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With the continuous advancement of autonomous driving tech-
nology, the precision and efficiency of perception systems have become
increasingly critical. Among various sensors, LiDAR plays a central
role, and solid-state optical phased arrays (OPAs) are widely regarded
as a promising future direction. However, traditional uniform OPAs
often face challenges such as high power consumption and limited scal-
ability.

This thesis addresses the design and optimization of sparse non-
uniform OPAs, aiming to balance trade-offs among the number of
antennas, element spacing, beamwidth, and side lobe level. We pro-
pose a novel formulation that simultaneously considers array sparsity
and performance while enforcing distance constraints, which is solved
using a modified genetic algorithm. The simulation results reveal a
clear trade-off between sparsity and array performance, while also of-
fering practical solutions to the constraints faced by current LiDAR
systems. Furthermore, we investigate the impact of array configura-
tion on beam steering and introduce a mathematical transformation
that reformulates the steering design problem to be compatible with
our model. The comparison results demonstrate that the proposed
approach significantly improves array performance across the entire
steering range.
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Abstract

With the continuous advancement of autonomous driving technology, the precision
and efficiency of perception systems have become increasingly critical. Among various
sensors, LiDAR plays a central role, and solid-state optical phased arrays (OPAs) are
widely regarded as a promising future direction. However, traditional uniform OPAs
often face challenges such as high power consumption and limited scalability.

This thesis addresses the design and optimization of sparse non-uniform OPAs; aim-
ing to balance trade-offs among the number of antennas, element spacing, beamwidth,
and side lobe level. We propose a novel formulation that simultaneously considers
array sparsity and performance while enforcing distance constraints, which is solved
using a modified genetic algorithm. The simulation results reveal a clear trade-off be-
tween sparsity and array performance, while also offering practical solutions to the
constraints faced by current LiDAR systems. Furthermore, we investigate the impact
of array configuration on beam steering and introduce a mathematical transformation
that reformulates the steering design problem to be compatible with our model. The
comparison results demonstrate that the proposed approach significantly improves ar-
ray performance across the entire steering range.
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Introduction

In recent years, with the rapid advancement of sensor technologies and artificial in-
telligence, autonomous driving has achieved significant breakthroughs and is gradu-
ally moving toward large-scale applications. Autonomous driving systems are typically
composed of three core components: perception of the environment, behavior planning,
and motion execution [1]. Among them, the perception system serves as the “eyes” of
the vehicle, responsible for capturing and interpreting data from the environment sur-
rounding the vehicle. It provides crucial input to the planning module and forms the
foundation for ensuring the safety and stability of the entire autonomous driving sys-
tem. Several sensors are commonly used in the perception system, including LiDAR
(Light Detection and Ranging), millimeter-wave radar, cameras, and ultrasonic sensors.
Figure 1.1 shows various sensors equipped in autonomous vehicles.

In all these sensors, LIDAR stands out as the only sensor capable of delivering precise
three-dimensional spatial information about surrounding objects with both high spatial
and temporal resolution. In this thesis, we focus on LiDAR as it has been rapidly
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Figure 1.1: Various sensors in autonomous vehicles [1]

advancing with ongoing developments in industrial technology. Compared to radar,
LiDAR operates at a shorter wavelength, which provides higher angular resolution.
The working principle of LiDAR is similar to that of radar: it emits pulsed light waves
and measures the time it takes for the light to reflect off a surface and return to the
sensor. This information is then used to generate spatial data, including an object’s



position, velocity, shape, and distance. In contrast, camera sensors lack the ability to
accurately capture distance information.

1.1 LiDAR system

In order to get information from the surrounding environment, LiDAR systems need
to steer their beams. The steering principle can be broadly classified into three types
based on their scanning mechanisms: mechanical rotation LiDAR, flash LiDAR, and
solid-state LiDAR [5].

MEMS Mirror

OPA LiDAR Rotating LiDAR MEMS LiDAR
Figure 1.2: Different steering types of LiDAR System

Mechanical rotation LIDAR uses rotating mechanical components to direct the laser
emitter, enabling panoramic scanning. This enables comprehensive environmental cov-
erage but comes at the cost of increased size, high manufacturing expense, limited
integrability, and susceptibility to mechanical wear. A well-known example of this type
is Velodyne’s multi-beam rotating LiDAR system.

Flash LiDAR adopts a camera-like approach, emitting a broad laser pulse to illu-
minate the entire scene at once and capturing the reflected light to form a point cloud.
This design eliminates moving parts and simplifies system architecture, improving ro-
bustness and integration potential. However, it suffers from lower spatial resolution
due to the lack of point-by-point scanning, and the power spread across the wide beam
limits its effective detection range.

In contrast, solid-state LiIDAR eliminates the need for large mechanical compo-
nents, making it more compact and robust. Among solid-state solutions, the micro-
electromechanical system approach is the most widely used. It employs micro-mirrors
to reflect the light to control the direction and scanning range of laser beams via
high-speed mechanical motion. It is not entirely solid-state since it relies on moving
micro-mirrors for beam steering. The limited oscillation amplitude of these mirrors
restricts the field of view, and their intricate micro-mechanical structures demand high
manufacturing precision, resulting in higher costs.

Another solid-state approach is the Optical Phased Array (OPA). OPA represents
one of the most promising scanning approaches and is also the focus of this thesis.
OPA utilizes light wave interference, controlling the phase of each emitter to steer the



beam without the need for mechanical components. This principle is similar to that of
phased array radar.

Compared to traditional LiDAR systems, OPAs are smaller and lighter because
they eliminate bulky mechanical parts. They are also more robust, as the lack of
moving components makes them resistant to shocks and vibrations. In addition, OPAs
can be implemented with Silicon Photonics. This makes it possible to create photonic
integrated circuits using standard semiconductor fabrication and avoiding costly optical
components like lenses, significantly lowering manufacturing costs, making large-scale
production more practical and affordable.

Motivated by the advantages of OPA, this thesis investigates the design of OPA for
LiDAR applications, with the goal of achieving compact solid-state beam steering. The
following section provides a detailed discussion of OPAs.

1.2 The components of OPA

An OPA transmitter typically contains several key components, including a laser input,
power splitters, waveguides, grating couplers, and phase shifters [6]. Figure 1.3 shows
the components in OPA.

Phase Shifter

Power Splitter

Waveguide

Grating coupler
Vol
2
o
Vil

Laser Input

Figure 1.3: OPA components

The laser input provides the optical signal for the whole transmitter, and the power
splitters distribute the power into two paths. The split power travels through the
waveguide, which is very similar to the function of a wire in an electrical circuit. The
grating coupler is a device for converting the light in the waveguide to free-propagating
optical radiation [7]. In the design, grating couplers are optical antennas.

The phase shifter is responsible for controlling the phase of each element. There are
two main types of phase shifters: thermo-optic and electro-optic phase shifters. Both



operate by changing the refractive index of the waveguides. Among them, thermo-optic
phase shifters are the most widely used due to their lower optical loss and compati-
bility with CMOS manufacturing processes. However, thermo-optic shifters have the
drawback of high power consumption, requiring up to tens or hundreds of milliwatts to
achieve a 7 phase shift [3].

1.3 Radiation pattern and performance metrics

The concept of OPA still adheres to the fundamental principle of phased arrays: using
wave interference to shape and steer the beam solely through phase control of individual
antennas. The overall radiation pattern produced is the beam pattern.

The radiation from a single optical antenna can be described by a complex expo-
nential representing its amplitude and phase:

p(t) _ aejwt—f—(ﬁ’

where a denotes the amplitude, ¢ is the initial phase shift, w is the angular frequency,
and ¢ is the time at which the signal is evaluated. Consider a 1D array with N optical
elements. In the far field, the total electric field is the superposition of the contributions
from all array elements. In a phased array, all elements emit simultaneously and use
phase delays to steer the beam. Therefore, the beam pattern can be described as:

N
P(0) =) a,elkemsintton), (1.1)
n=1

where k = 27” denotes the wave number in free space, a, denotes the amplitude of
the n-th element, x, is the position of each antenna, 6 is the azimuth angle of the
observation, A is the working wavelength and ¢,, is the phase shift of the n-th element.

v v v -2 v v 2 v 2 v

X0 xq Xn-1

Figure 1.4: Linear phased array diagram

This beam pattern formulation is derived under several key assumptions: the ar-
ray operates in the far-field region, and the antenna elements are assumed to exhibit
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Figure 1.5: Beam pattern of a uniform linear array with N = 11 elements and element spacing
of 1.5 wavelength.

isotropic radiation and operate independently without mutual coupling. In (1.1), the
direction of the main lobe of the beam can be controlled by adjusting ¢,, = —kx,, sin 6y;
the main beam aligns with the desired direction #,. This illustrates the principle of a
phased control array.

