic approach to deal
with modeling errors, in this paper a method is pro-
posed to derive, from measured data and suitable
prior information, not only a model M but also a
tight bounding function Wy, on the modeling error
A = Py — M. In this way, an uncertainty model
M(M, W ;) is obtained of the form (1) guarantee-
ing that Py € ..-’\/I(s'llf‘ II-"M), Such uncertainty model
is suitable to be used by robust control techniques,
giving a controller with guaranteed achieved perfor-
mance.

3 Dual Youla parametrization ap-
proach

A closed loop identification approach is adopted,
based on the (dual) Youla parametrization of all
plants that are stabilized by a given known con-
troller (Van den Hof and Schrama, 1995). Given
the feedback configuration in Fig. 2, it can be shown
that, for given C' stabilizing Fy in closed loop, the
unique value of By that corresponds to the real plant
Py is determined by

Ro=D:'(I+PC) ' (Ph—P.)D;. (5)
In the scheme, C" has right coprime factorization
(ref)iC = NLDZ %, B, is any -:llLXllld_l'Y system stabi-

lized by C mt.h ref P, = N, D_! and

(6)

Now, defining the signals v, z as indicated in Fig. 2
and writing the node equations z = D' (u + N.v),
y = Nyx + Dow and w = 1y + Cry — Cy, it follows

S=D;'(I+PRC)™

that:
v = (D4 PNo) ™ (y - Pow) =
= (De+ PeN.) " [y = Pe (11 +Cra—Cy)] (7)
€r =

(D + CN,) ™" (u+Cy) =
(Dy +CNL) " (71 + Crs)

(8)
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Fig. 2: Dual Youla representation of the data

generating system.

and

v = Rox + Se. (9)

Signals v and z can be reconstructed from closed
loop data through known filters, provided the con-
troller C' is known. Thus, the identification of Ry
forms an open loop identification problem based on
reconstructed measurements v, .

The next propositions show that identifying a mod(l
M of P, minimizing [|J(Po,C) = J(M,C)||, i
equivalent to finding an approximated model R r;-f
Ry minimizing a suitably weighted H., norm.

Proposition 3.1 For given M, let
R=D' (I +MC)™ (M - B,) D,. (10)
Then,
- for the mized sensitivity optimization:
J(Fo,C)—=J(M,C) =

_ll,.].,] e(Ro—R)D;'(I+CP,)"'C

(11)
- for the H., design based on robustness optimiza-
tion:
J(Po,C) = J(M,C) =
= {_‘TC] Dc(Ro—R) D' (I+CP;)~" [0 1]
(12)
Proof: See Appendix. O

In the sequel of the paper, SISO case is considered
and the identification criteria particularize accord-
ing to the following proposition, where any term of
type F (w) stands for F' (jw) or F (e/*) in continu-
ous or discrete time domain respectively.

Proposition 3.2 (SISO case) For given M, let
R asin (10). Then,




- for the mized sensitivity optimization:

IJ (Pa,C) = J (M, C)|lss =

g \/|'.1[th|-+|'- 2 (WYPN:(w) o

= SUP| 5 (W) [T C(w) P (w)] [Ro(w R(“‘H‘
(13)

- for the H,., design based on robustness optimiza-

tion:
1T (Po, €) = J (M, O)l =
Do(w)|14|Clw)]
= sup | p- l”[l[H oYET l [Ro(w)— {w}]‘,

(14)

Proof: The H.. norm of a stable transfer matrix G

i5 defined as:

Gl

= supa (G (w))

w

(15)

where & is the greatest singular value of G, i.e. the
positive square root of the maximum eigenvalue of
GHG.

For the mixed sensitivity optimization, in the SISO
case it results that, from (11):

! {P{_}, C)—] (J'i-’f._(.'} = [ ‘}.‘2[} JD,[%E}?) (R(} — R
and result (13) directly follows from definition (15),
since for a rank-one matrix the H. norm and the
Frobenius norm coincide.

Analogously for the H, design based on robustness
optimization, in the SISO case it results, from (12):

J(F,C)—J(M.,C) = [ Gyl D (Ro—R).

~? —(} D.(1+CPF,)

Si t ingul l f s e 0
Since the singular values o s ~f are g = {
g _C'vj_( 1

and gy = 1+4|C|%, result (14) follows from definition
(15). m|
If the compensator C' is stable, a valid choice for the
auxiliary system P, stabilized by C is N, = 0 and
D. =1, and in this case N. = C and D. = 1 can be
chosen as rcf of the compensator. Then the R.H.S.
of (13) and (14) can |>e rewritten as ||Rg — 1!?||HC
sup,, H{. (w) |Ro (w) — R (w)|, where

- for the mixed sensitivity optimization:
)= Vv

- for the H., design based on robustness optimiza-
fion:

W5t (w 2 H Va@)|?|C

(w)|

(16)

Wa' (w) =

1+ |C ()] (17)

Note that this particular choice of coprime factors
leads to the situation that Ry = —1—%50—(-, and identifi-
cation of Ry actually reduces to the indirect method
of closed loop identification.

4 Set membership identification

In the previous section it has been shown that the
identification of P, is equivalent to the open loop
identification of Ry, which is stable since it is sup-
posed that C' stabilizes the closed loop system. The
SM approach developed in recent years for robust
identification of SISO stable systems from open loop
data can be used to identify an uncertainty model
R(R,W},) of Ry defined as the set:

| < Wi (w),

R(R,Wg) = {R+4:|A W) V“’}

(18)

Then, an uncertainty model JM{;&Tf.Li'.';\TIJ of the
plant Py can be determined on the basis of
R{R, ]JV}})‘

Methods for identifying uncertainty models have
been developed for various specific cases, according
to the type of experimental information (e.g. time
or frequency domain data) and the noise assump-
tions, see e.g. Milanese et al. (1996), Van den
Hof and Schrama (1995) and Fiorio et al. (1997)
and the references therein. Here the case of iden-
tification of SISO, linear time-invariant, discrete-
time systems using time domain data corrupted by
power bounded noise is worked ouf in some de-
tail. It is supposed that Rg is a causal, BIBO sta-
ble, SISO, linear time-invariant, discrete-time sys-
tem with impulse response hfe = {hf, fa.':f”, K 2
that controller C' is known and stable, that known
sequences 1y, 1o are applied and that N output sam-
ples yg,...,yn—1 are measured.

In view of (9), the experimental measurements give
the following information on the impulse response

hEo of Ry:

‘
vV = Z hf" Tp_p+dp

k=0

foré=0,...,N-1 (19)

where vy and a, for £ = 0,....,N — 1, are
known, derived from measureme nts' Ti¢, Tog and yy,
for £ = 0,...,N — 1, through (7)-(8), and d; =
Zi-:o hie¢—k. For the sake of sunpllu{,), zero initial
conditions are considered, but extension to nonzero
case is easy. The noise sequence e is supposed un-
known but power bounded, that is:

e =leg ... ena]” ea:{w"em‘ L leMl2 < }
(20)

Then sequence d is power bounded, sinr:e system S

is stable and —||d‘\ [l2 < sup,, |S (w eV, <




sup,, |D7 (w) [1 + Po(w) C(w)) " le. The transfer
funetion F'(z) = [1 + Fy {.-,J(_ {4}]_1 is not known.
However, F'(z) is the transfer function from 7o to
f=ra—y, N samples of which are known from mea-

sured data. From these samples some estimate F (z)
can be derived and 6 = sup,, |D;} (w) F (w) |e can
be used as an estimate of the power bound on d.
Now the aim is to derive an uncertainty model for
Ry, consisting of a nominal model and a measure
of its modeling error. From equation (19) it follows
that the experimental measurements give informa-
tion on .’.Jf” only for £ < N. Thus, from measure-
ments only it is not possible to derive a finite bound
on modeling error. To this end, some prior informa-
tion on Ry is needed. To make a minimal use of prior
information, a residual type is assumed, l.e. giving
constraints on the tail of A" only. In particular it
1s assumed that Ry € Ky where;

Kr={R:|hf| < Lp*, Vk> N}

with known L > 0 and 0 < p < 1. For a discussion
of such type of prior information, see e.g. Giarré ef
al. (1997).

The Feasible Systems Set, i.¢. the set of all systems
consistent with prior information and available mea-
surements. is then given by:

(21)

F55={h" € K : o=|lv™ — Xy Twh"® ||z < 6}
(22)
where vV = [y ... vn-1]", Ty is the lIllIl(‘dtl(}n
operator defined as Tyhf [h’q g P IJ and

Xy is the lower triangular N x N Tcmp]:t? matrix
formed by the sequence zV = [zo .. rN__,]

The F'SS is the smallest set of systems that, on
the basis of assumed prior information and available
measurements, is guaranteed to include Ry, thus
representing the “best” possible uncertainty model
for Ry. However, this sef is not in a suitable form
to be used by available robust design techniques.
Then, the smallest uncertainty model of the form
(18) is looked for, such that F'SS C R(R, Wp). This
is obtained by computing R as a central (%tll‘ﬂdt?
i.e. the center of the minimal ball in the || - || norm
including F'SS with radius:

sup [|R— R||Ye —mf Sl_l]) ||R R||Ye.
REFSS
(23)

The quantity r is called (local) radius of information
in SM identification literature and represents the
minimal error that can be guaranteed on the basis of
the given prior information and measurements. For
this reason, R is called (locally) optimal estimate of
Hy.

Then the bounding function Wj (w) is obtained
by evaluating supgepss |R (@) — R (w)]. The next
proposition pl‘c:virfleé the solution to this problem.

i

r=
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Proposition 4.1
i) The central estimate R is the FIRy system with

impulse response hit = [i.["]‘* h'ff 105055441 suech
that: A
Trh = X oV (24)
i) For any w € [0, 2x], it results:
Tig .
N6o (S () - 2 < sup |Rw)-RW)] <
1'—p = RerFss
< VN7 (2 (w)) 1Lp (25)
—P

where a(X(w)) is the maximal singular value of

E(WJ Qn(w) X',
Onv(w) = Re(Tp(w))” "fm[‘l' (@)TT and
W u))— [1 it L Jlf\—lh]_ =

Proof: From definition (22) of F'SS, it follows 1hat
{I—TN]FS'H = U - T\)[\;\- c111([ TNESS = {hN ¢
RN : (A INERL XA -\—‘w‘}< N§*}
which is an ‘:’“I])‘a{)l(l with center in .\'I,\_ v, Then
it follows that R is a center of symmetry of FSS.
Thus, i) follows from the well known result that a
center of symmetry of a set is its Chebiceff center in
any norm, see e.g. Kacewicz et al. (1986).

Let RY (w) be the z-transform of Twh®. Then:

sup |R(w)—RNw)|- < 5up |R(w) - R(w)| <
REFSS eFSS
< sup |R(w)— h’“(w)[+£*’—.
REFSS

Since R(w)—RY (w) = ¥y (w)Tn (AR —hE) it results

|R(w) — In (@) T (RR — hE)||5. Then:
sup |R(w) = RN (w)|=
REFSS .
= sup [ @) (X ' z;"\'—TNh.“)HE =
A uMXy Ty hB || < VNG
= sup 1% @) X5 adN||s.
dNV:|dN |l <V NS

(26)
The R.H.S. of (26) is VN4 times the induced £y
norm of matrix ¥ (w) = Qu (w) X', which is well
known to be 7 (X (w)), thus proving ii). O

An uncertainty model 'R(I?.,WR) can be obtained
by taking R as given by i) of proposition 4.1 and

Lp™

VN5 (2 (w)) + —

Wi (w) = (27)
Note that L and p represent some information about
the “memory” of the closed loop system. If the du-
ration of the experiment is not shorter than the
“memory” of the closed loop system, as needed
for obtaining acceptable identification errors, then




the term j‘!—"_% is typically negligible with respect to
VN5 (E (w)). If this is the case, the derived uncer-
tainty model is close to be the smallest uncertainty
model of the form (18) guaranteed to include Rg.

Given the uncertainty model R(R, W) of Ro, the
corresponding uncertainty model ,M(_fﬁ'._ W) of the
plant Py is then given by the following proposition.

Proposition 4.2 If C 1is the

choice N =0, D; =1, N,

stable then, with
= Cland D.=1:

Ro€R(R,Wp) & Po€ M(M, W) (28)
where
- 1 (1. =GB
s L S o L PSR
C \|1-CR}? - |CPPWZ
W (w) : ‘;Pf"- == (30)
' |1 - CRJ? - |CPW2
Proof: See Appendix. O
Py M
Note that Ry = ———, but R# ————.
TR Tawige 2 T D s M0

Making use of such uncertainty model, a new com-
pensator can be designed, using robust design meth-
ods. For example, H., design techniques allow one
to compute a controller C'ay such that

Cp = arg min [|J(M,C)||s (31)
Celry

where C,s is the set of all controllers guaranteeing
robust stability with respect to any system in the
uncertainty model M (M, Wire)-

Standard H.. design techniques require that model
M and model perturbation bound W, have ratio-
nal transfer functions. Then, Wy has to be chosen
as a rational transfer function u\(.lbcmndlllg (27),
by using e.g. the method in Scheid et al. (1991). Its
order has to be kept low because it affects the order
of M and of W, which in turn affects the order of
Caq. Indeed, even if the order of W is kept low,
the order of M is large, greater than NN, since R has
transfer function of order N. If a low order model is
desired, order reduction techniques can be used to
derive from R an approximated model R, of order
n < N. In particular, the closed loop approxima-
tion method (Ceton et al., 1993) may be appropriate
here. Estimate R, is no more optimal, giving the
identification error:

B(R,) = sup [|R.-R|%¥¢ =ar

REFSS

(32)

where o > 1 measures the degradation in the iden-
tification error with respect to the radius of in-
formation, which is the minimal guaranteed error.
Straightforward computation gives:
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||Rn ) ﬁ"“&(

a<l+ : —. (33)
= VNésup, Wa'! (w)a (2 (w)) — IT_}L‘;

As n = N, R, is close to be optimal, i.e. a — 1.
Indeed, typically it results that yet for moderate
values of n, || R, — R||%e is small with respect to r
and then o = 1.

In order to derive an uncertainty model of the
form R(R,“DIR ), a bound on |1F1’,1 (w) — Ro(w)]
is needed. The following result directly follows from
proposition 4.1.

Proposition 4.3 For any w € [0, 2], it results:

VNG5 (8 (w)) = ¥25 = |Ra (W) = R(w) |
< sup |Ra(w)-RW)| <
REFSS

< V/Nés (T (w)) + ’T% +|Rn () — R(w)].

(34)

Typically, the above bounds are sufficiently tight for
practical purposes. If needed, tighter bounds can be
derived by use of theorem 2 of Giarré et al. (1997).
By use of proposition 4.2, a “reduced order” un-
certainty model _f\/l‘(x":f,,,lfl"lwﬂ) for Py can be de-
rived from the “reduced order” uncertainty model
R(R,;,IV ) for Ry, where Wy (w) is a rational
transfer function overbounding l;he R.H.S. of (34).
A “reduced order” robust controller can be derived
using in (31) the uncertainty model .M(*U,;, W Nt )-
Since it may be convenient to choose n so that
||Rn—R||¢ is sufficiently small to ensure that a = 1
and the bounds of proposition 4.3 are reasonably
tight, the complexity of the obtained controller may
be not as low as desirable. Then, order reduction
techniques can be used to derive a controller C', of
further reduced order. The performance degrada-
tion due to the use of the reduced order controller
instead of the full order one C'a4 can be evaluated by
considering the robust performance J(C%,) achiev-
able by C'}, defined as:

J(CM) = ||J(M,

sup Li)llso-

MEM (N, W)

(35)

Robust performance I(C‘" ) is the minimal perfor-
mance that it can be guaranteed, using the available
information, when controller C'}; is applied to the
unknown plant Py. A method for the computation
of J(C%,) is proposed in (De Callafon and Van den
Hof, 1997), requiring a sequence of p-tests which
may be computationally demanding. The following
proposition gives bounds on J(C},) that can be eas-
ily computed. Alternative bounds can be found in
Van den Hof et al. (1996).




Proposition 4.4

17(M ,C )| oo—sup W uu){\/_rm( (_‘,_))+£fi]<

R L—pil —
<J(CHy) <
TV ,CEy) oot sup W X w-}[\/_ b +,J7]
kK (36)

Proof: From propositions 3.2 and 4.2 and from
(27), the next inequalities directly follow:

O N= sup
MEM(M. W)

UIVECE oot sup  [JMCR) ~ HM.CR)o
MeM(M W)

IH(M.CL)lse <

| AMCL ) |t sup supWg (w) |R(w)—R(w) |

RER(R,W;) ¢

| HMCE) || oot+supWe (w) sup  |R(w)—
W RER(R,W)

‘{w}[vﬁaa (z{..,:mhﬁ] .

R(w) |

| HM.CL) ot supWa —

Since analogous inequalities hold for the lower
bound of J(C,), the claim (36) is proved. |

Appendix

Proof of Proposition 3.1.
For any matrix A, B and [ (identity matrix) of com-
patible dimensions, the following equalities hold:

(I+AB)"AB (A1)
A(I+BA)™ (A2

AB (I + AB)~
(I+AB)"' A

as it can be easily verified pre- and post-multiplying
both members of (A.1) by I 4+ AB, and multiplying
both members of (A.2) by I + AB on the left side
and I + BA on the right side.

For the mixed sensitivity optimization, from defini-
tion (2) it follows that:

J (P, C) — J (M,C) =
Vi [0+ PC)™ = 1+ M0) 7]

7 [pnc I+ PC) ™ = MC (I + MC)"}
But:

(I+PC) -~ +MC) =
(I+PBC) (I +MC)(IT+MC)™" +

— (I +PoC) ™ (I + BC) (I + MC) ™! =
—(I 4+ PoC) Y (Po=M)C(I + MC)™ (A.3)

Il

and, applying the equality (A.1):
PBC(I+PsC) ' —=MC(I+MC)™! =
= (I+PBC) ' BC - MC(I+MC)™ =
= (I +PC) ' PC(I+MC)(I+MC)™ +
—(I+ PC) ' (I + PoC)MC (I+MC)™* =
= (I+PBC)  [PC (I +MC)+
—(I+RC)MC)(I+MC)™ ! =
= (I+PC) ' (PBh-M)C(I+MC)' (Ad4)
so that:

J (P, C) = J(M,C) =

= [ 1‘ ] (I+ PsC) " (Ps—M)C (I +MC)!
(A.5)
From definitions (5) and (10), it results that:
Ro—R=
=D; [{m’ C) (Py—B) - (I+ MC')_I(;\I—.I?I_}]Dm L
=D; i{ (I+P,C) ' Po— (I+ MC)'M
s [(H-Pocr)“—u+,-1-f(.')“] P.}D. (A6)
Applying equalities (A.1) and (A.4):
(I+PC) " Po—(I+MC) ' M=
= [+ PC)™ RC - (1 4+ MC)™ 7ol Ke

= [Pr,c'u PO —MC(T &+ M(.*}_'] o
= (I'+ PC) ' (Po— M)C(I+MC)*C~! (A.T)

and then, by substitution of (A

(A.6):

.7) and (A.3) in

Ry —R=
I+ PC) (P - M)C -
(I+MC)™' (C™*+P,)D
L (I 4 PoC) =" (By — M) C -
(I+MC)'C ' (I+CP,)D,

and also:

(I +PC)~" (By— M)C(I+MC)C! =
=D.(Ry— R)[(I + CP;) D]~ =
=D, (Ro— R)D;* (I +CP;)™? (A.8)
which, substituted in (A.5), gives the result (11).
For the H.

design based on robustness optimiza-

tion, from definition (3) it follows that:

J(M,C) =

J (Fo,C) —




Foll +CP)T =Ml CM)T |
i e S c [[eT].
(I+-CPy) " = (I+ €M)
(A.9)

Applying equalities (A.2) and (A.4), it results that:
PBI+CR)y ' -~MUI+CM) ™ =

= [H;, (I+CPR) 2 C-M(T+CM)™ C] o

= [RoU+RO) -MCU+ Me)| o =

= (T4 PO (Po= M)CT+MQC) - C™
and, from (A.2) and (A.3):

(I+0P) = (T+CM) " =
= [a+cr)yc-+om™ C] ¢ =
_ Vg [u + PG — (T + M(.-‘]"'] Gl=
= —CI+PC) " (By— M)C I+ MC)C!

which, substituted in (A.9) and exploiting (A.8),
give the result (12). O

Proof of Proposition 4.2.
From definition (18), the uncertainty model
R(R, W) is given by:

R(BW) = {n:fua:m(wgn;—i W), \m}:

- {R:|R{-,L:)—fi“‘(u;)|3§ﬂ'}f (w), vw}. (A.10)

Since € is supposed to be stable, from definition
(10) it results that, with the choice D. =1, N, =0
and D, = 1:
M
R

1+ MC
For any w, let us consider the inequality in (A.10),
where the dependence on w is omitted:

IR—RP2<W; &

(a4 — B (e —R) < Wi &
[M(1-CR)-R|[M(1-CR)—R]' <W2[1+MC|*&
M M*[|1-CR*~W2|C|*] - M[R(1-CR)*+ WZC*]"+

~M*(R(1-CR)*+W2C*|+|R* < W} &
MM* — MM* — M*M - MM* < W% @
(M- M)(M - M) <W: &
|M — M <W?

with M and Wy, defined by (29) and (30) respec-
tively. Then, there is a one-to-one mapping between

the elements of R(R, W) and the elements of the
uncertainty model M(M,W ;) defined as the set:

ML Wy, }={,nef | M (W)= M (w) P <WE (W), Vu} =
={M = N+ A |AW)| Wy (@), Vw}

thus proving the claim. o
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Abstract. This paper investigates the application of LMI-based mixed objectives design
techniques to a CD player mechanism. In this control design problem the main goal is
to keep the time domain amplitude of a tracking error signal bounded in the presence of
disturbances and norm bounded uncertainties. To this end we identified in the H oo nOTmM
and in the so-called generalized H> norm suitable measures to represent our specifications.
The resulting design is shown to exhibit significant performance improvements if compared

to a single-objective Ho, design.
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1 Notation

Due to the lack of a standard notation, we use
[[T'|2=0c to represent the generalized Hs norm of
the system 7. This notation reflects the fact that
this norm is the induced gain of the system from L,
to Lo.. For the system gain from from Ly to Ly, we
prefer the standard notation ||T')|sc-

2 Introduction

A Compact Disc (CD) player is an optical data
storage device that decodes and reproduces binary
coded information. The information signal is stored
in a spiral shaped track on a reflective disc. Start-
ing from the original audio application, the field of
use of such a device has been gradually enlarged to
new high-performance applications, like CD-ROM
or the recent DVD-ROM. A demand emerging from
these new applications is to obtain a faster data
readout and a shorter access time, together with
a higher density of the data on the disc. The way
to achieve these improvements is an increase of the
rotational frequency of the dise, which requires a

¥The research of Marco Dettori is sponsored by Philips
Research Laboratories, Eindhoven, The Netherlands
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corresponding increase of the bandwidth of the me-
chanical servo-systems. The presence of parasitic
resonances at high frequencies, together with the
variations occurring from player to player (due to
the manufacturing tolerances in mass-production)
lead to the necessity of designing robust controllers.
In this paper we will investigate the possibility of im-
proving the track-following and the focusing behav-
ior, by applying recently developed mixed objectives
controller design techniques. The name mixed ob-
jectives (Bernstein and Haddad, 1989; Khargonekar
and Rotea, 1991) stands for the fact that differ-
ent performance specifications (either in the fre-
quency or in the time domain) are posed on different
channels of the plant, such that the transient and
steady state behavior, disturbance rejection, and ro-
bustness against structured and unstructured uncer-
tainty can be taken into account. Several techniques
have been proposed in the literature to handle this
kind of problems. We can distinguish two main ap-
proaches. The first one uses the Youla parametriza-
tion of the controller to cast the problem in an
LMI framework (Sznaier and Sideris, 1991; Scherer,
19956). This approach allows to solve the mixed
problems for independent objectives (in this case the
name multi-objective problem is used), but presents



Fig. 1: Schematic view of the CD mechanism

a severe disadvantage. It makes use of certain ap-
proximation techniques; improving the accuracy of
the approximation lets the order of the controller
grow drastically. Often optimal controllers turn out
to be infinite dimensional. The second approach
overcomes this difficulty at the price of introducing
a dependence among the different objectives. We
chose to adopt this second approach, which leads to
rational controllers of the same order of the gener-
alized plant. As shown in Masubuchi et al. (1995),
Scherer (1995a), Scherer et al. (1997), the formula-
tion of the desired objectives for the closed loop sys-
tem with analysis LMIs leads directly to synthesis
LMIs in terms of transformed versions of the con-
troller parameters that can be easily solved. We
are mainly interested in showing that mixed control
design is a useful tool for the designer, providing
him a framework to express every specification in
a "natural way”. This avoids the difficult (and of-
ten to some extent arbitrary) process of translating
all the requirements to the same setting (typically
the frequency domain). Being this our purpose, in
this paper we will not care too much about other
important aspects, like for example representing the
model uncertainty in the least conservative way. All
these aspects can, in fact, be incorporated in the de-
sign, at the price of increasing its complexity.

