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Abstract— Robotically manipulating objects can be very chal-
lenging when not all of the environment can be fully observed,
e.g. in environments which are physically and visually accessible
from only a single side. By using multimodal sensory feedback
and symbolic reasoning, conclusions can be drawn about the
presence of objects that cannot be observed directly. This
paper presents the Symbolic Reasoning for Partially Observable
Environments (SyRePOE) system, which uses an ontology to
maintain its world model and a reasoner to infer information
about unobservable objects. SyRePOE is demonstrated in
simulation and on a real robot, where it is tasked with stocking
a retail shelf.

I. INTRODUCTION

In daily life, humans often are faced with small environ-
ments accessible only from a single side, such as cupboards
in kitchens, or cabinets in retail stores. In such environments
only a limited point of view, mostly only from the front, is
available. As a result, there may be occlusions that cause
some objects present in the environment to be partially visi-
ble, not visible, or not reachable for manipulation. Still, we
manage to accomplish tasks in those environments, without
the need to observe all the objects. For example, a shelf
stocking task in a retail store can be completed without
taking all products off the shelf first. To get robots to operate
in such limited environments for similar tasks, there is a need
for understanding the existence and placement of all objects,
including the ones that are not directly observable.

To address this problem for specific tasks, like stocking of
retail shelves, a pure decision making or planning approach
could be taken, e.g. through Behavior Trees [1] or a Planning
Domain Definition Language (PDDL) [2] based method.
Such methods, however, have difficulty reasoning over and
updating their current state, making it difficult to create a
not task specific solution. Ontology based approaches can
much more easily reason over and update their current state,
and can be easily integrated into existing ontology based
systems. Additionally, symbolic reasoning over the ontology
content is a very powerful tool for dealing with dynamic
environments, like those shared with humans.

To this end, we introduce the Symbolic Reasoning for Par-
tially Observable Environments (SyRePOE) system. SyRe-
POE uses an ontology based approach with symbolic rea-
soning and multimodal sensory feedback to help the system
understand what is happening in unobservable parts of its
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Fig. 1: Impression of SyRePOE stocking a shelf. On the left
the Franka Emika Panda, the objects and shelves are shown.
On the right the view of the shelf for pose detection is visible.

workspace and use that information for task planning. SyRe-
POE is applied to a shelf stocking task both in simulation
and the real world. An impression of the system performing
this task is given in Figure 1.

In short, the contributions of this paper are twofold:
1) a reasoner capable of inferring information about not

directly observable objects, and
2) use of said information in task planning.
The remainder of this paper starts with an overview of

related literature in Section II. Section III explains the SyRe-
POE system, its components, and its capabilities. This is
followed by an example application of the system to stocking
a retail shelf in Section IV. Lastly, Section V proposes future
work for SyRePOE and presents some concluding remarks.

II. RELATED WORK
Multiple frameworks have been set up to apply ontologies

for knowledge processing in robotics. One such framework
is OUR-K [3], which uses logical reasoning, Bayesian in-
ference, and heuristics to solve high level queries like ‘bring
me a cup’, even under incomplete information. Another such
framework is Knowrob [4]. This ROS integrated system uses
ontologies, reasoning, episodic memories and world model
simulations to help robots complete abstract tasks like setting
a table or making a pizza. Knowrob has been shown to be
quite versatile [5]–[8], though its implementation does not
follow documented standardization, limiting its potential for
integration in larger systems. Knowrob has been utilized by
Winkler et al. [9] in a retail environment. They use knowl-
edge about the shelves and objects to plan manipulation of
partially occluded objects, removing obstructing objects on
the way. They, however, only deal with partial occlusions,
still allowing for full observability of the scene.

An interesting framework for processing Perception and
Manipulation Knowledge (PMK) is presented by Diab et



al. [10]. PMK uses a standardized ontology, modeled under
SUMO [11], as a basis for the world model of the robot’s
environment and asserts new observations to it online. This
symbolic knowledge of its environment is then used to
enhance performance of the Task And Motion Planning
(TAMP) module. In TAMP the high level decision making
of what task to do and the lower level motion planning of
how to accomplish this task are intertwined, allowing for
the selection of alternative task plans if a certain motion
plan turns out to be, for example, kinematically infeasible.
By integrating symbolic knowledge into this process, queries
about how to perform certain tasks and motions can be
answered online, e.g. about reachability or collision objects.
PMK allows for answering complex queries about spatial
relations, object features, perception and planning. It can
specify individual sensors and signal processing algorithms
in the ontology, which allows PMK to answer queries like
What sensors are available to detect the color of this object?
Additionally, PMK explicitly specifies its tasks and actions
in the ontology, allowing it to be deployed in a wide range
of applications.

In another work by Diab et al. [12], they introduce an
ontology specifically aimed at identifying and resolving
geometrical, hardware and software failures. Their ontology,
modeled under SUMO [11] and DUL [13], analyzes occur-
ring failures and suggests alternative solutions to resolve
the failures. The purpose is to provide a general solution,
applicable independent from the task specifics. Self-adaptive
systems could benefit from such a failure ontology, due to its
self-diagnostic and solution proposing capabilities. Such an
ontology is potentially extensible to detecting inconsistencies
or oddities in the world model and proposing scenarios to
explain them.

All the systems mentioned so far strongly rely on the
observations and do not consider objects that are not directly
detected. Therefore, they would fail in environments where
not all objects are observable.

III. SYREPOE

In this section, the proposed system, SyRePOE, is ex-
plained. We first provide a brief overview of the approach
which is visualized in Figure 2. SyRePOE consists of
four modules, namely perception, ontology, reasoner, and
planning. The perception module processes all the sensory
information and passes the extracted information to the
ontology. It consists of integrated off-the-shelf components.
The ontology contains the knowledge of the system and
maintains a world model. The reasoner module evaluates
the world model, resolves the detected inconsistencies by
reasoning, and updates the ontology. The ontology module
and the reasoner module are the most significant components
of the system and will be explained in further detail in
Sections III-A and III-B, respectively. The planning module
chooses the next action and action parameters based on the
current world model in the ontology. It takes a PDDL [2]
translation of the world model and passes that to the Fast-
Forward planner [14]. The first action of the returned plan is

Fig. 2: Diagram showing the ontology and reasoner approach
used in SyRePOE. The top section represents software, the
bottom section hardware.

then executed. The purpose of this action to get the system
closer to the goal state, either via successful execution or via
detecting an unsuccessful execution and so retrieving new
information about the environment.

Below, first Subsection III-A will describe how the ontol-
ogy represents and maintains its knowledge of environment
structures and object shapes, and its world model. Then Sub-
section III-B presents the logic used for processing results
of actions and inferring positions of fully occluded objects
in the environment. This section ends with Subsection III-C,
which presents the assessment of SyRePOE on the scales of
autonomy recently proposed by Olivares-Alarcos et al. [15]
to show the relation of SyRePOE to current literature.

A. The SyRePOE ontology

The ontology, implemented in OWL [16] through the
use of Protégé [17], is initialized with knowledge about
the environment, and object types it can expect to find
in the environment. Most notably it contains dimensions
and locations of sub-environments, like specific shelves or
surfaces, dimensions of object types, and specifications of
what object type can be expected in which sub-environment.
This information can be used in proposing solutions to in-
consistencies in the world model, e.g. for inferring presence
of unseen objects explained in Section III-B. At run-time
the ontology maintains a world model containing poses of
the objects in specific sub-environments, and when and how
these objects were last detected by asserting new information
gathered from measurements.

An example of how an object is represented in the world
model is shown in Figure 3. Blue boxes indicate classes in the
ontology, ovals indicate instances, and arrows indicate object
properties. Here ‘object 1’ is an instance of class ‘Object’.
This example object is of type ‘type 1’, as visible in the
top right corner of Figure 3, indicated through the object
property ‘hasType’. Each instance of class ‘ObjectType’ has
data properties indicating the spatial dimensions of this type
of object. ‘object 1’ has object property ‘onShelf’, relating
it to the instance ‘shelf 1’, which is the instance of class



Fig. 3: Object description in the SyRePOE ontology. Blue
boxes indicate classes, ovals indicate instances, arrows indi-
cate object properties.
‘Shelf’. Such shelves are examples of sub-environments.
Instances of class ‘Shelf’, shown in the top left of Figure 3,
also have data properties indicating their spatial dimensions.
Additionally, each shelf relates to an instance of class
‘ObjectType’ through a ‘containsType’ object property. This
indicates that all objects found on this shelf can be expected
to be of that type. Both the shelf and the object have a
defined pose. The pose of the shelf indicates where in the
world the robot can find this sub-environment. The pose of
the object indicates where in the sub-environment this object
can be found. These poses are all instances of class ‘Pose’
and are connected to their object or sub-environment using
the ‘hasPose’ object property. Each instance of class ‘Pose’
has a data property for each coordinate of its pose. ‘object
1’ also has an instance of class ‘Manipulability’ related to
it through the ‘hasManipulability’ object property, shown
right in Figure 3. This Manipulability class represents the
belief on whether or not an object can be moved from its
current pose by performing an action. As a consequence,
the manipulability of an object depends on the action and
its direction. Currently, the only action in the library of
SyRePOE that can change the pose of an object in a sub-
environment is pushing an object in the direction away from
the open side of the sub-environment, namely a backwards
push. Thus, the manipulability in the current version can be
considered as binary variable, represented as a data property
of the instance of class ‘Manipulability’. Each object in the
ontology always has a manipulability, but its value is not
always known.

Each object also has at least one object property ‘has-
Detection’ to an instance of class ‘Detection’, as shown at
the bottom of Figure 3. This detection indicates how the
object was detected and when that happened, though object
properties ‘hasDetectionMethod’ and ‘hasTimePoint’ respec-
tively. The method of detection can be one of three instances
of class ‘Detection Method’, namely ‘sight’, ‘inference’ or
‘action’. If the object has been observed visually, detection

method ‘sight’ is used. If the object has been inferred to be
present, but has not actually been seen, detection method
‘inference’ is used. When an action has been performed
which has caused an object to end up at its current pose,
detection method ‘action’ is used. The time of detection
is registered by an instance of class ‘TimePoint’, which
has a data property ‘hasTime’ indicating the time stamp of
detection.

The SyRePOE ontology has been modeled under the PMK
[10] ontology. Since PMK is modeled under SUMO [11], the
SyRePOE ontology is automatically modeled under SUMO.
Below a selection of the main classes in the SyRePOE
ontology is shown together with a description of how each
class could be represented in PMK.
• ObjectType ⊆ Artifact with specified spatial dimensions
• DetectionMethod ⊆ DeviceGroup
• Manipulability ⊆ Quantity
• Pose ⊆ QuantityAggregation
• Shelf ⊆ Region with an ObjectType and a Pose
• Object ⊆ Artifact with a Manipulability and a Pose

By integrating SyRePOE and PMK in future work, the
strengths of the two systems could be combined, allowing the
tight integration with TAMP offered by PMK to benefit from
the world model reasoning capabilities offered by SyRePOE.