The beam pattern is typically represented as a three-dimensional pattern in all
spatial directions. To facilitate analysis and optimization, this 3D pattern is commonly
cut into an azimuth plane. Furthermore, due to the inherent symmetry configurations
and the fact that real-world applications often focus only on the forward-facing region,
it is common practice to retain only the azimuth range 6§ € [—90°,90°]. An example of
a uniform linear array beam pattern is shown in Figure 1.5, where the beam pattern is
normalized so that its maximum value equals 0 dB.

Based on the above 1D beam pattern formulation and simplification, we will intro-
duce several important concepts critical for the array design:

e Main lobe: The main lobe is the primary lobe in the beam pattern, representing
the direction of maximum radiated power for transmitting or receiving signals.

e Beamwidth: Beamwidth refers to the angular width of the main lobe, typically
defined as the angle between the points where the radiation pattern drops to half
of its peak value.



e Sidelobes: Sidelobes are weaker lobes that occur in directions other than the
main lobe, representing unwanted signals. Their strength is typically much lower
than that of the main lobe. Sidelobes can cause interference by receiving unwanted
signals, making their minimization crucial in autonomous applications.

e Grating lobes: Grating lobes are a specific type of sidelobe that occur in a
phased array when the spacing between adjacent elements exceeds half the wave-
length. Unlike typical sidelobes, the intensity of grating lobes can be as high as
the main lobe, making them particularly problematic. In applications, they can
lead to inaccurate information about the surroundings, like strong false reflections.
Grating lobes arise from the physical structure of the array and can be mitigated
by optimizing the spacing between elements.

e Field of View (FOV): FOV is expressed as an angular range in this thesis,
representing the angular extent of the observable area. This range indicates the
angular region within which the sensor can detect objects. In Figure 1.5, the FOV
is [—90°,90°].

In the industry, there are some requirements for beamwidth to meet the demands
of autonomous driving. A main lobe beamwidth of approximately 0.1° is necessary to
distinguish potential hazards even at a distance of 200 meters [3]. In a uniform linear
array, according to the Rayleigh criterion, the beamwidth is determined only by the
aperture size D and the wavelength X [3],

NG~ =222 (1.2)

Therefore, to achieve a narrower beamwidth, the aperture size needs to be increased,
as the operating wavelength of the OPA is fixed in both design and application. FOV
is another important performance metric in the design. Although grating lobes appear
when the spacing between adjacent elements exceeds half the wavelength, a practical
approach is to utilize only the grating lobe-free angular range and also to steer the
beam within this region. The FOV is defined as the grating lobe-free region. Moreover,
sidelobes can degrade detection performance by introducing ambiguity and reducing
signal-to-noise ratio. Therefore, in OPA design, it is desirable to suppress sidelobes
and ensure a high ratio between the main lobe and the sidelobes. To quantitatively
evaluate this, the peak sidelobe level (PSLL) is adopted as a key performance metric,
and it is computed as:

(1.3)

in lob
PSLL:20-10g10< Haln ope )

max(sidelobe)

While increasing the number of antennas can be a method to enlarge the aperture size
and achieve a narrower main lobe beamwidth, it also leads to increased system power
consumption—primarily due to the phase shifters required in an OPA. Therefore, for a
given set of design specifications, such as achieving a specific PSLL, a smaller number
of antennas is better.

In conclusion, the following four performance metrics will be employed in the design
analysis:



e The beamwidth of the main lobe

e PSLL: In this thesis, the higher value of PSLL means a lower peak sidelobe to
main lobe ratio.

e FOV: The FOV is defined by the grating lobe free region.
e The number of antennas required in the OPA

In this work, we aim to find solutions that are sparse while maintaining acceptable
array performance.

1.4 Motivation for sparse non-uniform design

In most uniform space designs, the space between adjacent elements is set to less than
half the wavelength to avoid grating lobes occurring in the beam pattern. However,
this naive design method has several major drawbacks.

First, it is a great challenge for energy storage and cooling of the system [3]. In the
application of autonomous driving vehicles, the objective is to obtain a high angular
resolution of around 0.1° [9] while simultaneously avoiding the grating lobe effect. Ac-
cording to the Rayleigh criterion (1.2), this requires at least 2000 elements when the
adjacent space is set to half wavelength. Using 2000 elements leads to a power consump-
tion of around 10 Watts for phase shifting only [10]. Also, when the working wavelength
is set to 1550 nm, the physical length of the array is around 1.55 mm. There is a sig-
nificant amount of heat generated in such a small area, which also presents a challenge
for cooling the system [3]. Second, designs with spacing less than half wavelength are
also difficult to implement in practice. Third, mutual coupling occurs between elements
in an array, which alters the array’s beam pattern. As the spacing between elements
decreases, the mutual coupling effect increases, which significantly impacts the beam
pattern.

In the design of OPAs for autonomous vehicles, several goals must be satisfied: a
narrow beamwidth on the order of 0.1°, a wide FOV of approximately 30° to enable re-
liable detection at distances up to 200 meters, and an acceptable PSLL. Achieving all
these objectives concurrently—while maintaining a half-wavelength spacing between
elements and minimizing the total number of antennas—is fundamentally infeasible
under conventional uniform array configurations due to physical and fabrication con-
straints in the optical domain. However, this challenge can be effectively mitigated
through the adoption of sparse non-uniform array designs [11].

In this thesis, we aim to design a sparse non-uniform array configuration that meets
all the requirements of the array pattern while satisfying the distance constraints.

1.5 Outline

This thesis is organized as follows:

e Chapter 2 — Literature Review: This chapter investigates the two architec-
tures of sparse OPA design. We also introduce two general problem formulations



corresponding to the two main design objectives and review three widely used
methods for the design.

Chapter 3 — Problem Formulation and Design of Non-Steering OPA:
This chapter first formulates the objective function that incorporates all objec-
tives and constraints. Then, it presents a modified genetic algorithm (GA) based
on a grid architecture, designed to satisfy all the desired objectives. We detail
the construction of the modified GA model, including the choice of operators, pa-
rameter tuning, and performance validation. We then perform exhaustive testing
to demonstrate the two main purposes served by the model. Finally, we show
the trade-off between sparsity and PSLL and also optimal solutions for various
numbers of antenna elements.

Chapter 4 — Design of Steering OPA: This chapter first explores the impact of
beam steering on array performance. We then propose an extended optimization
strategy that incorporates the steering process into the model, enabling the use
of the modified GA framework developed in Chapter 3. Several design results
are presented for different numbers of antenna elements, considering the effect of
steering.

Chapter 5 — Conclusion and Future Work: This chapter summarizes the
key findings of the thesis and outlines potential directions for future research.



Literature Review

The design of a non-uniform OPA can draw inspiration from the design of sparse phased
arrays, since the operating principle of the OPA is similar to that of the phased array
radar. The current design of sparse arrays is categorized into three types based on their
architecture: thinned arrays, non-uniformly spaced arrays, and clustered arrays [12].
A thinned array architecture is based on a uniform array achieved by deactivating
some elements in the corresponding uniformly spaced array. This process is similar
to selecting elements in a grid architecture. A non-uniformly spaced array allows the
elements to be placed without the constraint of a predefined grid, meaning they can be
positioned arbitrarily within the antenna aperture. The clustered array is similar to the
thinned array, which is also achieved by deactivating elements within a grid architecture.
However, a clustered array operates at the level of subsets or clusters rather than
individual elements. Each grid cell in a clustered array contains multiple elements,
which form a small array within the cluster. In OPA design, clustered arrays are rarely
used. The high accuracy required for beamforming in optical systems necessitates
that each element be independently controlled to ensure optimal performance, which
is difficult to achieve with the shared resources in a clustered array design. According
to the spatial structure of the array, it can also be divided into 1D and 2D designs.

