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Abstract

Knowing ’where I am’ is always essential and a prior to answer for a moving vehicle. Among numerous on-

board sensors, a GNSS receiver for single-frequency Precise Point Positioning and camera are competitive

due to the fairly lower cost and the potential to provide a lot of useful information.

However, due to the degraded GNSS solution performance in city valleys, a tight integration is considered

combining the two sensors at the observation level, ie. processing the GNSS ranges and the vision measure-

ments in the image of the camera. The availability of High Definition Maps (HD Maps) aids vehicle posi-

tioning by providing extra information on the environment. In this project, landmark positions are retrieved

through vision and the HD map, and can complement GNSS in city valleys. Additionally, the project focuses

on building the mathematical model for the integration of observed landmark position (using a single cam-

era, considering the ease of implementation and cost) and GNSS measurements, analyzing the performance

as well as the feasibility for vehicle positioning. The project emphasizes the feasibility study of the proposed

mathematical model, which is flexible and capable of using all available input automatedly, and providing a

position solution with the best precision.

The uncertainty in the available landmark positions (for instance errors in the HD maps) is handled in

two different ways: one is to include the landmark position coordinates as measurements into the model,

the other one projects the uncertainty onto the measurements in the camera image. The latter method turns

out to be much more efficient. To integrate vision and GNSS measurements, a conversion between an ECEF

(earth-centered, earth-fixed coordinate frame), typically used for GNSS, and a world coordinate frame for

the camera measurements, is required. A position offset between the GNSS antenna and camera is consid-

ered, since the camera lens center does not coincide with the GNSS antenna center. In the simulation and

experiment, an extended integration is also presented and discussed which leaves out the position offset, for

instance when the GNSS antenna is very close to the camera, which can further improve the redundancy and

lower the computational load.

From the simulation and experiment, we conclude that the integration model is able to produce a posi-

tion solution when one of the sensors is unable to produce a position solution and the other one still can;

the extended integration model is able to produce a position solution even when both sensors individually

fail to produce a position solution. Among these scenarios, the one when GNSS fails and vision operates, the

integration model can produce a position solution within a quarter of a meter in local horizontal coordinates,
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and the GNSS measurements do not contribute much to the position solution. Compared to the integration

model, the extended integration improves the model by reducing or eliminating the (typically heavy) corre-

lation between the estimates, in particular those for the camera-antenna position offset, the GNSS receiver

clock error and the vertical coordinate. Under the same scenarios, the extended integration improves the

standard deviation in vertical coordinate and receiver clock error, within a quarter of a meter and one-third

of a meter respectively.

Further study is recommended in the direction of applying full image processing procedures to obtain

more realistic vision measurements, to include GNSS carrier phase observations to replace the current GNSS

positioning based on Precise Point Positioning, in order to have a position solution of similar quality as the

vision part. The dimension of system gets larger when carrier phase measurements (phase ambiguities) are

added as well as two additional rotations for a camera; the extra rotations introduce a significant amount

of nonlinearity in the model. A larger model with increased nonlinearity may call for an alternative model

formulation.
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1
Introduction

In this Chapter, the background of the study is presented, followed by the motivation for the chosen study

subject. A general introduction to the structure of the thesis is given to arrive at the answer to the research

question.

1.1. Background

Due to a massive need for transportation and higher requirements for safety and convenience, the improve-

ment of vehicle positioning in urban areas is critical to intelligent-transportation-related technologies. How-

ever, these technologies involve various aspects and require intensive collaboration from multiple disciplines.

Among them, vehicle positioning is one of the key parts, which is the basis to answer the questions of ’where

am I’ and ’where to go’.

To meet the higher accuracy and reliability of such a vehicle positioning system, multiple sensors are

installed to obtain sufficient measurements from the vehicle’s surroundings and to ensure that the system is

capable of handling complicated environment conditions.

GNSS (Global Navigation Satellite System) is widely used in vehicle navigation and localization on ac-

count of its low cost and relatively high precision, and more satellite constellations such as the incoming

Galileo and BeiDou navigation system allow the system to have higher precision, accuracy and availability.

The method in this thesis computes the solution from corrected range measurements between the known

satellite positions and unknown receiver position, however, this technique heavily depends on satellite visi-

2
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bility and the quality of captured signals.

Several alternative positioning techniques have been developed in recent years, one of them is visual

odometry. Given an initial camera position, this technique can compute increments with respect to a previ-

ous position from a series of real-time images to yield current position, however, the incremental nature of

position solution inevitably leads to a system drift, see Brubaker et al. [5]. The possibility to further exploit in-

formation from vision system intrigues many related studies in recent years. The techniques in digital image

processing are developed and well maintained in some open-source packages such as openCV and openGL.

These packages can provide easier access, better performance and faster computation power in the balance

of realizing the image processing techniques’ functionality. However, a vision system is subject to weather

conditions, color of the sky, shadows, sunshine, the angles between sunlight and camera with respect to the

traffic signs’ normal, and sunlight reflected by close-by facades, see Soheilian et al. [31]. Its application is also

restricted when there is a lack of objects.

Because of the properties of these two sensors (GNSS and a camera), one can conclude that a position

solution provided by GNSS has better performance in rural areas while it behaves poorer in urban areas; a

vision system, which depends heavily on detected objects, is more capable of producing position solutions in

urban areas. In order to ameliorate the limitations by using these two sensors individually, an integration of

the two sensors can handle more situations and is supposed to outperform the two sensors operating individ-

ually. Besides, the GNSS receiver is able to estimate attitude estimation with the aid of visual measurements,

and the integration system is attractive since its cheap and portable, see Chen et al. [8].

1.2. Motivation

Current integration for vehicle positioning falls into two main categories, loosely coupled integration and

tightly coupled integration system. The former one requires an external GNSS processor to track the satellite

measurements and produce position information. However, GNSS observations are sufficient to produce

accurate position information only when signals are good, which means that number of available satellites

is at least 4, multipath effect is not strong and the satellite geometry is good. In most city areas, although

more and more navigation satellites are coming into view, these requirements can still not always be met.

Therefore, a tightly coupled integration system, which makes use of GNSS range measurements can help

improve the application in city areas, when the available satellites are insufficient to calculate a position

solution.

By reason of the scaling problem of the single camera model, one cannot determine distance between

the camera and the object from the images. One common approach to compensate the scaling problem

is to use multiple cameras on the vehicle with relatively different pose. From vision observations (features
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extracted from camera images), the stereo vision can determine the positions of the features with reference to

the camera position by bundle adjustment. However, this technique requires extra information such as GPS

or Ground Control Points (GCPs) to obtain the absolute scale, otherwise the solutions will drift since Visual

Odometry provides the movement of the vehicle by relative measurements from two or more sequentially

captured images. Additionally, due to fewer available satellites in a city canyon and the lower the reliability of

the vision system, the integration of GNSS and vision is more advantageous when the system suffers longer

GNSS outages, see e.g. Schreiber et al. [30].

Due to the improvement of availability and quality of the digital map, the informative map can aid low-

cost autonomous driving in most cases, see e.g. Tao and Bonnifait [33]. One approach under this application

is to solve the above scaling problem by adding known positions of the landmarks matched from a digital

map and captured by a single camera. As we mentioned before, the position produced by GNSS model is

rather restrictive in urban areas, compared with the former approach, this approach can also reduce the

vision computation when sufficient external information is retrieved from the database (e.g. HD maps) and

is stronger at dealing with the situation when GNSS fails.

GNSS has poor position solutions in urban areas which can be improved by integrating with an affordable

and portable sensor, a single camera. In order to improve the availability and accuracy of vehicle positioning,

in this thesis project, we boost the application further in urban areas by deploying a model in a tightly cou-

pled manner, which uses raw measurements from GNSS and therefore, and has the possibility to produce an

acceptable positioning solution with satellites number less than four with the aid of pre-surveyed landmark

positions.

1.3. Research questions

The goal of this project is to develop a tightly coupled integration model of GNSS and monocular vision (single

camera), with an emphasis on feasibility of monocular vision model in the application of vehicle positioning

(or eventually assisted or automated driving). To simplify the problem, several assumptions (vision mea-

surements are returned by object recognition, position of landmarks are retrieved by data association and

the road is flat within a near distance) were made to develop a suitable integration model in order to keep

the project manageable, and the integration model was tested with a limited field experiment. The research

questions are: what is the performance of the newly developed GNSS/Vision integrated model (by testing it

with simulated and real data)? Can it work under extreme settings (when the two sensors both fail or one of

the sensors fails)?

To answer the main research question, first we need to derive the monocular vision model and the inte-

gration model.
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• How to derive a Monocular vision model to determine the camera pose with the aid of measured land-

mark position coordinates?

The airborne photogrammetry model can extract the ground information from images by exploiting

the projection of the positions on images to positions in the real world. Building upon the concept of

airborne photogrammetry, the monocular vision model for the automotive application is explained in

Section 3.2, which requires one extra rotation to enable a vehicle-mounted camera to look forward.

• How to design a tight integration model for single-frequency Precise Point Positioning (GNSS) and

monocular vision model?

The observations entering in a tightly coupled integration model are at range level, which enables wider

application in urban area, when GNSS or vision failed to provide a position solution individually. The

observations of the individually failed sensor can increase the integration redundancy, and can possibly

provide more validation on the estimates. To combine the two models, the unknowns in the integra-

tion model are carefully chosen to link the unknowns from the two models. The concept of a tight

integration model and its properties are demonstrated in Section 2.4.

However, the observations are not perfect in practice, it is important to study how these uncertainties

propagate into the results.

• How to account for the effect of observation uncertainties? How will the measurements errors (feature

identification error and landmark position error) affect the result?

The pixel measurements and GNSS raw measurement uncertainties (error of vision data processing

procedures and error of satellite range measurements) are included in the stochastic model, and we use

two methods to account for the effect of landmark position uncertainties. Method I includes the un-

certainties effect by updating the stochastic model of the vision model in the iterative process, Method

II considers the landmark positions as observations and therefore, their effect is included in a con-

stant stochastic model of the vision measurements in the iterative process. Faults or anomalies in the

measurements can be detected through statistical testing and the testing performance is given by the

Minimal Detectable Bias, which determines the threshold of bias of each observation that the system

is able to detect under certain hypothesis, and when the observation bias is beyond the threshold the

model of current hypothesis is able to detect it. When the MDB has a large value, this also means that

the other observations in the system have little validation capability of this observation, so this obser-

vation can contribute to a biased estimation solution.

• How to express/measure performance (what quantities are of interest)?
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The quantities are required to evaluate the performance of the model tested by simulated data and

experimental data. The quantities are: precision, reliability and correlation coefficients. Conclusions

and recommendations are based on these quantities as well.

1.4. Thesis overview

To improve the GNSS positioning performance in urban areas, one way is to combine it with other sensors, in

this thesis project, we choose a portable and affordable sensor, namely a single camera, and integrate these

two sensors in a tight manner with the aid of the information retrieved from HD maps to enlarge applications

in the future. To simplify the problem, several assumptions are made and a forward-looking monocular vision

models and integration models are developed. The model performance are analyzed by using simulated data

and tested by experimental data. These contents are described, derived and analyzed in six chapters in total.

The first chapter contains the research background and motivation for this thesis project, and the deriva-

tion of the research questions according to the limitations and the assumptions.

The second chapter presents a general description of the chosen sensors, GNSS and Vision respectively,

then related work with an emphasis on a map-based integration model is presented, as well as the elaboration

of the complete procedure for vision-aided GNSS positioning in the application.

The third chapter first gives a description of the positioning method of GNSS, namely single-frequency

Precise Point Positioning, and the derivation of a monocular vision model and the integration model based

on the assumptions of Chapter 1, in the context of the vision-aided GNSS positioning application stated in

Chapter 2. The properties of the different models are also discussed. The Chapter also introduces the quan-

tities of interest used in the performance evaluation in Chapters 5 and 6.

The fourth chapter presents the optimal performance of the monocular vision model, the SF-PPP model

and the integration model, its performanceis evaluated by the simulated data, which gives more insights in

the models properties and performance.

The fifth chapter includes the results from the models tested by experimental data. Different from the

previous chapter, the results are computed through full data processing procedures, the model performances

comply with those in Chapter 4.

The sixth chapter answers the research questions of chapter 1 and draws conclusions for the thesis project,

recommendations are proposed for further researches and applications.



2
Research approaches

In this chapter, a brief introduction of the chosen sensors, GNSS and a vision system (camera) is presented,

and a literature review of current researches on GNSS/Vision integration methods is presented, with an em-

phasis on GNSS/Vision integration in the application of map-based vehicle positioning, which is the context

of the thesis project.

2.1. Introduction to Global Navigation Satellite System

GNSS refers to the constellations of satellites which generate signals in space and provide positioning, naviga-

tion and timing (PNT) information to global users who receive the signal. The first and well-known GNSS, GPS

was launched by United States Air Force for military use and was fully operational in 1995 and also available

for civil use. GLONASS, sponsored by the Russian Federal Space Agency has been restored since 2010 and is

the second fully operational GNSS. The European Union Galileo and Chinese Beidou are both expected to be

fully operational around 2020. Besides, the wide-area augmentation system (WAAS), the Japanese Multifunc-

tional Satellite-Based Augmentation System (MSAS), Indian GPS-Aided GEO-Augmented Navigation System

(GAGAN) and the European Geostationary Navigation Overlay Service (EGNOS) are compatible with GPS

signals and their services can meet the International Civil Aviation Organization (ICAO) standards on accu-

racy, integrity availability and continuity, see e.g. Camacho-Lara [7]. Low-cost receivers are widely employed

based on GPS and GLONASS , in the wake of complete functionality of Galileo and Beidou. The (position-

ing) services will be enhanced in terms of availability and continuity due to more available satellite observa-

7
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Figure 2.1: Illustration of Single point positioning (SPP, left) and Differential GPS (DGPS, right). SPP uses single receiver while DGPS
uses two or more receivers to produce positioning solutions. The black dash lines indicate signals used to produce code measurements

from satellites to the receivers. The vector between the base and the rover is typically referred to as a baseline.

tions.Therefore the synchronizations and error of combining satellite observations from multiple constella-

tions are critical for the interoperability of these services to further improve the performance in surveying,

agriculture, mining, construction and academic research by using more available satellite observations.

GNSS positioning techniques are divided in three categories: absolute point positioning (e.g. SPP in

fig.2.1), relative positioning (e.g. DGPS in fig.2.1) and precise point positioning (introduced in the next sec-

tion). Absolute positioning is achieved by the ’intersection’ of at least four satellite pseudorange measure-

ments towards a single receiver along with the navigation broadcast message. It meets an accuracy level of

several meters, and can be used in car-navigation, hydro-graphic surveying and dredge positioning.

The idea of relative positioning is to setup one or more base stations at known positions to provide correc-

tions to another receiver which occupies an unknown position. The overall corrections are obtained by the

base station by exploiting its accurately surveyed position. Applying the corrections at the spot with unknown

position, a relative position with respect to the base station is obtained for the unknown receiver position by

this method. With a real-time data link over Internet or radio link, and the availability of Continuously Oper-

ating Reference Stations (CORS), Real Time Kinematic (RTK) can provide a positioning solution using carrier

phase observations with centimeter accuracy, where a network of base stations allows more advanced esti-

mation of the various error sources within certain baseline.

Precise Point Positioning (PPP), is based on the observations collected by a single receiver, eliminates the

limitations brought by setting up two or more receivers, and is able to produce positioning solutions with

centimeter-level accuracy as well.

2.1.1. Introduction to GNSS positiong approaches: PPP and SF-PPP

Precise Point Positioning (PPP) is a positioning technique which utilizes un-differenced pseudorange and car-

rier phase measurements with the aid of GNSS data products from a global network of reference stations pro-

viding satellite orbits and clocks. In practice, a dual or multi-frequency receiver is employed to mitigate the

ionospheric delay by linear combination of observations from different frequencies, see e.g. Elsobeiey [15].

Therefore, by providing satellite orbit and clock products, position solutions from this service achieved by the
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Figure 2.2: Illustration of PPP. The black dash lines indicate signals used to produce code and carrier phase measurements from
satellites to the receivers, the blue dash line is the wireless communication between receiver and IGS products.

measurements from a single receiver potentially are with a centimeter-level accuracy. However, the solution

needs to converge before the technique stabilizes and meets a specific accuracy, by forming an ionosphere-

free linear combination of different frequencies to remove the first-order ionospheric delay errors, and this

takes typically half an hour or more, see e.g. Cai et al. [6]. Besides, the noisy pseudorange observations that

are used for the ambiguity initial values and the slow change of satellite geometry, lead to high correlation

between the ambiguity and position estimates, and are also responsible for the long convergence time, see

e.g. Galala et al. [17]. This positioning technology is appealing due to its wider coverage, ease of practice (no

need to deploy a local base station), improved accuracy (by applying IGS products), and cheap price (need

only one receiver and consumer-grade antenna). However, the collection of corrections is a must and it en-

ables PPP solutions to achieve higher accuracy, which offers more consistency than position solutions in a

regional reference frame.

In order to ameliorate the discontinuity in kinematic applications and improve the accuracy of PPP so-

lutions, one way to improve the drawbacks is to provide more corrections to the positioning method. By

eliminating satellite phase bias and precise slant ionospheric delays respectively, PPP-AR and PPP-RTK are

able to achieve up to sub-centimeter level accuracy, which is comparable to RTK’s accuracy without a base-

line constraint to the reference network, see e.g. Wang et al. [38] and Odijk et al. [23]. According to GPS

Solutions [32], PPP-AR is fully kinematic with an accuracy of sub-centimeter level in horizontal directions.

The additional constellations also contributes to the reliability and continuity of PPP performance. By taking

more available observations, PPP is able to handle more complicated environments. Another approach is to

integrate PPP with other sensors that can be complementary during PPP outages in order to maintain system

performance, see e.g. Gao et al. [18].

Instead of eliminating the ionospheric delay from the measurements, single-frequency PPP corrects for

the ionospheric delay using external sources, which enables single-frequency PPP to outperform PPP during

the first 10 minutes with decimeter accuracy, see van der Marel and de Bakker [36]. Due to its low cost and
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reasonable accuracy, the positioning technique can meet functional requirements at lane level, especially

in the applications of vehicle positioning and mapping, see e.g. Bakker et al. [4]. Detailed discussions with

regard to the properties and implementation of SF-PPP are given in Section.3.1.

2.1.2. Summary

Multi-constellations provide more satellite observations which is beneficial to perform satellite positioning

services. Within a certain distance, the corrections for errors in satellite observation are common when the

two or more receivers are tracking the same satellites. Based on this concept, Differential GPS requires two or

more receivers within a certain distance (hence, local infrastructure). The single receiver positioning method,

PPP is attractive by its easier setup and wider coverage, SF-PPP reduces the cost further by employing a low

cost receiver. The method depends on corrections from external sources, the error and resolution of the

external sources are responsible for accuracy and availability of the positioning solutions.

2.2. Introduction to Vision

GNSS can provide absolute position information individually, and vision sensors can function as both a rel-

ative positioning and absolution positioning sensor, and it can be used to evaluate vehicle motion by post-

processing procedures, see Gruyer et al. [19]. Vision systems in navigation applications are based on the con-

cept of Photogrammetry, which extracts position information about topographic points from photographs

taken by a camera on a airborne platform in combination with image processing techniques. As an absolute

positioning technique, vision needs ground control points to estimate the camera pose. As a relative posi-

tioning technique, it tracks the same features from the images taken over a different time interval and uses

previous absolute position information to estimate its pose.

A vision system has the potential to extract more information and perform more functionalities from the

scene with flexible implementation methods: monocular vision (single camera) and stereo vision (two or

more cameras). The local features extracted from the image are pixels of interest that are subject to environ-

ment changes, and they can be as many as possible. Currently, based on the concept of photogrammetry,

monocular vision gains researchers’ attention due to its cheap price, small size, and easy implementation.