B. The SyRePOE reasoner

The reasoner of SyRePOE, implemented using SWI-
Prolog [18], updates the world model through inference
and passes requested information to other modules, like the
planning or perception module as in Figure 2. It has four
specific features.

Firstly, it supplies an interface for other modules to access
the knowledge stored in the ontology. It does this by offering
standard queries to request sets of information from the
ontology, such as all dimensions of a certain object or sub-
environment, or the time an object was last detected.

Secondly, it asserts the effect of actions to the ontology.
After an action is executed, the action intent and the action
result (either success or failure) are passed to the reasoner.
The logic rules applied for a pushing action are shown in
Eq. (1)-(5). In these and following equations Ob ject is the
set of all instances of class ‘Object’. Additionally, to keep
the logic understandable, the rules are simplified compared
to the real implementation to exclude detections and pose
error margins. Also object specific depth is simplified to a
single value for all objects. For Eq. (1)-(5), notice that the
pushing actions considered are backwards pushes, that are
defined along the positive y direction of the local coordinate
frame of the sub-environment. Eq. (1) defines the variables
for the equations below it. Here x and y are the coordinates
of the start of the pushing action, ts and te are the start and
end time of the pushing action respectively, δy is the pushing
distance, d is the depth the object itself spans, and s is the
action result, which is a binary variable for representing
whether an action intent is met or not. The action result
is based on haptic feedback. An estimate of the effort the
robot exerts while performing the action is compared to an



empirically determined threshold. If the effort exceeds this
threshold, the action is aborted and assumed to have failed.
Otherwise the action intent is considered the action effect.
Based on the action intent and result, the reasoner concludes
the effect on the objects. For the pushing example, when
the action fails (s = 0), as in Eq. (2), the pose of the object
that was attempted to be pushed will not be changed and
its manipulability will be set to false, indicating that this
particular object is blocked from moving further backwards.
When the action succeeds (s = 1), as in Eq. (3), the reasoner
recursively uses Eq. (4) and (5) to check which objects are
behind the pushed object and so close to the pushed object
that they will be moved as well, and updates the poses
of these objects in the world model. It also asserts a new
detection for each of these objects of method ‘action’.

x,y, ts, te ∈ R s ∈ {0,1} δy,d ∈ R+ (1)(
(s = 0)∧ (∃O ∈ Ob ject)ob j at(O,x,y, ts)

)
→(

¬manipulable(O)∧ob j at(O,x,y, te)
) (2)

(
(s = 1)∧ (∃O ∈ Ob ject)ob j at(O,x,y, ts)

)
→

push(O,δy)
(3)

(
(∃∆ ∈ R+)(∃O ∈ Ob ject)push(O,∆)∧(
∀P ∈ {Ob ject\{O}}

)(
¬ob j behind(O,P)∨(

(∃Xp ∈ R)(∃Yp ∈ R)
(
ob j at(P,Xp,Yp, ts)∧

(y+d +∆≤ Yp)
))))

→ ob j at(O,x,y+∆, te)

(4)

(
(∃∆ ∈ R+)(∃O ∈ Ob ject)

(
push(O,∆)∧(

∃P ∈ {Ob ject\{O}}
)(

ob j behind(O,P)∧

(∃Xp ∈ R)(∃Yp ∈ R)
(
ob j at(P,Xp,Yp, ts)∧

(y+d +∆ > Yp)
))))

→(
ob j at(O,x,y+∆, te)∧ push(P,y+d +∆−Yp)

)
(5)

Thirdly, it asserts the poses of observed objects to the on-
tology. After execution of an action the perception module is
called. The poses of manipulated objects are then confirmed
or rejected through visual information. Additionally, after
each observation, the entire world model is analyzed based
on a few aspects. First, the reasoner checks for intersecting
objects in the world model and removes objects causing geo-
metric conflicts from the world model. Second, the reasoner
updates the manipulability of each object by propagating
manipulability through lines of objects and from the back
of the sub-environment using the logic rules expressed in
Eq. (6)-(8). The interpretation of these equations is that an
object is not manipulable if it is at the back of a sub-
environment (Eq. (7)), or if it is directly in front of, or
directly behind an object which is not manipulable (Eq. (7)
and (8), respectively).

(∃O ∈ Ob ject)
(

prop back(O)∨ prop f ront(O)
)
→

¬manipulable(O)
(6)

(∃O ∈ Ob ject)
(
¬manipulable(O)∨

ob j at back(O)∨
(
∃P ∈ {Ob ject\{O}}

)(
ob j direct behind(O,P)∧ prop back(P)

))
→

prop back (O)

(7)

(∃O ∈ Ob ject)
(
¬manipulable(O)∨(

∃P ∈ {Ob ject\{O}}
)(

ob j direct f ront(O,P)∧ prop f ront(P)
))
→

prop f ront(O)

(8)

Lastly, the reasoner infers presence of unobservable ob-
jects in the sub-environment. Eq. (9) and (10) present the
logic rules used for this. Here variables for the object depth
dO and the sub-environment depth dS are used. According
to Eq. (9), if an object is registered as not manipulable,
and it is not at the back, nor does the object have another
object directly behind it, then there must be a block behind
this object. If the dimensions of this block could fit an
integer number of objects (Eq. (9)), objects are recursively
added in between the blocked object and the back of the
sub-environment by Eq. (10). These objects are asserted as
instances to the world model with a detection of detection
method ‘inference’. For simplicity, in the equations shown
here it is assumed there are no known objects in between
the block and the back of the shelf.

(∃O ∈ Ob ject)
(

¬manipulable(O)∧¬ob j at back(O)∧(
∃P ∈ {Ob ject\{O}}

)
¬ob j direct behind(O,P)∧

(∃Xb ∈ R)(∃Yb ∈ R)
(
ob j at(O,Xb,Yb−dO)∧

(∃N ∈ N0)(dON = dS−Yb +0.5dO)
))
→

block(Xb,Yb,N)

(9)

(∃Xb ∈ R)(∃Yb ∈ R)(∃N ∈ N0)block(Xb,Yb,N)→
(N = 0)∨

(
(∃O ∈ Ob ject)ob j at(O,Xb,Yb)∧

block(Xb,Yb +dO,N−1)
) (10)

C. SyRePOE on autonomy scales

Olivares-Alarcos et al. [15] review several frameworks that
use ontologies to enhance autonomy in robotics. They do so
based on different scopes, among which an Ontology Scope
that checks if certain concepts are defined in the ontology,
and a Reasoning Scope that goes into the capabilities a
reasoning system should have to exhibit autonomy. Here
SyRePOE is reviewed based on these same scales to show
the relation of SyRePOE to current literature.

1) Ontology Scope: Of the concepts an ontology for
autonomous robotics should have according to [15], only
the concepts ‘Object’ and ‘Environment map’ are covered
by SyRePOE. These, together with the concept ‘Affordance’,
are discussed here. For more details about the other concepts



used by Olivares-Alarcos et al. please consult [15]. In the
SyRePOE ontology an ‘Object’ represents a physical thing
that is at a specific pose in a specific sub-environment. This
falls under the definition used by Olivares-Alarcos and there-
fore ‘Object’ can be considered covered in the SyRePOE
ontology. Olivares-Alarcos defines an ‘Environment Map’
as a description of the working environment of the system.
For the SyRePOE system shelves are working environments
and therefore the ‘Shelf’ class can be considered a subclass
of ‘Environment Map’. The concept of ‘Affordance’ entails
the actions an object allows to be performed with or on it.
No consensus has been reached yet on how to model this
concept, though many suggestions have been made [19]–
[21]. The ‘Manipulability’ class in the SyRePOE ontology
defines for the action of moving an object away from the
robot, whether it can be performed on this object or not.
This is part of what affordance is, though it is nowhere near
the full definition of affordance. Therefore ‘Affordance’ is
not considered covered by the SyRePOE ontology.

2) Reasoning Scope: Of the reasoning skills considered in
[15], only the concepts “Reasoning and belief maintenance”
and “Execution and action” are covered by SyRePOE. These,
together with “Perception and situation assessment” and
“Problem solving and planning”, are discussed here. For
more details about other reasoning skills please consult [15].

“Reasoning and belief maintenance” The SyRePOE
reasoner evaluates the environmental knowledge to propagate
manipulability and infer presence of unseen objects. These
are clear examples of reasoning for belief maintenance.

“Execution and action” SyRePOE reasons about the ef-
fects an action is expected to have on the world. It considers
both what happens when the action is successful and when
the action failed. This is a clear example of reasoning over
actions and their execution.

“Perception and situation assessment” Perception is
aimed at the recognition of objects and events in the scene,
while situation assessment means to evaluate what has been
perceived and draw conclusions from that. Since the input ex-
pected from the perception module to the SyRePOE system is
a list of object poses, perception cannot be considered a part
reasoned about. Situation assessment, however, is considered
in SyRePOE, since it allows for queries like What objects are
to the right of object A? or Are objects A and B in contact?.

“Problem solving and planning” SyRePOE does not plan
itself. Instead it translates information from its ontology to a
PDDL problem description and passes that on to an external
planner module, which will select the next action to take.
Since the ontology is not involved in planning, Olivares-
Alarcos et al. [15] would not consider planning to be covered
by SyRePOE.

IV. CASE-STUDY
The reasoning capacities of the SyRePOE are shown both

on a simulation setup and the real robot in similar scenarios.
A. Scenario description

In the scenario, visible in Figures 4 and 5, a Franka Emika
Panda arm is positioned statically in front of a cabinet of

shelves. The goal is to stock the shelf with objects in a grid-
like organization. A couple objects are positioned on the shelf
in advance, though it is unknown to the system how many
and where. The ontology is initialized with knowledge of
spatial dimensions of the shelf and the objects on it, where
the shelf is with respect to the robot, and how many objects
could fit on the shelf.

For action planning ROSPlan [22] is used. The actions
available to the planner are placing a new object at the front
of the shelf in any line, or pushing the front object backwards
by one object depth in any line. In simulation, trajectory
generation and tracking is realized through MoveIt [23].
For the real robot, trajectories are generated offline using
an inverse kinematics algorithm and tracked online using an
Active Inference Controller (AIC) [24]. A new object will
be available at a fixed pose near the robot when needed. To
allow room for the gripper, some space is left in between
lines of objects on the shelf.

B. Simulation

The simulation runs in Gazebo. The haptic feedback is
realized by looking at sudden increases in joint effort. If
such a sudden increase is detected, the action is aborted and
considered to have failed.

The shelf can contain a maximum of 10 objects. Percep-
tion is realized by asking Gazebo for the poses of the objects
and passing only the poses of the front most objects to the
reasoner.

