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Abstract
As the popularity of electric vehicles (EVs) in-
creases, congestion at charging becomes a more
imminent problem. Congestion at a charging sta-
tion can lead to long waiting queues and failure
of EV owners to charge their vehicles fully before
their departure from the station. To combat this is-
sue, this paper explores several candidate schedul-
ing strategies that can be applied for the charging
prioritization of EVs at a single station. Through
extensive simulations, the efficacy of these strate-
gies is studied under three performance metrics.
From the set of strategies studied, we find that earli-
est deadline first (EDF) and shortest job first (SJF)
are the best options in the case that adherence to
deadline or a shorter waiting time is most valued,
respectively.

1 Introduction
Electric vehicles (EVs)1 have experienced a rise in popular-
ity over the past few years. Their popularity is expected to
further increase in the foreseeable future as well [Muratori et
al., 2021]. This rise in popularity is due to, amongst other
factors, technological progress and maturation, environmen-
tal benefits, decrease in battery costs, greater availability of
charging infrastructure and consumer acceptance [Muratori
et al., 2021].

The increased adoption of EVS, combined with the fact
that EVs take a significantly longer time to charge than the
fueling of traditional combustion engine gasoline vehicles
([Qin and Zhang, 2011]), might possibly lead to congestion
in the charging infrastructure, more specifically, at the public
charging stations. To combat this issue, [De Weerdt et al.,
2015] proposes an Intention-Aware Routing System (IARS):
”A novel navigation system that predicts congestion at charg-
ing stations based on dynamic information about current and
future demand for charging”. Comparing this system with

1”EVs are defined as vehicles that are powered with an on-board
battery that can be charged from an external source of electricity.
This definition includes plug-in hybrid electric vehicles (PHEVs)
and battery electric vehicles (BEVs). EVs often are referred to as
plug-in electric vehicles (PEVs)” [Muratori et al., 2021].

state-of-the-art benchmark routing algorithms, they show, in
some cases, an improvement of over 80% in waiting times at
charging stations and a more than 50% reduction in overall
journey times.

There is, however, still some further work to be done on
this matter, the first of which is a principled comparison be-
tween IARS and reservation-based systems. Secondly, the
authors would like to combine their work with a pricing
model to open the possibility for finding more efficient so-
lutions. Lastly, and most importantly in the context of this
paper, the order in which the vehicles can be best prioritised
for charging at the individual charging stations is not yet ex-
plored.

This paper, therefore, contributes to the aforementioned
work by exploring the possible scheduling strategies for EVs
at an individual charging station. The strategies (described
in Section 3) are studied and compared via extensive simula-
tions. More precisely, we use several performance metrics to
asses the efficacy of the strategies and conclude which strat-
egy is best suited for which performance criterion.

The scheduling of EVs at charging stations has been stud-
ied before, but often with different objectives or under differ-
ent metrics. For instance, in [Subramanian et al., 2012], the
performance of, amongst others, EDF and LLF is explored
via simulation studies. It is concluded that EDF is optimal
in the absence of power constraints, but the metrics used are
required reserve energy and reserve capacity. Moreover, in
[Chen and Tong, 2012], the performance of EDF and LLF
are studied again. However, both scheduling algorithms are
slightly modified to include a simple admission policy. This
admission policy checks whether the system remains under-
loaded upon arrival of each vehicle. The authors also propose
an online scheduling algorithm named TAGS that is a greedy
scheduling strategy that performs simple threshold checks on
profitability for its admission policy. Then, simulations are
used to evaluate the performance of TAGS against EDF and
unmanaged charging (UC), where UC is interchangeable with
FCFS. LLF is not considered in the simulations. The per-
formance metric used is the average (monetary) profit of the
charging service provider, which is a different direction than
the direction of this paper. Furthermore, in [Chen et al., 2011]
a more theoretical approach to optimality is taken and no sim-
ulation analysis is conducted. The authors propose an online
scheduling algorithm referred to as DSC (Deadline Schedul-
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ing with Commitment) and prove that its competitive ratio is
the maximum ratio achievable for online preemptive schedul-
ing with commitment, therefore proving its optimality.