3 System description

In Fig.1 a schematic view of the CD mechanism is
shown. The rotation of the disc is produced by a
turn-table DC-motor. The rotational velocity varies
according to the position on the disc of the track
that is being read. The rotational frequency there-
fore varies approximatively from 8 Hz (innermost
position on the disc) to 4 Hz (outermost position).
Track following is performed by a radial arm at the
end of which an optical element is mounted. A diode
in this element generates a laser beam which is fo-
cused, through a system of lenses, in a spot on the
information layer of the disc. Focusing action of this
spot is performed by an objective lens that can move
in a vertical direction. A system of four photodiodes
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K(s) H(s)

Fig. 2: Block diagram of the CD mechanism

provides position error information, which are the
only signals available for control. In fact, neither
the track position nor the true spot position can be
measured. A controller is needed for accurate radial
and focus positioning of the laser spot. In current
implementations, the radial and the focus directions
are controlled using two independent SISO schemes.
This is allowed by the relatively low dynamic inter-
action between the two loops. MIMO control design
has been investigated for the CD player in Steinbuch
et al. (1994) using p synthesis.

In Fig.2 a block diagram of the CD mechanism is
shown. Each signal is a vector with two components,
the radial and the focus one. H(s) is the transfer
function of the mechanical actuator which is con-
trolled by the current i and generates the laser spot
l on the disc. G, is the gain of the optical pick-
up mechanism which converts the displacements ¢
between track and spot in an error signal e. The
controller K processes this error signal and gener-
ates the current 7.

4 Modeling

The only transfer function that can be identified is
the one between i and e, that is P(s) = G H(s).
The gain of this transfer function varies in a non-
linear way according to the position on the disc of
the track that is being read, due to the movement
of the radial arm. In our model we do not consider
this effect, but we assume that the laser is reading
a track in the middle of the disc, corresponding to a
rotational frequency of 6 Hz. As already mentioned,
the track position 7 is not known; we will regard it
as a disturbance signal d = G acting at the out-
put of the plant P(s).

In Fig.3 the frequency response (amplitude) of a
12" order model of P(s) is shown. This model
has been fitted on a frequency response obtained
by spectrum analysis techniques (de Callafon et al.,
1996). The MIMO fit has been performed using
the toolbox Freqid (de Callafon and Van den Hof,
1996), which implements an iteration based on the
Sanathan-Koerner procedure to minimize a least
square criterion. The chosen order for the model
appeared to be the best trade-off between the con-
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Fig. 3: Frequency response of the 12" order model
of P(s)

flicting requirements of accuracy in representing the
real system and low complexity to make a sensible
control design possible. This last issue, as we will
see, is critical in LMI-based designs.

At low frequencies, the diagonal elements behave
like double integrators, due to the rigid body mode
of the radial arm ((1,1) element) and the optical
pick-up unit ((2, 2) element). At higher frequencies,
parasitic dynamics appear due to mechanical reso-
nances of the radial arm and the mounting plate,
and due to flexible modes of the disc. These reso-
nant modes are especially present in the radial di-
rection, producing two peaks at about 4 and 7 kHz.
The main sources of uncertainty we want to account
for are the unstructured difference between model
and measurements and the variation in the locations
of the parasitic resonances. The latter is an effect of
manufacturing tolerances in mass production which
manifest themselves as variations in the frequency
response from player to player. Although this sort
of uncertainty can be better described as real para-
metric, in order to not increase the complexity of
the design we will consider it as unstructured norm
bounded perturbation.

5 Performance specification

The main issue in the control of a CD player is to
guarantee a hard bound on the time domain am-
plitude of the position error signals. To avoid loos-
ing track, the maximum allowable error should be
0.1y in the radial direction and 1um in the focus
direction. These bounds should be attained in the
presence of disturbances. In our design we will con-
sider two major sources of disturbances, one for each
direction: eccentricity of the track and undulation of
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the surface of the disc. By standardization of Com-
pact Discs these quantities cannot exceed 100zm
and lmm respectively. From these data we derive
the crucial specification:

In both directions a time domain attenuation of the
disturbances of a factor 1000 should be achieved.

So far, the approach that has been followed to tackle
this problem is to translate this requirement into
frequency domain specification on the shape of the
sensitivity function S = (I + PK) ! (see e.g. Stein-
buch et al. (1994)). This translation is based on an
assumption made on the unmeasurable track signal:
its spectrum is assumed to be a series of pulses cen-
tered around the rotational frequency and its higher
harmonics, with an amplitude that is decaying at a
rate —40dB /dec. Experience showed that, in order
to meet the time domain specification for the error,
the sensitivity should stay below —60dB at the rota-
tional frequency and exhibit sensible attenuation up
to 200H z. Its slope cannot be larger than 40dB /dec.
in this frequency region. Obviously, this disturbance
attenuation requirement puts a lower bound on the
achievable closed-loop bandwidth. High bandwidth
is undesirable for several reasons: it implies high
power consumption (critical especially in portable
use), amplification of audible noise and, last but
not least, poor robustness against variations in the
resonance peaks and unmodeled high frequency dy-
namics. As a consequence the wish is for the lowest
possible bandwidth, compatibly with the required
disturbance suppression. This translation of the
specifications into the frequency domain is, never-
theless, not completely satisfactory. Being based on
a rule of thumb and not on a thorough comprehen-
sion of the interaction between time and frequency
characteristics, it can in principle lead to conserva-
tive designs. The harmonics of the track disturbance
spectrum will, in fact, sum up in an unknown way
(which will depend on the unknown phase behav-
ior) to the error in the time domain. Our purpose
is, therefore, to approach the problem by taking its
inherent time-domain nature into account.

6 Problem setting

The first relevant aspect in control design is to
choose the criterion which is suitable for the problem
at hand. An #., criterion appears quite a natural
choice to take into account robustness aspects and
to shape (some of) the relevant closed-loop transfer
function(s) in order e.g. to achieve a specified band-
width. On the other side, the generalized Hs norm
is convenient to express the disturbance rejection
specification. We recall that this norm is the gain




Fig. 4: Control scheme for design

of the system from L, to Lo.. Its value has, there-
fore, the interpretation of a worst case time domain
amplitude amplification for inputs of finite energy.
In choosing this norm we are implicitly making a
modeling assumption, namely that the disturbances
acting on the system are signals of finite energy. An
alternative assumption could be modeling the dis-
turbances as bounded amplitude signals and using
the peak-to-peak norm. What played an important
role in the choice of the first option was the fact
that, at present, there are no LMI algorithms avail-
able to minimize the peak-to-peak norm. In fact, it
is possible only to minimize an upper bound of it
(see Scherer et al. (1997)) that can be quite loose.
As a side remark we like to stress that disturbance
modeling emerges as a key issue. Unfortunately, this
is not an easy task for the CD player: the track ec-
centricity is not measurable and it is highly attenu-
ated by the control system (by a factor 1000), what
makes it hard to reconstruct it from the error sig-
nal.

In Fig.4 the scheme of the generalized plant that
we wanted to adopt for this design is depicted. The
blocks W), Ws, and W3 represent the design weight-
ing functions, wy, ws and w; are the exogenous in-
puts, z1, zo and z3 are the performance outputs, y
is the measured output and u is the control input.
We consider two ;}le(}l‘nlance/um ertainty channels:
Ty : (wf,whT - (2F,21)7 and T : w3 — 23. We
have the following state space representations for
the generalized plant

3] 1
21 A | By By B wy
( 2 ) = | Ca|Day D2 Ep ( w2 )

z3 G ‘ B0 s

Y u
(1)

the controller K
tx\ _ { Ak | Bk T ;

( u ) » (CK | Dk ) ( y ) (2)

and the closed loop system
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2 "y w
(2 ) e

z3 w3

(3)
Notice that the closed loop matrices are affine func-
tions of the controller parameters Agx, Bx, Cx and
Dp.

7 He design

As a first step we consider only the H., norm of the
transfer matrix T;, that is

|-

where § = (I + PK)~! is the sensitivity function,
and we design a controller that minimizes this norm.
This is a standard mixed KS/SP H, design which
is suitable to achieve robust performance (expressed
in terms of the transfer function SP) in presence of
unstructured additive uncertainty (see e.g. Skoges-
tad and Postlethwaite (1996)). The weighting ma-

trix W is
e TUu{S) U
Wi(s) = ( 0 wy(s) )

5(s+10%-27)(54+1.2-10%-27) (s + 5-10°-27)
(8450-27) (s+10*-27) (s +1.1-10*.27)

WL KS Wi(I+ KP)!
—WaS —W,SP

o

where

wlis)=

has high-pass characteristics (the two high frequent
poles are only needed to render it proper). It re-
flects the size of the additive uncertainty at frequen-
cies above 600H z and it is also used to force high-
frequent, roll-off of the controller which limits the
bandwidth.

The weighting matrix

izl 'I-Urnd(s) 0
Wa(s) = ( 0 Woc(s) )

where
0.25(s + 75 - 27)(s + 100 - 27)
'wrnrf(s) et z P P 3
(s+0.1-27)(s+ 25 2)
0.25(s+ 70 2m)(s + 80 - 27
opunts) = 225 ) )

(s +0.15- 2)(s + 20 - 27) °

specifies the performance independently for the ra-
dial and the focus directions. Its elements have
low-pass behaviors with almost integrating action to
achieve disturbance suppression and zeros chosen in
order to limit the peaking of the sensitivity (These




weighting functions are the same used in the design
of Steinbuch et al. (1994)). We have performed this
first design with the function hinfmiz in the LMI
Control Toolboz (Gahinet et al., 1995). The results
are an optimal H, level vf = 5 and a controller K.
which we will use for comparisons with the mixed
objectives one.

8 Mixed design

8.1 Formulation

The idea is now to impose on top of the H., design
the generalized H; specification on the channel T5.
In this way we use the extra freedom which is left af-
ter the H., optimization to achieve the desired time
domain behavior. On the basis of this observation
we can realize that full advantage of mixed design
can be taken only in the MIMO case. In fact, in the
standard SISO design problems, it is known that the
set of optimal H ., controllers is a singleton. Hence,
also for suboptimal designs one expects very little
freedom to satisfy extra constraints.

We choose the weighting W as:

el (s) 0
Ws(s) = ( pn wy(s) )
where
ey2
wp(8) = e

$24+1.2-27-8s+ (2r-6)*

[ts role is to shape the track disturbance, whose
spectrum is assumed to be the one described pre-
viously in section 4.

Ideally we would like to solve the real multi-
objective problem (i.e. the objectives are mutually
independent), that amounts to minimize ||7%|2— o
over the set of all stabilizing controllers that render
[T |loo < 7y satisfied. To explicitly formulate this

minimization, we need to recall two analysis results.

e The closed loop system (3) has ||Ti||lo < 7 if
and only if there exists a matrix A7 > 0 such
that

ATAH + XA A1By C;r
B?}k’l -l ’D;‘r. <0 (4)
Cy D =il

o The closed loop system (3) has ||T2]l2—0c < 72
if and only if there exists a matrix A5 > 0 such

that
) <0

TAT Xy A A XoB
(A pistiela 2057 (5)

Bg.rfz —’}'gf
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Xy CT
( Ca ‘r-zf) ZiR )
Dy = (7)

The multi-objective problem amounts to minimize
72 under (4), (5), (6) and (7) for v, = ¥¢. However
existing algorithms allow to solve the synthesis prob-
lem only after introducing an extra constraint which
couples the objectives. We have in fact to try to
satisfy the different performance requirements with
a common Lyapunov matrix (see Scherer (1995a),
Scherer et al. (1997)). In this way we are intro-
ducing conservatism in our problem, whose amount
is hard to quantify. The introduction of this con-
servatism constitutes the difference between multi-
objective and mixed objectives problems. As a prac-
tical effect, with this extra constraint the minimiza-
tion written above turns out to be infeasible. We
suggest, instead, to solve the modified problem:
min avy; + bys

(8)

over the constraints (4), (5), (6), (7) and &} = Xy =:
A'. Varying the coeflicients a and b we can vary the
relative weight of the two criteria in the minimiza-
tion and see what is the best trade-off between them
(measured in terms of the performance achieved by
the corresponding controllers). In our design the
choice a = 10 and b = 1 appeared to give the most
satisfactory results.

8.2 Synthesis

The minimization in (8) is clearly not convex in X
and the controller parameters. We need therefore to
convexify the problem by applying the formal block
substitution procedure described in Scherer et al.
(1997) to get LMI’s in the transformed set of vari-
ables X, Y, K, L, M and N. The final formulation
becomes;:

Minimize 10y; + 72 over the constraints (9)-(12).

This minimization can be coded in one of the avail-
able software packages. We used LMILAB of the
LMI Control Toolbox (Gahinet et al., 1995). Notice
that the equality constraint (12) can not be directly
handled by the solver; in our case, however, due
to the structure of Ds, Es> and F it was automat-
ically satisfied. Once a solution (if any) has been
determined, one has only to reconstruct the original
controller parameters by applying the inverse vari-
ables transformation (Scherer et al., 1997).

However in our design the solver was unable to re-
turn a solution, running out of memory at a certain
moment of the iteration. The problem has been




AX + XAT + BM + (BM)T KT + A+ BNC B, + BNF, (CiX +EM)T
K+ (A+ BNCO)Y ATY + YA+ LC+(LC)T YB,+LE (Ci+ENC)T <0 (9)

(By + BNF;)T (YB, + LFy)" -l (Dy + EyNF)T

Ci\ X+ E:M Ci + EyNC D, + E;NF, —y 1
AX + XAT + BM + (BM)T K* + A+ BNC Bf + BNF;
K+ (A+ BNC)T ATY + YA+ LC+ (LC)T (¥YB)T +LF, | <0 (10)
B; + (BNF,)T Y B, + (LFy)T —al
X I (CaX + B2 M)T
I Y (Co+ E;NCO)T | >0 (11)
CoX +EaM Ch + EsNC Yol
Dy + EosNF =0 (12)
% Flequ;iy [Hz} i

Fig. 5: Modified control scheme

identified in the too high number of decision vari-
ables involved. Considering that the generalized
plant (combination of P(s) and the three weight-
ings) has order 26, the number of decision variables
involved in the optimization procedure was 1488
(351 independent entries each for X and Y that are
symmetric 26 x 26, 676 for K, 52 for L, 52 for M, 4
for N plus v, and ~;). There are two possible ways
to overcome this obstacle. The first one is trying to
further reduce the order of the system and/of the
weightings, at the price of loosing realism in the de-
sign. The second one, that we adopted, is applying
techniques based on the so-called Projection Lemma
to eliminate variables from the LMI's. In particular,
the elimination of the matrix K yields a saving of
676 decision variable. But in order to do that, we
have to change the structure of the control scheme.
Elimination of K is, in fact, possible only if the ex-
ogenous input is the same for every channel (i.e.
The modified control scheme is
shown in Fig.5. The Hoo channel w — (2§, 27)T has
now an S/KS structure and the weight W, should
be modified to express performances in terms of S
and not of SP anymore. Regarding the generalized
‘Hs channel, the weight W3 is moved from the input
to the output (loosing its interpretation of distur-
bance shaping filter). With this scheme the compu-

W = Wy = wsy).
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Fig. 6: Frequency response of K (dashed line) and
K, (solid line)

tation was successful, giving a controller K5 which
ensures an He level 44 = 8.7 for T and a general-
ized H, level v4 = 3.4 for 75. In Fig.6 the amplitude
plots for the two controllers K (dashed line) and K,
(solid line) are shown. We see that K5 has higher
gain at low frequencies, achieving a better distur-
bance suppression, and more aggressive behavior at
high frequencies, resulting in a higher closed-loop
bandwidth. These observations are confirmed by
the analysis of the sensitivity transfer function in
Fig.7. The mixed design exhibits a higher distur-
bance rejection and a lower peaking, managing to
spread the area of S above 0 dB (whose amount
increases with the disturbance attenuation, accord-
ing to the Bode sensitivity integral relation) over
a wider frequency region. This second feature im-
plies less perceptible amplification of audible noise.
But our main interest is in the comparison of the
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Fig. 7: Sensitivity function for the H. (dashed
line) and the mixed (solid line) designs

time domain properties of the two designs. In Fig.8
is represented the response to a step on the distur-
bance track. This signal is relevant in the CD player,
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Fig. 8: Response to a disturbance step for the H.,
(dashed line) and the mixed (solid line) de-
signs

occurring when there is a command from the user
to jump to another track; obviously this should be
done in the shortest possible time. The mixed con-
troller performs sensibly better both in terms of the
overshoot and the settling time. In the radial direc-
tion the overshoot decreases by a factor of 25% and
the settling time by a factor of 40%. In the focus di-
rection the improvements are respectively 45% and
50%. Also for the off-diagonal elements the situa-
tion is better (the exception being a higher negative
peak in the (2,1) element, but the relative value is
quite small). As a last comparison we show in Fig.9
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Fig. 9: Radial and focus error for the test distur-
bance for the #., (dashed line) and the
mixed (solid line) designs

the radial and the fomv-; responses to the test dis-
turbance w(t) = Zi_] = sin(2nm - 61 + ¢, ), which
represents the model hypothesized for the track ec-
centricity and the undulation of the disc (¢, is a
random initial phase uniformly distributed between
0 and 27). The plots show that the peak of the
error achieved by the mixed controller is about 2
times smaller in the radial direction and about 6
times smaller in the focus.

9 Conclusions

The most important conclusions with respect to the
use of mixed objectives LMI-based techniques to
this design problems are:

o Mixed design techniques give a powerful tool to
express ”in a natural way” a wide range of per-
formance specifications. A possible objection




can be that the same design results could have
been obtained with a single-objective Hoo de-
sign, with a careful choice of the weighting func-
tions. The point is that this choice is the most
difficult part in a design and is often the out-
come of a long trial-and-error procedure. Using
mixed design techniques the way to represent
the specifications is in a considerable amount
translated into the choice of the criteria, sim-
plifying the designer’s task.

e The constraint A} = A5 introduces strong con-
servatism in the design that can lead even to
infeasibility of the problem. It is therefore
not convenient to try to impose all the objec-
tives in one shot, but better to impose them
one at time in a sequential design procedure.
This way of proceeding can be regarded as a
Lyapunov shaping technique: one starts with
the most important specification to impose and
solves the corresponding single-objective prob-
lem (that can be done without conservatism).
Then, keeping the already achieved properties
as (not too tight) constraints, one can impose
sequentially the other specifications to exploit
possible freedom which is left. In this way the
Lyapunov matrix A is shaped to realize addi-
tional specifications.

