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LISt of Abbreviations

10MWT
Acc
AP
BBS
CoM
CWT
DWT
EC
EMD
FV
Gyr
IC
ICC
IMF
LA
LoA
ML
RMS
RMSE
SC
SEC
SFT
SOL
SSV
ST
SU
SV
TUG

Ten-meter Walk Test

Acceleration

Anteroposterior — referring to movement in the sagittal plane
Berg Balance Scale

Center of Mass

Continuous Wavelet Transform

Discrete Wavelet Transform

End Contact — referring to ending contact of the foot during gait
Empirical Mode Decomposition

Fast Velocity (condition of the 210MWT)

Gyroscope

Initial Contact — referring to initial contact of the foot during gait
Interclass Correlation

Intrinsic Mode Function

Level of Approximation

Limits of Agreement

Mediolateral — referring to movement in the frontal plane
Root Mean Square

Root Mean Square Error

Spectral Centroid

Standing with Eyes Closed (condition of the BBS)

Standing with Feet Together (condition of the BBS)
Standing on One Leg (condition of the BBS)

Self-Selected Velocity (condition of the 10MWT)

Standing in Tandem stance (condition of the BBS)

Standing Unsupported (condition of the BBS)

Sway Velocity

Timed Up and Go



Abstract

Deterioration of gait and balance, whether from aging, disease, or injury, has been linked to reduced
mobility and increased risk of falling. Wearable sensing technologies, such as inertial measurement units
(IMUs), may augment clinical assessments by providing continuous gait and balance data at an increased
resolution. The objective of this work was to validate spatiotemporal gait features with a single IMU sensor
and to examine changes in sensor-derived features with age during the commaon clinical tests of gait and
balance. We tested the use of an IMU place in the lower back (L5) on age-ranged, healthy individuals
(N=34, 20-70 years) during the 10-meter walk test (LOMWT), Timed Up and Go (TUG), and Berg Balance
Scale (BBS). A total of 49 features were derived from the sensors based on a novel selection of algorithms
from previous works. Six spatiotemporal gait features were validated against gold standard measures to
assess accuracy and bias. There was an excellent agreement for step time, stance time, swing time, and
step count (ICCs 0.90-0.99), and good agreement for gait velocity and step length (ICCs 0.84-0.88).
There were 33 linear correlations between age and the sensor-derived features, including a negative
correlation between age and vertical displacement of the center of mass during gait. The strongest
correlation with age was found for the first slope of the second turn in the TUG (r=-0.545, p<0.001). For
the features that showed moderate correlations (|r|>30, p<0.05), a hierarchical multivariate regression
model showed that age was the most important predictor independent of weight, height, and gender.
Furthermore, when looking at gender-specific differences after correcting for the contribution of weight and
height, women exhibited 5-fold more correlations compared to men. In conclusion, sensor-derived features
demonstrated greater sensitivity to individual differences in gait and balance, which may be of a particular
interest for future implementation in a clinical setting in impaired populations.

The structure of this thesis is as follows: The first chapter contains the project overview, future vision, and
specific aims. The second chapter contains a manuscript that will be submitted for peer-reviewed journal
publication. Finally, the third chapter is an appendix with more detailed explanations of the methods and
findings of this work.
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Chapter 1. Project Overview

Stroke affects 15 million people worldwide every year, leaving approximately one-third of this population
permanently impaired. In the United States, stroke is considered to be one of the leading cause of long-
term disability, affecting more than 795,000 people per year [7]. In Europe, the number of people with
stroke was projected to increase by 34% (from 613,000 to 819,771) between 2015-2035 [8]. This causes
not only a burden on the individual, family, and community but also on the economy, with hospital care
costing an estimated $316.1 billion in the United States between 2012-2013 [7] and 45 billion euros Europe
in 2015 [8].

Impairment after stroke varies with the location and level of damage in the brain. The most common
outcomes of stroke include the reduced walking speed, hemiparesis, spasticity, impairments in balance,
speech, language, and cognition [9, 10]. The primary aim of rehabilitation, medication, and other clinical
treatments is to return stroke patients to the highest level of functionality and independent living [11-13].
Therefore, effective and efficient treatment of stroke is particularly important to maximize long-term
recovery and minimize economic costs to the patients and hospitals.

Currently, the monitoring, treatment, and evaluation of acute and subacute patients in a stroke unit (i.e.
multidisciplinary team of therapy, medical and nursing staff) with gait pathologies rely on infrequent clinical
assessments to determine recovery progression. These assessments include performance-based
rehabilitation measures as well as subjective and qualitative approaches such as patient self-reports and
scoring based on therapist observation [14]. These clinical practices, though effective in maintaining
clinical integrity, are not sensitive enough to detect subtle gait changes occurring during the recovery
process. Furthermore, these methods suffer for a high inter- and inter-observer variabilities [15], making it
difficult to adapt medical and rehabilitation process specific to each patient to maximize recovery.
Moreover, these controlled clinical assessments do not necessarily reflect a patient’s ability to navigate in
more real world settings, such as the home or community. Thus, an objective, reliable, and continuous
monitoring system for stroke patients in unconstrained rehabilitation settings would assist clinicians and
therapists in making informed decisions about treatment efficacy and recovery progress.

Recent developments in wireless sensing technologies (i.e. accelerometers, gyroscopes, IMUs) have
demonstrated an ability to estimate and quantify gait properties without altering the patient’s natural
movements, leading the transition of the analysis of gait and balance from the constrained laboratory or
clinical setting to a naturalistic environment. BioStampRC® (MC10 Inc., USA) is one such wireless and
flexible sensor, capable of measuring movement (triaxial accelerometer/gyroscope), electromyography
(EMG) and electrocardiography (ECG). These sensors have recently proven effective in measuring
relevant clinical outcomes, such as heart rate, muscle activity [16], as well as spatiotemporal gait features
[17] and postural sway [18]. However, their usefulness in a clinical setting for continuous monitoring and
guantification of impairment has not yet been established.

The long-term goal is to develop a sensor-derived biometric and activity monitoring system that would
allow clinicians and therapists to objectively measure post-stroke impairment and recovery both in and out
of the hospital (Figure 1). This would enable more personalized, data-driven treatment to improve clinical
and functional outcomes. However, before incorporating such a monitoring system, these sensors need
to be tested for their feasibility in a clinical environment in healthy controls, which means they need to be

checked for their validity (agreement between the value of a measure and the true value), reliability
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(reproducibility of the measurement), as well as their ability to quantify measures related to physiological
health and mobility. The central hypothesis is that these sensors will be able to capture the clinical and
functional outcomes that are currently measured during stroke recovery (i.e. walking speed, balance), and
provide additional information about the recovery that is not currently being captured in everyday
rehabilitation procedures (i.e. walking asymmetry, postural sway, or turning speed).
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Figure 1. Long term goal and future vision of the project.

This thesis contributes to a larger exploratory clinical trial using these flexible, wearable sensors to monitor
stroke recovery. The goal of the thesis work is to test the ability of these sensors to capture clinical and
functional data from healthy control individuals, including (i) collecting data from the sensors during
common clinical outcome tests of gait and balance, (ii) computing relevant clinical and functional features
from sensor data to quantify these clinical outcomes, and (iii) examining changes in these features with
age and gender.

The specific aims of the thesis are as follows:

Aim 1. Assess the feasibility of continuous monitoring of healthy adults using wearable sensors

e Obtain quantitative health data from research-grade, wireless, wearable sensors (MC10
BioStampRC®) from age-ranged healthy controls (20-70 years old).

e Validate the BioStampRC® data from the estimated spatiotemporal gait features against
different gold standards (i.e. instrumented walkway, visual step count).
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Aim 2. Quantify gait, mobility-related activities, and clinical features on healthy individuals.

e Obtain continuous biometric and movement-based sensor data relevant to clinical
outcomes (e.g., gait, and static postural balance) during the performance of the following
validated clinical tests:

o 10-Meter Walk Test (LOMWT)
o Timed Up and Go (TUG)
o Static postural tasks in Berg Balance Scale (BBS)

e Compute additional clinical and movement-derived features during these clinical tests from
the device data using previously-validated models. For example, gait asymmetry and static
and dynamic balance can be quantified using accelerometer and gyroscope data [2, 19].

Aim 3. Identify changes sensor-derived features with age and gender.

o Apply univariate and multivariate regression techniques to determine how performance
changes with age while controlling for weight and height, and to determine the significance
of the age as a predictor of these sensor-derived features respectively.

¢ Compare performance of males and females across the age range.

The expected outcome is to demonstrate the reliability of these wearable sensors to be adopted for a
clinical setting and to create of models for movement and balance outcome measures for age-ranged
healthy controls, which can later be compared against stroke patients. This will lead to the development
of a healthy control database that clinicians can use to monitor disease progression on acute stroke
patients, as well as to quantify and predict post-stroke recovery relative to an unimpaired population.
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Chapter 2. Manuscript

Title: Augmenting clinical outcome measures of gait and balance with a single inertial sensor in healthy
adults.

1. INTRODUCTION

Gait and balance play a vital role in independent functional mobility. From a clinical perspective, these
common human activities of everyday living are essential to quantify independent functional mobility and
are determinants of quality of life [20], and risk of falls [21] in elderly and impaired populations (i.e. Multiple
Sclerosis, Parkinson’s Disease). Therefore, clinical outcome measures based on gait and balance can
assess and predict how these factors are associated with age-related and phenotype measures.

Currently, clinical outcome measures of walking speed, walking endurance, functional mobility, and static
and dynamic balance are used to quantify impairments related to gait and balance. These measures are
scored based on both subjective and qualitative assessment, including therapist observation and a single
performance metric such as time or distance travelled [14]. Although such measures are effective in
maintaining clinical integrity, they are not sensitive enough to detect subtle changes in gait and balance.
Additionally, these tests suffer from high inter- and intra-observer variabilities [15], making it difficult to
objectively assess patient-specific impairments and improvements in the rehabilitation process.

Wearable sensors, such as inertial measurement units (IMUs), are promising tools to augment the current
clinical measures of gait and balance. This technology provides continuous, objective, and high-resolution
movement data that may better quantify test performance. Such sensors are also relatively inexpensive,
easy to use, lightweight, and unobtrusive when compared with more specialized equipment (i.e. force
plates, motion capture systems). These sensors are expected to be reliable tools in assisting clinicians
and therapists in making informed decisions about early interventions, treatment efficacy and recovery
progress.

BioStampRC (MC10 Inc., USA) is one such flexible, wireless, multimodal, wearable research-grade
sensor. We chose this sensor for its low profile and flexible material, as well as for the potential to
customize sensing modalities (i.e. pairing accelerometer and gyroscope).

For a realistic implementation of wearable technologies in a clinical setting, one of the constraints is the
number of sensors. That is, it is desirable to have the fewest number of sensors possible to quantify
performance. The shank and lower back (approximate center of mass) are both relevant locations for gait
and balance. Bilateral shank placement of the BioStampRC has previously been validated against an
activity monitor [17]. Various algorithms have been developed for a single IMU on the lower back for gait
and balance. Using the BioStampRC technology, this single-sensor placement has been validated for
balance against force plates [18], but to our knowledge has not been validated in gait. We sought to
evaluate the ability of a single BioStampRC sensor on the lower back to quantify both gait and balance in
healthy, age-ranged individuals. The authors in [22] explored the changes of gait and balance in age using
sensors at multiple locations using the Instrumented Walk Stand and Walk Test (iISAW). However, in order
to augment the clinical outcome measures currently used in the current clinical setting we proposed a
novel combination of algorithms to extract features across the different clinical tests (i.e. BBS, TUG and
10MWT) used to assess balance, gait and risk of falling with a single sensor placed at the lower back (L5).