In more recent work, namely [Kong et al., 2016], exper-
imental analysis of multiple scheduling strategies is carried
out. The performance is measured under varying scales of
charging resources and varying charging load of vehicles.
This approach is similar to that of this paper, where we con-
sider different charging station capacities and different total
number of vehicles arriving as well. However, different from
our work, the performance metric considered is the social
welfare, which the authors define as the sum utility of the
EVs, where utility is a measurement of user satisfaction. The
utility depends on both the price for electricity and the state-
of-charge of an EV. Another difference is the fact that LLF is
not considered in their simulations. They reason that due to
the frequent preemption of the algorithm, it is impractical for
charging EVs.

The remainder of the paper is structured as follows: First,
Section 2 describes the model used and formulates the per-
formance metrics. Then, Section 3 introduces the scheduling
strategies that are evaluated and compared. Next, Section 4
describes the experimental setup and presents and discusses
the results obtained from the experiments. Thereafter, Sec-
tion 5 mentions the ethical aspects concerning this study but
also research in general. It discusses the importance of repro-
ducability as well. Finally, Section 6 concludes.

2 EV Scheduling at Charging Stations
In this section, we first present the model used for schedul-
ing EVs at charging stations in Section 2.1. Then, in Section
2.2, we describe the performance metrics used to asses and
compare the performance of the scheduling strategies.

2.1 Model
To model the problem of scheduling EVs at a charging sta-
tion, we assume a combined zone, park-and-charge system
[Huang et al., 2012]. In such a system, as opposed to a sep-
arate zone system, EVs are parked and charged in the same
area. Each parking spot has an associated charging point of
which its power is regulated by a centralized controller. We
will view this centralized controller as the charging station it-
self hereafter. Furthermore, a station will have a fixed capac-
ity m which is the maximum number of charging points that
can simultaneously supply power to charging EVs. In other
words, in the context of a multiprocessor system, m would be
the number of processors available.

Furthermore, each EV i, which can be viewed as a charg-
ing job, is modeled as a triplet EVi where EVi = (ai, si, di).
Here, the first parameter ai is the arrival time of EV i. This is
the time the vehicle arrives at the charging station and there-
fore, it is the earliest time the EV can be charged. The next
parameter, si, is the state of charge that EV i has upon ar-
riving at the charging station. The last parameter, di, is the
latest time at which the charging of EV i should be finished,
also called the deadline. In section 4, we describe how we
generate these stochastic parameters for the simulation. Fur-
thermore, a charging station will only be able to view the pa-
rameters of an EV after it has arrived (i.e., after its arrival time

has passed). In other words, the charging station will use an
online scheduling algorithm to decide the order in which to
charge the vehicles.

2.2 Performance Metrics
Our objective is to compare and evaluate multiple scheduling
policies. In order to do this, we need to consider appropriate
performance metrics. These metrics are listed below.

i The average waiting time
ii The maximum tardiness

iii The average tardiness

We define the waiting time as the total amount of time an
EV spends at a charging station. This includes both the wait-
ing time in the queue and the charging time. More formally,
given the arrival time ai and finish time fi of an EV i, the
waiting time is Wi = fi − ai. Furthermore, tardiness is de-
fined as the amount of time an EV is finished charging later
than its deadline. Tardiness (as opposed to lateness) is non-
negative. More formally, given the finish time fi and deadline
di of an EV i, the tardiness of EV i is Ti = max{0, fi− di}.

As a result, our definition of best performing depends on
the specific metric considered: For metric i, we are interested
in minimising the average waiting time. Therefore, the pol-
icy with the minimum average waiting time would be the best
suited. For metric ii, we prefer to minimise the maximum
tardiness. Consequently, the policy with the minimum max-
imum tardiness is the ideal policy. Lastly, for metric iii, we
would like to see highest utilization possible. For that reason,
we consider the maximum utilization as the best suited for
this metric.

Lastly, the intuition behind these metrics is as follows.
Through metric i, we can evaluate how well a scheduling
strategy is suited for creating shorter queue times at a station.
This metric does not consider the deadlines of the vehicles
while evaluating performance. On the other hand, metrics ii
and iii evaluate strategies taking into account the deadlines.
Via the last two metrics, therefore, we are able to compare
strategies based on how well they are able to adhere to dead-
lines.

