<]
TUDelft

Delft University of Technology

Matrix Product Operator Restricted Boltzmann Machines

Chen, Cong; Batselier, Kim; Ko, Ching Yun; Wong, Ngai

DOI
10.1109/1JCNN.2019.8851877

Publication date
2019

Document Version
Final published version

Published in
Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN 2019)

Citation (APA)

Chen, C., Batselier, K., Ko, C. Y., & Wong, N. (2019). Matrix Product Operator Restricted Boltzmann
Machines. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN 2019)
Article N-20160 IEEE. https://doi.org/10.1109/IJCNN.2019.8851877

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/IJCNN.2019.8851877
https://doi.org/10.1109/IJCNN.2019.8851877

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ — Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

Matrix Product Operator Restricted Boltzmann
Machines

Cong Chen”, Kim Batselier™”, Ching-Yun Ko", and Ngai Wong"

“Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
Email: {chencong, cyko, nwong}@eee.hku.hk
“Delft Center for Systems and Control, Delft University of Technology, Delft, The Netherlands
Email: k.batselier @tudelft.nl

Abstract—A restricted Boltzmann machine (RBM) learns a
probability distribution over its input samples and has nu-
merous uses like dimensionality reduction, classification and
generative modeling. Conventional RBMs accept vectorized data
that dismiss potentially important structural information in the
original tensor (multi-way) input. Matrix-variate and tensor-
variate RBMs, named MvRBM and TvRBM, have been proposed
but are all restrictive by model construction and have weak
model expression power. This work presents the matrix product
operator RBM (MPORBM) that utilizes a tensor network general-
ization of Mv/TvRBM, preserves input formats in both the visible
and hidden layers, and results in higher expressive power. A novel
training algorithm integrating contrastive divergence and an
alternating optimization procedure is also developed. Numerical
experiments compare the MPORBM with the traditional RBM
and MvRBM for data classification and image completion and
denoising tasks. The expressive power of the MPORBM as a
function of the MPO-rank is also investigated.

Index Terms—tensors, matrix product operators, restricted
Boltzmann machines

I. INTRODUCTION

A restricted Boltzmann machine (RBM) [1] is a probabilistic
model that employs a layer of hidden variables to achieve highly
expressive marginal distributions. RBMs are an unsupervised
learning technique and have been extensively explored and ap-
plied in various fields, such as pattern recognition [2], computer
vision [3] and signal processing [4]. However, conventional
RBMs are designed for vector data and cannot directly deal
with matrices and higher-dimensional data, which are common
in real-life. For example, grayscale images are second-order
tensors (i.e. matrices) while color images or grayscale videos
are third-order tensors. The traditional approach to apply an
RBM on such high-dimensional data is through vectorization
of the data, which leads to three drawbacks. First, the spatial
information in the original data is lost, thus weakening the
model’s capability to represent these structural correlations.
Second, the fully connected visible and hidden units may
cause overfitting since the intrinsic low-rank property of many
real-life data is disregarded. Third, in order to train the dense
matrix between the visible and hidden layers, much storage

This work is supported by the Hong Kong Research Grants Council
under General Research Fund (GRF) Project 17246416, and the University
Research Committee of The University of Hong Kong.

978-1-7281-2009-6/$31.00 ©2019 IEEE

Personal use is

and computation resources are required when the layer sizes
are large. That may lead to failure in training the RBM.

To address these, we propose a matrix product operator
(MPO) restricted Boltzmann machine (MPORBM) wherein
both the visible and hidden layers are in tensor forms. The
reason we assume the hidden layer is in tensor format is that we
can readily use an MPO to connect the visible and hidden layers.
An MPO is essentially a tensor network reformulation of the
dense matrix in a traditional RBM. In practical cases where the
tensor network ranks are low, the number of model parameters
can be drastically reduced without affecting the expressive
power of the model. To train an MPORBM, we further describe
its customized parameter learning algorithms. The MPORBM
is also compared with the standard RBM and matrix-variate
RBM [5] for tensor inputs in numerical experiments. This
article has the following major contributions:

1) The MPORBM is proposed for the first time and gener-
alizes existing RBM architectures. The standard RBM,
matrix-variate RBM (MvRBM) [5] and tensor-variate
RBM (TvRBM) [6] models are all special cases of the
MPORBM.

