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Abstract—A restricted Boltzmann machine (RBM) learns a
probability distribution over its input samples and has nu-
merous uses like dimensionality reduction, classification and
generative modeling. Conventional RBMs accept vectorized data
that dismiss potentially important structural information in the
original tensor (multi-way) input. Matrix-variate and tensor-
variate RBMs, named MvRBM and TvRBM, have been proposed
but are all restrictive by model construction and have weak
model expression power. This work presents the matrix product
operator RBM (MPORBM) that utilizes a tensor network general-
ization of Mv/TvRBM, preserves input formats in both the visible
and hidden layers, and results in higher expressive power. A novel
training algorithm integrating contrastive divergence and an
alternating optimization procedure is also developed. Numerical
experiments compare the MPORBM with the traditional RBM
and MvRBM for data classification and image completion and
denoising tasks. The expressive power of the MPORBM as a
function of the MPO-rank is also investigated.

Index Terms—tensors, matrix product operators, restricted
Boltzmann machines

I. INTRODUCTION

A restricted Boltzmann machine (RBM) [1] is a probabilistic

model that employs a layer of hidden variables to achieve highly

expressive marginal distributions. RBMs are an unsupervised

learning technique and have been extensively explored and ap-

plied in various fields, such as pattern recognition [2], computer

vision [3] and signal processing [4]. However, conventional

RBMs are designed for vector data and cannot directly deal

with matrices and higher-dimensional data, which are common

in real-life. For example, grayscale images are second-order

tensors (i.e. matrices) while color images or grayscale videos

are third-order tensors. The traditional approach to apply an

RBM on such high-dimensional data is through vectorization

of the data, which leads to three drawbacks. First, the spatial

information in the original data is lost, thus weakening the

model’s capability to represent these structural correlations.

Second, the fully connected visible and hidden units may

cause overfitting since the intrinsic low-rank property of many

real-life data is disregarded. Third, in order to train the dense

matrix between the visible and hidden layers, much storage

This work is supported by the Hong Kong Research Grants Council
under General Research Fund (GRF) Project 17246416, and the University
Research Committee of The University of Hong Kong.

and computation resources are required when the layer sizes

are large. That may lead to failure in training the RBM.

To address these, we propose a matrix product operator

(MPO) restricted Boltzmann machine (MPORBM) wherein

both the visible and hidden layers are in tensor forms. The

reason we assume the hidden layer is in tensor format is that we

can readily use an MPO to connect the visible and hidden layers.

An MPO is essentially a tensor network reformulation of the

dense matrix in a traditional RBM. In practical cases where the

tensor network ranks are low, the number of model parameters

can be drastically reduced without affecting the expressive

power of the model. To train an MPORBM, we further describe

its customized parameter learning algorithms. The MPORBM

is also compared with the standard RBM and matrix-variate

RBM [5] for tensor inputs in numerical experiments. This

article has the following major contributions:

1) The MPORBM is proposed for the first time and gener-

alizes existing RBM architectures. The standard RBM,

matrix-variate RBM (MvRBM) [5] and tensor-variate

RBM (TvRBM) [6] models are all special cases of the

MPORBM.

2) Compared with standard RBMs, the number of parameters

in an MPORBM grows only linearly with the order of the

tensor instead of exponentially. This alleviates overfitting,

which is demonstrated through numerical experiments.

3) Both the visible and hidden layers are represented in

tensor forms and therefore useful structural information

in the original tensor data is preserved and utilized.

4) The graphical “language" of tensor network diagrams [7]

is introduced to represent how specific quantities (such

as the conditional probabilities) are computed. This

way, complicated mathematical expressions are easily

understood in a visual manner.

5) Although the data structures are generalized to tensors,

the bipartite graph nature of an RBM still applies, together

with the fast sampling and inference properties.

II. RELATED WORK

Real-life data are extensively multiway. Researchers have

been motivated to develop corresponding multiway RBMs.