The initial configuration of objects on the shelf is gener-
ated as a grid of objects, where each position in the grid has
an equal probability of being occupied or empty. Each object
pose is disturbed by maximally one tenth the object width
sideways and maximally one object depth backwards if that
does not result in any collisions. By adding such random
deviations in object poses a more realistic configuration is
generated, compared to starting with each objects strictly in
the aforementioned grid.

In running the simulation, it has been shown SyRePOE is
able to correctly infer presence of occluded objects and the
system can reliably stock the shelf. An example execution is

Fig. 4: Three snapshots from the experiments in Gazebo, and
the corresponding world models are provided on the top and
the bottom, respectively.



Fig. 5: Snapshots from the real world experiments showing SyRePOE stocking an initially partially full shelf. The environment
is shown on top and the world model SyRePOE has at that time on the bottom, together with the selected action and action
target in yellow dashed outline. The shelf is initialized with three objects (left), and is fully stocked in the end (right).

shown in Figure 4. In the world model each square represents
an object. Green or blue filling means the object has been
seen or inferred to be there, respectively. Black borders
mean the object is potentially manipulable, red borders mean
the object is not manipulable. Figure 4 shows snapshots of
before, during and after the execution and the world models
of SyRePOE for corresponding times. It can be seen that 10
objects have been successfully stocked and SyRePOE has
correctly inferred the presence of objects which could not
have been observed directly.

C. Real robot

Similar scenarios have been tested on a real robot in
a mock-up store. The rules as stated in Section IV-A are
the same. Figure 1 shows a photo of the setup. For these
experiments milk cartons were used. A maximum of 6
objects fit the shelf. For perception, Aruco markers [25]
were mounted on the shelf and on each object. From these
markers the pose of each object with respect to the shelf was
calculated. By making use of relative positions of markers,
the position of the camera becomes irrelevant. Even though
each object has a unique marker, the markers are not used
to identify individual objects, only their poses relative to the
shelf marker. To generate the motion trajectories an inverse
kinematics algorithm is used. The trajectories were generated
offline to speed up the execution. The use of the AIC for
trajectory tracking allows for compliance and easy access to
opposing forces. The horizontal component of the estimate
of the opposing force to the end effector supplied by the
AIC is used for haptic feedback. If this component exceeds
a predefined threshold, the action is aborted and considered
to have failed.

The robot was faced with three scenarios: a completely
empty shelf, a completely full shelf, and a partially full shelf.
Three times the system was given the same task, to stock the
shelf. In all three cases the system succeeded. Figure 5 shows
photos and visualizations of the world model from each
step in stocking the partially full shelf. These images show
the system successfully accomplishes its task and correctly
inferred the presence of an object which could not have been
observed directly. Note that the shelf initially contains three
objects, but only two are visible. The third object is inferred
after the push action in the second step. Videos showing the

execution and results of all three experiments are available
as supplementary material.

During execution the planning time of each iteration was
measured. This planning time is defined as the time the
system takes from having just completed the previous action
to having decided which action to execute next. Over all
experiments the mean planning time is 0.6176 seconds with
the maximum at 1.165 seconds.

V. DISCUSSION AND CONCLUSION

In this section, first proposals are made for future work
on SyRePOE. Then the final conclusions are presented.

A. Future work

Due to the explicit definition of certain concepts in the on-
tology, SyRePOE has great potential for integration into other
ontology based systems, like Knowrob or PMK. A proposal
for integration in PMK was already made in Section III.

Future research could also expand SyRePOE itself, e.g.
to allow it to track orientations of objects. It currently as-
sumes objects are approximately facing forward. In that case
pushing objects in their center will correct slight deviations
from this orientation, negating the need to track orientation.
To expand applicability of SyRePOE and assure objects on
the shelf are facing forward, orientations need to be tracked,
considered and corrected.

Lastly, to deploy SyRePOE in a real store, the ontology
needs information about the shelves and products it could
encounter in the store. To aid the generation of such store
specific ontologies, a converter could be made which takes
the necessary information from the store’s or franchise’s
database and asserts it to the ontology.

B. Conclusion

In this work the SyRePOE system has been presented.
The logic used to infer presence of objects which cannot
directly be detected in environments which are physically
and visually accessible from a single side has been explained.
SyRePOE has been evaluated based on related literature. Its
performance has been shown both in simulation and on a
real robot. Proposals have been made for future work on
SyRePOE, including suggestions for incorporating it in a
higher level system and expanding its own capabilities.
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1
Introduction

1.1. Document buildup
This document consists of appendices to the paper by the same title and author as this thesis. It is
arranged in chapters which each form an appendix to the section of the paper with the same number.
The only exception to this is the conclusion in Chapter 6, which concludes the entire thesis. It is
recommended to first read the paper in full before consulting this document for further details.

1.2. AIRLab Delft
This study is performed in collaboration with AIRLab Delft. AIRLab stand for Artificial Intelligence for
Retail Lab and is a collaboration between Delft University of Technology and Ahold Delhaize. The Lab
aims to research and develop smart robotic solutions for use in retail environments. The Lab has a
testing facility and robot at its disposal. The robot consists of a Franka Emika Panda robot armmounted
on top of a Clearpath Boxer navigation robot. It is shown in Figure 1.1. This is also the robot used in
this thesis.

Figure 1.1: Photo of the AIRLab robot.
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2 1. Introduction

1.3. Research question
The main question addressed in this thesis is:

Does reasoning over a symbolic world model allow for high situational awareness in robotic task
planning with fully occluded objects?

Here situational awareness is considered higher when the poses of more objects in the environment
are known relative to the number of objects present in the environment. This situational awareness is
often limited by occlusions, especially in environments which are both physically and visually accessible
from only a single side. Simple examples of such environments are shelves in retail stores or cupboards
in kitchens. When performing a task in such an environment, like stocking a retail shelf, it is important
to realise what is going on on the shelf to select an appropriate next action to perform and to know
when the goal has been accomplished.

This problem is addressed in this thesis using a symbolic reasoning approach. Motivation for this
approach is supplied in Section 1.5. The running example task used is the stocking of a retail shelf.
The complete system set up for this thesis is designed such that it can:

• fully stock a shelf where the objects initially on the shelf are in a grid pose (as defined in Table 1.1),
independent of where in the grid these objects are,

• reason about whether the shelf is completely stocked or not, and
• easily be applied to different shelves, stores, objects or environments.

1.4. Assumptions
Throughout this work a couple of assumptions aremade. Some are relevant to the entire SyRePOE sys-
tem, others only to the case study discussed in Chapter 4. Here an overview of all made assumptions
relevant to the entire SyRePOE system is given. These assumptions state the boundary conditions of
the type of problem SyRePOE is expected to handle.

• The environment is quasi-static. This means that dynamic effects can be neglected. In other
words, when observing the environment at any time, it must be in equilibrium, but it does not
have to be the same as it was at the last observation.

• All sub-environments are rigid, intact, cuboid, and of known dimensions and location.
• All sub-environments are closed at the back, such that no objects can fall off or out.
• All objects are rigid, intact, cuboid, and of known dimensions.
• Objects do not topple, tilt, rotate, or stack.
• Visual feedback of the sub-environment is available, such that the system receives poses, relative
to the sub-environment, of objects in the sub-environment to which line of sight is present from
the front of the sub-environment.

• Haptic feedback from performed actions is available, such that the system receives an estimate
of the opposing force on the end effector during action execution.

1.5. Motivation
In this thesis a symbolic reasoning approach to object manipulation in environments with unseen objects
is taken. An alternative to a symbolic world model could be to keep track of the world model in a
physics environment. Such a geometric world model is, however, better suited to contain different
types of information from a symbolic world model. For example, to infer presence of an unseen object,
the push action could be simulated under different assumptions: once with the unseen object present,
once without. The outcomes of the simulations could be compared to reality and the scenario which
closest resembles reality can be taken as closest to the truth. This method theoretically allows for
equal levels of situational awareness as the symbolic reasoning approach presented in this work, but
it requires simulation with a physics engine, which takes a lot of computational effort (both power and
time). Such a simulation based method does not scale well with the number of scenarios that need
to be considered. This shows inferring presence of unseen objects is quite difficult when using only
a geometric world model. Additionally, a geometric world model is very good at containing geometric
information, like shapes and poses, but other types of information, like semantic knowledge, is simply
not suitable to be contained in a geometric world model.

The presence of unseen objects could alternatively be concluded using an ‘if push got blocked,
then line is full’ approach. Then the assumption is made that when the opposing force registered
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during a pushing action exceeds a threshold, the space behind the object being pushed, must be filled
with other objects. Behaviour trees [7] or Planning Domain Definition Language (PDDL) [13] based
approaches can easily capture this type of behaviour. In ideal cases, such a method could allow for
similar levels of situational awareness to the system proposed in this thesis. However, they generally
have trouble dealing with unknown information. They often assume that anything not known to be true,
must be false. This is called the closed world assumption. A symbolic reasoning approach allows
to formalise assumptions and to reason over, reflect on, and update its current state using a large
collection of knowledge and measurements from a multitude of sources at once, without the need
for the closed world assumption. This way high situational awareness can still be attained with less
predefined assumptions.

1.6. Terminology
Before diving into the details of this thesis, a couple of often used terms should be explained to prevent
confusion. Table 1.1 can be used as a reference throughout reading this work.

Table 1.1: Terminology used throughout this work

Term Meaning
SyRePOE Pronounce: sir-uhp. Stands for Symbolic Reasoning for Partially Ob-

servable Environments. This is the name of the system proposed in
this thesis.

sub-environment A structure, like a shelf or cupboard, in which objects can be found.
object A thing in the workspace of the robot, which the robot can pick, place,

push or otherwise interact with.
manipulability A property of an object which indicates whether or not the object can

be moved backwards from its current position.
world model The description of the environment the robot uses. This world model

is updated through measurements and used for decision making and
action planning.

pose of a sub-environment Indicates where in the world the robot can find this sub-environment.
This is expressed in terms of an X- and Y-coordinate to define the
position of the front left corner of the sub-environment on the floor
plan, a Θ-coordinate to define its orientation on the floor plan and a
Z-coordinate to define the height of the sub-environment above the
floor.

pose of an object Indicates where in the sub-environment, relative to the front left cor-
ner of the sub-environment, the geometrical centre of an object is lo-
cated.It uses an X-coordinate to indicate the sideways position and a
Y-coordinate to define the distance to the front of the sub-environment.

grid configuration The configuration of objects in the sub-environment that has all objects
standing in non-overlapping lines behind each other.

grid pose A pose in the sub-environment such that the object fits in the grid con-
figuration.

row One line in the grid configuration reaching from the front to the back
of the sub-environment.





2
Background

2.1. What is an ontology?
In engineering an ontology is a representation of domain knowledge. It organises concepts into classes
and relates these concepts to each other through properties. Ontologies contain four main constructs
of representing knowledge: classes, instances, object properties and data properties. The ontologies
discussed in this work are all implemented in the Web Ontology Language (OWL) [14].