¢ The available software to solve LMIs puts se-
vere bounds on the size of the problems that are
tractable. This results in a difficulty in doing
designs for realistic (not too low order) models
and/or in a limited flexibility in choosing the
design structure if we need to eliminate LMI
variables.

e The software appeared also to be extremely
sensitive to numerical conditioning of the data
(much more, for example, than the H.. solver
of the u Toolbox). Particular precautions have
then to be taken, like moving the poles in 0
a bit on the left (e.g. —107?), time-scaling of
the data to restrict the numerical range, per-
forming closed-loop frequency-weighted model
reduction (see Wortelboer (1994)).
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Abstract. This paper considers the problem of indirect measurement (and control) of
the coordinates of a Stewart platform. The Stewart platform is a six-degrees-of-freedom
robot with (6) parallel actuators to be used as a flight simulator. Usually the pose of the
system is indirectly measured by the lengths of the actuators. Although the mapping from
platform coordinates to actuator length is well defined, it is not injective and therefore the
inverse transformation has several solutions globally. Over a subset. a Newton-Raphson
(NR) iteration can be used to calculate the local solution. This forward kinematical
problem has to be solved to apply model based feedback. Convergence properties of this
iteration are considered in this paper. Another important related issue is the exclusion of
singular points over the work space of a Stewart platform (with limited actuator stroke).
This is a necessary condition for convergence of the NR-iteration and cont rollability of
this kind of systems. The parameters of the new Simona research simulator are used as
an example to prove exclusion of singular points from the work space of a parallel robot
and infer convergence of the NR-scheme. With guaranteed fast convergence at a sufficient
update frequency, this scheme can be used in a model based feedback loop. This will be
shown with the Simona flight simulator motion system.

Keywords. Flight simulation, parallel motion systems, robotics, forward kinematics.

Secondly, for long, the forward kinematics has
been tackled numerically by performing a Newton-
Raphson (NR) iteration scheme (Dieudonne et al.,

1 Introduction

In parallel robots such as most flight simulation mo-

tion platforms, the position of the system is usually
indirectly measured by the length of the actuators.
The forward kinematical problem of calculating the
platform coordinates given the actuator lengths of
a fully parallel six-degrees of freedom system, a so-
called Stewart platform (Stewart, 1965), is seen to
be solved in roughly two ways in literature.

Using analytic techniques the problem can be trans-
formed to a set of combined polynomial equations
whose roots have to be found to solve the forward
kinematics (e.g. Husty, 1996). Although these equa-
tions can provide insight into the structure of the
problem, no closed form solution is known to be
presented yet.
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1972).

T = Tk — J (@) (1" = T) (1)
As the actuator lengths, [, are explicit functions of
the platform coordinates, z, the jacobian, .J, is a
function of platform coordinates.

ol;(z)
:F‘j

b

This latter method is preferred here as it is less in-
volved to be implemented in a real-time model based
controller where inversion of the jacobian is already
part of the control structure. But although this has




not seen to be considered in literature w.r.t Stew-
art, platforms, convergence or convergence to the ac-
tual physical pose in this scheme is not guaranteed
in general. As the forward kinematics of a Stew-
art platform have more than one solution (Husty,
1996), and since singular points of the jacobian for
unconstrained actuator lengths exist (Ma and An-
geles, 1991), the iteration scheme does not converge
globally to the right solution.

A dynamic model of a parallel robot is described as a
function of the platform position and its derivatives
(Koekebakker et al., 1996). To apply model based
feedback (e.g. computed torque, Nijmeijer and Van
der Schaft (1990)) based on the actual platform
state instead of the desired state (Liu et al., 1991)
one would like to guarantee both convergence of the
NR-scheme and exclusion of the singular points (sin-
gular J-matrix) in the work space. In this paper an
algorithm is presented with which this can be guar-
anteed for general but known (inverse) kinematics of
the Stewart platform at hand. Practical relevance is
shown by application to the Simona flight simulator
motion system (Advani et al., 1997).

First a general theorem on convergence of the
Newton-Raphson iteration is considered. After in-
troducing the kinematics of the Stewart platform,
the jacobian, J, is shown to be Lipschitz i.e. its
change w.r.t. two poses is bounded by a constant
times the difference of the respective platform coor-
dinates. With this condition it is possible to derive
a radius in which the exclusion of singular points of
a Stewart platform is guaranteed. Another singular
point exclusion algorithm has also recently been pre-
sented by (Merlet, 1997) using the determinant of
the jacobian. By griding the work space with points
from which a radius can be calculated, one can pre-
clude a larger working volume up to the whole work
space (for limited stroke actuators) from singulari-
ties.

Convergence of the NR-iteration scheme can also
be guaranteed in a neighbourhood of the solution if
some conditions are satisfied. This conditions deal
with the maximum and minimum gain of J and
again the Lipschitz condition. These can be calcu-
lated for Stewart platforms. Exclusion of singular
points of J is necessary to calculate a radius of the
neighbourhood in which convergence is guaranteed.
From this radius, the maximum gain of J and the
maximum speed of the actuator, a sufficient update
frequency of the iteration can be calculated above
which (quadratic) convergence is guaranteed.

The parameters of the new Simona research simu-
lator (Advani et al, 1997) are used as an example
which shows that reasonable results can be obtained
although the conditions derived are rather conserva-
tive.
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2 Notation

Capital symbols, X are used for matrices, z for
vectors, ¢ for scalars. T x g denotes the vector
product which can also be written as Xg = (Y)"z
where X is a skew symmetric (X = —X7T) matrix

% [-’-'31 Ty T3 ]

parametrized by the vector, ' =
such that the result of X7 is the vector product:

* 0 =Ta L2
Xo= 1Egaa M) =2 (3)
a9 3y 0

X x Y denotes vector wise product of the columns
stacked in the matrices.

The index &, is used for the normalizing operation
Fn = %) | & | with | & |= ¥2'% P, denotes
the orthogonal projector to the (hyper)plane with
normal vector #, and can be constructed from the
vector product matrix P, = (I —3,zL) = (X,)* =
X X’,T = —(X,)?. Projection matrices have some
nice properties like P = PT = P™.

Motion can be described w.r.t. various frames. A
matrix or vector described in some frame is, where
appropriate, given a superscript referring to this
frame. For the inertial frame or ground coordinates
the index #9 will be used. As a function of the mov-
ing end-effector or platform, vectors will be denoted
™. If a (rotation) matrix maps a vector into an-
other frame it will be denoted as ZR4 if R maps
from A to B.

The subscript index like a; will be used to refer to
the ith-actuator if non actuator dependent variables
also appear in the equation.

3 A general convergence theorem on
NR-iteration

A weak version of the Newton-Kantovorich theorem
(see e.g. Ortega and Rheinboldt, 1970) given in
Stoer (1983) will be used. From this theorem con-
vergence of the NR-iteration can be inferred.

It is stated as follows.

Theorem 3.1 Given: a set D C IR", a convex set
D, with D, C D and a function f: D — IR™ which
is continuous on D and differentiable with derivative
Df(z) on D,.

If positive constants v, e, [, v and h can be found
for &, € D, such that

Sr(i‘o) = {:'T | ”-7T — i‘a” < ""} € Dy (4)
= ? <1 (5)

(o
Ny 2y ©)

and if f has the following properties:




a)

|1Df(z) = Df(@)| < ~lE -39l V 2,5 € D, (7)
(This is called the Lipschitz condition)
b)
(Df(%))~" exists and ||Df(z)"'|| < BV Z € D,
(8)
c) . .,
then

A) Starting at T, the sequence
Tppr = x — (Df(EL)) 2 F(@) k=0,1,... s
well defined and Ty, € 8,.(%,) ¥ k>0

B) limg—soo T = & exists, € € Sp(Ty), and f(£)

C)
Zl -1
Vk>0, (I3l S ar—mr  (10)
With 0 < h < 1 the iterates converge at least
quadratically.
The proof of this theorem is given in Stoer (1983).

Roughly speaking, this theorem states that a solu-
tion £ can be found in the NR-iteration (B) if the
differential D f(Z) does not vary too much (a)), is far
enough from mngulallt,ms (b)) and eventually does
not jump too close to the boundary of the defined
neighbourhood, at the first iteration (¢)).

It also states that the iteration will not go out of
a specified neighbourhood (A) and converges at a
certain speed (C). To derive these conditions for a
NR-iteration towards the Stewart platform coordi-
nates, first its kinematics has to be specified.

4 Kinematics

First some general kinematics will be given. Then
the kinematics of the Stewart platform will be
stated.

4.1 Fundamental kinematics

The motion of a point (mass particle, joint, etc.)
is usually most conveniently and invariantly defined
w.r.t. the body frame to whom it is connected. The
motion of a frame put in another frame generally
consists of translation ¢ and rotation. The orien-
tation of a frame can be described by a rotation
matrix. A rotation matrix consists of perpendicular
unit vectors which describe an orthogonal basis of

Fig. 1: Rotation parametrized by euler parameters

the frame in the other frame. As a result a rotation
matrix, R has the following property:

RTR=1 (11)
Any 3z3-matrix with this property and det(R) = 1
is a rotation matrix. With det(R) = —1 also the
mirror operation is included (transformation of right
hand frames to left hand frames and vue versa).
Given T'= ZRA, the position of a point p* in frame
A can now be described in frame B by:

}_JB = ';B i Tfl""

(12)
To describe the velocity of this point in the other
frame one can simply differentiate this equation.
Some properties of the time derivative of the ro-
tation matrix can be derived by differentiating (11).
This results in skew symmetric matrices \khli.h can
be parametrized by the vector product matrix of the
(thereby defined) angular velocity @.

TTT = —777 = (A (13)
with
» 0 —W3 Ws
=] ws 0 =—uy (14)
—Wwy Wy 0

Now with a vector which is rigidly attached to the
frame A, p =10

i =i + T0ARA = i° 4 B8 (15)
Where the change of frame for the matrix, Q, is
given by QF = T QATT,

If some variations or velocities can be described as
product of a (position-dependent) matrix and vec-
tor of other variations this matrix will be called a
jacobian matrix.

The jacobian matrix between two sets of variables
usually comes out naturally by a time differentiated




version of an equation in which one of the sets is
explicitely stated as in gy(t) = f(&(f)),

i) = @i = 1,600 (6
E.g. given (15),
= B 58
op° = [ FBEPHZ ) [?;A } = JpB 4 L;:; ]
(17)

Although the rotation matrix consists of nine en-
tries, its properties put constraints on these en-
tries. Different parametrizations such as euler an-
gles (three subsequent planar rotations) or euler
parameters (four parameters with one normalizing
constraint to describe one axis of rotation and the
angle of rotation) are possible.

The three euler angles have the disadvantage of a
highly non-linear appearance in both the rotation
matrix and the euler angle velocity to angular ve-
locity transformation. The latter can even become
singular.

It is possible to parametrize the rotation by the unit
vector pointing along the axis of rotation 7,, and
the angle p of rotation. (See Fig. 1.) Parametriza-
tion by the four euler parameters € = [ ¢g €]; | i
given by €g = cos(1/2 p) and &3 = sin(1/2 p)fi,,
results in very convenient (simple to calculate) rela-
tions of the rotation matrix and the angular veloc-
ity in which the euler parameters and its derivatives
play an intermediate role. These relations are exten-
sively dealt with in Nikravesh et al.(1985). Without
further derivation they will be given here.

The rotation matrix can be calculated by taking a
product of two matrices which are linear in &

R(e) = G(e)L(&)" (18)
With
G(€) = [ —€13 €0l + €13 ] (19)
and .
L(e) = [ —&15 eol + (€13)7 ] (20)

€ can be described as a product of @ and a matrix
which is a linear function of .

E= éG”'(E—)a,- (21)

With angles —7 < 1/2u < 7, €13 can be used as the

(orientation) state from which €g = /1 — €463 is

obtained.

4.2 Stewart platform kinematics

The Stewart platform (Fig. 2.) consists of an end-
effector body whose coordinates can be described
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A schematic example of the Stewart plat-
form

Fig. 2:

by a body fixed point (e.g. the centre of gravity)
which has varying coordinates € in the inertial frame
and the orientation given by a rotation matrix T'(€)
which can be parametrized by euler parameters.
The end-effector body or platform is connected by
six parallel actuators at @; to b; to the inertial frame.
The length of the six actuators can be varied. In
describing a specific actuator, the supscript ¢ for the
it" actuator will be left away. An actuator (Fig. 3.)
can be modelled as 2 bodies. A rotating body, b,
with a constant distance of 7y of the c.o.g., be, to
the connection of a 2-d.o.f.-rotational gimbal joint to
the inertial frame at b. The moving actuator body,
a, with a constant distance of r, of the c.0.g., ae, is
connected with a 3-d.o.f-rotational gimbal joint to
the platform at a. With a 1-d.o.f. controlled sliding
joint between these two bodies, the length of the
actuator can be varied.

With this assumption also the case (often seen in
practise) in which the moving part of the actuator
both rotates and slides at the connection with the
rotating part and has only 2-d.o.f. rotation w.r.t. the
platform, results in the same dynamics.

The kinematics of the Stewart platform will be de-
scribed by first defining the transformation of the
platform pose to actuator coordinates. Then by dif-
ferentiation also the velocity of all relevant points
can be calculated as a function of the platform pose
and its time derivatives.

Almost all vectors can be conveniently described
in the inertial frame. Apart from a
derivative in the moving frame is 0.

The vector, [;, between the two attachment points

whose time



of an actuator can be described by

Iy =¢c+ Ta —¥b; (22)
Now the length of the actuator, | l; |*= I7l;, and the
unit vector in direction of the actuator, l,; = !';—‘!
can be calculated from the platform variables @ and
the orientation matrix T = Y R™ which will be the
only rotation matrix used.

The velocity of the length of the actuators can be
calculated by projection of the velocity of the upper
gimbal attachment point, 7,, in the direction of the
LVIT] = EIWT{I_& =1 i, and
the velocity of the upper gimbal points is given by

actuator. Since % F =

e, = C+ @ x Tal, (23)
the velocity of the actuator is given by
=0 m = e+ i@ =Tal),  (24)

i.e. projecting upper gimbal velocity along the ac-
tuator direction. With some reordering and written
as matrix equation (e.g. ¥,, stacked in V;) for all
the actuators the jacobian between the actuator and
platform velocities comes out.

I=Lrt+(TA™ x L)'o = .2= LIV, +(25)
This jacobian matrix, J; ;(Z), is one of the most im-
portant variables in kinematics and dynamics of the
Stewart platform. The jacobian between platform
and gimbal point velocity is defined by

5. = [P BAR)N =

(26)

The derivative of the unit vectors I, ; in the direction
of each actuator can be calculated with:

e Ut 4 L b
e T [1]2
(I i E‘IT.E{)_— 1

T ANyl R A o 27
7] Ug H[P;..vn (27)

5 NR-convergence to Stewart plat-
form pose

Having stated the kinematical structure of the Stew-
art platform and given the general theorem on con-
vergence of a NR-iteration, Theorem 3.1, it is now
possible to investigate under what conditions the
specific NR-iteration of (1) will converge to the
physical platform pose.

To derive conditions for the NR-convergence to the
right Stewart platform coordinates given the length
of the actuators, first an appropriate definition of
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Fig. 3: Stewart platform actuator link construction

the coordinates has to be given. The defined ja-
cobian Jj ., is the description of platform trans-
lational and angular speed/variation to actuator
length variations. To go from orientational parame-
ter variations to angular speed is dependent on the
parametrization used.

In this case the first three euler parameters are used
to parametrize orientation.

. SE = 2”5-”:?1{:;:?

where s is a scaling factor which can be used to get
less conservative results in specifying a variation of &
since ¢ and € have different dimension (m and rad).
The scaling factor s = 2||d||;nae will shown to be
appropriate in the sequel,

(28)

1
i Sin{;;x.)ﬁ,“

(29)

It will be assumed that after each iteration € will be
resef. to zero. In that case the relation between the
angular velocity and the euler parameters is very
simple, '

(30)

Off course the rotation matrix in the iteration is
now the multiplication of all the rotation matrices
calculated.

Trtq = T(Ex+1)Tk (31)

The continuous function, f in Theorem 3.1, from
which the platform coordinates have to be found
can now be given by

NI = Il = Fi(z) (32)
where [|7]| is the measured length of the i*" actuator
(fixed value for each iteration) and ||/;|| is the length
of the i** actuator given ¥ (given by (22)). Since the
measured length is fixed the derivative function is




only slightly different, with scaled euler parameters,
from the jacobian J; ., given earlier.

e T La
Df(-f) = J.‘..-;r(i} = (T.‘jlm % )‘:”}/”f._'!||”“II

(33)

Since it is a function of unit direction lengths, it is

only defined for |[7]| # 0.

To derive the conditions (a,b,c)-stpl for convergence

of the NR-iteration defined in Theorem 3.1 for the

Stewart platform, the constants (a,,7) can be

specified using the kinematics.

a-stpl)
||JL.~.=.?'{-E'1} . Jl.sur(-'?-".!}H < ﬁ."srp!“-il — Za|| (34)

[ 1,2(Z1) = J1,2(Z2)]| =

H dLy,
d(T-4rrJ X LN)/“ﬁHmu;r

Where in this case the 2-norm of the matrix
is taken which is equal to the largest singular
value, 5. The Frobenius (semi)-norm is an up-
per bound on this norm and is advantageous
in case of the Stewart platform since specific
bounds can be derived on the matrix elements
as will be shown later on.

=g(dJ) (35)

a(dJ) < |ldJ|| ¢ (36)
dJ|r =
(4]

= o D (lldlnll? + [|d(Tas x o)/ l|@llmaz |l

=1

To derive a constant s, the separate ele-
ments of the last equation will be described as
a function of . This will be done in the next
section.

b-stpl) To state the second condition from which a
constant number g, has to be calculated also
the 2-norm is used which can be upper bounded
by one over the minimal singular value, 0,in,
of the jacobian at some pose, &,. By using the
maximal variation of the jacobian which has
been calculated for the previous condition, the
constant, 4, becomes an upper bound for the
maximum gain of the inverse jacobian over a
volume of poses, .

1

Tmin {'}f.s:r{j;)}
1

arrun{‘jl'.s;r-(ﬂ_'o” - ”Eff”;

."rj stpl

[B/metCall

(37)
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Fig. 4: Motion of connection T, as a function of
change in Z (dé and d€)

c-stpl) To calculate, agy, also use can be made of
the singular values. Since any point in the work
space is a possible initial start of the iteration,
the maximum condition number of the scaled
jacobian over the work space can be taken as

the constant, cegpr.
B/

L5z

(2)f(2)] <
< 41—.—.)6('}!.sx (JJ)”(HH

= Omin (Jf.:u" (?)

ﬂ’sr;n’

(38)

In the next section it will be shown that indeed the

jacobian of a Stewart platform is Lipschitz, as a-

stpl) requires, as long as the actuators of the plat-
form have minimal stroke strictly larger than 0.

6 Lipschitz condition on the Stewart
platform jacobian

By constructively analyzing the kinematics of the
Stewart platform the following lemma can be de-
rived.

Lemma 6.1 The Stewart platform jacobian, Jj sz,
is lipschitz i.e. a v can be found such that

| (Z1) = J(Z2|| < [|T1 — Z2|| V 71,22 €D
uff

Gl = 1 fi@)ll > >0 VzeD,i€{l,...,6)




Note that the requirement of an actuator length
larger than zero is an implicit constraint on the set
of platform poses.

As the jacobian only consists of unit direction ac-
tuator vectors and a rotation which are a function
of the platform pose, the maximum gain of the ma-
trix is easily bounded. Remains to be shown that
small variations of the platform pose do not result in
relative large variations of the jacobian matrix gain.
First the change of the unity actuator direction vec-
tor, dl,, as a function of the change in coordinates
dz will be considered. Then also the change of the
vector product ((I,, x Ta@)/|@||maz) can be bounded
given a change dz.

In two steps dl,, will be bounded.

1. Change of the upper gimbal connection dZ,.
given a change of platform coordinates dz. See
Fig. 4. in which the motion of the platform
and connected gimbal point, xa, in Fig. 1. is
schematically depicted.

2. Change of the unity direction, dl,, given a
change the upper gimbal. See Fig. 5. in which
the motion of actuator as a function of the mov-
ing gimbal point xa is schematically depicted.

The total motion of &, is maximal if both rotation
and translation move this point in the same direc-
tion. One of the advantages of the euler parameter
description now becomes apparent. Maximal mo-
tion as a function of the rotation is equal to two
times the gain of the first three euler parameters
times the distance from which point the rotation is
considered. It is possible to bound the motion of
the gimbal by

lldza|| < lidel| + 2llalllldel| < v2{ldz|| (39)
The second step takes into account that as the upper
gimbal moves within a ball (Fig. 5.) the maximum
change of the actuator direction is achieved if this
line just touches the ball. In that case (I, + dl,;) L
dz,. With some geometry

o on ||dEa|| .
sin(¢) = HFH (40)
o (%) (41)

the following monotonous upper bounding function
can be derived for change of dl,.

HdInH S 23]11(1/2(}5}:

X

ldzal
i

9 1 — cos(¢) £

o V2

f g

;
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Fig. 5: Change of the vector [,, as a function of mo-
tion in I,

|dZq|| (nda—c.lli)‘*
1]l [1Z]]

|ldza||
G et (42
I )
Taking into account (39) gives
= 2
Il < ol (43)

So the length of the actuator should remain strictly
larger than zero. It is easy showing that if this is
not the case arbitrary small variations of the pose
can result in nondecreasing variations of dl, i.e. not
satisfying the Lipschitz condition.
Now bounding the vector product is also possible.
In general
lla > || < [|al|||5l| (44)
(a+e) x(b+d) = (axb)+(axd)+(éxb)+(exd) (45)

and rotation does not change the 2-norm.

ITal| = [lall (46)

Change of the moving gimbal due to rotation is
bounded by

lld(Ta)|| = 2l|al|||de]| = ||dsé]| (47)

Now

ld(ln x Ta)/l|allmazll <
< “[ﬂ_n x Tay|| + ||f,, x d(Tan)|l
+||dl,, x d(Ta,)||

V2

o |0Za || + ||dsé]| +

1]

I
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Imin (m)

Fig. 6: Lipschitz constant, vs,, of a Stewart plat-
form as a function of the minimal actuator
length

So in this way every element of the jacobian matrix
is explicitly bounded by the variation of the plat-
form pose and the (implicitly platform pose depen-
dent) actuator length. If a minimal actuator length
is given a specific 54,0 can be calculated.