For example, [8] proposed a factored conditional RBM for

modeling motion style. In their model, both historical and
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current motion vectors are considered as inputs so that the

pairwise association between them is captured. However, since

the visible layer is in vector form, the spatial information in

the multiway data is not retained. In [3] a three-way factored

conditional RBM was proposed where a three-way weight

tensor is employed to capture the correlations between the

input, output, and hidden variables. However, their training

data still require vectorization.

The above works are both aiming to capture the interaction

among different vector inputs and are hence not directly

applicable to matrix and tensor data. The first RBM designed

for tensor inputs is [6], which is called a tensor-variate RBM

(TvRBM). In TvRBM, the visible layer is represented as a

tensor but the hidden layer is still a vector, which may still

suffer from the curse of dimensionality when the hidden layer

size is large. Furthermore, the connection between the visible

and hidden layers is described by a canonical polyadic (CP)

tensor decomposition [9]. However, this CP weight tensor is

known to constrain the model representation capability [5].

Another RBM-related model that utilizes tensor input is the

matrix-variate RBM (MvRBM) [5]. The visible and hidden

layers in an MvRBM are both matrices. Nonetheless, to limit

the number of parameters, an MvRBM models the connection

between the visible and hidden layers through two separate

matrices, which restricts the ability of the model to capture

correlations between different data modes.

All these issues have motivated the MPORBM. Specifically,

MPORBM not only employs tensorial visible and hidden layers,

but also utilizes a general and powerful tensor network, namely

an MPO, to connect the tensorial visible and hidden layers.

By doing so, an MPORBM achieves a more powerful model

representation capacity than MvRBM and at the same time

greatly reduces the model parameters compared to a standard

RBM. Note that a mapping of the standard RBM with tensor

networks has been described in [10]. However, their work does

not generalize the standard RBM to tensorial inputs and is

therefore still based on visible and hidden units in vector forms.

III. PRELIMINARIES

We review some necessary tensor basics, the MPO tensor

decomposition, the standard RBM and its tensorial variants.

A. Tensor basics

Tensors are multi-dimensional arrays that are higher-order

generalization of vectors (first-order tensors) and matrices

(second-order tensors). A dth-order (also called d-way or

d-mode) tensor is denoted as A ∈ R
I1×I2×···×Id where

each entry A(i1, i2, . . . , id) is determined by d indices

1 ≤ ik ≤ Ik(k = 1, 2, . . . , d). The numbers I1, I2, . . . , Id are

called the dimensions of the tensor. We use boldface capital

calligraphic letters A, B, . . . to denote tensors, boldface capital

letters A, B, . . . to denote matrices, boldface letters a, b, . . . to

denote vectors, and roman letters a, b, . . . to denote scalars.

AT and aT are the transposes of a matrix A and a vector

a. An intuitive and useful graphical representation, named

tensor network diagrams, of scalars, vectors, matrices and

a Aa

Fig. 1: Graphical representation of a scalar a, vector a, matrix A,
and third-order tensor A.

i1 

i2 

i3 

i4 

i5 

Fig. 2: Tensor contraction between a third-order tensor A and a
fourth-order tensor B, where the summation runs over i2 and i3.

tensors is depicted in Fig. 1. The unconnected edges are the

indices of the tensor. We will mainly employ these graphical

representations to visualize the tensor networks and operations

in the following sections and refer to [7] for more details. We

now briefly introduce some important tensor operations.

Definition 1: (Tensor index contraction): A tensor index

contraction is the sum over all possible values of the repeated

indices in a set of tensors.

For example, the following contraction between a third-order

tensor A and a fourth-order tensor B

C(i1, i4, i5) =

I2∑

i2=1

I3∑

i3=1

A(i1, i2, i3)B(i2, i3, i4, i5),

over the i2 and i3 indices results in a third-order tensor C.

The corresponding tensor network diagram for these index

contractions is shown in Fig. 2, where the summation over

the i2 and i3 indices is indicated by the connected edges. The

resulting diagram has three unconnected indices (i1, i4, i5),

which confirms that C is of third order.

B. Tensor MPO decomposition

An MPO is essentially a tensor network representation of

a matrix. To relate the row and column indices of a matrix

to the corresponding multi-indices of the MPO we need the

following definition.

