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Abstract: Nonholonomic mechanical systems encompass a large class of practically interesting
robotic structures, such as wheeled mobile robots, space manipulators, and multi-fingered robot
hands. However, few results exist on the cooperative control of such systems in a generic,
distributed approach. In this work we extend a recently developed distributed Interconnection
and Damping Assignment Passivity-Based Control (IDA-PBC) method to such systems. More
specifically, relying on port-Hamiltonian system modelling for networks of mechanical systems,
we propose a full-state stabilization control law for a class of nonholonomic systems within
the framework of distributed IDA-PBC. This enables the cooperative control of heterogeneous,
underactuated and nonholonomic systems with a unified control law. This control law primarily
relies on the notion of Passive Configuration Decomposition (PCD) and a novel, non-smooth
desired potential energy function proposed here. A low-level collision avoidance protocol is also
implemented in order to achieve dynamic inter-agent collision avoidance, enhancing the practical
relevance of this work. Theoretical results are tested in different simulation scenarios in order
to highlight the applicability of the derived method.

Keywords: Distributed, Passivity-Based Control, IDA-PBC, Nonholonomic, Mechanical

1. INTRODUCTION

An increasing demand in multi-agent systems has been
spurred by the benefits obtained when a single complex
system is transformed to an equivalent set of multiple yet
simpler systems. With a distributed control architecture,
lower level components operate on local information in
an appropriate manner to accomplish global goals. This
decomposition of a complex system into simpler units and
their distributed control entails great advantages among
which, decreased operational cost, robustness to failure,
strong adaptivity and system scalability (Cao et al., 2012).
Distributed control of mechanical systems can be used in
numerous applications such as collaborative transporta-
tion, exploration of unknown or dangerous terrains, large
scale sensing and area monitoring, collaborative construc-
tion and vehicle platoons or spacecraft constellations.

The dynamics of mechanical systems are highly nonlinear.
Feedback stabilization of nonlinear systems has occupied a
central role in the literature of nonlinear systems. A class
of nonlinear control methods known as passivity-based
control has been proven to be especially suitable. These
methods rely on the fundamental property of passivity
which is instrumental for deriving stabilizing control laws.
The nonlinear system can be controlled by shaping its
closed loop energy while respecting the original dynam-
ics, an intrinsically less conservative method which pro-
vides higher performance, cost-effective controllers. The
most general method that combines total energy shaping
and damping injection is Interconnection- and Damping
Assignment Passivity-Based Control (IDA-PBC) (Ortega

et al., 2002). This method assumes that the system admits
to Hamiltonian dynamics, which are inherently passive.
Recently, a distributed IDA-PBC scheme for fully- and
underactuated mechanical systems was developed in Valk
and Keviczky (2018). While this method shows a great
potential for many robotic applications, it is not yet ap-
plicable to the wide class of nonholonomic mechanical
systems. The evolution of such systems is dictated not
only by the equations of motion but also an additional set
of non-integrable differential equations known as nonholo-
nomic constraints. These constraints introduce a coupling
among the system’s generalized velocities complicating the
analysis. Control of nonholonomic systems often relied
on appropriate coordinate transformations (Astolfi, 1996;
Fujimoto et al., 2012), while similar approaches are also
used in the cooperative control of such systems (Dong
and Farrell, 2008; Qu et al., 2008; Du et al., 2016). While
these are powerful techniques, the majority of them relies
on specific control forms (e.g., normal form, power form,
chained form, etc.), that can be attained typically only by
using feedback linearization (i.e., cancellation of nonlinear
dynamics) and state transformation as stated in Lee and
Lui (2016). Moreover, most of the aforementioned coop-
erative control methods focus on the kinematic control of
homogeneous teams of agents rather than the full dynamic
control of heterogeneous teams in which nonholonomic
(e.g., wheeled mobile robots) and underactuated (e.g.,
quad-rotors) agents need to cooperate together.

In this paper we propose a method with which we can
extend the results of Valk and Keviczky (2018) to a class of
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plicable to the wide class of nonholonomic mechanical
systems. The evolution of such systems is dictated not
only by the equations of motion but also an additional set
of non-integrable differential equations known as nonholo-
nomic constraints. These constraints introduce a coupling
among the system’s generalized velocities complicating the
analysis. Control of nonholonomic systems often relied
on appropriate coordinate transformations (Astolfi, 1996;
Fujimoto et al., 2012), while similar approaches are also
used in the cooperative control of such systems (Dong
and Farrell, 2008; Qu et al., 2008; Du et al., 2016). While
these are powerful techniques, the majority of them relies
on specific control forms (e.g., normal form, power form,
chained form, etc.), that can be attained typically only by
using feedback linearization (i.e., cancellation of nonlinear
dynamics) and state transformation as stated in Lee and
Lui (2016). Moreover, most of the aforementioned coop-
erative control methods focus on the kinematic control of
homogeneous teams of agents rather than the full dynamic
control of heterogeneous teams in which nonholonomic
(e.g., wheeled mobile robots) and underactuated (e.g.,
quad-rotors) agents need to cooperate together.

In this paper we propose a method with which we can
extend the results of Valk and Keviczky (2018) to a class of
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1. INTRODUCTION

An increasing demand in multi-agent systems has been
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system is transformed to an equivalent set of multiple yet
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decomposition of a complex system into simpler units and
their distributed control entails great advantages among
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strong adaptivity and system scalability (Cao et al., 2012).
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tion and vehicle platoons or spacecraft constellations.