2.1.1. Classes and instances
Classes represent concepts or groups of concepts. They can be seen as sets. Different sets can
overlap, contain or be disjoint with each other and so can classes. An example of a class is ‘Dutch
people’. Another class could contain this class (e.g. ‘people’), could partially overlap this class (e.g.
‘people who speak Dutch’) or could be disjoint with this class (e.g. ‘cans of cola’). When a class contains
another class, they can be represented using a superclass/subclass relation. For example, since any
Dutch person is by definition a person, ‘Dutch people’ can be represented as a subclass of ‘people’.

Instances represent individuals. An instance belongs to at least one class, but can always belong
to multiple classes at the same time (just think of the superclass/subclass relation). An example of
an instance can be your friend ‘Stefan’. This indicates only a single person and is therefore best
represented by an instance, for example of the class ‘people’.

2.1.2. Object properties and data properties
Properties can tell you something about individuals. Object properties can link instances to each other,
while data properties can link instances to other data, like numbers. An example of an object property
can be the property ‘friend of’. This property can link the individual ‘Jasper’ to the individual ‘Stefan’.
An example of a data property can be ‘has age’, which could link individual ‘Jasper’ to the number 27.

Properties can be used to define classes through so called class restrictions. For example, the
subclass ‘Dutch people’, of superclass ‘people’, can be defined as the set of all individuals of class
‘people’ with a ‘has citizenship’ property linking it to Dutch. Dutch could for example be represented as
an individual of another class or a string, but that is irrelevant for this example. This way the ontology
knows that any individual that is a person and has Dutch citizenship is called a Dutch person.

2.1.3. Ontology triples and the open world assumption
An ontology is often represented as a set of triples. Every triple consists of a subject, a property and
an object, usually presented in that order. An example of such a triple is (‘Stefan’, ‘type’, ‘people’),
indicating that ‘Stefan’ is an individual of class ‘people’. In case such a triple exists in the ontology,
it is considered a known fact. If the triple does not exist, it is assumed to be unknown; possibly true
and possibly false. This assumption is called the open world assumption. Here is an example of how
this can be used: Let’s say there is an object, but it is unknown where exactly it is. The object is an
instance of class ‘Object’ and has an object property linking it to an instance of class ‘Pose’. This
instance of class ‘Pose’, however, has no data properties linking it to specific numbers. This way it can
be represented that the object is known to have a pose, but what this pose is, is unknown.

5
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2.2. Related Work
This section starts with a discussion of specific ontologies related to robotic manipulation from literature
and their content and expressivity. It continues with a discussion of robotic frameworks from literature
that utilise such ontologies for robotic manipulation or related tasks.

2.2.1. Related ontologies
The first ontology from literature that should be discussed is the Suggested Upper Merged Ontology
(SUMO) [16]. This ontology is not specifically aimed at robotics, but is the largest publicly available
domain ontology currently in existence. It forms the basis for many other ontologies. By modelling other
ontologies under such a standard ontology, systems that use these ontologies can easily be integrated
with each other, since they agree on the definitions of standard terms. This promotes extensibility,
which is a much desired trait of systems in robotics.

Literature also offers ontologies aimedmore specifically at robotics applications. The Core Ontology
for Robotics and Automation (CORA) [11], based on SUMO, aims to define basic concepts relating to
robotics. It provides general classes like ‘Robot’, ‘Artifact’ and ‘Quantity’. Using such classes, a system
could be given a more high level understanding of the type of things it is dealing with.

The Knowrob framework [3] is a knowledge representation system that is specifically designed for
robotic manipulation at a human scale. Its accompanying ontology allows for more specific definitions
than CORA or SUMO through classes like ‘Scissors’, ‘LeftArm’ and ‘Computational predicate’. The
ontology is, however, way less structured than CORA and is meant to be used specifically with the rest
of the framework. It does not follow any standardisation, which limits its extensibility.

The Perception and Manipulation Knowledge (PMK) [9] ontology is designed to supply robotic sys-
tems with knowledge and understanding of problems in human occupied environments. Just like
CORA, it has been modelled under SUMO [16]. This ontology is discussed in more detail in the ac-
companying paper, just as the failure ontology [10] proposed by the same authors.

These ontologies are all fine candidates to be expanded to the needs for this work, but for all of
them holds that the representation of objects and sub-environments needs more detail to truly capture
the relevant aspects. These aspects are discussed in Section 3.2, together with the introduction of the
newly designed ontology. When applying the solution presented in this work to a more general system,
the new ontology could be integrated with one of the ontologies mentioned above. Such potential
integration is discussed in more detail in Section 3.2.3.

2.2.2. Related frameworks
In literature multiple frameworks can be found that apply ontologies and symbolic reasoning for knowl-
edge processing in robotics.

The Knowrob [3] framework, also discussed in the accompanying paper, has formed the basis for
many projects coming from the Institute for Artificial Intelligence (IAI) at the University of Bremen [1].
This includes RoboSherlock [2], a perception system aimed at recognising and reasoning about every
day objects, and several task and action planning solutions [4, 25, 26]. However, Knowrob does not
follow documented standardisation in the concept definitions of its ontology. This limits its potential for
integration in larger systems.

Knowrob has been utilised by Winkler et al. [28] in a retail environment. They use knowledge about
the shelves and objects to aid perception and plan manipulation of partially occluded objects. They
show their knowledge based perception system performs well with clutter and partial occlusions. They
also show their manipulation plans include correctly removing obstructing objects before attempting
to grasp an occluded goal object. For planning they use an adapted A* planner with several different
predefined actions. They show the planner most of the time finds a plan in less than 10 seconds, but in
cases of multiple obstructing or irregular objects, it can take up to 2 minutes. Their proposed system is
only suitable for situations with partial occlusions, still allowing for full observability of the scene. Fully
occluded objects are not considered.

An interesting framework worth mentioning is the Perception and Manipulation Knowledge (PMK)
framework is presented by Diab et al. [9]. This framework has also been extensively discussed in the
accompanying paper.

All the systems mentioned so far strongly rely on observations and do not consider objects that are
not directly detected. Therefore, they would fail in environments where not all objects are observable.



3
The SyRePOE system

This chapter explains the SyRePOE system and its components. It starts with an explanation of the
general pipeline for the system is given in Section 3.1. Next the SyRePOE ontology is presented in
Section 3.2, detailing its content, the rationale behind the design choices, how to extend the ontology,
and a setup for integration of the SyRePOE ontology in other ontology based systems. Section 3.3
explains more about the reasoning capabilities of SyRePOE and the logic used for them. Section 3.4
shows how SyRePOE handles task planning. This chapter is closed by Section 3.5, which evaluates
SyRePOE on the scales of autonomy recently proposed by Olivares-Alarcos et al. [19].

3.1. Concept
An overview of the taken approach is given in Figure 3.1, also shown in Figure 2 of the accompanying
paper. This figure shows the components involved in many ontology based systems. In the bottom
the physical world is shown, which is acted upon by the robot and measured by sensors. The sensor
data is filtered and preprocessed by the perception module. The incoming information is interpreted
by the reasoner, using contextual information from the ontology. The ontology is then updated based
on the drawn conclusions. Next the planning module picks the next action and its parameters from
a predefined list of parameterised actions based on the drawn conclusions from the reasoner and/or
contextual information from the ontology. Lastly, the robot performs that action on the physical world.

Figure 3.1: Diagram showing the ontology and reasoner approach used in SyRePOE. The top section represents software, the
bottom section hardware.

SyRePOE is implemented using the Robot Operating System (ROS). The ontology is implemented
in OWL [14], making use of Protégé ontology editor [15]. The reasoner is implemented using SWI-
Prolog [27]. The communication between the ontology, Prolog andROS is realised utilising theROSPro-
log package from the Knowrob framework [3]. Action planning is done by passing a Planning Domain
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Definition Language (PDDL) [13] description of the world model to the Metric Fast-Forward planner [12]
through the ROSPlan framework [5].

3.1.1. Pipeline diagram
A more detailed pipeline of SyRePOE is shown in Figure 3.2. Here the same pipeline is shown in three
different reference frameworks: a classic control loop, Sense-Plan-Act and MAKE-K. It is important
to note that there is only a single architecture, but Figure 3.2 expresses it in three different reference
frameworks to make it easier to understand for readers of different backgrounds.

(a) Classic control loop

(b) Sense-Plan-Act

(c) MAPE-K

Figure 3.2: Schematic representation of the SyRePOE pipeline in different frameworks.

In these diagrams the blocks named ‘Camera’, ‘Physical world’ and ‘Robot’ are quite self explana-
tory. The ‘Pose detection’ takes an image from the camera and finds the poses of visible objects. This
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module is part of the perception module in Figure 3.1. The ‘Joint torque sensors’ measure the torques
applied to each joint of the robot. The ‘Event detection’ then analyses these torques to detect when
the opposing force to the robot is too big. How exactly this is done is explained in Sections 4.3.2 and
4.4.1 for the simulated and real environments respectively. The ‘World model reasoner’ takes the data
supplied by the pose- and event detection and unifies it with the currently believed world model, which
is represented by the ‘Symbolic world model’ and maintained in the ontology. The world model, to-
gether with some static knowledge about the objects and the environment from the ‘Knowledge base’,
is passed to ‘Action planning’. Here an action to be executed is selected. For the case-study discussed
later in Chapter 4 it can choose between placing a new object in the front position of any of the rows or
pushing an object in the front position of any of the rows backwards by a distance equal to the depth of
the object. How the action selection works in detail is discussed in Section 3.4. The selected action is
passed to ‘Trajectory planning’, where it is translated to joint commands. After the action is executed,
the action is passed to the ‘World model reasoner’, which reasons about the expected action effect
as explained in Section III-B of the accompanying paper, and updates the world model accordingly.
By integrating the action effect separately from the observations, the system can differentiate between
the effect of actions it performed itself and the effect of actions other agents might have performed in
between action execution and observation. This makes for a more robust system that is less easily
fooled into drawing wrong conclusions about action results, action effects, and the world model.

3.2. The SyRePOE ontology
The SyRePOE ontology is meant to maintain the world model of objects in a limited sub-environment
in a logical and comprehensive manner. All classes and properties unique to this ontology are shown
in Table 3.1. Since shelves are prime examples of sub-environments which are only observable and
accessible from a single side, from here on shelves are the only sub-environments considered. The
class ‘Shelf’ can be considered a subclass of sub-environments. The approach is generalisable to other
sub-environments as well. How this ontology is used to represent objects is explained in Section III-A
of the accompanying paper.