Adding the bounds for each of the actuators in the
F-norm of the jacobian results in an explicit number
for ysp. Assuming small platform pose variations
i.e. second order effects in the last equation are rel-
atively small e.g. ||dZz|| < .25, a minimal actuator
length of 2 m of the Simona platform gives

6 (i
dJllp < o[ D12+ (1.82+.07)2||dz|| < 5.2||dz]|
i=l =2
Note that this v, is valid for any Stewart platform
having minimal actuator length of 2 m independent
of gimbal point coordinates. As a function of the
minimal actuator length, ysp is depicted in Fig. 6.
The limited difference of two jacobians given limited
difference of the platform pose can be used to derive
guaranteed convergence of the NR-iteration but also
to exclude singular points of the jacobian from part
of the platform working space as will be shown in
the next Section.

7 Exclusion of singular points

Singular points of a Stewart platform are those plat-
form poses at which the jacobian, J; . becomes sin-
gular. At these points at least one platform pose
variation will not result in actuator length variation
and is therefore not supported by the actuators or
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uncontrollable from forces along the actuator direc-
tions. These points exist in the usual Stewart plat-
form configurations if the actuators would not have
length constraints (Ma and Angeles, 1991).

Given a point Z, it is possible to calculate the min-
imum gain (singular value) of the jacobian. This
value does not change more than the maximal varia-
tion of the jacobian. To be singular this value should
be zero. So with

Urniu('}!,s.‘r(f’}) <
< max(0, Omin(Jis2(Fs)) — (dJ(Z,T,)).

and
ldJ|| < yllz — zoll, (48)
J; 4, () exists in the ball around Z, in platform co-

ordinate space with radius

T 2 ﬂmin(“:(i'a)) (49}

By calculating r, over "boxes” dx = \/§rs‘,,lm (see
Fig. 7) a grid is taken which precludes the whole

work space from singular points of the jacobian.

Algorithm 7.1

Choose an expected minimal singular value of the
jacobians, over the grid points.

l

Take a grid such that the boxes with radius r; min
around the grid points fill the whole work space.

Calculate the minimal singular value of the jaco-
bian at every grid point.

If the minimal singular value is larger than the ex-
pected value, there are no singular points in the
work space, the algorithm finishes. If not, start
another iteration choosing a smaller expected
minimal singular value.

Lemma 7.1 If the work space of a robotic manip-
ulator having a bounded Lipschitz constant does not
have any singular point this will be detected by Al-
gorithm 7.1 in a finite number of iterations.

Off course the boundary of the work space (in six di-
mensions!) should be known which is a stand alone
problem (treated in Luh et al, 1996). To calculate
an upper bound for the gain of the inverse jacobian
(Bstpt) a finer grid should be taken. (This will in-
crease calculation time tremendously, e.g. n® grid
points extra.)



Fig. 7: By griding the six dimensional space it is
possible to exclude the whole work space
from singular points

variable | value | description

i 1.60 m | upper gimbal radius

Ty 1.65 m | lower gimbal radius

da 0.20 m | upper gimbal spacing

dy, 0.60 m | lower gimbal spacing

bnin 2.08 m | minimal actuator length

8 1.25 m | actuator stroke

Sop 1.15 m | operational actuator stroke
Imax 1 m/s | maximum actuator speed

Table 1: The Simona motion system parameters

8 Sufficient update frequency of the
Simona simulator

The bounds derived are rather conservative in most
cases. By calculating a convergence radius for the
NR-iteration in the practical example of the new Si-
mona research simulator shows that it is possible to
guarantee that this iteration can be used if a reason-
able frequency is used to update the platform pose.
Further the singular points can really be precluded
from the work space in this case.

Some platform parameters can be found in Table 1.

To satisfy NR-iteration convergence the following
constants were obtained.

a-simona With the minimal length of the actuator
Emin =3 2'087‘”} VYsimona — 9.2

b-simona With griding a minimal radius of
Tsmin = .09 is found. (About 200000 grid
points had to be caleulated to exclude the work
space). The smallest singular value found is
0.75 and with finer griding a Bsimona = 2 can
be guaranteed.

c-simona The first value of f(&,) in any point can
not be larger than f(%,) < a(J)||dz| Together

with the smallest gain this gives

Qgimona = K||dZ|| < 3.5]|dz|| (50)

Now with a bound ||dz|| < 0.02

3.5-0.02-2-5.2
= Pl 802 Gt

Lo 35002
sumona — (l s 023)

Over Tsimona, [a-simona] and [b-simona] should be
guaranteed which is the case in the work space given
the operational stroke (not including actuator cush-
loning part). To guarantee convergence in the whole
work space also non-singularity, etc. should be guar-
anteed further outside the work space which needs
lots of calculation (with an extra stroke of 0.15m,
singularities can be obtained 50 rs ,nin becomes very
small).

With a bound on the maximal speed of the actua-
tor it is possible to calculate a minimal update fre-

=0.11 (52)

quency which guarantees ||dz|| < 0.02.
17l <1 m/s (53)
ﬁsnnmlaa“maz < Hd.f:” (54}
At < 1/100 s (55)

So with an update frequency f, > 100 Hz conver-
gence of the NR-iteration is attained.

Lemma 8.1 The Stewart platform with the Simona
motion system parameters has no singular points in
the work space and the NR-iteration with this plat-
form will converge to the right platform pose if the
update frequency is larger than 100 Hz.

9 Application within the control of
the motion system

With the dynamic model of the motion system of the
Stewart platform (Koekebakker, 1996) a standard
feedback linearising control can be constructed.

fp = M(2)(Z +¢) + C(z,%) + G(Z) (56)
An outer loop typically looks as follows:

& = Kq(&, — &) + Kp(%, — T) (87)

The platform force, f, p» has to be translated to equiv-
alent actuator forces, f, with the jacobian.

Ta=dd (ZF (58)

The platform coordinates are assumed to be known
and as only the actuator lengths are measured, a




Fig. 8 Simona motion system with dummy plat-
form

scheme like the Newton Raphson iteration scheme
((1)) has to be used. As the iteration has to run as
part of the feedback loop, the iteration has to con-
verge to the (local) solution at least to have stability
of the loop. In the previous sections it was proved
that this is the case with the Simona flight simula-
tor motion system if the iteration is run at at least
100 Hz.

As there is limited time and calculation speed of the
digital controller, a limited number of iterations is
possible. With a limited number of iterations in one
sample of time, the scheme has to show convergence
as the system moves with limited speed. Iterations
have to be limited as much as possible as inversion
of the jacobian takes relatively much computer pro-
cessor time.

This problem was solved as follows. Two errors
forming the total difference between the actual and
latest estimate of platform coordinates, now have to
be considered. First the error which remains after a
limited number of iterations in the previous sample
and secondly the error introduced with the motion
system which moved during the last sample.

W.r.t. control the error on the estimate preferably
should not be larger than the measurement error.
This error is ca. .1 mm. With the model based con-
troller running on 1 kHz, the @gimona ('first itera-
tion error’) becomes quite small as does h. With (C)
from the theorem the speed of convergence can be

pose, X (m) o
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Fig. 9: Step in forward (surge) direction and par-
asitic pitch motion other states (10 times
amplificated) calculated on-line with NR-
iteration

calculated. Already at two iterations platform co-
ordinates will be calculated up to an error smaller
than 0.01 mmn.

The scheme was implemented on the Simona motion
system currently running with a dummy platform of
2200 kg (see Fig. 8). A step response in surge di-
rection (see Fig. 9) shows that the platform coordi-
nates which are controlled upon, can be monitored
on-line,

10 Conclusion

To satisfy a general convergence theorem on
Newton-Raphson iteration one of the requirements
is the Lipschitz condition on the derivative function
which was shown to be satisfied for Stewart plat-
forms. Variations of the jacobian can be bounded
by the variations of the platform coordinates.

Next to this requirement the jacobian should not
be singular in any point of the work space. With
the Lipschitz condition on the jacobian and griding,
volumes can be excluded from singularities.
Although only sufficient (and thereby conservative)
conditions could be derived for convergence, it is
possible to obtain a result in the practical example
of a new built simulator which makes model based
feedback possible.
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Abstract. A rather specific class of non-stationary disturbances that can occur in me-
chanical servo systems is that of the non-periodically repeating (NPR) disturbances. For
a linear control system to deal specifically with this class of disturbances, it must exhibit
the same non-periodically repeating behavior. A way to provide the control system with
this behavior is by including a NPE-disturbance detector and a lookup-table-based feed-
forward mechanism. Assuming the shape of the NPR-disturbance to be unknown a priori,
a learning algorithm for the construction of the lookup table must be included as well.
Based on the Likelihood Ratio Test, a suitable detector can be derived. Existing theory
on Iterative Learning Control (ILC) can be used to design a suitable algorithm for the
construction of the lookup table. A realistic simulation example, the shock suppression

in a Hard Disk Drive, illustrates the validity of the algorithms.

Keywords.

Non-periodically repeating disturbances, feedforward control, detection, it-

erative learning control, shock suppression, hard disk drive.

1 Introduction

In many control systems, performance is directly re-
lated to the amount of disturbance compensation.
It is therefore not surprising that many control de-
sign techniques take explicitly into account the na-
ture of the disturbances. Examples are LQG con-
trol, where some knowledge on the disturbances can
be incorporated in the control law, and H., con-
trol, where knowledge on the disturbance spectra
can be incorporated in the choice of suitable weight-
ings to be included in the “standard plant”. Using
such techniques, controllers can be designed to deal
In a non-conservative way with stationary distur-
bances, which are in their behavior considered as
stochastic processes. Non-stationary disturbances
can in general not be dealt with. A rather spe-
cific class of non-stationary disturbances is that of
the non-periodically repeating (NPR) disturbances.
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With this class, we mean deterministic disturbarnces
with a fixed shape (or a shape that changes slowly
in time) that occur randomly in time. Examples of
such disturbances are vibrations and shocks in me-
chanical servo systems, such as Hard Disk Drives
and photolithography systems (Yasuda, 1996). Fig-
ure 1 shows a representative sequence of 3 realiza-
tions of an arbitrary NPR-disturbance, dypg.
Often, standard feedback control will not yield a
satisfactory compensation, since the feedback con-
trollers are designed to perform well under nominal
conditions! in the first place. Adapting the feed-
back control law in order to improve the suppres-
sion of the randomly ocecuring disturbance will in
most cases deteriorate the performance of the con-
trol system under nominal conditions, due to well
known limitations of linear feedback control such as

li.e. absence of the randomly occuring disturbance




dnpr

Fig. 1: Example of a NPR-disturbance

the Bode Sensitivity integral. The need for a dif-
ferent approach to the problem of rejecting NPR-
disturbances was recognized in e.g. (Yasuda, 1996)
and (Simaan, 1990). The XY-table control scheme
presented in (Yasuda, 1996) inhibits an off-line de-
termined pseudo feedforward disturbance compen-
sation which is activated “at a proper time”. The
feedforward vector is calculated off-line using mea-
surements of the error that is caused by the NPR-
disturbance. The drawback of the algorithm is that
for every new situation, a new feedforward com-
pensation has to be calculated off-line. Further,
it was not clear from the paper how to determine
the ”proper time” for activating the feedforward. In
the process-control-oriented paper (Simaan, 1990),
the necessity of detecting NPR-disturbances was de-
picted and a very brief description of a possible de-
tector was included. The question what corrective
action should be taken at the moment of detection
was not addressed by the authors.

In this paper we present a general control algorithm?
for compensation of a particular class of NPR-
disturbances. The algorithm we propose inhibits a
model-based detection and a feedforward compen-
sator that is determined on-line in an adaptive man-
ner. The basic idea is schematically represented in
the configuration of Figure 2, where the proposed al-
gorithm is represented as an add-on device. In the
block scheme, P is the plant, C' an arbitrary feed-
back controller, r the reference signal, y the out-
put, and e the error that results from subtracting
y from e. d Is a stationary disturbance, that per-
turbs the plant’s nominal operation. The main el-
ements in the add-on device are the detector and
the mechanism for constructing a suitable feedfor-
ward signal, uy, and storing it in a lookup table.
The design of both elements is addressed in this pa-
per. The remainder of this paper is organized as
follows. First, in Section 2, some restrictions on the

“For the proposed algorithm, a patent request by PHILIPS
ELECTRONICS N.V. is running. Official filing number: 97
04939. First filing date: april 224,
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class of NPR-disturbances, derived from the nature
of the proposed algorithm, will be pointed out. In
Section 3, the solution to the detection problem will
be presented. In Section 4, we propose a method
for constructing the lookup table on-line. Section 5
illustrates the usefulness of the method with a sim-
ulation example considering shock suppression in a
Hard Disk Drive. Section 6 ends up with some con-
clusions.

2 Restrictions on the disturbance
class

In this section we will specify more precisely the
class of disturbances that is under consideration
in this paper. Let us first introduce a NPR-
disturbance as follows:
do(t —t5), t;<t<(t+T)
dnpr(t) = { 0, for all other ¢,

(1)

where d, is a deterministic disturbance of length T
and ¢;, j = 1,2,... are the time instants at which
this fixed shape disturbance oceurs, randomly dis-
tributed according to some probability distribution.
For the proposed compensation method to be feasi-
ble, d, must be detectable. Further, for the feed-
forward compensation to make sense, the detec-
tion time should be farely smaller than T'. Besides
these demands on the detectability of d,, the rate
of change of d, is limited. This can be seen as fol-
lows. Due to the stochastic noise disturbance, the
detection time will vary along an average number of
samples. The effect of a deviation in detection time
is a time-shift of the feedforward signal. To evalu-
ate the effect of such a time-shift on the compensa-
tion performance, we allow ourselves here to speak
of the “frequency content” of the feedforward sig-
nal. Suppose that this frequency content is bounded
by a frequency fmae (Hz). Then, a deviation in
the detection time of one sample will introduce a
phase error in the feedforward signal of T x 27 finae
for the highest-frequency part of the feedforward,
where T is the sample time. For phase shifts larger
than 7 rad, the effect of the feedforward compen-
sation may possibly be an error increase instead of
decrease. This gives us a rule of thumb for the max-
imum “frequency range” of the feedforward signal,

L (2)

W
where 740, is the largest deviation from the mean
detection time in samples. Summarizing, we limit
the class of disturbances under consideration in this
paper to those NPR-disturbances that are

fmum '<<

o “sufficiently fast” detectable,

e limited in their frequency range by fonae. (2)




¥

Fig. 2: Schematical representation of the HDD control system with the detector /feedforward algorithm.

3 Detection

The detection problem is to determine as fast as pos-
sible the presence of d, from measurements of the
error with a certain desired reliability (quantified by
the chances on false alarms and misses). To deal
with this problem in a realistic, though not overly
conservative way, we assume here that the shape of
the disturbance is known. We will show later that
the invalidness of this assumption does not signifi-
cantly limit the applicability of the detection algo-
rithm. Note that, thanks to linearity, the problem of
detecting the presence of d, is equivalent to detect-
ing the presence of y, in y, where y,. is the effect of d,
in the output of the system, i.e. y, = (1+ PC) " 'd,.
For convenience, we assume here that all distur-
bances other than dyppr are stochastic and we com-
bine them into one output-equivalent disturbance,
d, at the output of the plant. The detection prob-
lem thus involves the detection of a known waveform
in colored noise, where the known waveform is 7,
and the colored noise is the output of the system
due to the stationary stochastic disturbance d. The
solution to such problems can be found in literature
on communication systems, e.g. (Trees, 1968) and
(Poor, 1987), where signal detection and estimation
problems are very common. In control literature,
the idea of model-based detection of randomly oc-
curing disturbances was posed qualitatively in e.g.
(Simaan, 1990). Here, we will derive such a detec-
tion algorithm quantitatively.

The Likelihood Ratio Test

For the detection problem, we introduce two hy-
potheses: Hy and H,, relating to respectively ab-
sence and presence of d.. Let our detector have an
observation window of N samples, then under the
two hypotheses the observations of y in a certain
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time interval [t;,¢; + N] are given by:

Hy
H,

y(tj"i'i): yﬁ(t_j'i‘i)?
y(t} +1i) = yr(i) + yu(tj +i1);

(3)
(4)
i = [1,N]. The Gaussian colored noise stochastic
process yy is defined by

1
S TP’ 2

Introducing Hy as a realization filter for d, (5) can
be rewritten as

Yn

Yn I)’(ﬂ’l!

1
SRR (6)

where v is a white noise stochastic process with vari-
ance A. For convenience, we define
M = (1 + PC)~'Hy, so that (6) can be written as

(7)

We denote M the coloring filter for the colored noise
stochastic process y,,.

Yn = Muv,

Attached to the two hypotheses are the two
Joint probability densities, py (¢, )a, (¥(t;)|H1) and
Py(t;)1#o (¥(t5)|Ho), which define the probability of
respectively Hy and H;, given the actual observa-
t;ifo)lfivector,y(r.j) = [y(t;+1) --- y(t;+i) - y(t;+

From e.g. (Trees, 1968) it is known that a suitable
decision rule for determining whether Hy or H; is
most probable, is the Likelihood Ratio Test (LRT).
It is defined as:

_ Pywyia (¥(t5) | Hy) th h
” H, )
Py ;) 1H. (Y (t5)| Ho) ~°

Ay(t;)) (8)

where 7 is a threshold whose value is dependent on
the decision criteria that are defined, and A(y(t;)) is




called the Likelihood Ratio. In words: IF A(y(t;)) is
greater than n, THAN hypothesis H, is most prob-
able, IF A(y(t;)) is less than n, THAN hypothesis
Hy is most probable. Because the natural logarithm
is a monotonic function, and both sides of (8) are
positive, an equivalent test is:

H,

In Aly(t;)) <m, In7. 9)

We see that all the data processing is involved in
computing In A(y(t;)) and that the decision making
mechanism is a simple comparison with a threshold.
The derivation of the LRT is given in the Appendix.
The result is:

N Hy
; 3 = A
S MY qy(t; + )M~ (q)yr (i) <m, TH, (10)
=1
where
N

1 B
TH = 3 Z(J-u-l(q)yf(f)y +Alngy

=1

(11)

is the threshold.

The LRT has the structure of a correlation receiver
with additional whitening filter (M~'), as is de-
picted in Figure 3: the observation samples are fil-
tered through M~', multiplied by the samples of
the filtered y, and the sum of these products added
over the observation interval [1, N] is compared with
a threshold value to either decide or deny presence
of d,. The correlation receiver can simply be imple-
mented as a discrete time filter.

Robustness against uncertainty in vy,

The output of the detection filter, denoted by the
left-hand side of (10), is a Gaussian variable. It can
easily be shown that in the case the first N samples
of y, are exactly modeled, at time (¢; + N), ex-
pectation and covariance are given by respectively
D (M~ (@yr()? and AYN (M~ (q)y.(5))?.
Now assume that the actual first N samples of
the disturbance are given by (y,(i) + A,(i)), i =
[1,N], where A, is any structured or unstruc-
tured uncertainty, and the detector is designed un-
der assumption that y, is exact. The expectation
at time (¢; + N) becomes Z::\'_;](;"n"](r;);.-,‘(,.(r'.']']2 .
TN (M~ (q)y, (i) (M~ (g)A, (1)), while the co-
variance remains unaltered. Since the output of the
detection filter at time (t; + V) is a Gaussian vari-
able, the chance on detection at this time instant is
solely dependent on the expectation and covariance
of the output. The detector is thus robust against
varying shape of d, in the sense that the chance on
detection at time (¢; + V) remains unaltered when
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threshold
=l comparison

M
Ty,(r')

Fig. 3: A correlation receiver with whitening filter

Sy (M (q)y» () (M~ (q) Ay (3)) = 0. When this
sum takes values larger than zero, the chance on de-
tection will be larger, for values less than zero it will
be smaller.

The real performance of the detector is of course
specified by the probability distribution of the de-
tection time, instead of the chance on detection at
one time instant. It is to be expected that this dis-
tribution shows a larger dependency on the shape
of d, than the performance measure we used, the
chance on detection at time (¢; + N). However, for
simplicity, we restricted ourselves to the robustness
analysis presented above.

4 Construction of the lookup table

For the construction of a suitable feedforward signal
we utilized well-known existing techniques of Itera-
tive Learning Control (ILC) and Repetitive Control.
ILC has its primary application in the construction
of optimal feedforward signals for setpoint trajec-
tory tracking (for a literature survey on the subject,
we refer to (Chang, 1997)). Each learning step, the
feedforward signal is updated using the most recent
error information and stored in a memory. In close
resemblance to the principle of learning control, we
propose the following on-line procedure for the con-
struction of a suitable lookup table

step 1
each (1)** time the detector outputs H,, simultane-
ously, two operations are initiated:

e a feedforward signal FU=Y of length V is read
from the lookup table and multiplied by a factor
k1 before it is added to the input of controller
{7:

up= b FY-Y; (12)

e a vector of the error signal, E()| of length V is

stored in a memory device;




step 2
at the moment E'Y is available, a new feedforward
vector, FY) _is calculated as follows:

Fl) = Q(Fi=1 + BEW), (13)

and saved in the lookup table.

In the above procedure, k; is a learning factor and
() and B are discrete time filters which for the pur-
pose of convergence have to satisfy some properties
which will be discussed hereafter.

Choice of @, B and k

The choice of the so-called learning filter B and ro-
bustness filter @ follows from convergence consider-
ations. For the general update law in learning con-
trol (13), literature (e.g. (de Roover, 1996)) pro-
vides us the following convergence result (slightly
adapted to our case):

Theorem 4.1 Suppose F,E € L,(0,00), and F
is synchronized with d, for all | € INt, then the
learning iteration (13) converges to a fized point
F* = lim FO gf

—00

|Q(1 = BR)||o < 1, (14)

where R = (1+ PC)~*PC.

For the proof of this theorem, we refer to the relative
paper. The following theorem, which is also taken
from (de Roover, 1996) teaches us about the quality
of the convergence.

Theorem 4.2 Suppose d, # 0, and F\" is synchro-
nized with d, for alll € INT, then the learning itera-
tion (13) converges to a fived point E* = ;an}o EW =

0, if and only if (14) 1s true and Q = 1.