The dynamics of mechanical systems are highly nonlinear.
Feedback stabilization of nonlinear systems has occupied a
central role in the literature of nonlinear systems. A class
of nonlinear control methods known as passivity-based
control has been proven to be especially suitable. These
methods rely on the fundamental property of passivity
which is instrumental for deriving stabilizing control laws.
The nonlinear system can be controlled by shaping its
closed loop energy while respecting the original dynam-
ics, an intrinsically less conservative method which pro-
vides higher performance, cost-effective controllers. The
most general method that combines total energy shaping
and damping injection is Interconnection- and Damping
Assignment Passivity-Based Control (IDA-PBC) (Ortega

et al., 2002). This method assumes that the system admits
to Hamiltonian dynamics, which are inherently passive.
Recently, a distributed IDA-PBC scheme for fully- and
underactuated mechanical systems was developed in Valk
and Keviczky (2018). While this method shows a great
potential for many robotic applications, it is not yet ap-
plicable to the wide class of nonholonomic mechanical
systems. The evolution of such systems is dictated not
only by the equations of motion but also an additional set
of non-integrable differential equations known as nonholo-
nomic constraints. These constraints introduce a coupling
among the system’s generalized velocities complicating the
analysis. Control of nonholonomic systems often relied
on appropriate coordinate transformations (Astolfi, 1996;
Fujimoto et al., 2012), while similar approaches are also
used in the cooperative control of such systems (Dong
and Farrell, 2008; Qu et al., 2008; Du et al., 2016). While
these are powerful techniques, the majority of them relies
on specific control forms (e.g., normal form, power form,
chained form, etc.), that can be attained typically only by
using feedback linearization (i.e., cancellation of nonlinear
dynamics) and state transformation as stated in Lee and
Lui (2016). Moreover, most of the aforementioned coop-
erative control methods focus on the kinematic control of
homogeneous teams of agents rather than the full dynamic
control of heterogeneous teams in which nonholonomic
(e.g., wheeled mobile robots) and underactuated (e.g.,
quad-rotors) agents need to cooperate together.

In this paper we propose a method with which we can
extend the results of Valk and Keviczky (2018) to a class of
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nonholonomic mechanical systems. This method relies on
the notion of Passive Configuration Decomposition (PCD)
from Lee and Lui (2016) and a novel desired potential
function proposed here with which we can achieve smooth
stabilization in the constrained space. In order to enhance
the practical relevance of this work we also implement a
simple collision avoidance protocol based on the method
of Artificial Potential Fields (APF) and some of its exten-
sions. We show the efficacy of the theoretical results via
different simulation scenarios.

In Sections 2 and 3 we review the Hamiltonian formula-
tion and control with IDA-PBC for nonholonomic systems
which establishes the foundations of this work. Section 4
presents the main results which are two-fold: the adapta-
tion of PCD to Hamiltonian systems, and the proposal of
a novel desired potential function, respectively. In Section
5, we illustrate simulation results along with a critical
discussion. We conclude this work with a few remarks and
recommendations for future work in Section 6.

2. HAMILTONIAN FORMULATION OF
NONHOLONOMIC MECHANICAL SYSTEMS

In this section we review the Hamiltonian formulation of
nonholonomic mechanical systems as derived in Schaft and
Maschke (1994) for completeness. We are interested in
mechanical systems which are subjected to nonholonomic
constraints in Pfaffian form. The frictionless dynamics
of a nonholonomic, mechanical system with generalized
coordinates q ∈ Rn, generalized momenta p = M(q)q̇ ∈
Rn, constraint forces λ ∈ Rk, input τ ∈ Rm and conjugate
output y ∈ Rm are expressed as:

[
q̇
ṗ

]
=

[
0n In

−In 0n

]
∂H

∂q
(q,p)

∂H

∂p
(q,p)


+

[
0n×k

A(q)

]
λ+

[
0n×m

F (q)

]
τ

(1)

y = F�(q)
∂H

∂p
(q,p) (2)

0 = A�(q)
∂H

∂p
(q,p) (3)

H =
1

2
p�M−1p+ V (q) (4)

where M(q) = M�(q) > 0n is the generalized mass ma-
trix, A(q) ∈ Rn×k the constraint matrix with rank(A) =
k < n and F (q) ∈ Rn×m the input matrix with rank(F ) =
m < n. The Hamiltonian H(q,p) is the system’s mechan-
ical energy given as the sum of kinetic energy 1

2p
�M−1p

and potential energy V (q) ∈ R. The system’s state is the
pair (q,p) ∈ X . The constraint equation (3) appears ex-
plicitly in the system description complicating the analysis
and control of these systems. An efficient way to work
with such systems is to express the equations of motion
on the constrained space. Since rank(A(q)) = k, there
exists locally a smooth matrix S(q) ∈ Rn×(n−k) of rank
n− k such that:

A�(q)S(q) = 0k×(n−k) (5)

Now define p̃ = T (q)p with the transformation matrix
chosen as in Muralidharan et al. (2009):

T (q) =

[
S�(q)

A�(q)M−1(q)

]
∈ Rn×n (6)