Table 3.1: Ontology content

Classes Object properties Data properties

• Shelf
• Object
• ObjectType
• Pose
• Manipulability
• Detection
• DetectionMethod
• TimePoint

• onShelf
• containsType
• hasType
• hasPose
• hasManipulability
• hasDetection
• hasDetectionMethod
• hasTimePoint

• hasDepth
• hasWidth
• hasCapacity
• hasInterRowDistance
• isCurrentlyWorked
• hasBackManipulability
• hasXCoordinate
• hasYCoordinate
• hasZCoordinate
• hasThetaCoordinate
• hasUnixTime

3.2.1. Ontology design
The ontology was developed using the Ontology 101 methodology [18]. Following this methodology,
first the competency questions for the ontology were constructed. These questions are listed below.

• What is the pose of object X?
• What is the pose of shelf X?
• What shelf does object X belong to?
• What are the dimensions of object X?
• What are the dimensions of shelf X?
• How many objects should fit on shelf X?
• Can object X be moved further back?
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Next, a few existing ontologies, namely PMK [9], Knowrob [3] and CORA [11], were checked to see
which of the competency questions can already be answered by them. These ontologies have been
discussed in more detail in Section 2.2.1. Concepts like objects, sub-environments, poses and time
points can certainly be expressed in these ontologies. However, these ontologies lack the detailed
expressivity needed to answer all competency questions listed above. The definitions of most existing
classes are not specific enough. Most needed classes would have to be newly defined subclasses of
existing classes in these ontologies. This would mean that to adapt these ontologies such that they can
answer all competency questions would be at least equally complicated as designing a new ontology.
This is why a new ontology was designed and attention was paid to potential integration of this new
ontology into existing ontologies, as further discussed in Section 3.2.3.

The most important concepts the new ontology has to represent are shelves and objects. Since
every shelf is unique, but they are all shelves, it is an easy choice to make ‘Shelf’ a class, allowing
individual shelves to be individuals of the class ‘Shelf’. It is known that there can be multiple objects on
a single shelf, which each are their own individual. It therefore makes sense to create a class ‘Object’
and have each object on a shelf be an individual of that class. Individuals of the class ‘Object’ can be
connected to individuals of class ‘Shelf’ using the ‘onShelf’ property to signify that this individual object
is on that specific shelf.

Many objects are similarly shaped (they are for example all cartons of milk), but they differ com-
pletely from other groups of objects (which might for example be tubes of toothpaste). In order to
not have to link spatial dimensions to every individual of the class ‘Object’, it would be useful to have
something that can represent a type of object, so to show that an object can be a carton of milk and
all cartons of milk have the same dimensions. (Of course larger and smaller cartons of milk exist, but
a type can be created for each variation.) To this cause a class ‘ObjectType’ was made. In this class
individuals can be made, like ‘milk’, with data properties giving it a width, a depth and a height. Each
individual of class ‘Object’ can be linked to an individual of class ‘ObjectType’ through the ‘hasType’
property. Additionally, when a certain shelf contains a certain type of object, the individual of class
‘Shelf’ can be linked to an individual of class ‘ObjectType’ using the ‘containsType’ property.

Alternatively object types could have been represented as subclasses of class ‘Object’. Then each
such subclass would have class restrictions to say that all members of this subclass necessarily have a
specific width, depth and height. This implementation was rejected, because retrieving properties from
the ontology using Prolog is more straight forward than retrieving class restrictions.

3.2.2. Adding new shelves and object types to the ontology
To deploy SyRePOE in a real environment, like a retail store, the ontology needs to be initialised with
all sub-environments and object types it needs to interact with. In the example of a retail store, each
store would have their own ontology describing the types of products on offer and the physical layout
of the store. This will differ per store and will change over time. It is therefore important to know how
to update this information.

When a new product becomes available in a store, its object type needs to be added to the ontology.
This object type needs to be given a name, a depth, a width and a height. This new product also needs
a shelf to be presented on, so a new shelf must be added to the ontology. This shelf needs to be given
a name, a location in the store (X-, Y-, Z- and Θ-coordinates), a width, a depth, a capacity, an inter-row
distance, and the object type that belongs to the shelf.

To add this information by hand for a single new object type or shelf is not much of an effort, but
creating an ontology from scratch for an entire store would be too much to ask. Luckily many stores
have digital databases that store the information mentioned above for the entire store already. Since
both such a database and the ontology are highly structured, a simple program could be written to
extract the necessary information from the database and generate the ontology automatically. This
program could output an XML style OWL file directly, or it could use Prolog predicates to assert new
instances of classes ‘ObjectType’ and ‘Shelf’, together with their properties, to a knowledge base and
then export the knowledge base as an ontology.

In large stores with a lot of shelves, the knowledge base will contain thousands of object types
and thousands of shelves. Reasoning over so many facts, could potentially take a long time. Luckily,
the store is compartmentalised, and so can be the reasoning. When the system has finished stocking
a shelf, it should assume that customers will interact with the objects on the shelf before the system
interacts with this same shelf again. Therefore the information the system has about the objects on the
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shelf will be outdated. Additionally, when stocking one shelf, the information about objects on another
shelf is not needed for reasoning over the objects on this shelf. Therefore the information the system
has about the objects on other shelves is irrelevant. Since there is no need to remember information
that is both outdated and irrelevant, the system only needs to remember information about objects on
the shelf it is currently working on. When the system would return to a previously visited shelf, it will
simply restart without assumptions about the amount or location of objects on the shelf. The number
of objects on a single shelf will only in very rare cases become large, for example over one hundred
objects. This shows that the total number of facts the system has to reason about on each occasion
will be limited.

3.2.3. Ontology integration
The SyRePOE ontology developed for this work is suitable to be integrated into a higher level ontology.
This section goes deeper into how such integration could be done, what this would mean for the system
presented here and what possibilities this creates for the combined system.

The SyRePOE ontology has been modelled under PMK [9]. This means that all classes in the
SyRePOE ontology can be considered subclasses of classes in the PMK ontology. Table 3.2 shows
the classes of the SyRePOE ontology with a possible interpretation of it in PMK, including the accom-
panying description logic definition. Since PMK has been modelled under SUMO [16], SyRePOE is
indirectly modelled under SUMO as well. This allows for the integration with any other ontology mod-
elled under SUMO, quickly expanding the system’s knowledge to other fields, like linguistics [8, 17, 23],
scientific experimentation [24] and system failure analysis [10].

Table 3.2: SyRePOE ontology classes modelled under PMK [9]. DL stands for Description Logic.

Class PMK description DL description
Object An Artifact that has a

Manipulability and a
Pose

𝑂𝑏𝑗𝑒𝑐𝑡 ⊆ 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡∧
𝑂𝑏𝑗𝑒𝑐𝑡 ⊆ {𝑥|∃𝑚 ∈ 𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦, (𝑥,𝑚) ∶
ℎ𝑎𝑠𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦}∧
𝑂𝑏𝑗𝑒𝑐𝑡 ⊆ {𝑥|∃𝑝 ∈ 𝑃𝑜𝑠𝑒, (𝑥, 𝑝) ∶ ℎ𝑎𝑠𝑃𝑜𝑠𝑒}

ObjectType An Artifact that has spa-
tial dimensions related
to it

𝑂𝑏𝑗𝑒𝑐𝑡𝑇𝑦𝑝𝑒 ⊆ 𝐴𝑟𝑡𝑖𝑓𝑎𝑐𝑡∧
𝑂𝑏𝑗𝑒𝑐𝑡𝑇𝑦𝑝𝑒 ⊆ {𝑥|(∃ℎ ∈ ℝ)
(∃𝑑 ∈ ℝ)(∃𝑤 ∈ ℝ)
[(𝑥, ℎ) ∶ ℎ𝑎𝑠𝐻𝑒𝑖𝑔ℎ𝑡 ∧ (𝑥, 𝑑) ∶ ℎ𝑎𝑠𝐷𝑒𝑝𝑡ℎ ∧ (𝑥, 𝑤) ∶
ℎ𝑎𝑠𝑊𝑖𝑑𝑡ℎ]}

Manipulability A Quantity 𝑀𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ⊆ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦
Pose A Quantity-Aggregation 𝑃𝑜𝑠𝑒 ⊆ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
Detection An Attribute that has a

DetectionMethod and a
TimePoint

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ⊆ 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒∧
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ⊆ {𝑥|∃𝑚 ∈ 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑, (𝑥,𝑚) ∶
ℎ𝑎𝑠𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑}∧
𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 ⊆ {𝑥|∃𝑡 ∈ 𝑇𝑖𝑚𝑒𝑃𝑜𝑖𝑛𝑡, (𝑥, 𝑡) ∶
ℎ𝑎𝑠𝑇𝑖𝑚𝑒𝑃𝑜𝑖𝑛𝑡}

DetectionMethod A DeviceGroup 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑀𝑒𝑡ℎ𝑜𝑑 ⊆ 𝐷𝑒𝑣𝑖𝑐𝑒𝐺𝑟𝑜𝑢𝑝
TimePoint A Quantity 𝑇𝑖𝑚𝑒𝑃𝑜𝑖𝑛𝑡 ⊆ 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦
Shelf A Region that has an

ObjectType and a Pose
𝑆ℎ𝑒𝑙𝑓 ⊆ 𝑅𝑒𝑔𝑖𝑜𝑛∧
𝑆ℎ𝑒𝑙𝑓 ⊆ {𝑥|∃𝑦 ∈ 𝑂𝑏𝑗𝑒𝑐𝑡𝑇𝑦𝑝𝑒, (𝑥, 𝑦) ∶
𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠𝑇𝑦𝑝𝑒}∧
𝑆ℎ𝑒𝑙𝑓 ⊆ {𝑥|∃𝑝 ∈ 𝑃𝑜𝑠𝑒, (𝑥, 𝑝) ∶ ℎ𝑎𝑠𝑃𝑜𝑠𝑒}

By integrating SyRePOE into PMK, the strengths of the two frameworks can be combined. This
would allow SyRePOE to benefit from the strong integration with Task And Motion Planning (TAMP),
offered by PMK, as well as the specific specification of individual sensors and signal processing algo-
rithms in the ontology, which allows the system to answer queries like What sensors are available to
detect the shape of this object? At the same time PMK would gain the ability to utilise haptic feedback
for registering manipulability of objects. This registration allows the reasoner to draw conclusions about
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the presence of objects which it cannot directly see, enhancing the world model in visually occluded
areas.

As an alternative to the integration with PMK, SyRePOE could also be integrated in Knowrob [3].
This would give SyRePOE access to Knowrob’s functionalities, like episodic memories, learning and
physics engine based simulation. Knowrob, however, does not follow any standardisation of terms, like
PMK does. This means integrating with the Knowrob ontology would make it more difficult to integrate
with SUMO.

3.3. The SyRePOE reasoner
The SyRePOE reasoner is responsible for reasoning over the current world model and concluding as
much additional information as possible. Its main functions and the logic used to accomplish these are
explained in Section III-B of the accompanying paper.

A Prolog module for spatial relations was created to allow the reasoner to check relative positions
of objects compared to each other and to the sides and back of their sub-environment. This module
forms the basis needed to propagate manipulability through the objects.