2.1 Optimization Problem Formulations for OPA Design

As discussed previously, in the 1D case, sparse OPA designs can be generally classified
into two categories: thinned arrays and non-uniformly spaced arrays. A thinned array
is based on a grid architecture, where the optimization focuses on selecting the optimal
subset of elements from a predefined uniform grid. In such arrays, without considering
amplitude weighting, we can assume a, € {0,1}, and the element distance can be
written as x,, = nd, where d is the grid space. A non-uniformly spaced array follows an
off-grid architecture; we do not fix x,, and the optimization is performed directly over
the element positions {z1,za, ..., x5} [12].

There are two primary types of optimization objectives in the design of sparse
OPA [13]. The first type focuses on improving the array performance, like the PSLL,
by optimizing sensor parameters such as element positions and amplitude weights. In
this approach, the number of antenna elements N is typically fixed. It is noticed that
the given value of NV is smaller than that required in a uniformly spaced array, making
this design a form of a sparse (non-uniform) array. The following presents a general
problem formulation for this kind of objective. Here, d; is the distance between the ¢
and 7 + 1 antennas, and d,,;, is the minimum distance of the adjacent elements, which
is constrained by the physical limitations of the fabrication process. Also, dy.x is the
largest distance of the adjacent elements, which is constrained to prevent large empty



regions (voids) in the array aperture.

max PSLL
s.t. min(dy,da, ..., dy_1) > duyin, (2.1)
max(dla d?a s 7dN—1) S dmax-

The second type focuses on minimizing the number of antennas N while ensuring
that the designed beam pattern matches the desired beam pattern within an acceptable
matching error. In this design objective, to match the process between the designed
beam pattern and the desired beam pattern, the FOV is first sampled into L direction
angles, and then the designed beam pattern and the desired beam pattern are compared
at each of these L sampled direction angles.

min |lallo (2.2)
st |[P(8) = Pu0)]» < e |
where P(6) and P;(0) are the designed beam pattern and the desired beam pattern, a
is an excitation vector containing the amplitude of each antenna. To be more specific,
it matches the L x 1 vectors and P(f) with minimal elements. An example of the
desired beampattern is shown in Figure 2.1, which has an ideal narrow beamwidth and
a sidelobe of 0. In both cases, since the array pattern is an exponential function of

2 The desired beampattern
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Figure 2.1: An example of the desired beampattern

the element positions, the resulting optimization problem is inherently nonlinear and
non-convex.

The primary objective of this thesis is to achieve a high-performance beam pattern
with a minimal number of antenna elements. This involves a fundamental trade-off: re-
ducing the number of antennas typically results in degraded beamforming performance.

10



Balancing these competing objectives poses a significant challenge. However, the pre-
vious general formulations (2.1) and (2.2) are not the only way to define the problem.
According to the idea presented in [13], after appropriate mathematical transformation,
it is possible to jointly optimize the array performance while minimizing the number
of elements as (2.3). In (2.3), a denotes the weight vector of the array elements. The
lo-norm, defined as the number of non-zero entries in a, serves as a measure of the
array sparsity. The parameters o and ay are weighting coefficients used to balance the
trade-off between the PSLL and the sparsity of the array.

max oy PSLL — as|lal|o
s.t. min(dy, dy, ..., dy_1) > dnin;
max(dy, ds, ..., dy_1) < dmax
Beamwidth < e,.

(2.3)

2.2 Review of different sparse non-uniform OPA methods

Many of the methods are adaptable to both design goals with only minor modifications
in implementation. The following will introduce three main approaches to the design.

2.2.1 Evolutionary algorithms

The main algorithms employed in sparse OPA design are evolutionary algorithms, such
as the GA and particle swarm optimization (PSO). These algorithms are both inspired
by biological evolution: GA mimics natural selection by encoding parameters into in-
dividuals (candidate solutions) and exploring the solution space through crossover and
mutation. PSO, on the other hand, represents parameters as particles within a solution
space, with the particles moving to find the optimal solution. Essentially, evolutionary
algorithms use multiple entities (either individuals or particles) to explore the solution
space randomly, with the goal of identifying the global optimum. GA was first used
in the 1990s to optimize thinned arrays, and since then, other methods like stochastic
approximation, PSO, and their modified versions have been introduced [11].

The main challenge of evolutionary algorithms is the potential for premature con-
vergence, leading to suboptimal solutions. In [15], this issue is addressed by employing
a two-step optimization process in each iteration: a cursory optimization stage and a
precise optimization stage. In the previous chapter, the naive approach to mitigating
the grating lobe effect was to restrict the FOV. Another method to reduce the impact
of grating lobes is to suppress their level. In [10], a modified GA is used to suppress the
grating lobe. In (2.1), the goal is to optimize a single steering angle. However, when the
direction angle changes, performance deteriorates. To address this issue, some papers
consider not only one direction angle but also the performance at other steering angles.
In [17], the authors use a double-weighted fitness function to optimize two steering
angles simultaneously. However, determining the optimal weights for each angle can be
challenging. To resolve this, [13] employs the non-dominated sorting genetic algorithm
I1, a classical multi-objective optimization algorithm, to solve the problem of different
beam steering angles by using multiple objectives (multi-fitness functions) at once. In
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some OPA chip designs, each antenna does not have a uniform amplitude, so optimizing
the amplitude is also important. For example, [19] first uses PSO to find the optimal
positions of a uniform amplitude array, followed by a convex optimization algorithm
to determine the optimal amplitude by optimizing the performance in other steering
angles. Further, [20] follows a similar approach, but the second step uses PSO to op-
timize the amplitude. All the methods discussed above set the minimum spacing to a
low value, mostly around three wavelengths. However, to meet the angular resolution
requirements with such a small minimum spacing, a large number of antennas may still
be needed, or the maximum distance between adjacent antennas will be quite large.
To address this, [21] introduces a new algorithm that uses weighted antenna spacing
and a Hamming window based on GA. This approach can achieve good performance,
for example, a 512-channel aperiodic OPA with antenna spacing between 10\ and 15\,
achieving more than 15 dB side lobe suppression.

2.2.2 Algorithms based on matrix decomposition

One approach to improving performance is to directly match the desired beam pattern.
Matrix decomposition algorithms can be applied to change the form of the desired
pattern matrix, enabling the designed pattern to more effectively approximate the
desired pattern. As described in the previous section, in (2.2), the direction angles
are first sampled into L direction angles to make it convenient for the comparison
of the designed pattern and the desired pattern. After sampling, these two patterns
become Lx 1 vectors, P(f) and P,;(0). These vectors can be used to construct a
Hankel matrix, enabling the extraction of key information from the matrix through
matrix decomposition. By applying matrix decomposition, the number of elements can
be effectively reduced. A technique called matrix pencil method (MPM) is a kind of
matrix decomposition method to design a sparse array. The core idea of this method
is to perform SVD on the Hankel matrix constructed from the desired pattern. From
the results of the SVD, it can be seen that some singular values are relatively small,
indicating that their contribution to the radiation pattern is minimal. These small
singular values can be discarded to obtain a low-rank approximation of the Hankel
matrix. The noniterative MPM effectively estimates synthesis parameters for sums
of complex exponentials, offering faster convergence and better results. However, it
struggles with asymmetric beam patterns because it only considers the real parts of
element positions, leading to unquantifiable negative effects on array performance. This
problem can be partially solved by utilizing the forward-back MPM [22], changing the
Hankel matrix to a Hankel-Toeplitz matrix. In [23], a unitary matrix pencil method
is presented to reduce the computational complexity by converting the decomposition
procedures into real ones through a unitary transformation. However, these matrix
decomposition methods can not directly control the elements’ spacing.

2.2.3 Convex optimization and compressed sensing algorithms

There are numerous powerful tools available for solving convex optimization problems,
which can be used to address the second general problem formulation. The formulation
(2.2) is not a convex problem. Therefore, the first step is to reformulate the problem
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into a convex one. In [24], the authors transform the minimization of the fy-norm into
the minimization of the PSLL also with the ¢;-norm of the weights associated with
each element in the array. Another classical approach [3] is to relax the fy-norm into
a reweighted ¢;-norm. By employing this minimization, the authors achieved effective
pattern performance while maintaining low sparsity.