Definition 2: The mapping between a linear index i of

a vector a ∈ R
I1···Id and its corresponding multi-index

[i1, i2, . . . , id] when reshaped into a tensor A ∈ R
I1×···×Id is

i = i1 +

d∑

k=2

(ik − 1)

k−1∏

p=1

Ip. (1)

Now suppose we have a matrix A ∈ R
I1···Id×J1···Jd , where

the index mapping (1) is used to split both the row index i
and column index j into multi-indices [i1, . . . , id], [j1, . . . , jd],
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Fig. 3: Matrix product operator (MPO) decomposition.

respectively. After this index splitting we can arrange all matrix

entries into a 2d-way tensor A ∈ R
I1×···×Id×J1×···×Jd . Per

definition, the corresponding MPO decomposition represents

each entry of A as

A(i1, . . . , id, j1, . . . , jd) =
R1,R2,...,Rd∑

r1,r2,...,rd

A
(1)(r1, i1, j1, r2) · · ·A

(d)(rd, id, jd, r1).
(2)

The “building blocks" of the MPO are the 4-way tensors

A
(1), . . . ,A(d), also called the MPO-cores. The dimensions

R1, R2, . . . , Rd of the summation indices r1, . . . , rd are called

the MPO-ranks. Observe that the second summation index of

A
(d) is the same as the first index of A(1), which ensures that

the right-hand side of (2) results in a scalar. When R1 > 1,

the MPO is said to have periodic boundary conditions. We will

assume throughout the remainder of this article that R1 = 1.

The tensor network diagram representation of (2) is shown in

Fig. 3. All index contractions are again represented as edges

connecting two tensors. The main motivation to use an MPO

representation of a matrix is to reduce its storage requirement.

Indeed, using an MPO-representation with maximal MPO-

rank R for a matrix A ∈ R
Id×Id

reduces the storage

requirement from I2d down to approximately dI2R2. This

leads to significant storage savings when R is relatively small.

Consequently, all computations are done on the MPO-cores

rather than on the whole matrix itself. This could potentially

reduce the computational complexity of the learning algorithm,

especially if the visible and hidden layers are also represented

as matrix product states (MPS, also called tensor trains in the

scientific computing community [11]). This extension is kept

for future work.

C. Standard RBM

The standard RBM [1] is a bipartite undirected probabilistic

graphical model with one visible layer v ∈ R
M and one hidden

layer h ∈ R
N , both in vector forms. Here we mainly consider

binary RBMs, which implies that entries in both v and h attain

binary values. The standard RBM assigns the following energy

function for a specific joint configuration {v,h}:

E(v,h; Θ) = −v
T
Wh− v

T
b− c

T
h, (3)

where b ∈ R
M and c ∈ R

N are the bias of the visible

layer and hidden layer, respectively, and W ∈ R
M×N is the

mapping matrix. All model parameters together are denoted

Θ = {W , b, c}. We can easily use a tensor network diagram

to represent Eq. 3 in Fig. 4 (a). The conditional distributions

over the hidden and visible layers can be written as:

p(v = 1|h; Θ) = σ(Wh+ b), (4)

p(h = 1|v; Θ) = σ(W T
v + c), (5)

where σ(x) = 1/(1 + e−x) is the logistic sigmoid function

and 1 denotes a vector of ones. The parameter training in

a standard RBM is commonly performed by the contrastive

divergence (CD) algorithm [1] and its variants [12], [13].

D. Matrix-variate and tensor-variate RBMs

Here we briefly introduce the two non-vector RBM models,

namely MvRBM [5] and TvRBM [6]. TvRBM employs a

tensorial visible layer and keeps the hidden layer in a vector

form. A rank-R CP tensor decomposition is used to connect

the visible and hidden layers. However, such a connection

form is also criticized to limit the model capability [5]. The

corresponding energy function of TvRBM is shown in Fig. 4(b)

as a tensor network diagram.