Partitioning the generalised momenta as p̃ =

(
p̃1

p̃2

)
yields:

p̃1 = S�(q)p ∈ Rn−k, p̃2 = A�(q)M−1(q)p ∈ Rk (7)

Notice that p̃2 = 0 over the constrained manifold be-
cause of (3). Moreover the introduction of the annihilator
removes the constraint forces from (1). For the sake of

notation we denote here p̃1 � p̃ ∈ Rn−k. Thus, equations
(1)-(4) can be equivalently written as:

[
q̇
˙̃p

]
=

[
0n S(q)

−S�(q) Y (q, p̃)
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∂H̃
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(q, p̃)
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H̃(q, p̃) =
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2
p̃�M̃

−1
(q)p̃+ V (q) (10)

where ỹ(q, p̃) ∈ Rm is the transformed output, H̃(q, p̃) ∈
R the transformed Hamiltonian, M̃(q) = S�MS >
0n−k the symmetric transformed generalized mass matrix,

F̃ (q) = S�F ∈ R(n−k)×m, the transformed input matrix
and Y =

(
−pT [Si, Sj ](q)

)
i,j=1,...,n−k

∈ R(n−k)×(n−k) is a

skew-symmetric matrix that arises from the existence of
constraints with [Si, Sj ] denoting the Lie bracket. More
elaborate expressions for these components can be found
in Tsolakis (2021). The new system is expressed in the
new set of coordinates (q, p̃) ∈ R2n−k and evolves on the
constrained manifold Xc. It is described by a set of 2n− k
nonlinear, input-affine ODEs with anm-dimensional input
τ and a set of 2n−k initial conditions x0 = (q0

�, p̃0
�)� ∈

R2n−k which can be derived using the transformation
matrix defined in (6).

3. IDA-PBC FOR A CLASS OF NONHOLONOMIC
MECHANICAL SYSTEMS

In this section we want to apply the classical IDA-PBC
method of Ortega et al. (2002) to the nonholonomic sys-
tems described by equations (8)-(10). The first general
adaptation to nonholonomic systems is found in Blanken-
stein (2002) considering nonholonomic systems that may
be underactuated in the constrained space. Assuming that
the nonholonomic systems we are interested in are fully-
actuated in the constrained space, the desired dynamics can
take the following form as in Muralidharan et al. (2009):

[
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(q, p̃) (12)

Hd(q, p̃) =
1

2
p̃�Md

−1(q)p̃+ Vd(q) (13)

where Md ∈ R(n−k)×(n−k) is the desired mass matrix
which shapes the kinetic energy, and Vd ∈ R is the desired
potential energy which shapes the potential energy. The
desired potential energy Vd aims to make the system evolve
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nonholonomic mechanical systems. This method relies on
the notion of Passive Configuration Decomposition (PCD)
from Lee and Lui (2016) and a novel desired potential
function proposed here with which we can achieve smooth
stabilization in the constrained space. In order to enhance
the practical relevance of this work we also implement a
simple collision avoidance protocol based on the method
of Artificial Potential Fields (APF) and some of its exten-
sions. We show the efficacy of the theoretical results via
different simulation scenarios.

In Sections 2 and 3 we review the Hamiltonian formula-
tion and control with IDA-PBC for nonholonomic systems
which establishes the foundations of this work. Section 4
presents the main results which are two-fold: the adapta-
tion of PCD to Hamiltonian systems, and the proposal of
a novel desired potential function, respectively. In Section
5, we illustrate simulation results along with a critical
discussion. We conclude this work with a few remarks and
recommendations for future work in Section 6.

2. HAMILTONIAN FORMULATION OF
NONHOLONOMIC MECHANICAL SYSTEMS

In this section we review the Hamiltonian formulation of
nonholonomic mechanical systems as derived in Schaft and
Maschke (1994) for completeness. We are interested in
mechanical systems which are subjected to nonholonomic
constraints in Pfaffian form. The frictionless dynamics
of a nonholonomic, mechanical system with generalized
coordinates q ∈ Rn, generalized momenta p = M(q)q̇ ∈
Rn, constraint forces λ ∈ Rk, input τ ∈ Rm and conjugate
output y ∈ Rm are expressed as:
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ṗ

]
=

[
0n In

−In 0n

]
∂H

∂q
(q,p)

∂H

∂p
(q,p)


+

[
0n×k

A(q)

]
λ+

[
0n×m

F (q)

]
τ

(1)

y = F�(q)
∂H

∂p
(q,p) (2)

0 = A�(q)
∂H

∂p
(q,p) (3)

H =
1

2
p�M−1p+ V (q) (4)

where M(q) = M�(q) > 0n is the generalized mass ma-
trix, A(q) ∈ Rn×k the constraint matrix with rank(A) =
k < n and F (q) ∈ Rn×m the input matrix with rank(F ) =
m < n. The Hamiltonian H(q,p) is the system’s mechan-
ical energy given as the sum of kinetic energy 1
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and potential energy V (q) ∈ R. The system’s state is the
pair (q,p) ∈ X . The constraint equation (3) appears ex-
plicitly in the system description complicating the analysis
and control of these systems. An efficient way to work
with such systems is to express the equations of motion
on the constrained space. Since rank(A(q)) = k, there
exists locally a smooth matrix S(q) ∈ Rn×(n−k) of rank
n− k such that:

A�(q)S(q) = 0k×(n−k) (5)