Stereo vision aims to form multi-view geometries of related images. This implementation also has more flex-

ibility in mounting these cameras on a vehicle with different viewing angles, which gives the vision system

wider coverage of the scene, and enables it to avoid blind spots and can extract more surrounding informa-

tion, especially when the field of vision of some of the cameras is blocked. Traditionally, the images captured

by multi-camera have to intersect to determine the camera pose and extract motion information. With the

aid of GCPs, the vision can be used as an absolute positioning sensor as well. This method eliminates the
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error of intersecting the images, but the error of matching the GCPs from the images rises, Like the former

method, its implementations are flexible and ersatile. Recently, some researchers uses cameras as an abso-

lute positioning technique by forming lateral cameras and local point of view without intersection between

the images, thereby lane detection is more robust since the lane shape is less subjective to the environment

changes, and the implementation can be completed by low-cost cameras, see Gruyer et al. [19].

The fast development in computer vision enables practitioners to retrieve more information with better

performance and higher computation speed from the images. However, as a passive detection technique, a

vision system is highly subjective to the light condition and visibility of the environment, as well as the shape

and the texture of the objects, especially when the vehicle is moving, hence, it is necessary to combine other

positioning techniques to gain a more stable overall performance and to eliminate system drift. The low cost

and fast developing image processing techniques intrigue many researchers’ interest worldwide to explore

the potential in the application of automated driving.

The following sections describe the principle of photogrammetry. In order to obtain the camera pose, one

first needs to link the object in the image to reality (projection model), however, due to the imperfection of the

manufactured lens, corrections for lens distortion are required to reduce the error of the object measurement

in the image.

2.2.1. Projection model

As one can see from fig.2.3, an object QP lying on the ground plane is captured by the image plane as Q ′P ′.

The image plane in viewing position is to simplify this lateral inversion to form the similarity to the ground

plane, in case of pre-surveyed landmarks. The image measurement of the object is expressed as t ′ = c
Hg

t

when c, Hg , t are known.

2.2.2. Intrinsic, extrinsic parameters and distortions

The extrinsic parameters describe the pose of the camera, namely the orientation ω,ψ,κ in Fig.3.2, the po-

sition coordinates on a geo-referenced map X ,Y , Z , and the focal length f , if it is unknown or the camera is

focused on near sight instead of infinity. In the implementation of this project, the focal length is assumed

to be constant and the camera is focused at infinity. The intrinsic parameters encompass focal length, image

sensor, position of the principal point, and lens distortion. The focal length describes the distance between

the lens and the image sensor when the object is in focus. The principal point is the central point of image

plane and is computed as half of the image size in pixels. Lens distortion describes the phenomenon that

straight lines in reality are shown as curves in the image, which is caused by the imperfection of optical lens

manufacturing. Once the photo is taken, distortion correction is needed to adjust the image before taking
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Figure 2.3: The camera is looking towards the nadir point N and its image plane is strictly parallel with the ground plane in the example
of Förstner and Wrobel [16]. Hg is the vertical distance between the projection centre O and the nadir point N . Principal distance c
indicates the vertical distance from the projection centre to image plane at taking/viewing position and it is equivalent to the focal

length f when the camera focuses at infinity. α is the viewing angle at the diagonal of image plane.
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Figure 2.4: Table of optional combinations for GNSS/Vision tight integration, the scale varies from — (very bad) to +++(very good). The
combinations are evaluated for the cost of the hardware and installation, position accuracy, complexity and coverage of the tightly

integrated system.

pixel measurements.

2.2.3. Summary

The vision positioning system is based on the projection model of photogrammetry, which links the informa-

tion retrieved from the image and the corresponding information in reality. The technique intrigues intensive

researches in recent years due to the improvement of computer vision and image processing tools which can

provide more information of the surroundings compare to other positioning techniques, and to meet higher

accuracy requirements in future applications.

2.3. GNSS/Vision Integration System

Current approaches to integrate GNSS/Vision are divided into two categories: loose and tight integration.

Under each of these approaches, there are many combinations of different techniques of each sensor and var-

ious processing filters in the implementation. RTK (Real-time Kinematic) of GPS is able to provide a real-time

solution with centimeter accuracy, of a moving object. For a vision system, with the aid of a high precision

digital map, positions of certain landmarks which the vehicle captured by its vision system can be retrieved

from a pre-surveyed (previously surveyed) database, and to be used in vehicle pose estimation. A vision sys-

tem can also work as a relative positioning sensor, namely visual odometry. Tie points extracted between

images from the vision system can be corrected by absolute position of vehicle from GNSS or the estimate

from a previous time interval, which can significantly increases the redundancy of the process to improve

vehicle position estimation.

Comparisons between different combinations of GNSS and vision positioning techniques in terms of po-

sition accuracy, cost, complexity (computational load for time and space) and coverage of the tight integra-

tion are presented in Figure.2.4.

The Extended Kalman filter (EKF) is widely used in navigation due to its straight forward design and multi-
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sensor fusion by its iterative structure. However, the EKF may suffer from a large error in the estimated mean

and covariance due to the ‘first-order’ linearized system, since it achieves only first-order (Taylor series ex-

pansion) accuracy, while a UKF (Uncented Kalman Filter) tackles the problem by finding the true mean and

covariance by carefully selecting the samples. A UKF can handle any nonlinear problem by capturing up the

observation equation up to the 3rd order (Taylor series expansion), see Wan et al. [37]. Besides, a particle filter

is naturally more suitable and flexible to handle a nonlinear system. Active selection of sufficient particles can

ensure any kind of measurement distribution is captured, however, which also introduces extra uncertainty

to the model by optimal selection of data due to its changing distribution.

2.3.1. Loosely coupled GNSS/Vision

Loosely coupled GNSS/Vision utilizes the position, velocity and time (PVT) output from processed GNSS data

and that from processed vision data. This approach relies on independent performance of two stand-alone

sensors, therefore, sufficient observations for each individual sensor. The easy acquisition of positioning

service or user equipment for commercial GNSS service and utilization of a mature computer vision tool box

requires less knowledge in processing and configuring the sensors, since the solutions are obtained without

access to the data processing and internal sensors, which enables a fast the implementation.

2.3.2. Tightly coupled GNSS/Vision

Instead of processing position solutions from both sensors, tightly coupled GNSS/Vision makes use of raw

measurements from both sensors. As we mentioned before, GNSS measurements have limitations in urban

areas: the geometry of satellites, sufficient satellites (at least four) and the interference of multipath damp

GNSS service from producing an accurate solution. This integration method can improve the availability of

positioning service by exploiting raw measurements when the above situation occurs, and therefore increase

the continuity of position estimation in mobile navigation.

2.3.3. Summary

The basic difference of the two integration strategies is the input data type, velocity and position, raw ob-

servations for loose and tight integration respectively. The acquisition of different data type and complexity

requirements on the software determine which integration method to choose. In loose integration, GNSS and

Vision can operate separately as navigation systems. Loosely coupled integration becomes adequate when

the requirement for the consistency and accuracy are less stringent. Tight integration can improve availabil-

ity of position estimation when the vehicle suffers from satellite outage and multipath propagation in urban

areas, but it requires more complicated software and computation power to achieve this.



2.4. Related work 15

2.4. Related work

Due to the cost, ease of implementation, and the larger potential to improve the positioning solution espe-

cially in urban area, in this thesis project, we are interested in exploring the tightly coupled GNSS and monoc-

ular vision with the aid of pre-surveyed landmark positions (previously surveyed landmark positions). In

this section, a brief introduction of related researches and findings is presented.

Tightly coupled GNSS/Vision

Instead of using position output, tightly coupled implementation blends raw observations from available

GNSS satellites with vision data, which enables the integration to produce a solution with limited visibility

and bad satellite geometry.

Choi et al. [9] develops an algorithm that can switch to Vision aided positioning when GPS based posi-

tioning is not available; in Won et al. [41]’s work, an integrated vision/INS navigation system based on GNSS

observations is developed and tested, and they found the positioning problem is solvable when the number

of satellites equals at least three. According to their INS/Vision model, the system is always rank deficient

by three, since the system can only determine the relative distance between the features and the sensor. By

introducing extra GNSS observations, the integrated model becomes full rank, and what’s more, the system

observability is further improved and the state vector of the system is solvable when the number of available

satellites are less than four when the clock bias is known or well calibrated. Aumayer et al. [3] compared simu-

lated results by using Kalman Filter (KF) and Least Squares (LS) with GPS positions and GNSS measurements,

and they found the tightly integrated system (using GNSS) by KF shows advantages in outliers detection ca-

pabilities. However, the design of this approach is more complicated than loosely coupled GNSS/Vision,

therefore, larger computation power and longer computation time is required.

Tightly coupled GNSS/Vision with pre-surveyed landmark positions

One way to enhance the tightly coupled integration model is by adding pre-surveyed landmark positions,

which allows a single camera to capture and compute position estimates in a single epoch, The approach

improves the solvability by adding scale to the vision system, which enables the vision system to act as an

individual positioning sensor. Besides, using landmarks also facilitates the feature matching process by high

precision due to their simple geometric form, lower storage volume, and lower matching errors of their shape

and texture, see Qu et al. [28]. Note that the map-based vehicle localization assumes that map uncertainties

need to be better than a certain threshold, to be of interest, which means the position information retrieved

from the maps are ground truth or with limited uncertainties, see Cui et al. [11].

The close range landmark aided positioning approach is attractive by featuring high resolution in vision

measurements since close-by landmarks are easily included in the image even in case of the slightly mis-
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pointing camera.The assumption of a flat-horizontal road (only considering heading changes), as we take in

this research, is sufficiently safe when considering close-range vision measurements. Besides, the landmarks

captured within short distances are likely to have less occlusions, which enables less uncertainties in vision

processing, see Peixoto et al. [26].

KIM and N.-H [20] show the feasibility of integrating GNSS range measurements from the visible satellites

with precisely known image measurements on landmarks. From their test results, they confirm that a stereo

vision aided system enables accurate and precise positioning, and the integrated system performs better than

GNSS with the same amount of measurements. Kim and Hwang [21] present a novel model integrating in-

ertial and vision measurements by projecting precisely known landmark positions on to the camera plane,

and the results are quite precise, with simulated data and van tests. The model is realized by the difference

between the landmark focal plane measurements and projected ones by Inertial Navigation System (INS) es-

timates on the focal plane, therefore, the system enables to work even with a few landmarks. Qu et al. [28]

generated a geo-referenced landmarks database and for visual odometry, integrated with features extracted

from selected images to reduce the computational cost, and they found the proper density of the landmark

database is critical to compensate the accumulated errors in visual odometry. Won et al. [40] improves the

positioning solution by a selective integration of raw measurements from different sensors, which is deter-

mined by the selective index aiming to recognize a poor environment with increased error. The augmented

integration model outperforms especially when satellites and feature points form poor geometries. Cui et al.

[11] developed a real-time positioning method by fusing GPS and vision-based lane mark detection in urban

areas, which can achieve an accuracy of centimeter level by producing fix solutions when GPS outages occur.

Once the detected lane marking results are cross-validated with the provided road shape prior. This method

subsequently refines the localization by the corresponding GPS positions of the detected lane markings.

Localization based on geo-referenced traffic signs

Besides the derivation and design of the integrated model, to make the application in map-based vehicle lo-

calization complete, it is also essential to include the landmark selection from and matching with a landmark

database (a high-precision digital map).

External geo-referenced database generation: The database contains precise 3D landmark positions and

additional information to facilitate the matching procedure. The Navigation Data Standard (NDS) is a popu-

lar format for high precision map databases, but it is not the optimal option for researchers to solve the vehicle

self-localization problem, since the database needs to provide reliable information of dynamic road informa-

tion in real time, see Zang et al. [42] and Gruyer et al. [19]. To satisfy these requirements, researchers have

unique ways to create a map database to facilitate their own experiment. Zang et al. [42] included land bound-

aries, occupancy grids and road signs, which can help self-localization system by providing land boundary
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shape priority, distance from the camera to the surroundings, orientation of the road surface, and spatial

location of the road sign respectively. In the experiment of Cui et al. [11], the researchers first use satellite im-

ages and manually segmented and labeled lane markings. The road shape prior is extracted, then they scale

the aerial image and add landmark positions by GPS-RTK as the ground truth. However, landmarks look quite

different in ground-based imagery and aerial imagery, and the problem aggravates in dynamic environments.

To address this problem, recent progress on image processing algorithms mitigates this challenge, see Wang

et al. [39]. Further discussion of this subject is beyond this thesis project.

Detection: Since a vision system is subject to more constraints, the landmark detector needs to locate

them in the image within a certain computation load and accuracy. What’s more, the forward looking camera

can yield variations caused by curvature of the road, which further reduces the landmark detector accuracy,

see Gruyer et al. [19].

Matching: Matching contains global feature identification from the image and links the 2D observations

to geo-referenced database. According to Qu et al. [28], matching the 3D landmarks with their 2D position

in the image includes two steps, first to select a collection of candidates from the 3D landmark database by

model constraints, and second, to identify the detected 2D traffic sign in the image with the selected landmark

candidates and keep the 3D landmark when its re-projected position is close to the nearest 2D traffic sign.

Tao and Bonnifait [34] uses pre-stored orientation information of lane markings to search for the segment that

has a heading closest to that of the vehicle. In Cui et al. [11], the shape of road prior/or extra environmental

information is used to improve the accuracy of detection or pixel measurement in the image, by using sorted

GPS points through map matching and the landmarks in the shape of white bars can be detected by searching

for certain intensity. In this research project for simplicity, landmark image-measurements were done by

human operation (pointing and reading the corresponding pixel positions in the image).

2.4.1. Summary

Recent studies show that the tightly coupled GNSS/Vision has the potential to improve the position solu-

tion performance in urban areas. However, the research methods vary differently due to the assumptions,

chosen sensors, processing methods, and preparation for the database. The full procedure of an automated

GNSS/Vision positioning system is introduced, which is the context of this thesis work. The proposed math-

ematical model based on single camera and single frequency PPP approach guarantees cheap cost in the

applications. With the aid of HD maps, the monocular vision model can also work as a absolute positioning

sensor alone. Compared with multi-cameras within the application of SLAM, its implementation is easier

and it requires less computational load.



3
GNSS, vision and integration model

In this chapter, the functional and stochastic model of SF-PPP is explained in Sect.3.1, the functional and

stochastic model of monocular vision model is elaborated in Sect.3.2, the integration model of the above two

models is presented in Sect.3.3 as well as the description of the processing procedure in Sect.3.4 (the input

and output for each model is presented in fig.3.1), and the conception, computation and interpolation of

statistical properties (standard deviation, correlation coefficient and MDB) is presented in Sect.3.5.2.

3.1. Description of SF-PPP model

In addition to the general description in Chapter 2, a detailed explanation of SF-PPP, its properties and math-

ematical model are presented in this Chapter. SF-PPP is characterized by the following properties:

First, in the absence of a base station, implementation of PPP enables users to save time and cost in a

broader application area. Single frequency PPP edges the cost lower by replacing an expensive dual-frequency

receiver with a single-frequency one. The eliminated limitation of the communication between rover and the

base station enables the service to work anywhere on the Earth’s surface with an accuracy of sub-decimeter

in combination of single-frequency GPS/Galileo PPP, see Afifi and El-Rabbany [1].

Second, besides the cost reduction, the prime advantage of SF-PPP is that the observation noise is 1
3 of

the one of the ionosphere-free combination: to form the ionosphere-free combination of observations from

a dual-frequency receiver, coefficients are specified to remove ionospheric errors, whose amplification effect

18
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Figure 3.1: The illustration of the SF-PPP, vision and integration model in terms of their input and output.

on observation noise is computed by:

σi onospher e− f r ee =
√

a2σ2
1 +b2σ2

2 (3.1)

where a,b are the selected coefficients, σi onospher e− f r ee ,σ1,σ2 are the measurement noise from ionosphere-

free combination and dual-frequency observations, σi onospher e− f r ee is related to the receiver frequency, and

is about 3.23 in unit of length (relative to L1) from GPS observations, see Petovello [27].

Third, SF-PPP would lead to faster convergence. Since the ambiguity from the ionosphere-free combi-

nation needs to be solved recursively while suffering larger measurement noise from Eq.3.1, and one more

unknown zenith tropospheric delay needs to be estimated as well, processing of dual frequency PPP requires

20-40 min to converge, which means that SF-PPP can outperform PPP at the initial stage, seevan der Marel

and de Bakker [36].

Additionally, the improvement of precision and convergence time due to the emergence of other con-

stellations, enhanced processing models, together with the above promising properties, enable SF-PPP to

become an extensively used positioning approach in both scientific researches and industries.

GPS errors sources and their effects are: satellite orbit (2m), satellite clock (2-5m), ionosphere (5-30m),

troposphere (0.5-5m), multipath (1-10m), and receiver noise (1-3m). Among them, the ionospheric delay

contributes significantly in PPP or SF-PPP applications, see Andrei et al. [2] and Pan et al. [24]. The most

straightforward and accessible way of including the ionospheric error is to utilize ionospheric coefficients

computed by best fitting IGS ionosphere product with Klobuchar style Schaer [29]. Another method adopts



3.1. Description of SF-PPP model 20

the ionospheric-free code and phase combination and it raises the complexity of the system, since the am-

biguity is unknown, a longer convergence time is required till the float ambiguities stabilize, see Andrei

et al. [2]. IGS also generates GIMs (Global Ionosphere Models) with a temporal and spatial resolution of

2(hours)×5◦(longtitude)×2.5◦(latitude) which imposes restrictions on real-time application at a local-level.

Hence, interpolation or filters are considered to obtain desirable spatial and temporal corrections. The last

approach is to make use of satellite augmented system (SBAS; these services can provide real-time corrections

and not only ionospheric delays but also satellite clock and orbits at the expense of lower accuracy than those

from the post-processing services, see Li et al. [22]. However, the corrections from external services have to

be modeled or estimated to achieve high precision positioning results, the position estimation model derived

from the interpolated corrections is of higher risk to be rank-deficient and slower to reach convergence, see

Li et al. [22]

The implementation in our experiment is based on de Bakker and Tiberius [12]’s model with several con-

siderations: an un-differenced GNSS model; the satellite differential code bias and ionospheric delay are

available from CODE products; satellite orbit and clock errors can be obtained by IGS Real Time Service

(RTS) over the Internet; the pseudorange hardware delay is absorbed by both receiver and satellites clock

offsets, and carrier phase hardware delay is absorbed by the float ambiguities. The observation quations of

pseudorange and carrier phase:

p = ||r s − rr ||+ tr − t s +n + ι+ep

φ= ||r s − rr ||+ tr − t s +n − ι+λA+eφ

where r s and rr are the satellite positions and receiver position, tr and t s are the receiver and satellite clock

bias respectively, ι is the ionospheric delay n is the tropospheric delay, A is the ambiguity in cycles and λ is

the wave length of carrier phase. ep and eφ are the random noises of pseudorange and carrier phase mea-

surements. The computed observations of the functional model is:

∆p = p −p0

∆φ=φ−φ0

which is calculated by the difference between the observed pseudorange and carrier phase and computed

ones by inputting initial guesses (approximate values for the unknown receiver position). The positioning
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algorithm with k visible satellites is:


∆pk
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âk,−

=


−hk

G uk δ

−hk
G uk δ I k

I k





∆rr

∆tr

b
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+εG (3.2)

the increments of receiver position and receiver clock bias ∆rr ,∆tr are the differences between the unknown

parameter values and the initial guess, εG contains measurement noise, b is the intersystem bias (clock effect

between GPS and GLONASS for instance), â− is the ambiguity estimate from the previous epoch to increase

the model’s solvability. hG is the unit direction vectors pointing from the receiver to satellites, u is a column

of ones, δ is 1 for one constellation and 0 for the reference one, and I is an identity matrix.