The objectives of this study were threefold: (1) validate sensor-derived gait features against gold standard
measures to assess accuracy and bias, (2) compute sensor-derived features of gait and balance during
common clinical outcome measures for age-ranged healthy individuals, and (3) examine the effect of age
and phenotype characteristics (gender, height, weight) on these sensor-derived features. This work lays
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a foundation for amassing clinically-relevant baseline features from a healthy population to evaluate
recovery progression across different impaired populations (i.e. stroke, multiple sclerosis, etc.).

2. METHODS
2.1. Participants

Thirty-four healthy adults participated in the study (41.3 + 15 years, range 20 to 70; 20F/14M) and served
as a basis for three different age groups (Table 1). Participants had no known musculoskeletal or
neurological issues. All individuals provided written informed consent before participation. The study was
approved by the Institutional Review Board of Northwestern University (Chicago, IL) in accordance with
federal regulations, university policies and ethical standards regarding research on human subjects.

Table 1. Demographic and clinical data of the participants

Age group n Mezr;((aSD) Height (m) Weight (kg) Female Male
20-34 13 26.2 (3.9) 172.6(11.8) 70.1(13.1) 6 7
35-49 8 38.8 (2.2) 167.6(13.1) 77.5(27.72) 5 3
50-70 13 58.2 (5.8) 168.7(8.6) 72.3(20.3) 9 4

2.2. Protocol and Data Collection
Participants performed a sequence of four tests based on common clinical outcome measures:

e 10-meter walk test (1OMWT) of gait speed, with three trials each as a self-selected velocity (SSV)
and fast velocity (FV). Increasing gait speed has been correlated with a higher quality of life [20]
and community mobility [23]. Participants walked over an instrumented walkway (GAITRite; CIR
Systems, Inc.) during this test, which was used as a gold standard for validating spatiotemporal
gait features computed from the sensor data.

e Static postural stability items of the Berg Balance Scale (BBS), including: (a) standing unsupported
with feet open (SU), (b) standing on one leg (SOL), (c) standing with feet together (SFT), (d)
standing in tandem stance (ST), (e) standing with eyes closed (SEC). This test assess functional
balance and is associated with risk of falling [21].

e Timed Up and Go (TUG) test of functional mobility, with two trials collected. This test assesses
functional mobility and is used to predict the risk of falls [24].

e Participants also performed four self-paced walking bouts in a circuit to validate the step count
algorithm. The circuit required straight walking, walking through doorways, and turning corners.
Visual step count was used as the gold standard for validating step count computed from sensor
data.

2.3. Sensor technology

Participants wore a skin-mounted IMU (BioStampRC; MC10, Inc., dimensions: 65 mm x 35mm x 3 mm,
weight: 7g) placed on the fifth lumbar vertebra (L5), approximating the location of the body center of mass
(CoM). The sensor was held in place with a transparent adhesive film (Tegaderm; 3M). The BioStampRC
was configured to collect tri-axial acceleration (sensitivity £4g) and tri-axial angular velocity (sensitivity
+2000 deg/s) at 31.25 Hz. Sensor axes were oriented along the anatomical planes: anteroposterior (AP),
mediolateral (ML), and vertical (V). A Samsung Galaxy tablet running the proprietary BioStampRC
application was used to manage data collect and annotate each clinical test for timestamps (i.e. time when
the test started and ended).
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De-identified sensor data were uploaded to the MC10 BioStampRC Cloud and then downloaded to a
HIPAA-compliant (Health Insurance Portability and Accountability Act of 1996) secure server. Data
processing and analysis were implemented in MATLAB 2017a (MathWorks; Natick, MA).

2.4. Excluded participants

Some participants were excluded specifically for some clinical tests: in the 10MWT one participant was
excluded due to what appears to be incorrect labelling of the clinical tests. Another participant was
excluded only in FV condition because of a particularly fast walking velocity; in this case, the sensor
sampling rate was unable to capture the underlying time and frequency components needed to estimate
the foot gait events. Finally, two participants were excluded from the TUG analysis because the angular
velocity signatures were especially noisy, making it difficult to identify the TUG phases (turning and
stand/sit).

2.5. Data analysis
2.5.1. Features Summary

The following features were calculated from the acceleration and angular velocity signals to investigate
changes associated with age as summarized in Table 2. Some examples are shown in Figure 4.

Table 2. Estimated features from the clinical tests

Feature Reference Units Definition

BBS

F50% (AP/ML) [19, 25] Hz Frequencies accounting for 50% of the total power of the signal
F95% (AP/ML) [19, 25] Hz Frequencies accounting for 95% of the total power of the signal
SC (AP/ML) [19, 25] Hz Spectral Centroid. Indication of the center of mass of the spectrum
Max Acc (AP/ML) m/s? Maximum acceleration

Mean Acc (AP/ML) m/s? Mean acceleration

RMS (AP/ML) [18, 19] m/s? Root mean square of the acceleration

Ellipse Angles (AP,ML) m/s? Angles of 95% of ellipse orientation

95% E. Area [18, 25] m?/s* Area of 95% ellipse

Ellipse Axis (AP,ML) [25] m/s? Length of 95% ellipse axis

Jerk (AP/ML) [18] m/s3 Smoothness of sway. Time derivative of the acceleration

SV (AP/ML) [18, 19] m/s Mean sway velocity

SPathA (ML/AP) [19] m/s? Total acceleration path

10MWT

Mean Vertical Displacement m Vertical displacement of the Center of Mass (CoM)

Mean Stance Time (SSV/FV)* [3] s Length of time for which the foot is in contact with the ground
Mean Step Time (SSV/FV)* [3] S Length of time for which successive IC of opposite feet

Mean Stride Time(SSV/FV) * [3] s Length of time for which successive IC of the same foot

Mean Swing Time (SSV/FV)* [3] s Length of time for which the foot is not in contact with the ground
Mean Step Length (SSV/FV) *  [3] cm Distance of successive IC of opposite feet

Maximum Power Frequency unitless ~ Maximum power

Stance Time Symmetry Ratio unitless  Temporal symmetry ratio between both legs

Step Length Symmetry Ratio unitless  Spatial symmetry ratio between both legs

Duration (SSV/FV) s Time require to complete the test

Mean Velocity (SSV/IFV)* [3] m/s Walking velocity averaged over three trials

N Steps (SSV/FV) unitless  Number of steps taken

Velocity Difference m/s Difference in velocity SSV and FV modes

Timed Up and Go
Sit-to-Stand and Stand-to-Sit

Range Pitch (i-ii)/(ii-iii) [26] deg/s Difference between the min and max value of the pitch signal
STD Pitch (i-iii) [26] deg/s Standard deviation of the pitch signal

Mean Pitch (i-iii) [26] deg/s Average value of the pitch signal

Median Pitch (i-iii) [26] deg/s Middle value of the pitch signal

Mag Pitch (i-ii)/(ii-iii [26] deg/s Magnitude value of the pitch signal

Slope Pitch (i-ii)/ (ii-iii [26] deg/s Rate of change of the pitch signal

Mean Acc AP (i-iii) [26] m/s? Average phase value of the AP acceleration

STD Acc AP (i-iii) [26] m/s? Standard deviation of the AP acceleration
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Duration (i-iii) [26] s Time require to complete the phase

Median Acc AP (i-iii) [26] m/s? Middle value of the AP acceleration

Turn 1 and Turn 2

Duration [26] s Time required to complete the turn phase

N Steps [26] unitless  Number of steps taken

Mag Yaw [26] deg/s Magnitude of each turn phase

Slope Yaw (i-ii)/ (ii-iii [26] deg/s Rate of change of the yaw signal

Walk 1 and Walk 2

RMS Acc(AP/ML/V) [26] m/s? Root mean square of the acceleration signal
N Steps [26] unitless  Number of steps taken

Mean Step Time [26] m/s? Average step time over the two walking phases
STD Step Time [26] s Standard deviation of the step time
Walking

N Steps* unitless  Number of steps taken

Notes: Acc = acceleration, AP = anteroposterior, ML = mediolateral

2.5.2. Algorithms

Accelerometer signals were transformed to a horizontal-vertical coordinate system [1]. For walking-related
clinical tests (LOMWT, TUG walking phase, and walking bouts for step count), accelerometer signals were
filtered using a second-order zero-lag Butterworth low-pass filter at 10 Hz [3].

1. Gait Event Detection Algorithm: Foot contact events were estimated using a continuous wavelet
transform approach (CWT) on the preprocessed vertical acceleration a,, [2]. This algorithm uses
two wavelets, Gaussian and Mexican Hat, to detect initial contact (IC) and end contact (EC)
respectively (cwt MATLAB function). To determine the scale for each wavelet, a nonlinear
frequency-scale relationship was implemented [4]. First, a,, was integrated and differentiated by
CWT using a Gaussian wavelet (gausl), the local minima resulted from the CWT were identified
as IC events. The signal was again differentiated using the Mexican Hat wavelet (gaus2), and the
EC events were identified by the resulted local maxima. Only peaks resulted from the maxima and
minima with a magnitude >20% of the mean of all peaks were considered. Upon visual inspection,
false IC events were removed by a time interval (0.25-2.25 s) from a previous IC event [5]. Finally,
the angular velocity around vertical axis (yaw) was filtered using a fourth-order Butterworth filter at
2 Hz to designate right and left gait events (ICs, ECs) (Figure 2).

Temporal gait features were estimated by the following equations [3]:
Stance Time = EC(i + 1) + IC(i)
Stride Time = IC(i+ 2) — IC(i)
Step Time = EC(i+ 1) — IC(i)
Swing Time = Stride Time — Stance Time
2. Step Length Estimation Algorithm: Step length was estimated using a modified inverted

pendulum model [6] (Figure 2). During gait the CoM undergoes changes in height, which is used
to calculate the step length [27]:

Step Length = 2y/2lh —h? + K xS

where [ is the pendulum length (sensor location L5 to the ground), h is the change in height

obtained by double integration of a,,, S is a vector array of the participants’ shoe sizes, and K is a
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proportional constant estimated by least squares optimization function [6]. A value of K was

determined across participants using:

K = (STS)™* x ST(SLpealj — Step Length)

where SL,.,; IS a vector array of the true step length obtained from the gold standard (GAITRite)

during the 10MWT. Because step length increases with walking speed, two constants were

computed for the two velocity conditions: K=1.32 for SSV and K = 1.70 for FV.

The integration drift of a,, was removed by the Empirical Decomposition Mode (EDM) [6, 28]. First,
the vertical velocity v, is obtained by integrating a,, and then, decomposed into Intrinsic Mode
Functions (IMFs), being each IMF component a decomposed waveform of the original v, going
from high-frequency to low-frequency components. In order to select the IMFs to reconstruct v,
without the baseline drift and based on prior visual check the Hurst exponent was implemented as
it can serve as a measure of predictability of a time series [29]. Thus, IMFs with Hurst exponent
values of < 0.8 were considered. The same process was applied when integrating v,, until obtaining
a reconstructed version of the vertical displacement h,, drift-free.