In [25], the authors introduce the concept of atomic norm minimization (ANM), and
the fp-norm is replaced with the atomic norm to make the problem convex. Convex
optimization tools are then used to solve the ANM problem, resulting in a low-rank
Toeplitz matrix that encodes the array’s parameters. Next, Vandermonde decomposi-
tion and the least squares method are applied to determine the element layouts and
excitations. This ANM method differs from the previous two approaches by operat-
ing in a continuous space, while the first two methods select antenna positions from a
predefined grid. The continuous space framework provides greater design freedom so
that the desired patterns can be reconstructed with fewer elements and lower matching
erTors.

Other Compressed sensing (CS) techniques can also be applied to solve the second
type of general problem formulation. The approach in [26] uses a CS-based method
for non-uniform planar arrays that achieve low computational complexity while con-
sidering the minimum inter-element spacing. It focuses on designing a 2D array, which
extends slightly beyond the current scope. Nevertheless, the mathematical modeling
of 2D arrays is a natural extension of the linear array model. Unlike traditional CS
strategies that rely on predefined candidate grid positions for element selection, this
paper [20] introduces an off-grid compressed sensing approach using an iterative mech-
anism. This method enables better matching performance and lower computational
complexity. This off-grid orthogonal matching pursuit method significantly reduces
computational complexity while ensuring satisfactory performance.

2.3 Chapter summary

In this chapter, we discuss two fundamental architectures and two general formulations
for OPA design. We then review three major design methodologies widely adopted
in the literature. However, most of the methods discussed above focus solely on im-
proving array performance, without exploring the relationship between sparsity and
performance. To address this limitation, the problem needs to be reformulated to si-
multaneously consider both sparsity and final performance, while satisfying the distance
constraints during the optimization process. In the next chapter, we reformulate the
problem and present our proposed method.
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Problem Formulation and
Design of Non-steering OPA

3.1 Proposed Method and Problem Formulation

In a sparse non-uniform OPA design, direct optimization of element positions is a
nonlinear, non-convex problem. Evolutionary algorithms are particularly well-suited
for addressing such nonlinear non-convex challenges, making them the primary meth-
ods employed in sparse OPA design. Moreover, evolutionary algorithms can be easily
adapted to optimize various performance objectives by modifying their objective func-
tions. Some research indicates that evolutionary algorithms are often time-consuming
when optimizing a large number of antennas [12]. However, real-time positional ad-
justment of the array elements is not required in OPA chip design, rendering the array
design time less critical. Furthermore, since the transition from theoretical design to
physical production typically spans several months, the duration of the design opti-
mization process becomes relatively insignificant in the overall development timeline.

Most existing evolutionary algorithms focus on a single optimization target, such as
minimizing PSLL, without incorporating sparsity or beamwidth as explicit optimization
objectives. Consequently, these approaches fall short of the present study’s goal: to
identify and analyze the trade-off between array sparsity and performance (PSLL and
beamwidth).

This thesis adopts a modified genetic algorithm that jointly considers sparsity and
array performance while satisfying distance constraints. The original constrained op-
timization problem in (2.3), which enforced the distance as a hard constraint, is re-
formulated into (3.1) by incorporating a penalty term into the objective function. By
assigning a sufficiently large penalty value, infeasible configurations can be effectively
avoided. In this way, sparsity, performance, and constraint violations are explicitly bal-
anced within a single optimization problem. In GAs, the objective function is referred
to as the fitness function, which assigns a fitness value to each candidate solution. Here,
F(c) denotes the fitness function, where ¢ represents an antenna configuration.

F(c)=PSLL—a-Q—p-1, (3.1)
where
e (): the sparsity level of the array.

e [: represents the number of illegal antenna pairs that violate the inter-element
spacing constraint.

e o a parameter that controls the sparsity level by presetting a different value

e (3: a penalty factor for illegal antenna pairs.
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The optimization problem thus becomes identifying the candidate ¢ that maximizes
the fitness function F'(¢) across all potential solutions.

3.2 Classical GA Introduction

In recent years, metaheuristic algorithms have gained significant attention for address-
ing complex real-world problems across various domains, including economics, engi-
neering, politics, and management [2]. GA is one of the metaheuristic algorithms that
aims to identify the solutions with the highest fitness value, as evaluated by a predefined
fitness function. The core principles of GA are derived from biological processes such as
chromosome crossover and mutation. These mechanisms have inspired the development
of various encoding schemes that allow feasible solutions to be effectively represented
and manipulated. Combined with selection strategies, these genetic operators form
the basis of genetic algorithms. Rooted in the principle of survival of the fittest, GA
iteratively evolves a population of candidate solutions by evaluating their fitness and
applying selection, crossover, and mutation operations. Over successive generations,
chromosomes with higher fitness are more likely to propagate, guiding the search to-
ward optimal or near-optimal solutions. GAs are particularly effective in addressing
the nonlinear optimization challenges inherent in OPA design.

The procedure of classical GA is as follows: First, randomly generate M solutions,
which are called chromosomes in GA, and the whole set of chromosomes is an initial
population. After calculating the fitness value of each chromosome, different selection
operators can be applied based on the fitness values to select a chromosome pair from
the population. A crossover and mutation operators are then applied to each selected
pair with certain probabilities (crossover rate and mutation rate), producing new off-
spring. In the final step, a new population is formed, replacing the old one. This
iterative process continues until reaching the maximum iteration number. Algorithm 1
shows the pseudo code of the classical genetic algorithm.

Algorithm 1 Classical Genetic Algorithm

Generate initial population of M chromosomes ¢; (i =1,2,...,N)

Set iteration counter t = 0

Compute the fitness value of each chromosome through fitness function

while ¢t < maxiter do
Select a pair of chromosomes from the population based on fitness
Apply crossover operation on selected pair with crossover rate
Apply mutation on the offspring with mutation rate
Replace old population with newly generated population
Increment the current iteration ¢ by 1

end while

return The chromosome with the highest fitness value: cpest
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3.3 Modified GA

In our modified GA model, we discuss two key components: the first is the design of the
fitness function, and the second focuses on the design of genetic operators, including
encoding, crossover, mutation, and selection mechanisms.

3.3.1 Fitness function

In most of the GA model I have surveyed, the number of array elements is fixed, without
explicitly considering the trade-off between sparsity level and array performance [15—15]
[21]. To address this, the grid-based architecture is adopted in this design. As a result,
each chromosome will be encoded as a binary vector ¢ € {0,1}". In this vector, a
‘1" represents an active position (with an antenna), and a ‘0’ represents an inactive
position (without an antenna). Figure 3.1 gives an example of a chromosome under
grid architecture design. Based on this grid architecture, we can also take beamwidth

@ Fixed Position @ Inactive Position @ Active Position

Figure 3.1: An example of a chromosome under grid architecture design

into account. According to Rayleigh’s criterion (1.2), beamwidth is determined only
by the wavelength and the aperture size. If we maintain a sufficiently large and dense
aperture, we can achieve a narrow beamwidth. Therefore, during the searching process,
we ensure that the first and last positions of ¢ in the binary vector are set to 1. We
also interpret this binary set as the weight assigned to each antenna element, thereby
avoiding the need for additional thresholding methods to achieve sparsity. The fitness
function (3.1) can now be changed into (3.2).

max  F(e)=PSLL—a-Q—=3-1, (ce{0,1}")

(3.2)
s.t. c(l)=1, ¢(N)=1,
In the grid-based architecture, the Q can be defined by the ratio as:
llello
= ) 3.3
Q=" (33)

Also, with fixed potential positions for element placement, we can ignore the constraint
on the maximum distance between adjacent elements, because the grid itself limits the
spacing, so only the minimum distance constraint needs to be enforced.

3.3.2 Operators Selection

GA employs various operators during the search process, including encoding, selec-

tion, crossover, and mutation. The choice and combination of these operators can
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significantly affect the convergence speed and will lead to worse results under limited
iterations. Figure 3.2 illustrates different operator choices in GAs.