[∆pk ,∆φk , âk,−]T ≈ N (E([∆pk ,∆φk , âk,−]T ),Qp,φ,a)

Since the satellite clock and orbit error, ionospheric error and tropospheric error are evaluated from external

products, their uncertainty should be included in stochastic model. In combination of their effects and the

observation uncertainty, the stochastic model is:

Qp,φ,a + Jp,φ,aQr s ,t s ,n,ι J
T
p,φ =


Qpp Qpφ

Qφp Qφφ

Q−
ââ



where Qp,φ,a contains observation uncertainty, Qr s ,t s ,n,ι includes the uncertainty of the parameters obtained

from external services, Jp,φ,a is the Jacobian of observation equation with respect to these parameters. The

measurement noises are proportional to 1
cosθzeni th

to describe the signal loss mainly due to the main lobe of

the receiver antenna gain pattern, the longer path length through the atmosphere by larger zenith angle (or

lower elevations) and other propagation errors, e.g. multipath. In the implementation, the measurement

noise values: σp = 0.3m,σφ = 0.02m are obtained by personal communication with Dr. Ir. P.F.de Bakker.

3.2. Monocular vision model design

The experiment set-up is designed as Fig.3.5, a number of landmarks with pre-surveyed positions within

angle of view are captured by a single camera, therefore, the camera pose can be derived from inputting

these position measurements in the world frame in combination of the following central projection model.

To simplify the problem, we consider only heading changes in the world frame (flat road assumption), and
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Figure 3.2: Elementary rotations with respect to x axis (a), y axis (b) and z axis (c). The positive directional changes of the three rotations
are defined as θ,ψ,κ, by rotating the solid one to the dashed one.

assume the camera lens is without distortions.

The classical photogrammetry camera frame on a airborne platform has the same orientation as the world

frame (black; Fig. 3.3), looking down to the ground plane Fig. 2.3. Different from the airborne photogram-

metry model, the camera in vision based navigation is placed in front of the vehicle and once its heading is

aligned, the camera is viewing along the Y axis (black; Fig. 3.3) of the world frame, which then aligns the op-

posite of the z axis of the camera frame (orange; Fig. 3.3). The world frame and camera frame are conformed

as Fig. 3.3:

In the following monocular vision model, we will consider the camera is mounted directly under the GNSS

receiver with a height offset and only the headings κ change in the world frame, orψ under the camera frame,

that is, assuming the vehicle is turning on a horizontal plane (e.g. local level) that is perfectly parallel with the

map (X-Y coordinates).

3.2.1. Introduction to 3D Rotation

Elementary rotation

To represent a rotation in 3D space, an arbitrary rotation is achieved by a concatenation of three elementary

rotations. The elementary rotations with respect to x-axis, y-axis and z-axis when viewing along the axis

towards their origins are (see Fig.3.2):

Rx (ω) =


1 0 0

0 cosω −sinω

0 sinω cosω

 ,Ry (ψ) =


cosψ 0 sinψ

0 1 0

−sinψ 0 cosψ

 ,Rz (κ) =


cosκ −sinκ 0

sinκ cosκ 0

0 0 1

 (3.3)
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Figure 3.3: World frame (black), camera frame (orange), camera (blue) and image plane O (represents the digitally stored image) and
shifted origin O′(the image plane in read parallel to the x-y axes with the u-axis aligned with the x-axis and v-axes with the y-axis)

geometry. The rotations follow the right-hand rule: the angle rotation is positive when viewed along the axis towards its origin Fig.3.2.
Principle point p is the projected camera center on the image plane, distance between them is f (focal distance).

Concatenated rotation

Based on the above model and the assumption we made, there are many ways to express the concatenated

elementary rotations. These methods fall into two main categories, either rotate the camera to the world

frame or rotate the world frame to the other. Here we only present the later approach: when the camera

is fixed, and we rotate the world frame towards the camera frame and then express the camera within the

rotated world frame, see Förstner and Wrobel [16], then the concatenated elementary rotations can be written

as:

C RW = Rx (ω)T Rz (κ)T

where C RW is the concatenated rotations from the world frame to camera coordinates. First spin the world

frame around z axis of its frame with angle of κ, and then rotate with respect to its rotated x axis by ω= π
2 , by

pre-multiplying the elementary rotations from the right to left:

C RW =


1 0 0

0 0 1

0 −1 0




cosκ sinκ 0

−sinκ cosκ 0

0 0 1

=


cosκ sinκ 0

0 0 1

sinκ −cosκ 0



So the projection of a world point (X ,Y , Z ) under the camera coordinate system (x, y,− f ) is achieved by
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the conversion of the two frames C RW :


x

y

− f


C

=λC RW


X −X0

Y −Y0

Z −Z 0


W

where λ is the scale from image coordinates to world coordinates, (X ,Y , Z ) and (X0,Y0, Z0) are the pre-

surveyed landmark position and camera position coordinates in world frame respectively, the column on

the left-hand side is the corresponding landmark position in the camera coordinate system. After multipli-

cation of the right-hand side, and divide the first two rows by the third one, one can rewrite the observation

equations [Hx , Hy ] as:

x =− f
(X −X0)cosκ+ (Y −Y0)sinκ

(X −X0)sinκ− (Y −Y0)cosκ
(3.4)

y =− f
(Z −Z0)

(X −X0)sinκ− (Y −Y0)cosκ
(3.5)

The other way under this approach is to first rotate with respect to the x axis of the world frame by π
2 ,

then rotate the rotated frame with its y axis with the same angle κ. Under this sequence, the concatenated

rotations are:

C RW =


cosκ 0 −sinκ

0 1 0

sinκ 0 cosκ




1 0 0

0 0 1

0 −1 0

=


cosκ sinκ 0

0 0 1

sinκ −cosκ 0


Compare C RW from the two methods, one can see the two concatenated rotations yield the same solu-

tions. However, features’ camera coordinates, x and y cannot be obtained directly from the image. Conver-

sions are needed after obtaining the image coordinates of features are obtained, by shifting the pixel coor-

dinate origin O to the O′ and adding the translation from O′ to image coordinate origin p. From the above

geometry fig.(3.4), point r (ur , vr ) lying on the image can be converted in camera frame coordinates r (xr , yr )

by:

xr = ur −up (3.6)

yr = vp − vr (3.7)

(up , vp ) is the principal point coordinates in pixels, one can obtain from the half value of the digitally stored

image size in pixels. Substitute the left-hand-side of equation (3.4) and (3.5) by (3.6) and (3.7), one obtains the
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Figure 3.4: Vertical view of image plane. Camera frame orientation (black), image frame orientation, the digitally stored image (O) and
shifted one (O′). In this figure, principal point is overlapped with the camera origin. Camera x-y axis is parallel with image u-v axis.

following two equations that link feature measurements from the images (u, v) to their positions in reality,

u =− f
(X −X0)cosκ+ (Y −Y0)sinκ

(X −X0)sinκ− (Y −Y0)cosκ
+up (3.8)

v = f
(Z −Z0)

(X −X0)sinκ− (Y −Y0)cosκ
+ vp (3.9)

In further implementation, they are [Hu , Hv ] in abbreviation.

u = H u(κ, X0,Y0, Z0, X ,Y , Z ,up )

v = Hv (κ, X0,Y0, Z0, X ,Y , Z , vp )

To simplify the above equation, in following sections, we abbreviate the camera pose parameters [κ, X0,Y0, Z0]T

as P , landmark position coordinates [X ,Y , Z ]T as G , m denotes the feature number, up and vp are known.

3.2.2. Functional model of monocular vision

The goal of the functional model is to obtain camera pose information by pixel measurements from pictures

of the landmarks with available position coordinates. In the experiment, we proposed two approaches to

function model design, applicable in different application scenarios.

As one can see from the observation equations (3.8) and (3.9), the functional model pixel measurement

with respect to the camera pose is expressed as:

y =

um

vm

= H(P,G)+εV =

H m
u (P,G)

H m
v (P,G)

+εV



3.2. Monocular vision model design 26

the system is nonlinear in unknown camera pose P = [κ, X0,Y0, Z0]T . To solve the nonlinearity, one way is to

transform the system into a linear one by the first derivative term of the Taylor series approximation,

∆y = y −H(P0,G) ≈ ∂H(P0,G)

∂P
∆P +εV

∆P = P −P0

y are the observed pixel measurements, εV is random errors, P is the unknown camera pose, G is given as

known landmark coordinates and P0 is the initial guess for the camera pose, then repeat the above two equa-

tions until the ’weighted sum of square’ from the updated term ∆P0 of this iteration is smaller than a certain

threshold (the stop criterion), the iterative process is explained in Section.3.4. The OMC (observed minus

computed) equation in an iterative routine is expressed as, with i the iteration number:

∆yi−1 = y −H(P0,i−1,G)

In practice, the pixel measurements obtained from the object recognition or feature identification pro-

cedure, and the pre-surveyed landmark positions measurements are not perfect because of the accuracy of

the equipment and object identification error. These uncertainties are accounted for the following two meth-

ods. By inspecting how these uncertainties are included in the stochastic model and propagated through the

functional model, suggestions can be made for future application accordingly.

Method I

Method I assumes that the unknowns for monocular vision model are the four parameters of the camera

pose:

∆P = [∆κ,∆X0,∆Y0,∆Z0]T

In this method, the available landmark position coordinates are not considered to contribute to the func-

tional model directly, instead, they are included in pixel measurements directly to form corrected pixel mea-

surements, and their effect is accounted in an update term in addition to Qy y , the pixel measurement un-

certainty, refer for a detailed explanation to Section.3.2.3. So the linearized functional model of m captured

landmarks in the image in function of camera pose of Method I is:

∆um

∆vm

≈

 ∂H m
u (P0,G)
∂P

∂H m
v (P0,G)
∂P

 [∆P ]+εV (3.10)

[∆um ,∆vm]T ≈ N (E([∆um ,∆vm]),Qy y ) (3.11)
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where m is the index of feature measurement, ∆y = [∆um ,∆vm]T are the OMC of pixel measurements of the

mth feature, [
∂H m

u (P0,G)
∂P ,

∂H m
v (P0,G)
∂P ]T is the corresponding Jacobian matrix JP of [Hu , Hv ] from the previous

section equation (3.8) and (3.9) with respect to the unknowns P of Method I.

Method II

Different from accounting for the landmark position coordinates uncertainty through the pixel measure-

ments by adding an additional term to Qy y , the other method is more direct: besides the pixel measurements,

the functional model includes the OMC of available landmark positions coordinates as well. Therefore, in-

stead of updating the variance matrix of the corrected pixel measurements in each iteration, the landmark

position uncertainty [σX ,σY ,σZ ] is directly included as observation uncertainty in Qy y and it is constant

for the iterative optimization process. ∆P is the increment of the unknown parameters of camera pose, the

increments of unknowns for Method II are:

 ∆P

∆Gm

= [∆κ,∆X0,∆Y0,∆Z0,∆X 1,∆Y 1,∆Z 1, . . . ,∆X m ,∆Y m ,∆Z m]T

∆Gm denotes m landmark position coordinates increment, G0 is the initial guess for landmark position coor-

dinates, ∆g m
0 is the difference between the observed and computed landmark position coordinates, εg is the

random error,

∆g m = g m −Gm
0 = I∆Gm +εg

∆Gm =Gm −Gm
0

The unknowns for this method are [κ, X0,Y0, Z0, X 1,Y 1, Z 1, . . . , X m ,Y m , Z m]T , by this method, the given

landmark position coordinates are treated as observations, therefore, at the end of iteration, one can also

obtain estimators on likely improved landmark positions at the expense of larger computational cost and
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slower converging time. The functional model for the second method is:



∆u1

∆v1

...

∆um

∆vm

∆g 1

...

∆g m



=



∂H 1
u (P0,G0)
∂P

∂H 1
u (P0,G0)
∂G1 01×3(m−1)

∂H 1
v (P0,G0)
∂P

∂H 1
v (P0,G0)
∂G1 01×3(m−1)

...

∂H m
u (P0,G0)
∂P 01×3(m−1)

∂H m
u (P0,G0)
∂Gm

∂H m
v (P0,G0)
∂P 01×3(m−1)

∂H m
v (P0,G0)
∂Gm

03×4 I3×3 03×3(m−1)

...

03×4 03×3(m−1) I3×3



 ∆P

∆Gm

+εV

[∆um ,∆vm ,∆g m]T ≈ N (E([∆um ,∆vm ,∆g m]T ),Qy y,Method I I )

3.2.3. Stochastic model of monocular vision

The pixel measurement noise is represented by σu ,σv , in our experiment setting, the feature position mea-

surements are independent in the image plane, and the u-axis coordinate and v-axis coordinate of one feature

are also independent.

Q y y = Im ⊗

σ2
u

σ2
v


The landmark measurements uncertainty is represented as [σX ,σY ,σZ ] in the experiment design and im-

plementation, the measurements in the three directions are assumed to be independent. According to the

illustration plot of Fig.3.5, there are m landmarks captured by the camera, the pre-surveyed landmark coor-

dinates have independent uncertainty in each direction of the world frame,

Qxx = Im ⊗


σ2

X

σ2
Y

σ2
Z



Method I

To take the landmark position measurements uncertainty into consideration, one way is to project the uncer-

tainty of the landmark position into the pixel measurements uncertainty Qy y . With the variance propagation

law, the projected variance for the linearized functional model is JGQxx J T
G . To update the observation uncer-
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tainty in the iterative process:

∆Qy y,i−1 =Qy y + JG ,i−1Qxx J T
G ,i−1

where JG = [
∂H m

u (P0,G)
∂G ,

∂H m
v (P0,G)
∂G ]T is the Jacobian matrix of collinear equations (3.8) and (3.9) with respect

to the landmark position [X m ,Y m , Z m], the observation uncertainty ∆Qy y,i−1 updates for each iteration,

Qxx represents the given landmark position coordinates uncertainty, and the reasoning to form ∆Qy y,i−1 as

adding the two terms up, is elaborated in the Section Comments below.

Method II

The observations in Method II include pixel measurements as well as available landmark position coordi-

nates. The uncertainty of observations is propagated through the iterative optimization process by the weight

matrix W which is computed by the inverse of the variance matrix, different from Method I, the weight matrix

remains constant throughout the iterative optimization process:

Qy y,Method I I =

Qy y

Qxx

 (3.12)

Comments for the two methods

Applying a linear approximation to solve the nonlinear problem up to the first order derivative of Taylor ex-

pansion on equation (3.8) and (3.9), the functional model is expressed as the OMC of pixel measurements

on the left-hand side as a function of unknown parameters increment. In Method I, the functional model is

described as equation (3.13), which can be interpreted as the pre-surveyed landmark position coordinates

will contribute to the correcte pixel measurements through the function model. Therefore, subtracted ∂H
∂G ∆G

from pixel measurements, the corrected pixel measurement is a function of camera pose increment ∆P ,

∆y − ∂H

∂G
∆G = ∂H

∂P
∆P +εV (3.13)

In Method II, the pixel measurements are a function of the camera pose and landmark position coordinates.

The camera pose and landmark position coordinates both contribute to the functional model of pixel mea-

surements,

∆y =

∆um

∆vm

= ∂H

∂P
∆P + ∂H

∂G
∆G +εV



3.2. Monocular vision model design 30

Note that for both methods, they all start from the following full model which is also the functional model of

Method II: we take into account the landmark position coordinates as observation measurements, and the

pixel measurements are a function of both the camera pose and landmark position coordinates. So the OMC

of landmark position coordinates are also included on the left-hand side. The unknowns are camera pose P

as well as the landmark position coordinates G ,

 ∆y

∆g m

=

 ∂H m

∂P
∂H m

∂G

0 I


 ∆P

∆Gm

+εV (3.14)

the corresponding observation variance matrix of Method II is shown as 3.12.

In Method II, the landmark position coordinates alter as the process goes on since they serve as unknown

parameters, according to the model design, the redundancy brought by pixel measurements may improve

the coordinates of the landmark positions. Multiply Eq.3.14 on both sides with an invertible matrix [ I − ∂Hm

∂G
0 I

]

in order to transform the equation without information loss, one can obtain,

∆y − ∂H m

∂G ∆g m

∆g m

=

 ∂H m

∂P ®
® I


 ∆P

∆Gm

+εV

When one is not explicitly interested in landmark position coordinates estimates G and noticing that the ob-

served landmark position coordinates ∆g m would not contribute to the camera pose increment ∆P , and

corrected pixel measurements would not contribute to the landmark position coordinates increment ∆Gm ,

which is equivalent to g = G , one can thereby rewrite the above equation as Eq.3.13 by canceling the corre-

sponding I column and row, then the above model coincides with Eq.3.13 of Method I. Based on this, the

pre-surveyed landmark position coordinates are measured with sufficiently small error. Applying the vari-

ance propagation law to the multiplied matrix,

I − ∂H m

∂G

0 I


Qy y ®

® Qxx


I − ∂H m

∂G

0 I


T

=

Qy y + ∂H m

∂G Qxx
∂H m,T

∂G − ∂H m

∂G Qxx

−Qxx
∂H m,T

∂G Qxx


since we are only interested in the uncertainty brought by the landmark position coordinates into the cor-

rected pixel measurements, the observation variance matrix for Method I is,

∆Qy y,method I =Qy y + ∂H

∂G
Qxx

∂H T

∂G

The prime advantage of Method I is the fast computation speed and the potential to handle more data, due

to the reduction of the functional model dimensionality and smaller observation noises introduced to the
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Figure 3.5: On the left: conversion from [X ,Y , Z ] (ECEF) to [X ,Y , Z ] (world frame). On the right: visualization of GNSS/Monocular
vision set up in world frame. Landmarks are all standing in front of camera within viewing angle. The world frame is converted based

on M occupying geographic coordinates [ϕM ,λM ,hM ], M is the center of this local topocentric reference coordinate system.

optimization process because of less observations. It’s worth to mention that the solutions from the two

methods are exactly equivalent when we deal with an originally linear problem but may deviate in case of a

nonlinear problem as we have.

3.3. Integration model design

The simple illustration of experiment setup is described in Fig.3.5, we assume the GNSS receiver and camera

are mounted together with a translation offset in the world frame, and is expressed as a vector t0 in the follow-

ing implementation. In the experiment, we assume this offset only accounts for a height difference between

these two sensors, that is, they occupy the same X ,Y in the world frame but a different Z . All landmarks

are standing in front of the camera, and the camera is able to capture them with its default focal length and

viewing angle. Pr and [X0,Y0, Z0]T in Pv are GNSS receiver and camera position coordinates in the world

frame respectively, in this section, Pv replaces [X0,Y0, Z0]T to represent camera position coordinates in world

frame.

Pr = t0 +Pv (3.15)

3.3.1. Functional model of GNSS/Monocular Vision integration

The input for the integration model includes satellite positions r s , landmark positions G (for Method II), pixel

measurements [u, v] from the single camera, GNSS range measurements [p,φ], height offset t0 (optional), ini-

tial values for the GNSS receiver position in the local reference frame Pr,0, the camera position initialization

Pv,0 is not necessarily known and it can be computed from Pr,0 in combination with the height offset using

the linear relation explained in equation (3.15), rr,0 can be computed from Pr,0 and conversions below. The

satellite positions and satellite clock offsets can be derived from the navigation message, the position of the
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landmarks are measured by, for instance, a total station with reference to the world frame. The idea is to trans-

form the nonlinear system by a first order Taylor expansion and combine the functional model of Method I

Eq.3.11 and SF-PPP Eq.3.2. The total OMC of the integration model [∆pk ,∆φk , â−,∆um ,∆vm]T is a function

of the increments of unknowns [∆Pr , t0,∆κ0,∆tr ,b, a]T .