To deal with measurement errors of the poses of the perceived objects, a pose error margin is built
into the reasoner. When an object is detected in a pose within that margin of an already known object,
the newly detected object is considered to be the same as the known objects. This margin is set to an
empirically determined ratio of the object dimensions. For example, in simulation objects were allowed
to deviate by 20% the object width sideways and 20% the object depth backwards.

Besides the features explained in the accompanying paper, the reasoner also uses a combination
of two cases to decide if it is done with the sub-environment it is currently working on. The logic used
for this is show in Eq. (3.1). Here 𝑐 represents the number of objects the shelf can maximally contain
and the 𝑖𝑛_𝑓𝑟𝑜𝑛𝑡(𝑂) statement checks if the Y-coordinate of object 𝑂 is smaller than one object depth;
in that case the object is considered to be in the front of the sub-environment. The first of these cases
checks whether the goal in the sub-environment is accomplished. In the task of stocking a retail shelf,
this checks if the number of objects on the shelf according to the world model matches the capacity of
the shelf. The second predicate checks if the system still has actions available capable of changing
the current state of the world. In the task of stocking a retail shelf this predicate checks if the front of
the shelf is completely full and all objects there are registered as not manipulable. Ideally this situation
should only occur if the shelf is full. This predicate is build as a fail safe, since in case this predicate
succeeds, the system cannot place a new object, nor can it move a object back to make space for a
new object.

|𝑂𝑏𝑗𝑒𝑐𝑡| = 𝑐 ∨ (∀𝑂 ∈ 𝑂𝑏𝑗𝑒𝑐𝑡)(¬𝑖𝑛_𝑓𝑟𝑜𝑛𝑡(𝑂) ∨ ¬𝑚𝑎𝑛𝑖𝑝𝑢𝑙𝑎𝑏𝑙𝑒(𝑂)) → 𝑠ℎ𝑒𝑙𝑓_𝑑𝑜𝑛𝑒 (3.1)

3.4. Planning
To perform a task, SyRePOE needs to select actions to perform based on the world model. For the
task of stocking a retail shelf, planning is separated into two parts. The first part is performed by the
reasoner. The reasoner can suggest correctional actions to arrange objects in a sub-environment into
lines behind each other. The logic used for this rule is shown in Eq. (3.2). In this equation 𝑤ፎ is the
width of an object and 𝑑። is the distance between rows of objects. This rule checks for each known
object whether it is in such a line. If an object is not, a sideways push is proposed to move the object
from its current X-coordinate 𝑋፬ to the closest X-coordinate where it would be in a row 𝑋፞. If all objects
are in a row, the problem translates to a simpler problem, such that a graph-search-based planner can
more quickly and efficiently decide on the next action to take.

(∃𝑂 ∈ 𝑂𝑏𝑗𝑒𝑐𝑡)(∃𝑋፬ ∈ ℝ)(∃𝑌፬ ∈ ℝ)(𝑜𝑏𝑗_𝑎𝑡(𝑂, 𝑋፬ , 𝑌፬)∧
(∀𝑁 ∈ ℕኺ)(𝑁 + 0.5) ⋅ (𝑤ፎ + 𝑑።) ≠ 𝑋፬∧
(∃𝑋፞ ∈ ℝ)((∃𝑀 ∈ ℕኺ)(𝑀 + 0.5) ⋅ (𝑤ፎ + 𝑑።) = 𝑋፞∧
𝑋፬ − 𝑋፞ ≤ 0.5 ⋅ (𝑤ፎ + 𝑑።))) →
𝑠𝑖𝑑𝑒𝑤𝑎𝑦𝑠_𝑝𝑢𝑠ℎ(𝑂, 𝑋፞ − 𝑋፬)

(3.2)
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Even though the reasoner has been shown to correctly suggest such sideways pushes, this feature
has not been tested in the case studies discussed in Chapter 4. The design of the grippermade it difficult
to successfully apply sideways pushes without affecting other objects on the shelf. Another gripper or a
differently designed motion of the robot might resolve this problem, but is considered outside the scope
of this thesis.

For further planning, the world model is translated to a simpler description in Planning Domain
Definition Language (PDDL) [13]. The PDDL problem is supplied with a static list of actions to choose
from. This list consists of two actions. The first, a place action, picks a new object form a fixed pose
on the base of the robot, representing the supply, and places it at the front of a row on the shelf. The
second action, a push action, pushes the object in the front of a row backwards by one object depth.
These two actions can be applied to any row. The logic used for the definition of the place and push
actions in the PDDL problem is presented in Eq. (3.3) and Eq. (3.4) respectively, where 𝑟 is a parameter
representing the specific row the action would be applied to and 𝑟፦ፚ፱ is a number representing the
maximum number of objects a row may contain. In this logic the 𝑝𝑙𝑎𝑐𝑒(𝑟) statement is true if the place
action is applied to row 𝑟, and similarly for 𝑝𝑢𝑠ℎ(𝑟) and the push action. The other statements on the left
side of the equations are preconditions to the action. All statements on the right side of the equations
are postconditions. It is important to note that these rules indicate the expected result of the actions
assuming they are successfully applied. After the action is executed and the action result (whether
the action succeeded or failed) is known, the expected action effect and the action result are passed
to the reasoner and processed as described in Section III-B of the accompanying paper. The goal
state for the action planner is to have each row of objects on the shelf filled to capacity. The ROSPlan
framework [5] is used to pass this problem description to the Metric-FF planner [12]. The Metric-FF
planner is used because it is available is ROSPlan and capable of using numeric fluents.

(𝑝𝑙𝑎𝑐𝑒(𝑟) ∧ ¬𝑓𝑟𝑜𝑛𝑡_𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑(𝑟) ∧ (∃𝑁 ∈ ℕኺ)𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑜𝑏𝑗𝑒𝑐𝑡𝑠(𝑟, 𝑁)) →
(𝑓𝑟𝑜𝑛𝑡_𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑(𝑟) ∧ 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑜𝑏𝑗𝑒𝑐𝑡𝑠(𝑟, 𝑁 + 1))

(3.3)

(𝑝𝑢𝑠ℎ(𝑟) ∧ 𝑓𝑟𝑜𝑛𝑡_𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑(𝑟) ∧ ¬𝑓𝑟𝑜𝑛𝑡_𝑏𝑙𝑜𝑐𝑘𝑒𝑑(𝑟)∧

(∃𝑁 ∈ ℕኺ)(𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑜𝑏𝑗𝑒𝑐𝑡𝑠(𝑟, 𝑁) ∧ 𝑁 < 𝑟፦ፚ፱)) →
¬𝑓𝑟𝑜𝑛𝑡_𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑(𝑟)

(3.4)

Combined this means that the planning is partially handled by the PDDL problem and partially by
the SyRePOE reasoner. This is because the reasoner is capable of efficiently suggesting an action
that could be performed based on the poses of each individual object. However, it cannot make a goal
oriented plan of actions. By asking the reasoner for an action that fixes something that would be a
problem for the PDDL solver to handle (like an object between rows), the reasoner can get the system
closer to a state from which the PDDL solver can handle it. The Metric-FF planner builds a complete
plan of actions that is guaranteed to get the system to its goal state. Implementing each individual
object in the sub-environment as an individual in PDDL, however, would increase planning times to
enormous amounts compared to only keeping track of the number of objects in each row in the sub-
environment. Therefore planning is shared between the reasoner and a PDDL solver to ensure the
goal state is approached, while still having reasonable planning time.

While planning, PDDL uses the closed world assumption, meaning that any fact it has not been told
that is true, it considers to be false. This contradicts the open world assumption made in the ontology.
However, for planning a single action, the closed world assumption is acceptable to be made. Let’s say
there is a fact F and an action A and to achieve the goal (amongst other facts) F needs to be true. Let’s
say that if F is false, A brings the system closer to the goal and therefore to making F true. If F is true,
A does not do anything. An example of such an action is applying a push action to an object of which
it is unknown if it is blocked. This means that if F is false, A gets the system closer to its goal, but if F
is true, A does not change the state of the world. Now, if F is unknown, A is a valuable action, because
it either gets the system to a state closer to F being true, or it teaches the system that F was already
true. Either way, the system gained something. Therefore, if F is unknown, it can be treated as false
during planning. This is only valid when replanning after performing one action, since the remainder of
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the plan might not be valid anymore, depending on the outcome of the performed action. Alternatives
to PDDL, like RDDL [22], have been proposed that do not use the closed world assumption. These
alternatives are, however, less commonly used than PDDL, making them less suitable to be readily
integrated in other systems.

To integrate a PDDL planner in SyRePOE, the problem needs to be translated into two PDDL files:
a PDDL domain file and a PDDL problem file. The PDDL domain file is constructed to contain as few
entities as possible. This is because the number of possible actions to apply rises exponentially with
the number of entities known to the planner. This means that the fewer entities are represented in
the PDDL files, the faster planning is. The only entities represented by the domain are rows of the
sub-environment, which is why objects should not be be in between rows when solving the problem
using the PDDL solver. Each row keeps track of the number of objects it contains, whether or not its
front spot is occupied, and whether or not the object in its front spot is manipulable. Additionally the
maximum number of objects per row and an accumulative action cost are registered. The actions that
are available to the planner are a push action that clears the front spot of the row it is applied to, and a
place action that occupies the front space of the row it is applied to and increases the number of objects
in that row by one. The logic used for these actions is presented in Equations (3.3) and (3.4). All facts
and numbers needed for PDDL to assess the preconditions are supplied by the ontology. Both actions
increase the accumulative action cost by one.

The PDDL problem file is generated every iteration of the operation cycle of the system. It initialises
with the accumulative action cost at zero and registers the number of objects each row can maximally
contain. It introduces a row entity for every row the sub-environment is wide. For each row the number
of objects in that row, the occupancy state of the front spot of that row, and the manipulability of the
object in that front spot are queried from the reasoner. The goal is always the same: for every row,
either have the number of objects in the row equal to the row capacity or have the front spot both
occupied and blocked. This again reflects the two situations in which the system is done, as shown in
Eq. (3.1); either the shelf is full or there are no more actions to perform. The metric used to find the
optimal plan is also always the same: minimise the accumulative action cost. Since all actions have a
cost of 1, this amounts to the least amount of actions to perform.

3.5. SyRePOE on autonomy scales
Section III-C of the accompanying paper discusses the expressivity and capabilities of SyRePOE on
scales introduced by Olivares-Alarcos et al. [19]. Below two tables are given for a complete overview of
the aspects of these scales and whether or not they are covered by SyRePOE. The ontology concepts
considered in [19] are shown in Table 3.3. The reasoning skills considered in [19] are shown in Table 3.4.
Further details of the terms used in Tables 3.3 and 3.4 can be found in [19].
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Table 3.3: Overview of relevant concepts for autonomous robotics defined in the SyRePOE ontology. List from [19].