2) Compared with standard RBMs, the number of parameters
in an MPORBM grows only linearly with the order of the
tensor instead of exponentially. This alleviates overfitting,
which is demonstrated through numerical experiments.

3) Both the visible and hidden layers are represented in
tensor forms and therefore useful structural information
in the original tensor data is preserved and utilized.

4) The graphical “language" of tensor network diagrams [7]
is introduced to represent how specific quantities (such
as the conditional probabilities) are computed. This
way, complicated mathematical expressions are easily
understood in a visual manner.

5) Although the data structures are generalized to tensors,
the bipartite graph nature of an RBM still applies, together
with the fast sampling and inference properties.

II. RELATED WORK

Real-life data are extensively multiway. Researchers have
been motivated to develop corresponding multiway RBMs.
For example, [8] proposed a factored conditional RBM for
modeling motion style. In their model, both historical and

paper N-20160.pdf
ermitted, but republication/distribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2020 at 09:45:11 UTC from IEEE Xplore. Restrictions apply.

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

current motion vectors are considered as inputs so that the
pairwise association between them is captured. However, since
the visible layer is in vector form, the spatial information in
the multiway data is not retained. In [3] a three-way factored
conditional RBM was proposed where a three-way weight
tensor is employed to capture the correlations between the
input, output, and hidden variables. However, their training
data still require vectorization.

The above works are both aiming to capture the interaction
among different vector inputs and are hence not directly
applicable to matrix and tensor data. The first RBM designed
for tensor inputs is [6], which is called a tensor-variate RBM
(TvRBM). In TvRBM, the visible layer is represented as a
tensor but the hidden layer is still a vector, which may still
suffer from the curse of dimensionality when the hidden layer
size is large. Furthermore, the connection between the visible
and hidden layers is described by a canonical polyadic (CP)
tensor decomposition [9]. However, this CP weight tensor is
known to constrain the model representation capability [5].

Another RBM-related model that utilizes tensor input is the
matrix-variate RBM (MvRBM) [5]. The visible and hidden
layers in an MvRBM are both matrices. Nonetheless, to limit
the number of parameters, an MVRBM models the connection
between the visible and hidden layers through two separate
matrices, which restricts the ability of the model to capture
correlations between different data modes.

All these issues have motivated the MPORBM. Specifically,
MPORBM not only employs tensorial visible and hidden layers,
but also utilizes a general and powerful tensor network, namely
an MPO, to connect the tensorial visible and hidden layers.
By doing so, an MPORBM achieves a more powerful model
representation capacity than MvRBM and at the same time
greatly reduces the model parameters compared to a standard
RBM. Note that a mapping of the standard RBM with tensor
networks has been described in [10]. However, their work does
not generalize the standard RBM to tensorial inputs and is

therefore still based on visible and hidden units in vector forms.

III. PRELIMINARIES

We review some necessary tensor basics, the MPO tensor
decomposition, the standard RBM and its tensorial variants.

A. Tensor basics

Tensors are multi-dimensional arrays that are higher-order
generalization of vectors (first-order tensors) and matrices
(second-order tensors). A dth-order (also called d-way or
d-mode) tensor is denoted as A € RItXT2XXla where
each entry A(iy,%2,...,74) is determined by d indices
1 <ip <Ip(k=1,2,...,d). The numbers I, I5,..., 1 are
called the dimensions of the tensor. We use boldface capital
calligraphic letters A, B, ...to denote tensors, boldface capital
letters A, B, ...to denote matrices, boldface letters a, b, ...to
denote vectors, and roman letters a, b, ...to denote scalars.
AT and a” are the transposes of a matrix A and a vector
a. An intuitive and useful graphical representation, named
tensor network diagrams, of scalars, vectors, matrices and

9.