Spatiotemporal Gait Detection Method
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Figure 2. Flowchart to estimate spatiotemporal gait features. Accs = acceleration signals; aV = vertical
acceleration, aML = mediolateral acceleration, aAP= anteroposterior acceleration; LPF = low pass filter;
Fc = wavelet central frequency; Fa = frequency at the maximum power of the acceleration signal; CWT
= continuous wavelet transform; IC= initial contact; EC = end contact; EMD = empirical mode
decomposition method; d = vertical displacement; h = vertical displacement peaks; k = optimization
constant; AngV = angular velocity; GFs = gait features. A. [1], B.[4], C. [2], D.[5], E.[6], F.[3].

Static Postural Balance Algorithm: The frequency domain features (Table 2) were estimated from
the magnitude of the Fast Fourier Transform (fft). Time domain features were estimated by either
taking the derivative of the acceleration (Jerk), integration of the acceleration (Mean Velocity),
magnitude of the acceleration (RMS). Finally, the ellipse features (Table 2) were obtained by
computing the eigen values and vectors of the covariance matrix for the acceleration signals in AP
and ML planes [30].

TUG Phase Detection Algorithm: The algorithm was develop to detect four main phases in the
TUG: 1) rising from a chair (sit-to-stand), 2) walking, 3) turning, and 4) sitting down (stand-to-sit)
[31-33]. Sit-to-Stand and Stand-to-Sit phases were estimated by a reconstruction of the pitch signal
after using a discrete wavelet approach with a Daubechies mother wavelet (db5) and an
approximation level 2 (2A). Turning phases were identified under the same approach but using the
yaw signal and an approximation level 2 (2A). Finally, to estimate the walking phases and the steps
taken in each turn the previously described “Gait Detection Event Algorithm” was used. A flowchart
of the algorithm is given in Figure 3.

A. Slt-to-Stand and Stand-to-Sit Phases

Angular % DWT Method Sit-to-Stand findpeaks

Velocity (Pitch) db5 wavelet (LA 2) Window (0-30%)

find Zero-Crossings

@

Stand-to-Sit
Window (80-100%)

B. Turning Phases

Angular ||  DWT Method Sit-to-Stand n N findpeaks
Velocity (Yaw) db5 wavelet (LA 2) Window (30-70%) (i)

Stand-to-Sit % find Zero-Crossings
Window (80-95%) i ifi (i)

Figure 3. TUG phase detection. A. Sit/stand phases. B. Turning phases. DWT = discrete wavelet
transform; db5 = Daubechies 5; LA = level of approximation.
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Figure 4. Examples of features estimated from the different clinical tests. (A) 95% Ellipse area, axis and angles.
(B). Frequency domain measures from the BBS (F50%, F95% and SC). (C) Phase estimation in the TUG by the DWT
method. (D) Temporal gait estimation by the CWT method. (E) Step length estimation by the inverted pendulum model.



2.6. Statistical Analysis

Statistical analysis was done using SPSS v24 (IBM). Bland Altman plots were used to visually check the
error distribution between the two systems (i.e. MC10 vs GAITRite; MC10 vs Visual Step Count Etc.).
Absolute agreement between the two systems was formally tested using limits of agreement (LOA).
Relative agreement between the systems was determine using Pearson’s correlation coefficient (r).

Spatiotemporal gait features from both left and right legs were combined, since the healthy controls exhibit
relatively symmetrical gait. Gait symmetry was corroborated by computing the empirical cumulative
distribution for both left and right in each gait feature.

A total 187 features across all the clinical tests were assessed with univariate analysis for the demographic
variables (age, weight, height, and gender). Normality of the features was tested using D’Agustino-
Pearson omnibus K? with the significance level at 0.05. Feature inter-correlations from one condition of
each clinical test were explored using a correlation matrix using the Pearson correlation coefficients [22],
to examine the distinction between gait and balance features.

The relationship between each feature and age was assessed using univariate correlations. Strength and
direction of the correlations with age were measured with Pearson product-moment correlation for the
normally distributed features, and Spearman’s rank order correlation for the non-normally distributed
features. Furthermore, partial correlations (r*) were performed controlling for the effects of weight and
height for all the participants, also separated by gender [22].

Hierarchical multiple regression was performed to quantify the effect of age on features with moderate-to-
strong univariate correlations (|r] > 0.3 p < 0.05). The goal of these models was to determine whether
adding age as a predictor variable significantly improves the proportion of explained variance (R?) for the
feature in question. Here, age was added as a predictor variable after adding the variables for weight,
height, and gender respectively [22, 34]. These tests for the effect of age alone on a feature after controlling
for weight, height, and gender.

Finally, to show the difference and level of resolution of the proposed features versus the current clinical
outcome measures (test duration for the TUG, velocity for the 10MWT and therapist scores between 1 and
4 in the BBS), the same clinical outcome measures were tested for differences within clinical tests and
between age groups using inferential statistics (two way ANOVAs with main effects of age and test
condition, as well as their interaction).

3. RESULTS
3.1. Validation

Figure 5 summarizes the validation results. Bland-Altman plots show mean differences, ICC, and LoA
(percentage and upper/lower bounds). Linear correlation plots show p-values for normality (Kolmogorov-
Smirnov test), RMSE, and linear equations between BioStampRC and gold standard measurements
(GAITRIite for spatiotemporal features and manual, visual count for step count estimation)

Excellent agreement was found for the temporal gait features including Step time, Stance time and Swing

time (ICC > 0.89, LoA < 15%). Moderate agreement (ICC > 0.84, LoA = 16%) was found for Step Length
and velocity.
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Figure 5. Bland-Altman and linear correlation plots between the BioStampRC and the gold standards for the different
spatiotemporal features. RMSE = Root Mean Square Error; ICC = Interclass Correlation; LoA = Limits of Agreement;
p-value = Kolmogorov-Smirnov significance value.

3.2. Feature independence between clinical tests

A correlation matrix using Pearson product-moment coefficients (Figure 6) for all the estimated features
from one condition of each clinical test illustrates that features were highly correlated within clinical tests
but clearly separable between 10MWT and TUG when compared with BBS. This suggests that the features
for each clinical test effectively represent different domains. However, there are linear correlations between
the 10MWT and TUG, as these tests represent the dynamic domain of mobility (i.e. walking). In the BBS,
time and frequency domain features were highly correlated within domains but showed almost no
correlation between domains.
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Figure 6. Feature correlation matrix. BBS Standing Unsupported: 1. F50% (ML), 2. F50% (AP), 3. F95% (ML), 4. F50% (AP), 5. SC (AP), 6.
SC (ML), 7. Max Acc (AP), 8. Max Acc (ML), 9. Mean Acc (AP), 10. Mean Acc (ML), 11. RMS (AP), 12. RMS (ML), 13. Ellipse Angle (AP), 14.
Ellipse Angle (ML). 15. Ellipse Area, 16. Ellipse Axis (AP), 17. Ellipse Axis (ML) 18. Jerk (AP), 19. Jerk (ML), 20. SV (AP), 21. SV (ML), 22.
SPathA (AP), 23. SPathA (ML). 10MWT: 24. Vertical Displacement, 25. Stance Time, 26. Step Time, 27. Stride Time, 28. Swing Time, 29. Step
Length, 30. Power Frequency, 31. Stance Time Ratio, 32. Step Length Ratio, 33. Duration, 34. Mean Velocity, 35. Step Count. TUG Sit-to-
Stand: 36-37. Range Pitch (i-ii/ii-iii), 38. Std Pitch (i-iii), 39. Mean Pitch (i-iii), 40. Median Pitch (i-iii), 41-42. Max Pitch (i-ii/ii-iii), 43-44. Slope (i-
ii/ii-iii), 45. Mean Acc (AP), 46. Std Acc (AP), 47. Duration. 48. Median Acc (AP). TUG Stand-to-Sit: 49-50. Range Pitch (i-ii/ii-iii), 51. Std Pitch
(i-iii), 52. Mean Pitch (i-iii), 53. Median Pitch (i-iii), 54-55. Max Pitch (i-ii/ii-iii), 56-57. Slope (i-ii/ii-iii), 58. Mean Acc (AP), 59. Std Acc (AP), 60.

(AP/ML/V), 71. N Steps, 72. Mean Step Time, 73. Std Step Time.
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3.3. Correlation between age and sensor-derived features

Tables 4-12 (Appendix belowl.A4) show how features across different clinical tests were affected by age.
Statistically significant linear correlations with age across the different clinical tests were found in 33 out
of 182 features. The strongest correlations with age were found for the TUG in the second turn phase the
slope (i-ii) (r > -0.545, p< 0.001; Table 11, Appendix 1.A4) and for the walking phase the RMS AP (r >
0.451 p<0.001; Table 11, Appendix 1.A4). Other moderate-to-strong correlations with age (Jr|>0.3 and
p<0.05) were found for the BBS: in SEC (2/23 features), F50% (ML) and SC (ML); in SFT (11/23 features),
RMS, maximum, mean sway velocity (AP/ML), and mean values of the acceleration (AP/ML), ellipse area,
and length of the ellipse axis (AP/ML); in SOL (6/23), the F95% (AP), RMS, maximum, and mean values
of the acceleration (ML), mean sway velocity (ML), and length of the acceleration path (ML); in ST (3/23),
RMS and mean of the acceleration (AP), and ellipse angle (ML). For the 10MWT FV (1/12), vertical
displacement. Finally, for the TUG (11/42), in Sit-to-Stand phase, range of pitch (i-if), mean pitch (i-iii),
magnitude pitch (i-ii) and mean acceleration (AP) (i-iii); in Stand-to Sit phase, range of pitch (i-ii), slope of

of steps.

After adjusting for weight and height, 14 of the 33 features lose their significance. These include: For the
BBS, in SEC (1/2 features), SC (ML); in SFT (5/11 features), maximum acceleration (ML), mean
acceleration (AP/ML), and mean sway velocity (AP); in SOL (5/6 features), the F95% (AP), RMS,
maximum, and mean values of the acceleration (ML), mean sway velocity (ML); in ST (1/2 features), RMS
of the acceleration (AP). Finally, for the TUG (2/11 features), in Sit-to-Stand phase, magnitude pitch (i-ii);
in walk phase, and the number of steps.

Considering gender differences, women show more statistically significant changes with age than men
(Ir|>0.45 p<0.05). Women show significance for 49/187 features, while men show significance for 10/187
features.