In the MvRBM model, both the input and hidden layers

are matrices and are interconnected through two independent

weight matrices W (1) ∈ R
M1×N1 ,W (2) ∈ R

M2×N2 . This

particular construction reduces the total number of parameters

from M1 ×M2 ×N1 ×N2 down to M1 ×N1 +M2 ×N2 but

comes at the cost of a limited representation ability, as the

weight matrix W is constrained to be a Kronecker product of

the W (1),W (2) matrices. The energy function of the MvRBM

is graphically represented as a tensor diagram in Fig. 4(c).

IV. MPORBM

We now describe the proposed MPORBM and its customized

model parameter learning algorithms.

A. Model definition

In an MPORBM, both the visible layer V ∈ R
I1×···×Id

and the hidden layer H ∈ R
J1×···×Jd are d-way tensors. As

a result, the weight matrix W is now a 2d-way tensor

Matrix Product Operator Restricted Boltzmann Machines
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 (1)

 (2)

 (1)

 (2)

 (3)

(a)

(b)

(c)

(e)

 (1)

 (2)

 (3)

(f)

(d)

 (1)

 (2)

 (3)

(           )

(           )

Fig. 4: Negative energy functions (−E) of (a) RBM; (b) TvRBM; (c) MvRBM; (d) MPORBM. And conditional probability of an MPORBM
over its (e) hidden layer; (f) visible layer.

W ∈ R
I1×···×Id×J1×···×Jd , which is represented by an MPO

instead. With both the visible and hidden layers being tensors, it

is therefore also required that the bias vectors b, c are tensors

B ∈ R
I1×···×Id ,C ∈ R

J1×···×Jd , respectively. The energy

function of an MPORBM is shown in Fig. 4(d) for the specific

case where d = 3. The vertical edges between the different

MPO-cores W
(1), . . . ,W(d) are the key ingredient in being

able to express generic weight tensors W , as opposed to

the two disconnected weight matrices in the MvRBM model.

The corresponding conditional distribution equations over the

hidden and visible layers can be derived from the energy

function and are visualized in Fig. 4(e)&(f) for the case

where d = 3. This involves the summation of the weight

MPO with either the hidden or visible layer tensors into a

d-way tensor, which is then added element-wise with the

corresponding bias tensor. The final step in the computation

of the conditional probability is an element-wise application

of the logistic sigmoid function on the resulting tensor.

B. MPORBM Learning algorithm

Let Θ = {B,C,W(1),W(2), . . . ,W(d)} denote the model

parameters. The model learning task is then formulated into

maximizing the training data likelihood:

L(V ; Θ) = p(V ; Θ) =
∑

H

p(V ,H; Θ) (6)

with respect to model parameter Θ. Similar to the standard

RBM [1], the expression of the gradient of the log-likelihood

is:

∂

∂Θ
logL(V; Θ) = −EH|V

[
∂E(V,H)

∂Θ

]
+ EV,H

[
∂E(V,H)

∂Θ

]

(7)

where EV|H is the data expectation w.r.t. p(H|V ; Θ), which

can be computed by Fig. 4(f). EV,H is the model expectation

w.r.t. p(H,V ; Θ), which can be approximately computed by the

CD procedure. The main idea in the CD procedure is as follows:

first, a Gibbs chain is initialized with one particular training

sample V(0)= X train. Figs. 4(e)&(f) are then computed K
times in an alternating fashion, which results in the chain

{(V(0),H(0)), (V(1),H(1)), . . . , (V(K),H(K))}. The model

expectation is then approximated by {V(K)}. The derivative of

the log-likelihood with respect to the k-th MPO-core W
(k) is

visualized in Fig. 5. This involves the computation of 2 fourth-

order tensors, obtained by removing the k-th MPO-core W
(k)

from the two tensor networks and summing over all connected

edges. The resulting tensors are then subtracted element-wise

from one another. The derivatives of the log-likelihood with

respect to the bias tensors B,C are

∂

∂B
logL(V ; Θ) = V(0) − V(K),

∂

∂C
logL(V ; Θ) = H(0) −H(K).