O QW

Fig. 1: Graphical representation of a scalar a, vector a, matrix A,
and third-order tensor .A.

)

Fig. 2: Tensor contraction between a third-order tensor A and a
fourth-order tensor B, where the summation runs over i and 3.

tensors is depicted in Fig. 1. The unconnected edges are the
indices of the tensor. We will mainly employ these graphical
representations to visualize the tensor networks and operations
in the following sections and refer to [7] for more details. We
now briefly introduce some important tensor operations.
Definition 1: (Tensor index contraction): A tensor index
contraction is the sum over all possible values of the repeated
indices in a set of tensors.
For example, the following contraction between a third-order
tensor A and a fourth-order tensor B
I, I3
Clir,iayis) = Y Y Alir, iz, i3) Bliz, s, i, i5),

ia=1i3=1

over the i5 and i3 indices results in a third-order tensor C.
The corresponding tensor network diagram for these index
contractions is shown in Fig. 2, where the summation over
the ¢ and i3 indices is indicated by the connected edges. The
resulting diagram has three unconnected indices (i1,1%4,1%5),
which confirms that C is of third order.

B. Tensor MPO decomposition

An MPO is essentially a tensor network representation of
a matrix. To relate the row and column indices of a matrix
to the corresponding multi-indices of the MPO we need the
following definition.

Definition 2: The mapping between a linear index ¢ of
a vector a € R4 and its corresponding multi-index

[i1,79,...,14] when reshaped into a tensor A € RI1>X*1a jg
d k—1

i=ir+ > (k1)] L (1)
k=2 p=1

Now suppose we have a matrix A € RfvTaxJiJa where

the index mapping (1) is used to split both the row index
and column index j into multi-indices [i1, ..., %4], [j1,-- -, Jd)»

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2020 at 09:45:11 UTC from IEEE Xplore. Restrictions apply.

paper N-20160.pdf

Matrix Product Operator Restricted Boltzmann Machines

Fig. 3: Matrix product operator (MPO) decomposition.

respectively. After this index splitting we can arrange all matrix
entries into a 2d-way tensor A € RI1*xlaxJixxJa_ per
definition, the corresponding MPO decomposition represents
each entry of A as

A(ilw . 'aidajlv' .- ajd) =
Ri1,R2,...,Rq

> AYrin gy ra) - A (ray i, a, 1)

T1,72,...,7d

2

The “building blocks" of the MPO are the 4-way tensors
.A(l)7 ceey .A(d), also called the MPO-cores. The dimensions
Ri, Ro, ..., Ry of the summation indices 1, ..., rq are called
the MPO-ranks. Observe that the second summation index of
A is the same as the first index of .A(l), which ensures that
the right-hand side of (2) results in a scalar. When R; > 1,
the MPO is said to have periodic boundary conditions. We will
assume throughout the remainder of this article that R; = 1.
The tensor network diagram representation of (2) is shown in
Fig. 3. All index contractions are again represented as edges
connecting two tensors. The main motivation to use an MPO
representation of a matrix is to reduce its storage requirement.
Indeed, using an MPO-representation with maximal MPO-
rank R for a matrix A € RI"¥I" reduces the storage
requirement from I2¢ down to approximately dI?R?. This
leads to significant storage savings when R is relatively small.
Consequently, all computations are done on the MPO-cores
rather than on the whole matrix itself. This could potentially
reduce the computational complexity of the learning algorithm,
especially if the visible and hidden layers are also represented
as matrix product states (MPS, also called tensor trains in the
scientific computing community [11]). This extension is kept
for future work.