Unfortunately, due to the deviation in detection
time, F!) can not be synchronized with d, for all
| € IN". Accordingly, Theorems 4.1 and 4.2 do
not apply to our learning disturbance compensator.
However, we can still use them as rules of thumb for
determining suitable filters ¢ and B. Hence, the
following design procedure, taken from the litera-
ture on learning control (de Roover, 1996), seems to
make perfectly sense:

1. choose B(e) ~ R (iw), w € [0,w.], ie.
choose B to be the best possible (approximate)
inverse of R, up to some frequency wg;

2. choose Q(e') to be a low-pass filter ||Q(e*|| =
1, Yw € [0,w,], and ||Q(e*|| = 0, Yw > w,.
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Note that the choice of B is intuitively right: the
error should be processed through the inverse of the
complementary sensitivity function, in order to ob-
tain the reference signal that yields exact compen-
sation of the disturbance. The choice of w, contains
two aspects. First, w. should be lower or equal than
the frequency above which considerable uncertainty
in the model shows up. Second, by our intuition,
w. should be considerably lower than 27 fiaz (2).
Note that since the filter operations are performed
off-line, @ may be a non-causal filter which enables
us to make its phase zero.

Removing initial error conditions

Probably, when step 1 of the learning algorithm is
initiated, the error will have a nonzero value. As a
consequence, the first sample of £} will be nonzero
for most [. If this is the case, the first sample of F{V)
will increase unceasingly with increasing [. Note
that this is in fact the result of our unreasonable
demand on the error to diminish step-like from a
certain non-zero value to zero. To avoid the contin-
uous increase of the first sample of F\!)| we propose
the following adaptation to the standard procedure
described above (13): use as an input to the learning
algorithm not the vector E(), but the vector EL",
whose samples are calculated as:

LA
EP ) =
EOG) - EOQ)W +1—4)/W, i=1,2,....W
B (), t=W+1,...,W
(15)

(1) - : T 2
Eg " is thus the error signal that we find if we require
the output to converge gradually to the setpoint in
W samples instead of instantaneously.

5 Shock suppression in a Hard Disk
Drive

In this section, we apply the algorithms described
in the previous section to the problem of shock sup-
pression in a Hard Disk Drive (HDD). The objec-
tive of HDD tracking control is to maintain the
read/write head as close as possible to the center
of the track despite of disturbances acting on the
plant. The most significant disturbances are out-
put disturbances, such as eccentricity of the disks,
and shocks. The HDD control problem is a trade-
off between shock suppression performance and per-
formance under nominal conditions. Limitations of
linear control, such as the one defined by the well-
known Bode Sensitivity Integral Theorem preclude
from improving the shock suppression without de-
teriorating performance under nominal conditions.
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Fig. 4: Measured tracking error during the presence
of a shock.

To avoid this trade-off, we propose the following ap-
proach to the design of the HDD controller: design a
linear controller that yields good performance under
nominal conditions, and include a learning feedfor-
ward algorithm (as described in the previous sec-
tions) to suppress the shocks. To motivate the fea-
sibility of such an approach we must, according to
Section 2, prove that (1) a sequence of shocks can
be considered as an NPR-disturbance, (2) shocks are
sufficiently fast detectable and (3) shocks are limited
in their frequency range. The first property follows
from the fact that in each HDD’s application, sub-
sequent shocks will be of approximately the same
shape, since this shape will be mainly dependent on
the mechanical environment in which the HDD is
embedded®. Detectability of the shocks can be de-
noted from Figure 4, where the measured tracking
error (in track width [t.w.]) during the presence of a
shock is plotted. This measured was obtained from
shock table experiments with a real HDD setup. Fi-
nally, the Figure 4 shows that the contribution of
the shock to the error is mainly located in the low-
frequency range (lower than about 200 Hz), so that
also the third requirement is satisfied.

The design of the shock suppression algorithm can
be split in the design of the detector and the design
of the learning feedforward algorithm. Prerequire-
ments are the availability of a model of the plant,
a model of the disturbances, and a linear controller

@
Design of the shock detector

Main effort in the design of the shock detector is in
the determination of the coloring filter M. To solve
this problem, we let M have an AR (Auto Regres-
sive) structure. Then, the coefficients of the filter
can be obtained by solving the least square problem
for linear regression models, taking measurements
of the error as identification data set (Ljung, 1987).

3Of course, shocks will have different amplitudes, which
requires the addition of a shock size estimator to the algo-
rithm presented in this paper.

Be!

Alternatively, the coefficients can be caleulated di-
rectly from the Toepliz matrix containing the covari-
ance coeflicients of the error stochastic process. The
latter can be obtained by inverse Fourier transform
of the measured error spectrum, which is available
from a experiments with the HDD setup. The choice
of the order of the filter is a trade-off between accu-
racy and compactness. We choose the order of the
filter to be 50.

The remaining design freedom is in the choice of y,.,
N and TH (or n). Recall that y, is the contribution
of the shock to the error. Since the contribution of
the shock to the error is located in the low-frequency
range, the easiest way to determine y,. is by low-pass
filtering the measurement of the error. N should
equal the average detection time (in samples). From
simulations with the detector with different values
for N and different shock sizes, we found an opti-
mal value of 6. We choose TH equal to 4 times the
standard deviation of the output of the correlation
receiver (left-hand-side of (10)) under nominal con-
ditions, in order to minimize sufficiently the chance
on false alarms.

Design of the learning feedforward algorithm

We determine B as the best approximate of R—!
using the MATLAB function zpete.m, which is an
algorithm based on (Tomizuka, 1996). The filter
we obtain this way is an accurate approximation
of R~ up to 800 Hz. To determine the necessary
cut-off frequency of the @ filter, we apply the rule
of thumb (2). Given T; = 0.12 ms and ng., = 4
(from simulations with the detector), we find that
Sfaz <€ H00H z, so the cut-off frequency of @ must
be farely smaller than 500 Hz. For both suffi-
cient robustness and satisfactory compensation of
the shocks in the most relevant frequency range,
we choose the cut-off frequency of @ equal to 200
Hz. For a sufficient amount of averaging, we choose
k] = L

Simulation results

In order to determine the effectivity of the shock de-
tector, we compare the performance of the detector
with that of a simple alternative detection method:
a threshold on the absolute error. We choose the
value of this threshold in such a way that the relia-
bility of the detector is the same as for our correla-
tion receiver (i.e. 4 times the standard deviaton of
the error). Figure 5 shows 40 samples of the outputs
of both detection algorithms and the thresholds for
detection. It can be seen that the correlation re-
ceiver (lower part of the figure) yields a faster de-
tection than the simple threshold detector (upper




part of the figure). The figure is representative for
the better performance of the correlation receiver:
over hundreds of simulations with different shock
sizes, the detection speed of the correlation receiver
appeared to be almost one time sample faster than
that of the simple threshold detector.

To investigate the effectivity of the learning feedfor-

threshold on error

error I
threshold E

5 10 15 20 25 30 35 40
correlation receiver

- 0.04 T T T v &5 E

§ —— output cor.rec.

& --~-  threshold (TH)

o

2 /

5 10 15 20 25 30 &b 40
time [samples]

Fig. 5: 40 Samples of the outputs of the simple
threshold detector (upper) and the correla-
tion receiver (lower) during the presence of
a shock.

ward, we simulated the learning algorithm in combi-
nation with the detector for a sequence of 20 shocks,
randomly occuring in time. The simulated errors
due to respectively shocks 1, 5 and 10 are plot-
ted in Figure 6. As can be seen, the effect of the
shocks diminishes thanks to our learning suppres-
sion algorithm. The first error peak is decreased
with approximately 60 %. For the 10" shock, only a
small error peak occurs, right after the shock arrival.
This can be explained from the fact that the feed-
forward is activated only at the moment the shock
is detected, which is about 6 samples later than
the actual shock arrival time. Continuation of the
simulation with additional shocks showed that the
achieved suppression remained constant for [ > 10.
The feedforward vector that was used for suppres-
sion of the 10" shock (and hence constructed in 9
iterations of the update law), is plotted in Figure 7.

6 Conclusions

We introduced the notion of "non-periodically re-
peating (NPR) disturbances” to describe those non-
stationary disturbances that exhibit the same be-
havior in some randomly distributed time intervals
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Fig. 6: Simulated errors of the HDD control system
for respectively the 1%, 5" and 10™* shock
after activating the additional shock sup-
pression algorithm (detector+learning feed-

forward).
e T
=
;“— shock 10
s
z
£
=2
|-+
8
=02

200 300 400
tume [samples]

0 100

Fig. 7: Simulated feedforward signal after 10 itera-
tions of the HDD learning feedforward shock
suppression algorithm.

and are zero elsewhere. Such disturbances may ef-
fect the performance of mechanical servo systems
unacceptably. Assuming them to be unmeasurable,
intuitively, they can be compensated using a lookup-
table-based feedforward which is activated when the
presence of the disturbance is detected from the out-
put. The restrictions of such an algorithm limit the
class of disturbances under consideration in this pa-
per to those NPR-disturbances that are sufficiently
fast detectable and limited in their frequency range
due to the deviation in detection time. A suitable
detector can be derived by introducing hypotheses
for respectively presence and absence of the NPR-
disturbance and calculating the Likelihood Ratio
Test for the detection problem. In implementation.
this detector is simply a discrete time filter whose
output is compared with a threshold to decide ei-
ther presence or absence. Since we assumed the




shape of the NPR-disturbance to be unknown (and
possibly slowly changing in time) an algorithm for
constructing and updating a suitable lookup table
was included. By applying existing theory on Itera-
tive Learning Control (ILC), such an algorithm was
derived. Convergence results for ILC do not fully
apply. but can be used as a rule of thumb for deter-
mining suitable learning- and robustness-filters. We
showed with a simulation example that the combi-
nation of the detector and the learning algorithm
can be used to improve the shock suppression in a
Hard Disk Drive system with approximately 60 %.

Appendix

Derivation of the Likelihood Ratio Test

From (Ljung, 1987) we know that the expectation of
yn(t; + 1) is the one step ahead prediction: §,(t; +
ilt; + 1 —1). If M(q) is monic?, under hypothesis
Hy, this one step ahead prediction is given by:

Un(t; +ilt; +i—1) = [1 = M~ (@)y(t; +1). (A.1)

Accordingly, the probability density of y(#; +1) un-
der hypothesis Hy is

.U_r.:\f_. 1 H'.Hn(y“,} & j”H[U) —

exp (_ (ults +4) — (1= M~ (@)lu(t; + m?) _

1
Vorsia 27
(A.2)
Under hypothesis H; the one step ahead prediction
of yn(t; + 1) is given by:

Gt +iltj+i=1) = [L= M~ g))(y(t; +i) —y.(3)),

(A.3)
and the probability density of y(t; + i) under hy-
pothesis H, is consequently

Py(t;+i)| Hy (Ut +4) | Hy) = 7;";—\><

&b (_ (y(t; +2) — [1 = M~ (q)l(y(t; +1) — yr(d)) — yr(1))?
2X
(A.4)
Accordingly, the joint probability densities of y(t;)
under respectively Hy and H, are given by:

[Tt 7o >
=1 o)

: il L =1 1 d A2
(,xp(_{yu)m - M (q),umﬁe.n) s

Py(t;)|Ho (¥ ()| Ho) =

22

N 1

Pyt (V)| Hy) = [Tizy %

- (_ (w(t; + 1) — [1 — M= () (w(t; + i) — e (2)) — yr(3))?
X =

(A.6)

4i.e. The zeroth coefficient of its impulse response is unity.
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Substituting (A.5) and (A.6) in (9), canceling com-
mon terms and taking the logarithm we obtain:

InA(y(t;)) =
N N

% Z M~ (q)y(t; --H‘.-‘n'f"M}y,-[a}—ﬁ Z(ﬂ-f‘ltr.rJ.r;rté}l",
i=1 =1

(A7)
which leads in a straightforward way to (10).
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Abstract. In this paper we provide a general result that allows to equivalently trans-
late robust performance analysis specifications characterized through a single quadratic
Lyapunov function into the corresponding analysis test with multipliers. Just as an
illustration we apply the technique to robust quadratic and robust generalized H, per-
formance, and we comment on the wide range of its applicability. Finally, we reveal how
this technique allows to approach LPV problems in which the control input and measure-
ment output matrix are parameter dependent. The latter is made possible by letting the
parameter enter the LPV controller via a kernel representation that generalizes the more

conventional LFT structure.
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1 A full block S-procedure

Suppose S is a subspace of R*, T € R'*™ is a full
row rank matrix, and A C RF*! is a compact set
of matrices of full row rank. Define the family of
subspaces

Sa :=8Nker(AT)={z €S :Tx € ker(A)}

indexed by A € A.

In the terminology of the behavioral approach, 8
is the system, 7" picks the interconnection variables
that are constrained by the uncertainties, the ele-
ments of A € A define kernel representations of the
possible uncertainties, and Sa is the perturbed sys-
tem.

Suppose N € R* ™ is a fixed symmetric matrix.
The goal is to render the implicit negativity condi-
tion

VAeA: N<O0 on Sa

$This paper is presented at the 36th IEEE Conference on
Decision and Control, 10-12 December 1997, San Diego, CA,
USA. Copyright of this paper remains with IEEE.

3The author would like to thank Ted Iwasaki (Tokyo In-
stitute of Technology) for helpful discussions.

47

S-procedure, structured parametric uncertainty, linear parametrically vary-

explicit. We want to relate this property, under cer-
tain technical hypotheses, to the existence of a mul-
tiplier P that satisfies

N+TTPT <0onS and P> 0on ker(A)

for all uncertainties A € A.

The required technical condition will be related to a
certain well-posedness property; here it amounts to
the complementarity of the subspace Sa to a fixed
subspace Sp C S that is sufficiently large. Moreover,
the quadratic form N is supposed to be nonnega-
tive on this subspace; in the applications we have in
mind, this is a property on the performance index
under consideration that is, interestingly enough, in-
dispensable in reducing the underlying controller de-
sign problem to an LMI problem. To be precise, we
require

dim(S) >k and N >0on 8.

Theorem 1.1 The condition
VAeEA: SanSy={0}, N<0 on Sa
holds iff there exists a matriz P that satisfies

N+TTPT <0 on S

YA ;
s {P =0 an kA )




2 Application to robust performance
problems

Consider the first order image representation

T A B; Bg Z
zy | = | C1 D1y Dy2 wy (1)
Zp Cs D3y Day wy

of a system (with A Hurwitz) in L,. We can assume
w.l.o.g. that the third block column of the matrix
has full column rank.

Here, wy and w; are latent variables; z, are the vari-
ables on which we impose the performance specifi-
cation, and z, are the interconnection variables to
let the parameters enter the system.

We consider the linear parameter-varying (LPV)
systems obtained as follows: they are parametrized
by all continuous curves

A [U,OO} - A
with a given set of values
AC Rk wl

that captures both the size and the structure of the
parameters. We assume that A is compact and con-
sists of full row rank matrices only. These parameter
curves enter (1) via a kernel representation as

A(t)zy(t) = 0. (2)

We will clarify below that this generalizes the more

standard LFT structure.

As a first property, we intend to characterize that

the representation of LPV systems is well-posed:
AD;; is nonsingular for every A € A.

(3)

In the case of well-posedness (3), we observe that the
LPV system admits the alternative representation

(;i: ) » (.4(A(t)) B(L\(t))) ( T ) (4)
zp)  \C(A(t)) D(A(t)) ) \w»
where

(A(A) B(A)) X (_.4 B, ) -
C(A) D(A) )~ \Cz: Dy
B\, 15
+(D21)(AD“) A(C[ .Dlg).

Given the performance index P,, the second goal
is to guarantee uniform (in the uncertainty) robust
exponential stability, and robust quadratic perfor-
mance;

o
—

/: 2p(t)T Ppz,(t) dt < 0 (
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holds for any trajectory of any of the LPV systems
with 2(0) = 0. Let us include the following technical
hypotheses:

Dy has k columns, DI, P,Dy; > 0.

The first property is obviously necessary for well-
posedness; the second property holds for the stan-
dard H., or positive real index and many others.
It is well-known and elementary to show that robust
exponential stability and robust quadratic perfor-
mance is guaranteed by the existence of some X > ()
such that

0X0 Lasual
VAeA: x[X 00 A(A) B(A) | <o.
0 0P,/ \C(A)D(A)
(6)

(Note that throughout this paper we will employ the
abbreviation *PM for MT PM.)

We will use Theorem 1.1 to equivalently reformulate
this characterization as

0X00 dre 0 i
X000 A B, B, o
G ER 0 | Cbabn ) B
000P, Cy D3y Dy

where P is a multiplier that satisfies
VAe A: P >0on ker(A). (8)

Theorem 2.1 Well-posedness (3) and (6) hold iff
there exists a P with (7) and (8).

Proof. We just apply Theorem 1.1 to

0X00
X000
N=1%000 | T=(00r0),
000P,
FERS ORN(E) 0
. A B, B, = By
S:=1m e ., Sg=im o T
Ca Dyy Dy Dy

1]
Before commenting on this result, let us look at the
robust generalized H, problem that offers an inter-
esting additional insight into the solution of robust
mixed problems,
Suppose Ty and T, are two matrices of full row
rank whose number of columns equals the size of z,.
Then we intend to characterize that

“TOO‘ZJJHOC- < ||T23p”‘2 (9)




holds for the whole family of systems (4) with z(0) =
0. If we have T»z, = ws, this property amounts to
the gain of the mapping Ly 3 ws — Thz, € Lo, de-
fined by (4) with (0) = 0 being robustly not larger
than one. This gain has been called generalized H,-
norm (Rotea, 1993).

Let us assume that

TooD(A) = 0

what is indeed required to ensure [|Teozp|loo < o0
for all ws € Lo in (4). Then the following result is
very easy to prove: If there exists an X > 0 such
that, for all A € A,

0X 0 I o
W X090 A(A) B(A) | <0,  (0)
0 0 -TIT,/) \C(A) D(A)

vl ot [ D I
(C(A)) (o Tg;Tm) (C(A))(‘O (11)

then (4) is robustly exponentially stable and (9)
holds for any system trajectory.

We end up with two inequalities in the parameter
A. Therefore, we have to apply Theorem 1.1 to each
of these inequalities individually, what leads to two
independent multipliers to equivalently reformulate
this test.

Theorem 2.2 Suppose 1T5Ds = 0. Then well-
posedness (3) and (10), (11) hold iff there ezist mul-
tipliers Py and Py that both satisfy (8) and

0X 0 B i S
D 1 e A B, B <
00PR O Ci D1y Dys
000 0 -T4T Cy D3y Dss
as well as
=k> R A )
* 0 P 0 Cy Dy < 0.
0" 0PETS Cy Dy

Remarks.

e The equivalences of these robust performance
characterizations seem not to have appeared
in the literature. They extend (Megretski and
Rantzer, 1997; Iwasaki et al., 1995) to robust
performance problems for general LET uncer-
tainty descriptions. Comparable robust perfor-
mance specifications with multipliers that are
only indirectly described have been provided in
(Tokunaga et al., 1996; Scherer, 1996).

e It is an important structural insight that, in

Theorem 2.1, the combined multiplier £
0.,

49

for performance and parameter can be taken
block-diagonal.

e If the parameter has a block-diagonal struc-
ture, the channel-wise application of the stan-
dard S-procedure leads from (6) to (7) with a
block-diagonal scaling P. It is know that this
step introduces conservatism. Using multipli-
ers which are full and whose structure is not
explicitly specified at the outset leads to a re-
formulation without conservatism. Therefore,
we call the technique presented here a full-block
S-procedure.

e Animportant aspect is the ease to proceed from
(6) to (7) in a formal manner, just by refer-
ring to Theorem 1.1. Moreover, the derivation
is not only straightforward, but leads to sim-
ple formulas that favorably compare with their
sometimes pretty intricate counterparts in the
literature.

e There are numerous further applications of the
full block S-procedure that are currently un-
der investigation. As most prominent ones, we
mention that one can straightforwardly extend
general robust mixed problems as proposed in
(El Ghaoui and Folcher, 1996; Masubuchi et al..
1996) to full block scalings what reduces conser-
vatism; see also (Tokunaga et al., 1996). More-
over, the techniques apply to analysis problems
with parameter dependent Lyapunov functions
along the lines of (Feron et al., 1995).

3 Application to LPV control

For the discussion of LPV control we concentrate
on the quadratic performance specification with in-
dex P, that is, in addition, non-singular. In con-
trast to robust control, in LPV control it is as-
sumed that the parameter curve is on-line measur-
able. These design problems can be approached ei-
ther by directly using the analysis test (6) (Apkarian
et al., 1995; Becker et al., 1993; Kése et al., 1996)
or by proceeding with the multiplier version (7)
(Packard, 1994; Apkarian and Gahinet, 1995: Becker
and Packard, 1994; Helmersson, 1995; Scorletti and
El Ghaoui, 1995; Scherer, 1996).

The former suffers from the disadvantage that the
matrices defining the control input and the mea-
sured output are not allowed to depend on the pa-
rameter. In the latter, usually a restricted class of
structured scalings is employed. One of the main
motivations for the full block S-procedure is to over-
come these restrictions in LPV control.

Since we need dualization, the parameter dependent
system is assumed to admit a slightly more special




description as

] A By B B
Wy [0 oy o Ul T
zy | _ | Ci D1y Dy By Wy -
wh | D O 0 wp (12)
Zp Cg D'zl Dgg E-g u
i} C Fy F, 0
with parameters entering as
y wyu(t)\

As usual, u denotes the control input variable and
y the measured output variable.
We assume that the controller is described as

e = AeTe+ B, (f )

14
(£)=cerne () o
T We

and a specific parameter curve A(.) enters as

A(A(D)) (“i’((:))) =0 (15)

for a to be constructed scheduling function A, :
A — Rkexle,

The description of the controlled system is obtained
by interconnecting the LTI systems (12), (14) to get

BT Y T

W U S 1 e :

Zu Ci Dyy Dya Dyg 1:

o g 7 Y AR o (16)
Ze Cy Dyy Dyy Dag We

w 010 10T 2

r
\ 51/ C3 D31 D33 Dy3 /

and letting the parameters enter via (13), (15).
The LPV problem now reads as follows: Find an
LTI controller (14) and a scheduling function A,
such that the controlled system (16), (13), (15) is
robustly exponentially stable and robustly satisfies
the performance specification (5).