3 Scheduling Strategies
This section first introduces the well-known scheduling
strategies that are considered in this paper. Thereafter, it de-
scribes two new algorithms that are additionally considered.
Lastly, it mentions for which algorithms both a preemptive
and non-preemptive version are considered.

3.1 Well-Known Scheduling Algorithms
The first scheduling strategy we consider is a well-known
strategy, namely earliest deadline first (EDF) [Liu and Lay-
land, 1973]. EDF prioritises EVs with earlier deadlines over
EVs with later deadlines. Secondly, we consider least laxity
first (LLF) [Mok, 1983]. LLF prioritises EVs with the small-
est amount of slack time (i.e., the time remaining until the
deadline is reached after charging is completed). More for-
mally, the laxity of EV i with deadline di and finish time fi
is Li = di − fi. Thirdly, we consider shortest job first (SJF).



This strategy prioritises EVs that have the shortest charging
time. Furthermore, similar to [De Weerdt et al., 2015], we use
a first come first serve (FCFS) scheduling strategy as well.
This strategy will also function as a benchmark.

3.2 EDSJF and LLSJF
In addition to the the scheduling algorithm mentioned in the
previous section, we also study the performance of two new
algorithms. These algorithms, named earliest deadline short-
est job first (EDSJF) and least laxity shortest job first (LL-
SJF), are slight modifications of EDF and LLF, respectively.
Here, as opposed to EDF and LLF, ties are not broken arbi-
trarily but by the EV with the shortest charging time.

We hypothesise that these algorithms will perform simi-
lar to their corresponding counterparts under the maximum
and average tardiness metrics. However, we believe they will
perform better when considering average waiting times, espe-
cially in congested scenarios. The reason behind this intuition
is that, since EDSJF and LLSJF sort on deadlines and laxity
at first, respectively, they should not perform worse than their
counterparts when considering tardiness metrics. However,
when considering the waiting time, they have an edge on their
respective counterparts which should lead to performance im-
provements. Moreover, since the probability that a tie occurs
increases as more vehicles arrive at the station, a congested
setting should lead to a more apparent improvement.

3.3 Preemption
Another interesting aspect of scheduling strategies that we
study is the impact of preemption. To this end, we implement
both the preemptive and non-preemptive versions of two al-
gorithms. To be exact, these algorithms are EDF and SJF. The
preemptive versions of these algorithms are named EDF(pre)
and SJF(pre) for EDF and SJF, respectively. On the other
hand, we do not consider preemptive LLF for the same rea-
son as in [Chen and Tong, 2012]. That being the impracti-
cability of the algorithm due to its nature of frequently pre-
empting. However we still find it interesting to implement
the non-preemptive version for evaluation. Consequently, we
are able to retrieve some insight in the performance of LLF
while nevertheless considering a practical algorithm. More-
over, we note that EDSJF and LLSJF, described in Section
3.2, are preemptive as well.

As for our expectations, we anticipate the preemptive ver-
sions outperforming their corresponding counterparts, but
only under their correlated metric. For SJF, that is the av-
erage waiting time and for the other strategies, that is both
the maximum and average tardiness.

4 Experimental Setup and Results
In this section, we compare the scheduling strategies dis-
cussed in Section 3 using a simulation. We explain how this
simulation is set up and we describe the parameters used in
the simulation in Section 4.1. Furthermore, we describe the
probability distributions used to initialise the arrival times and
deadlines in Section 4.2. Lastly, we present and explain the
results obtained from the simulation in Section 4.3.

Algorithm 1 Main Simulation Loop

1: for each scheduling algorithm do
2: currIteration← 0
3: while currIteration < numIterations do
4: reset the charging station cs
5: initialise arrival times
6: initialise deadlines
7: initialise EVs
8: currStep← 0
9: while all EV s are not charged yet do

10: for each ev do
11: if ev arrives at this step then
12: enqueue ev at the charging station
13: end if
14: end for
15: cs.charge(currStep)
16: currStep++
17: end while
18: end while
19: end for