Operators
used in
Genetic

Algorithms

N W

( Encoding ) ( Selection ) C Crossover j C Mutation )

Binary Encoding N Roule'tte Wheel .| Single Point L DlspIaFement
selection Crossover Mutation
Octal Encoding e ,| K-Point L Ir.wersu)n Muta-
Crossover tion
Ll Hexadecimal En- N Tournament Se- 1 Uniform i Scramble Muta-
coding lection Crossover tion
\ Permutation En- n Boltzmann selec- R Partially mapped 8 Bit Flipping Mu-
coding tion Crossover tation
- Stochastic Uni- i ;
Value Encoding - . [Order Crossover | +{ feversing Muta
versal Sampling tion
- Precedence pre-
Tree Encoding - : P
serving Crossover

¥

Shuffle Crossover

Reduced Surro-
o
gate Crossover

| Cycle Crossover

Figure 3.2: Variety of operators used in GA [2]

3.3.3 Encoding operator

Grid-based architecture is used to build the OPA, making binary encoding a straight-
forward choice for chromosome representation. In this case, the binary output directly
represents the solution, eliminating the need for further conversion. Additionally, bi-
nary encoding facilitates easier and faster implementation of crossover and mutation
operators.

3.3.3.1 Selection operator

The selection operator plays a crucial role in guiding the search for optimal solutions by
picking out appropriate chromosomes to take the next step. The selection pressure also
matters. Selection pressure refers to how strongly the selection process favors the best
chromosomes in a population when choosing parents for reproduction. On one hand,
we aim to impose some selection pressure to ensure that chromosomes with a higher
fitness value survive. However, excessive pressure can lead to premature convergence
by consistently selecting only the fittest chromosomes in a given generation, thereby
reducing population diversity. Thus, maintaining a suitable selection pressure is also
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essential. We will compare two common selection operators: Roulette wheel selection
and Tournament selection.

Roulette wheel selection, also known as fitness-proportionate selection, selects chro-
mosomes based on their fitness values; the higher the fitness value, the greater the
probability of selection. The fitness values are converted into selection probabilities
using the following equation:

F(c)
F

pi = (3.4)

where p; represents the probability of the chromosome ¢;, F'(¢;) denotes its fitness value,
and F' is the sum of all fitness values in one population. This mechanism resembles
a roulette wheel in a casino, where each chromosome is assigned a proportion of the
wheel based on its probability. A random selection is performed by simulating spins
of the wheel. Each spin selects one chromosome, and the process continues until the
number of selected chromosomes matches the initial population size. Since selection
is based on probability, even weak chromosomes have a chance of being chosen, which
helps preserve genetic diversity by retaining a potentially useful schema.

However, a principal limitation of roulette wheel selection is its dependence on the
variance of fitness values [2]. When most individuals in a large population exhibit
similar fitness and the fitness variance is low, the selection pressure is significantly
reduced. In such cases, small differences in fitness lead to nearly uniform selection
probabilities, thereby diminishing the algorithm’s ability to guide the search toward
superior solutions. As a result, the selection process may resemble a random search. In
our implementation, each iteration uses at least 1000 chromosomes, with fitness values
typically ranging from 15 to 35. Under these conditions, the drawback becomes very
obvious. Instead, we adopt tournament selection as an alternative operator.

Tournament selection operates by randomly selecting a given set size of chromo-
somes to compete. The chromosome with the highest fitness value within the set will
be selected. This process continues until the required number of chromosomes is cho-
sen. The selection pressure in tournament selection is the set size, which is called the
tournament size. As the tournament size increases, competition intensifies, making
weaker chromosomes less likely to be selected. A simplified selection process with a
tournament size of two is shown in Figure 3.3. In Figure 3.3, among the ten potential
chromosomes, two are first selected randomly, the red and green. Then their fitness
values are compared. The chromosome with the higher fitness value, in this case the
green one, is then chosen. In this project, we use a tournament size of 2 to mitigate
premature convergence and preserve solution diversity.

Due to the stochastic crossover and mutation, the optimal solution in the current
generation may be disrupted or lost in the next generation. To mitigate this, we apply
the elite selection method before tournament selection. The elite selection method
preserves the best chromosomes by directly passing them to the next generation without
undergoing further genetic operations, thereby preventing potential degradation. In
this project, we save one chromosome pair in each iteration.
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Figure 3.3: Simplified illustration of the tournament selection process with a tournament size
of two

3.3.3.2 Crossover and mutation operator

The crossover process simulates genetic recombination in biological inheritance, allow-
ing offspring to inherit advantageous genes from their parents, thereby increasing pop-
ulation diversity and accelerating convergence. The purpose of crossover is to combine
information from two parent chromosomes to generate new chromosomes, enabling the
algorithm to explore the search space more effectively. In this project, we talk about
two different crossover operators: the one-point crossover and the two-point crossover.

In one-point crossover, a random crossover point (i) is selected, and the genetic in-
formation of the two parent chromosomes beyond this point is exchanged. For example,
the segments ¢, (i + 1) to ¢,(N) and ¢,(i + 1) to ¢,(N) are swapped:

cu(i+ 1:N) <— ¢(i + 1:N).

In two-point crossover, two crossover points, ¢(i) and ¢(j) with i < j, are randomly
selected. The genetic information between these two points is exchanged between the
two parent chromosomes. For example, the segments from ¢,(7) to ¢,(j) and from ¢, (%)
to ¢,(7) are swapped:

ca(i:)) «— cp(i:]).

In the case of binary encoding, one-point crossover tends to have a faster convergence
speed because information exchange begins at a single point. However, it may also
disrupt important schema. In general, the differences between one-point, two-point
crossover in binary encoding are not significant [2]. In order to have a faster convergence
speed, we will use one-point crossover in this thesis.
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The mutation operator allows chromosomes to generate new genetic combinations
during inheritance, thereby increasing population diversity and preventing the algo-
rithm from getting trapped in local optima. In the GAs, crossover primarily facilitates
local search, whereas mutation enhances global exploration, improving the algorithm’s
search capability. The simplest way to achieve mutation is through simple inverse mu-
tation. In this mutation operation, two indices ¢ and j (i < j) are randomly selected.
The segment ¢(i:j) is first reversed to form ¢(j:i), and then this reversed segment is
inserted at a randomly selected position within the chromosome. Mutation also occurs
with a probability, the mutation rate. In nature, the mutation rate is generally much
lower than the crossover rate because the “damage” it causes to the chromosome can
be significant. Table 3.1 lists all the operators used in this model.

Encoding Binary Encoding
Selection | Elite selection + Tournament selection
Crossover One-point crossover
Mutation Simple inverse mutation

Table 3.1: The chosen operators

3.4 Tuning Crossover and Mutation Rates

For ease of comparison, we adopted the preset conditions established by Kunlei [3].
As described in his work, the FOV was set from -18° to 18°. The minimum distance
constraint between each antenna pair was set to one wavelength. This model is applied
to a 1000 grid architecture, where the grid distance is one wavelength, thereby negating
the need to consider minimum distance constraints. The population size is set to 1000
x 1000, and the algorithm runs for 2000 iterations. The entire algorithm and simulation
framework are implemented in MATLAB.

Under the established presets, a rough grid search will be employed to find out the
optimal values for these two parameters.

3.4.1 Impact of Crossover rate and mutation rate

In the GA, a low crossover and mutation rate helps preserve high-quality chromosomes
already found, preventing their disruption. However, excessively low rates may cause
the algorithm to become trapped in local optima due to insufficient exploratory capa-
bilities, leading to premature convergence. Conversely, higher crossover and mutation
rates increase population diversity, which helps the algorithm escape local optima and
enhances its global search capability, but high rates can introduce too much random-
ness into the population, disrupting beneficial patterns within the chromosomes. This
may hinder convergence and make it difficult to find optimal chromosomes. As a result,
selecting appropriate values for both rates is important.