We mainly use the CD procedure to train the MPORBM

model. However, instead of updating all the MPO-cores

simultaneously with one batch of input training data, we employ
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 (1)  (d)

(0)

(0)

 (k-1)  (k+1)  (1)  (d)

(K)

(K)

 (k-1)  (k+1)

Fig. 5: The derivative of the log-likelihood function with respect to the kth MPO-core W
(k).

the alternating optimization procedure (AOP). This involves

updating only one MPO-core at a time while keeping the others

unchanged using the same batch of input training data. We name

this parameter learning algorithm CD-AOP and its pseudo-code

is given in Algorithm 1 . The superiority of this alternating

optimization procedure over simultaneously updating all MPO-

cores, which we call CD-SU from hereon will be demonstrated

through numerical experiments.

Algorithm 1: MPORBM learning algorithm (CD-AOP)

Input: Training data of N tensors D = {X 1, . . . ,XN}, the

maximum iteration number T , the batch size b, the momentum

γ, the learning rate α and CD step K.

Output: Model parameters Θ =
{B,C,W(1),W(2), . . . ,W(d)}.

1: Randomly initialize W
(1), . . . ,W(d). Set the bias B =

C = O and the gradient increments ΔB = ΔC =
ΔW

(1) = · · · = ΔW
(d) = O.

2: for iteration number t = 1 → T do

3: Randomly divide D into M batches D1, . . . ,DM of

size b.
4: for batch m = 1 → M do

5: for c = 1 → d do

6: For all data V(0) = X train ∈ Dm run Gibbs

sampling:

7: for k=0,. . . ,K-1 do

8: sample H(k) according to Fig. 4 (f) with V(k);

9: sample V(k+1) according to Fig. 4(e) with H(k)

10: end for
11: ΔW

(c)
← γΔW

(c) + α( 1
b

∑
Dm

∂

∂W(c) logL(V; Θ))

12: ΔB← γΔB + α( 1
b

∑
Dm

∂
∂B

logL(V; Θ))

13: ΔC ← γΔC + α( 1
b

∑
Dm

∂
∂C

logL(V; Θ))

14: Θ← Θ+ΔΘ

15: end for

16: end for

17: end for

V. EXPERIMENTS

In this section, the MPORBM is compared with both the

standard RBM and MvRBM. Specifically, we first investigate

the performance and scalability of these models as a means

to do feature extraction for classification, together with the

influence of the MPO-ranks on the expressive power of

TABLE I: Detailed information for different datasets.

Datasets Original data size Data value range

Alphadigits 20 x 16 Binary
DrivFace 80 x 80 0-255 integer
Arcene 10000 x 1 0-924 integer
COIL-100 128 x 128 x 3 0-255 integer

TABLE II: Visual layer structure of different RBM models for different
datasets.

Datasets RBM MvRBM MPORBM

Alphadigits 320 x 1 20 x 16 20 x 16

DrivFace 51200 x 1 80 x 640 80 x 80 x 8

Arcene 100000 x 1 100 x 1000 100 x 100 x 10

COIL-100 393216 x 1 128 x 3072 128 x 128 x 24

the MPORBM. Furthermore, we demonstrate the generative

capacity of MPORBM by implementing an image completion

task and an image denoising task. For hyperparameter setting,

we select mostly the same default values as in MvRBM paper,

namely momentum γ = 0.5, CD step K = 1. For learning rate,

we provide a set of possible value and choose the one which

achieves the best validation accuracy. Moreover, we choose

the same maximum iteration number and batch size for all

methods. All experiments are run in MATLAB on an Intel i5

3.2GHz desktop with 16GB RAM.

A. Data Classification

In the first experiment, we demonstrate the data classification

accuracy superiority of MPORBM on extensive standard ma-

chine learning datasets, namely the Binary Alphadigits dataset*,

normalized DrivFace†, Arcene‡ and COIL-100 dataset§. The

size of those datasets vary from 320 to 49152. Since we assume

binary input in our RBM setting, thus for non-binary datasets,

we first use a multi-bit vector to represent each value in the

original data. The additional multi-bit dimension is combined

with the RGB channel if the dataset is color image. Table I

shows the detailed information of these datasets, while Tables II

and III show the visual and hidden layer structure of different

RBM models for different datasets.