4.1 Simulation Setup
We use a fixed-increment time progression simulation to
compare the scheduling strategies. Algorithm 1 shows the
main simulation loop. To explain, for every scheduling algo-
rithm, the simulation runs the charging station scenario using
that scheduling method for a total of numIterations times.
Since numIterations is set to 4000, the simulation will run
for 4000 iterations for every strategy. In every iteration, the
charging station will be reset first (queues emptied). There-
after, the arrival times, deadlines and EVs will be initialised
and lastly, currStep will be set to 0. Then, for every step
of the simulation (which represents a time slice), we check
which EVs arrive during that period of time and we enqueue
an arriving vehicle at the charging station for charging. Since
we already obtain all the required data for our results after
all vehicles have been charged, we can stop the current itera-
tion and proceed to the next one when we are know all EVs
have been fully charged. Furthermore, in every step, we call
the method cs.charge(currStep) which will charge a num-
ber of vehicles equal to the charging capacity, and in the order
determined by the current scheduling strategy.

To explain the simulation environment more precisely, but
also for reproducibility purposes, we will list and explain all
the parameter values used in the simulation below.

• numIterations: The number of iterations that every
scheduling strategy is ran. This number is set to 4000 so
we can take the average of a large number of iterations
which will mitigate the effect of random errors made due
to the stochastic nature of the simulation.

• numEV s: The number of EVs that are initialised every
iteration and that will eventually arrive at the charging
station to be charged. This number is set to 100.

• stationCapacity: The number of EVs the station can
charge simultaneously, earlier named m in Section 2.1.
This number is set to 3.



• maxCharge: The number of steps it takes to fully
charge an EV from 0 to 100%. In other words, this cor-
responds to the charging duration. This parameter is set
to 10.

• minutesPerStep: The number of minutes that one step
in the simulation represents. This parameter is set repre-
sent 5 minutes.

• simulationDuration: The duration of one whole iter-
ation (in hours). This number is set to 24, representing a
full day. Given the value of this parameter, we can com-
pute the number of total steps the simulation will run per
iteration as follows:

numSteps =
simulationDuration

minutesPerStep
× 60

• arrivalsDistribution: The probability distribution
used to generate the arrival times of the EVs. Further
explained in Section 4.2.

• deadlinesDistribution: The probability distribution
used to generate the deadlines of the EVs. Further ex-
plained in Section 4.2.

4.2 Arrival Time and Deadline Probability
Distributions

To initialise the EVs, we need to generate the arrival times
and deadlines first. For this, we use different probabil-
ity distributions under which we can compare the per-
formance of the scheduling strategies. These probability
distributions are set using the arrivalsDistribution and
deadlinesDistribution parameters. We use three different
distributions for the arrival times and one distribution for the
deadlines. For the arrival times, we use a uniform distribution
in the range [1, numSteps], where numSteps corresponds
to the last time slice of the simulation (see section 4.1). This
is similar to the method the authors in [Kong et al., 2016] use
to generate arrival times. Secondly, we use a Poisson process
with a mean number of arrivals per day of 1000. This is the
same method [Huang et al., 2012] use to generate the arrival
times of their EVs. Lastly, we use a normal distribution with
mean at 9am and a standard deviation of 1 to simulate an of-
fice scenario where employees arrive roughly at 9am to start
their work shift. Considering these distributions, we remark
that they result in different degrees of congestion. Sorted on
the least to the most amount of congestion, we have the uni-
form distribution, followed by the Poisson distribution, fol-
lowed by the normal distribution.

For the deadlines of the vehicles, we use a uniform distri-
bution for each EV i in the range [ai, numSteps], where ai
is the arrival time of EV i. Therefore, we make it impossible
for EVs to be initialised with a deadline earlier than their ar-
rival time. This is because we are interested in the tardiness
that the scheduling strategy of the charging station produces,
and initialising EVs that already have a tardiness upon arrival
works against this.

4.3 Results
We begin with discussing the performance of the scheduling
algorithms under different probability distributions (Figures 1

Figure 1: Average waiting times of the scheduling strategies under
three arrival probability distributions (where pre means preemptive).

Figure 2: Maximum tardiness of the scheduling strategies under
three arrival probability distributions (where pre means preemptive).