This preliminary grid search is conducted to investigate the impact of mutation rate
and crossover rate on the PSLL in the model, with the goal of identifying the optimal
combination of these parameters. The parameter ranges are defined as follows:

21



e Mutation rate: {0.01, 0.05, 0.1, 0.3, 0.6}
e Crossover rate: {0.6, 0.7, 0.8, 0.9, 0.95, 0.97}

This resulted in a total of 30 unique parameter combinations. For each combination,
the model was independently run four times. The final PSLL values were averaged to
evaluate performance. Figure 3.4 shows the average results of different combinations.
More detailed results are shown in Table 3.2.
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Figure 3.4: Grid search results of PSLL under different crossover rate and mutation rate
combination

Mutation/Crossover | 0.6 0.7 0.8 0.9 0.95 0.97
0.01 20.360 | 20.970 | 21.240 | 21.968 | 22.218 | 22.145
0.05 20.547 | 21.307 | 21.720 | 22.036 | 22.146 | 22.106
0.1 20.263 | 21.658 | 21.617 | 23.662 | 23.802 | 23.749
0.3 28.094 | 28.069 | 28.864 | 29.296 | 29.456 | 29.339
0.6 23.283 | 23.011 | 23.012 | 23.056 | 23.280 | 23.020

Table 3.2: Detailed grid results of average PSLL under different crossover rate and mutation
rate combinations
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The results reveal a clear trend along both parameter axes. As the mutation rate
increases, the average PSLL initially increases, reaches a peak, and then decreases,
with the highest performance observed at a mutation rate of 0.3. A similar trend is
observed with the crossover rate, where the best performance is achieved at a value of
0.95. Based on these findings, the optimal values for these two rates are

e Mutation rate: 0.3

e Crossover rate: 0.95

3.5 Model Verification

Before using the model for actual optimization, we conducted an exhaustive search to
validate its correctness. This verification serves two main purposes:

1. To determine whether the modified GA can successfully find the true best solution.

2. To test whether the sparsity level controller () can accurately find the optimal
solution while effectively controlling the sparsity.

3.5.1 Construction of test solution space

Under the previous configuration, where 998 potential positions were available and no
minimum distance constraint was applied, the total number of possible chromosomes
is 2997 (note: the symmetric configuration gets the same results). The search space
is too large to test all the chromosomes. Therefore, we performed this verification
in a smaller solution space: the chromosome length was set to 30, with a minimum
distance constraint of 2, and an additional constraint limiting the maximum distance
to 5. Under these settings, the number of candidate chromosomes was reduced to 82114.
Then calculate the PSLL of these 82114 chromosomes and identify the best results for
different numbers of antennas, as shown in the Table 3.3.

3.5.2 Validation I: Finding optimal PSLL without considering sparsity
(a'=0)

In this experiment, the objective is to verify the effectiveness of the first goal of the
modified GA. The algorithm is tested with a population size of 50, chromosome size of
30, and a maximum of 500 iterations. The grid distance is set to 0.4 wavelength.

Figure 3.5a illustrates the optimization progress over iterations, where the X rep-
resents the iteration number and the Y indicates the best fitness value found in each
iteration. The results show that the algorithm converges after approximately 203 iter-
ations, beyond which no further improvement is observed. The final solution employs
14 antennas and achieves a PSLL of 16.1266 dB. These results demonstrate that the
modified GA is capable of effectively finding the best solution. Figure 3.5b shows the
array pattern of the best solution.
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Solution index | Number of antenna | PSLL
80977 7 0.5715
82112 7 0.5715
53713 8 6.2087
81972 8 6.2087
52797 9 8.0825
81996 9 8.0825
13392 10 10.1395
63855 10 10.1395
1681 11 11.3142
81138 11 11.3142
38513 12 12.3684
72503 12 12.3684
13081 13 13.5687
57644 13 13.5687

3 14 16.1266
72453 14 16.1266
1 15 13.8787
34889 15 13.8787

Table 3.3: Maximum PSLL for chromosomes with the same number of antennas

Convergence of Modified GA Array Pattern (Steering Angle = 0°)
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Figure 3.5: (a) is the best result in each iteration (o/ = 0), and (b) is the array pattern of
the best solution using 14 antennas

3.5.3 Validation II: Evaluation of sparsity controller

To further evaluate the effectiveness and reliability of the sparsity control mechanism,
a second experiment is conducted. In this experiment, the parameter « is varied from
0 to 100 with a fixed step of 0.5. For each value of o, we compute the optimal fitness
value using equation (3.1), which incorporates sparsity, distance constraints, and the

PSLL.
By analyzing the fitness value of all chromosomes, several distinct transition
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points—where the trade-off behavior changes—can be identified. Comparing the gen-
erated results with the reference data in Table 3.4 enables us to verify whether the
a-based sparsity controller can accurately identify the optimal solution while effectively
controlling the sparsity of the array.

Number of Antenna | PSLL o Fitness Values
14 16.1266 0 16.1266
14 16.1266 | 44.5 -4.6401
10 10.1395 | 45 -4.8605
10 10.1395 | 58.5 -9.3605
8 6.2087 59 -9.5247
8 6.2087 | 100 -20.4581

Table 3.4: The jump point during the exhaustive test of «

We select three jump points a = 44.5, a = 45 and o = 59 for testing, the other preset
values are the same as those above discussion. The results are shown in Figures 3.6, 3.7
and 3.8. These results clearly demonstrate that the parameter o can effectively control
the sparsity level and enable the identification of optimal solutions under different
numbers of antennas. It is worth noting that, in all conducted tests, no illegal antenna
positions were observed, and all chromosomes strictly satisfied the distance constraint.
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Figure 3.6: (a) is the best result in each iteration (a = 44.5), and (b) is the array pattern of
the best solution using 14 antennas

3.6 Results and Discussion

In the previous section, we discussed the details of the proposed model and evaluated
its effectiveness using an exhaustive search method. In this section, we apply the
model to generate solutions that meet the specific requirements of automotive vehicle
applications.
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Convergence of Modified GA
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Figure 3.7: (a) is the best result in each iteration (o = 45), and (b) is the array pattern of
the best solution using 10 antennas
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Figure 3.8: (a) is the best result in each iteration (a = 59), and (b) is the array pattern of
the best solution using 8 antennas

3.6.1 Simulation setups

To simplify future comparisons, the following parameter settings follow the setups in [3]:

e The operating wavelength A is set to 1550nm;

The detect fov is [—18°,18°;

The number of sampling angle L is set to 10001;

e Beam steering is still not considered in this case; the steering angle is fixed at 0°;

e The grid space is set to 1 A;

e Chromosome size = 1000, population size =1000; the maximum number of itera-
tions = 2000;
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e The crossover rate = 0.95, mutation rate = 0.3;

e Tournamentsize = 2, with 2 elite chromosomes retained in each generation;

3.6.2 Model Speed-Up

As previously discussed, one major drawback of using GAs is their substantial compu-
tational cost. Although a fast response to different settings is not required—since only
the final optimal solution is of interest—the process still consumes a significant amount
of time during testing and tuning. In this work, we propose two methods to accelerate
the computation.

By employing MATLAB'’s profiling tools, we observe that approximately 95% of
the total runtime is consumed by the function responsible for calculating the PSLL
of each solution. The direct computation of PSLL can be performed using matrix
multiplications. However, due to the grid-based structure of our model, the element
positions x,, in (1.1) can be simplified to x,, = nd. Thus, the beam pattern expression

can be reformulated as:
N

P(u) = Z aneitndv, (3.5)

n=1

where u = sin() — sin(¢).

Equation (3.5) represents a finite Fourier series that relates the excitation coefficients
a, of the linear array to its beam pattern through a discrete Fourier transform. As a
result, we can utilize MATLAB’s built-in £ft function to efficiently compute the beam
pattern, significantly reducing the overall computation time.

Furthermore, since the PSLL of all candidate solutions must be evaluated in each
generation, we implement parallel computing using the parfor loop in MATLAB. It is
important to note that parfor cannot be nested within another loop, which prevents
its use in the outer GA iteration loop.

3.6.3 Results

We first give a zero value to a to see the results without considering the sparsity
constraints. Figure 3.9 shows the array pattern of the best results found by the modified
GA. From the array pattern, it can be observed that no grating lobes are present, and
the beamwidth satisfies the requirements for autonomous applications.

In the experiment, o can also take a wide range of values, and two representative 15
and 27 are selected for testing. Figures 3.10 and 3.11 show the best solutions obtained
using the modified GA when a = 15 and a = 24, respectively. Table 3.5 gives the
details data of the array pattern under different values of .

Figure 3.12 illustrates the relationship between «, the number of active antennas,
and the resulting PSLL. As shown in the figure, « effectively controls the sparsity level
of the solution. When the value of « increases, the weight of the sparsity term in the
fitness function (3.1) becomes more significant, leading to a reduction in the number of
antennas used in the final solution. Correspondingly, as the number of active antennas
decreases, the PSLL also tends to decrease. Notably, a rapid decline in both the number
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Figure 3.9: Array pattern of the optimal 641-element configuration obtained when oo =0

a | Number of antenna | PSLL | Beamwidth
0 641 32.1 0.05
15 425 28.9 0.05
24 139 23.4 0.07

Table 3.5: Array pattern characteristics of the best solution under different values of «

of antennas and PSLL is observed when « increases from 5 to 25, indicating a sensitive
trade-off region.