To combine the unknowns in the integration model, the following relations are used to bind the unknowns

from two sensors through Pr in the integration model:

∆Pv,0 =∆Pr,0 − t0

∆Pr,0 = Pr −Pr,0

The vehicle position coordinates are in the local topocentric coordinate system, and conversions from the

ECEF frame to the local world frame E CN are included in the functional model for the GNSS part to produce

vehicle pose estimates from the observations of both sensors. The following integration model is based on

SF-PPP and the vision model from Method I:



∆pk

∆φk

âk,−

∆um

∆vm


=



−hk
G ,rr

E CN uk δk

−hk
G ,rr

E CN uk δk I k

I k

hm
V ,Pv

−hm
V ,Pv

hm
V ,κ

hm
V ,Pv

−hm
V ,Pv

hm
V ,κ





∆Pr

t0

∆κ

∆tr

b

ak


+ε

Where∆Pr ,∆tr ,b, a denote the GNSS receiver position in world frame, the receiver clock bias, the intersystem

bias, ambiguities of the receiver, hG and hV indicate vectors for GNSS and vision respectively, and they are the

set of unit vectors from the receiver to the satellites and the Jacobian of features measurements on the image

with respect to the parameters specified in its subscript, to link with the expression in 3.2.2, [hm
V ,Pv

,hm
V ,κ] =

∂H m (P0,G)
∂P . Different from the GNSS functional model, the vision model has one orientation parameter κ to

be estimated, u is a column of ones, δ is 1 for one GNSS constellation and 0 for the reference one, I is an

identity matrix. ε is the total measurement noise of GNSS and vision. By the conversion matrix E CN from

the world frame to the ECEF (WGS-84) frame, one can link the GNSS receiver position and camera position

together, especially for the later iterative optimization process, and combine into common unknown ∆Pr in

the integration model.

∆rr = E CN∆Pr

E C−1
N ∆rr =∆Pr
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rr is the receiver position in the ECEF frame from the GNSS observation functional model 3.2. The conversion

matrix E CN is computed as:

E CN = Rz (−(π/2+λM ))Rx (−(π/2−ϕM ))

=


−sinλM −sinϕM cosλM cosϕM cosλM

cosλM −sinϕM sinλ cosϕM sinλM

0 cosϕM sinϕM



where [ϕM ,λM ,hM ]T are the geographic coordinates of the origin of the topocentric coordinate system M .

To express M in ECEF coordinates, the following transformation is needed:

E XM = (N̄ +h)cosϕM cosλM

E YM = (N̄ +h)cosϕM sinλM

E ZM = (N̄ (1−ε2)+hM )sinϕM

ε is the eccentricity, N̄ is the radius of the curvature of the ellipsoid, in this case WGS-84. Since the receiver

position Pr is a relative vector with regard to the center of map, the receiver position in ECEF rr is written as:

rr = E M +E CN Pr (3.16)

One can rewrite the integration model of SF-PPP and vision for Method II as well:



∆pk

∆φk

âk,−

∆um

∆vm

∆g m


=



−hk
G ,rr

E CN uk δk

−hk
G ,rr

E CN uk δk I k

I k

hm
V ,Pv

−hm
V ,Pv

hm
V ,κ hm

V ,G

hm
V ,Pv

−hm
V ,Pv

hm
V ,κ hm

V ,G

I m





∆Pr

t0

∆κ

∆tr

b

ak

∆Gm



+ε

Although the Vision system has the potential to produce measurements at a higher frequency, the model

holds for all Vision measurements for one single GNSS epoch when the vehicle is static or with carefully

synchronized sensors on a moving vehicle.
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3.3.2. Stochastic model of GNSS/Monocular Vision integration

To account for the satellite clock and orbit error, ionospheric error, tropospheric error and landmark position

coordinates error from external sources or surveying in the integrated GNSS/Monocular model, stochastic

deductions for the two methods are introduced, in order to further study the performance of the integra-

tion model in a realistic way. The stochastic models presented in the section contribute to the optimization

process by giving weights to the observations in the update term, and they need to be computed per iteration.

Method I

The observations for this method are: pseudorange, carrier phase, ambiguity estimate, and two-dimension

pixel measurements. Apply variance propagation law in combination of observation uncertainty, the stochas-

tic model of Method I is:

Qp,φ,a,u,v + Jp,φ,a,u,vQr s ,t s ,n,ι,X Y Z J T
p,φ,a,u,v =



Qpp Qpφ

Qφp Qφφ

Q−
ââ

Quu Quv

Qvu Qv v


where Qp,φ,a,u,v contains observation uncertainty, Qr s ,t s ,n,ι,X Y Z includes the uncertainty of relevant parame-

ters obtained from external services, the corresponding parameters are specified in the subscript. Jp,φ,a,u,v is

the Jacobian of observation equation with respect to these parameters.

Method II

The observations for this method are extended by the landmark position coordinates, so its effect is included

in the observation uncertainty directly. The stochastic model for this method is derived based on the same

approach as Method I, with respect to the same parameters besides the landmark position coordinates.

Qp,φ,a,u,v,g + Jp,φ,a,u,vQr s ,t s ,n,ι J
T
p,φ,a,u,v =



Qpp Qpφ

Qφp Qφφ

Q−
ââ

Qu

Qv


The symbols have the same meaning as with Method I, but observation uncertainty is extended with land-

mark position coordinates uncertainty, and the Jacobian is computed by one less parameter.
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3.4. Data processing in model realization

To solve the nonlinear problem, an iterative process is considered by updating the estimates in a series of

steps, which can be computed by different estimation methods. In this section, the adoped data processing

methods and concept are explained, with an emphasis on weighted least-squares and Gauss-Newton itera-

tion.

3.4.1. Least-squares estimation

A functional model contains a set of observations in y , which are linear in a set of parameters of interest x by

the design matrix A and measurement error ε.

y = Ax +ε

Inconsistency of an undetermined system arises when there are more equations than necessary and it failed

to produce a unique solution. Least-squares estimation solves this inconsistency by searching for the solution

that is as close as possible to the observed measurements, that is, hits the minimal sum of squared error,

which can be defined as:

x̂ = argmin
x

(y − Ax)T (y − Ax)

The least-squares solution can realize the above constraint by the computation from y and A:

x̂ = (AT A)−1 AT y

The above least-squares solution is based on equal weight for all observations. If we know prior information

about the observables, that is, some of them are more precise than the others, we can include the information

into weight matrix W , which is the so called weighted least-squares (WLS):

x̂ = (AT W A)−1 AT W y

and its corresponding objective function of minimize changes into:

x̂ = argmin
x

(y − Ax)T W (y − Ax)
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3.4.2. Nonlinear optimization

The nonlinear optimization is an iterative procedure aiming to search for a solution that produces a minimum

or maximum value of the corresponding target function. In the procedure, step size, initial guess and search

direction are critical to the convergence speed and reliability of the solution.

General procedure for monocular vision model processing

One approach to realize nonlinear least-squares is to use Gauss-Newton (GN) iteration, which is adopted

in processing both simulation and real test data in implementation of vision, GNSS and integration model.

The method is based on linearization, which is to transform the nonlinear problem by the approximation of

first order Taylor expansion, and minimize the second order term. In Section.3.2.2 we already introduced the

functional modesl for the two methods, the following optimization procedure is based on Method I is monoc-

ular functional model, and one can replace the unknowns and functional model to obtain the optimization

for Method II or make some adaptations for it to obtain integration model optimization.

Pi = Pi−1 +∆P̂i−1

To get the best linear unbiased estimator, we input weight matrix W = [∆Qy yi−1 ]−1 into the iterative pro-

cess, the impact of pixel measurements uncertainty is propagated through each iteration, until the stop cri-

terion is met. The updated term ∆P̂i−1 is computed by WLS to the linearized system:

∆P̂i−1 = (J T
P,i−1W JP,i−1)−1 J T

P,i−1W∆yi−1

JP,i−1 is the Jacobian matrix of (3.8) and (3.9) with respect to the unknowns in P . Given the initial values

for the unknown P , the scheme iterates until the stop-criterion is met:

∆P̂ T Q−1
PP∆P̂ < stop cr i ter i on

Procedure for integration model processing

The processing procedure of the integration model follows the same rule as we explained with the in above

monocular vision model. Since the initialization and observations from the two sensors are in different

frames, the procedure to process the integration model involves more conversions and constraints from the

experiment design shown in Fig.3.5. Since the hG ,hV are computed with the receiver position in the ECEF

frame rr and the camera position in the world frame Pv respectively, conversion steps are inserted at the end
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Figure 3.6: The illustration plot of the relationship of unknown position parameters of antenna and camera position. The antenna is
mounted with an height offset t0 above the camera in the world frame. Pv is chosen as a basis in the integration model to link the

camera position Pv and GNSS antenna position. Pv ,Pv,0 are the camera position and its initialization in the world frame, rr,0 and Pr,0
are the initial receiver position and they are computed from ∆Pv ,Pv,0 together with rM and t0.

of each iteration and prepare for the Jacobian computation of the next iteration:

∆r̂r,i−1 = E CN∆P̂r,i−1

∆P̂v,i−1 =∆P̂r,i−1

Then update the estimate rr,i and Pv,i to get prepared for the computation of the Jacobian in next iteration:

rr,i = rr,i−1 +∆r̂r,i−1

Pv,i = Pv,i−1 +∆P̂v,i−1

Before the iteration begins, the integration model also needs to convert the initial value Pr,0 to rr,0 and Pv,0 in

order to compute hV and hG to begin the iteration. Further, the height offset t0 is of several decimeters and

in the implementation the initial value for it is set to 0.

Selection of stop criterion

To end the iteration and obtain the estimators, the selection of the stop criterion is an open problem and

affects the estimation quality, especially for the second method of the monocular vision functional model.

The stop criterion is a threshold to control the ’sum of weighted squares’ a successful estimation process

should reach.

sum o f wei g hted squar e =∆P̂ T Q−1
PP∆P̂ ≈

n∑
i=1

∆P̂ 2
i

σ2
P̂i

(3.17)
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Q−1
P̂ P̂

is the normal matrix,

Q−1
P̂ P̂

= J T
P,i−1W JP,i−1 (3.18)

One can see the value of stop criterion depends on the number of estimators. To have a general intuition,

the stop criterion can be rewritten as an approximation on equation (3.17) right hand side. When we take the

square root of the stop criterion divided by the number of parameters, one can rewrite the above equation as:

∆P̂i ≈
√

sum o f wei g hted squar e

n
σ2

P̂i

For Method I in monocular vision, we set the stop criterion as 1, the number of estimators are always 4; while

for method 2, the value changes into 4 for 4 features case, because the number of estimators is 16.

√
1

4
σ2

P̂i
=

√
4

16
σ2

P̂i
= 1

2
σP̂i

This setting is to meet the general standard for both methods, therefore, the change in the estimate be-

tween two consecutive iteration steps can meet half of its assumed precision. On the other hand, we would

like to see the process improves the estimators’ precision, however, for Method II of monocular vision, it is

computationally heavy to have a stricter criterion. Gauss-Newton iteration is able to solve nonlinear prob-

lems when the computed Jacobian is full rank and the search direction is suitable for a line search. The

method has fast convergence speed when it is in vicinity of the solution, and its efficiency relies on an accu-

rate initial guess, see CROEZE et al. [10].

3.5. Description of performance parameters

To evaluate the performance of the above model, several quantities of interest are defined which give fur-

ther insights in the model and interpretation of results. In this section, these quantities are introduced by

conception, computation and interpretation.

Precision shows the influence of the propagated measurement noise spread in result, correlation coeffi-

cient describes the dependence of any of the two estimates, and reliability shows the capability of detecting

faults and anomalies in the measurements by statistical testing.
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3.5.1. Precision and correlation coefficients

The inverse of the normal matrix of equation (3.18), QP̂ P̂ , is symmetric, and contains variance on the diagonal

and covariances between the estimators elsewhere. Suppose there are two estimates P̂1, P̂2 of unknowns,

to obtain precision and correlation coefficients, QP̂ P̂ should be processed as: taking the square root of the

diagonal which are standard deviations σP̂1
,σP̂2

of the estimates; omit lower triangular matrix and divide

the non-diagonal elements which is the covariance C (P̂1, P̂1) by the corresponding standard deviations. The

correlation coefficient of two estimates:

ρ(P̂1, P̂2) = C (P̂1, P̂2)

σP̂1
σP̂2

−1 ≤ ρ(P̂1, P̂2) ≤ 1

3.5.2. Minimal detectable bias

Minimal detectable bias can describe the internal reliability that determined by matching a certain probabil-

ity of false alarm and detection, see De Jong and Teunissen [14]; de Bakker et al. [13].

In the previous monocular vision model, we use all coordinates information of features/landmarks ex-

tracted from the image plane and the real world, however, there might be some misidentification when either

detecting features from the image plane, or retrieving landmark position coordinates from the digital map.

Under such situations, we take the alternative hypothesis so as to account for these blunders’ effect (error of

misidentification), or when the observations are not fit for the current hypothesis (misspecification).

H0: there is no blunders in observation set-up, or model misspecification.

Ha : the functional model includes blunders or misspecification in observation set-up

The goal of the MDB is to find a corresponding value of the noncentrality parameter λ that meets the

false alarm and misdetection probability (the purple and green area in Figure.3.7 respectively) of the two

hypothesis. The false alarm α for type I error we set in this experiment as 0.005, as well as the one for type

II error β. There are two ways to find the desirable noncentrality parameter λ, either fix α and look for the

λ which gives the error probability β that meets our requirement under a certain degree of freedom (in our

case, the size of the error), or keep β fixed, and from which λ the probability of type I error complies with the

threshold.

The alternative hypothesis is:

∆y = ∂H

∂P
∆P + ∂H

∂G
∆G +Cy 5+εV

Cy describes the dimension of 5. In the following implementation, we keep β fixed to compute λ. Since the
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Figure 3.7: Noncentral distribution: computation of type I error probability α and type II error probability β. The probability related to
a critical value describes the area of the upper tail of the probability distribution.

feature identification error largely depends on the shape of the global feature, resolution of image, and light

conditions, we present two ways to design the Ha model, first consider a feature the additional parameters

is 1-vector cy , when a feature can be clearly identified in one direction, while the measurement of the other

direction might be faulty by Teunissen et al. [35]:

|5 j | =
√

λ

cT
y Q−1

y y Qê êQ−1
y y cy

with index j = 1, . . . ,2m. The variance of residuals Qê ê is computed by the Jacobian of the camera pose pa-

rameters by substituting its initial guess P0,

Qê ê =Qy y − Jp0 (J T
p0

Q−1
y y Jp0 )−1 J T

p0

then find λ recursively until the computed critical value meets the false alarm and the misdetection proba-

bility of the H0 and Ha hypothesis.

χ2
α,n,0 =χ2

1−β,n,λ (3.19)

n is related to the dimension of the error, when 5 is 1-vector, n = 1. The noncentrality parameter λ has a

direct effect on error 5y which can contribute to the corresponding observation:

5y, j = cy5 j

When we identify the shape of a landmark in the image to obtain its pixel measurements, a fault may happen

and the pixel measurements affect in both directions. The additional parameters is 2-vector Cy , since when

the global detection procedure misidentified the feature in the image, the measurements are wrong in both
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Figure 3.8: The relations between parameters in above equation in Fig.3.21, e1,e2 define the direction of major and minor axis of ellipse,
the length of the axis are 1√

λei g ,1
, 1√

λei g ,2
. A vector 5i projects the 2-vector MDB solution with the length of [5ui ,5vi ] on direction of

u, v respectively.

u and v , while the measurements of different features are independent. When the observation uncertainty is

known, and λ is computed from 3.19 one can obtain size of the error 5i :

λ=5T
i C T

y Q−1
y y Qê êQ−1

y y Cy5i (3.20)

However, since Cy is 2-dimensional and we could not obtain 5i directly from 3.20 which is a 2× 1 vector,

since it contains two unknowns, 5ui ,5vi , we apply the eigenvalue decomposition on the positive definite

matrix A =C T
y Q−1

y y Qê êQ−1
y y Cy , the decomposition can be described as:

A = [e1 e2]

λei g ,1

λei g ,2


eT

1

eT
2


e1,e2 contains the unit direction vectors corresponding to the major and minor axis of the tilted ellipse. Since

we have two unknowns in 5i , according to the principal axis theorem, matrix A from equation (3.20) can be

represented in fig.3.8 as an ellipse 5T
i A5i = λ (for a fixed value of λ), and substitute by the above equation,

the ellipse function is obtained,

(eT
1 5i )2

1
(
p
λei g ,1)

2 + (eT
2 5i )2

1
(
p
λei g ,2)

2 =λ (3.21)

A point lies on the ellipse in fig.3.8, when it satisfies the above equation, and the vector from the center of
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the ellipse to the point is 5i , the range of the magnitude of vector 5i is:

√
λ

λei g ,1
<

√
5u2

i +5v2
i <

√
λ

λei g ,2

Since the properties of global feature detection is unknown, we assume the 2-vector MDB can fall into

any point onf the ellipse, within the range in the above equation.

3.5.3. Condition number

The condition number is computed by the largest eigenvalue divided by the smallest one of a functional ma-

trix, it states how sensitive the function is subject to changes or perturbations. In later performance analysis,

the condition number is labeled as Γ.



4
Simulation and results

This chapter contains the results from the simulation, which gives more insights into the model performance

and properties beside those analyzed in Chapter 5, and provides recommendations for the real experiment.

The Chapter begins with how to conduct a simulation of the particularly designed landmark geometries and

the projection of their pixel coordinates on the image. The monocular vision model demonstrated in Chapter

3 will be tested with simulated data, which contains simulated landmark positions in reality and in the image

plane. Theoretical analysis is carried out to evaluate the performance of the monocular vision model, the

GNSS model and the integration model from the selected scenarios in this chapter. Additionally, an extended

integration model is proposed based on the performance of the integration model, and it is evaluated by the

theoretical analysis as well.

4.1. Set-up of simulation

The simulation is based on the data acquisition procedure from a field experiment, with the consideration

of different scenarios by forming four types of features geometry in the image. Constants (like focal length,

image size and true camera pose) and four distributed landmark position geometries are chosen to simulate

the corresponding pixel coordinates (forward model). Estimation of the unknown parameters is achieved by

the inverse model, the quantities of interest of the estimators are computed using the true camera pose.

43
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4.1.1. Set-up for focal length, image size and truth

The following camera parameters are set as:

Focal length: 4.9mm

Image size: 3000×4000 pixels

True camera pose: κ= 0.20r ad s, X0 = 2.800m,Y0 =−0.500m, Z0 = 1.500m

Pixel and landmark measurement uncertainty: σu =σv = 2.5[pi xel s],σX =σY =σZ = 0.050m

The focal length and image size are obtained from the manufacturer of the camera, the pose of the camera

is close to, but different from the map origin. The uncertainty in vision measurements is small (optimal object

recognition is assumed, as well as a distortion-free image). The landmark position error which is set as the

same level of HD maps error.

Since observations from the image are all in unit pixels, a conversion is needed to express the focal length

in pixels:

ppi = Lc

L
=

√
w2

c +h2
c

L

ppi is the abbreviation of pixel per inch, wc ,hc are the width and height the physical dimension of the image

or sensor in pixels, Lc ,L are the diagonal size expressed in inches of the image or sensor and the display

respectively.

4.2. Simulating landmark positions

Landmark geometry is critical to the position solution, to explore the best performance of the position so-

lution and provide insights for the real experiment. We consider four scenarios with particularly distributed

landmark geometries, by inspecting their geometries both in reality Fig.4.1 and in the image plane Fig.4.3:

in the ’normal’ scenario, the landmarks are well distributed on the image plane; in the ’cluster’ scenario, the

landmarks are crowed together; in the ’line up in x direction’ scenario, the landmarks are aligned around the

image center horizontally; in ’line up in y direction’, the landmarks are standing vertically at the central line

of the image. The scenarios are selected by simulating the extreme cases, and real cases should fall between

the cases. By setting up four geometries, one can inspect performance and properties of the quantities of

interest, and further, make suggestions for the map database construction.