Robust stability and robust performance is charac-
terized through Theorem 2.1 by employing multipli-
ers P that satisfy

Py Pr2 (A 0
(P21 P_}!;]) > 0 on ker (U .ﬁc(A)) (17)

for all A € A. Note that one can dualize this test
(Iwasaki et al., 1995; Scherer, 1996) to arrive at a

formulation with the dual performance index P, and
the dual multipliers P that fulfill

Py, Py, o AT 0 )
(Pm }522) < 0 on ml( 0 ALA)T )

The duality coupling for the performance index and
the multipliers is P, = P! and P = P! respec-
tively.

The synthesis inequalities for the LPV problem at
hand are obtained along standard lines (Packard,
1994; Apkarian and Gahinet, 1995; Becker and
Packard, 1994; Helmersson, 1995; El Ghaoui and
Folcher, 1996; Scherer, 1996): Start with the pri-
mal and dual analysis inequalities for the controller
system which involve the Lyapunov matrices A" and
X~1. Then eliminate the controller parameters for

which one requires to compute basis matrices ® and
¥ of

ker (BT ET ET), ker (C F, ).

Due to the particular structure, the resulting two
inequalities simplify considerably; one ends up with
the LMIs

0Xx/0 0jlo 0 Es10240
X 0[0 0|0 0 A By B,
00[/Q S[0 0 0 I 0
' oolsTRlo o Cy Dy Dy, il
0 0] 0 0l@,.8 |} 0,0 I
0 0{0 0[ST R, )\ Ca D31 D
oYlo olo o A ey €
Y0070l 00 6 =1 o 0
b or@=sliona | BB B
1 oolszalo o'|| o =r o [F=9 @9
00[0 0@, 5, || BI DI, D,
0 0j0 0fST R,/ \ O 0 =1

in the symmetric matrices X, ¥ coupled as

%
(I },) >0 (20)

e ($2). 8- (89)

which satisfy

and in

o U

P11 > 0 on ker(A)

VA e A: ;
5 {P“ <0 on im(AT)

(21)
We observe that other parts of the multipliers sim-
ply drop out and do not oceur in this result. In this
way one proves the necessity part of the following
theorem.



Theorem 3.1 There ezists an LPV controller
(14), (15) for (12), (13) such that the controlled sys-
tem satisfies the condition for robust performance in
Theorem 2.1 if and only if there exist X, Y, Pyy, Py
that fulfill (18)-(20) and (21).

As an important novel aspect, we make no assump-
tion on the multipliers. Indeed, this causes the main
difficulties in proving the reverse direction by con-
structing a suitable LPV controller.

Let us briefly describe how to construct such a con-
troller. For that purpose suppose that X, Y, Py,
Py, satisfy the synthesis conditions.

The most difficult step in the construction is covered
by the following theorem.

Theorem 3.2 Suppose the matrices Py, Py ful-
fill (21). Then there ezists a continuous function
A (A) and an extension Pia, Poy, Pso such that

1= (P” Pu) satisfies P~' = (P“ *)

Py Py * %
and such that (17) holds for all A € A.

This results allows to find extended scalings and
a suitable scheduling function. If we observe that
(18)-(20) are nothing but the synthesis inequalities
for the quadratic performance problem with index
(}03}3 ) the construction of the LTI part of the
nont.rrﬁ]er can be obtained by a standard nominal
design procedure.
Remark. Note that the synthesis inequalities for
designing a robust controller (w., z. are absent) are
given by (18)-(20), (21) including the duality cou-
pling 1

Py =Py
This relation renders these conditions, as well-
known, non-convex in the variables Py; and Pp,.
Under specific structural hypotheses on the multi-
pliers (as discussed below), this procedure has been
followed in (Scherer, 1996) and is worked out in full
detail in (Scherer, 1997). A full discussion of the
novel procedure including all the proofs will be avail-
able in a forthcoming paper.
Note that the multipliers in (21) are described by
infinitely many linear matrix inequalities. They can
be reduced to finitely many inequalities by gridding
the parameter space A. Instead, however, we pro-
pose to constrain the scalings, possibly involving
conservatism, such that one can exploit convexity
in order to reduce the test to finitely many LMIs
that are amenable to standard software.
Let us illustrate this technique and the benefit of
the presented approach over existing ones by briefly

resorting to the standard LFT description of uncer-
tain systems; in that case the parameters enter as

wy(t) = 0(t)2u(t) (22)
where
o 0 0
== )
0 6mlrm

with the dim(J;) times repeated scalar parameters
d; varying in [—1,1]. Note that (22) can be written

as
(I -5(t)) (“’“(”) =0

zu(t)

such that it nicely fits in our more general scenario.
If we recall that

ker (I —4) =im (?) ;

the constraints (21) on the scalings hence read as

O EDG> e
() (E (e

forall 4; € [~1,1]. (Note that & happens to be sym-
metric; since the generalization to a possibly non-
symmetric structure ¢ is straightforward, we neglect
this extra property.)

Let us now denote the extreme points of the set
of all § by §7. If we impose the strong constraint
@ <0 and R > 0 on parts of the multipliers, we in-
fer that (23), (24) hold for all § iff they hold for all
extreme points §7. This is the situation considered
in our previous work (Scherer, 1996). However, it is
simple to relax the strong negativity /positivity con-
dition by referring to a partial convexity argument.
Indeed, if partitioning

and

Ql * Rl *
Q — . f{ T .
* Q“J * Rm

according to 8, 67, we can work with the relaxed
negativity /positivity constraint

Qj<0, R;>0 (25)

imposed on the diagonal blocks only. This implies
that the left-hand sides of (23), (24) are partially
concave, convex functions of 4 respectively. Hence




one can again conclude that (23), (24) are satisfied
for all § iff they are are fulfilled for the extreme
points 47,

The set of synthesis inequalities then consists of
(18)-(20), (23)-(24) for the extreme points, and (25),
such that the feasibility test amounts to a standard
LMI problem.

In the talk we will provide an example which re-
veals that this relaxation can considerably reduce
the conservatism.

4 Conclusion

We have given a general full block S-procedure in or-
der to rewrite robust performance tests formulated
in terms of a constant Lyapunov matrix into the
corresponding multiplier test without conservatism.
As an application, we have given a full solution to
the corresponding LPV synthesis problem where the
multipliers are in no way restricted. This has been
made possible by proposing a novel scheme to sched-
ule the LPV controller; the parameters are viewed
to define a kernel representation of a static system
that is interconnected with the LTI part of the con-
troller.
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Abstract. Repetitive and iterative learning control are two modern control strategies,
used in tracking systems in which the signals are periodic in nature. Both schemes are in
some sense based on the internal model principle applied to periodic signals. Because of
the great number of successful applications, both schemes have been investigated in their
own right, largely independent of the results available for the internal model principle.
This has clouded some basic properties of these schemes, with consequences for their
analysis and design. This paper returns to the origin of repetitive and learning control by
analyzing and designing both controllers within a general internal model based framework.
A link is made with several existing approaches, for which the design is shown to depend

on modifications of the internal model.

Keywords. Iterative learning control, repetitive control, internal model principle, duality,

synthesis.

1 Introduction

In practice, many tracking systems have to deal
with periodic reference and/or disturbance signals,
for example computer disk drives, rotating machine
tools, or robots that have to perform their tasks re-
peatedly. It is well known that any periodic signal
can be generated by an autonomous system consist-
ing of a time-delay element inside a positive feed-
back loop. Therefore, in view of the internal model
principle, (Francis and Wonham, 1975), it might be
expected that accommodation of these periodic sig-
nals can be achieved by duplicating this model in-
side a feedback loop. In the literature, two types of
compensators can be found which accomplish this:
the repetitive controller, see for example Inoue et al.
(1981), Hara et al. (1988), Tomizuka et al. (1989)
and Sadegh (1991), and the iterative learning con-

tThis paper was presented at the 36th IEEE Conference
on Decision and Control, 10-12 December 1997, San Diego,
CA, USA. Copyright of this paper remains with IEEE.

§The work of Dick de Roover is financially supported by
Philips Research Laboratories, Eindhoven, The Netherlands.

troller, see for example Arimoto et al. (1984), Moore
et al. (1992) and Horowitz (1993).

Although it has been recognized that both schemes
differ in the way periodic compensation is per-
formed, (Hara et al., 1988; Horowitz, 1993), still the
impression exists that both schemes are equivalent.
However, in a recent paper, it was shown that the
schemes are not equivalent, but are related by dual-
ity, which is a consequence of the difference in loca-
tion of the internal model inside the compensator,
(de Roover and Bosgra, 1997). It was shown that
a repetitive controller has the structure of a servo
compensator-with the internal model located at the
system output-while a learning controller has the
structure of a disturbance observer, with the inter-
nal model located at the system input. In this paper
we use the general framework given in de Roover
and Bosgra (1997) to set up a general framework
for the synthesis of (MIMO) repetitive and learning
controllers. It is shown that a number of existing
repetitive and learning control schemes can be put
into this framework, according to specific modifica-




tions in the internal model. Throughout this paper,
IR denotes the field of real numbers. Let n, denote
the dimension of the vector u, then IR* denotes the
set of all n,-vectors with elements in IR. Likewise,
IR"*¥ denotes the set of all n, x n, matrices with
elements in IR, and I, denotes the n, x n, iden-
tity matrix. Furthermore, z denotes the discrete-
time delay operator, and IR(z) denotes the set of
all rational functions with real coeflicients in z. Let
M € R"*™ then p(M) denotes the rank of M, and
p(M) < min{n,m}.

2 The robust periodic control prob-
lem

Any periodic signal can be generated by an au-
tonomous system consisting of a time-delay element
inside a positive feedback loop, corresponding to the
periodicity and with appropriate initial conditions,
see Figure 1. For example, a discrete time periodic

w(t;)

Fig. 1: Periodic signal w generated by an au-
tonomous system with appropriate initial
conditions =0 and N denoting the number
of delays.

signal of length N can be generated by:

?L'w(f'j-t-l) = Au'Iw(tJ): Tw(to) = Two
w(t;) = Curult;), (1)
with

010 :---0

Ay = [P E B NN
000 -1
L OU) iy

ST

Note that the spectrum of A, consists of N roots
equally spaced on the unit disk, i.e. an internal
model of this periodic signal is simply given by:

du(z) =1—-2"N, (2)

Next, consider a discrete time linear time-invariant
(LTI) plant P(z) € IR(z)¥** with input signal
u = up+wy, € IRY, and output signal y = Pu € IRY,
according to Figure 2. Given a desired output sig-

o4

Wy,

thp + u Y
13 P(z)

Fig. 2: General periodic control problem; u, and
w, denote a periodic control signal and pe-
riodic input disturbance, respectively.

nal which is periodic with a period of N samples:
?'(f.j) = T'(tj+NA’]'). g =10, AT 2AT 2 with AT
denoting the sampling time. Let ¢ = r — y be the
tracking error. Then we define the robust periodic
control problem as:

Definition 2.1 The robusi periodic control prob-
lem is to find a feedback compensator C(z) for the
system P(z) such that:

1. The resulting compensated system is exponen-
tially stable.

2. The tracking error e tends to zero asymptoti-
cally, for all periodic references r and periodic
disturbances w,, satisfying (1)*.

3. Properties 1. and 2. are robust, i.e. they also
hold in case the dynamics of P are perturbed.

Repetitive and learning control are two strategies
which attempt to solve this problem.

3 Synthesis in an internal-model-

based framework

In this section, we give necessary and sufficient con-
ditions, for both a repetitive and learning type of
controller to solve the problem, which are a direct
consequence of the general framework given in de
Roover and Bosgra (1997).

3.1 Repetitive control

A prototype repetitive controller which might solve
the periodic control problem is given by:

C(z) = R(z) (63 (2)1,) (3)

with R(z) € IR(z)"*¥ denoting a stabilizing repeti-
tive control gain, and ¢,,(z) = 1 — 2z~% is the mini-
mal polynomial of the autonomous system (1). Note
that due to n, times duplication of ¢,,(z), the com-
pensator (3) has a state space realization which has

!Note that there is no fundamental difference between an
error resulting from a disturbance at the output or from a
reference input r; we will only consider r.




the structure of a servo compensator; this duplica-
tion is necessary to obtain robustness property 3.
of Definition 2.1. The following theorem gives a
necessary and sufficient condition for the repetitive
controller (3) to solve the robust repetitive control
problem:

Theorem 3.1 Let {A,B,C,D} be a minimal re-
alization of P(z) € IR(z)¥*%, let {A,,B,;} be a
controllable realization of the ny-fold duplication of
¢7'(z) = 1/(1 — 2=N). Then there ezists a repet-
itive control system (3) that solves the robust pe-
riodic control problem, defined in Definition 2.1, if
and only if

p([M_}A g]) =7z +ny, VAEo(4y). (4)

This result can be directly derived from the results
available for a general servocompensator, by not-
ing that a repetitive controller is a servocompen-
sator for periodic signals (see de Roover and Bosgra,
1997). In fact, condition (4) guarantees the control-
lability of the series connection of P(z) followed by
¢t (2) 1y = I,(¢pw(2)I,)~". It implies that the sys-
tem P does not have fransmission zeros located at
the spectrum of A,,, and that P has at least as many
inputs as outputs. If the conditions of Theorem 3.1
hold, the control input u, can be designed according
to:

Un(ty) = Komn )

with z, € IR" the state-vector of the ny-fold du-
plication of the internal model, and z, € IR® the
state-vector of any plant stabilizing compensator,
and [ K K, ] a stabilizing state feedback for the
series connection of plant and internal model, For
example, an observer-based compensator can be de-
signed, which stabilizes the system {A, B,C, D}. In
this case, a state space realization for the resulting
compensator C'(z) is given by:

+ Kze(ty),

A, 0
2 { (B+ LD)K, A+ BK + L(C — DK)

B,
K
with L denoting an observer gain, designed such
that (A + LC) is stable. According to the sepa-

ration principle, L and [ K K, ] can be designed
independently.

B,

Il

}. Gy = | Bt =k |5 B =04 1(5)

3.2 Learning control

There might be situations where condition (4) does
not hold, for example if the system P has more
outputs than inputs. Consequently there does not
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exist a repetitive controller that can solve the ro-
bust periodic control problem defined in Definition
2.1. Notwithstanding, a dual repetitive controller
might exist that can solve the robust periodic con-
trol problem for periodic disturbances w,, at the sys-
tem input, and for periodic reference signals r un-
der certain controllability restrictions (see de Roover
and Bosgra, 1997). A candidate dual repetitive con-
troller is given by:

C(z) = (¢3 ' (2)1u) L(2), (6)

with L(z) € R(z)"*¥ called the dual repetitive con-
trol gain. We call this dual repetitive controller
a continuously learning controller—or simply learn-
ing controller—as opposite to iterative learning con-
trollers, because it continuously updates (learns) the
input signal u,. Dual to Theorem 3.1 the following
result analyses under which conditions a learning
controller (6) exists that solves the periodic control
problem:

Theorem 3.2 Let {A,B,C,D} be a minimal re-
alization of P(z) € R(z)V*", let {A;,C;} be an
observable realization of the n,-fold duplication of
¢.1(2) = 1/(1—2N), and let r be available for com-
pensation. Then there exists a learming controller
(6) that solves the robust periodic control problem,
defined in Definition 2.1, if and only if

p([M5 ) o st

and
p(B) +ny, =p ([ g ]) ,

In fact condition (7) guarantees the observability of
the series connection of ¢ (2)Iy = (¢uw(2)1u) ' 1,
followed by P(z).

Remark 3.3 The first condition of Theorem 3.2
states that P may not have transmission zeros lo-
cated at the spectrum of A,,, and that P must have
at least as many oulputs as inputs. However, the
second condition—which is necessary for asymptotic
tracking of v, but not for rejection of w, —is in gen-
eral only true if P has at least as many inputs as
outputs. Therefore. asymptotic tracking of v using
a dual repetitive controller is in general only possi-
ble if P is square. Note also that the condition that
r should be available for feedback, is a necessary re-
striction, which is not required for the repetitive con-
troller (3).

In de Roover and Bosgra (1997), it was shown that a
learning controller (6) has the structure of a distur-
bance observer, which is a consequence of the inter-
nal model being located at the system input. There-
fore, if the conditions of Theorem 3.2 are satisfied,

(8)



the control input u, can be constructed according
to:
up(t;) = Ka(t;) + Cr(t;),

with K denoting a state feedback gain, designed
such that (A + BK) is stable, # denoting the recon-
structed system state, and z; denoting the state-
vector of the n,-fold duplication of the internal
model. In this case, the resulting compensator C'(z)
has the following state space realization:

s {A; L/(C + DK)

0 A+ BK + L(C—DK) |’ )

I- ar ) T
B, = [—;\'] y Ce=[Cy L], Ds=0,

with [ L L ]’ a stabilizing observer gain for the se-
ries connection of plant and internal model. Accord-
ing to the separation principle, X and [ L L, ]T
can be designed independently. By investigating the
solutions (5) and (9), it is directly verified that the
repetitive controller and the learning controller are
related by duality.

3.3 Design philosophy

Application of the internal model framework to the
concepts of repetitive and learning control provides
insight into two fundamental aspects of these con-
cepts, which have not been discussed before. First,
it gives necessary and sufficient conditions for the
existence of a solution to the periodic control prob-
lem, which guarantee the controllability and obsery-
ability of the series connection of plant and internal
model. For a MIMO plant, these conditions pro-
vide insight into the choice between a repetitive or
a learning controller, i.e. if the system has more in-
puts than outputs, a repetitive controller should be
used for both tracking and disturbance rejection,
whereas for a system with more outputs than inputs
a learning controller should be used for rejection of
disturbances at the system input; in this case, track-
ing of  is in general not possible, unless condition
(8) applies. For square systems, either a repetitive
or a learning controller can be used for tracking and
disturbance rejection, however, for learning control
the reference r should be available for compensation,
which is not necessary for repetitive control. Sec-
ond, once the existence of a solution has been veri-
fied, the design of a repetitive or learning controller
1s nothing more than the design of a stabilizing com-
pensator for the series connection of plant and in-
ternal model. In general, any technique can be used
for this design, e.g. observer-based state feedback
(LQG, H3), or robust control oriented techniques
like QFT, H.., or u-synthesis. The final compen-
sator then consists of the series connection of in-
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ternal model and stabilizing compensator, compare
(3), (6). In the next section we show that several
existing repetitive and learning control approaches
can be explained from the internal model framework
by a particular choice of the internal model. Conse-
quently, the same design philosophy applies to these
approaches as well, i.e. synthesis of a repetitive or
learning controller is nothing more than the choice
of a stabilizing compensator for the series connec-
tion of the plant and a particular internal model.

4 Connection with existing repeti-
tive and learning control schemes

For simplicity, in this section only tracking of a peri-
odic reference signal r is considered. Without loss of
generality we assume that the system under consid-
eration is stable, which gives a bit more insight into
the discussed mechanisms, since equations become
more simple.

4.1 Current-error feedback versus past-error
feedforward

lx wi

| w(t;)
4—N

Fig. 3: Discrete time internal model with delay el-
ement in forward path.

In practical applications, the number of delays N in
the internal model can be rather large, and con-
sequently the dimension of the repetitive control
gain in (3) can be rather high, although the inter-
nal model itself has a rather simple structure. In
the literature, often an alternative stability analy-
sis is used for the repetitive control system (3), see
for example Tomizuka ef al. (1989) and Hara et al.
(1988), where the delay chain is put into the for-
ward path of the controller, see Figure 3. Hence,
the internal model changes to:

=N

1—-2z=N"°

bu = (10)
In fact, the internal model (10) delays the direct
transmission from the current error to the input
up. In the literature on iterative learning control,
schemes based on the model (2) are called current-
error feedback, see for example Owens (1993) and
Goh and Yan (1996), while schemes based on the




model (10) are called past-error feedforward, see for
example Amann et al. (1996), Padieu and Su (1990)
and Moore et al. (1992). The latter name indicates
the open loop nature of the control input u, during
a trial. In the theory on repetitive control, also both
schemes can be found, see for example Hillerstrom
(1994) for current-error feedback, and Tomizuka et
al. 1989 and Hara et al. (1988) for past-error feed-
forward.

The stability analysis suggested in the literature,
now proceeds with isolating the delay chain of the
internal model (10) in an equivalent system repre-
sentation, (Hara et al., 1988). For the repetitive
controller (3), this is shown in Figure 4. Since the

r =i
Z= iy

I, — P(z)R(z)

Fig. 4: Equivalent system representation of repeti-
tive control system.

delay chain has magnitude equal to one, the small
gain theorem can be used, which states that the
following condition is sufficient for the equivalent
system to be stable:

Il I, = P(2)R(z) |li< 1, (11)

for some induced i-norm. Equation (11) motivates
to choose the repetitive control gain as R(z) =
P~1(z), i.e. equal to the (right) inverse of the sys-
tem P(z); consequently, the dimension of R is now
determined by the system P, and not by the num-
ber N of the internal model anymore. Note the dif-
ference with current-error feedback schemes, which
require

| (I, = P(2)R(2)) ! |li< 1, (12)

for closed loop stability, i.e. R(z) should be high-
gain. This shows the advantage of past-error
feedforward schemes over current-error feedback
schemes: the frequency up to which (11) holds in
practical situations, is in general 2-3 times larger
than the frequency up to which (12) is valid, see for
example de Roover et al. (1996).

Although the use of the small gain theorem may
yield low-dimensional repetitive gains, the resulting
controller might be overly conservative in a sense
that there might exist no R(z) for which condition
(11) or (12) hold, although condition (4) might still

57

be true, i.e. there still might exist a solution to the
robust periodic control problem. This result is for-
malized in the following:

Corollary 4.1 Let {A,B,C,D} be a minimal re-
alization of P(z) € IR(z)¥**, and let (2), ((10),
respectively) be an internal model of (1), then con-
dition (4) 1s true if condition (11) (condition (12),
respectively) is true.

This result shows the power of the design philos-
ophy based on the internal model framework: one
can choose either (2) or (10) as internal model, and
design a stabilizing compensator for the series con-
nection of this specific model and the plant. In
de Roover (1996) an alternative synthesis technique
is proposed—based on the small gain theorem-
which directly minimizes (11) using an H. ap-
proach. With this approach, also model uncertainty
can be easily incorporated into the design, and a
stabilizing compensator can be computed with a p-
synthesis.