3.6.4 Experiment on distance control

In the work presented in [3], the author cleverly sets the grid size equals to the mini-
mum distance constraint, allowing the optimization process to bypass this constraint.
However, in our model, the spacing between elements is explicitly controllable, enabling
us to relax the grid size to values even smaller than the minimum spacing if desired.
In the following experiments, we refine the spatial resolution by reducing the
grid spacing and use the parameter S to enforce a minimum spacing between adja-
cent elements. Specifically, we consider grid spacings of half-wavelength and quarter-
wavelength. To maintain the same aperture size under different grid spaces, the chro-
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Figure 3.10: Array pattern of the optimal 425-element configuration obtained when o = 15

mosome size is increased to 2000 and 4000, respectively. In these settings, the minimum
allowable spacing between two active elements corresponds to 2 and 4 grid units, re-
spectively.

The parameter (3 is introduced to penalize “illegal” configurations where the spacing
constraint is violated. However, during the early stages of the optimization process,
we allow a greater diversity of solutions, including those with promising beam patterns
that may temporarily violate spacing constraints. Therefore, (3 is initially set to a small
value. As the search progresses, ( is gradually increased to enforce stricter adherence to
the spacing constraints, guiding the algorithm toward physically realizable solutions. As
a result, we adopt an iterative update strategy for the parameter 3, using an exponential
function to gradually increase its value over the course of the optimization.

5-iter
€ maxiter — 1

ed—1

The Figure 3.13 presents the results for different grid spacings evaluated under
various values of o’. To ensure the same sparsity control comparison across different

ﬂiter =10- (36)

chromosome lengths, we normalize the regularization coefficient as o’ = §;, where N
denotes the chromosome size. The fitness function in this case will be changed into:
F(C) =PSLL — o - HCHO - ﬁadap : I; (37)
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Figure 3.11: Array pattern of the optimal 139-element configuration obtained when o = 24
where [,qap is the adaptive penalty for illegal position situations.

3.6.5 Comparison and discussion

In this project, the simulation setup follows the methodology presented in [3]. In that
work, the author formulates the general problem using the general problem formulation
(2.2) and applies a reweighted ¢;-norm to relax it into a convex optimization problem.
Additionally, an extra component, the amplitude controller, is introduced to control
the amplitude of each antenna element.

To ensure a fair comparison, the main lobe magnitude is normalized to 1. The result-
ing array patterns’ characteristics are shown in Table 3.6. Comparing Tables 3.6 and
3.5, it can be observed that the optimal solutions in both cases utilize approximately 660
antenna elements. However, the PSLL achieved by the proposed modified GA is 8.7 dB
higher than that reported in [3]. Furthermore, to achieve a PSLL of 23.4 dB, the solu-
tion generated by the modified GA requires only 139 antenna elements—significantly
fewer than the 676 antennas used in [3].

There are several possible reasons to explain this phenomenon. First, the reweighted
{1-norm relaxation method does not directly solve the original problem; it relaxes the
nonconvex problem into a convex optimization problem. Also, it is primarily intended
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to enhance the sparsity of an initial solution. If the initial iteration yields a poor result,
the algorithm may become trapped in an undesirable local minimum [27]. Second, the
reweighted approach is more suited for generating continuous-valued solutions. How-
ever, in this work, we require a discrete solution. Therefore, even if the amplitude
of certain antenna elements is very close to zero, a thresholding process must still be
applied to force them to zero. This thresholding step significantly influences the final
result and may degrade overall performance.

Number of antenna | PSLL | Beamwidth
676 23.4 0.05
418 21.4 0.05
190 13.8 0.09
34 5.4 0.39

Table 3.6: The results of using reweighted {;-norm method in paper [3]

After modifying the grid spacing, we evaluated the performance of the penalty pa-
rameter 3. First, none of the resulting configurations violated the minimum distance
constraint, demonstrating that the g is effective in enforcing spacing requirements be-
tween elements. Moreover, it can be observed that across different grid spacings, the
parameter « and o' continues to effectively regulate the sparsity of the solution. As
the number of potential element positions increases—thereby enhancing the design’s
degrees of freedom—the overall array performance improves accordingly.

However, although computation time is not an evaluation metric in this thesis, it
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is worth noting that the test case with a chromosome size of 4000 required approxi-
mately 2.5 hours to complete. This duration is prohibitively long and underscores the
substantial computational burden associated with such a high-resolution optimization.

3.7 Conclusion

This chapter focuses on developing the modified GA and evaluating the effectiveness
of the proposed model. Based on the results from the exhaustive search, we conclude
that when the solution space is relatively small, the optimal solution can be accurately
found. Subsequently, the modified GA is employed to generate optimal solutions under
predefined scenarios, satisfying the requirements of autonomous applications. Further-
more, the model demonstrates the ability to control the sparsity level of the resulting
array by adjusting the parameter a. We further investigate the effectiveness of the
penalty parameter 5, demonstrating that it successfully enforces the minimum spac-
ing constraint. Increasing the number of potential antenna positions enhances design
flexibility and leads to improved performance.

All of the above discussions are based on a steering angle of zero; the beam steering
process has not yet been considered. Beam steering is a key capability of OPA. The
next chapter will discuss the steering mechanism in detail.
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Design of steering OPA

The previous chapter focused on array design without considering the beam steering
process. In this chapter, we first investigate the impact of the beam steering process
on the performance of several optimized OPA designs. Next, we propose a new opti-
mization problem that incorporates the steering process and present a corresponding
solution method. Finally, we compare the performance of several solutions across the
entire steering range.

4.1 Impact on array performance during steering process

In the previous discussion, all optimization was performed under a single steering angle.
Such an optimal solution may not retain its performance across the entire steering range,
potentially resulting in degraded array performance at other angles. To investigate
the impact of the steering process on array performance, we evaluate two previously
obtained optimal configurations, using 641 and 425 antenna elements, respectively. We
then get their performance under different steering angles. Figure 4.1 shows the PSLL
values across the whole steering angle range using 641 and 425 antenna elements. It can
be observed that as the steering angle increases away from 0°, the PSLL consistently
degrades. This degradation may be attributed to stronger sidelobes located outside the
FOV, which are shifted into the FOV as the main beam is steered, thereby increasing
the measured PSLL. It indicates that the steering process has an impact on array
performance and therefore must be taken into account during the optimization process.

PSLL under different steering angle

PSLL under different steering angle

PSLL
PSLL

L L L L L L L 2 L L L L L
.15 10 5 0 5 10 15 20 -20 -15 -10 -5 0 5 10 15 20
Steering angle Steering angle

(a) (b)

Figure 4.1: PSLL of the optimized array across the entire steering angle range: (a) with 641
elements and (b) with 425 elements
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Figure 4.2: Array patterns of the optimized 641-element array at steering angles of (a) 2° and
(b) 10°

Array Pattern (Steering Angle = 2°) Array Pattern (Steering Angle = 10°)

o
T

PSLL = 28.9dB

-20 -20 -

PSLL = 26.1dB

Normalized intensity (dB)
Normalized intensity (dB)

Angle (degrees) - Angle (degrees)
(a) (b)

Figure 4.3: Array patterns of the optimized 425-element array at steering angles of (a) 2° and
(b) 10°

4.2 Design of steering OPA

In the formulation (1.1), 6,, denotes the phase shift of the nth element, which is given
by 60, = —kx,(sin¢), ¢ is the steering angle, also the direction of the main beam.
By combining the exponential terms, we obtain the intensity of the far-field radiation
pattern of an OPA with N elements,

N 2

](07 gb) _ Zanejkzn(sin(e)—sin(qs)) 7 (4.1)

n=1
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where k is the wavenumber, z,, the position of the nth antenna. In our case, a,, € {0,1}
and denote ) a, = N, and z, = nd, d is the grid space. For the 1-dimensional case,
the general definition of the PSLL function S given the steering angle ¢ is defined as
follows:

S(¢) =Ny — max (I(0,0)\ N;), (4.2)

0 [emzn ﬂmaw]

where:
e N2 is the maximal intensity of the beam.