However, to generate the landmark position coordinates in reality more reasonably, several constraints are

considered: landmarks are all standing in front of the camera within a certain angle of view; the simulated

pixel coordinates computed from the constants and simulated landmarks must within the image size; and

some landmarks are of the same height.
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Figure 4.1: 3D plot of four landmark geometries in reality. The green dots are landmarks in the world frame (blue), red ones are the
projected features of the green ones on image plane in the camera frame (red).

All the geometries are obtained by changing landmark coordinates in X and Y, leaving the coordinates in

Z as constant. Scenarios with less landmarks or feature cases are obtained by discarding the first landmark

and then the first and second landmark, the changed geometry in reality is included in Appendix.A.

4.3. Simulating pixel coordinates

After setting up constants and landmark positions by constraints from different geometries, a series of func-

tions are called to compute pixel coordinates of the projected landmarks on the image by forward modeling.

In Fig.4.2, the forward model is to use landmark position coordinates and constants to produce simulated

pixel coordinates, the inverse model employs pixel coordinates measurements and constants to estimate the

unknowns, and to produce results of the simulated data as well as the data collected from a real experiment,

which is elaborated in Chapter 5.

4.3.1. Function flow chart to simulate pixel measurements

From Fig.4.2, the pixel coordinates are computed using the forward model, its conversion to the image plane

is not necessary in the experiment of simulated landmark position coordinates and pixel coordinates. The

following results are computed by simulated pixel coordinates through the inverse model. It is worth not-
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Figure 4.2: Process of forward model (blue arrow) and inverse model (purple arrow). The defined functions are set in italics.

ing that in Chapter.5, the observations are obtained in the image plane so conversions are indispensable to

enter the inverse model and carry out parameter estimation. Fig.4.2 displays the flow of functions, and the

description for each function is:

Jacobi an : compute Jacobian matrix of the target functions with respect to the unknowns;

Pr o j ect i on : project landmark position coordinates in reality onto camera plane;

Rot ati on : computation of concatenated rotations from world frame to camera coordinates;

pi xel measur ement s: conversion of coordinates of camera plane to the image plane or the other way

around.

4.4. Results and discussion

The results from this chapter are based on theoretical analysis, by inspecting the MDBs, correlation coeffi-

cients and standard deviations of the estimators.

Theoretical analysis aims to reveal the optimal performance of testing and estimation that can be achieved

in the monocular vision model with different simulated geometries. The MDBs are computed by 1-vector and

2-vector cases as we explained in Section.3.5.2, by varying from 4 features to 3 features under each scenario,

because the minimal detectable bias computation terminates at 2-feature cases since there is no redundancy

(4 measurements and 4 unknown parameters to estimate). The precision and coefficients are interpreted

from the variance matrix QP̂ P̂ which is computed from JP,0,W , the deduction and steps are explained in Sec-

tion.3.5.1 and Section.3.4 respectively.

The experimental analysis is based on an iterative procedure with an initial guess for the camera pose,

by varying from 4 features to 2 features under each scenario, this full processing operation is adopted in

Chapter.5.

To further interpret these approaches, one can see from Figure.4.4, different from the experimental anal-
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Figure 4.3: Geometry of 4 selected features on the image plane of four scenarios, with the origin of the image plane on the top left. Top
left: normal, top right: cluster, bottom left: line up in x, bottom right: line up in y.
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Figure 4.4: Comparison between theoretical analysis and experimental analysis: the input and procedure.

Figure 4.5: Illustration of the different input for the vision models (Method I and Method II), GNSS and integration model for the
theoretical analysis. One feature implies two pixel measurements in the vision model, one satellite denotes its pseudorange

measurement that enters GNSS and Vision model. The input measurements are chosen by the redundancy of the model, MDB requires
at least one redundacy, the estimates can be determined without redundancy.

ysis that the theoretical analysis is iteration- free and uses the true camera pose as the input, while the later

one uses an initial camera pose as the input to an iterative process to compute the estimators.

Figure.4.5 shows the different sources of input used to produce the results in Chapter 4, the results are

presented in this order for each model.

4.4.1. Vision

Method I

The deduction of Method I is described in Section.3.2.2: the pixel measurements are the computed observa-

tions and the unknowns are X0,Y0, Z0,κ. We use the true camera pose as the input in the theoretical analysis

to show the optimal performance of quantities of interest of the model as well as the estimators.
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Reliability According to the explanation on Section.3.5.2, the MDB depends on the chosen level of signifi-

cance, the design matrix J , vector c or C , and the observation variance matrix Qy y . It gives the minimal value

of bias that can be detected by satisfying the probability of false alarm α and misdetection error β under two

hypothesis. If 5 has a larger value, it means that the performance of validation of the corresponding obser-

vation is poor, and the observation has the potential for the system to produce seriously biased estimators

(effect of the MDB on the parameters). It can also be interpreted that, if the observation fault is beyond the

MDB, the system is able to detect it under the current hypothesis. For 2-vector MDB (only computed for vi-

sion), the larger range and values indicate the corresponding feature observation is bad. Unlike the 1-vector

MDB, the method we proposed in Chapter 3 is unable to describe the fault in which direction in the image.

1-vector MDB computed from 4 features In the 1-vector MDB for 4 features case (table.4.1),∆u3 in normal

geometry and ∆v1 in line up in y direction have larger values.

Table 4.1: Method I: 1-vector MDB for 4 features unit [pixels] by true camera pose without observations uncertainties.

Normal Cluster Line up in x Line up in y

∆u1 19.93 18.76 45.27 54.98
∆v1 14.04 16.16 16.29 92.53
∆u2 15.45 22.94 30.44 18.27
∆v2 23.58 16.03 15.84 15.24
∆u3 108.90 35.65 15.55 16.58
∆v3 44.89 16.09 15.31 17.57
∆u4 18.02 18.76 68.73 15.53
∆v4 14.17 20.99 17.41 17.02

2-vector MDB computed from 4 features In the 2-vector MDB for the 4 features case (table.4.2), the third

feature in normal geometry, fourth feature in line up in x, and first in line up in y direction have larger values

and larger ranges, which complies with the conclusion in the 1-vector MDB computation and these values

are larger.

Table 4.2: Method I: 2-vector MDB for 4 features unit [pixels] by true camera pose without observations uncertainties.

Normal Cluster Line up in x Line up in y

(∆u1,∆v1) (21.26,14.91) (19.96,17.19) (49.63,17.26) (58.49,98.44)
(∆u2,∆v2) (16.43,25.09) (27.04,16.34) (32.57,16.83) (19.43,16.22)
(∆u3,∆v3) (124.46,47.23) (42.72,16.76) (16.55,16.29) (17.64,18.70)
(∆u4,∆v4) (19.24,15.04) (19.49,23.05) (99.33,16.07) (16.53,18.11)

1-vector MDB computed from 3 features In the 1-vector MDB for 3 features case (table.4.3),∆u3 in normal

geometry, ∆u3 and ∆u4 in line up in x direction, ∆v4 in line up in y direction have relatively larger values.
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Table 4.3: Method I: 1-vector MDB for 3 features unit [pixels] by true camera pose without observations uncertainties.

Normal Cluster Line up in x Line up in y

∆u2 18.35 23.20 103.83 26.83
∆v2 35.57 17.34 17.26 17.75
∆u3 267.45 36.05 236.69 16.58
∆v3 62.11 17.13 16.45 20.74
∆u4 21.24 63.80 144.36 43.43
∆v4 14.34 25.79 16.02 133.74

2-vector MDB computed from 3 features In the 2-vector MDB for 3 features case (table.4.4), the third fea-

ture in normal geometry, fourth feature in cluster, all features except for the first one in line up in x and fourth

feature in line up in y direction have larger values, the number of larger MDB increases obviously.

Table 4.4: Method I: 2-vector MDB for 3 features unit [pixels] by true camera pose without observations uncertainties.

Normal Cluster Line up in x Line up in y

(∆u2,∆v2) (18.54,49.23) (28.25,17.34) (114.13,18.34) (28.54,18.88)
(∆u3,∆v3) (437.76,65.07) (43.87,17.76) (305.07,17.48) (17.64, 22.07)
(∆u4,∆v4) (22.59,15.26) (303.03,25.53) (447.70,16.95) (46.21, 142.29)

Precision and correlation coefficient The diagonal values, for instance in table.4.5, represent the standard

deviations of the estimators, whose units are: [degree,m,m,m]. The rest (off diagonal) are the correlation

coefficients between the corresponding estimators. Γ0 is the condition number computed from the Jacobian

with respect to the initial value for the camera pose P0.

QP̂ P̂ computed from 4 features The unknown parameters computed in the normal geometry can be es-

timated with good precision, especially a standard deviation of 0.04 degree for the camera azimuth κ, and

0.22m for the X0, Y0 and Z0 coordinates of the camera. The correlation coefficients between the unknowns

range up to 0.01 which means they are nearly uncorrelated. Under the cluster-like geometry, one can ob-

serve that the standard deviation of κ and Y0 degrade, the correlation coefficients of κ and the rest of other

estimators increase, which means the setting is relatively worse in telling κ from the other estimators. Y0 has

the largest standard deviation among the three direction. The line up in x geometry gives degraded standard

deviation in κ and X0, and the correlation coefficients between κ and X0, κ and Y0. X0 has the largest stan-

dard deviation in three directions. The line up in y geometry produces results with decent and comparable

quantities of interest with regard to the normal geometry. Judging by the condition number Γ0, system of the

cluster geometry is most sensitive to small perturbation to the data, and the easiest to become numerically

ill-conditioned.
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Table 4.5: The interpreted QP̂ P̂ of 4-feature simulated geometries from Method I: true camera pose without observation uncertainties.

Normal Cluster Line up in x Line up in y

κ 0.04 0.01 -0.00 -0.00 0.20 0.07 0.15 0.02 0.20 0.12 0.05 0.00 0.04 0.01 0.00 0.00

X0 0.22 -0.00 -0.00 0.22 0.00 -0.0 0.23 0.00 0.00 0.22 -0.00 -0.00

Y0 0.22 0.00 0.23 0.01 0.22 0.00 0.22 0.00

Z0 0.22 0.22 0.22 0.22

Γ0 12.84 173.78 79.68 29.57

QP̂ P̂ computed from 3 features After discarding one feature, all geometries are able to solve the solution

of X0,Y0, Z0 with the standard deviation within 0.23m. For normal geometry, all correlation coefficients are

fairly small. The 3-feature cluster geometry, standard deviation of κ increases to 0.22 degree, the correlation

coefficients of κ and Y0, κ and Z0 slightly decrease, but still fairly low, this is because the features in cluster

geometry are very close to each other, the discarded feature can help the system differentiate the estimators

from each other. For the line up in x geometry, the standard deviation of κ and Y0 degrades a little. The

standard deviation of κ in line up in y increases. From the condition number, one can see that the normal

geometry remains the least to be numerically ill-conditioned of the four geometry settings.

Table 4.6: The interpreted QP̂ P̂ of 3-feature simulated geometries from Method I: true camera pose without observation uncertainties.

Normal Cluster Line up in x Line up in y

κ 0.05 0.01 0.01 0.00 0.22 0.09 0.12 0.01 0.30 0.14 0.14 0.01 0.08 0.03 0.01 0.00

X0 0.22 -0.00 -0.00 0.22 -0.00 -0.00 0.23 0.02 0.00 0.22 -0.00 -0.00

Y0 0.22 0.00 0.23 0.01 0.23 0.00 0.23 0.00

Z0 0.22 0.22 0.22 0.22

Γ0 12.32 151.59 109.75 77.60

QP̂ P̂ computed from 2 features By inspecting the solutions from the 2-feature normal geometry, the stan-

dard deviation of κ degrades to 0.09 degree, although the correlation coefficients of κ and Y0, κ and Z0 in-

crease, the values for the normal geometry are fairly small. The 2-feature under cluster geometry produces

estimators κ and Y0 up to 0.22 degree and 0.25 m respectively. The correlation coefficients of κ and Z0, κ and

Y0, Y0 and Z0 increase but these values are still show that the estimators are less correlated. Judging by the

quantities of interest, the line up in x direction has worst performance. The standard deviation ofκmeets 1.87

degree, and the standard deviation for X0 and Y0 are up to 0.3 m. All of the correlation coefficients increase,

especially for κ and X0, κ and Y0, X0 and Y0. The line up in y geometry can have comparable quantities of

interest with respect to the normal one. The standard deviation of κ increases to 0.15 degree, the standard

deviation of the rest of estimates are below 0.23 m. The condition number increase in all geometries, and line

up in x increases significantly.
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Table 4.7: The interpreted QP̂ P̂ of 2-feature simulated geometries from Method I: true camera pose without observation uncertainties.

Normal Cluster Line up in x Line up in y

κ 0.09 0.00 0.05 0.02 0.22 0.08 0.17 0.02 1.87 0.69 0.65 0.04 0.15 0.05 0.01 0.00

X0 0.22 -0.00 -0.00 0.22 -0.01 -0.00 0.31 0.45 0.03 0.22 -0.01 -0.00

Y0 0.22 0.00 0.25 0.03 0.30 0.03 0.23 0.01

Z0 0.22 0.22 0.22 0.22

Γ0 34.24 199.12 571.97 79.97

Method II

Different from Method I, which uses pixel measurements to estimate camera pose, the observations and

unknowns of Method II also include landmark positions, therefore, initial values for landmark positions are

also needed.

Reliability analysis

1-vector MDB computed from 4 features Compared with table.4.1, the values presented by Method II can

be one order larger than the those computed by Method I, but one can still see that ∆u3 in normal geometry,

∆u1 and ∆v1 in line up in y have larger MDBs.

Table 4.8: Method II: 1-vector MDB for 4 features unit [pixels] by true camera pose without observation uncertainties.

Normal Cluster Line up in x Line up in y

∆u1 293.76 215.87 399.34 940.07

∆v1 164.43 180.30 151.57 1498.99

∆u2 218.78 226.90 270.94 209.19

∆v2 308.34 154.78 146.27 142.98

∆u3 1563.13 353.23 137.52 179.37

∆v3 815.26 144.29 132.90 196.09

∆u4 266.43 215.63 594.25 288.51

∆v4 210.53 226.25 125.42 288.01

2-vector MDB computed from 4 features Third feature in normal, fourth feature of line up in x, first feature

in line up in y have larger values and ranges.

1-vector MDB computed from 3 features The number of MDBs that have larger values increases. ∆u3, ∆v3

in normal geometry, ∆u3, ∆u4 in line up in x, and ∆v4 in line up in y have relatively larger values, and it has

different pattern compare with the 4-feature case.
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Table 4.9: Method II: 2-vector MDB for 4 features unit [pixels] by true camera pose without observation uncertainties.

Normal Cluster Line up in x Line up in y

(∆u1,∆v1) (315.17,174.49) (229.74,191.78) (439.20,160.52) (1000.17, 1594.81)

(∆u2,∆v2) (232.75,328.09) (259.16,159.83) (288.78,155.53) (222.57, 152.12)

(∆u3,∆v3) (1757.33,855.31) (435.66,150.33) (146.35,141.36) (190.83, 208.63)

(∆u4,∆v4) (293.31,219.51) (218.37,255.77) (901.60,131.95) (306.97, 306.40)

Table 4.10: Method II: 1-vector MDB for 3 features unit [pixels] by true camera pose without observation uncertainties.

Normal Cluster Line up in x Line up in y

∆u2 265.47 230.87 852.21 305.23

∆v2 498.44 163.96 155.10 168.50

∆u3 4126.37 359.99 1945.63 188.69

∆v3 1026.86 153.92 142.09 196.94

∆u4 303.11 631.50 1185.25 494.19

∆v4 226.36 260.05 132.46 1269.86

2-vector MDB computed from 3 features Besides the faulty features shown from 1-vector case, fourth fea-

ture of cluster also hsow larger error.

Table 4.11: Method II: 2-vector MDB for 3 features unit [pixels] by true camera pose without observation uncertainties.

Normal Cluster Line up in x Line up in y

(∆u2,∆v2) (262.64,791.77) (263.39,168.97) (942.50,164.82) (324.75, 179.27)

(∆u3,∆v3) (6025.91,1076.97) (442.01,160.15) (2620.54,151.03) (200.75,209.53)

(∆u4,∆v4) (330.49,237.68) (2735.79,256.95) (4018.31,140.14) (525.78,1351.05)

Precision and correlation coefficient

QP̂ P̂ computed from 4 features Compared with table.4.5, the standard deviation of κ and correlation coef-

ficients degrades significantly. The normal scenario yields results of the best performance, with a standard

deviation of 0.76 degree in κ estimation, 7 cm in X0,Y0 and 3 cm in Z0, the correlation between κ and X0 is

close to 1. Then follows the performance of line up in y, with larger correlation coefficients in κ and X0, X0

and Y0, X0 and Z0, Y0 and Z0. The standard deviation of X0, Z0 is lower than 6 cm, Y0 has a standard deviation

of 0.19 m, and 0.55 degree in κ estimation. Line up in x produces Y0, Z0 with an acceptable precision below

0.14 m, while X0 has a precision of 0.24 m and κ has a precision of 1.87 degree. The correlation coefficient of

X0 and κ is nearly 1. The cluster scenario has worst performance among the four, not only the precision of

estimators are worse, with 1.84 degree of κ, 0.19 m of X0, 0.08 m of Z0 and 0.66 m of Y0, but also the larger

correlation coefficients in κ and X0, Y0 and Z0. From the condition number, one can see that systems for all

geometry settings are numerically ill-conditioned compare with the results from Method I.
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Table 4.12: The interpreted QP̂ P̂ of 4-feature simulated geometries from Method II: true camera pose without observation uncertainties.

Normal Cluster Line up in x Line up in y

κ 0.76 0.91 -0.11 -0.07 1.84 0.83 0.45 0.39 1.87 0.99 0.75 0.14 0.55 0.70 0.05 0.00

X0 0.07 -0.26 -0.1 0.19 -0.11 -0.14 0.24 0.69 0.11 0.06 -0.56 -0.50

Y0 0.07 0.23 0.66 0.94 0.14 0.31 0.19 0.84

Z0 0.03 0.08 0.03 0.03

Γ0 13585.11 85464.73 37438.10 27974.52

QP̂ P̂ computed from 3 features By discarding one feature, results from all geometries degrade, since the

correlation coefficients are computed by covariance over standard deviation, some of the correlation coeffi-

cients are improved is because of the increased standard deviations. The normal geometry is able to meet

an requirement for the estimators in 1.07 degree and 10 cm. Line up in x is capable of obtaining standard

deviation of X0,Y0, Z0 within one thirds of a meter while 2.75 degree in κ estimation. Cluster and line up in

y have worse standard deviation in Y0 among the three directions of the local reference frame, which are of

0.67 m and 0.42 m respectively.

Table 4.13: The interpreted QP̂ P̂ of 3-feature simulated geometries from Method II: true camera pose without observation uncertainties.

Normal Cluster Line up in x Line up in y

κ 1.07 0.85 0.38 0.02 2.06 0.86 0.33 0.25 2.75 0.97 0.87 0.41 0.79 0.67 0.04 0.00

X0 0.07 0.03 -0.07 0.23 -0.18 -0.23 0.30 0.75 0.31 0.12 -0.67 -0.63

Y0 0.10 0.23 0.67 0.93 0.33 0.57 0.42 0.90

Z0 0.03 0.08 0.04 0.07

Γ0 13368.14 75341.37 50139.31 48830.46

QP̂ P̂ computed from 2 features The 2-feature case table.4.14 shows the same pattern as the 3-feature case

but degrades further. Line up in x geometry has the worst performance, the standard deviation of κ, X0,Y0

reach 15.42 degree, 1.77 m and 1.59 respectively, with all correlation coefficients close or equal to 1.