Now define p̃ = T (q)p with the transformation matrix
chosen as in Muralidharan et al. (2009):
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Notice that p̃2 = 0 over the constrained manifold be-
cause of (3). Moreover the introduction of the annihilator
removes the constraint forces from (1). For the sake of
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where ỹ(q, p̃) ∈ Rm is the transformed output, H̃(q, p̃) ∈
R the transformed Hamiltonian, M̃(q) = S�MS >
0n−k the symmetric transformed generalized mass matrix,

F̃ (q) = S�F ∈ R(n−k)×m, the transformed input matrix
and Y =

(
−pT [Si, Sj ](q)

)
i,j=1,...,n−k

∈ R(n−k)×(n−k) is a

skew-symmetric matrix that arises from the existence of
constraints with [Si, Sj ] denoting the Lie bracket. More
elaborate expressions for these components can be found
in Tsolakis (2021). The new system is expressed in the
new set of coordinates (q, p̃) ∈ R2n−k and evolves on the
constrained manifold Xc. It is described by a set of 2n− k
nonlinear, input-affine ODEs with anm-dimensional input
τ and a set of 2n−k initial conditions x0 = (q0

�, p̃0
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R2n−k which can be derived using the transformation
matrix defined in (6).

3. IDA-PBC FOR A CLASS OF NONHOLONOMIC
MECHANICAL SYSTEMS

In this section we want to apply the classical IDA-PBC
method of Ortega et al. (2002) to the nonholonomic sys-
tems described by equations (8)-(10). The first general
adaptation to nonholonomic systems is found in Blanken-
stein (2002) considering nonholonomic systems that may
be underactuated in the constrained space. Assuming that
the nonholonomic systems we are interested in are fully-
actuated in the constrained space, the desired dynamics can
take the following form as in Muralidharan et al. (2009):

[
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]
=

[
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−1
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1
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−1(q)p̃+ Vd(q) (13)

where Md ∈ R(n−k)×(n−k) is the desired mass matrix
which shapes the kinetic energy, and Vd ∈ R is the desired
potential energy which shapes the potential energy. The
desired potential energy Vd aims to make the system evolve

towards a goal configuration denoted as q∗ thus having the
property:

q∗ = argmin
q

Vd(q) (14)

Kinetic energy shaping aims to solve the matching problem
and in addition shapes the transient response. Matrix J =
−J� ∈ R(n−k)×(n−k) is the skew-symmetric, gyroscopic
force matrix which aids in the solution of the matching
problem as well, by creating one extra degree of freedom in
the matching conditions as explained later. The damping
matrix denoted as Kv = Kv

� > 0m induces dissipation
to the closed-loop system for asymptotic convergence. This
matrix is free to choose as it does not appear in the so-
called matching conditions presented next.

IDA-PBC aims to find a control input τ ∈ Rm that
transforms the open-loop plant (8)-(10) to the desired,
closed-loop dynamics (11)-(13). This is known as the
matching problem since we need to match the controlled
system with the desired dynamics. In order to solve the
problem we begin with equating the open-loop dynamics
(8) with control input τ ∈ Rm to the closed-loop dynamics
(11). Following the classical approach as in Ortega et al.
(2002), this yields the control law:

τ =
(
F̃

�
F̃
)−1

F̃
�
(
S

� ∂H̃

∂q
− MdM̃

−1
S

� ∂Hd

∂q
− Y

∂H̃

∂p̃
+ J

∂Hd

∂p̃

)

−KvF̃
� ∂Hd

∂p̃

(15)

and the kinetic and potential matching conditions:

F̃
⊥
(
S

� ∂p̃�M̃
−1

p̃

∂q
− MdM̃

−1
S

� ∂p̃�Md
−1p̃

∂q
− 2Y M̃

−1
p̃ + 2JMd

−1
p̃

)

= 0n−k−m

(16)

F̃
⊥
(
∂V

∂q
−MdM̃

−1
S� ∂Vd

∂q

)
= 0n−k−m (17)

where we denote as F̃⊥ ∈ R(n−k−m)×(n−k) the left annihi-
lator of F̃ such that F̃⊥F̃ = 0(n−k−m)×m. The matching
conditions (16) and (17) ensure that the control actions are
feasible in case the system is underactuated. In the case
of holonomic systems, the system description and control
input reduce to the original form as in Ortega et al. (2002).
For holonomic systems, we can choose suitable Md and
J so that the PDEs (16)-(17) are satisfied, Kv to inject
damping (and thus asymptotic stabilization) and a smooth
desired potential Vd with which we can stabilize the system
at an arbitrary desired equilibrium given in (14). However,
that is not the case for nonholonomic systems as Brockett’s
necessary conditions suggests (Brockett, 1983). Due to the
existence of nonholonomic constraints, the system will be
stabilized at the largest invariant set:

Ωinv =

{
(q,0) ∈ X

∣∣∣S�(q)
∂Vd

∂q
(q) = 0

}
(18)

In the next section we propose a method to tackle this
problem.

