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Abstract - When computing an electromagnet ic  
field using the f ini te  element method it is possi- 
ble that, although Maxwell’s equations are dis- 
cret ized accurately, highly inaccurate computa- 
tional results are obtained. In those cases it can 
easily be s h o w n  that (some of) the electromag- 
netic compatibi l i ty  relations (field properties that 
follow from Maxwell’s equat ions)  are not satis- 
fied. The divergence condition on the fluxes, for 
instance, follows d i rec t ly  from the field equations 
but not necessarily from their discret ized coun- 
terparts. This necessi ta tes  inclusion of the com- 
pat ibi l i ty  relations in the finite-element formula- 
tion of the field problem. A survey  is given of all 
electromagnetic compatibi l i ty  relations. 

tion will be generalized to the use of the compatibility 
relations for electromagnetic fields. It will also be shown 
that the use of divergence-free edge elements, which is 
advocated by some authors (see [4] and the references 
contained in it) for satisfying some of these compati- 
bility relations, as well as the use of face elements, in- 
troduces the possibility of violating additional relations 
of the compatibility type. The importance of including 
the electromagnetic compatibility relations explicitly in 
the finite-element formulation of the problem is stressed. 
The analysis of the compatibility relations is carried out 
for methods for computing time-domain (transient) elec- 
tromagnetic fields. The analysis of methods for time- 
harmonic electromagnetic as well as for static electric or 
magnetic field problems runs along similar lines and leads 
to similar conclusions. 

I. INTRODUCTION 
11. THE BASIC EQUATIONS 

Because of its flexibility, the finite-element method 
seems to be the most suitable method for computing elec- 
tromagnetic fields in inhomogeneous media and/or com- 
plicated geometries. In the finite-element formulation of 
an electromagnetic field problem the field equations can 
only be satisfied approximately. As a consequence of this, 
field properties that follow from Maxwell’s electromag- 
netic field equations, the electromagnetic compatibility 
relations [I], may not be reflected accurately in a numer- 
ical solution. In earlier papers [2, 31 we presented meth- 
ods for computing the electric and/or the magnetic field 
directly, using a combination of linear edge and linear 
nodal expansion functions for obtaining optimum com- 
putational efficiency. In these papers, we mentioned the 
importance of including the divergence condition, which 
is one of the compatibility relations to be discussed, in 
the formulation of the problem. The equations applying 
to the divergence of the electric and magnetic flux den- 
sities follow directly from the electromagnetic field equa- 
tions. They are satisfied whenever the field equations are 
satisfied exactly. 

In the present paper the use of the divergence condi- 
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As the point of departure for our analysis we use the 
time-domain electromagnetic field equations 

&D +J -V x H =-Jimp, (1) 
at B +V x E = -Kimp, (2) 

where J i m p  and Kimp are imposed sources of electric and 
magnetic current that are known, throughout the domain 
of computation V ,  as a function of the time coordinate 
t .  The field equations are supplemented by the boundary 
conditions 

U x E = U x Eext on ~ Z ) E ,  

U x H = U x H~~~ on a V H ,  

(3) 

(4) 

where U is the unit vector along the normal to the outer 
boundary 82) = aDEUa?)H (with a Z ) ~ f l a Z ) ~  = 0) of the 
domain of computation V, and where Eext and Hext  are 
known, along the relevant parts of this outer boundary, as 
a function of t .  Together with the constitutive equations 
and the initial conditions a t  t = t o ,  (1)-(4) define an 
electromagnetic-field problem with a unique solution [5]. 
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Note that the imposed source terms in (1) and (2) are 
not related to the known external fields in (3) and (4). 

111. THE COMPATIBILITY RELATIONS 

Compatibility relations [l] are properties of a field that 
are direct consequences of the field equations and that 
must be satisfied to allow them to have a solution. For 
the electromagnetic field equations they are discussed be- 
low. 

A. Interior 

Applying the divergence operator V. to (1) and (2) it 
follows that 

The electromagnetic compatibility (divergence) relations 
( 5 )  and ( 6 )  apply to subdomains of the domain of com- 
putation in which the electromagnetic field vectors are 
continuously differentiable functions of the spatial coor- 
dinates. 

Note that these relations are, contrary to what is stated 
by some authors [6],  no additional (independent) equa- 
tions, they are direct consequences of the field equations. 