Table 4.14: The interpreted QP̂ P̂ of 2-feature simulated geometries from Method II: true camera pose without observation uncertainties.

Normal Cluster Line up in x Line up in y

κ 1.64 0.29 0.77 0.66 2.13 0.76 0.39 0.35 15.42 1.00 0.99 0.87 1.99 0.79 0.05 0.00

X0 0.08 -0.30 -0.34 0.24 -0.29 -0.31 1.77 0.99 0.86 0.20 -0.54 -0.55

Y0 0.29 0.90 1.04 0.96 1.59 0.89 0.58 0.94

Z0 0.09 0.13 0.08 0.11

Γ0 32656.24 96558.74 234835.60 55775.98
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Summary

Summary of results from Method I and Method II functional model evaluated by 1-vector and 2-vector

MDB: 1-vector and 2-vector MDBs computed from Method I and Method II show similar patterns, and the

pattern becomes obscure when the feature number is reduced; Method II’s performance is less stable than

Method I’s by the number of large MDBs , their MDBs show different patterns.

Cluster and line up in x direction have overall smaller MDB based on 1-vector and 2-vector computation.

Less features give larger MDB in both methods, which contributes to less validation between the obser-

vations.

The 1-vector MDB has overall smaller MDB than the 2-vector one, it also matches the assumption we

applied in developing functional models of Method I and Method II: the pixel measurements uncertainties

are independent.

Summary of results from Method I and Method II functional model evaluated by QP̂ P̂ : Theoretically, the

results from Method I and Method II are the same when we deal with a linear problem.

Method I’s performance is more stable than Method II’s by judging the smaller value of standard deviation

and correlation coefficients of the unknowns.

Normal geometry has overall better performance based on evaluation of standard deviation and correla-

tion coefficients of estimators by the theoretical analysis, then followed by line up in y direction, cluster and

finally, line up in x.

Normal geometry has overall stabler performance, since it less sensitive to feature number reduction,

line up in y geometry has the comparable performance, cluster geometry is subject to the feature changes

significantly among all geometry settings.

Each geometry has its own interesting properties so selection of an experiment setup depends on the

requirement on the results.

4.4.2. GNSS

To reduce the computational load of the integration model, carrier phase observations are excluded , since

one carrier phase observation brings one more ambiguity term to the unknowns when using a single epoch of

data. The redundancy of the integration model by taking carrier phase observations remains the same, there-

fore, including carrier phase as the observations does not contribute to the estimators of interest especially

by taking data at the start of SF-PPP.

Reliability The possible faults for GNSS observations are computed by the 1-vector MDB.



4.4. Results and discussion 56

MDB computed from all available satellite pseudorange observations. The MDB computed for 8 pseu-

dorange observations varies from 4.56 m to 24.89 m. Among them, the sizes of the errors 5 for the second,

fourth and fifth pseudorange observations have larger values.

Table 4.15: True camera pose with observations computed from 8 satellites.

Pseudorange MDB [m]

∆p1 11.21

∆p2 24.89

∆p3 10.23

∆p4 17.63

∆p5 20.99

∆p6 5.08

∆p7 4.56

∆p8 7.77

MDB computed from 5 satellite pseudorange observations. The pseudorange observations are selected

based on elevations by a descending order. Since the overall input observations are less, the values of the

MDB increase, especially for the first one, MDB from table.4.15 increases by more than 2 times. However,

the sixth and seventh observation have small values and the increments are small, which means the two

observations are more reliable and can be verified with the rest of the input observations.

Table 4.16: True camera pose with observations computed from 5 satellites, selected by descending elevations.

Pseudorange MDB [m]

∆p1 29.16

∆p4 30.35

∆p6 5.59

∆p7 4.77

∆p8 10.19

Precision and correlation coefficients

QP̂ P̂ computed from all available and 5 satellite pseudorange observations. The unit of X0,Y0, Z0,d tr is

[m]. The precision of X0,Y0, Z0,d tr ranges from 0.78 m to 1.36 m, with relatively high correlation between

Z0 and d tr . This because the satellites are far away from the Earth surface (local reference frame), and they

are all on one side of the receiver, namely above it. Hence they all contribute to the estimation of the local

height component (Z-coordinate) through the sine of their elevation angle (all larger than 5 or 10 degrees),

and, they all contribute by a coefficient of one to the estimation of the receiver clock error. The impact of

the Z-coordinate and the receiver clock error on the range observations is pretty much the same, and thereby
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(a) Skyplot of all available satellites. (b) Skyplot of satellites of top 5 elevations.

Figure 4.6: Skyplot of 8 and 5 satellites at the start of SF-PPP data processing.

these two parameters are hard to separate, leading to a large correlation between them. Ultimately if all

satellites were in the local zenith (sine of elevation angle equal to one), it would not be possible to separate

them at all. Inspect the satellite geometry from Fig.4.6, one can see the satellite are well distributed, which is

reponsible for the fair correlation between the other estimates. By reducing the number of available satellite

pseudorange observations, the precision of unknowns all degrades.

Table 4.17: The interpreted QP̂ P̂ computed from pseudorange observations of 8 and 5 satellites, X0,Y0, Z0 are transformed into world
frame.

8 satellites 5 satellites

X0 0.78 0.06 0.36 0.41 0.83 0.05 0.27 0.31

Y0 1.14 0.07 0.04 1.25 0.06 0.09

Z0 1.58 0.97 1.91 0.98

d tr 1.36 1.68

Skyplot Fig.4.6 shows the skyplot of all available satellites over the experiment site at the start of SF-PPP

data processing. One the left, one can see the satellites are well distributed but some of them have small

elevations.

Estimation of GNSS From table.4.18, position estimation for the start of SF-PPP data processing when using

all satellite pseudorange observations has an error 1.10 m in X0, 1.73 m in Y0 and -0.94 m in Z0. When using

satellites pseudorange observations of top 5 elevations, only X0 degrades slighly, this is because the position

estimates rely heavily on the observations with largest elevations, which means the less noisy observations.

Noisy low elevation observations contribute only slightly to the position estimates.

Summary of GNSS analysis:
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Table 4.18: Error of the estimation of vision model, units are [m,m,m].

Scenarios X0 Y0 Z0

8 satellites 1.10 1.73 -0.94

5 satellites 1.13 1.73 -0.94

Summary of results from the GNSS evaluated by 1-vector MDB: By reducing the number of satellite pseu-

dorange observations, while the number of unknown parameters remain the same, the MDB values increase.

Summary of the GNSS model QP̂ P̂ The high correlation coefficients between d tr and Z0 is because of the

property of GNSS positioning.

By reducing the number of satellite pseudorange observations from 8 to 5, the standard deviation of un-

knowns degrades by 20%, but they are still within 1.91 m.

4.4.3. Integration

The integration aims to combine the output from the two sensors, SF-PPP of the GNSS receiver and Method I

of the vision model by feeding landmark positions of the normal geometry. From the previous section, vision

results from Method I by using landmarks in normal geometry has the best and the most stable performance,

which means that the following results aim to present the best performance of the integration model.

Reliability The so-called 1-vector MDB is computed for two scenarios: 1. sufficient observations: when

satellite observations and pixel measurements are sufficient and both sensors can function individually, there-

fore, 8 satellite pseudorange observations and 4 detected visual landmarks are considered as observations;

2. insufficient observations: 3 satellite observations and 2 features are regarded as the input for the integra-

tion model, which aims to simulate when GNSS fails while vision alone just still functions. Cases in practice

should fall in between the two scenarios.

MDB computed for all satellite pseudorange and pixel observations. Compare table.4.15 with table.4.19,

the MDB values decrease due to adding the vision system, which improves the estimates performance signif-

icantly (table.4.21). What’s more, the pattern is clearer by integrating the vision system since the integration

can detect errors better in GNSS. The vision MDBs of table.4.1 remain the same due to less contribution of

the GNSS system in the integration model.

MDB computed from 3 satellite pseudorange and 2-feature pixel observations. By omitting 5 satellite

pseudorange observations and 2 landmark pixel measurements, the MDBs of all observations increase, es-

pecially for the vision ones, the value increase up to 3 order larger, since the estimates performance relies
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Table 4.19: True camera pose with observations computed from 8 satellites and 4 landmarks.

Pseudorange MDB [m] u MDB [pixels] v MDB [pixels]

∆p1 7.94 ∆u1 19.93 ∆v1 14.04

∆p2 24.27 ∆u2 15.45 ∆v2 23.58

∆p3 9.73 ∆u3 108.90 ∆v3 44.89

∆p4 9.45 ∆u4 18.02 ∆v4 14.17

∆p5 19.40

∆p6 3.99

∆p7 4.44

∆p8 3.95

much on the vision part, and the vision system couldn’t be verified by GNSS observations due to the its rel-

atively poor performance compared to vision’s. ∆p6 and ∆p8 have the smallest MDB which is different with

table.4.16, this is because the GNSS part is much constrained by the more precise vision.

Table 4.20: True camera pose with observations computed from 3 satellites selected from 3 highest elevations and 2 landmarks.

Pseudorange MDB [m] u MDB [pixels] v MDB [pixels]

∆p6 5.23 ∆u3 6909.59 ∆v3 10665.39

∆p7 35.43 ∆u4 6771.01 ∆v4 3350.69

∆p8 4.55

Precision and correlation coefficients The following results are computed by normal geometry, accord-

ing to vision simulation results, the normal scenario has the best performance, so that one can explore the

optimal performance of integration model. The ways to select pixel measurements and pseudorange obser-

vations follow the same rules in previous sections.

Due to the observability of the system, besides the analysis of taking all available measurements into ac-

count table.4.21, the integration model we introduced in Chapter 3 can handle cases when GNSS or monoc-

ular vision individually fails, which are presented as table.4.23 (vision fails) and table.4.22 (GNSS fails).

QP̂ P̂ computed from all available pseudorange observations and pixel measurements. Scenario with suf-

ficient satellite and pixel observations: the unit of X0,Y0, A0, t0d tr is [m], κ is in degree. With sufficient satel-

lite pseudorange and pixel observations, the standard deviation of X0,Y0,κ can meet 0.22 m, 0.22m, 0.04

degree as one can see in table.4.21. The standard deviation of Z0 is 1.48 m, and the correlation coefficients

between the three estimators Z0, t0,d tr are close to 1. The system is unable to tell estimators Z0 from t0 from

each other, as we explained above that GNSS system can not tell Z0 from d tr , the integration system is unable

to tell the height offset between the camera and the GNSS antenna t0 from d tr either, because the antenna is

mounted on top of the camera.
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Table 4.21: The interpreted QP̂ P̂ computed from pseudorange observations of 8 satellites and pixel observations of 4 features.

Normal

X0 0.22 0.00 0.11 0.10 0.01 0.12

Y0 0.22 0.01 0.01 -0.00 0.00

Z0 1.48 0.99 0.00 0.97

t0 1.49 0.00 0.96

κ 0.04 0.00

d tr 1.25

Γ0 11740.13

QP̂ P̂ computed from pseudorange observations of 2 satellites and pixel measurements of 2 features. The

scenario describes when GNSS fails and vision alone can produce a solution. The QP̂ P̂ shows the same pattern

as table.4.21, the standard deviations of Z0, t0,κ,d tr degrade further.

Table 4.22: The interpreted QP̂ P̂ computed from pseudorange observations of 2 satellites and pixel observations of 2 features.

Normal

X0 0.22 -0.00 -0.16 -0.16 0.00 -0.16

Y0 0.22 0.02 0.02 0.05 0.02

Z0 6.24 1.00 0.00 1.00

t0 6.25 0.00 1.00

κ 0.09 -0.00

d tr 5.87

Γ0 89626.22

QP̂ P̂ computed from pseudorange observations of 4 satellites and pixel measurements of 1 feature. The

scenario describes when Vision fails and GNSS alone can produce a solution. The standard deviation of

X0,Y0,κ increase, especially for κ, since it can only be determined from vision. Compare with table.4.22,

taking more pixel measurements can improve the standard deviation and correlation coefficients of X0,Y0,κ

significantly.

Table 4.23: The interpreted QP̂ P̂ computed from pseudorange observations of 4 satellites and pixel observations of 1 features.

Normal

X0 0.91 0.38 0.49 0.50 0.69 0.50

Y0 3.47 0.84 0.80 0.92 0.84

Z0 4.60 1.00 0.84 1.00

t0 4.21 0.82 0.99

κ 23.16 0.85

d tr 4.06

Γ0 48194.95
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4.4.4. Extended integration

The integration model we presented has difficulty in differentiate Z0 from d tr , and can handle cases when

one of the sensors fails. The extended integration model assumes t0 as given, it is no longer included as

one of the unknowns, therefore, this method eliminates the correlation between Z0 and t0 and expands its

application for when GNSS and vision both fail.

Reliability

MDB computed by all satellite pseudorange and pixel observations. Compare table.4.24 with table.4.19,

we observe that the GNSS observations have smaller MDBs by leaving out t0, GNSS results show that t0 has

strong correlation between Z0 and d tr , which results in bigger values in residual variance matrix Qê ê . How-

ever, MDBs computed by vision remains the same which indicates that the vision observations barely con-

tribute to t0 estimation.

Table 4.24: True camera pose with observations computed from 8 satellites and 4 landmarks.

Pseudorange MDB [m] u MDB [pixels] v MDB [pixels]

∆p1 6.97 ∆u1 19.93 ∆v1 14.04

∆p2 23.58 ∆u2 15.45 ∆v2 23.58

∆p3 8.63 ∆u3 108.90 ∆v3 44.89

∆p4 8.36 ∆u4 18.02 ∆v4 14.17

∆p5 18.59

∆p6 3.98

∆p7 3.61

∆p8 3.92

MDB computed by 2 satellite pseudorange and 2-feature pixel observations. According to table.4.25, the

MDBs of vision increased significantly, the MDBs of the seventh and the eighth satellite pseudorange obser-

vations, who are of top 2 high elevation angles, increase slightly compare to the vision result, this is because

the vision precision is better than the GNSS’s, therefore, vision observations contribute more in unknowns

estimation and have less validation from the GNSS observations.

Table 4.25: True camera pose with observations computed from 2 satellites selected from descending elevations and 2 landmarks.

Pseudorange MDB [m] u MDB [pixels] v MDB [pixels]

∆p7 4.48 ∆u3 11358.61 ∆v3 22592.17

∆p8 4.48 ∆u4 11635.81 ∆v4 10562.68

Precision and correlation coefficients
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QP̂ P̂ computed from all available pseudorange observations and pixel measurements. Compare with ta-

ble.4.5, the first 4 columns have reached the same performance as the vision simulation result, the last col-

umn, which describes the correlation coefficients between d tr and the other unknowns and the standard

deviation of d tr (last one) significantly decline.

Table 4.26: The interpreted QP̂ P̂ computed from pseudorange observations of 8 satellites and pixel observations of 4 features.

Normal

X0 0.21 0.00 0.02 0.01 0.07

Y0 0.22 0.00 -0.00 -0.02

Z0 0.22 -0.00 0.49

κ 0.04 0.00

d tr 0.37

Γ0 2493.12

QP̂ P̂ computed from 3 satellite pseudorange observations and 1 pixel measurements. This situation de-

scribes when the two sensors both fail to produce a positioning solution. Although the extended integration

model is able to produce a positioning solution, the result is far off from the truth, the standard deviation of

the unknowns are large, especially for Y0 and κ. The correlation coefficients between the unknowns are close

to 1.

Table 4.27: The interpreted QP̂ P̂ computed from pseudorange observations of 3 satellites and pixel observations of 1 feature.

Normal

X0 2.97 0.96 0.95 0.99 0.94

Y0 18.92 1.00 0.98 0.98

Z0 3.19 0.97 0.99

κ 18.33 0.96

d tr 2.13

Γ0 134474.35

Summary of results from the integration and the extended integration model evaluated by 1-vector MDB:

It is clearer to observe the pattern on the GNSS part because the integration model performance is improved

by the vision part, which enables to perform validations of the GNSS peudorange observations better.

The integration and extended integration model can improve the GNSS system internal reliability (de-

creased MDB values) by reducing the correlation between X0 and d tr , Z0 and d tr .

Summary of the integration and the extended integration model QP̂ P̂ The integration model is able to

produce a positioning solution when one of the two sensors fails, theoretically, the extended integration
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model is able to produce a solution when the both sensors fail.

The integration model is able to estimate the height offset t0 of between the camera and antenna, with

high correlation coefficients with another two unknowns X0 and d tr , since vision has little contribution to

the t0 estimation. In the extended integration, t0 is treated as a known constant, and its effect is folded in Z0

estimation.

Vision measurements can significantly improve the precision of estimators, when satellite pseudorange

observations are insufficient. Adding satellite pseudorange observations can only slightly improve the preci-

sion of the estimators, because the estimators standard deviation obtained by vision is much smaller than by

GNSS, which is also verified by KIM and N.-H [20]’s experiment.

Compared with GNSS alone positioning, the integration method can reduce the standard deviation of

X0,Y0 by 86%; the extended integration method can further reduce the standard deviation of d tr by 78%, and

the correlation between Z0 and d tr .



5
Practical experiment and results

Based on the simulation results, a real experiment is designed and performed to experience performance of

the developed model closer to a real application. In this chapter, a description of a small field-experiment

is given, then followed by visualization, analysis and discussion of the results from the vision, GNSS and

integration model with data obtained from experiment. The method used to evaluate the model performance

is based on the experimental analysis.

5.1. Experiment setup

Based on the prototype of the experiment design in Fig.3.5, the GNSS antenna is mounted on top of the

camera with an height offset, the geometry of the landmarks is chosen as the normal one according to the

simulation results, and are measured by total station, which is also the origin of the local map, different but

close to the camera. In order to determine the local north precisely, one need an extra GNSS receiver to

compute the north correction angle, which describes the difference between the measured north and the

corrected north. The facilities used in the experiment include: total station, reflectors, camera, GNSS receiver

(2 high-end; 1 automotive type). The overview of the field experiment is shown in Fig.5.1.

Several steps need to be followed sequentially to obtain and process the measurements:

1. download IGS real-time corrections for SF-PPP;

2. take down weather conditions; picture of surroundings; experiment setup;

3. take measurements of two high-end GNSS receivers, to determine the origin of the world frame in the

64
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Figure 5.1: Design of experiment setup. GNSS receiver 1 occupies the origin of the world frame, its north can be related to the ECEF
frame by measuring the relative position between the two GNSS receivers. Once the position measurements of two high-end GNSS

receiver are successfully collected, move GNSS receiver 2 to the camera position, and swap GNSS receiver 1 with the total station. The
camera is set up locally horizontal and is aligned with respect to the world frame surveyed with the total station and is around 3.5 m

away from the GNSS receiver 1, κ is obtained by total station. The landmarks (blue) are placed within the angle of view and a maximum
range of 8 m.

ECEF frame, and to determine the azimuth of the baseline between the two in ECEF. Measure camera position

and κ by total station;

4. set landmarks within the camera’s angle of view, preferably in normal or line up in y geometry, with one

on the ground. Measure their positions using the total station in world frame, take several pictures;

5. on the same camera position but different height, mount low-cost GNSS antenna, take measurements

for 30 minutes, also log the data.