Hierarchical multivariate regression analysis for age-effects in sensor-derived features

Table 3 shows the results of the hierarchical multivariate regression for the features that had statistical
significant correlations with age > 0.3. Introducing age as a variable in the model significantly increased
the amount of explained variance for each feature, by 12.1-26% in 14 out of the 33 features (6/14 in BBS
and 8/14 in TUG). From these 14 features, gender was an important predictor for the RMS and mean Acc
AP in the SOL balance task; weight and age were important predictors for Range Pitch (i-ii) in the Sit-to-
Stand phase, as well as the Slope Pitch (i-ii) in the Stand-to-Sit phase of the TUG. For the rest of the
features, age was the only significant predictor.
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Table 3. Hierarchical multiple regression analysis from the features that showed moderate-strong correlations with age

(Ir| > 0.3).
Standardized Beta Coefficients

Features i i i
V\/((Ia(g)ht H?rgqg)ht ?ende 8?; RZ Cha;ge in Chaane di b Value
, 1 0.260 0.068 0.068 2.172 1/30  0.151
'g > Vertical Displacement 2 0046  0.373 0.161 0.093 3.226 1/29  0.083
=" P 3 0023 0.08L 0.366 0.201 0.040 1410  1/28  0.245
- 4 0067 008 0271 -0.327 | 0.302 0.101 3.888 1/27  0.059
1 -0.117 0.014 0.014 0.429 1/31 0517
F50% ML 2 -0.348  0.395 0.116 0.102 3.469 1/30  0.072
Q 3 0331 0600 -0.258 0.136 0.020 0.0676  1/29  0.418
n 4 -0282 0621 -0.370 -0.428 | 0.313 0.176 7.187 1/28  0.012*
0 1 -0.185 0.034 0.034 1.093 1/31  0.304
B SC ML 2 -0.358 0.296 0.092 0.057 1.898 1/30  0.179
3 -0347 0426 -0.164 0.100 0.008 0.262 1/29  0.613
4 -0308 0.443 -0.255 -0.347 | 0.216 0.116 4.137 1/28  0.052
1 -0.235 0.055 0.55 1.809 1/31  0.188
Max Acc AP 2 -0.276  0.070 0.058 0.003 0.103 1/30  0.750
3 -0248 0415 -0.433 0.115 0.057 1.852 129 0.184
4 -0292 039 -0.332 0.386 | 0.258 0.143 5411 1/28  0.027*
1 -0.050 0.003 0.003 0.078 1/31 0.782
Max Acc ML 2 -0.004 -0.092 0.008 0.006 0.169 1/30  0.684
3 0032 0253 -0.434 0.065 0.057 1.765 1/29  0.194
4 -0.001 0239 -0.358 0.291 | 0.146 0.081 2.666 1/28  0.114
1 -0.264 0.070 0.070 2.322 1/31  0.138
Mean Acc AP 2 -0249 -0.025 0.070 0.000 0.013 1/30  0.909
3 -0232 0190 -0.270 0.092 0.022 0.704 1/29  0.408
4 -0268 0175 -0.187 0.317 | 0.189 0.097 3.344 1/28  0.078
1 0.047 0.002 0.002 0.070 1/31  0.794
Mean Acc ML 2 0.050 -0.005 0.002 0.000 0.001 1/30  0.982
3 0084 0402 -0.512 0.081 0.079 2.497 129  0.125
4 0.047 0387 -0429 0.316 | 0.178 0.096 3.274 1/28  0.081
1 -0.284 0.081 0.081 2.726 1/31  0.109
2 -0.279 -0.009 0.081 0.000 0.002 1/30  0.969
RMS Acc AP 3 -0.257 0265 -0.344 0.117 0.036 1.171 1/29  0.288
4 -0.299 0247 -0.247 0372 | 0.250 0.133 4.961 1/28  0.034*
n 1 0.027 0.001 0.001 0.022 1/31  0.883
n 2 0038 -0.020 0.001 0.000 0.008 1/30  0.930
g RMS Acc ML 3 0072 038 -0513 0080 | 0079 2504 129 0.124
) 4 0036 0373 -0432 0308 | 0.172 0.092 3.095 1/28  0.089
1 -0.229 0.052 0.052 1.712 1/31  0.200
Ellipse L. Axis AP 2 0212 -0.029 0.053 0.001 0.017 1/30  0.896
3 -0.186 0290 -0.401 0.101 0.049 1.566 129  0.221
4 -0228 0272 -0304 0369 | 0.233 0.131 4.796 1/28  0.037*
1 -0.051 0.003 0.003 0.081 1/31  0.778
Ellipse L. Axis ML 2 0120 0.118 0.012 0.009 0.275 1/30  0.604
3 -0.098 0385 -0.337 0.046 0.034 1.040 1/29  0.316
4 -0137 0369 -0.248 0.339 | 0.157 0.111 3.675 1/28  0.066
1 -0.208 0.043 0.043 1.407 1/31  0.245
Ellipse Area 2 -0.200 -0.014 0.044 0.000 0.004 1/30  0.949
3 0175 0298 -0.392 0.090 0.046 1.480 129  0.234
4 -0215 0281 -0.300 0.354 | 0.211 0.121 4.281 1/28  0.048*
1 -0.278 0.078 0.078 2.606 1/31  0.117
SV AP 2 -0237 -0.072 0.081 0.003 0.110 1/30  0.743
3 -0218 0.157 -0.287 0.106 0.025 0.805 129  0.377
4 .0253 0142 -0.206 0.309 | 0.198 0.092 3.212 1/28  0.084
1 0.168 0.028 0.028 0.896 1/31  0.351
SV ML 2 0190 -0.309 0.029 0.001 0.030 1/30  0.863
3 0222 0347 -0.484 0.100 0.071 2.283 1/29  0.142
4 0185 0331 -0.400 0.323 | 0.200 0.100 3.512 1/28  0.071
1 -0.014 0.000 0.000 0.006 1/31  0.937
C 2 -0.063 0.084 0.005 0.005 0.138 1/30  0.713
A g F95% AP 3 -0.062 0.098 -0.019 0.005 0.000 0.003 1/29  0.956
@ 4 -0100 0082 0.068 0333 | 0.111 0.107 3.356 1/28  0.078
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1 0177 0031 | 0031 0998 131 0325
M Ace ML 2 0145 -0.053 0033 | 0002 0058 130 0812

3 -0111 0370 -0531 0118 | 0085 2804 129  0.105

4 -0146 0355 0451 0305 | 0.208 | 0090 3176  1/28  0.086

1 0172 0030 | 0030 095 131  0.337

- 2 0124 -0.082 0034 | 0004 0137 130 0714

3 -0093 0304 -0485 0105 | 0071 2299 129  0.40

4 -0125 0290 0412 0279 | 0180 | 0075 2562 128 0121

1 -0.210 0044 | 0044 1435 131  0.240

vl 2 0126 -0.145 0058 | 0014 0438 130 0513

3 0096 0213 -0450 0199 | 0061 2009 129  0.167

4 -0127 0200 0379 0270 | 0189 | 0070 2432 128 0130

1 0121 0015 | 0015 0462 131 0502

2 0095 -0.045 0016 | 0001 0041 130 0841

SPathA ML 3 -0082 0108 -0.193 0027 | 0011 0335 129 0567

4 -0123 0091 0100 0355 | 0149 | 0122 3998  1/28 0055

1 0304 0093 | 0093 3165 131  0.085

Mean Ace AP 2 0377 0123 0103 | 0010 0333 130 0568

3 0421 0426 -0.690 0247 | 0144 5560 129 0.026*

4 0387 0412 0611 0303 | 0335 | 0088 3723 128 0064

- 1 0349 0122 | 0122 4303 13l  0.046
@ 2 0392 -0.074 0125 | 0004 0123 130 0729
o RMSAccAP 3 0439 0502 -0.724 0284 | 0158 6402  1/29 0.017*
2 4 0409 0489 0653 0269 | 0.353 | 0070 3020 128 0093
1 0035 0001 | 0001 0038 131 0.847

Elipse Angle ML 2 -0037 0123 0011 | 0010 0301 130 0588

3 -0054 0082 0258 0031 | 0020 0600 129  0.445

4 -0007 -0062 050 -0412 | 0195 | 0163 5682  1/28  0.024*

1 -0.350 0123 | 0123 4193 130 0.049*

Range Pitch (vi) 2 -0428 0132 0134 | 0011 0382 129 0541

3 -0431 0091 0051 0135 | 0001 0026 128 0873

4 -0387 0109 0048 -0.364 | 0262 | 0127 4656 127  0.040*

1 0101 0010 | 0010 0307 130 0583

Mean Pich (i) 2 0346 -0418 0125 | 0115 3801 129  0.061

3 035 -0325 -0118 0129 | 0004 0136 128 0715

2 4 0308 -0344 0012 0386 | 0272 | 0143 5297 127  0.029"
& 1 0334 0111 | 0111 3755 130  0.062
2 MagPich () 2 0416 -0141 0124 | 0013 0429 129 0518
z 3 0418 0116 -0.032 0125 | 0000 0010 128 0922
s 4 0377 -0132 0062 0345 | 0238 | 0114 4083 127 0055
= 1 o002 0000 | 0000 0013 130  0.909
Siope Pitch (i) 2 0186 -0.281 0052 | 0052 1585 129 0.218

3 0178 -0378 0122 0057 | 0005 0135 128 0716

4 0130 -0397 0230 0396 | 0207 | 0150 5122  1/27  0.082*

1 -0.186 0035 | 0035 1077 130 0.308

Mean Ace AP (vi) 2 -0197 0019 0035 | 0000 0007 129 0933

3 -0231 -0361 0.480 0105 | 0070 2205 128  0.149

4 -0189 -0345 0387 -0.341 | 0217 | 0112 3855 127 0060

- 1 -0.241 0058 | 005 181 130 0.84
7 Range Pitch (i) 2 0141 0471 0077 | 0019 0603 129  0.444
g 3 -0131 -0067 -0.132 0083 | 0005 0162 128  0.690
2 4 -0.083 -0048 0241 -0.400 | 0236 | 0154 5428  1/27  0.028"
g 1 -0.436 0191 | 0191  7.060  1/30 0013
6 Slope pich (i 2 0321 -0197 0216 | 0026 0943 129 0.339
= 3 -0317 0151 -0.059 0217 | 0001 0038 128  0.847
4 -0267 -0131 0171 -0412 | 0.288 | 0163  7.095  1/27  0.013*

1 -0.099 0010 | 0010 0300 130 0588

Amplitude Ya 2 -0.086 -0.024 0010 | 0000 0011 129 0918

N 3 -0085 0022 -0.003 0010 | 0000 0000 128 0994
c 4 -0040 -0003 -0.106 -0380 | 0.148 | 01338 4378  1/27  0046*
E 1 -0.113 0013 | 0013 0390 130 0537
o 2 002 -0.230 0048 | 0035 1057 129 0312
2 Sope vaw (i 3 0005 -0423 0.244 0066 | 0018 0546 128  0.466
4 0068 -0398 0102 -0521 | 0.326 | 0260 10427  1/27  0.003*
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1 0.215 0.046 0.046 1.460 1/30 0.236

RMS AP 2 0.286 -0.120 0.056 0.009 0.289 1/29 0.595

% 3 0.316 0.228  -0.439 0.115 0.059 1.865 1/28 0.183
= 4 0.266 0.208 -0.325 0.418 0.282 0.168 6.309 1/27 0.018*
LID 1 0.018 0.000 0.000 0.010 1/30 0.923
E N Steps 2 0.039 -0.035 0.001 0.001 0.024 1/29 0.879
3 0.038 -0.044  0.011 0.001 0.000 0.001 1/28 0.975

4 -0.006 -0.062 0.111 0.368 0.131 0.130 4.036 1/27 0.055

Notes: Significant standardized beta coefficients are shown in bold.

3.4. Differences within clinical tests and across age groups

An example comparison of the clinical test scores and sensor-derived data is shown in Figure 7 for each
test. The 10MWT is scored based on gait velocity. Mean velocities for the SSV and FV conditions were
1.54 £ 0.21 m/s and 2.24 + 0.23 m/s, respectively (Fig. 7A). There was a main effect of condition on gait
velocity (p<0.001), but no effect of age group (p=0.90). For the sensor-derived feature of vertical
displacement of the CoM, mean values in the SSV and FV conditions were 2.3 £ 0.6 cm and 2.5 £ 0.8 cm,
respectively (Fig. 7B). In this feature, there was a main effect of age group (p=0.027) but not condition
(p=0.132).