C. Standard RBM

The standard RBM [1] is a bipartite undirected probabilistic
graphical model with one visible layer v € R™ and one hidden
layer h € RY, both in vector forms. Here we mainly consider
binary RBMs, which implies that entries in both v and h attain
binary values. The standard RBM assigns the following energy
function for a specific joint configuration {v, h}:

E(v,h;0) = —v"Wh —v'b—c"h, 3)

-3-

where b € RM and ¢ € RY are the bias of the visible
layer and hidden layer, respectively, and W € RM*¥ is the
mapping matrix. All model parameters together are denoted
© = {W,b,c}. We can easily use a tensor network diagram
to represent Eq. 3 in Fig. 4 (a). The conditional distributions
over the hidden and visible layers can be written as:

p(v =1]h;0) = c(Wh + b), 4)

p(h =1|v;0) = o(Whv + ¢), %)

where o(z) = 1/(1 4+ e™%) is the logistic sigmoid function
and 1 denotes a vector of ones. The parameter training in
a standard RBM is commonly performed by the contrastive
divergence (CD) algorithm [1] and its variants [12], [13].

D. Matrix-variate and tensor-variate RBMs

Here we briefly introduce the two non-vector RBM models,
namely MvVRBM [5] and TvRBM [6]. TVRBM employs a
tensorial visible layer and keeps the hidden layer in a vector
form. A rank-R CP tensor decomposition is used to connect
the visible and hidden layers. However, such a connection
form is also criticized to limit the model capability [5]. The
corresponding energy function of TvVRBM is shown in Fig. 4(b)
as a tensor network diagram.

In the MVRBM model, both the input and hidden layers
are matrices and are interconnected through two independent
weight matrices W) ¢ RMixN w2 ¢ RM2xN2 Thig
particular construction reduces the total number of parameters
from M7 x My x N1 X Ny down to My x Ny + My x Ny but
comes at the cost of a limited representation ability, as the
weight matrix W is constrained to be a Kronecker product of
the W, W () matrices. The energy function of the MVRBM
is graphically represented as a tensor diagram in Fig. 4(c).

IV. MPORBM
We now describe the proposed MPORBM and its customized
model parameter learning algorithms.

A. Model definition

In an MPORBM, both the visible layer ¥V € R{1>*1a
and the hidden layer H € R/ %74 are d-way tensors. As
a result, the weight matrix W is now a 2d-way tensor

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2020 at 09:45:11 UTC from IEEE Xplore. Restrictions apply.

paper N-20160.pdf

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

O-(W)-®+@—0® +©O—®

(a)

@E@@++M

.’- sar

-@

)
Y
c()

(e)

)
S
e)

@)

S

Fig. 4: Negative energy functions (—FE) of (a) RBM; (b) TVRBM; (c) MVvRBM; (d) MPORBM. And conditional probability of an MPORBM

over its (e) hidden layer; (f) visible layer.

W € RIvxxlaxJixxJa which is represented by an MPO
instead. With both the visible and hidden layers being tensors, it
is therefore also required that the bias vectors b, ¢ are tensors
B ¢ Riv<xla ¢ ¢ RAXxJa respectively. The energy
function of an MPORBM is shown in Fig. 4(d) for the specific
case where d = 3. The vertical edges between the different
MPO-cores W .. W are the key ingredient in being
able to express generic weight tensors W, as opposed to

the two disconnected weight matrices in the MvRBM model.

The corresponding conditional distribution equations over the
hidden and visible layers can be derived from the energy
function and are visualized in Fig. 4(e)&(f) for the case
where d = 3. This involves the summation of the weight
MPO with either the hidden or visible layer tensors into a
d-way tensor, which is then added element-wise with the
corresponding bias tensor. The final step in the computation
of the conditional probability is an element-wise application
of the logistic sigmoid function on the resulting tensor.

B. MPORBM Learning algorithm

Let © = {B,c, W W@ WD denote the model
parameters. The model learning task is then formulated into
maximizing the training data likelihood:

L(V;0) =p(V;0) = p(V,H;0) 6)
H

with respect to model parameter ©. Similar to the standard
RBM [1], the expression of the gradient of the log-likelihood

4 -

is:

2 BE(V,’H.)} +Ey {OE(V,’H)}

FE) 90
(7

where [y, 5, is the data expectation w.r.t. p(H|V; ©), which
can be computed by Fig. 4(f). Ey, 4, is the model expectation
w.r.t. p(H,V; ©), which can be approximately computed by the
CD procedure. The main idea in the CD procedure is as follows:
first, a Gibbs chain is initialized with one particular training
sample V(0y= X'trqin. Figs. 4(e)&(f) are then computed K
times in an alternating fashion, which results in the chain
{Vwo), "), Vay,Hw)), - (V) Hky)}. The model
expectation is then approximated by {V k) }. The derivative of
the log-likelihood with respect to the k-th MPO-core Wk g
visualized in Fig. 5. This involves the computation of 2 fourth-
order tensors, obtained by removing the k-th MPO-core wk)
from the two tensor networks and summing over all connected
edges. The resulting tensors are then subtracted element-wise
from one another. The derivatives of the log-likelihood with
respect to the bias tensors B,C are

0

aBlogL(V 0) =V — V)
0
aclogﬁ(v @) 7'{,(0) - %(K)-

We mainly use the CD procedure to train the MPORBM
model. However, instead of updating all the MPO-cores
simultaneously with one batch of input training data, we employ

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2020 at 09:45:11 UTC from IEEE Xplore. Restrictions apply.

paper N-20160.pdf

Matrix Product Operator Restricted Boltzmann Machines

()

)

Fig. 5: The derivative of the log-likelihood function with respect to the kth MPO-core w),

the alternating optimization procedure (AOP). This involves
updating only one MPO-core at a time while keeping the others
unchanged using the same batch of input training data. We name
this parameter learning algorithm CD-AOP and its pseudo-code
is given in Algorithm 1 . The superiority of this alternating
optimization procedure over simultaneously updating all MPO-
cores, which we call CD-SU from hereon will be demonstrated
through numerical experiments.

Algorithm 1: MPORBM learning algorithm (CD-AOP)
Input: Training data of N tensors D = {Xy,..., Xy}, the
maximum iteration number 7', the batch size b, the momentum
v, the learning rate « and CD step K.
Output: Model parameters S}
B,c, whH w® wldy

1: Randomly initialize w

,W(d). Set the bias B =

C = O and the gradient increments AB = AC =

AWD — ... AW@D — .
2: for iteration number t =1 — T do
3: Randomly divide D into M batches D1,...,D); of

size b.
4: for batch m=1— M do
5: for c=1—ddo
6: For all data V(o) = Xrain € Dy, run Gibbs
sampling:
7: for k=0,...,K-1 do
8: sample H ;) according to Fig. 4 (f) with V(;);
9: sample V(1) according to Fig. 4(e) with H 4,
10: end for
11: AW — y AW +a(} 3 5590710gL(V; 0))
12: AB 4AB+a(l Y Zlogl(V;0))
Do

13: AC + YAC + a2 > ZloglL(V;0))
14: 0+ O6+A6
15: end for
16: end for
17: end for

V. EXPERIMENTS

In this section, the MPORBM is compared with both the
standard RBM and MvRBM. Specifically, we first investigate
the performance and scalability of these models as a means
to do feature extraction for classification, together with the
influence of the MPO-ranks on the expressive power of

-5._

TABLE I: Detailed information for different datasets.

Datasets Original data size Data value range
Alphadigits 20 x 16 Binary
DrivFace 80 x 80 0-255 integer
Arcene 10000 x 1 0-924 integer
COIL-100 128 x 128 x 3 0-255 integer

TABLE II: Visual layer structure of different RBM models for different
datasets.

Datasets RBM MvRBM MPORBM
Alphadigits 320x 1 20 x 16 20 x 16
DrivFace 51200 x 1 80 x 640 80 x 80 x 8
Arcene 100000 x 1~ 100 x 1000 100 x 100 x 10
COIL-100 393216 x 1 128 x 3072 128 x 128 x 24

the MPORBM. Furthermore, we demonstrate the generative
capacity of MPORBM by implementing an image completion
task and an image denoising task. For hyperparameter setting,
we select mostly the same default values as in MVRBM paper,
namely momentum ~ = 0.5, CD step K = 1. For learning rate,
we provide a set of possible value and choose the one which
achieves the best validation accuracy. Moreover, we choose
the same maximum iteration number and batch size for all
methods. All experiments are run in MATLAB on an Intel i5
3.2GHz desktop with 16GB RAM.