Constants set-up

Constants of the camera parameters from manufacturer:

Focal length: 4.9mm

Image size: 3000×4000 pixels

True camera pose: κ= 3.48r ad s, X0 =−3.192m,Y0 =−1.360m, Z0 = 1.408m (used for validation)

The pixel measurements are obtained manually on an image with distortion, and the landmark positions

are measured by the total station. The uncertainties for pixel and landmark measurement are: σu = σv =
20[pi xel s],σX =σY =σZ = 0.05m
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Figure 5.2: Visualization of reflectors (landmarks, as green dots), GNSS receiver (GPS1 and GPS2), and camera in the field experiment. β
describes the angle from measured north and corrected north in the world frame (red), so that the Y-aixs in the world frame is pointing

North (according to ECEF).

Visualization

The reflectors’ coordinates, camera coordinates and camera orientation κ in the world frame are measured

by the total station occupying the same position as GNSS1 by aligning the north with respect to GNSS2. The

north correction angleβ is computed by initializing the null direction of the total station at GNSS1 by pointing

to GNSS2 in the world frame. Fig.5.2 shows the visualization of the two GNSS receivers, camera and reflectors

of the experiment site after applying the north correction angle β. Fig.5.4 is the picture of reflectors taken by

the camera, the pixel measurements are obtained by manually selecting the geometric center of the reflectors

in the image.

5.2. Results and discussion

5.2.1. Vision

The results in this chapter are evaluated by applying experimental analysis presented in Figure.4.4 on the

experimental data in the vision, GNSS, and integration model.

From the previous results, Method I has better and more stable performance over Method II, therefore,

the performance of the vision and integration model is based on Method I in this chapter.

Reliability analysis The MDBs are computed by varying the number of reflectors from 6 to 3 reflectors as

the input pixel measurements to the vision model. The reduced number of reflectors is achieved by removing

the reflectors coordinates and pixel measurements from the start of their label sequence.
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Figure 5.3: 3D plot of landmarks (reflectors) of the experiment site by viewing at camera orientation. The blue one is the world frame,
the red one is the camera frame, the reflectors (green) are mapped in reality, on the image plane (grey) and presented in table

sequentially.
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(a) Visualization of experiment setup.
(b) Image taken by single camera

Figure 5.4: Visualization of reflectors (landmarks) in the experiment setup, simulated pixel measurements (a) and pixel measurements
from camera (b). In (a), the simulated pixel measurements are computed here for visualization from reflectors coordinates in world

frame and camera pose. (b) shows the feature geometry in the image, the pixel measurements are obtained by manually selecting the
geometric center of the reflectors in the image. The experiment was carried out at TU Delft; Green Village.

Figure 5.5: Reflectors geometry on image plane. The results are computed for different scenarios by varying the number of reflectors.
From top left, top right, bottom left to bottom right are: 6, 4, 3 and 2 features in the image plane
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Figure 5.6: Illustration of the different input for the vision model, the GNSS and the integration model for the experimental analysis.
One feature implies two pixel measurements in the vision model, one satellite denotes its pseudorange measurement. The results of

GNSS (filter converged) are included in Appendix C but are discussed in this Chapter, as a comparison with the results of GNSS (start of
the filter).

From Table.5.1, ∆u2 has larger values in the 1-vector MDB when having 6 and 5 reflectors in the view. As

the number of reflectors reduced to 4 and 3, ∆u4, ∆v4 and ∆v6 are rising since less available pixel measure-

ments can verify it.

Table 5.1: 1-vector MDB computed by varying reflector numbers from 6 to 3. Unit: [pixels]

6 reflectors 5 reflectors 4 reflectors 3 reflectors

∆u1 92.38
∆v1 56.21
∆u2 162.63 181.86
∆v2 75.20 81.20
∆u3 58.43 70.12 75.25
∆v3 55.27 55.52 58.88
∆u4 86.36 96.90 195.87 232.94
∆v4 65.96 67.00 140.78 155.60
∆u5 63.10 65.04 66.56 72.07
∆v5 57.69 58.88 62.26 64.49
∆u6 58.27 65.41 67.09 93.65
∆v6 57.83 59.17 84.08 106.78

For the 2-vector MDB, Table.5.2 shows a similar trend with the 1-vector MDB but they are presented now

in pairs. The two tables show the fifth measurements can always be verified best by the left pixel measure-

ments when gradually omitting pixel measurements.

Table 5.2: The 2-vector MDB for pixel measurements computed by varying the number of reflector from 6 to 3. Unit: [pixels]

6 reflectors 5 reflectors 4 reflectors 3 reflectors

(∆u1,∆v1) (98.42,59.77)
(∆u2,∆v2) (180.29,79.34) (202.85,85.62)
(∆u3,∆v3) (62.17,58.80) (74.70,59.01) (80.21,62.57)
(∆u4,∆v4) (92.16,70.05) (103.13,71.27) (245.80,139.96) (261.81,161.84)
(∆u5,∆v5) (67.49,61.10) (69.24,62.61) (71.79,65.47) (77.30,68.17)
(∆u6,∆v6) (62.90,60.68) (69.98,62.67) (71.37,89.46) (89.81,135.78)
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Precision and correlation coefficient analysis The precision and correlation coefficients are computed for

different scenarios by changing the number of reflectors on the input. Units of the estimates κ, X0,Y0, Z0 are

[degree, m, m, m].

From table.5.3, when having 6 reflectors in the image, the estimates can reach the best performance with

an standard deviation of 0.13 degree in κ, and 0.22 m in X0,Y0, Z0. The estimates can have acceptable accu-

racy of estimates when the number of reflectors is reduced to 3, with fair correlation coefficients between the

estimates. When the number of reflectors reduces to 2, the standard deviation of estimates degrades to 0.59

degree in κ, and 0.23 m in X0 and Y0, while Z0 can have a standard deviation of 0.22 m, with relatively high

correlation between κ and X0. Under the experiment setting, the X0,Y0, Z0 can be solved within 0.23 m by

regardless the number of reflectors, while the standard deviation of κ is more subject to the number of the

input vision observations.

Table 5.3: The interpreted Qx̂ x̂ computed from measurements of 6,4,3,2 reflectors. Unit: [degree, m, m, m]

6 reflectors 4 reflectors 3 reflectors 2 reflectors

κ 0.13 -0.03 -0.01 -0.00 0.19 -0.05 -0.02 0.01 0.22 -0.05 0.01 -0.00 0.59 -0.23 -0.12 0.02
X0 0.22 -0.00 0.00 0.22 0.00 -0.00 0.22 0.00 -0.00 0.23 0.04 -0.01
Y0 0.22 -0.00 0.23 -0.00 0.23 -0.01 0.23 -0.01
Z0 0.22 0.22 0.22 0.22

Γ 9.57 21.62 21.70 38.33

Estimation of vision To determine the actual estimation error, the true camera pose values of Section 5.1

are used. According to Table.5.4, by reducing the number of reflectors of vision, the position error is below

0.16 m, the accuracy of κ is more subject to the change of number of reflectors.

Table 5.4: Error of the estimation of vision model, units are [degree,m,m,m].

Scenarios κ X0 Y0 Z0

6 reflectors -0.10 0.00 0.03 -0.02
5 reflectors -0.19 0.02 0.15 -0.06
3 reflectors 0.04 0.01 0.14 -0.06
2 reflectors -0.86 0.09 0.16 -0.07

5.2.2. GNSS

The GNSS results are computed from the start and the end of the SF-PPP data processing, which are included

in this Chapter and in Appendix C respectively. To analyze and visualize the results of SF-PPP data processing,

one needs to deal with the Earth tide effect during the experiment time, since SF-PPP position solutions are

computed in ITRF2008 and the receiver is subject to Earth tides motion in this frame. It is more intuitive

to have the mean position solution, with the Earth tide effect removed by a correction. In the experiment,
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Figure 5.7: Position variation (X0,Y0, Z0) caused by earth tide in ITRF2008 on July 25th for DLF1 permanent GNSS receiver in Delft.

the GPS and total station measurements are in ETRF2000, and to convert the SF-PPP position solutions of

camera in the world frame, some transformations and correction computations are required and is explained

in Appendix.B.

Solid earth tide correction For precise point positioning, it is necessary to include the solid earth tide effect

which describes the response of the Earth to lunisolar gravitational attraction. Fig.5.7 shows the position

variations caused the solid earth tide, and the variations can reach +/-13 cm in one day.

Frame transformation To transform the global position solutions from SF-PPP to the world frame, two

steps are required in our case: 1. ITRF2008 to ETRF2000 2. ETRF2000 to world frame. The first one is com-

puted by the position offset of the permanent reference station DLF1 in the two reference frames, since the

DLF1 provides corrections to GNSS1 and GNSS2 and the baseline is short, the offset is regarded as a constant

vector and can be applied to GNSS1, GNSS2 and the SF-PPP position solutions. The reference frame trans-

formation is briefly described in Appendix.B. The second step follows the same procedure and is elaborated

in Chapter 3, the GNSS1 position is set as the origin of the world frame, and ECEF coordinates are converted

into the world frame.

After removing the solid earth tide effect during the experiment time and applying transformations to the

SF-PPP solutions, Fig.5.8 shows the position error of SF-PPP position solutions (carrier phase measurements

are included here). One can see that the filter converges at 1500 s, and a gap occurs at 3400 s, the gap is

probably caused by some new satellite observations that came into the observations at 3400 s and then the

filter converges at 4800 s again.

Reliability
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Figure 5.8: Position error (X0,Y0, Z0) under world frame processed by SF-PPP. Results in this chapter are based on data of epoch 0.4s
and those in Appendix C are based on data of epoch 2000s.

MDB computed for all available satellite pseudorange observations. From table.5.5, the second and ninth

pseudorange observations have larger MDB values. The MDB computed for the observations when only the

5 with highest elevations are selected, especially for the seventh pseudorange observation, which is one order

larger than the others. Table.C.1 in Appendix C is computed based on the SF-PPP data after filter convergence,

the MDB values increase as the number of the input pseudorange observations decreases, the trend of MDB

is different by the changing elevations which have changed during the filter converging time.

Table 5.5: MDBs computed for 13 satellites and 5 satellites by using the experimental data (at the start of SF-PPP data processing).

Pseudorange MDB [m] MDB [m]

∆p1 11.39
∆p2 27.78
∆p3 7.48
∆p4 5.21 26.16
∆p5 10.35
∆p6 5.26 10.76
∆p7 6.46 295.18
∆p8 6.64
∆p9 32.14
∆p10 9.02 10.19
∆p11 12.19 27.50
∆p12 17.51
∆p13 14.61
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(a) Skyplot of all available satellites. (b) Skyplot of satellites of top 5 elevations.

Figure 5.9: Skyplot of 13 and 5 satellites at the start of SF-PPP data processing.

Precision and correlation coefficients

QP̂ P̂ computed from 13 and 5 pseudorange observations. The QP̂ P̂ computed with all available pseudor-

ange observations shows that X0 has the smallest standard deviation which is 0.64 m, Z0 has the largest stan-

dard deviation which is 1.79 m. Besides the high correlation of Z0 and d tr , the high correlation coefficients of

X0 and d tr is caused by the fact that the satellites are concentrated on one side in the skyplot (namely on the

right-hand, or East side). By reducing the pseudorange observations down to 5, the standard deviation and

correlation coefficients all degrade, especially for the standard deviation and correlation between X0 and Z0,

the selection based on elevation causes the satellites to be even more concentrated on one side in the skyplot.

Table.C.1 in Appendix C also shows the same pattern but with different values, however, after the selection of

top 5 elevations as input, the satellites are largely clustered on one side in the skyplot.

Table 5.6: The interpreted QP̂ P̂ computed from pseudorange observations of 13 and 5 satellites, X0,Y0, Z0 have been transformed into
the world frame.

13 satellites 5 satellites

X0 0.64 0.02 0.20 0.89 1.41 0.05 0.76 0.76
Y0 0.69 0.04 0.00 1.00 0.07 0.08
Z0 1.79 0.97 8.21 1.00
d tr 1.35 6.93

Skyplot Fig.5.9 shows the skyplot of all available satellites over the experiment site at the start of SF-PPP

data processing. On the left, one can see the satellites are well distributed, on the tight, the seventh satellite

is far away from the others, whose MDB shown in table.5.5 has a larger value.

Estimation of GNSS From table.5.7, position estimation of the start of SF-PPP data processing when using

all satellite pseudorange observations has a error of 3.07 m in X0, 1.66 m in Y0 and 2.91 m in Z0. When using
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satellites pseudorange observations of top 5 elevations, Z0 degrades significantly, since the selection reduces

the variation in vertical direction, and it increases the difficulty for GNSS to estimate Z0 together with the

receiver clock error from the selected pseudorange observations.

Table 5.7: Actual error of the estimation of GNSS model, units are [m,m,m].

Scenarios X0 Y0 Z0

13 satellites 3.07 1.66 2.91
5 satellites 2.44 4.62 -17.70

5.2.3. Integration

Reliability

MDBs computed for all available observations from both sensors in integration model Compare table.5.8

with table.5.1, ∆u1, ∆u3, ∆u5 and ∆u6 decrease, and the values of ∆u2 and ∆u4 are larger. The increased

redundancy caused by combining GNSS and vision results improved validation of the vision observations.

Compare table.5.8 with table.5.5, the MDBs are smaller since the vision solution is more precise and reliable

than the GNSS solution. One can observe the same by comparing table.C.4 in Appendix C with the other two

tables.

Table 5.8: MDBs computed for all available observations from both sensors.

Pseudorange MDB [m] u MDB [pixel] v MDB [pixel]

∆p1 10.56 ∆u1 65.54 ∆v1 54.75
∆p2 27.42 ∆u2 175.13 ∆v2 70.03
∆p3 5.44 ∆u3 59.48 ∆v3 54.79
∆p4 4.10 ∆u4 119.58 ∆v4 73.56
∆p5 9.53 ∆u5 66.28 ∆v5 58.61
∆p6 4.53 ∆u6 60.44 ∆v6 56.62
∆p7 4.17
∆p8 5.15
∆p9 31.94
∆p10 8.98
∆p11 11.86
∆p12 17.21
∆p13 14.30

MDB computed for 3 satellites (3 highest elevations ones selected) and 2 landmarks By leaving out 10

pseudoranges of lower elevations, the MDBs of the vision part increase by to 2 of magnitude,which means

the integration model relies heavily on the vision system.

Precision and correlation coefficients
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Table 5.9: MDB computed for 3 satellites of 3 highest elevations and 2 landmarks.

Pseudorange MDB [m] u MDB [pixels] v MDB [pixels]

∆p4 28.94 ∆u5 6534.39 ∆v5 18115.06
∆p6 7.25 ∆u6 3910.00 ∆v6 9623.59
∆p10 9.67

QP̂ P̂ computed by all available observations from both sensors. The integration model can have a position

solution with a standard deviation of 0.21 m in X0 and Y0, 1.77 m in Z0 and t0, 0.13 degree in κ and 1.34 m

in d tr . The system has difficulty in telling Z0 from t0 and dt r , whose correlation coefficients are close to

1. Compared with the 13-satellite case in table.5.6, the dependence between X0 and d tr is reduced, this

is because by adding the vision system under the experiment setting, the vision has better geometry and

variations in X-Y than X-Z in the world frame, hence, the integration model can better tell X0 from d tr , but

behaves worse in telling Z0 from d tr and t0.

Table 5.10: The interpreted QP̂ P̂ computed from pseudorange observations of 13 satellites and pixel observations of 6 features.

13 satellites and 6 features

X0 0.21 0.00 0.07 0.07 -0.03 0.06
Y0 0.21 0.01 0.01 -0.01 -0.00
Z0 1.76 0.99 -0.00 0.97
t0 1.77 -0.00 0.97
κ 0.13 -0.00
d tr 1.34

Γ0 15792.98

QP̂ P̂ computed for limited situations, when one of the sensors fails. When GNSS fails, but vision operates,

the estimates have better performance than the 5-satellites GNSS only case presented in table.5.6, except for

the precision of Y0. The estimates have acceptable precision, however, estimation of Z0 is ’contaminated’

by GNSS observations. When GNSS works but vision fails, all quantities of interest degrade significantly,

especially for Z0, t0,d tr , which are around 18.07 m, with the coefficients between the estimates close to 1,

except for Y0 with the others. Table.C.7 in the Appendix C has better performance for the second scenario,

which means the second scenario heavily on the quality of satellite pseudorange observations.

Estimation of integration From table.5.12, the position error of the integration model increases signifi-

cantly when GNSS operates but vision fails. Insufficient vision measurements lead to poor results of all un-

knowns, especially for κ, X0 and Y0, satellite pseudorange observations selected by top elevations further

reduces the accuracy of Z0.
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Table 5.11: The interpreted QP̂ P̂ computed from pseudorange observations of 3 satellites and pixel observations of 2 features, and 4
satellites and 1 feature.

3 satellites and 2 features 4 satellites and 1 features

X0 0.23 0.04 0.10 0.10 -0.23 0.09 2.89 -0.55 0.95 0.95 -0.99 0.95
Y0 0.23 -0.16 -0.16 -0.13 -0.16 1.27 -0.57 -0.58 0.45 -0.57
Z0 7.98 1.00 -0.00 1.00 17.80 1.00 -0.93 1.00
t0 7.99 -0.00 1.00 18.07 -0.93 1.00
κ 0.59 -0.00 11.12 -0.93
d tr 6.97 15.17

Γ0 156718.40 101039.32

Table 5.12: Error of the estimation of integration model, units are [degree,m,m,m].

Scenarios κ X0 Y0 Z0

13 satellites and 6 features -0.04 0.32 0.18 1.23
3 satellites and 2 features -0.87 0.05 0.22 -6.66
4 satellites and 1 feature 13.32 3.43 6.43 54.50

5.2.4. Extended integration

Reliability

MDBs computed for all available observations from both sensors of the extended integration model. Com-

pare table.5.13 with table.5.8 and table.5.5, the MDBs for the GNSS part are further slightly improved by the

one more redundancy of the extended integration model, the vision part generally stay changed (the largest

values dropped).

Table 5.13: MDBs computed for all available observations from both sensors in the extended integration model.

Pseudorange MDB [m] u MDB [pixel] v MDB [pixel]

∆p1 9.42 ∆u1 69.43 ∆v1 54.98
∆p2 26.70 ∆u2 146.95 ∆v2 69.14
∆p3 5.17 ∆u3 59.82 ∆v3 54.99
∆p4 4.02 ∆u4 102.28 ∆v4 72.27
∆p5 8.43 ∆u5 66.66 ∆v5 58.92
∆p6 3.69 ∆u6 60.61 ∆v6 57.57
∆p7 4.16
∆p8 4.97
∆p9 31.60
∆p10 8.74
∆p11 11.85
∆p12 17.03
∆p13 14.21

MDB of the extended integration model, computed by 2 satellite observations and 2 features. From ta-

ble.5.14, we can see the values of ∆p6,∆p10 are closer to those in table.5.5, the integration model provides

poorer validation between vision observations since the integration model depends heavily on the vision
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measurements, and the integration model is well constrained by the vision, GNSS observations can be vali-

dated from the integration model.

Table 5.14: MDB of the extended integration model, computed by 2 satellite observations and 2 features.

Pseudorange MDB [m] u MDB [pixel] v MDB [pixel]

∆p6 9.16 ∆u5 10897.59 ∆v5 41909.13
∆p10 9.16 ∆u6 6903.33 ∆v6 19782.18

Precision and correlation coefficients

QP̂ P̂ computed from all available observations. Leaving out t0 not only eliminates the dependence be-

tween t0 and Z0,d tr , but also leads to less correlation between Z0 and d tr , which means by the aid of vision

system, the integration can better differentiate Z0 from d tr . The standard deviation of X0,Y0, Z0 is below 0.22

m, and a standard deviation of 0.13 degree and 0.34 m in κ and d tr estimation respectively.

Table 5.15: The interpreted QP̂ P̂ computed from pseudorange observations of 13 satellites and pixel observations of 6 features.