4.2 Asymptotic versus finite time tracking

The internal model framework of Section 3 is asymp-
totic in nature, i.e. theoretically it takes infinite
time before the tracking and disturbance rejection
objective are achieved. In practice, however, track-
ing and disturbance rejection are achieved when-
ever the servo error e has settled within some user-
defined bounds, which is definitely not at infinity.
This renders the infinite time framework to be valid,
even for finite time objectives. For repetitive con-
trol, this is not an issue, since the output of the
repetitive controller acts continuously as a control
input. However, iterative learning control deals with
batch-wise updating of the control input u, after
each successive trial of the reference r, where the
duration of one batch—the length of one trial—is of
finite time. Consequently, the demand on asymp-
totic stability of the controlled system is replaced by
the demand on asymptotic convergence of the con-
trol signal to some fixed signal. This updating pro-
cess can be derived from the internal model based
scheme. If we progress on the dual repetitive control
system and substitute (10) into (6), we obtain for
the plant input signal:

up(tj) = ((bw(z)_]fu) L(Z)P(tj)
=N
= (ﬁf“) L(z)e(t;) &

up(t) = (27VL) (up(t) + L2)e(ty)- (13)
Now suppose the reference signal of length N is re-
peated an indefinite number of times, and at each

new trial of the reference the initial output of the




system is reset to the initial value of the reference,
i.e. y(kN) = r(0) where k = 0,1,2,... denotes the
number of trials. Then the control input (13) can
be written as:

abtl(t) = ub(ty) + L(z)e(t),  (14)
which shows that the input signal is updated after
each trial of the reference signal on the basis of the
tracking error. As a matter of fact, Equation (14)
is a general update law used in many past-error
feedforward learning control schemes, see for exam-
ple Horowitz (1993), Kavli (1992) and Moore et al.
(1992). Due to this discretization of the repetitive
learning process, no necessary condition for stabil-
ity of the learning system can be derived. However,
in Figure 5 the equivalent system representation is

s L(E) Z_‘N‘]u

g

I, — L(z)P(z)

Fig. 5: Equivalent system representation of dual
repetitive control system.

given. Using the small gain theorem for this system,
a sufficient condition for convergence is given by:
|| I — L(2)P(z) |l:< 1, (15)
for some induced ¢-norm, which is dual to (11). This
convergence analysis applies equally well to the up-
date law (14) as to the stability analysis of the in-
put signal (13), see for example Moore et al.(1992)
and de Roover (1996). Likewise, by substituting
(2) into (6), the following update law is derived
for current-error feedback schemes, see for example
Owens (1993), Goh and Yan (1996) and Amann et
al. (1996):
uF B =ul(e; ) + L(z)e**1(t;).

Again using the small gain theorem, a sufficient con-
dition for convergence is given by:

| (Iu = L(:-:}P(z))_' [li< 1. (16)
Dual to Corollary 4.1, we claim that the analysis
and synthesis procedure for the gain L, based on
the small gain theorem might be conservative with
respect to the general results presented in Section 3:
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Corollary 4.2 Let {A,B,C,D} be a minimal re-
alization of P(z) € R(z)V*%, and let (2), ((10),
respectively) be an internal model of (1), then con-
dition (7) is true if condition (15) (condition (16),
respectively) is true.

It should be noted that the use of frequency do-
main expressions, like (15) and (16), intrinsically
presume an infinite trial length in the learning pro-
cess, which seems only valid for theoretical and not
for practical purpose. However, if the trial length
is long with respect to the dynamics of the system
and the transient behaviour of the reference signal,
this assumption seems justified. Moreover, if the
system is causal on each trial, an infinite time con-
vergence condition also implies convergence on any
finite time interval by a simple truncation argument
(Amann et al. 1996).

4.3 Performance versus robustness

In almost any (practical) situation, it is often impos-
sible to find a repetitive control feedback R(z) that
exactly equals the right inverse of the system (condi-
tion (15)), either because this inverse does not exist,
for example if P is strictly proper or behaves non-
minimum phase, or because only an approximate
description of P is available. Therefore, in the lit-
erature, a modified repetitive control system is sug-
gested, which uses an internal model of the form:

g(z)z=N

1—gq(z)z=N'
with g(z) being a (low order) low pass filter with
magnitude equal to one at low frequencies, see also
Tomizuka et al. (1989) and Hara et al. (1988). The
idea is to choose the bandwidth of ¢(z) up to a value
of z where R(z) is still a good approximation of
P~1(z). The filter g(z) provides an easy way to tune
robustness of the closed loop to high frequent model
errors, at the cost of a nonzero tracking error at
high frequencies. Likewise, the model (2) is modified
to gm(z) = 1 — q(z}z‘”, because in general it is
impossible to fulfil condition (12) for all values of
z. In the literature on learning control systems, the
same (dual) synthesis procedure can be found for
the gain L(z), see for example Kavli (1992) and de
Roover (1996). In this situation, L(z) should be a
close approximation of the left inverse of the system
P(z). Due to the same practical limitations of this
choice, a low-pass filter Q(z) is used, which changes
the update law (14) to

= Q(2)(uy(t;)

and consequently changes the sufficient condition for
stability to

Il Q(2)

bm (2) = (17)

up T (t5) + L(2)ek(t5))

(I = L(2)P(2)) |li< 1,




which increases the robustness of the learning sys-
tem to high frequent model errors, at the cost of a
nonzero tracking error at high frequencies, Natu-
rally, the same argument applies for current-error
feedback learning control schemes, (see Goh and
Yan, 1996; Amann et al., 1996).

5 Conclusions

This paper gives a general framework for the analy-
sis and design of repetitive and learning controllers,
explicitly derived from results available for the in-
ternal model principle. The internal model frame-
work gives necessary and sufficient conditions for ex-
istence of a solution to the problem of robust asymp-
totic tracking and rejection of periodic signals. The
existence conditions allow for a proper choice be-
tween a repetitive or learning controller, dependent
on location of zeros and number of inputs and out-
puts of the plant. Once existence of a repetitive or
learning controller has been verified, the design of
such a controller is nothing more than the design of
a stabilizing compensator for the series connection
of the plant and an internal model of the periodic
signal, using any design technique. It is shown that
a number of existing repetitive and learning control
approaches can be put into this framework by mak-
ing a specific choice of the internal model. Conse-
quently, the analysis and design of these approaches
can be generalized to the powerful analysis and de-
sign procedure of the internal model framework.
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Abstract. This paper compares three open-loop command generating methods for the
point-to-point control of a wafer stage. Whereas the theoretical time-optimal bang-bang
force command results in excessive residual vibration due to excitation of resonant modes,
shaped force profiles have the property not to excite these modes while still allowing for
fast movements. The most successful shaping method turned out to be the one which
was best able to handle uncertainty in our knowledge of the resonant mode dynamics,
and the way this knowledge is used to shape the spectral content of the force command.
Besides comparing three shaping methods, it is also investigated how the feedback and

feedforward compensator affect the point-to-point motion.

Keywords.
vibration.

1 Introduction

In order to be competitive, modern chip manufac-
turing machines are required to perform both fast
and accurately. In particular the servomechanism
performing the positioning of chips, is required to
move the chips as fast and as accurately as possi-
ble. Due to the inherent flexibility of the mechan-
ical construction of most positioning devices, these
performance requirements are conflicting, z.e. the
faster the system moves, the less accurate it will be,
due to large vibrations induced by fast movements
and large acceleration forces.

To overcome this problem, a high-performance mo-
tion control system can be designed, which provides
steering and regulation of the positioning mecha-
nism. In general, a motion control system of a ser-

tThis paper was presented at the 1997 American Control
Conference, June 4-6, 1997, Albuquerque, New Mexico, USA,
Copyright of this paper remains with TEEE.

¥The work of Dick de Roover is financially supported by
Philips Research Laboratories, Eindhoven, The Netherlands.
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point-to-point. control, input shaping, mechanical servomechanism, residual

vomechanism has three degrees of freedom, see Fig-
ure 1. One way to cope with the flexibilities, is to
design a feedback controller, C, which attenuates
the induced vibrations in closed-loop. Because of
stability requirements, a major drawback of this ap-
proach is the limited use of high gain inside the loop,
in particular in the high frequency range where the
flexible dynamics are more likely to occur. There-
fore, in this paper, in addition to the closed-loop,
an open-loop approach is followed at set-point level:
suitable motion forces, f, and reference trajecto-
ries, v, are designed, which minimize vibration of
flexible dynamics at the end of a movement. In
the literature, a large number of techniques is pre-
sented which solve this so-called point-to-point con-
trol problem with minimal residual vibration, see for
example Bhat and Miu (1990), Meckl and Seering
(1985), Singer and Seering (1990), and the refer-

ences therein.

To speed up tracking of r, the motion force f and the
reference r are often related by a feedforward com-
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Fig. 1: General 3 degree-of-freedom (3-DOF) mo-

tion control system; P, C, f,r, u,y, e, denote
the plant, feedback compensator, force in-
put, output reference, system input, system
output, and tracking error, respectively.

pensator, F' (see dashbox in Figure 1). Because of
the closed-loop implementation of f and r, synthesis
of these signals is not trivial: one can either start
with designing r and derive f according to f = Fr,
with F} some inverse compensator which may range
from a series of differentiators - simply relating po-
sition to force - to complex models describing the
inverse dynamics of the system P, see for example
Kwon and Book (1990), Moulin and Bayo (1991)
and Devasia (1996), or design f and obtain r via
r = Fyf, with F; some forward compensator, e.g.
a series of integrators or a model of the dynamics
of P - see for example Meckl and Kinceler (1994),
Singer and Seering (1990) and Bhat and Miu (1991).
Clearly, the choice of F; or Fy influences the track-
ing of r. Which approach is favourable, depends on
the given application. In this paper we follow the
latter one, because the inverse dynamics of P are
unstable.

The goal of this paper is twofold. First, three dif-
ferent open-loop force command generating meth-
ods are compared: a standard approach, which lim-
its the jerk of the acceleration profiles to minimize
residual vibration, is compared to two modern ap-
proaches, which use knowledge of the system’s res-
onant frequencies to minimize residual vibration.
Second, it is experimentally analyzed how the feed-
back compensator C' and feedforward compensator
F' contribute to reduction of the tracking error e.
To this end, the next section describes the modelling
and feedback control of the experimental set-up, as a
starting point for subsequent sections. In Section 3,
the point-to-point control problem of this particular
system is mathematically formulated, and a three-
step solution is proposed. Next, Section 4 shows
the experimental results of three different command
generating methods, and Section 5 experimentally

analyses the influence of €' and F on the error e.

2 The wafer stage experimental set-
up

Figure 2 shows a schematic view of a prototype

wafer stage experimental set-up, used for the ex-

periments shown in this paper. A wafer is placed

Fig. 2:

Schematic view of a wafer stage; 1: granite

block, 2: airfoot, 3: stator, 4: translator,
5: laser interferometer, 6: wafer chuck, 7:
mirror block.

on a wafer chuck in the middle of the stage. The
stage, consisting of airfoot, translator, wafer chuck
and mirror block, is driven by the linear motor in
z-direction. The stator of that mofor is fixed to the
translators of two other linear motors, hence driv-
ing the stage in y-direction; by driving these two
motors independently, also a slight rotation ¢ of the
stage is possible, which freedom is used to correct
for misalignment of the wafer. The position of the
stage in the horizontal plane is measured with three
laser interferometers, one in z-direction and two in
y-direction; the measurement resolution is approx-
imately 13 nanometre [nm]. Thus, the positioning
system is multivariable, having three actuators and
three sensors, henceforth denoted as inputs and owut-
puts, respectively. For sake of clarity, in this paper
only results from one input to one output are shown.
After alignment, the wafer is alternately stepped
and exposed according to a certain prescribed pat-
tern. In this paper we only consider stepping of the
wafer from one position to another.

In Callafon et al. (1996) an experimental model was
derived for the stage, using frequency-domain iden-
tification techniques; a linearly parametrized time-
invariant model, denoted !3, was fitted to a fre-
quency response of the system, estimated with a
Hewlett-Packard signal analyzer. Figure 3(a) shows
the computed frequency response, together with the
resulting 16th order model fitted to this response. In
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Fig. 3: Bode magnitude of (a) 16th order model
P (solid) and estimated frequency response
(dashed), (b) feedback controller C, (c) re-
sulting output sensitivity S, and (d) plant
multiplied by sensitivity SP.

the fit procedure, extra weights were applied which
emphasized the mid-frequency range, important for
control design. This figure shows a typical response
of a general mechanical servomechanism: at low fre-
quencies, the response has the shape of a double
integrator according to Newton’s 2nd law, and at
middle and high frequencies some resonances show
up due to the flexible components.

Because the system is marginally stable (double
integrator), first a feedback controller is designed
to stabilize the system: besides, feedback control
enables the suppression of external disturbances,
like electric actuator noise, and enhances robust-
ness against modelling errors. In de Groen (1996) a
MIMO feedback design has been performed for the
wafer stage using QFT. Figure 3(b) shows a magni-
tude Bode plot of the resulting controller, and Fig-
ures 3(c) and 3(d) show a magnitude Bode plot of
the resulting output sensitivity transfer function S
- defined as S = (I + PC)~' — and S multiplied by
P, respectively, which is the transfer function from
f to e. Note that to some extent damping of the
open loop resonant frequencies has been increased
in this closed loop.

3 Point-to-point control problem
Problem formulation

3.1

The task of a wafer stage is to move a wafer from
one chip position to another, typically a distance of
10 mm. Hence, the point-to-point control problem
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for a wafer stage can be formulated in terms of ac-
tuator inputs, u, and sensor outputs, y, which we
assume to be the real system inputs and outputs re-
spectively:

Design a control u(t),t € [to,t1], which moves the
stage from y(to) to y(ty), with y(t1) — y(ta) = le-2
m, such that t; — to s minimal, and the following
constraints are satisfied:

u(t) < 62 N Yt e [.’,0,111, (1)
u(t) < 5.0edN/s Yt € [to,t1],
y(t) = ylt1) £52nm Vi > t, (2)

Note that constraints (1) reflect the limitations of
sensors and actuators, while constraint (2) is a per-
formance demand in the end-point; in this light,
constraint (2) serves as a criterion for a successful
move.

3.2 Three-step solution

To solve this problem, we suggest the following
three-step approach:

Step 1: Obtain a linear model, denoted P, which
describes the relevant system dynamics, such that
y = Pu.

Step 2: Design a pair {f,7} such that f(¢) fulfils
the constraints (1) on u(t), and r(#) fulfils the con-
straints (1),(2) on y(t).

Step 3: Implement the pair {f,r} in the 3-DOF
nominal tracking scheme of Figure 1.

Step 1 has been carried out in Section 2, resulting
in the 16th order model shown in Figure 3(a). Step
2 concerns the choice of an input design method —
which will be the subject of the next subsection -
and the choice of a feedforward compensator F'. The
actual implementation of Step 3 will be the topic of
Section 4.

3.3 Different input design methods

To accomplish Step 2, three different open-loop
command generating methods are used. The first,
somewhat heuristic method, considers a so-called
‘bang-bang’ input signal with limited slope, see for
example Lewin (1994) and Miu and Bhat (1991).
The idea is to minimize the high frequency content
of the input signal by decreasing the slope of this
signal. As a consequence, the transition times be-
tween the zero and peak input levels are increased,
resulting in a smoother command signal of longer
duration. The method is easy to apply since no
knowledge of the flexible dynamics is required at



all. The optimal jerk is obtained by manual tuning
with cycle time as criterion.

Two other methods are investigated which do re-
quire some knowledge of the dynamics of the flexi-
bilities. One method concerns the design of a finite
impulse response (FIR) filter, to preshape an exist-
ing command signal (see Singer and Seering, 1990;
Singhose et al., 1995). The idea is to synthesize
an FIR filter which removes the energy contribution
of the command signal at the system resonant fre-
quencies. The FIR filter has to be convolved with
an existing command signal, for example a time op-
timal bang-bang input, and preserves its vibration
reducing properties after convolution. The knowl-
edge required to use this method, is the location of
the natural frequency of the flexibility together with
its damping ratio, #.e. the location of the complex
poles of a 2nd order system describing the flexibil-
ity. In Bhat and Miu (1990) it was shown that the
FIR filter has the Laplace domain interpretation of
placing zeros at the locations of the resonant poles.
The other method concerns the synthesis of a series
of ‘versines’, which approximate a bang-bang com-
mand signal with limited velocity (see Meckl and
Seering, 1988). These versine functions allow energy
removal from the input signal in a narrow band sur-
rounding the system natural frequencies. This tech-
nique neglects the damping of the resonant frequen-
cies, hence only minimizing the energy contribution
of the input signal at the natural frequencies in the
Fourier domain; consequently, the only knowledge of
the system required, are the locations of the natural
frequencies of the resonant modes.

4 Experimental results

To illustrate the need for carefully designed input
signals, Figure 4 shows shows a bang-bang com-
mand (a) together with its spectrum (b), and the
resulting tracking error e after implementation of
this signal in the set-up of Figure 1, (¢), (d). The
residual vibration in the endpoint — a consequence
of the excitation of all flexible modes — is clearly vis-
ible. These experimental results were obtained with
the forward compensator F; being a simple double
integrator with time-delay, i.e.

e 5Tu

Ms?’ )

==
with Ty = 1.15AT denoting the delay-time, and
AT = 3e-4s being the sampling time of the con-
troller; M = 10.4kg denotes the mass of the stage.
Besides, to compensate for viscous friction during
stage movement at maximum velocity, a velocity de-
pendent term has been added to the actual control
signal. The actual control signal, which has to be
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Fig. 4: Command response bang-bang force profile
for 10 man step in x-direction; (a) force pro-
file, (b) normalized spectrum of force pro-
file, (c) tracking error, (d) tracking error
with performance bounds during settling.

scaled within a &1 range, is therefore given by:

1 1

u(t):(].l(ﬂ-b E)m. VEe [fo,tr], (4)

with V' = 3.83kgs denoting a constant velocity gain.
To systematically design proper signals f and r, we
first analyzed the resonant mode properties of the
16th order model, see Table 1. It is rather surprising

[wnBA ] ¢

A, |

1.42e2 | 2.49e-2 | 23.3
1.55e2 | 2.46e-2 | 73.6
2.28¢2 | 4.50e-2 | 2.14
3.03e2 | 5.97e-2 | 0.66
3.98¢2 | 6.12e-2 | 0.26
7.57e2 | 3.19¢-3 | 0.03
1.10e3 | 2.33e-2 | 0.01

Table 1: Resonant Mode properties of 16th order
model; w, denotes natural frequency, ¢
denotes relative damping, and A, denotes
relative static error in the output after a

step inputf.

that two hardly visible resonance modes near 150Hz
are responsible for about 97% of the static error of
residual vibration at the system output after a step
input. Therefore, we decided to design command
signals which minimize residual vibration stemming
from these low frequent modes.




Figure 5 shows the designed force profile with lim-
ited jerk (a), together with its spectrum (b), and
the resulting tracking error in (¢) and (d). The jerk
was tuned manually to the optimal value of 5e3N/s
for a 10 mum step in z-direction. For implementa-
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Fig. 5: Command response limited jerk force profile

for 10 mm step in x-direction; (a) force pro-
file, (b) normalized spectrum of force pro-
file, (¢) tracking error, (d) tracking error
with performance bounds during settling.

tion we used the same forward compensator (3) and
friction compensation (4). Clearly, the residual vi-
bration has been removed from the error, compare
Figure 4(c¢),(d) with Figure 5(c),(d). This can be
explained from the spectrum of the limited jerk sig-
nal, which has small values at the system resonant
modes. Although the method is easy to apply, it
might be overly conservative in a sense that energy
has been removed from the input spectrum, not only
at frequency locations of resonant modes, but also at
other frequencies. Therefore, also two model-based
input design techniques are considered.

Figure 6 shows the results of the FIR preshape
method. We designed one series of three pulses (ro-
bust ZVD shaper (see Singhose et al., 1995) for a
fictitious resonance at 150Hz with relative damping
¢ = 2.47e-2, and convolved this pulse series with
the bang-bang command of Figure 4(a). Concluding
from the input spectrum, the 150Hz component has
been completely removed, while at other frequen-
cies the spectrum is equal to the original spectrum
of the bang-bang input, preserving a relatively fast
force command. However, still residual vibration is
present, stemming from the resonant mode at 228
Hz. Apparently, the force input has foo much en-
ergy at this frequency.
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Fig. 6: Command response FIR preshaped force

profile for 10 mm step in wz-direction; (a)
force profile, (b) normalized spectrum of
force profile, (¢) tracking error, (d) track-
ing error with performance bounds during
settling.

Figure 7 shows the synthesized versine series. Using
the software described in Meckl and Seering (1988),
we designed a series of 5 versine basis functions
with a notch surrounding 5% of a fictitious reso-
nance mode at dimensionless frequency 150%0.02 =
3. Whereas the FIR preshape method removes en-
ergy from a given spectrum, the versine series adds
energy to its spectrum by expanding more basis
functions into its series; in our case, a total of 5
basis functions adds energy to the signal up to ap-
proximately 200 Hz. As a result, a relatively fast
force command is obtained, with the property of
suppressing almost all of the original residual vibra-
tion, compare Figures 4 and 7.

Table 2 quantitatively summarizes the obtained re-
sults. In this table, Ty, denotes the duration of
the command signal, Ty.y, denotes the time be-
tween Ty, and the point at which the tracking er-
ror has settled within the performance band around
the end-point, and T,y is the sum of Ty, and
Teettie- Good results are obtained with the heuristic
limited jerk approach, but things can be improved
using more sophisticated model-based techniques.
In this case, the series of versines performed best,
because it was best able to shape the spectrum of
the force input. Although the FIR preshape method
preserved the fastest force command, extra shaping
near 228Hz is necessary to suppress remaining vi-
bration, and consequently the force command will
slow down.
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Fig. 7: Command response versine force profile for
10 mm step in @-direction; (a) force profile,
(b) normalized spectrum of force profile, (c)
tracking error, (d) tracking error with per-
formance bounds during settling.