B .  Inte~faces 

The field vectors are not differentiable with respect to 
the spatial coordinates a t  the interfaces between regions 
with different medium properties. In that case (5) and 
( 6 )  are replaced by 

U. ( 3 , ~  + J )  + U - ~~~p continuous across interface, (7) 

U atB + U - Kimp continuous across interface, (8) 

where U is the unit vector normal to the interface. 
Note that (7) and (8) express the continuity condition 

applying to the normal components of the electric and 
the magnetic flux densities across an interface between 
different media. 

C. Outer boundary 

A third type of compatibility relation is found when 
studying the behavior of the field near the outer bound- 
ary of the domain of computation. Applying the operator 
U-, where U denotes the unit vector along the normal to 
the outer boundary, to (1) and (2) we obtain, using (3) 
and (4), the relations 

U - (a,o + J )  = U - (V x w~~~ - J"P) on mH, (9) 

+ JPP) on mE. (IO) 
These equations express the fact that prescribing the 
tangential components of the electric (magnetic) field 
strength at a given part of the outer boundary implies 
a related behavior of the normal components of the mag- 
netic (electric) flux densities a t  that part of the boundary. 

Note that these equations have the form of additional 
boundary conditions applying at the outer boundary of 
the domain of computation. They follow, however, di- 
rectly from the fact that the field inside the domain of 
computation should satisfy Maxwell's equations. 

v .  atB = - - Y e  (V x 

D. Compatibility relations and edge elements 

Some authors use divergence-free edge elements (e.g. 
"Whitney 1") for imposing the divergence conditions ex- 
actly. Apart from the fact that such an approach can 
only be used in the simple case where the compatibility 
relations (5) and ( 6 )  reduce to V D = 0 and V - B = 0, 
respectively, edge elements have the disadvantage of caus- 
ing the normal component of the field a t  the interface be- 
tween two adjoining tetrahedra to be free to jump, even 
when it should be continuous. As a consequence of this, 
the continuity of the normal flux densities in between 
adjoining edge elements containing identical materials is 
guaranteed no longer, and the latter condition has to be 
added to our list of compatibility relations to be imposed 
upon the solution. Failing to do so may be the cause 
of undesired surface charge distributions in between edge 
elements. When adjoining finite elements contain identi- 
cal materials, and assuming that the external sources of 
current are continuous between those finite elements, the 
following relations hold 

U - E continuous between edge elements, 

U - H continuous between edge elements. 

(11) 

(12) 
In the alternative cases, (7) and (8) still apply. Imposing 
these conditions results in an increase of the connectivity 
of the system matrices. Note that the need for imposing 
the continuity relations (11) and (12) is caused solely by 
the use of edge expansion functions and not by the elec- 
tromagnetic field problem or the formulation used. 

E. Compatibility relations and face element8 

Some authors propose the use of face (also called facet) 
elements for modeling flux distributions. Face elements 
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cause the normal fluxes between tetrahedra to  be continu- 
ous, but they have the disadvantage of leaving tangential 
components to be free to jump, even when they should 
be continuous. When adjoining finite elements contain 
identical materials, and assuming that no surface sources 
of current are present a t  the interface between those fi- 
nite elements, the following continuity relations should 
hold 

U x E continuous between face elements, (13) 

U x H continuous between face elements. (14) 
Imposing these conditions results in an increase of the 
connectivity of the system matrix (matrices). Note that 
the need for imposing the continuity relations (13) and 
(14) is caused solely by the use of face expansion func- 
tions and not by the electromagnetic field problem or the 
formulation used. 

F. In summary 

Equations (5)-(10) are a set of six electromagnetic 
compatibility relations that are direct consequences of 
Maxwell's equations. In exact methods for solving the 
electromagnetic field equations they are automatically 
accounted for. In numerical methods, for instance in 
the finite-element method, for solving the electromag- 
netic field equations they should be taken into account 
explicitly whenever the method used does not automati- 
cally account for them. 

Equations (1 1)-( 14) are additional compatibility rela- 
tions the need for which is caused by the use of either 
edge or face elements in homogeneous domains. In those 
domains edge and face elements allow unphysical discon- 
tinuities in the solution and compatibility relations have 
to be added to the formulation of the field problem for 
restricting those discontinuities to acceptable values. 