The BBS is scored on a scale of 1 to 4 by a therapist, for an individual’s ability to complete a task safely
and for the required amount of time. Nearly all participants received a perfect score on the static standing
conditions (Fig. 7C), but specific differences between the conditions and age groups is seen in the 95%
acceleration ellipse area computed from sensor data (Fig. 7D). Average ellipse areas for each condition
were: SU 0.16 + 0.13m?/s*, SEC 0.06 + 0.13m?/s*, SFT 0.07 + 0.06m?/s*, SOL 0.41 + 0.51 m?/s*, ST
0.15 + 0.29 m?/s*. There was a main effect of condition (p<0.001) but not age group (p=0.376) on ellipse
area.

Finally, the TUG is scored as a time to complete all five phases of the test. Mean duration of the TUG was
7.41 +/- 1.68 s (Fig. 7E). There was a main effect of age on TUG duration (p = 0.032). Post-hoc tests
showed that the 20-34 year age group exhibited a shorter duration than the other age groups (p<0.04).
Our approach can distinguish durations of each phase of the TUG to determine in which phase an
individual is moving faster or slower (Fig. 7E, shown as a percentage of the total TUG time). Average
durations of each phase were: Sit-to-Stand 0.85 + 0.20 s, Stand-to-Sit 1.07 £ 0.23 s, first turn 1.44 + 0.48
s, second turn 1.11 £ 0.33 s, and walk 2.93 £ 0.97 s. There were main effects of phase (p<0.001) and age
group (p=0.001) on phase durations. There were no interaction effects between condition/phase and age
for any outcome.
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Figure 7. Clinical outcome resolution between the current measures (A, C, E), and the features estimated by
the sensor-derived approach (B, D, F) in the different age groups.
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4. DISCUSSION

In this study, we estimated features from different clinical outcome tests performed in the rehabilitation
setting using a novel combination of algorithms from a single IMU placed at the lower back.

The first objective was to validate sensor-derived gait features against gold standards (GAITRite and visual
step count) to explain systematic differences between both systems. Temporal gait features in the 10MWT
demonstrated an excellent agreement (mean step time, stance time, and swing time), similar to other
studies [2, 3]. Good agreement arose from the step length (ICC = 0.845, LoA = 16%) in which estimation
error was proportional to gait velocity (SSV vs. FV condition). A potential explanation for this reduced
accuracy in step length is in the walking kinematics. When modelling gait as a rigid inverted pendulum,
there is an assumption of an equal exchange between kinetic and gravitational potential energy during
walking; that is, increasing gait velocity increases the vertical displacement of the center of mass, and
consequentially produces a larger step length [35]. However, most of the participants exhibited only a
small change in vertical displacement between the self-selected and fast velocity conditions, which
resulted in underestimation of the step length for faster gait velocities. The virtual limb model proposed by
[35] may explain such behaviour. In this model, a virtual limb (pendulum) compresses in the stance phase
at higher velocities, therefore, reducing vertical displacement of the center of mass, and enhancing elastic
energy storage (i.e. in the muscles and tendons). Our findings suggest that elastic energy storage plays
an important role for the step length estimation.

The second and third objectives were to compute a series of sensor-derived features during clinical
outcome tests of gait, mobility, and balance, and to examine the effect of age and gender on these
features. A total of 23 features (time and frequency domain) were estimated for balance in BBS under
static standing conditions, 42 features for the estimation of different phases in the TUG, and 13 features
to estimate spatiotemporal gait in 10MWT. Of these, 34 features were significantly correlated with age,
and women showed 5-fold more age-related correlations compared with men, though this may be
explained by the unequal distribution of male and female participants in each age group (Table 1).
Hierarchical multivariate regression was employed to determine whether age, gender, height, or weight
most contributed to changes in these features. Ultimately, the sensor-derived measures were able to
capture more individual differences in clinical outcomes compared with traditional scoring. The findings
are discussed below for each clinical outcome test.

Static balance performance in BBS

Our findings confirmed significant decline in balance with aging across the static standing conditions (SU,
SEC, SFT, ST, SOL). Following a the pattern reported by [22], participants demonstrated increasing time-
domain sway features with age (i.e. mean and maximum velocity, acceleration and jerk) and decreasing
frequency domain features in the ML plane (F50% and SC for SEC and F50% for SFT).

Age alone was the most significant predictor of six features in the BBS, including positive correlations with
time domain features (Max Acc, RMS, and Ellipse L. Axis in the AP plane, and the Ellipse Area for SFT)
and negative correlations with Ellipse Angle in the ML plane for ST and F50% in the ML plane for SEC.
The latter showed the strongest relationship with age, meaning older individuals exhibited higher power at
lower frequencies. This can be understood as slower postural corrections, which may increase risk of
falling. Aging affects neural factors such as increased reaction times [36] and biomechanical factors such
as muscle weakness [36], which would affect balance performance in a pattern consistent with our
findings.

Finally, we found significant increases in the acceleration ellipse areas across BBS conditions and age

groups, which is expected with the increasing difficulty levels of the conditions and aging, since balance is
dependent on sensory information and motor abilities.
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10MWT performance

A negative correlation in the vertical CoM displacement (maximum peak) for the FV condition was the only
significant feature changing with age. This maximum peak occurs in the stance phase, and with aging
there is a reduced power during the early stance (hip extension) or late stance (ankle plantarflexion, and
hip flexion) phases [37], perhaps due to muscle weakness, which may shorten this vertical displacement.

TUG performance

In line with previous studies, sit-to-stand and stand-to-sit phases in TUG exhibited the strongest
correlations with age, related to the angular velocity (pitch signal) [26]. Age alone was the most significant
predictor of six features in TUG, including positive correlations with the Mean (i-iii) and Slope (i-ii) of the
pitch signal in the sit-to stand phase, as well as RMS Acc AP in the walking phase. We also found negative
correlations with Range Pitch (i-ii) in the stand to sit phase, and with magnitude and slope (i-ii) of the yaw
signal.

Age and weight together were significant predictors of two features in TUG, with negative correlations with
the Range Pitch (i-ii) in the sit-to-stand phase and Slope pitch (ii-iii) in the stand-to-sit phase.

Aging causes lower limb strength deficits (i.e. hip and knee flexion/extension, and ankle dorsiflexion) [38].
Our findings suggest that older individuals rely more on trunk momentum to stand up from a sitting position.
Specifically, they exhibit increased flexion of the trunk to translate the CoM to the base of support, and
subsequently extend the trunk via increased the angular velocity (pitch) that contributes to the CoM vertical
momentum [39, 40]. Finally, the negative correlations in the second turn suggest a slower and more
controlled turn before sitting.

Strength and limitations

The strength of this study is in the use of a single sensor to quantify feature associations with age from
well-establish clinical outcome tests, different from other studies that used sensors at multiple locations
and straightforward tests [22], and validate spatiotemporal gait features with the lowest sampling rate
reported in literature to our knowledge. Our study showed that these clinical tests could be grouped into
separate domains to assess gait, mobility, and balance. Furthermore, our study expands on the findings
in [22], using a different set of features and an implementation in the current clinical outcome tests. Finally,
as illustrated in Figure 7, these sensor-derived features can cope with floor/ceiling effects by distinguishing
differences between groups and tasks.

There were some limitations to this study. Most notably, this is a small sample size with uneven age
distributions between genders. Additional participants across a wider range of ages will be recruited in the
future, and a larger sample size with even gender distribution may affect findings.

Future work may also consider incorporating IMUs at the lower limbs to improve the step length estimation,
and to maintain accuracy in step detection and spatiotemporal kinematics for gait-impaired populations.

5. CONCLUSION

In summary, we validated the spatiotemporal gait features and quantified age-related changes across well-
established clinical outcome tests responsible to quantify gait, mobility, and balance using a single IMU
placed at the lower back, we were able to demonstrate that this sensor-derived features can improve the
resolution to determine changes related to age, and augment the current clinical outcome measures. Our
results suggest that TUG is a reliable test for the quantification of age-related differences. The single
sensor approach proved the feasibility and reliability for temporal gait estimation from both left and right
legs and not as accurate for the step length estimation using the inverted pendulum.
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Overall, this work lays a foundation for amassing clinically-relevant baseline features from a healthy
population to evaluate recovery progression across different impaired populations (i.e. stroke, multiple
sclerosis, etc.). We expect that this approach would allow clinicians and therapists to better distinguish
individual differences when evaluating gait and balance in the laboratory or in the community, thereby
paving the way for more data-driven diagnosis and treatment of mobility impairment.
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Chapter 3 Appendix

Al The gait cycle

Bipedal walking is a pseudo-periodic movement (sequence of repeated patterns) called the “gait cycle”
that vary within each participant functional and structural locomotor capacity [20]. This task requires the
lower limbs for propulsion, while the head, arms and trunk provide stability and balance of the center of
mass (CoM). In healthy populations, the gait cycle is characterized by low energy consumption via the
exchange of forward kinetic energy and gravitational potential energy of the CoM [41].

There are two main phases of gait: stance and swing. The stance phase comprises approximately the
60% of the gait cycle while the remaining 40% is the swing phase. However, when analyzing pathological
gaits (i.e. people with stroke) additional phases are identified to detect subtle changes in the gait pattern,
giving more information on the specific gait pathology. For instance, [20] proposed a classification divided
into nine phases: initial, loading response, mid stance, terminal stance, pre swing, end contact, initial
swing, mid swing and terminal swing (Figure 8).

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

IC-R  EC-L IC-L EC-R IC-R
STANCE TIME-R SWING TIME-R
SWING-L STANCE-L
STEP TIME-L STEP TIME-R

Figure 8. Different gait phases.

¢ |Initial Contact (IC): Time when the foot initially starts the contacts with the ground. In healthy
people, this typically corresponds to heel strike.

e Loading Response (LR): Transition phase between double support and single support. In other
words, this phase is the time from when the foot is in contact with the floor until the contralateral
foot is prepared to begin its swing phase. The body decelerates when the foot completely lands in
the ground, which is achieved by energy absorption mainly at the knee and hip. This phase
accounts for approximately 10% of the gait cycle.

e Mid-Stance (MS): Begins when contralateral foot starts to swing and finishes when the CoM is

aligned over the forefoot. Here, the knee and hip are extended while the ankle is dorsiflexed to
align the weight. This phase accounts for approximately 25% of the gait cycle.
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e Terminal Stance (TS): End of the single limb support, spanning from the time when the heel of
the supporting leg is rising until the contralateral foot achieves IC. In the process, the CoM moves
away from the base of support. This phase accounts for approximately 20% of the gait cycle.

e Pre-Swing (PS): Final phase of the double stance interval. Begins with IC of the contralateral foot
until the end contact (EC) the foot. This phase accounts for approximately 10% of the gait cycle.

¢ End Contact (EC): Time when the foot ends contact with the ground, also known as toe-off.
¢ Initial Swing (IS): Foot leaves the ground in order to advance the knee and flex the hip.

e Mid-Swing (MS): During mid-swing, the foot clearance is mainly achieved through ankle
dorsiflexion. The knee extends in response to the inertia.

e Terminal Swing (TS): Final part of swing phase, which ends when the foot achieves contact with
the ground (IC).