- 5). Thereafter, we will proceed to discuss the performance
of the algorithms under varying parameters (Figures 6 - 14).
Before proceeding to the results discussion, we would like to
clarify the following terms used in the upcoming paragraphs:
When using the term ”EDF and its versions” or ”EDF ver-
sions” we refer to the strategies: EDF, EDF(pre) and EDSJF.
When using the term ”tardiness algorithms” we refer to EDF,
EDF(pre), EDSJF, LLF and LLSJF. The intuition behind this
last term is the fact that those algorithms all primarily take
the deadline into consideration when deciding upon prioriti-
sation. The deadline is used to calculate tardiness and there-
fore these algorithms are all connected to tardiness, hence the
term.

1) Performance evaluation under different probability dis-
tributions: Average waiting time. Figure 1 shows the aver-
age waiting times of scheduling methods. From this figure,
we first observe that, with the exception of SJF (both the pre-
emptive and non-preemptive version), all the strategies result
in roughly the same amount of average waiting time under
all probability distributions. SJF, on the other hand, has a
significant shorter (34% under Poisson) average waiting time
under the normal and Poisson distributions, but under the uni-



Figure 3: Maximum tardiness of the tardiness strategies under three
arrival probability distributions (where pre means preemptive).

form distribution, the performance is equal to the others. The
fact that SJF performs better than its counterparts under the
normal and Poisson distributions is to be expected. This is
due to the fact that the other strategies either focus solely on
the deadline of the EVs (i.e., the tardiness algorithms) or fo-
cus on no particular criterion at all (i.e., FCFS), whereas SJF
prioritises using charging times, a criterion that is linked to
the waiting time metric. As for the uniform distribution case,
SJF’s performance is similar to the others because at no point
during the day will there arrive a lot of EVs at the same time.
Therefore, every EV arriving can begin charging immediately
which leads to shorter waiting times. Next, we observe that
there is no significant (only 2 minutes) difference between the
performance of preemptive EDF and non-preemptive EDF,
under all three distributions. The same holds for SJF and
SJF(pre). The fact that there is no difference between EDF
and EDF(pre) is to be expected because EDF prioritises ex-
clusively on deadlines, so the its preemptive version would
not improve when considering average waiting times. How-
ever, the results of SJF are interesting because we hypothe-
sised that SJF(pre) would outperform SJF in regards to the
average waiting time. Lastly, we observe that there is no per-
formance difference between EDF and EDSJF, and between
LLF and LLSJF. This is unexpected as well since we hypoth-
esised that EDSJF and LLSJF would outperform their corre-
sponding counterparts.

Maximum tardiness. The next figure, Figure 2, displays
the maximum tardiness over all the EVs charging at the charg-
ing station. We observe that, in contrast to Figure 1, SJF now
performs significantly worse that the other strategies, result-
ing in a 9 times increased tardiness compared to EDF for in-
stance. This follows naturally from the fact that SJF does not
consider deadlines when scheduling. Moreover, the tardiness
algorithms all perform the best here, as expected. FCFS per-
forms similar to the tardiness strategies when the arrival times
are generated uniformly, but when they are generated using a
normal or Poison distribution, the performance cannot match
theirs anymore. The same holds for SJF. This is presumably
because of the same reason mentioned earlier, namely that

Figure 4: Average tardiness of the scheduling strategies under three
arrival probability distributions (where pre means preemptive).

Figure 5: Average tardiness of the tardiness strategies under three
arrival probability distributions (where pre means preemptive).

EVs can charge immediately upon arrival under a uniform
distribution. Consequently, EVs are able to finish charging
before their deadlines more often which leads to less tardi-
ness. On the other hand, when we consider the normal and
Poisson distributions for the arrival times, more congestion
will take place at the charging station because of the colliding
arrival times. This in turn will make it necessary for more
EVs to wait in the queue, increasing their tardiness.

In order to observe the performance differences more
clearly in regards to the maximum tardiness, Figure 3 shows
only the tardiness strategies. We discover the following facts:
First, the preemptive version of EDF performs slightly better
than the non-preemptive version under all three distributions.
To be precise, under the normal distribution where the dif-
ference is the most pronounced, the preemptive version has
5 minutes less maximum tardiness, which is roughly a 6%
improvement. This is in line with our hypothesis. Second,
EDSJF performs similar to EDF(pre). This is due to the fact
that EDSJF is preemptive as well and we are not considering
waiting times in this figure, therefore sorting on the shortest
job aspect of EDSJF can not be evaluated. Third, LLF and



LLSJF have no significant performance difference. However,
both perform slightly better than EDF and its two versions.