A. Data Classification

In the first experiment, we demonstrate the data classification
accuracy superiority of MPORBM on extensive standard ma-
chine learning datasets, namely the Binary Alphadigits dataset®,
normalized DrivFace’, Arcene? and COIL-100 dataset’. The
size of those datasets vary from 320 to 49152. Since we assume
binary input in our RBM setting, thus for non-binary datasets,
we first use a multi-bit vector to represent each value in the
original data. The additional multi-bit dimension is combined
with the RGB channel if the dataset is color image. Table I
shows the detailed information of these datasets, while Tables II
and IIT show the visual and hidden layer structure of different
RBM models for different datasets.

*https://cs.nyu.edu/~roweis/data.html
Thttps://archive.ics.uci.edu/ml/datasets/DrivFace
*https://archive.ics.uci.edu/ml/datasets/Arcene
Shitp://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2020 at 09:45:11 UTC from IEEE Xplore. Restrictions apply.

paper N-20160.pdf

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

TABLE 11I: Hidden layer structure of different RBM models for
different datasets.

Datasets RBM MvRBM MPORBM
Alphadigits 80 x 1 10x 8 10x 8

DrivFace 500 x 1 10 x 50 10x10x 5
Arcene 500 x 1 10 x 50 10x10x 5
COIL-100 500 x 1 10x50 10x10x5

TABLE 1V: Classification errors of different RBM models.

Datasets RBM MvRBM MPORBM CD-SU/AOP
Alphadigits 28.10% 31.20% 28.10% / 26.90%
DrivFace 24.20% 15.48% 9.68% / 8.06%
Arcene 45.00% 34.00% 32.00% / 27.00%
COIL-100 — 6.82% 6.82% / 0.00%

We randomly separate the above four datasets into training,
validation and testing parts respectively. It might happen that
training sample sizes are insufficiently large to train a good
RBM model. Thus the training data number we choose for
each class is significantly smaller than their data dimension,
commonly smaller than 35. The MPORBM-ranks were chosen
empirically from a range of 10 to 50 depending on the model
input size. The trained RBM models were then employed to
extract features from the hidden layer and then those new
features were utilized to train a K Nearest Neighbor (/-NN)
classifier with K = 1 for all experiments. Table IV lists the
resulting classification errors.

The restrictive Kronecker product assumption of the weight
matrices in MVRBM explains why it has the worst classification
performance in all datasets. The standard RBM also performs
worse than MPORBM, which may be caused by overfitting
because of the small training sample size. It is notable that
due to the PC memory constraint, the standard RBM fails to
learn the enormous number of parameters in the full weight
matrix for COIL-100 dataset, but MPORBM still gets the best
classification performance due to the general MPO weight
structure. Moreover, the CD-AOP algorithm shows a higher
classification accuracy than CD-SU, which further indicates
that the alternating updating scheme is more suitable for our
MPORBM model. Thus in the following experiments, we only
employ CD-AOP algorithm to train our MPORBM model.

B. Investigation of influence MPO-rank on classification error

In this experiment, we demonstrate how the expressive power
of the MPORBM is determined by the MPO-ranks. For this
purpose, the MNIST dataset! was used to train an MPORBM
for image classification. The MNIST dataset has a training set
of 60k samples and a test set of 10k samples. Each sample is
a 28 x 28 grayscale picture of handwritten digits {0,...,9},
where each pixel value was converted into a binary number.
The hidden layer states in the RBM model were also regarded
as features extracted from the training data and used in a K-
NN classifier with K = 1. The dimensions of the hidden layer
were set to M7 = My = 10. The MPO-rank Ry was varied

Ihttp://yann.lecun.com/exdb/mnist/

-6 -

10° ————
3000 training samples -
54000 training samples

5000 training samples| |

Classification error

90 110 130 150 170 190
MPO-rankR2

010 30 50 70

Fig. 6: Classification error as a function of the MPO-rank Rs in the
MPORBM model.