4. STABILIZATION OF A CLASS OF
NONHOLONOMIC SYSTEMS

In this section we propose a method with which we can
use the nonholonomic IDA-PBC control law (15) derived
in the previous section so that the system can be success-
fully stabilized at the desired equilibrium. The proposed
method consists of two parts. The first part is the adap-
tation of PCD to port-Hamiltonian systems. The PCD

introduced in Lee and Lui (2016), was applied to the
open-loop Lagrangian dynamics of nonholonomic systems.
In our case, we apply this method to the closed-loop,
Hamiltonian dynamics (11)-(13) so that we can use the
already derived control law (15). There are two main
reasons to extend this result in the framework of IDA-
PBC. First of all, since IDA-PBC has been proven a
favourable approach for underactuated systems, an ex-
tension of PCD to port-Hamiltonian systems may allow
the development of stabilizing control laws for systems
that are both nonholonomic and underactuated such as
the Mobile Inverted Pendulum studied in Muralidharan
et al. (2009). Moreover, this result is instrumental for the
extension of the distributed IDA-PBC method developed
originally in Valk and Keviczky (2018) to the practically
relevant class of nonholonomic systems. This will allow for
distributed cooperative control of a team of heterogeneous
systems which may consist of holonomic/nonholonomic,
fully-actuated/underactuated mechanical systems thus en-
hancing the scope of application. After applying PCD to
(11)-(13), the second part of the proposed method is a
novel choice of the desired potential function Vd that relies
on the aforementioned decomposition. More specifically,
based on the insight that some of the configuration vari-
ables are free from the nonholonomic constraints, we can
use the latter to drive the system to the desired equilibrium
q∗ despite the presence of these constraints. Of course, in
order to stabilize the system in the full state space our
approach leads to a non-smooth feedback law thus not
contradicting with Brockett’s necessary condition.

4.1 Applying PCD to port-Hamiltonian Systems

We are interested in the class of nonholonomic mechanical
systems described by (11)-(13) for which the following
assumptions are made (Lee and Lui, 2016):

(1) The system’s configuration space Q can be endowed
with the product structure such that Q = S×R with

q =
(
s� r�

)�
, s ∈ Rn−p, r ∈ Rp.

(2) The constraint matrix of the nonholonomic Pfaffian
constraint (3) is also a function of only r ∈ R and
the constraint acts only on s ∈ S:
A�(q)q̇ =

[
As

�(r) 0k×p

]
q̇ = As

�(r)ṡ = 0k (19)

with As(r) ∈ R(n−p)×k being full row rank.
(3) Its inertia matrix is a function of only r ∈ R, that is,

M(q) = M(r).

The aforementioned properties may seem restrictive but
in fact encompass many practically important and inter-
esting systems with some examples listed in Lee and Lui
(2016). With this structure, the unconstrained distribution
Ds(r) ∈ R(n−p)×(n−p−k) is defined on S such that:

Ds(r)
�As(r) = 0(n−p−k)×k (20)

SinceA(r) is regular and smooth, so isDs with rank(Ds) =
n−p−k, ∀r ∈ R. We can then partition the mass matrix
M(r) such that the transformed mass matrix becomes:

M̃(r) = S(r)�M(r)S(r) =

[
D�

s MsDs D�
s Msr

Msr
�Ds Mr

]
(21)

In order to avoid acceleration couplings via the inertia
matrix between the s-dynamics and the r-dynamics which
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is usually not cancellable, we follow another assumption
from Lee and Lui (2016):

M�
sr(r)Ds(r) = 0p×(n−p−k), ∀r ∈ Rp (22)

Thus M̃(r) becomes block-diagonal leading to decoupling
of s and r via the inertia matrix. We can decompose the

generalized momenta as p̃ =
(
p̃s

� pr
�)� and choose a

block diagonal desired mass matrix Md(r) as:

Md(r) =

[
Mds 0
0 Mdr(r)

]
(23)

with Mds independent from r. The Hamiltonian in (13)
can be decomposed as:

Hd =
1

2
p̃s

�Mds(r)p̃s + Vds(s)︸ ︷︷ ︸
Hds

+
1

2
pr

�Mdrpr + Vdr(r)︸ ︷︷ ︸
Hdr

(24)

With proper block-diagonal choices for matrices J and
Kv, the closed-loop system (11)-(13) can be decomposed
to two Hamiltonian systems:
[

ṡ
˙̃ps

]
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−1

Mds

−Mds(D
�
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−1D�
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0p Mr

−1
Mdr
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(28)

ydr = F̃r
� ∂Hds

∂pr
(29)

Hdr =
1

2
pr

�Mdr
−1(r)pr + Vdr(r) (30)

The two systems (25)-(27) and (28)-(30) are decoupled
and each one evolves on its own configuration manifold
S and R, respectively, though with a coupling due to
the nonholonomic constraint. Note also that system (28)-
(30) is of the original unconstrained Hamiltonian form
(holonomic). Thus, the unconstrained variables r are easy
to stabilize with a smooth control law, whereas for s,
stabilization is not straightforward. Analytically deriving
the energy evolution of (11)-(13) bearing in mind the
decomposition in the previous section yields:

Ḣd =
∂�Hd

∂s
ṡ+

∂�Hd

∂p̃s

˙̃ps

︸ ︷︷ ︸
Ḣds

+
∂�Hd

∂r
ṙ +

∂�Hd

∂pr
ṗr

︸ ︷︷ ︸
Ḣdr

(31)

With straightforward calculations we can deduct that for
the system evolving on S we have Ḣds ≤ 0 with:

Ḣds = 0 ⇒ D�
s (r)

∂Vds(s)

∂s
= 0n−p−k (32)

and for the system evolving on R we have in a similar
manner Ḣdr ≤ 0 with:

Ḣdr = 0 ⇒ ∂Vdr(r)

∂r
= 0p (33)

With closer attention to (32), we can observe that a
promising attempt for stabilization of the constrained
variables s is the following: Drive the s-dynamics to the
invariant set Ωinv at an arbitrary stabilization point,
denoted by sω, while recruiting the r-dynamics to ”guide”

the system from sω towards s∗ via matrix Ds(r). Using
PCD as in Lee and Lui (2016), we can proceed with
designing a passivity-based switching control law that can
asymptotically stabilize the system in any configuration.