*https://cs.nyu.edu/~roweis/data.html
†https://archive.ics.uci.edu/ml/datasets/DrivFace
‡https://archive.ics.uci.edu/ml/datasets/Arcene
§http://www1.cs.columbia.edu/CAVE/software/softlib/coil-100.php
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TABLE III: Hidden layer structure of different RBM models for
different datasets.

Datasets RBM MvRBM MPORBM

Alphadigits 80 x 1 10 x 8 10 x 8

DrivFace 500 x 1 10 x 50 10 x 10 x 5

Arcene 500 x 1 10 x 50 10 x 10 x 5

COIL-100 500 x 1 10 x 50 10 x 10 x 5

TABLE IV: Classification errors of different RBM models.

Datasets RBM MvRBM MPORBM CD-SU/AOP

Alphadigits 28.10% 31.20% 28.10% / 26.90%
DrivFace 24.20% 15.48% 9.68% / 8.06%
Arcene 45.00% 34.00% 32.00% / 27.00%
COIL-100 − 6.82% 6.82% / 0.00%

We randomly separate the above four datasets into training,

validation and testing parts respectively. It might happen that

training sample sizes are insufficiently large to train a good

RBM model. Thus the training data number we choose for

each class is significantly smaller than their data dimension,

commonly smaller than 35. The MPORBM-ranks were chosen

empirically from a range of 10 to 50 depending on the model

input size. The trained RBM models were then employed to

extract features from the hidden layer and then those new

features were utilized to train a K Nearest Neighbor (K-NN)

classifier with K = 1 for all experiments. Table IV lists the

resulting classification errors.

The restrictive Kronecker product assumption of the weight

matrices in MvRBM explains why it has the worst classification

performance in all datasets. The standard RBM also performs

worse than MPORBM, which may be caused by overfitting

because of the small training sample size. It is notable that

due to the PC memory constraint, the standard RBM fails to

learn the enormous number of parameters in the full weight

matrix for COIL-100 dataset, but MPORBM still gets the best

classification performance due to the general MPO weight

structure. Moreover, the CD-AOP algorithm shows a higher

classification accuracy than CD-SU, which further indicates

that the alternating updating scheme is more suitable for our

MPORBM model. Thus in the following experiments, we only

employ CD-AOP algorithm to train our MPORBM model.

B. Investigation of influence MPO-rank on classification error

In this experiment, we demonstrate how the expressive power

of the MPORBM is determined by the MPO-ranks. For this

purpose, the MNIST dataset¶ was used to train an MPORBM

for image classification. The MNIST dataset has a training set

of 60k samples and a test set of 10k samples. Each sample is

a 28× 28 grayscale picture of handwritten digits {0, . . . , 9},

where each pixel value was converted into a binary number.

The hidden layer states in the RBM model were also regarded

as features extracted from the training data and used in a K-

NN classifier with K = 1. The dimensions of the hidden layer

were set to M1 = M2 = 10. The MPO-rank R2 was varied

¶http://yann.lecun.com/exdb/mnist/

Fig. 6: Classification error as a function of the MPO-rank R2 in the
MPORBM model.

from 2 up to 200. To reveal the general rule of MPORBM

model expression power on MPO-ranks, the above mentioned

experiments were run for training sample sizes of 3k, 4k and

5k, which are randomly chosen from training set. In addition,

10k samples of the training set were chosen for validation. The

classification error for each of these runs is shown in Fig. 6

as a function of R2. Note that the MPORBM with R2 = 1
is identical with the MvRBM for these matrix inputs. It can

be seen that the classification error stabilizes when R2 ≈ 40,

which indicates that a low-rank MPO may be powerful enough

to model the latent probability distribution of the training data

and a lot of storage and computational resources can be saved.

We need to mention that by setting the MPO-ranks to their

maximal values the MPORBM gets the same model expression

ability as a standard RBM. This experiment, however, shows

that using a low-rank MPORBM is more than enough to model

real-life data.