from 2 up to 200. To reveal the general rule of MPORBM
model expression power on MPO-ranks, the above mentioned
experiments were run for training sample sizes of 3k, 4k and
5k, which are randomly chosen from training set. In addition,
10k samples of the training set were chosen for validation. The
classification error for each of these runs is shown in Fig. 6
as a function of Rs. Note that the MPORBM with Ry = 1
is identical with the MvRBM for these matrix inputs. It can
be seen that the classification error stabilizes when Rs = 40,
which indicates that a low-rank MPO may be powerful enough
to model the latent probability distribution of the training data
and a lot of storage and computational resources can be saved.
We need to mention that by setting the MPO-ranks to their
maximal values the MPORBM gets the same model expression
ability as a standard RBM. This experiment, however, shows
that using a low-rank MPORBM is more than enough to model
real-life data.

C. Image completion and denoising

In this experiment, we show that an MPORBM is good at
generative modeling by implementing image completion and
denoising. We test the above generative tasks on the binarized
MNIST dataset. Specifically, we randomly choose 50 samples
from the 60k training set to train the RBM models with 500
iterations and using all 10k test samples to check the model
generative performance. The standard RBM is set up with
vectorial visual layer and hidden layer, while both MvRBM
and MPORBM are constructed with 2-way tensorial visual layer
and hidden layer. The MPO-rank in this experiment is set to
40 according to the observation from the previous experiment.
The visual-hidden layer structure and total weight parameter
number of each RBM model is listed in Table V.

In the image completion task, one half of the image is
provided to the trained RBM models to complete the another

TABLE V: The visual-hidden layer structure and total weight
parameter number of different RBM models.

RBM MvRBM MPORBM CD-AOP
Visual structure 784 x 1 28 x 28 28 x 28
Hidden structure 100 x 1 10 x 10 10 x 10
parameters 78400 560 22400

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2020 at 09:45:11 UTC from IEEE Xplore. Restrictions apply.

paper N-20160.pdf

Matrix Product Operator Restricted Boltzmann Machines

Fig. 7: Image completion result when given the right half image.
First row: original binarized images; second row: RBM completed
images; third row: MVRBM completed images; fourth row: MPORBM
completed images.

Fig. 8: Image completion result when given the bottom half image.
First row: original binarized images; second row: RBM completed
images; third row: MVRBM completed images; fourth row: MPORBM
completed images.

half. As mentioned in [14], RBM completion performance is
different when the given half image is in the column or row
direction. Thus we investigate the completion ability of different
RBM models when given the right and the bottom half of image,
respectively. Figures 7 and 8 demonstrate the completed images
of different RBM models when given the same randomly
selected right and bottom halves, respectively. It is clear that
MvRBM is not able to complete the image, which further
confirms the necessity of the MPO generalization. Table VI
further lists the average PSNR results between the completed
image and the original binarized image on the whole test set.
We found that the MPORBM demonstrates a comparable image
completion performance to a standard RBM, but with much
fewer model parameters (around 29%).

In the image denoising task, we employ the same trained
RBM models from the completion task and randomly add
a certain percentage of salt & pepper noise to the test set.
The average PSNR results between the original binarized
pictures and denoised pictures on the whole test set are listed
in Table VIL. It is clear to see that the denoising performance
of the MPORBM is comparable with that of a standard RBM
when 10% noise is added, but performs better when higher
percentages of noise are added. The fewer model parameters
in the MPORBM may lead to a more robust generative model.

VI. CONCLUSION

This paper has proposed the MPORBM, which preserves
the tensorial nature of the input data and utilizes a matrix
product operator (MPO) to represent the weight matrix. The
MPORBM generalizes all existing RBM models to tensor

-7

TABLE VI: The average PSNR results on the whole test set when
given the right and bottom half images respectively, and completing
the left and upper half images.