Concept Defined
Objects Yes
Environment map Yes
Affordance No
Action No
Task No
Activity No
Behavior No
Function No
Plan No
Method No
Capability No
Skill No
Hardware No
Software No
Interaction No
Communication No

Table 3.4: Overview of the reasoning skills for autonomous robotics that SyRePOE supports. List from [19].

Reasoning skill Supported
Recognition and categorisation No
Decision making and choice No
Perception and situation assessment No
Prediction and monitoring No
Problem solving and planning No
Reasoning and belief maintenance Yes
Execution and action Yes
Interaction and communication No
Remembering, reflection, and learning No





4
Case-Study

This chapter goes over the three stages of validation performed on the SyRePOE system. All utilise
the retail shelf stocking scenario. The first, explained in Section 4.2, is a conceptual discretised world.
It is solely used to show the reasoning capabilities the system should theoretically have are working
correctly. Then, Section 4.3 goes into the tests performed with a simulated robot in a more realistic
virtual environment. Lastly, Section 4.4 explains the tests done with a real robot in a mock-up store.
Before all that, the assumptions made in the scenario are explained in Section 4.1.

4.1. Assumptions
For the case study scenario a few more assumptions have been made on top of those presented
in Section 1.4. Whereas the previously presented assumptions are inherent to the entire SyRePOE
system, the following assumptions are specific to the conditions of the case study scenario and can
more easily be changed. Any problem that would arise from not making the assumptions mentioned
below is considered outside the scope of this work.

• The available supply is sufficiently large to fully stock the shelf.
• The supply consists solely of objects belonging on this shelf.
• Goal configuration is a grid.
• Objects that are initially on the shelf are close to a grid pose, deviating no more than one third
the object dimension in each direction.

• All objects of the same object type are equivalent.
• The shelf does not contain any objects of types that are not supposed to be there.

4.2. Proof of concept
To provide a proof of the feasibility of the idea, a simple scenario was created. This scenario is visualised
in Figure 4.1. In the scenario there is a shelf of two by three objects, divided into a grid. On each spot
in the grid there could either be an object present or not. Objects cannot stand in between spots. The
system has 4 possible actions to perform: Place an object at the front left, place an object at the front
right, push the object on the front left back one spot, and push the object on the front right back one
spot. It is always allowed to push a line of multiple objects at once. The system can only see the
frontmost objects of each line. A certain number of objects (maximally 6) is on the shelf at the start of
the scenario. The system needs to add objects to the shelf until 6 objects are present on the shelf. The
system needs to realise when it is done itself. It needs to succeed in this independently of the starting
configuration of the objects on the shelf.

In order to accomplish this, the reasoner will have to reason about the transitive property of ma-
nipulability (if A is directly in front of B and B cannot be pushed backwards, then A cannot be pushed
backwards), the presence of occluded objects, and how many objects are on the shelf, in order to know
when the system is done.

17
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(a) Before push action (b) After push action

Figure 4.1: Screenshots of the visualisation tool used in the proof of concept of before (a) and after (b) a push action was
performed. The real world is shown on the left, the world model on the right.

4.2.1. Visualisation
A custom visualisation tool was built for quick insight into the current state of the world model and the
real world. A screenshot of this visualisation is shown in Figure 4.1. It shows a top view of the real
situation on the left, while on the right the world model is shown in a similar manner. The bottom of
the figure represents the front of the shelf. In the real world a green, black-bordered square means the
presence of an object. Grey means no object is present. In the world model an object is filled green if
it has been observed, blue if it has only been inferred to be present and yellow if the object is believed
to have moved to its current location due to a performed action of which the result has not yet been
observed. Objects are black-bordered by default, but get red borders if the object is registered as not
manipulable. Grey mean no object is known to be present. Figure 4.1 shows in the world model that
the right most object was pushed last.

An altered version of this visualisation tool was later used for visualisation of the world model when
deploying the reasoner in simulation and on the real robot. The same colour conventions as explained
above are used throughout the rest of this work.

(a) Three by four rectangular objects (b) Ten by ten square objects

Figure 4.2: Screenshots of the visualisation tool used in the proof of concept on shelves and objects of various dimensions.
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4.2.2. First results
The system has been tested on the proposed scenario. Its reasoning capabilities have been tested
and shown to work as expected. After that, the shelf and object dimensions were varied to check that
the system could also handle rectangular object types and deeper or wider shelves. This was done to
make sure the reasoning works correctly, independent of object or shelf dimensions. Figure 4.2a shows
a case using rectangular objects and Figure 4.2b a case with an extraordinarily large shelf. Once these
scenarios were all accomplished, SyRePOE was ready for validation in a more realistic case.

4.3. Simulation
The scenario as described in Section IV-A of the accompanying paper was set up in Gazebo and
performed as explained in Section IV-B. Figure 4.3 shows a screenshot of the simulation, containing
the robot, a set of empty shelves and a model object on top of the robot’s base. The objects used for the
simulation are modelled after packages of Albert Heijn 400g chocolate sprinkles. The rotational inertia
of the objects around the vertical axis is higher than natural to limit accidental rotations and the centre
of mass is lowered to decrease the chance of objects toppling. The pose of object visible in Figure 4.3
is considered the supply pose. Whenever the robot needs an object, one will spawn in exactly this
pose. The shelf height is made to be just higher than the object is tall, like one would find in a retail
store.

Figure 4.3: Screenshot of the Gazebo simulation of the AIRLab robot with a set of empty shelves and a model object.

An adapted version of the visualisation tool described in Section 4.2.1 is linked to this simulation
as well. This way one can see what the robot believes to be going on on the shelf. Figure 4 of the
accompanying paper shows an impression of this visualisation. The main differences between the
visualisation used here and for the proof of concept are that here only the world model is visualised,
not the real world case, and that the entire true size of the shelf is shown, not just a compactified grid of
objects. The latter means that space in between objects on the shelf is shown to scale with the object
size.

The rest of this section dives further into how the simulation is coupled to the planner and reasoner.
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4.3.1. Action primitives
After the action planner has decided what action to perform, this high level action description needs to
be translated to robot commands. This is done using the action primitives built for this simulation. For
the push and place actions a sequence of waypoints is designed. The execution trajectories are then
calculated by MoveIt [6].

The push action is designed to always push the object at the front of the shelf at a specified sideways
position back by a distance equal to the depth of the object. The place action is designed to first grasp
a new object from the supply and then place this object at the front of the shelf at a specified sideways
position.

Due to the size of the gripper on this robot, very specific and dexterous grasping and placing tactics
will have to be employed in order to place objects right next to each other and be able to push one object
backwards without displacing the neighbouring objects with the gripper. Since dexterous manipulation
is out of the scope of this work, this problem is worked around by increasing the inter-row distance of
the objects on the shelf to dimensions that allow the gripper to freely place and push objects of one row
without affecting other rows. Additionally, objects cannot be too wide or they don’t fit the gripper. This
is why, before deployment in a real retail store, the system should be tested on different robots. Using
a suction gripper could be a first step towards resolving such issues.

4.3.2. Measurements
The measurements of the environment the reasoner needs consist of two channels. The first is visual,
the second is haptic. In simulation the visual measurements are done simply by asking Gazebo for the
pose of all objects and selecting those objects for which line of sight exists from the front side of the
sub-environment to at least half of the frontal surface of the object. This represents that a perception
module can only recognise it as an object if enough of the object is visible. The poses of these objects
are passed to the reasoner.

The haptic feedback is realised by taking the squared sum of the efforts exerted by each joint. This
signal is passed through a low-pass filter with a cutoff frequency of 4.0 Hz. A threshold is set at 2.0 Nm
above the average filtered total effort over the last 10 samples. If the current sample of the filtered total
effort exceeds this threshold, the action is aborted and considered to have failed. The cutoff frequency,
threshold and number of samples mentioned above have been empirically determined to prevent the
robot from crushing objects, while still not being so sensitive it aborts its movement when displacing
the weight of multiple objects at once.

4.3.3. Semi-random configuration generator
To simulate the robot arriving at a shelf, where it does not know the configuration of objects on the
shelf, a semi-random configuration generator is build. This generator spawns objects on the shelf in a
semi-random pose. The poses of the objects are not completely random, because the majority of the
objects on the majority of the shelves in a retail store will, at any given moment, at least approximately
be in a grid configuration. Completely randomly placed objects on a shelf is a type of mess one does
not often find in practice.

The semi-random configuration generator takes the grid as a starting point. It firstly gives every
position in the grid a 50% chance of containing an object. It then gives every object a random sideways
deviation of maximally one tenth the object width, picked from a uniform distribution. Lastly, all objects
that are not at the back of the shelf nor have an object standing behind are given an 80% chance of
being moved backwards. This displacement is of a random amount of maximally one object depth,
picked from a uniform distribution.

4.3.4. Results
Several tests have been performed in the simulator with various initial configurations of objects. It
has been shown SyRePOE is able to correctly infer presence of occluded objects and the system can
reliably stock the shelf. An example execution is shown in Figure 4 of the accompanying paper.

4.4. Real Robot
To show SyRePOE is applicable in the real world, experiments have been performed with a real robot.
For this a similar setup to the simulations is used, like explained in Sections IV-A and IV-C of the
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accompanying paper. The main differences are the need for a perception module and the change in
trajectory planning module. A general impression of the setup is given in Figure 4.4.

Figure 4.4: Impression image of SyRePOE stocking a shelf. On the left the Franka Emika Panda can be seen, together with
objects and shelf marked with Aruco markers. On the top right the view of the shelf used for pose detection is visible. On the
bottom right a visualisation of the world model is shown.

4.4.1. Trajectory planning and execution
In simulation motion trajectory planning and execution was realised by MoveIt [6]. MoveIt, however, did
not always return satisfactory trajectories. Often trajectories that should have been straight lines had
large joint reconfigurations halfway through the motion, sometimes leading to collisions with shelves
or objects. In simulation, this is acceptable, but in reality it is unsafe. Therefore a different inverse
kinematics (IK) algorithm was used here.

For picking up a new object from the robot base, three standard poses were predefined in joint
space. These are a home pose, a pre-grasp pose and a grasp pose, all shown in Figure 4.5. By
predefining these poses in joint space the grasp action could be guaranteed to be quick and the same
on every execution.

(a) Home pose (b) Pregrasp pose (c) Grasp pose

Figure 4.5: Predefined joint space poses for grasping an object from the supply.
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Initially the IK was used online for performing actions. Certain waypoints were passed to the IK to
retrieve joint angles for each waypoint. Then for each joint the difference between the proposed joint
angle for the next waypoint and the current joint angle were compared. If the difference exceeded an
empirically determined threshold, the IK would be asked for another solution. This to prevent large
motions of the arm when the end effector only has to move slightly. The online use of an IK algorithm
retains the flexibility SyRePOE has towards shelf positions and dimensions. It was found, however,
that execution became very slow (up to two minutes to place a single object), mostly because of the
many tries the IK needed to find a satisfactory solution. To work around this, the IK was eventually used
offline to find satisfactory solutions for the waypoints. These solutions were then saved and executed
online. The waypoints used are a pre-place, place, pre-push and push pose for each row of objects on
the shelf. This solution takes away the flexibility of the system towards shelf poses and dimensions,
but significantly reduces execution time of actions.