4.2 Proposed Desired Potential for Full-State Stabilization

The goal to stabilize the system at a desired configuration
q → q∗ can be achieved sequentially. First, driving s → s∗

by utilizing the r-dynamics and then r → r∗ with a
smooth potential. Thus, according to equations (32) and
(33) we need to design the desired potential functions Vds

and Vdr for each stabilization task, respectively. Based on
Lee and Lui (2016), the desired potential Vds : S → R is
required to fulfill the following:

(1) Vds ≥ 0 with the equality holding when s = s∗

(2) ∂Vds

∂s = 0, iff s = s∗

(3) Vds is radially unbounded

We begin with the s-dynamics for which we choose a
quadratic function that satisfies the aforementioned re-
quirements defined as:

Vds =
1

2
(s− s∗)�Qs(s− s∗) (34)

with Qs ∈ R(n−p)×(n−p) a constant symmetric matrix
serving tuning purposes. With this choice, equation (32)
yields:

D�
s (r)Qs(s− s∗) = 0n−p−k (35)

which describes a k-dimensional affine hyperplane in S ∈
Rn−p that is defined by a set of n− p−k linear equations.
Thus the system will not be stabilized at s∗ but rather
at another point denoted by sω ∈ Ωinv. Let vs = s − s∗

be the vector that we want to drive to zero. Then, matrix
Ds(r)Qs maps this vector to the constrained space as a
new vector:

vα = D�
s (r)Qsvs ∈ Rn−p−k (36)

which is the vector on the constraint space that we are
able to drive to zero (vα → 0) with the potential function
Vds chosen as in (34), and acting only on the constrained
variables s, thus driving s → sω. We continue with the
following critical observation: Since we have assumed that
the nonholonomic constraints are a function of only r ∈ R
and act only on s ∈ S, the constraint equation (19) is now
integrable in S and can get the form:

As
�(r) (sω − s) = 0 (37)

which describes an (n − p − k)-dimensional, affine hyper-
plane in S, defined by a set of k linear equations. This
affine hyperplane describes the constrained space on which
the system will evolve on, a subspace of S. We observe here
that matrix Ds(r)Qs maps vs to the constrained space

described in (37) and similarly matrix As
�(r) maps vs to

the invariant set defined in (35):

vω = As
�(r)vs ∈ Rk (38)

Since these spaces are the orthogonal complement of each
other, we know that vs → 0 if both vα → 0 and vω → 0 is
achieved. We have already showed that vα → 0 is feasible
for the quadratic choice of Vds in (34). The concept now
is to use the unconstrained variable r in order to drive vω

to zero as well, meaning that sω → s∗ and thus s → s∗.
This is possible by the following quadratic choice:

Vdr =
1

2
vω

�Qrvω (39)
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is usually not cancellable, we follow another assumption
from Lee and Lui (2016):

M�
sr(r)Ds(r) = 0p×(n−p−k), ∀r ∈ Rp (22)

Thus M̃(r) becomes block-diagonal leading to decoupling
of s and r via the inertia matrix. We can decompose the

generalized momenta as p̃ =
(
p̃s

� pr
�)� and choose a

block diagonal desired mass matrix Md(r) as:

Md(r) =

[
Mds 0
0 Mdr(r)

]
(23)

with Mds independent from r. The Hamiltonian in (13)
can be decomposed as:

Hd =
1

2
p̃s

�Mds(r)p̃s + Vds(s)︸ ︷︷ ︸
Hds

+
1

2
pr

�Mdrpr + Vdr(r)︸ ︷︷ ︸
Hdr

(24)

With proper block-diagonal choices for matrices J and
Kv, the closed-loop system (11)-(13) can be decomposed
to two Hamiltonian systems:
[

ṡ
˙̃ps

]
=

[
0n−p Ds(D�

s MsDs)
−1

Mds

−Mds(D
�
s MsDs)

−1D�
s Js − F̃sKvsF̃s

�

][ ∂Hds

∂s
(s)

∂Hds

∂p̃s
(p̃s)

]

(25)

yds = F̃s
� ∂Hds

∂p̃s
(26)

Hds =
1

2
p̃s

�Mds
−1p̃s + Vds(s) (27)

[
ṙ

ṗr

]
=

[
0p Mr

−1
Mdr

−MdrMr
−1

Jr − F̃rKvrF̃r
�

][ ∂Hdr

∂r
(r,pr)

∂Hdr

∂pr
(r,pr)

]
(28)

ydr = F̃r
� ∂Hds

∂pr
(29)

Hdr =
1

2
pr

�Mdr
−1(r)pr + Vdr(r) (30)