13 satellites and 6 features

X0 0.21 -0.00 0.01 -0.03 -0.03
Y0 0.21 0.00 -0.01 -0.05
Z0 0.22 -0.00 0.48
κ 0.13 -0.00
d tr 0.34

Γ0 3212.18

QP̂ P̂ computed from pseudorange observations of 3 satellites and pixel observations of 1 feature. The

performance of table.C.12 in Appendix C is better than table.5.16 since the integration model relies much

on the quality of satellite pseudorange observations. It shows that it is possible that when both sensor fail

individually, the integration still can to produce a precise and reliable position solution when the input ob-

servations are good.

Table 5.16: The interpreted QP̂ P̂ computed from pseudorange observations of 3 satellites and pixel observations of 1 feature.

3 satellites and 1 feature

X0 34.01 1.00 -1.00 -0.88 -1.00
Y0 23.37 -1.00 -0.86 -1.00
Z0 7.33 0.87 1.00
κ 1.03 0.00
d tr 16.82

Γ0 312623.93
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Estimation of extended integration Compare table.5.17 with table.5.12, the extended integration model

further improves the accuracy of Z0 by using all available observations from both sensors. The estimation

computed by two sensors failing at the same time degrades dramatically. Compared with the accuracy esti-

mation error by using the end of SF-PPP data processing filter and the same model, values are smaller but

still far away from the truth.

Table 5.17: Actual error of the estimation of integration model, units are [degree,m,m,m].

Scenarios κ X0 Y0 Z0

13 satellites and 6 features -0.04 0.32 0.18 0.49
3 satellites and 1 features -1675.62 103.98 72.61 -23.83

5.3. Summary

Vision observations can significantly improve the GNSS position solutions since the vision solutions are of

higher precision, they contribute more in the integration model.

The height offset t0 between the SF-PPP antenna and camera is estimated from the GNSS model and the

vision model, the camera orientation κ is estimated from the vision model.

The position estimates produced by the integration model is related to the performance of SF-PPP model.

The position estimates produced by the later one outperform since it indirectly improves the performance of

SF-PPP model by reducing correlation between Z0 and d tr , and eliminating correlation between t0 and d tr ,

t0 and Z0.

As we only take pseudorange observations in the integration model, data from the start of SF-PPP fil-

ter performs similarly as the data from upon convergence, since filter convergence improves the position

solution by keeping ambiguities from the carrier phase observations constant, which are not included the

integration and extended integration model.

The integration algorithm has the potential to be open to any GNSS positioning technique. So the current

results can be improved by replacing SF-PPP with a RTK algorithm.



6
Conclusions and recommendations

The goal of this thesis project is to explore, by combining an affordable monocular vision system, Single-

frequency Precise Point Positioning (SF-PPP) GNSS positioning and previously measured landmark positions,

the performance of a GNSS/Vision integrated model, and the feasibility of the application of the integration

model by considering different scenarios.

6.1. Answers to the research questions

How to derive a Monocular vision model to determine the camera pose with the aid of measured land-

mark position coordinates? The forward looking monocular vision model is derived from an airborne pho-

togrammetry model, which describes the projection of world points onto the image plane. The camera frame

can be linked to the world frame by just two rotations. First, we need to re-orientate the forward looking vi-

sion model in the world frame, and apply an extra rotation to describe the camera orientation. Since we are

more interested in vehicle movement in the horizontal X-Y plane, the concatenated rotations are limited to

include the frame re-orientation and heading changes in the world frame.

How to design a tight integration model for SF-PPP and monocular vision? The tight integration model

estimates the unknowns from observations of the two sensors, therefore, its design matrix includes the Jaco-

bian or derivative of the observations equations with respect to the unknowns. After derivation of the forward

looking model, the vision Jacobian matrix is computed and inserted in the integration model. The SF-PPP
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(GNSS) one is computed using for instance the known satellite positions and also inserted in the integration

model. However, as SF-PPP unknown parameters are expressed in ECEF frame (earth-centered, earth-fixed),

and vision’s parameters are computed in a local world frame, a conversion matrix between the two frames is

necessary to be inserted in the SF-PPP model to have position estimates eventually in the world frame in the

integration model. Additionally, a position offset between the GNSS antenna and camera (lens) is considered

in the integration model, because it is difficult to accurately determine the camera and antenna center in

practice. As we mount the GNSS antenna directly on top of the camera, the position offset is simplified as a

height offset t0. An extended integration model is also tested by simulated and experimental data, by leaving

out the height offset t0, as in practice the GNSS antenna may be very close to the camera (e.g. with 1 dm).

How to account for the effect of landmark position errors? How will the measurements errors (feature

identification error and landmark position error) affect the result? Chapter 3 presents two methods to

account for the landmark position error through the landmark-camera geometry. Method I projects the land-

mark position error by error propagation law into vision observation uncertainty and the uncertainty needs

to be recomputed and updated in each iteration (for the non-linear model); Method II includes landmark

positions as observations, and its uncertainty is directly included as observation uncertainty and remains

constant through iterations. In the simulation and experiment test, the landmark position or High Definition

Maps (HD Maps) error is set as σX ≡ σY ≡ σZ ≡0.05 m (with sufficient landmarks), and the pixel error as

σu =σv =20 pixels, then the standard deviation of the camera position estimates is below 0.22 m. From both

Table 6.1: Standard deviation of position estimation by varying pixel error (unertainties) and landmark position error (uncertainty).

Scenarios σX ≡σY ≡σZ [m] σu =σv [pixels] std [m]

1 (default) 0.05 20 0.22
2 0.003 20 0.06
3 (simulation) 0.05 2.5 0.22
4 0.003 2.5 0.05

tests, the results show that a larger landmark position error contributes to a larger standard deviation of the

estimates, the pixel error only has a minor impact on this, see table.6.1.

How to express/measure performance (what quantities are of interest)? The model performance by sim-

ulated data and experimental data are evaluated by the precision of the estimates, correlation coefficients

between the estimates, and Minimal Detectable Bias (MDB) for outliers (faults in the measurements). Preci-

sion describes the error of estimates computed from the current model, correlation coefficient presents how

well the model can differentiate the contribution of the measurements between the estimates, and the MDB

describes to what extent an incidental fault in a measurement can be detected, by means of statistical test-

ing on the data. However, vision observations can be contaminated by landmark misidentifications, since



6.2. Conclusions 81

a potential pixel error is unknown, we evaluate vision performance by 1-vector MDB and 2-vector MDB, the

former one means the pixel error is independent in the two directions when a pixel measurement is obtained,

the later one indicates that the coordinates in the two directions of a pixel measurement are both faulty at the

same time in the image, for instance when a feature identification fault is made. We use theoretical analysis

and experiment analysis to evaluate the model performance, the former one aims to show the optimal per-

formance by using the true camera pose as the initial values, the later one aims to show the performance of

the complete procedure of estimating the unknowns.

6.2. Conclusions

What is the the performance of GNSS/Vision integrated model? What are limitations of the integration

model, can it work under extreme settings? When the pre-surveyed landmark positions (or error of HD

map) are accurate at the 5-cm-level (standard deviation), the integration model is able to estimate X0,Y0

within a standard deviation of 0.22 m, Z0, the antenna-camera offset t0 within 1.77 m and heading κ within

0.13 degree, with fair correlation coefficients between the unknowns, except for the ones of Z0 and t0, Z0 and

d tr , t0 and d tr . These unknowns are quite similarly related to the observations and it is difficult for the inte-

gration model to differentiate the observational data over these parameters. We also investigated the model

performance by leaving out offset t0, which is the so-called extended integration model. The model improves

the standard deviation of Z0 and d tr compared to the integration model, by eliminating the correlation be-

tween Z0 and t0, t0 and d tr . The integration model is able to produce the position solution when one of the

two sensors fails: when GNSS operates and vision fails, the integration can barely improve the GNSS solution,

neither accuracy or precision of the estimates are acceptable, this is because the vision measurements are in-

sufficient to estimate κ; including t0 also aggregates the correlation between t0 and Z0, X0, all these relies on

the GNSS measurements which can barely produce a position solution; when GNSS fails and vision operates,

the integration can improve the GNSS solution significantly, with acceptable accuracy and precision of the

estimates. The extended integration model is theoretically capable of handling more complicated situations:

when the two sensors both fail, however, the performance is poor in this extreme case.

6.3. Recommendations

With the aid of pre-surveyed landmarks in the image and the external processing products of the two sen-

sors (GNSS pre-processing, object recognition and data association), the integration model can improve the

GNSS positioning solution in urban areas. In this condition, the work of the thesis project can provide a more

accurate position solution much faster than the one provided by SF-PPP. The work can be regarded as part

of a fully automated GNSS/vision positioning procedure, who breaks the limitations of the two chosen sen-
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sors individually and is more robust in challenging environments. The full procedure can contribute to the

vehicle positioning part in automated driving which emphasizes more on sensing and analyzing the environ-

ment and planning for the optimal route. Based on the assumptions and limitations of this thesis project, we

propose the following recommendations:

Refine the vision part of the application: Although the project is done in the context of map-based ve-

hicle positioning, the work mainly focuses on the integration performance analysis after the pre-processed

data from both sensors is obtained. The image processing of the vision part is missing and can be added to

have the a complete and automated procedure. Therefore, correcting for lens distortion and applying object

detection for the landmarks to obtain image observations can improve the current image observations and

contribute positively to the integration. For the monocular vision model derivation, we apply a horizontally

flat road assumption which means that heading changes are taken into account. Further improvement can

include full rotations of the camera, which is critical for vehicle positioning on non-flat road or in dynamic

environment, since the vision measurements are sensitive to angular changes.

Refine the GNSS part of the application: As one can see, the errors in vision observations are much smaller

than the GNSS observations in our experiment, so the integration model is largely constrained by the vision

model, and the GNSS model through SF-PPP has little contribution to the estimates. One way to improve this

is to add carrier phase observations, which can increase the computation load of the integration model but

enable GNSS to contribute more. Therefore, the integration model is potentially able to produce estimates

better than the position solution produced by any one of the sensors. The other way is to use another GNSS

positioning technique, for instance, RTK (Real-time Kinematic) can provide positioning solutions with cen-

timeter accuracy in real time and can improve the integration performance significantly, though at a larger

infrastructure demand.

Use more powerful optimization methods and mathematical model: The dimension of the integration

increases when we include more satellite observations (pseudorange and carrier phase) and pixel measure-

ments. The nonlinearity also increases when we consider all rotations (not only for heading κ, but alsoψ and

θ) of the camera, and what’s more, the Jacobian might be difficult to compute and current symbolic com-

putation can take longer time. Then one needs to call for an alternative mathematical model formulation to

deal with the rising problems in matrix dimension and nonlinearity. The integration model in this research

is meant for vehicle single epoch positioning and can work on a snap-shot basis. For real-time positioning in

dynamic application, one can use one of the filters (Extended Kalman filter, Unscented Kalman filter, Particle

filter or etc.), which enables the integration to make predictions for next time step. In the simulation and

experiment, we put sufficient landmarks to study the influence of their geometry and number of landmarks
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on the position solution from the vision and the integration model. In reality, landmarks are sparse and ran-

dom Zang et al. [42], and we may have to handle two more rotations and therefore a sufficient number of

landmarks needs to be present for the method to work. In urban areas, GNSS pseudorange multipath errors

can contaminate the observations but likely a lot of landmarks are available for vision to operate and provide

a reliable position solution.



A
Landmark visulization in reality and in

image plane of simulation

3D plot and projected features on the image plane by reducing the number of features of the simulated vision

data. Fig.A.1 in Chapter 4 shows the 3D plot of 3 features; fig.A.2 shows the 3D plot of 2 features; fig.A.3 shows

the projected 3 features on the image plane; fig.A.4 shows the projected 2 features on the image plane.
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Figure A.1: 3D plot of landmark geometries with 3 features in reality. The green dots are landmarks in the world frame (blue), red ones
are the projected features of the green ones on image plane (grey) in the camera frame (red).

Figure A.2: 3D plot of landmark geometries with 2 features in reality. The green dots are landmarks in the world frame (blue), red ones
are the projected features of the green ones on image plane (grey) in the camera frame (red).
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Figure A.3: Geometry of 3 selected features on the image plane of four scenarios, with the origin on the top left. From the top left, top
right, bottom left to bottom right are: normal, cluster, line up in x direction and line up in y direction scenarios.
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Figure A.4: Geometry of 2 selected features on the image plane of four scenarios, with the origin on the top left. From the top left, top
right, bottom left to bottom right are: normal, cluster, line up in x direction and line up in y direction scenarios.



B
Transformation from ITRF2008 to

ETRF2000

The position of DLF1 (permanent GNSS receiver at TU Delft) in the ETRF2000 can be found at: http://www.

epncb.oma.be/_productsservices/coordinates/crd4station.php?station=DLF100NLD, the transfor-

mation is service provided by http://www.epncb.oma.be/_productsservices/coord_trans/. We apply

the latest updated DLF1 position in ETRF2000, and we only need to configure the current frame, target frame

and the experiment date. The conversions and intermediate results are shown in table.B.1. The transforma-

tion is needed as SF-PPP is providing positions in ITRF2008.
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Figure B.1: Computation of ETRF2000 and ITRF2008 offset for the day of the experiment, July 25th , 2018. The first step is to transform
DLF1 position from ETRF2000 to ITRF2000, the second step is to transform from DLF1 position from ITRF2000 to ITRF2008, by adding

the offset to SF-PPP position solutions.



C
Experiment results by using

GNSS-measurement after the convergence

of SF-PPP

The results of GNSS and integration model calculated by fully converged SF-PPP solutions in the experiment

are presented.

C.0.1. GNSS

SF-PPP

Reliability

Precision and correlation coefficients

Skyplot

Estimation of GNSS

C.0.2. Integration

Reliability
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Table C.1: MDB computed from 14 satellites and 5 satellites by using the experimental data (SF-PPP filter converged).

Pseudorange MDB [m] MDB [m]

∆p1 13.22
∆p2 5.81 15.86
∆p3 5.04 49.86
∆p4 4.16 21.35
∆p5 11.03
∆p6 8.12
∆p7 12.17
∆p8 38.73
∆p9 27.29
∆p10 9.89 9.96
∆p11 47.00
∆p12 35.63
∆p13 9.60 94.54
∆p14 10.77

Table C.2: The interpreted QP̂ P̂ computed from pseudorange observations of 14 and 5 satellites, X0,Y0, Z0 are transformed into world
frame.

14 satellites 5 satellites

X0 0.68 0.02 0.41 0.01 2.02 0.68 0.09 0.16
Y0 0.91 0.17 0.14 2.41 0.43 0.37
Z0 1.46 0.97 6.08 1.00
d tr 1.21 5.53

Precision and correlation coefficients

Estimation of integration

C.0.3. Extended integration

Reliability

Precision and correlation coefficients

Estimation of integration
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(a) Skyplot of all available satellites. (b) Skyplot of satellites of top 5 elevations.

Figure C.1: Skyplot of 14 and 5 satellites at the end of SF-PPP data processing.

Table C.3: Actual error of the estimation of vision model, units are [m,m,m].

Scenarios X0 Y0 Z0

14 satellites 2.41 -1.60 -6.61
5 satellites -12.83 -22.28 -18.81

Table C.4: MDB of the integration model, computed by all available observations from both sensors.

Pseudorange MDB [m] u MDB [pixel] v MDB [pixel]

∆p1 12.26 ∆u1 65.54 ∆v1 54.75
∆p2 4.12 ∆u2 175.15 ∆v2 70.03
∆p3 3.86 ∆u3 59.48 ∆v3 54.79
∆p4 4.10 ∆u4 119.59 ∆v4 73.56
∆p5 9.86 ∆u5 66.28 ∆v5 58.61
∆p6 5.54 ∆u6 60.44 ∆v6 56.62
∆p7 8.16
∆p8 38.50
∆p9 27.04
∆p10 9.65
∆p11 46.83
∆p12 35.44
∆p13 9.25
∆p14 10.55

Table C.5: MDB computed from 3 satellites selected from 3 highest elevations and 2 landmarks.

Pseudorange MDB [m] u MDB [pixels] v MDB [pixels]

∆p3 6.59 ∆u5 12127.80 ∆v5 13002.96
∆p4 17.57 ∆u6 5371.33 ∆v6 6907.89
∆p13 10.54
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Table C.6: The interpreted QP̂ P̂ computed from pseudorange observations of 14 satellites and pixel observations of 6 features.

14 satellites and 6 features

X0 0.21 -0.00 0.02 0.02 -0.03 0.00
Y0 0.21 0.04 0.04 -0.01 0.03
Z0 1.67 0.99 -0.00 0.97
t0 1.68 -0.00 0.96
κ 0.13 -0.00
d tr 1.20

Γ0 24161.45

Table C.7: The interpreted QP̂ P̂ computed from pseudorange observations of 3 satellites and pixel observations of 2 features, and 4
satellites and 1 feature.

3 satellites and 2 features 4 satellites and 1 features

X0 0.23 0.03 0.11 0.11 -0.22 0.11 2.73 0.64 0.57 0.60 0.41 0.56
Y0 0.23 -0.03 -0.03 -0.11 -0.04 2.47 0.38 0.41 -0.42 0.36
Z0 14.23 1.00 -0.02 1.00 13.91 1.00 0.22 1.00
t0 14.24 -0.02 1.00 14.25 0.22 1.00
κ 0.57 -0.00 3.35 0.23
d tr 13.52 12.96

Γ0 284528.24 110709.75

Table C.8: Actual error of the estimation of integration model, units are [degree,m,m,m].

Scenarios κ X0 Y0 Z0

14 satellites and 6 features -0.23 0.25 -0.07 -6.49
3 satellites and 2 features -0.89 0.12 -0.08 14.23
4 satellites and 1 feature 128.89 -19.57 24.30 -64.70

Table C.9: MDB of the extended integration model, computed by all available observations from both sensors.

Pseudorange MDB [m] u MDB [pixel] v MDB [pixel]

∆p1 11.29 ∆u1 69.43 ∆v1 54.98
∆p2 4.11 ∆u2 146.98 ∆v2 69.14
∆p3 3.64 ∆u3 59.82 ∆v3 54.99
∆p4 3.52 ∆u4 102.28 ∆v4 72.27
∆p5 8.86 ∆u5 66.66 ∆v5 58.92
∆p6 5.16 ∆u6 60.61 ∆v6 57.57
∆p7 7.26
∆p8 38.22
∆p9 26.75
∆p10 9.64
∆p11 46.57
∆p12 35.15
∆p13 9.22
∆p14 10.55

Table C.10: MDB of the extended integration model, computed by 2 satellite observations and 2 features.

Pseudorange MDB [m] u MDB [pixel] v MDB [pixel]

∆p3 4.35 ∆u5 3941.30 ∆v5 11316.76
∆p4 4.35 ∆u6 2899.53 ∆v6 5489.35
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Table C.11: The interpreted QP̂ P̂ computed from pseudorange observations of 14 satellites and pixel observations of 6 features.

14 satellites and 6 features

X0 0.21 -0.00 0.00 -0.03 -0.05
Y0 0.22 0.01 -0.01 -0.02
Z0 0.22 -0.00 0.52
κ 0.13 0.00
d tr 0.34

Γ0 3095.34

Table C.12: The interpreted QP̂ P̂ computed from pseudorange observations of 3 satellites and pixel observations of 1 features.

3 satellites and 1 feature

X0 2.25 0.43 -0.66 0.80 -0.56
Y0 2.37 -0.84 -0.19 -0.86
Z0 0.54 -0.16 0.89
κ 5.44 0.35
d tr 0.97

Γ0 12516.68

Table C.13: Actual error of the estimation of integration model, units are [degree,m,m,m].

Scenarios κ X0 Y0 Z0

14 satellites and 6 features -0.21 0.27 -0.02 0.30
3 satellites and 1 feature 146.99 9.23 22.93 2.64
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