A2 Clinical outcome measures implemented in the study protocol

The clinical outcome measures used in this protocol were taken from the Shirley Ryan AbilityLab
Rehabilitation Measures Database [42]:

A3.1 Berg Balance Scale (BBS)

This test examines dynamic balance (anticipatory postural adjustments, reactive postural control, sensory
orientation, dynamic gait) and static balance (i.e. standing on two feet with eyes open, standing on two
feet with eyes closed, etc.) to assess the risk of falling (Figure 9). The BBS consists of 14 balance-related
items used in everyday life [43].Each item is graded from O to 4, with a maximum score of 56. To receive
a full score for an item, an individual must be able to safely perform the item for (or within) a certain time
allotment and without assistance.

ML PLANE AP PLANE

Figure 9. Planes of postural sway during the BBS.
ML = mediolateral; AP = anteroposterior.
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A3.2 10 Meter Walk Test (L0MWT)

The patient walks a twelve-meter distance in a straight line. A stopwatch is used to measure the time it
takes to cover the central ten meters, allowing one meter before for acceleration and one meter after for
deceleration (Figure 10). Three trials are collected at each of two walking conditions: a Self-Selected
Velocity (SSV) and a Fast Velocity (FV), with an average time computed for each condition. To obtain the
SSV and FV walking speed (outcome measure), the ten meters divided by the average time taken in
seconds.

The importance of this test relies on the correlation between gait speed and ambulation ability. Increases
in gait speed have been correlated with a higher quality of life [44].

The classification of patients by gait speed according to [23] is as follows:
1. <0.4 m/s: household ambulators

2. 0.4 - 0.8 m/s: limited community ambulators
3. > 0.8 m/s: community ambulators

10m
12m

Figure 10. Representation of the 10MWT. Only the
central 10 meters are recorded.

A3.3 Timed Up and Go (TUG)

The patient is seated in a chair with his/her back on the chair back. When the clinician says the “go”
command, the patient walks a three-meter distance in a straight line, gives a 180 degree turn, comes back
to the chair, turns a 180 degrees and sit. Timing begins from the go command and stops when the patient
is finally seated (Figure 11).
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Figure 11. TUG clinical test consisting of six phases. 1. Sit-to-Stand, 2.
Three-meter walk, 3. 180 deg turn, 4. Three-meter walk, 5. 108 deg turn,
6. Stand-to-Sit.

A3 Methods implemented to extract clinical outcome measures

This section describes the methods and algorithms to extract and estimate gait and balance features from
the clinical outcome tests.

A3.1 Coordinate transformation method

An accelerometer measures a static vertical acceleration due to gravity besides the dynamic acceleration
produced during walking. As [1] posits, whenever a reading deviates from the horizontal plane, the gravity
component needs to be corrected by estimating only the dynamic acceleration due to the activity (i.e.
walking) using the accelerometer’s capacity as an inclinometer. This deviation is produced by the sensor
placement location (L5), as it may be tilted due inaccurate placement in the participant’s mediolateral plane
or the lumbar curvature of the in the anteroposterior plane (Figure 12).

First, the measured acceleration signals (a,p, ayy, ay) were transformed to a horizontal-vertical coordinate
system proposed by [1]. The dynamic AP acceleration A,p vector in the horizontal plane can be estimated
by projecting the measured a,p, and ay, in the horizontal plane by the following equation:

Ayp = aypcosf, — a,sinf,

where 6, is the angle between the horizontal plane and the A4,p in the sagittal plane with a positive direction
being the forward acceleration. Then a provisional vertical acceleration vector A’, needs to be estimated:

a'y, = aypsinb, + cosb,

Similarly to estimate the dynamic mediolateral acceleration vector Ay, a projection of a,; and the
provisional acceleration vector a’,:

Ayp = Qpcos6,,; —a',sinb,,;
Finally to estimate the true vertical acceleration vector Ay:

Ay = aysinbp+a’,cos6,,; — 1g
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Now to estimate the angles 6,,; and 6,,, [1] posits that the mean value of the measured acceleration along
its sensitive axis will approach to the expected value for large n.

vy /\ oo |

+X
+X +Z l%
+z
g 19
AP PLANE ML PLANE

Figure 12. Sensor malignement. ML = mediolateral ; AP = anteroposterior.

A3.2 Continuous Wavelet Transform for gait event detection

The foot contact events (IC and EC) were estimated using the previously transformed vertical acceleration
(Ay).This signal was filtered with a zero-lag second-order Butterworth filter at 10 Hz [4], using the MATLAB
functions detrend, butter and filtfilt. A continuous wavelet transform method (CWT) is used to detect foot
contact events, IC and EC [2]. This method decomposes the signal into time-spectral components [45-47],
describing which frequencies are present at which times in the signal. This method transforms the signal
at all scales and positions, maintaining the information without downsampling.

The CWT function of a signal y(t) is defined as a convolution of this signal with a scaled and translated
version of a mother wavelet ¥ [48]:

+ oo

1 x—b
y(a,b) = f Y(t)\/_a P <T> dt

where a and b represent the scaling and translation factor respectively and ¥* represents the complex
conjugate of the mother wavelet ¥. The mother wavelet must fulfil the criteria of finite-energy and no
zero-frequency components [46]. The scaling coefficients are inversely proportional to the spectral
components, meaning that low scaling (high frequency components) provide more local information,
whereas high scaling (low frequency components) provide more global information about the signal.

The method proposed by [2] uses the CWT with two wavelets, a Gaussian Wavelet and its derivative
Mexican Hat Wavelet to detect IC and EC events, respectively (Figure 13). The scaling factor a of each
wavelet is determined from [4] as:

“TEA
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where F, is the center frequency of the wavelet (Hz), F, is the most dominant frequency corresponding to
the scale (obtained by the magnitude of power spectral density using the fft function in MATLAB), and A
is the sampling period in seconds.

First order Second order
Gaussian wavelet Gaussian wavelet (Mexican Hat)

P(t) P(t)

(a) (b)
t t
Figure 13. Wavelets proposed by [2] to estimate spatial gait features.
(a). First order Gaussian to detect IC events. (b). Second order Gaussian
(Mexican hat) to detect EC events.

First, the acceleration signal is integrated and then differentiated with the Gaussian Wavelet using its
corresponding scaling factor a1l (with the MATLAB function cwt and gausl), then the IC events were
detected from the local minima of the applied CWT (findpeaks function). The signal is again differentiated
using the Mexican Hat Wavelet and its corresponding previously derived scaling factor a2. The local
maxima of the resulting signal corresponds to the EC events. Only peaks resulted from the maxima and
minima with a magnitude >20% of the mean of all peaks were considered. To identify between right- and
left-side ICs, the vertical angular velocity (yaw) was filter by a fourth order Butterworth filter at 2 Hz, and
subsequently right and left were designated by directionality of the signal after zero-crossings (wherein
the first step was left if the IC event occurred during negative filtered angular velocity, and right otherwise).

To remove false IC detections, ICs were constrained to be located within a time boundary from the previous
IC (0.25-2.25 s) [5]. That is, the boundary ensured that local minima found too early or too late from the
previous IC would not be counted as ICs. Finally, temporal features (stride time, stance time and swing
time) were estimated by the relation of the foot events (IC and EC) to the double support phase of gait [3]
(Figure 14).
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Figure 14. Gait event detection (IC, EC) [2], and temporal gait estimation
of stride, stance and swing time proposed by [3] from the relation between
the double support phase and the IC EC events. AccFilt = filtered
acceleration; 1CWT = first cwt; 2CWT = second CWT; IC = initial contact;
EC = end contact.

Stance Time = EC(i + 1) + IC(i)
Stride Time = IC(i+ 2) — IC(i)
Step Time = EC(i+ 1) — IC(i)

Swing Time = Stride Time — Stance Time

A3.3 Empirical Mode Decomposition

To estimate step length, the corrected vertical acceleration signal was first double integrated, resulting in
vertical velocity and displacement of the CoM. It is important to note that integrating a time-series signal
causes error to accumulates over time, which can drastically bias the estimated position. To eliminate this
integration drift, the authors in [6] proposed the implementation of the Empirical Decomposition Method
(EDM) developed by [28]. As a given signal (i.e. acceleration signal) is composed of both high and low
frequency components, this method posits that the signal can be decomposed into a finite number of
Intrinsic Mode Functions (IMF), wherein each IMF component is a decomposed waveform from the original
signal ranging from high-frequency and low-frequency components (Figure 15).

This decomposition is based on the following assumptions: (1) the signal has at least two extrema (one
minima and one maxima); (2) the time scale is defined by the time lapse between the extrema; and (3) if
the data were totally devoid of extrema but contained only inflection points, then it can be differentiated
once or more times to reveal the extrema [28].

From x(t) the EDM can be summarized as follows:
1. Identify all the local minima and maxima of x(t) (findpeaks function in MATLAB).
2. Compute the upper and lower envelopes based on the signal’s from local maxima and minima,
respectively, via interpolation with cubic spline, env,,;, (t) and env,,,,(t).
3. Compute the mean of the envelops, m(t).
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m(t) = 3

4. Subtract the mean m(t) from the signal x(t) to obtain the first component d(t)

d(t) = x(t) —m(t)

5. Treat d(t) as the new data and iterate the previous steps (1-4) up to i times until m;(t) can be
considered as a zero — mean. Thus, d;(t) becomes the first IMF Im((¢).

ImM(t) = di(t) = dy_1)(t) — my(t)

6. Define the residual r;(t) = x(t) — Im(Y(¢t) as the new data and iterate on the previous steps until
the last residual 1, (t) contains one extrema.

From the all decompose IMFs the original signal can be reconstructed as follows:

k
x(t) = ZIm(i)(t) + (D)
i=1

The aforementioned method was applied both to the velocity and displacement data obtained from the
integration of the vertical transformed acceleration signal Ay.. In order to select the IMFs to reconstruct the
signal without the baseline drift and based on prior visual check the Hurst exponent was implemented as
it can serve as a measure of predictability of a time series [29]. Thus, IMFs with Hurst exponent values of
< 0.8 were considered.

A. Vertical CoM Displacement
04 T T T T T T T

Time (s)

B. Intrinsic Mode Functions (IMFs)
0.05 T T T T T T

Vertical CoM Displacement (m)
=

0 0.5 1 1.5 2 25 3 3.5 4
Time (s)

C. Reconstructed Vertical CoM Displacement signal
0.05 T T T T

-0.05

o
< T

:ﬂ %
inF

o F L

Time (s)

Figure 15. Empirical Mode Decomposition Method. A. Raw CoM displacement, B.
Decomposed signal into Intrinsic Mode Functions (IMFs), D. Reconstructed signal
from Hurst exponent values less than 0.8.
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A3.4 Timed Up and Go phase detection by the discrete wavelet transform method (DWT)

The DWT method was used to de-noise the signal for detecting 3 phases: 1) rising from a chair (sit-to-
stand), 2) turning, and 3) sitting down (stand-to sit) [31-33]. In the sit-to-stand phase, the trunk moves
forward in preparation for standing producing a negative peak in the angular velocity about the x-axis
(pitch) and a negative vertical acceleration peak; thereafter, the trunk moves backwards until it is in an
upright position producing a positive angular velocity peak. This pattern is similar in the stand-to-sit
transition but with a negative peak in the acceleration when the person sits. Therefore, these two
acceleration peaks served as a starting point for the search windows of these two transition phases. Thus,
the previously described CWT method (Appendix A3.2) was applied to the vertical acceleration signal
(Figure 16).