The two systems (25)-(27) and (28)-(30) are decoupled
and each one evolves on its own configuration manifold
S and R, respectively, though with a coupling due to
the nonholonomic constraint. Note also that system (28)-
(30) is of the original unconstrained Hamiltonian form
(holonomic). Thus, the unconstrained variables r are easy
to stabilize with a smooth control law, whereas for s,
stabilization is not straightforward. Analytically deriving
the energy evolution of (11)-(13) bearing in mind the
decomposition in the previous section yields:

Ḣd =
∂�Hd

∂s
ṡ+

∂�Hd

∂p̃s

˙̃ps

︸ ︷︷ ︸
Ḣds

+
∂�Hd

∂r
ṙ +

∂�Hd

∂pr
ṗr

︸ ︷︷ ︸
Ḣdr

(31)

With straightforward calculations we can deduct that for
the system evolving on S we have Ḣds ≤ 0 with:

Ḣds = 0 ⇒ D�
s (r)

∂Vds(s)

∂s
= 0n−p−k (32)

and for the system evolving on R we have in a similar
manner Ḣdr ≤ 0 with:

Ḣdr = 0 ⇒ ∂Vdr(r)

∂r
= 0p (33)

With closer attention to (32), we can observe that a
promising attempt for stabilization of the constrained
variables s is the following: Drive the s-dynamics to the
invariant set Ωinv at an arbitrary stabilization point,
denoted by sω, while recruiting the r-dynamics to ”guide”

the system from sω towards s∗ via matrix Ds(r). Using
PCD as in Lee and Lui (2016), we can proceed with
designing a passivity-based switching control law that can
asymptotically stabilize the system in any configuration.

4.2 Proposed Desired Potential for Full-State Stabilization

The goal to stabilize the system at a desired configuration
q → q∗ can be achieved sequentially. First, driving s → s∗

by utilizing the r-dynamics and then r → r∗ with a
smooth potential. Thus, according to equations (32) and
(33) we need to design the desired potential functions Vds

and Vdr for each stabilization task, respectively. Based on
Lee and Lui (2016), the desired potential Vds : S → R is
required to fulfill the following:

(1) Vds ≥ 0 with the equality holding when s = s∗

(2) ∂Vds

∂s = 0, iff s = s∗

(3) Vds is radially unbounded

We begin with the s-dynamics for which we choose a
quadratic function that satisfies the aforementioned re-
quirements defined as:

Vds =
1

2
(s− s∗)�Qs(s− s∗) (34)

with Qs ∈ R(n−p)×(n−p) a constant symmetric matrix
serving tuning purposes. With this choice, equation (32)
yields:

D�
s (r)Qs(s− s∗) = 0n−p−k (35)

which describes a k-dimensional affine hyperplane in S ∈
Rn−p that is defined by a set of n− p−k linear equations.
Thus the system will not be stabilized at s∗ but rather
at another point denoted by sω ∈ Ωinv. Let vs = s − s∗

be the vector that we want to drive to zero. Then, matrix
Ds(r)Qs maps this vector to the constrained space as a
new vector:

vα = D�
s (r)Qsvs ∈ Rn−p−k (36)

which is the vector on the constraint space that we are
able to drive to zero (vα → 0) with the potential function
Vds chosen as in (34), and acting only on the constrained
variables s, thus driving s → sω. We continue with the
following critical observation: Since we have assumed that
the nonholonomic constraints are a function of only r ∈ R
and act only on s ∈ S, the constraint equation (19) is now
integrable in S and can get the form:

As
�(r) (sω − s) = 0 (37)

which describes an (n − p − k)-dimensional, affine hyper-
plane in S, defined by a set of k linear equations. This
affine hyperplane describes the constrained space on which
the system will evolve on, a subspace of S. We observe here
that matrix Ds(r)Qs maps vs to the constrained space

described in (37) and similarly matrix As
�(r) maps vs to

the invariant set defined in (35):

vω = As
�(r)vs ∈ Rk (38)

Since these spaces are the orthogonal complement of each
other, we know that vs → 0 if both vα → 0 and vω → 0 is
achieved. We have already showed that vα → 0 is feasible
for the quadratic choice of Vds in (34). The concept now
is to use the unconstrained variable r in order to drive vω

to zero as well, meaning that sω → s∗ and thus s → s∗.
This is possible by the following quadratic choice:

Vdr =
1

2
vω

�Qrvω (39)

Fig. 1. Two independent control actions for the r-dynamics
and the s-dynamics.

with Qr ∈ Rk×k a constant symmetric matrix for tuning
purposes. Thus the system will be stabilized at vω = 0,
and since vα = 0 can be driven to zero we conclude
that we obtain vs = 0 implying s → s∗. Note that
vα = vα(s, r), vω = vω(s, r), meaning that both the
desired potentials are functions of both the constrained
and unconstrained variables implying a coupling of the
systems via the potential components of the control law
(15). However, due to orthogonality, each desired potential
Vds and Vdr leads to potential forces that act only on their
respective variables. More specifically, the control action
on S is the term D�

s (r)Qsvs ∈ Rn−p−k. While it is a
function of r, it only acts on the s variables. Similarly, the

control action on R is given by ∂Vdr

∂r = ∂�vω

∂r Qrvω. While
it is a function of s, it acts only on r. The aforementioned
observations are illustrated graphically for the simple
knife-edge example in Figure 1. Having achieved s → s∗