5 Role of feedback and feedforward
compensator

In the previous section we have seen the success of
smart input design. An important question which
remains is: What s the role of the feedback and feed-
forward compensators C' and F, respectively? This
will be addressed in this section.

To investigate the role of feedback in the suppres-
sion of residual vibration, we compared open-loop
and closed-loop simulations. Consider the general
configuration of Figure 1. Clearly, if the forward
compensator F is equal to the plant P, the result-
ing tracking error e is equal to zero for all t. Hence,
if ¥ is equal to the simple model (3) — which we
used in our experiments — a non-zero tracking er-
ror is to be expected resulting from the resonant
modes, which will be regulated by the feedback com-
pensator C. Figure 8(a) shows the simulated open-
loop difference between the simple model (3) and
the complex 16th order model shown in Figure 3(a),
convolved with the bang-bang force shown in Fig-
ure 4(a). Clearly, the effect of the flexible modes is
visible in the error. Moreover, the feedback com-
pensator will respond to this error according to the
shape of the sensitivity function S, shown in Figure
3(c), t.e. for frequencies where |S(iw)| < 0 dB, the
open-loop error will be suppressed, but for frequen-
cies where |S(iw)| > 0 dB, the open-loop tracking
error will be amplified. Since the maximum obtain-
able bandwidth® is limited to approximately 100Hz,

'We denote the bandwidth as the first value of w where
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[_ | bang-bang | lim. jerk

Tistep [s] | 1.04e-1 1.16¢-1
Tsetite [s] 0.64e-1 0.16e-1
Leyore [s] 1.68¢e-1 1.32e-1
Tstep. 7] 100 112
Teyote  [%) 100 78.5

| | FIR shape—[ versines
Lsten s 1.10e-1 1.12e-1
Toetste 5] | 0.35e-1. | 0.17e-1
Toyere [s 1.45e-1 1.29¢-1
Tied 1% 106 108
Tateie 1) 86.3 76.8

Table 2: Experimental results of bang-bang com-
mand signal and three vibration reducing
command signals.

we state that the feedback compensator C in gen-
eral works against the suppression of residual vibra-
tion. This is confirmed, both by simulations and
measurements, see Figure 8(b) and (¢), respectively.
Although there is still some discrepancy between the
modelled and measured settling behaviour, there is
a remarkable resemblance between the closed-loop
simulation and measurement, which amplifies our
line of reasoning. The adverse effect of feedback in
suppressing residual vibration, in addition, stresses
the need for careful design of force commands.

This observation strongly motivates to replace the
simple forward compensator (3) by the complex
16th order model, to avoid reaction of C to the open-
loop tracking error. Experiments have been per-
formed for all previous mentioned force commands,
with F' equal to the 16th order model P. For the
bang-bang force command, this experiment is shown
in Figure 8(d). Although the error has been reduced
to 50% of the original error during step time, the
error during settling time has remained unchanged.
This is explained from the fact that the filtered ref-
erence signal, r = Pf, was set to its final value
after reaching the desired end-point, r.e. the sys-
tem output y vibrates in the end-point, while the
reference was fixed to the desired end-point value.
This tendency also showed up in the experiments
with shaped force commands. Note that the error
during step time is not completely zero, which must
be explained from the fact that the model P is not a
perfect match of the real plant P. Hence, the choice
of a complex forward compensator F' only affects
the error during step time, but, sad to say, hardly

|S(iw)| = 0 dB
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Fig. 8: Servo error using bang-bang force profile;
(a) simulated open-loop e = (e*Td IM 5% —
P)f, (b) simulated closed loop e =
S(e=*Ta /Ms? — P)f, (c) measured closed
loop e = S(e~*%4/Ms* — P)f, (d) measured
closed loop e = S(P — P)f.

influences the error during settling.

6 Conclusions

In this paper we investigated the point-to-point con-
trol of a wafer stage. The key issue in obtaining fast
force commands with vibration free movements, is
the shaping of the spectrum of the force command
only at those frequencies where the resonant modes
are located. A comparison of three open-loop force
command generating methods showed a preference
for the model-based approximation of a bang-bang
command with a series of versines, because it was
best able to shape the force spectrum.

In addition, the role of the feedback and feedfor-
ward compensator in the suppression of residual vi-
bration has been analyzed. Simulations and experi-
ments showed the adverse effect of feedback in case
the magnitude of the sensitivity is larger then one
at flexible mode locations. The use of a high-order
forward compensator instead of a simple approxima-
tion, improves the error suppression during motion,
but hardly affects the error during settling.
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Abstract.

An approach is presented that can be used to obtain low complexity controllers

for an unknown system. In this approach, the identification of a set of models is used to
represent the incomplete knowledge of the system. Subsequently, the set is used for the
synthesis of a robust controller. In order to design low complexity controllers, the aim is
to find a low complexity representation of the set. Additionally, a closed loop reduction
tool can be used to decrease the controller complexity further, This approach will be
illustrated by an application to a multivariable positioning mechanism present in a wafer

stepper.
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1 Introduction

Industrial systems need feedback control to meet,
enhanced accuracy or performance requirements.
In many applications the plant to be controlled
is partly known, whereas limited complexity con-
trollers are required due to hardware limitations.
Both the inadequate knowledge of a plant to be con-
trolled and the restriction on the complexity of the
controller to be used makes the design of such a
feedback controller a challenging task. In this pa-
per, an approach is presented that can be used to
obtain such low complexity (low order) linear feed-
back controllers for an unknown systerm.

To deal with the lack of information on the plant,
the approach in this paper starts with the estimation
of a set of models by means of system identification
techniques, such that the unknown plant is an ele-
ment of the set. Such a set of models is unavoidable

YThis paper was presented at the 2nd IFAC Symposium
on Robust Control Design (ROCOND?7), 25-27 June 1997,
Budapest, Hungary. Copyright of this paper remains with
[FAC.

8The research of Raymond de Callafon was supported by
the Dutch Institute of Systems and Control (DISC); current
address: Department AMES, University of California at San
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as the data used for identification purposes only rep-
resents a finite time, possibly disturbed, observation
of the plant causing the knowledge of the plant to
remain incomplete. As a consequence, a set of mod-
els consists of all models that are either validated
(Ljung, 1987) or cannot be invalidated (Smith et al.,
1997) by the observations obtained from the plant.

Subsequently, a robust controller can be designed
on the basis of this set of models. For that purpose,
the set should be built up from a nominal model
along with an allowable model perturbation (Boyd
and Barrat, 1991). A general representation of a
set of models can be written in terms of linear frac-
tional transformation (LFT) based model perturba-
tion (Boyd and Barrat, 1991). Such an LET, based
on a (dual) Youla-Kucera parametrization, is being
estimated in this paper and shown to be particularly
useful for both identification and control design pur-
poses (de Callafon and Van den Hof, 1997).

To restrict the complexity (McMillan degree) of the
controller, the aim is to estimate a low complexity
representation of the LFT via an approximate iden-
tification. This is due to the fact that this LFT
directly influences the order of a robust controller
being computed (Boyd and Barrat, 1991; Zhou et




al., 1996). For further reduction of the controller
complexity, an additional controller reduction can
be employed. In this paper, a closed loop reduction
that is based on the work by Ceton et al. (1993) is
shown to be useful for reducing the complexity of
the controller.

The subsequent steps of approximate identification
of an LFT and the design of a robust controller fol-
lowed by a closed loop controller reduction will be il-
luminated in this paper. To illustrate the approach,
the application to a multivariable positioning mech-
anism present in a wafer stepper has been included.

2 Preliminaries

2.1 Norm-based feedback design

Let the notation P and C be used to denote finite
dimensional, linear time invariant (FDLTI) (possi-
bly unstable) systems, where C' is used to indicate
a controller. For notational convenience a control
objective function is denoted by J(P.C) € IRH
and the notion of performance will be characterized
by the value of the norm ||J(P,C)||~: a smaller
value of ||J(P,C)||~ indicates better performance
(Van den Hof and Schrama, 1995).

A feedback connection of a system P and a con-
troller C' is denoted by 7 (P, C) and defined as the
connection structure depicted in Figure 1. It is as-

()

Ye

Fig. 1: Feedback connection structure 7 (P,C').

sumed that a connection 7 (P, C) is well posed, that
is det(/ + CP) # 0 (Boyd and Barrat, 1991). The
mapping from the signals col(r2,71) onto col(y, u) is
given by the transfer function matrix 7'(P,C) with

i
I
Note that 7(P,C) is internally stable if and only if
T(P,C) € RHo, (Schrama and Bosgra, 1993). In

order to maintain generality, J(P, C) is taken to be
a weighted form of T'(P, C):

J(Pl C)”'x‘ o ”L‘Z{T{P, C)Ulum

T(P,C) := (1)

@g+cpytc 1],

(2)

where U, and U, are (square) weighting functions.
The performance characterization (2) is fairly gen-
eral and will be used for analysis purposes in this

paper. In this perspective, the performance objec-
tive function J(P,(C) as given in (2) will be used to
evaluate both the identification of a set of models P
and the additional reduction of a robust controller
designed based on the set P. For that purpose, the
set. of maodels P as used in this paper is discussed
below,

2.2 Model uncertainty set

As indicated in Section 1, the incomplete knowledge
of a plant P, is represented by means of a set of
models P. An (upper) LET

Ful@Q,A) := Qgo + Qi AT — Q1;A) Q12 (3)

provides a general notation to represent all models
P € P as follows

Pi={P| P =F(Q,A)
with A € RH and ||A|le <771}

where A indicates an unknown (but bounded by
v~ 1) uncertainty that reflects the incomplete knowl-
edge of the plant P,. The entries of the coeflicient
matrix () in (3) indicate how the set of models P has
been structured, where P := F(Q),0) = Qa2 denotes
the nominal model of the set P.

In this paper, the coefficient matrix @ is formed
by employing the knowledge of any (possibly unsta-
ble) controller denoted by C, that is used to form a
stabilizing feedback connection 7(P,,C). In many
practical situations, the presence of such a stabi-
lizing controller C' is unavoidable due instability of
the plant P, or additional safety requirements dur-
ing operation.

Employing the knowledge of such a stabilizing feed-
back controller €' and using the algebraic the-
ory of fractional model representations (Vidyasagar,
1985), the coefficient matrix @ in (3) is formed by
considering a model perturbation that is structured
similar to a (dual) Youla-Kucera parametrization:

P ={P|P=(N+DA)D - NA)?

i 2 4)
with A € RH ., and [[VAW [

o) <Af-!}

where (N, D.) and {N’,D) respectively denote a
right coprime factorization (ref) of the controller
C and a nominal model P, that satisfies T(P,C) €
IRH. V, W denote stable and stably invertible
weighting functions used to normalize the upper
bound on VAW to v~!. It can be verified that
the coefficient matrix @ in the LFT of (3) reads as
follows.

Wb Ny WD

1\ P

Q=

(D, + PNV~ &




It should be noted that in order to guarantee that
P, € P, additional prior information on the plant
P, must be introduced. This is due to the fact that
P, € P cannot be validated solely on the basis of
finite time, possibly disturbed, observations com-
ing from the plant P, (Makila ef al., 1995; Ninness
and Goodwin, 1995). Such information is in accor-
dance with the uncertainty modelling procedure of
Hakvoort (1994), that is used in this paper to bound
the uncertainty A in (4).

2.3 Evaluation of performance

The theory of fractional model representations pro-
vides a unified approach to handle both stable and
unstable models and controllers within the set P of
(4). Additionally, the set P has some favourable
properties that can be illuminated by evaluating
the performance objective function J(P,C') for all
BieiPi

Lemma 2.1 Consider the set P defined in (4)
and a controller C such that the map J(P,C) =
UsT(P,C)U; 1s well-posed for all P € P. Then

J(P,C) = Fu(M,A) VP e P

where the entries of M are given by

My = =W (D=0 M@ +S)D I - (6)

My = I-if‘_l(f) +CN) [ o7 ] t

.'qir‘gl — _L'!‘l [ Zy[:| {I'Jl‘f)cv}_l(r‘kﬁc_l}D‘I}_l
o , ‘

Msy = U [gji (D+C:V)_I [C I ] U,

Proof: By algebraic manipulation, see de Callafon
and Van den Hof (1997). O

It can be observed from (6) that substitution of
C = C yields My, = 0. This implies that when
a controller C (equal to the controller €' used in the
construction of the set P in (4)) is applied to the set
P, stability robustness is satisfied, regardless of the
value of v in (4). This advantage, observed also by
Sefton et al. (1990), is not shared by alternative un-
certainty characterizations such as an open loop ad-
ditive uncertainty description. Moreover, for C = C
the upper LFT F,(M, A) modifies into

Moy + Moy AMs (7
which is an affine expression in A. As a result, when
the controller C is applied to the plant P,, finding
the smallest possible allowable model perturbation

A such that P, € P (via system identification tech-
niques) will effectively minimize the worst case per-
formance (de Callafon and Van den Hof, 1997). This
property can be exploited to formulate a (control
relevant) identification problem to estimate a set of
models by employing the knowledge of a stabilizing
controller C' that is currently being implemented on
the (unknown) plant P,.

3 Estimation of a set of models

3.1 Control relevant identification

In order to design an enhanced performing robust
controller, it is preferable to use a set of models P
for which

sup ||J(P,C)||=

PeP

is minimized. Clearly, this makes the modelling of
a set of models P and the design of a robust con-
troller interrelated (Skelton, 1989). To deal with the
interrelation between modelling and control design,
knowledge of a controller C' that is implemented on
the unknown plant P,, similar as in (4), can be ex-
ploited to estimate a set of models P. In that case,
a set of models P subjected to the condition P, € P
should be estimated such that
sup [|J(P, C)|ls (8)
PeP
is minimized. In this way, a set of models is found for
which the worst case performance for the controller
C is minimized.
As the controller C is assumed to be known, the
unknown variables in the coefficient matrix @ of (5)
are the factorization (N, b) of a nominal model and
the weighting functions (V', W). Minimizing (8) us-
ing these variables simultaneously is (as yet) unfea-
sible. Therefore, minimization of (8) is tackled by
estimating the ref (N, D) and the pair (1"‘, W) sepa-
rately. In this way, (standard) tools for the identifi-
cation of a nominal factorization and an uncertainty
bound can be employed.

3.2 Estimation of a nominal model

Estimation of a nominal model involves the estima-
tion of P = ND subjected fo internal stability
of the feedback connection T(P,C‘)‘ such that (8)
is being minimized. At this stage, the variables V
and W are unknown and assumed to vary freely in
order to satisfy P, € P. Consequently, the set P is
still unknown and (8) cannot be computed. How-
ever, for any P € P the following upper bound for
[[J(P, C)||les can be given.

17 (Poy C)lleo + 1I(P, C) = I (Po, C)|os




As ]|J(PL,.C'J|1.3.;’ in (3.2) does not depend on the
nominal model P, a ref (N, D) of a nominal model
can be found by minimizing

|J(P,C) — J(P,,C)

|so (9)

Estimation of a ref of a nominal model of lim-
ited complexity by minimizing (9) on the basis of
closed loop experiments obtained from the connec-
tion T(P,, C), has been studied in Van den Hof et al.
(1995). An approach to minimize (9) on the basis of
frequency domain data can be found in de Callafon
and Van den Hof (1995).

3.3 Estimation of uncertainty bounds

Estimation of an allowable model perturbation in-
volves the characterization of an upper bound on A
in (4) via (iﬂ',li'] such that (8) is being minimized
and P, € P. For that purpose, first a frequency de-
pendent upper bound on the allowable model per-
turbation A in (5) is determined such that P, € P.
For that purpose, any uncertainty estimation proce-
dure can be used, as the input and output data of
the allowable model perturbation A can be accessed
simply by a filtering of the input w and output y
signals present in the feedback connection T(P,,C)
(de Callafon and Van den Hof. 1997).

Similar to the approach presented in (Lee et al.,
1993), the availability of the input and output sig-
nals of A gives rise to an open loop identification
problem of the stable dual Youla-Kucera parame-
ter. However, the estimation is being used here to
find an upper bound on A, An uncertainty esti-
mation routine such as the procedure described by
Hakvoort (1994) can be used to obtain a frequency
dependent upper bound for A

|Ai(w)]] € é(w) with probability > « (10)

where a is a prechosen probability. In the multivari-
able case, the upper bound (10) can be obtained for
each transfer function. Subsequently, stable and sta-
bly invertible weighting filters V' (w) and/or W (w) of
limited complexity can be constructed to over bound
d(w) (Hakvoort, 1994).

4 Controller design

The set of models P represents the incomplete
knowledge on the plant P, and can be used for sub-
sequent control design. Again taking into account
the performance specification (2), a controller C' can
be designed by minimizing

sup |[J(P,C)
PepP

loo (11)

where P denotes the set of models being estimated.
For J(P,C) = UyT(P,C)Uy, (11) constitutes a

72

(standard) H..-norm based control design, wherein
the worst case performance is being optimized. For
that purpose, a p-synthesis via a so-called D-K iter-
ation (Zhou et al., 1996) can be used. In order to use
the available techniques on p-synthesis, the transfer
function M in Lemma 2.1 should be represented as a
lower fractional transformation Fi(G. C'), where the
controller C' to be designed has been extracted. An
expression for G can be found by standard algebraic
manipulations.

5 Closed loop reduction

The design of a controller as mentioned in Section 4
generally leads to full order controllers, although
limited complexity of the coefficient matrix @ in (5)
can be enforced by the approximate identification of
a ref (N, D) and the weighting filters (V, W),

In light of the performance objective function
J(P,C) given in (2), a reduction of the controller
may be required, that takes account of this perfor-
mance function. For that purpose, a closed loop bal-
anced reduction, as proposed by Ceton et al. (1993),
is well suited. In Ceton et al. (1993), a similarity
transformation that balances the states of a stable
feedback connection is used for partial balancing of
the (unstable) controller states (Wortelboer, 1993).
As a result, an (unstable) controller can be reduced
in closed loop, taking into account the closed loop
operation of the controller.

The closed loop configuration in Ceton et al. (1993)
is slightly different from the one used in this paper.
However, the results of Ceton ef al. (1993) can be
readily carried over to perform closed loop reduc-
tion of the controller € in the feedback connection
T(P,C), incorporating the performance weightings
Ug and Ul,

6 Application to waferstepper

6.1 Description of the positioning mecha-

nism

The approach outlined in this paper has been ap-
plied to a multivariable positioning mechanism, de-
noted by the wafer stage, present, in a wafer stepper.
A wafer stepper is a fast and high accuracy position-
ing machine, used in chip manufacturing processes;
a schematic view is depicted in Figure 2. The posi-
tion of the wafer chuck on the horizontal surface of
a granite block is measured by means of three laser
interferometry measurements, whereas three linear
motors are used to position the wafer chuck. The
three currents to the linear motors denote the input
i, whereas the three position measurements denote
the output y of the system.




Fig. 2: Schematic view of a wafer stage; l:wafer
chuck, 2:laser interferometers, 3:linear mo-
tors,

A diagonal PID controller is used as an initial con-
troller C' to stabilize and position the wafer chuck for
experimental purposes. External references signals
r1 and ry are used to excite the closed loop simi-
lar to Figure 1. Time and frequency domain data
where gathered for identification purposes. The aim
is to design a low complexity controller that is able
to attain a high bandwidth, tracking and suppres-
sion of residual vibrations. For that purpose, only
relatively simple (diagonal) weighting functions U,
and U; are used to enforce a controller with high
gain at low frequencies.

6.2 Estimation of a nominal factorization

First a MIMO nominal ref col(N, D) having 6 out-
puts and 3 inputs is estimated. For that purposes,
frequency measurements are used to curve fit a fac-
torization (N, D) of 30th order using the procedure
described in de Callafon and Van den Hof (1995).
This procedure requires an initial estimate for the
non-linear optimization which is found by a MIMO
least squares curve fitting (de Callafon et al., 1996).
An amplitude Bode plot of the result is presented in
Figures 3 and 4. It can be observed from these fig-
ures that the frequency domain data has only been
approximated by the factorization (N, f)). as more
accurate modelling would require a much higher or-
der model.

6.3 Estimation of model uncertainty

Given the nominal factorization (N, D) and a nor-
malized ref (N., D.) of the controller C, an estima-
tion of the allowable model perturbation A in (4) is
performed. For that purpose, the uncertainty esti-
mation as presented in (Hakvoort, 1994) has been
applied to estimate a frequency dependent upper
bound on A. Due to space limitations only the re-
sult is presented in Figure 5.

10° 10" 10°
: ¥ | it
10° w1t 10 0 10"
[ [
10° L—j\,\ 10° 10" ‘\/\
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Fig. 3: Amplitude Bode plot of nominal numera-
tor factor N (-), and the corresponding fre-
quency domain data (-« )

It can be observed from Figure 5 that the upper
bound of the frequency domain estimation of A is
crossing the upper bound d(w). Partly, this is due
to the fact the upper bound only holds within a
prespecified probability of 95%.

6.4 Full order controller and reduction

On the basis of the nominal factorization ('\f D} and
(only) a single stable and stable invertible weighting
filter V that over-bounds the upper bounds d(w) de-
picted in Figure 5, a robust controller has been de-
signed by means of a p-synthesis. An amplitude
Bode plot of the controller has been depicted in
Figure 6.

Despite of the low complexity modelling, the full
order controller being designed still has a McMillan
degree of 74. Additional reduction of the controller
as descrined in section 5 enables the controller to be
reduced to 32nd order. The additional closed loop
reduction deteriorates the performance robustness
only by 2.12 %. The 32nd order controller has been
applied to the wafer stepper mechanism successfully.

7 Conclusions

In this paper a systematic approach to find a low
complexity controller for a unknown system has
been presented. The approach consists of a system
identification technique to estimate a model uncer-
tainty set, followed by a robust controller design and
an additional controller reduction. In all these steps,
the performance and the closed loop operation of
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Fig. 4: Amplitude Bode plot of nominal denomina-

tor factor D (-) and the corresponding fre-
quency domain data (- --)

both the uncertainty set and the low complexity
controller being constructed is taken into account.
The approach has been illustrated on a highly com-
plex multivariable mechanical servo system present
in a wafer stepper. This has resulted in a relatively
low order controller that successfully has been ap-
plied.
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