2'2' L) L] L ) L] L ) L] L

STANDING

20 40 60 a0 100 120 140 160 180

Figure 16. CWT method for step and stand/sit detections. The blue line represents the
vertical acceleration signal, the black line the first derivative with the Gaussian wavelet,
the dots the steps (ICs), and the “x” the sit/stand transitions.

Sit-to-Stand and Stand-to-Sit estimation

These phases were estimated by reconstruct the angular velocity signal around the x-axis (pitch) using a
Daubechies mother wavelet (db5) with a level 2 approximation (2A) (Figure 17). After the signal was
reconstructed, search windows were established (from 0% to 30% and from 80% to 100% of the length of
the signal for the sit-to-stand and stand-to-sit phases, respectively) to isolate and improve the detection of
each phase. To estimate the first peak (“ii” negative) a sub-search window was established (from 0 to 5%
using as a reference the first IC event detected product of the participant standing, Figure 16). The
beginning of the phase (i) was set as the first zero crossing before the negative peak (ii). The positive peak
was determined as the maximum of the signal soon after the negative peak (ii).

Turning

To detect the turns while walking and before sitting down in a chair, the same db5 mother wavelet was
applied to the yaw signal and reconstructed with a level 2 approximation (2A) (Figure 17). To isolate each
turning phase, the first turn was estimated from 30% to 70% percent, and the second turn from 80% to
95% of the length of the signal. After this isolation, a local maximum was computed for each phase to
determine the highest peak of the turn (i). Then, the zero crossing before and after the peak were used to
estimate the start and end of the phase. Finally, to estimate the number of steps taken in each turn, the
same search windows were used but on the previously computed CWT method (Figure 16).
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A4 Tables of Results

Table 4. BBS standing with eyes closed. Features with simple and partial correlation coefficients controlling for weight and
height (*) and normality significance values.

Features Normality | All Participants (n =34) By Gender
Women (n=20) Men (n=14)
p r VaFI)ue r* p* Value r* p* Value r* p* Value

F50% ML .012 -.373 .032* -.420 .019* -.464 .052 -.317 341
F50% AP .001 -.106 .556 -.168 .366 -.187 459 -.330 321
F95% ML .016 -.167 .352 -.183 .325 -.513 .030* 418 .201
F95% AP 483 -.211 .240 -.206 .266 -.259 -.259 -.236 .485
SC AP .034 -.144 426 -.201 278 -.217 .387 -.306 .359
SC ML 493 -.353 .044* -.340 .062 -.508 .031* .034 .920
Max Acc AP .000 152 .399 123 .510 .219 .382 -.290 .387
Max Acc ML .000 .023 .900 .008 .964 .153 .545 -A477 .138
Mean Acc AP .000 .129 473 .146 433 .230 .358 -.376 .254
Mean Acc ML .000 .090 .617 .054 772 271 .276 -.410 .210
RMS AP .000 142 431 139 457 .213 .395 -.342 .303
RMS ML .000 .023 .899 .042 .822 .237 .343 -.453 .162
Ellipse Angles AP .000 .021 .909 .081 .666 .250 .318 -.285 .395
Ellipse Angle ML .000 -.068 .709 -.200 .282 -.194 439 -.285 .395
Ellipse Area .000 .011 951 .079 672 .162 521 -.441 174
Ellipse Axis AP .000 .104 .563 115 .536 .206 411 -.408 .213
Ellipse Axis ML .000 -.093 .608 .015 .936 .182 471 -479 .136
Jerk AP .001 -.019 918 .010 .956 247 .323 -.460 .155
Jerk ML .000 -.276 119 -.134 473 .013 .958 -.427 .190
SV AP .000 .153 .394 .088 .638 122 .629 -.384 .244
SV ML .000 A77 .323 .091 .628 .383 116 -.361 .275
SPathA AP .001 -.019 918 .010 .957 247 .324 -.460 154
SPathA ML .000 -.276 119 -.134 473 .013 .958 -.427 .190

Notes: r* and p value*, partial correlation coefficients controlling for weight and height and its significance value.
Bolded results show significant p-values. * p < 0.05 for significant correlation and *p > 0.05 for normality distribution.

Features in italic were measured with Spearman, while the rest with Pearson correlation.



Table 5. BBS (standing with feet together). Features with simple and partial correlation coefficients controlling for weight and
height (*) and normality significance values.

Features Normality | All Participants (n = 34) By Gender
Women (n=20) Men (n=14)
p r VaII)ue r* p* Value r* p* Value r* p* Value

F50% ML .000 -.144 424 -.204 271 -.425 .079 .549 .080
F50% AP .008 -.052 q72 -.100 .592 -.138 .585 .090 .793
F95% ML .032* -.212 .236 -.265 .149 -.484 .042* .283 .400
F95% AP .948* -.060 .740 -.046 .806 -.324 .190 416 .203
SC AP A11* -.040 .826 -.023 .903 -.093 713 .220 .515
SC ML .067* -.251 .159 -.266 .148 -.524 .026* 446 .170
Max Acc AP .000 .383 .028* 422 .018* .662 .003* .011 .974
Max Acc ML .001 .351 .045* .318 .081 AT5 .046* 114 .739
Mean Acc AP .001 .357 .042* 342 .060 .612 .007* -.210 .535
Mean Acc ML .002 .351 .045* .348 .055 .556 .016* -.098 775
RMS AP .005 .380 .029* .405 .024* .666 .003* -.144 .673
RMS ML .000 .393 .024* .340 .061 .547 .019* -.043 .900
Ellipse Angles AP .001 .035 .846 .011 .954 .323 191 -.606 .048*
Ellipse Angle ML .102* -.022 .902 -.080 .670 -.238 .342 .233 490
Ellipse Area .002 426 .014* .383 .033* .610 .007** .007 .984
Ellipse Axis AP .017 429 .013~* 401 .025* .672 .002** -.052 .880
Ellipse Axis ML .030 377 .031* .358 .048* .552 .018* 277 410
Jerk AP .090* .192 .284 .267 .146 .506 .032* .256 448
Jerk ML .014 174 332 129 490 126 .617 532 .092
SV AP .000 .383 .028* .337 .064 .589 .010* -.169 .619
SV ML .000 .349 .046* .357 .049* .640 .004** -.440 .176
SPathA AP .092* 192 .285 .267 147 .505 .032* .256 447
SPathA ML .015 174 .332 128 491 126 .618 532 .092

Notes: r* and p value*, partial correlation coefficients controlling for weight and height and its significance value.
Bolded results show significant p-values. ** p < 0.01, * p < 0.05 for significant correlations and *p > 0.05 for normality

distribution. Features in italic were measured with Spearman, while the rest with Pearson correlation.



Table 6. BBS (standing with one leg). Features with simple and partial correlation coefficients controlling for weight and height
(*) and normality significance values.

Features Normality | All Participants (n = 34) By Gender
Women (n=20) Men (n=14)
p r VarIJue r* p* Value r* p* Value r* p* Value
F50% ML .012 -.101 574 -.095 .613 -.261 .296 .520 101
F50% AP .015 224 .210 .198 .285 -.086 734 418 .200
F95% ML .000 -.196 273 -.150 421 -.347 .159 .457 .158
F95% AP .001 .360 .040* .325 .074 .170 .501 .667 .025*
SC AP .486* .265 .136 .263 152 -.064 .800 .673 .023*
SC ML .931* -.102 573 -.102 .584 -.318 .198 .602 .050
Max Acc AP .000 .056 .755 .120 .519 .052 .837 .056 .871
Max Acc ML .000 424 .014* .345 .058 .259 .300 .750 .008**
Mean Acc AP .000 .042 .817 .015 .937 -.071 .780 -.181 .594
Mean Acc ML .000 .395 .023* 311 .088 .325 .188 377 .253
RMS AP .000 .059 743 .029 .876 -.048 .850 -172 .614
RMS ML .000 411 .017* .315 .084 312 .208 436 .181
Ellipse Angles AP .000 -.040 .827 .022 .908 197 433 -.107 .755
Ellipse Angle ML .000 .027 .883 .132 478 -.141 576 341 .304
Ellipse Area .000 A77 .323 .136 465 .090 721 .263 434
Ellipse Axis AP .000 .220 .218 .185 .319 .095 .708 .336 312
Ellipse Axis ML .004 107 .554 118 .528 .083 .743 .209 .537
Jerk AP .138* .185 .303 .189 .309 -.043 .867 .632 .037*
Jerk ML .000 .343 .050 .354 .051 .296 .234 .669 .025*
SV AP .000 .070 .698 .065 .730 .082 747 -.413 .207
SV ML .000 .405 .019* .307 .093 .385 114 -.160 .639
SPathA AP 377* .228 201 .234 .205 .022 .932 .633 .037*
SPathA ML .000 .359 .040* .363 .045* .322 192 .669 .024*

Notes: r* and p value*, partial correlation coefficients controlling for weight and height and its significance value.
Bolded results show significant p-values. ** p < 0.01, * p < 0.05 for significant correlations and *p > 0.05 for normality

distribution. Features in italic were measured with Spearman, while the rest with Pearson correlation.



Table 7. BBS (standing unsupported). Features with simple and partial correlation coefficients controlling for weight and height
(*) and normality significance values.

Features Normality | All Participants By Gender
Women (n=20) Men (n=14)
p r VaFI)ue r* p* Value r* p* Value r* p* Value

F50% ML 0.082* -.099 .585 -.118 .526 -.559 .016* .630 .038*
F50% AP 0.440* -.220 .219 -.195 .293 -.312 .207 .054 .876
F95% ML 0.000 -.156 .385 -.107 .567 -.373 127 .378 .252
F95% AP 0.420* 132 465 .190 .305 144 .568 498 119
SC AP 0.440* .055 .759 .102 .585 .065 797 .356 .283
SC ML 0.550* -.071 .695 -.091 .626 -.582 .011* .602 .050
Max Acc AP 0.000 .061 .738 -.184 .322 -.501 .034* -.278 407
Max Acc ML 0.000 -.168 .349 -.014 .939 -.257 .302 -.037 .913
Mean Acc AP 0.000 -.014 .937 -.155 404 -.467 .051 -.380 .248
Mean Acc ML 0.000 -.167 .352 .012 .950 -.025 .920 -.563 .071
RMS AP 0.000 -.012 .949 -.162 .383 -474 .047* -.357 .281
RMS ML 0.000 -.175 .330 -.002 .992 -.086 734 -.493 124
Ellipse Angles AP 0.000 -.067 711 -121 .516 -.079 755 -.005 .988
Ellipse Angle ML 0.000 .043 .811 .066 .723 .123 .627 -.193 .570
Ellipse Area 0.000 -.127 .480 -.164 377 -.501 .034* -.402 221
Ellipse Axis AP 0.000 -.050 .782 -.161 .386 -478 .045* -.379 .251
Ellipse Axis ML 0.012 -.213 .235 -.033 .862 -.103 .684 -.322 .334
Jerk AP 0.000 -.106 .556 -.176 .342 -431 .074 -.233 491
Jerk ML 0.022 -.182 .309 -.083 .657 -.218 .385 .022 .948
SV AP 0.000 -.021 .906 -.132 479 -.420 .082 -.415 .205
SV ML 0.003 -.080 .660 -.031 .870 -.030 .905 -.516 .105
SPathA AP 0.000 -.109 .545 -.176 .342 -431 .074 -.232 492
SPathA ML 0.022 -.184 .305 -.083 .656 -.218 .384 .022 .948

Notes: r* and p value*, partial correlation coefficients controlling for weight and height and its significance value.
Bolded results show significant p-values. * p < 0.05 for significant correlation and *p > 0.05 for normality distribution.