Average tardiness. In respect to the average tardiness,
Figure 4 demonstrates that FCFS has 52% increased aver-
age tardiness than SJF and SJF(pre) which both in turn have
roughly a 4 times increased average tardiness than the tardi-
ness algorithms, under a normal distribution. The same re-
lations in performance hold under the Poisson distribution.
Only under the uniform distribution, the performance dif-
ferences are not as pronounced, where the congestion at the
charging station is limited. From these facts, we can conclude
that FCFS, SJF and SJF(pre) perform significantly worse than
the alternative algorithms when considering average tardiness
in a congested setting.

Once more, to observe the differences more clearly, only
the lateness strategies are presented in Figure 5. Here, we ob-
serve the following facts under the normal distribution: First,
preemptive EDF performs 10% better than its non-preemptive
version which is to be expected. Second, there is no signif-
icant performance difference between preemptive EDF and
EDSJF and the same is true for LLF and LLSJF which is ex-
pected as well for the same reason as mentioned wile con-
sidering the maximum tardiness. Third, LLF and LLSJF
perform similar to EDF but worse than EDF(pre) and ED-
SJF. This difference, however, can be explained by the fact
that EDF, LLF and LLSJF are all non-preemptive whereas
EDF(pre) and EDSJF are preemptive. This is nevertheless an
interesting observation because it contrasts the findings under
the maximum tardiness metric from Figure 3. There, LLF
and LLSJF perform better than their counterparts, even the
preemptive ones. This finding suggests that EDF is a better
option when considering the average tardiness whereas LLF
is better when we consider the maximum tardiness.

Figure 6: Average waiting times of the scheduling strategies under
varying charging station capacities (where pre means preemptive).

2) Performance evaluation under varying parameter val-
ues: For the remainder of the results in this section, a nor-
mal distribution is used to generate arrival times. Impact of
charging capacity. Moving on to the next set of figures, we
start with Figures 6, 7 and 8. These figures show the perfor-
mance of the algorithms under varying charging station ca-

Figure 7: Maximum tardiness of the scheduling strategies under
varying charging station capacities (where pre means preemptive).

Figure 8: Average tardiness of the scheduling strategies under vary-
ing charging station capacities (where pre means preemptive).

pacities. In all three figures, the performances increase as
the capacity increases. This is to be expected since an in-
creased capacity leads to decreased queue sizes. In regards
to average waiting times, Figure 6 demonstrates that SJF and
SJF(pre) always perform better than their counterparts, re-
gardless of the capacity. In respect to the maximum tardi-
ness, Figure 7 shows that FCFS, SJF and SJF(pre) improve
their performance slowly as capacity increases, whereas the
lateness algorithms improve more rapidly. Lastly, consider-
ing the average tardiness, we observe that FCFS performs
the worst under all capacities. Furthermore, a line crossover
presents itself around the charging capacity mark of 2. Be-
fore this crossover, the tardiness algorithms perform signifi-
cantly worse than SJF and SJF(pre). This performance rela-
tion switches after the crossover. From that point on, the late-
ness strategies keep performing the best, as expected. This
is an interesting observation. One possible explanation is the
following: when the capacity decreases to 1, the load on the
charging station increases significantly. Presumably, under
such high loads, prioritising EVs with the shortest charging
times is more beneficial than sorting based on their deadlines.



Figure 9: Average waiting times of the scheduling strategies under
varying numbers of EVs arriving (where pre means preemptive).

Figure 10: Maximum tardiness of the scheduling strategies under
varying numbers of EVs arriving (where pre means preemptive).

We will come back to this thought again when studying the
number of EVs and charging duration results. Another obser-
vation, one that holds for all three metrics, is that there exists
no performance difference between SJF and its preemptive
version SJF(pre). For EDF and preemptive EDF case, there
do exist some small performance differences when consider-
ing the maximum and average tardiness, as mentioned earlier.
However, these figures now show that the differences do not
become more apparent as the charging capacity varies.