C. Image completion and denoising

In this experiment, we show that an MPORBM is good at

generative modeling by implementing image completion and

denoising. We test the above generative tasks on the binarized

MNIST dataset. Specifically, we randomly choose 50 samples

from the 60k training set to train the RBM models with 500
iterations and using all 10k test samples to check the model

generative performance. The standard RBM is set up with

vectorial visual layer and hidden layer, while both MvRBM

and MPORBM are constructed with 2-way tensorial visual layer

and hidden layer. The MPO-rank in this experiment is set to

40 according to the observation from the previous experiment.

The visual-hidden layer structure and total weight parameter

number of each RBM model is listed in Table V.

In the image completion task, one half of the image is

provided to the trained RBM models to complete the another

TABLE V: The visual-hidden layer structure and total weight
parameter number of different RBM models.

RBM MvRBM MPORBM CD-AOP

Visual structure 784 x 1 28 x 28 28 x 28

Hidden structure 100 x 1 10 x 10 10 x 10

# parameters 78400 560 22400
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Fig. 7: Image completion result when given the right half image.
First row: original binarized images; second row: RBM completed
images; third row: MvRBM completed images; fourth row: MPORBM
completed images.

Fig. 8: Image completion result when given the bottom half image.
First row: original binarized images; second row: RBM completed
images; third row: MvRBM completed images; fourth row: MPORBM
completed images.

half. As mentioned in [14], RBM completion performance is

different when the given half image is in the column or row

direction. Thus we investigate the completion ability of different

RBM models when given the right and the bottom half of image,

respectively. Figures 7 and 8 demonstrate the completed images

of different RBM models when given the same randomly

selected right and bottom halves, respectively. It is clear that

MvRBM is not able to complete the image, which further

confirms the necessity of the MPO generalization. Table VI

further lists the average PSNR results between the completed

image and the original binarized image on the whole test set.

We found that the MPORBM demonstrates a comparable image

completion performance to a standard RBM, but with much

fewer model parameters (around 29%).

In the image denoising task, we employ the same trained

RBM models from the completion task and randomly add

a certain percentage of salt & pepper noise to the test set.

The average PSNR results between the original binarized

pictures and denoised pictures on the whole test set are listed

in Table VII. It is clear to see that the denoising performance

of the MPORBM is comparable with that of a standard RBM

when 10% noise is added, but performs better when higher

percentages of noise are added. The fewer model parameters

in the MPORBM may lead to a more robust generative model.

VI. CONCLUSION

This paper has proposed the MPORBM, which preserves

the tensorial nature of the input data and utilizes a matrix

product operator (MPO) to represent the weight matrix. The

MPORBM generalizes all existing RBM models to tensor

TABLE VI: The average PSNR results on the whole test set when
given the right and bottom half images respectively, and completing
the left and upper half images.

Given half RBM MvRBM MPORBM CD-AOP

Right half 13.86 dB 12.35 dB 13.79 dB
Bottom half 13.66 dB 12.38 dB 13.69 dB

TABLE VII: The average PSNR results on the whole test set when
adding p% salt & pepper noises.

p% noise RBM MvRBM MPORBM CD-AOP

10% 13.55 dB 11.82 dB 13.49 dB
15% 12.90 dB 10.26 dB 13.24 dB
20% 11.88 dB 9.23 dB 12.95 dB

inputs and has better storage complexity since the number of

parameters grows only linearly with the order of the tensor.

Furthermore, by representing both the visible and hidden layers

as tensors, it is possible to retain useful structural information

in the original data. In order to facilitate the exposition on the

various computations, tensor network diagrams were introduced

and used throughout the paper.

There are several avenues for future research. If both

the visible and hidden layers are represented in a matrix

product state (MPS) form, then all computations can be

done on individual cores. This can significantly improve the

computational complexity of the learning algorithm.

Furthermore, analogous to stacking RBMs into a Deep Belief

Network (DBN) or Deep Belief Machine (DBM), MPORBMs

can be stacked into an MPODBN or MPODBM to extend its

expressive power and application. Again, this stacking can also

gain computational benefits from keeping all layers in the MPS

form.
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