Features in italic were measured with Spearman, while the rest with Pearson correlation.
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Table 8. BBS (tandem standing). Features with simple and partial correlation coefficients controlling for weight and height (*)
and normality significance values.

Features Normalit | All Participants (n=34) By Gender
Y Women (n=20) Men (n=14)
b r VaFIJue r* p* Value r p Value r* p* Value

F50% ML 0.040 -.034 .850 -.051 787 .202 421 -.141 .679
F50% AP 0.000 101 .578 .086 .645 117 .645 .215 .526
F95% ML 0.690* -.045 .802 -.048 797 .013 .959 102 .765
F95% AP 0.000 -.327 .063 -.235 .203 -.222 377 .054 .875
SC AP 0.272* -.174 .334 -.158 .395 -.185 462 .185 .587
SC ML 0.966* -.093 .606 -.082 .663 179 476 -.051 .881
Max Acc AP 0.000 .316 .073 .162 .384 214 .394 .070 .837
Max Acc ML 0.000 .218 .223 .080 .670 .023 .927 .276 412
Mean Acc AP 0.007 424 .014* .369 .041* 374 126 .244 470
Mean Acc ML 0.000 .242 176 137 461 -.023 .928 .450 .165
RMS AP 0.003 422 .014* 341 .060 .356 147 .218 .520
RMS ML 0.000 227 .205 124 .507 -.002 .994 410 211
Ellipse Angles AP 0.000 .058 .750 .161 .388 .294 .237 -.287 .393
Ellipse Angle ML 0.046 -.351 .045* -.423 .018* -.605 .008** .216 .524
Ellipse Area 0.000 241 176 139 457 .071 779 .333 317
Ellipse Axis AP 0.001 .207 .248 .158 .395 .083 744 464 151
Ellipse Axis ML 0.024 291 .100 .203 274 .169 .502 313 .349
Jerk AP 0.185* .298 .092 .317 .083 .270 .278 .396 .228
Jerk ML 0.001 .091 .615 .140 451 133 .598 463 151
SV AP 0.000 77 .323 .263 .153 .230 .359 152 .656
SV ML 0.000 .233 191 110 .556 -.181 473 453 .161
SPathA AP 0.187* .298 .093 .316 .083 .270 .278 .396 .228
SPathA ML 0.001 .091 .615 .140 451 133 .599 464 .151

Notes: r* and p value*, partial correlation coefficients controlling for weight and height and its significance value.
Bolded results show significant p-values. ** p < 0.01, * p < 0.05 for significant correlations and *p > 0.05 for normality

distribution. Features in italic were measured with Spearman, while the rest with Pearson correlation.



Table 9. 10MWT (SSV mode). Features with simple and partial correlation coefficients controlling for weight and height (*) and
normality significance values.

Features Normality | All Participants (n=33) By Gender
Women (n=19) Men (n=14)
p * * * * * *
D r value r p* Value r p* Value r p* Value
Vertical Displacement 0.000 | -.155 .388 111 552 -518 .033* 219 493
Mean Stance Time 0.722* | -010  .957 | .117 531 520 .032* -.292 357
Mean Step Time 0.661* | -052  .775 | .068 714 571 017+ -.435 158
Mean Stride 0.672* -.061 737 .058 758 554 .021* -.434 .159
Mean Swing Time 0.413* | -121 502 -.024 .896 551 .022* -.580 .048*
Mean Step Length 0.013 | -.078 668 -.109 558 -.481 .051 .059 855
Maximum Power
Frequency 0.001 -.148 413 -.185 .320 -.561 .019* 272 .392
Stance Time Symmetry
Ratio 0625+ | 104 .564 -.083 .656 -173 .506 -.101 .755
Step Length Symmetry
Ratio 0.029 .307 .083 .284 121 .012 .963 539 .070
Duration 0.925* .047 .794 .078 678 .566 .018* -.344 273
Mean Velocity 0.407* -.087 .632 -.153 410 -.618 .008** .282 .375
N Steps 0.311* .099 584 024 .900 454 .067 -.302 .339

Notes: r* and p value*, partial correlation coefficients controlling for weight and height and its significance value.
Bolded results show significant p-values. ** p < 0.01, * p < 0.05 for significant correlations and *p > 0.05 for normality

distribution. Features in italic were measured with Spearman, while the rest with Pearson correlation.

Table 10. 10MWT (FV mode). Features with simple and partial correlation coefficients controlling for weight and height (*) and
normality significance values.

Features Normality | All Participants (n=32) By Gender
Women (n=18) Men (n=14)
p * * * * * *
D r value r p* Value r p* Value r p* Value
Vertical Displacement 0.503* | -.396 025% | -377 .040* -.560 .024* -.181 573
Mean Stance Time 0.323* -.232 202 -.185 329 .019 .945 -.291 359
Mean Step Time 0.255* -.244 .179 -.202 284 -.014 .960 -.278 .382
Mean Stride 0.252* -.241 .183 -.199 .293 -.004 .989 -.278 .382
Mean Swing Time 0.191* | -.239 187 -.201 287 -.042 877 -.234 464
Mean Step Length 0.983* | -.345 .053 -.323 .081 -522 .038* -.273 391
Maximum Power
Frequency 0.018 -.292 .105 -.356 .054 -.587 -.017* -.092 776
Stance Time Symmetry
Ratio 0.635* -.143 435 -125 511 .000 1.000 -.391 .209
Step Length Symmetry
Ratio 0.701* .160 .382 .210 .265 .059 .828 .344 274
Duration 0.439* .092 617 .085 .655 .276 .301 -.016 .961
Mean Velocity 0.265* -.008 .964 -.068 722 -.380 .147 .089 .784
N Steps 0.888* .347 .052 .319 .086 .337 .202 .387 .214

Notes: r* and p value*, partial correlation coefficients controlling for weight and height and its significance value.
Bolded results show significant p-values. * p < 0.05 for significant correlation and *p > 0.05 for normality distribution.

Features in italic were measured with Spearman, while the rest with Pearson correlation.
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Table 11. TUG. Features with simple and partial correlation coefficients controlling for weight and height (*) and normality
significance values.

Features Normality | All Participants (n=32) By Gender
Women (n=19) Men (n=13)
p r p Value r* p* Value r* p* Value r* p* Value

Range Pitch (i-ij) 0.560* -.369 .038* -.384 .036* -574 .016* -.043 901
Range Pitch (ik-iil 0.383* -.266 141 -.266 155 -475 .054 -011 974
STD Pitch (-ii) 0.149* | -.343 .055 -.340 .066 613 .009** -.032 925
Mean Pitch (i-iii) 0.229* 426 .015* 410 .024* 651 005 215 525
Median Pitch (i-iii 0.330* 284 116 258 .168 393 119 255 449
“g Mag Pitch (i-ij 0.694* 349 .050* .359 .051 574 .016* 021 952
@ Mag Pitch (irii) 0.056* | .054 769 .067 726 -.058 826 027 938
@ Slope Pitch (i) 0.000 356 .046* 383 037+ 592 .012* 248 463
Slope Pitch (ii-ii) 0.069* -.263 146 -.258 .168 -567 .018* 023 947
Mean Acc AP (i) | 0937+ | -.370 037+ -.378 .040* -.384 128 -.360 277
STD Acc AP (i-ii) 0.248* | -221 225 -.186 325 -.249 334 -119 728
Duration (i-iil 0.387* 329 .066 312 .093 531 .028* 120 726
Median Acc AP (i) | o 523+ -.104 573 -.170 370 -.170 513 -122 720
Range Pitch (i-i) 0.236* | -.355 .046* -.392 .032* -.484 .049* -.296 376
Range Pitch (ii-ii) 0.949* | -.250 167 -.285 127 -341 181 -151 657
STD Pitch (i-iii) 0.376* | -.240 186 -.282 131 -376 136 -.059 863
Mean Pitch (i-iii) 0.649* 014 937 .004 983 134 607 .091 789
Median Pitch (i-iil) 0.457* | -.068 713 -.093 624 -.092 725 .035 919
'?Z) Mag Pitch (i-ii) 0.079* 310 .084 337 .068 524 .031* 186 584
o Mag Pitch (ii-ii) 0.877* | -.152 406 -174 357 -.102 696 -.106 757
&  Slope Pitch (i) 0.044 .308 .086 271 147 423 .091 012 973
Slope Pitch (ii-ii) 0.055* | -.370 037+ -.445 .014* -.502 .040* -.296 376
Mean Acc AP (i) | 0go1* | -.221 224 -.270 148 -422 .092 .091 790
STD Acc AP (i) 0.108* -.279 122 -.301 107 -.354 163 -179 598
Duration (-iil 0.626* 308 .086 351 .057 519 .033* -.098 774
Median Acc AP (i) | 0459+ | -.039 831 -.071 710 -.181 487 202 552
Duration 0.067* .087 634 .130 493 .228 .378 .075 827
., NSteps 0.481* -.106 565 -.088 642 .029 912 -.057 .868
E Mag Yaw 0.753* -.139 447 -.124 515 -.299 244 141 .680
Slope Yaw (i-ii) 0.000 -175 339 -.087 647 -.465 .060 350 292
Slope Yaw (ii-iii) 0.000 263 146 211 263 .099 704 436 180
Duration 0.087* .288 110 .344 .063 454 .067 .106 757
§ NSteps 0.648* | .277 125 260 166 250 333 198 559
P Mag Yaw 0.462* -.361 .042* -.369 .045* -.501 .041* -.082 811
Slope Yaw (i-if) 0.012 -545 .001%* -538 0027 | -652 .005%* -.285 395
Slope Yaw ((i-iii) 0.265* 213 242 225 231 291 257 031 928
RMS Acc AP 0.576* 451 .001%* 455 012+ 571 017+ 193 569
= RMS Acc ML 0.214* .085 643 .097 612 321 209 .006 987
> RMSAccV 0.121* 249 170 247 .188 150 566 339 308
N Steps 0.468* 356 .046* 355 .054 447 072 162 635
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Mean Step Time
STD Step Time

0.802*
0.701*

-.001
.077

.996
674

.046
.178

.810
.346

.076
.348

773
A71

-.080
.092

.815
.788

Notes: r* and p value*, partial correlation coefficients controlling for weight and height and its significance value.

Bolded results show significant p-values. ** p < 0.01, * p < 0.05 for significant correlations and *p > 0.05 for normality

distribution. Features in italic were measured with Spearman, while the rest with Pearson correlation.

Table 12. Velocity difference from the 10MWT (SSV & FV modes). Features with simple and partial correlation coefficients
controlling for weight and height (*) and normality significance values.

Features Normality | All Participants By Gender
Women (n=19) Men (n=14)
p p * * * * * *
r value r p* Value r p* Value r p* Value
Velocity Diff (FV-SSV) | g g74+ 124 499 126 507 340 197 -320 311

Notes: r* and p value*, partial correlation coefficients controlling for weight and height and its significance value.

Bolded results show significant p-values. * p < 0.05 for significant correlation and *p > 0.05 for normality distribution.

Features in italic were measured with Spearman, while the rest with Pearson correlation.
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