Impact of vehicle number. Figures 9, 10 and 11 display
how the scheduling algorithms perform as the number of EVs
arriving increases. We observe the following facts: First, all
metrics considered, SJF and SJF(pre) perform the same con-
stantly, as seen before. Furthermore, the performance of all
strategies decreases as the number of EVs arriving increases.
This is because there are more EVs arriving to be charged,
which leads to a longer queue at the charging station which
in turn leads to more waiting and more EVs missing their
deadlines. Second, regarding waiting times, as more vehi-
cles arrive, SJF and SJF(pre) increasingly perform better than
the tardiness algorithms. Moreover, as the number of vehi-

Figure 11: Average tardiness of the scheduling strategies under vary-
ing numbers of EVs arriving (where pre means preemptive).

cles arriving increases, the performance of LLF and LLSJF
slightly diverges from the performance of the EDF versions
and becomes worse. This is an interesting observation. We at-
tempt to explain this as follows: On average, a shorter charg-
ing duration results in an earlier finish time. Consequently,
considering the equation for laxity L = d − f (described in
Section 3), when the finish time decreases, the slack time in-
creases resulting in less priority for LLF and LLSJF whereas
the EV would be prioritised by SJF. Thus, laxity prioritisa-
tion works against SJF prioritisation. Since EDF does not
have this issue, the performances diverges when considering
average waiting times. Third, in regards to the maximum
tardiness, all scheduling strategies hold the same relation to
one another as more vehicles arrive. More precisely, SJF,
SJF(pre) and FCFS persistently perform worse than the tar-
diness algorithms. Fourth, in view of the average tardiness,
FCFS continuously performs worse than all its counterparts.
In addition, at around 140 EVs arriving, the tardiness algo-
rithm lines and the SJF and SJF(pre) lines cross over. From
that point on, the tardiness algorithms perform increasingly
worse and approach the same performance as FCFS. This ob-
servation is similar to the one made when discussing varying
charging capacities under the average tardiness. Once more,
we presume that as the load on the station significantly in-
creases as the number of EVs increase, allowing the shortest
charging times first becomes the best order.

Impact of charging duration. Figures 12, 13 and 14
demonstrate the performance of the algorithms under varying
charging durations. First, we observe that all algorithms per-
form worse as the charging duration increases. This is to be
expected because a longer charging duration naturally results
in longer charging times. If EVs need more time to charge,
other EVs in the queue have to wait longer on their turn. This
leads to longer waiting times and to more EVs missing their
deadlines. Second, considering the waiting times, Figure 12
shows that SJF and SJF(pre) perform best at all charging du-
rations and the performance gap increases as the charging du-
ration increases. Since SJF and SJF(pre), in contrast to their
counterparts, prioritise using the charging time, this is to be
expected. However, between these two algorithms, no signif-



Figure 12: Average waiting times of the scheduling strategies under
varying charging durations (where pre means preemptive).

Figure 13: Maximum tardiness of the scheduling strategies under
varying charging durations (where pre means preemptive).

icant difference can be observed. This is, again, an interesting
observation since we would expect SJF(pre) to outperform its
counterpart. Furthermore, non-preemptive EDF does not per-
form significantly different than preemptive EDF or the pre-
emptive EDSJF. This, on the other hand, is not an unexpected
result, since EDF and its versions all prioritise using the dead-
lines of the EVs which form no connection to the waiting
times. Moreover, as the charging duration increases, the per-
formance of LLF and LLSJF decreases more rapidly than that
of the EDF versions. The reason for this is the same as dis-
cussed before. As to why this performance gap increases, we
hypothesize that due to a longer charging duration, charging
takes longer and therefore, the effects of a single non-optimal
schedule are amplified. Next, concerning the maximum tar-
diness, Figure 13 shows that SJF and SJF(pre) perform simi-
lar to FCFS. This is not unexpected since the aforementioned
strategies all do not consider deadlines in their scheduling
policy. On the other hand, all the strategies that do incor-
porate deadlines into their policy, have a similar performance
profile. These are the tardiness algorithms. Lastly, in regards
to the average tardiness, Figure 14 makes way for some inter-

Figure 14: Average tardiness of the scheduling strategies under vary-
ing charging durations (where pre means preemptive).

esting observations. Once more, we observe SJF outperform-
ing the lateness algorithms after a certain point, here 14, as
the load on the station increases. This figure is no exception
to the rule since an increased charging duration leads to more
congestion at the station. Moreover, we observe that LLF and
LLSJF perform increasingly worse than the EDF versions as
the charging duration increases. This finding might suggest
that under high loads, prioritising on deadlines directly is bet-
ter than prioritising on slack time.