To track the generated trajectories an Active Inference Controller (AIC) [20] is deployed. The use
of the AIC allows for compliance and easy access to opposing forces. Both of these are very useful
when applying a push action to an object. The compliance prevents the robot from crushing objects,
whereas the calculated opposing force is used for haptic feedback. More specifically, when the cal-
culated opposing force exceeds an empirically determined threshold, the currently performed action is
aborted and considered to have failed.

4.4.2. Perception
SyRePOE expects poses of the geometrical centres of the objects with respect to the front left corner
of the sub-environment from the perception module. To detect these poses Aruco markers [21] were
used. One marker is positioned at the front left corner of the shelf and each object has their own unique
marker. By directly determining the relative pose of the object markers with respect to the shelf marker,
the pose of the camera with respect to the shelf or robot becomes irrelevant. The camera, for which a
Roboception rc_visard 160 color was used, was positioned on a tripod directly opposing the shelf for
reliable marker detection. Even though each object has a unique marker, the markers are not used to
identify the objects. This to reflect that it would be very hard for another perception module which does
not use such markers to identify individual objects. Figure 4.4 shows an example view of the shelf and
objects with highlighted markers as perceived by the camera in the top right.

4.4.3. Initial conditions
Three different initial conditions have been tested on the real robot: a completely empty shelf, a com-
pletely full shelf, and a partially full shelf. The approximate initial poses of the objects on the shelf for
each scenario are shown in Figure 4.6. Three times the system was given the same task, to stock the
shelf. The desired goal state is visualised in Figure 4.7. It is important to note that SyRePOE does not
know the initial condition of the shelf beforehand.

(a) Empty shelf (b) Full shelf (c) Partially full shelf

Figure 4.6: Initial configurations for the three experiments performed with the real robot. The bottom of each figure represents
the front side of the shelf.

In these experiments the poses of objects were allowed to deviate by a third of the object dimension
in each direction to still be considered in the same pose. This pose tolerance helps deal with pose
deviations caused by performed actions, and measurement errors.

The experiment starting with a full shelf was executed with the online use of the IK algorithm. The
other two experiments use the IK offline.
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Figure 4.7: Goal configuration for the experiments with the real robot.

4.4.4. Results
In all three scenarios the system succeeded in stocking the shelf fully and having each object on the
shelf registered in its world model. A video showing the execution and results of the experiments is
available as supplementary material to this thesis. Figures 4.8, 4.9 and 4.10 show the results of the
three scenarios. Figure 4.10 is also shown in Figure 5 in the accompanying paper, but is supplied here
again for completeness.
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Figure 4.8: Snapshots from the real world experiments showing SyRePOE stocking an initially empty shelf. The environment is
shown on top and the world model SyRePOE has at that time on the bottom, together with the selected action and action target
in yellow dashed outline. The shelf is initialised with zero objects (top left), and is fully stocked in the end (bottom right).

Figure 4.9: Snapshots from the real world experiments showing SyRePOE stocking an initially full shelf. The environment is
shown on top and the world model SyRePOE has at that time on the bottom, together with the selected action and action target
in yellow dashed outline. The shelf is initialised with six objects (left).

During execution the planning time of each iteration was measured. This planning time is defined as
the time the system takes from having just completed the previous action to having decided which action
to execute next. Over all experiments the mean planning time is 0.6176 seconds with the maximum at
1.165 seconds. For the empty shelf experiment the average planning time is 0.7666 seconds. For the
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Figure 4.10: Snapshots from the real world experiments showing SyRePOE stocking an initially partially full shelf. The environ-
ment is shown on top and the world model SyRePOE has at that time on the bottom, together with the selected action and action
target in yellow dashed outline. The shelf is initialised with three objects (left), and is fully stocked in the end (right).

full shelf experiment the average planning time is 0.5479 seconds. For the partially full shelf experiment
the average planning time is 0.3924 seconds. These short planning times demonstrate reasoning in
SyRePOE is quick relative to the action execution.



5
Future work

Besides integrating SyRePOE in existing ontology-based systems, like PMK [9] or Knowrob [3], as
previously suggested, expanding SyRePOE itself could also improve its applicability. In this section,
expansions are proposed in the areas of action selection, object representation and spatial reasoning.

5.1. Expanding action selection
The first suggestion for expanding the action selection process of SyRePOE is to incorporate actions,
plans and planners in the ontology. The definition of available actions in the ontology would allow the
reasoner to check the preconditions of such actions with the current state of the world model. It can then
exclude irrelevant actions from the list of actions the planner can use, such to limit the search space and
speed up planning. Planning could be sped up even more by saving generated plans in the ontology.
The reasoner can then compare the current state of the world model with intermediate states of the
world in those plans. This way, when the system is faced with a situation it has faced before, it does
not need to replan its actions, but can instead follow a previously generated plan. In case no plan is
available that contains the current state of the world model, the reasoner could suggest to use a specific
planner, provided that planners are defined in the ontology as well. By defining different planners and
their merits in the ontology, the reasoner would be able to suggest the most appropriate planner for the
current situation. This is expected to generalise the applicability of SyRePOE and improve planning
speed.

Secondly it is suggested to incorporate confidence in being able to successfully apply certain ac-
tions. In other words, how confident is the robot that when it plans this action, the result of the action will
be exactly as expected? This confidence could be based on predefined values, past experience form
this or other robots, the current state of the world model, and other knowledge about the environment.
This way the system can select actions which are more reliable and predictable. If the confidence level
of an action is too low, the action could be excluded from the actions available to solve the problem,
since this essentially means that the expected outcome of such an action is unknown. This suggestion
is expected to work especially well in combination with the expansion suggested above.

Lastly, action selection could be based on the amount of information a certain action can supply
about still unknown areas. Currently actions are only selected based on whether or not they are ex-
pected to get the environment closer to the goal state. Gaining knowledge about the current state of
the environment could be specified explicitly as an objective of the task.

5.2. Expanding object representation
Object representation could be expanded by incorporating object orientations. Currently the system
assumes all objects are always facing forward. By including orientations of objects in the ontology the
reasoner could suggest actions to rotate objects which are not facing in the right direction. Including
orientations will make it significantly more difficult to reason about the effects of pushing one object with
another. Such reasoning could in that case, for example, be outsources to a physics simulator.

Representation of pose uncertainty can also help improve object representation. Currently, when
an object is perceived very close to where an object was already believed to be, these two objects are
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assumed to be the same and the pose is updated to the last perceived pose. Instead, for example, a
Bayesian filter could be used with the current pose from the ontology as prior and the newly perceived
pose as a new measurement. Objects which are observed multiple times can be localised better and
pose uncertainty can be estimated. Knowrob 2.0 [3] does something similar by saving all measure-
ments of poses and calculating the relevant results, like expectation and uncertainty of the pose, on
demand.

Thirdly, object shapes could be more explicitly specified in the ontology. SyRePOE currently as-
sumes all objects are cuboid with a specified width and depth. With this comes the assumption that
pushing one object with another is reliable. In practice, when an object is circular, like most cans, jars
and bottles, such pushes are generally not reliable. If object shape is explicitly specified, the reasoner
can conclude itself when such pushes are reliable and when they are not. This could tie in with the
representation of confidence in successfully applying actions as suggested in Section 5.1.

Lastly it is suggested to incorporate left, right and front manipulability. Together with a parameter
specifying if the sub-environment has solid walls on the sides of the sub-environment, left and right
manipulability allows the system to better plan sideways push actions, increasing the solution space
available to the system. Additionally, pose uncertainty after push actions could be reduced by pushing
objects to the side of the sub-environment or against objects which cannot move to the left or right.
This is particularly interesting since push actions are generally much less accurate than place actions.
Adding front manipulability for completeness allows for manipulating objects in the same workspace
from different directions. In retail stores this could be used in shelves on aisle-ends, which are acces-
sible from the sides.

5.3. Expanding spatial reasoning
Spatial reasoning of SyRePOE could be improved by incorporating the third spatial dimension in pose
definitions of objects. This allows for planning of stacking of objects and dealing with toppled objects.
For example, when the system detects a non-manipulable object in a sub-environment with an unex-
pected block-size behind it, the reasoner might consider a toppled object lying there.

As a last suggestion, SyRePOE could be extended to incorporate reasoning over free space. Cur-
rently there is no registered difference between empty space and space of which it is unknown whether
it is occupied or empty. Such reasoning could be incorporated, for example, by making an expectation
of the observation that is about to be made. Any object that is indeed observed, would be confirmed to
still be there. Any object that is observed but was not expected to be observed, would be added to the
ontology. Any object that is not observed but was expected to be observed is checked for line of sight,
considering the newly observed objects. If line of sight should exist, the object would be removed from
the ontology. If line of sight does not exist, the object would be kept. Such reasoning would improve the
tolerance towards external interference with the objects in the sub-environment, for example people
taking objects away or placing new objects.



6
Conclusion

To come back to the design criteria mentioned in Section 1.3, the designed system can indeed stock
retail shelves independent of the initial configuration of objects on the shelf, provided that these objects
are approximately in a row of the grid configuration. This has been shown in simulation and with real
world experiments. Three executions are shown in Figures 4.8, 4.9 and 4.10. SyRePOE can also
suggest actions to move objects outside of a row into the nearest row, but this capability has not been
tested due to physical limitations of the robot. The variety of initial conditions the system can handle
could be further increased by incorporating orientations of objects in the world model. In all executions,
both simulated and real, the experiment only ended when SyRePOE reported to be finished. This
shows the system can indeed conclude itself when its task is accomplished. In the proof of concept
phase (Section 4.2) the system has been tested on a variety of sub-environment sizes and object
sizes, so to ensure its reasoning is independent of such factors. Section 3.2.2 has detailed how to
add knowledge of new sub-environments and object types to the ontology and has shown this to be a
simple procedure, which in some cases could even be automated.

Section 1.3 also posed a research question: Does reasoning over a symbolic world model allow for
high situational awareness in robotic task planning with fully occluded objects? In this thesis SyRePOE
has shown to be able to conclude the presence and poses of fully occluded objects by reasoning
over knowledge of its environment, the current state of its symbolic world model, and feedback from
multiple sensors, and to use this information for further task planning. This has been shown through the
execution of a retail shelf stocking task, firstly in an abstract digital environment, then in a more realistic
simulation, and finally on a real robot. Since the poses of fully occluded objects could by definition
not be detected when only using conventional visual feedback, SyRePOE has shown to have higher
situational awareness than systems relying on such visual feedback only.
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