(i.e., stabilizing the constrained variables s which are in
general difficult to handle), we can shift our attention to
the unconstrained variables r. The unconstrained variables
r are not stabilized on the desired equilibrium r∗ since
they were used so far to stabilize the other variables. Now
that s = s∗ we can switch to another simple quadratic
desired potential function for r and since these variables
are not hindered by constraints they can be stabilized to
the desired equilibrium r∗. Note that the aforementioned
control choices lead to asymptotic stabilization, which is
more of a theoretical interest as s → s∗ converges over
infinitely long time. For this reason, we can attain r →
r∗ in practice by triggering the switch when the norms

‖s− s∗‖ and
∥∥∥ ˙̃s

∥∥∥ are small enough (i.e., setting stopping

criteria sd and ṡd respectively). Moreover, setting the
ground for collision avoidance in the constrained space, we
can implement other expressions for the desired potential
Vds that incorporate repulsive fields for the purposes of
collision avoidance according to Khatib (1985). Thus,
we can express the control action for the unconstrained
variables more generally as:

vω = As
�(r)

∂Vds(s)

∂s
(40)

and define the desired potential to stabilize r as:

Vdr =




1

2

∂�Vds(s)

∂s
AsQrAs

� ∂Vds(s)

∂s
1

2
(r − r∗)�Qr(r − r∗), if ‖s− s∗‖ < sd

(41)

where Vds can take the form (34) or a more general
one that satisfies the assumptions made earlier in this
section. Note that in case the nonholonomic system is
underactuated, the desired potentials chosen as in (34) and
(41) need to satisfy the matching condition (17).

Theorem 1. Consider a nonholonomic system described by
(1)-(4), satisfying the assumptions made in Subsection 4.1.
Control law (15) satisfying the matching conditions (16)-
(17), and desired potentials chosen as in (34) and (41), will
stabilize the system to the desired equilibrium (14).

Proof. As explained in this section, such a system can
be decomposed to two independent ones. For each system
we can see the evolution of the storage function. For the
s-dynamics we have Hds > 0, Ḣds ≤ 0 with Ḣds = 0

iff, D�
s (r)

∂Vds(s)
∂s = 0n−p−k meaning that the system will

converge to this equilibrium. Similarly, for the r-dynamics

we have Hdr > 0, Ḣdr ≤ 0 with Ḣdr = 0 iff, ∂Vdr(r)
∂r = 0p.

Then, selecting Vdr as in the first branch of (41), ∂Vdr(r)
∂r =

0p ⇒ ∂Vds(s)
∂s = 0n−p−k thus s → s∗ and stabilization in

the constrained space is achieved. Switching Vdr as in the
second branch of (41) will yield r → r∗ and as such, full-
state stabilization is achieved q → q∗.

5. SIMULATION RESULTS

In this section, we show the efficacy of the aforemen-
tioned results in two different simulations scenarios. For
brevity, we do not present a detailed description of the
approach with which the single-agent results are extended
in a distributed setting. The original approach of how to
extend IDA-PBC in a distributed manner can be found in
Valk and Keviczky (2018). In Tsolakis (2021), a step-by-
step adaptation of distributed IDA-PBC to nonholonomic
systems is described along with the detailed derivations
of the following examples and the implementation of a
simple collision avoidance protocol that relies on APF.
More results as well as links to the simulations can be
found in an extended version of this work in Tsolakis and
Keviczky (2021).

We first show a comparison for a single-agent scenario
featuring a differential robot. The differentially driven
wheeled robot starts from initial configuration q0 =

(1 1 0)
�

and has the goal configuration q∗ = (4 4 θ)
�

(with θ denoting a free orientation). We compare two dif-
ferent trajectories: First, the trajectory that our solution
yields after applying (15) with desired potential functions
as in (34) and the first branch of (41). Then, the trajec-
tory that the Passivity Based Switching Control (PBSC)
from Lee and Lui (2016) yields. We can see in Figure
2 that with the approach proposed here we can achieve
smooth stabilization in the constrained space. This results
in faster convergence to the goal as observed in Figure 3
with a smoother transition. Full-state stabilization can be
achieved after switching to the second branch of (41).

We then illustrate a multi-agent scenario in which we have
two differential robots and two 3-DoF manipulators. The
goal is for each pair of differential robot and manipulator
to reach consensus emulating a practical application in
which for example we want to unload cargo from the differ-
entially driven robots. We see in Figure 4 the trajectories of
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Fig. 2. Trajectory comparison between the solution pro-
posed here and PBSC proposed in Lee and Lui (2016).

Fig. 3. The evolution of the generalized coordinates.

Fig. 4. Trajectories in the multi-agent scenario.

these robots demonstrating a practical example of how the
distributed extension can work for heterogeneous agents.
Note that in place of the manipulators, underactuated
systems such as quad-rotors or overhead cranes can be
used for which IDA-PBC solutions already exist.

6. CONCLUSIONS

In this work, we have extended a recently proposed dis-
tributed control method from Valk and Keviczky (2018)

to the widely applicable class of nonholonomic mechanical
systems. This framework allows the design of a unified, dis-
tributed control law for a team of under-actuated and/or
nonholonomic heterogeneous mechanical systems. For fu-
ture work we aim to broaden the scope of application by
investigating how the proposed method can work for other
nonholonomic agents and particularly for agents that are
also underactuated (e.g., the inverted mobile pendulum).
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