5 Responsible Research
In this section, we mention some of the aspects concerning
ethicality and reprodicibilty of research. Thereafter, we dis-
cuss the ethicality and reproducibilty of our own research.

5.1 Ethical Aspects
When doing research, one should carefully consider the ethi-
cal aspects of the research. It is of paramount importance that
the integrity of the research is up to par and that the research
is done in a responsible way.

Related to our study, the most notable ethical aspect to con-
sider is the realistic traffic data that is collected in the original
paper ([De Weerdt et al., 2015]) which this paper builds upon.
In that paper, the authors use origin-destination pairs with the
corresponding departure times in their experimental evalua-
tion. They collect this data from a Dutch National Survey
[Centraal Bureau Voor De Statistiek (CBS) / Rijkswaterstaat
(RWS), 2012]. The collection of data could bring up privacy
concerns and therefore, when using this data, one should con-
sider if no privacy rights are violated. One way to check
if this is indeed the case is by making sure the used data is
anonymised.

In this study specifically however, we do not use any histor-
ical real life data. This is discussed further as a possibility for
future work in section 6. Moreover, this study does not col-
lect any new data which might present any privacy concerns.
As a result, we can safely assume that no privacy rights are
violated.



5.2 Reproducibility
Another important aspect of research is reproducibility. The
results presented in a study or paper should be relatively easy
to obtain by others. To achieve this, great care should be put
into describing the steps and tasks necessary to perform in or-
der to achieve the results. Since results are often obtained ex-
perimentally via simulations in the field of Computer Science,
researchers should make sure all the details of their simula-
tion environment (e.g., simulation parameters, computation
resources available during the simulation, and the simulation
(pseudo)code) are provided and explained where possible.

To this end, this paper includes the link to the repository2

where the code of the simulation used in this paper is stored.
Furthermore, it gives a pseudocode of the main simulation
loop and explains the code as well. Lastly, it describes all the
parameters used and provides all the values used for these pa-
rameters. With all this information, we are quite sure a reader
could produce nearly identical results as those presented in
this paper (section 4.3).

6 Conclusions and Future Work
This paper studies varies scheduling strategies for the
scheduling of EVs at a single charging station. These strate-
gies are evaluated under three performance metrics in order to
determine their effectiveness. Through extensive experimen-
tal analysis, we find that EDF is the best alternative when one
values adherence to deadlines. Applying this strategy results
in 83% lower average tardiness in comparison to FCFS in sce-
narios where the charging station is congested (i.e., under the
normal distribution). The preemptive version of this strategy
performs even better, resulting in a 9% lower average tardi-
ness than its non-preemptive counterpart. On the other hand,
when one intends to minimise average waiting times, we find
that SJF is the best option. Compared to the other strategies
studied, SJF achieves 29% shorter average waiting times at
the charging station when the normal distribution is consid-
ered. Interestingly, we found no performance improvement
for using preemptive SJF over the non-preemptive version.
Furthermore, contrarily to our expectations, we found no dif-
ferences in performance between EDF(pre) and EDSJF and
between LLF and LLSJF.

There are several directions for future study. Firstly, the
strategies could be extended with different admission poli-
cies. In that case, the charging station would have the option
to reject EVs for charging. The advantage of such an exten-
sion is twofold. On one hand, EV owners are now guaran-
teed that their vehicle will be charged before its deadline. On
the other hand, the issue of deadline fraud can be combat-
ted where EV owner can consciously present misinformation
about their deadline needs to have prioritisation over other
owners. Secondly, a monetary dimension can be added to
this study by extending the EV model with a willingness to
pay attribute. Consequently, we could examine the effects
of a pricing policy on the congestion and performance of the
strategies. Lastly, for the generation of the arrival times, more

2https://gitlab.ewi.tudelft.nl/cse3000/2020-2021/rp-group-16/rp-
group-16-aamouzandeh

realistic data can be used. For instance, using historical ar-
rival times at a certain real-life charging station can possibly
lead to more accurate results.
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