Given half RBM MvRBM MPORBM CD-AOP
Right half 13.86 dB 12.35 dB 13.79 dB
Bottom half 13.66 dB 12.38 dB 13.69 dB

TABLE VII: The average PSNR results on the whole test set when
adding p% salt & pepper noises.

p% noise RBM MvRBM MPORBM CD-AOP
10% 13.55dB 11.82 dB 13.49 dB
15% 12.90 dB 10.26 dB 13.24 dB
20% 11.88 dB 9.23 dB 12.95 dB

inputs and has better storage complexity since the number of
parameters grows only linearly with the order of the tensor.
Furthermore, by representing both the visible and hidden layers
as tensors, it is possible to retain useful structural information
in the original data. In order to facilitate the exposition on the
various computations, tensor network diagrams were introduced
and used throughout the paper.

There are several avenues for future research. If both
the visible and hidden layers are represented in a matrix
product state (MPS) form, then all computations can be
done on individual cores. This can significantly improve the
computational complexity of the learning algorithm.

Furthermore, analogous to stacking RBMs into a Deep Belief
Network (DBN) or Deep Belief Machine (DBM), MPORBMs
can be stacked into an MPODBN or MPODBM to extend its
expressive power and application. Again, this stacking can also
gain computational benefits from keeping all layers in the MPS
form.

REFERENCES

[11 G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural computation, vol. 14, no. 8, pp. 1771-1800, 2002.

[2] H. Larochelle and Y. Bengio, “Classification using discriminative
restricted Boltzmann machines,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 536-543.

[3] A. Krizhevsky, G. Hinton et al., “Factored 3-way restricted Boltzmann
machines for modeling natural images,” in Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, 2010,
pp. 621-628.

[4] A.-r. Mohamed and G. Hinton, “Phone recognition using restricted
Boltzmann machines,” in Acoustics Speech and Signal Processing
(ICASSP), 2010 IEEE International Conference on. 1EEE, 2010, pp.
4354-4357.

[5] G. Qi, Y. Sun, J. Gao, Y. Hu, and J. Li, “Matrix variate restricted
Boltzmann machine,” in Neural Networks (IJCNN), 2016 International
Joint Conference on. 1EEE, 2016, pp. 389-395.

[6] T.D. Nguyen, T. Tran, D. Q. Phung, S. Venkatesh et al., “Tensor-Variate
Restricted Boltzmann Machines.” in AAAI 2015, pp. 2887-2893.

[7]1 R. Ords, “A practical introduction to tensor networks: Matrix product
states and projected entangled pair states,” Annals of Physics, vol. 349,
pp. 117-158, 2014.

[8] G. W. Taylor and G. E. Hinton, “Factored conditional restricted
Boltzmann machines for modeling motion style,” in Proceedings of
the 26th annual international conference on machine learning. ACM,
2009, pp. 1025-1032.

[9]1 T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM review, vol. 51, no. 3, pp. 455-500, 2009.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2020 at 09:45:11 UTC from IEEE Xplore. Restrictions apply.

paper N-20160.pdf

[10]

(1]

[12]

[13]

[14]

IJCNN 2019. International Joint Conference on Neural Networks. Budapest, Hungary. 14-19 July 2019

J. Chen, S. Cheng, H. Xie, L. Wang, and T. Xiang, “Equivalence of
restricted Boltzmann machines and tensor network states,” Phys. Rev. B,
vol. 97, p. 085104, Feb 2018.

I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295-2317, 2011.

T. Tieleman, “Training restricted Boltzmann machines using approxima-
tions to the likelihood gradient,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 1064-1071.

T. Tieleman and G. Hinton, “Using fast weights to improve persistent
contrastive divergence,” in Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, 2009, pp. 1033-1040.

Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, “Unsupervised
generative modeling using matrix product states,” Physical Review X,
vol. 8, no. 3, p. 031012, 2018.

- 8-

paper N-20160.pdf

Authorized licensed use limited to: TU Delft Library. Downloaded on July 23,2020 at 09:45:11 UTC from IEEE Xplore. Restrictions apply.