Note that (5)-(14) do not contain any extra informa- 
tion that is not contained in the field equations. However, 
failing to include them in the finite-element formulation 
of an electromagnetic-field problem, either exactly or nu- 
merically, may be the cause of highly inaccurate results. 
Errors of this type are often referred to as "spurious so- 
lutions" or "vector parasites". 

Iv .  SOME APPLICATIONS 

To illustrate the importance of including the compat- 
ibility relations in the finite-element formulation of elec- 
tromagnetic field problems we discuss some examples. 
,Because of the limited amount of space available, we can- 
not give explicit examples of the application of each of 

the relations given. Our examples are all taken from the 
literature where particular (combinations of) compatibil- 
ity relations are used. 

A .  Interior compatibility 

The conditions of rero divergence, V - D = 0 and 
V B = 0, are the best known examples of the com- 
patibility relations, they are simple cases of ( 5 )  and (6). 
Examples of their importance in time-harmonic problems 
are discussed in [7]. The importance of including this 
condition in time-harmonic applications increases with 
decreasing angular frequency. Failing to include the inte- 
rior compatibility condition in codes for transient prob- 
lems nearly always causes instabilities. 

B.  Interface compatibility 

The importance of satisfying the divergence condition 
applying to interfaces is stressed in [8, 91. The accuracy 
of satisfying the interface condition improves significantly 
when using them. 

Singularities caused by interfaces that are locally not 
flat are often the cause of large errors in the normal flux 
continuity near those singularities. Especially in those 
cases, imposing the normal flux continuity is of great im- 
portance. 

C. Outer boundary compatibility 

The only example known to the author of the applica- 
tion of the compatibility relations for transient problems, 
which includes the one applying to the outer boundary, 
is found in [lo]. For static problems, however, the static 
versions of (9) and (10) are the natural choices and well 
known. Recently a direct method for computing static 
electric and magnetic fields was reported [ll] that uses 
the outer boundary compatibility relation as an explicit 
boundary condition. 

D. Compatibility relations and edge elements 

An example illustrating the need to include normal flux 
continuity conditions in a finite-element method using 
edge elements is given in [12]. The example shows that 
not including the normal flux continuity in the formula- 
tion allows the solution to contain "spurious solutions". 

E. Compatibility relations and face elements 

No examples illustrating the need to include tangen- 
tial continuity conditions in a finite-element formulation 
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when face expansions are used are presently available in 
the literature. It is, however, easy to construct such an 
example using the one for edge elements and normal flux 
continuity given in [12], and interchanging the roles of 
tangential and normal continuity. 

v. THE COMPUTATIONAL COSTS 

As regards the computational costs of imposing the 
compatibility relations, we mention that they usually 
cause a significant increase in the connectivity of the 
system matrices. An additional difficulty is that some 
of the conditions even cause the matrices to  lose their 
symmetry. Because of this, the storage requirements in- 
crease as well as the number of FLOPS (floating point 
operations) per CG (conjugent gradient) iteration step. 
A computational advantage of the inclusion of the com- 
patibility conditions is that they improve the condition of 
the system matrix significantly, resulting in a much lower 
number of iterations being required before reaching con- 
vergence. Taking these effects together, the inclusion of 
the compatibility relations usually produces a more effi- 
cient code that yields more accurate results (for the same 
mesh). 

VI. CONCLUSIONS 

When the electromagnetic field equations are solved 
numerically using expansions that do not themselves ex- 
actly satisfy these equations, which is the case in the 
finite-element method, it is necessary to include the com- 
patibility relations in the formulation in order to obtain 
correct results. Attempts to solve this difficulty by using 
edge elements merely complicate the situation by intro- 
ducing the need to impose additional compatibility re- 
lations. The importance of including the compatibility 
conditions is illustrated by reviewing a number of exam- 
ples that are found in the literature. These examples 
demonstrate that erroneous (spurious) solutions due to 
not modeling certain compatibility conditions may, or 
may not, show up, depending on the type of problem, 
i.e. either on the configuration or on the time dependen- 
cies at hand. 

In summary, we conclude that we have presented the 
electromagnetic field compatibility relations. To obtain 
reliable computational results from finite-element meth- 
ods for solving the electromagnetic field equations, these 
relations should be made a part of the formulation of the 
problem. 
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