® [0rin, Omaz) denotes the FoV, which is assumed to be symmetric around zero for
mathematical convenience and is used in practice as such.

o (I(0, )\ N?) represents the second largest local maximum of the function I(6, ¢)
within the same range, excluding the global maximum.

To optimize performance across all detection angles # and steering angles ¢ of the
design, we are facing a two-dimensional optimization problem. Intuitively, the steer-
ing process can be viewed as a translation of the array pattern. Consequently, it is
natural to investigate the exact connection of this translation. The primary objective
of optimization is to minimize the peak side lobe level P(¢) over the steering range
[Dmin, Pmaz)- The Minimum Peak Sidelobe Level (MPSLL) M is defined as follows:

M = i S
s (8(0))

= omin (Wm0 (32 13

¢€[¢minv¢max] min,/max

2 2
M= s (g (100N 02D).

Hence, the computation of the MPSLL is fully characterized by the second-highest
PSLL identified within a two-dimensional angular region. A two-dimensional discretiza-
tion of the I(0, ¢) to calculate M quickly becomes memory and computational intensive.
Since the GA must evaluate the PSLL of numerous OPA configurations repeatedly, this
approach becomes impractical for large values of N. However, the function I(6, ¢) can
be substituted by a shift-invariant function f(kd(sin(6) — sin(¢))), where

N
E : anejnz
n=1

The function f(z) satisfies the properties f(z) = f(—z) and f(2) = f(z+27), indicating
that it is both even and periodic. Owing to this shift-invariance, the MPSLL, can be
evaluated by computing the PSLL over a single one-dimensional segment, like

2

flz) = = N? + Z Z 2a,,a,, cos((n —m)z) (4.4)

n=1 m=n+1

M=N;— max (f(z)\{N}), (4.5)

Z2E€|Zmin;Zmax

where
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® Znar = kd(sin(0pmaz) — sin(dmin))
® 2in = kd(sin(0,,in) — sin(dmaz))

In the application, we want to detect every angle in the FOV, so the steering range will
be the same as FOV, which makes 2z, = —Zmar = —2kd(8in(01n4z)). As the function f
is even and the segment is symmetric around zero, z,,;, can be replaced by zero without
affecting the result and all the peak side lobe occur within the finite segment [0, 7]. In
other words, the MPSLL is fully characterized by

M=NE- | omax (fG)V{NE) (46)
z€|0,min(7,2mazx
Hence, the GA can calculate the MPSLL M using a one-dimensional discretization of
a bounded segment.
In this setting, the problem formulation stays the same as (3.2), but PSLL is calcu-
lated by the alternative pattern:

N-1

f(z)= Z ane’™, z € [0, min(7, Zymaz)]

n=0

4.3 Results and discussion

By giving different values of «, we can get some optimal solutions using different num-
bers of antennas. Figure 4.4 shows the array pattern of the configuration with around
643 elements, considering the steering process. It can be observed that at a steering
angle of 0°, the PSLL is reduced by approximately 3 dB compared to the previous
design using 641 elements. Figure 4.5 compares the PSLL of these two solutions over
the full steering range. It is evident that the red curve only exceeds the blue curve
near the steering angle of 0°. Across the entire steering range, the red line consistently
maintains higher and more stable values. In autonomous applications, achieving strong
and clear signals across all detection angles throughout the steering range is essential.
Therefore, the new solution better satisfies our needs. After further experiment, we
obtained other solutions that utilize a similar number of antennas as those shown in
Table 3.5. Figures 4.6 and 4.7 show a comparison of PSLL over the full steering range.

In this model, which considers the steering process, the grid spacing can be modified
to provide greater design flexibility. Table 4.1 presents the results obtained using the
same /. With further searching, the fitness value can be improved or, at the very
least, be maintained like row one and two. Comparing the results in row three and
four, although the PSLL decreases, the number of antennas used in the solution is also
reduced, and the fitness value still increases. Comparing row five and six, the PSLL
increases slightly, yet the number of antennas is reduced, which is still favorable, and
the fitness value increases as well.

In conclusion, the steering process indeed affects the PSLL, and therefore must be
taken into account during optimization. By leveraging the relationship between the
original two-dimensional problem and a newly formulated one-dimensional problem, a
new optimal solution can be obtained. This solution improves the performance across

36



Array Pattern (Steering Angle = 0°)

o
T

[l
(&)
T

=y
o
T

=y
w
T

N
o
T

Normalized intensity(dB)

Figure 4.4: Array pattern of the optimal 643-element configuration obtained by the new

pattern expression.

PSLL =29.1dB

Angle (degrees)

Chromosome size | o’ | Number of antenna | PSLL(dB) | Fitness value
1x1000 0.007 643 29.11 24.61
1x1999 0.007 643 29.11 24.61
1x1000 0.013 430 26.30 20.71
1x1999 0.013 325 24.95 20.73
1x1000 0.03 142 19.66 15.44
1x1999 0.03 135 19.94 15.89

Table 4.1: Performance Comparison under Varying o/ and Chromosome Size

the whole FOV. Increasing the number of grid points may not necessarily improve
array performance; however, the fitness value will always increase, which aligns with
the intended design philosophy of the model.
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Conclusion and Future Work

5.1 Conclusion

With the continuous advancement of autonomous driving technology, the precision and
efficiency of perception systems have become increasingly critical. Among various sen-
sors, LIDAR plays a central role, and solid-state OPA systems are being considered
the future of LiDAR systems. However, designing OPAs remains challenging, partic-
ularly in balancing the number of elements and array performance. To address these
challenges, this thesis adopts a sparse array design based on grid architecture and pro-
poses a modified GA that accounts for both element density and array performance.
Using this enhanced algorithm, we identify optimal array configurations across various
element counts. The key contributions of this thesis are as follows:

1. OPA Background and Motivation: We introduce the background of OPA
and outline industrial design requirements relevant to autonomous driving appli-
cations. A particular focus is given to the motivation behind using sparse OPA
arrays. Due to the short wavelength of light and fabrication constraints in prac-
tical implementations, it is difficult to maintain half wavelength element spacing,
which leads to the grating lobe effect. To mitigate side lobes effect and expand the
FOV, a sparse array design approach is adopted. After analyzing several sparse
array design methodologies, the widely used GA is selected for our OPA design.

2. Modified GA for non-steering sparse OPA Design: To accommodate the
dual optimization goals—element density and array performance—we modify the
GA’s fitness function and propose a modified GA based on a grid architecture.
Through extensive tests and comparative analyses, we identify optimal GA oper-
ators and parameter configurations tailored to the design goals. Exhaustive eval-
uations show that our model effectively controls array sparsity while achieving
relatively good PSLL. Compared with the method in [3], under the same pre-
set situation, both approaches utilize approximately 650 elements—our method
achieves an improvement in PSLL of nearly 8 dB. Moreover, when targeting the
same optimal PSLL, our design requires only 139 elements, 537 fewer than using
method in [3], marking a significant improvement in efficiency.

3. Modified GA for steering sparse OPA Design: During the beam steering
process, we observe PSLL degradation, known as scan loss, especially when the
steering angle deviates from boresight. To alleviate this issue, we reformulate the
original 2D optimization problem, which considers both steering and detection
angles, into a 1D optimization problem. This transformation enables us to identify
array configurations that maintain robust performance across the full steering
range.
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5.2 Future work

OPAs represent a highly significant and board area of research. This thesis builds upon
existing sparse OPA design concepts and explores sparse non-uniform array configura-
tions. Future research directions include the following:

1. 2D Array Design: This study focuses solely on 1D array configurations. Ex-
tending the design methodology to 2D arrays is essential for broader beamforming
applications and more realistic system implementations.

2. Off-grid Architectures: This study focuses on a grid architecture; however,
adopting off-grid configurations can offer greater design flexibility and potentially
lead to improved array performance.

3. Integration of Alternative and AI-Based Optimization Methods: Future
work could explore the application of alternative optimization techniques, includ-
ing those based on artificial intelligence, to better handle complex multi-objective
design problems.
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The source code is available on GitHub
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https://github.com/KaishenLin/A-Modified-Genetic-Algorithm-for-Sparse-Optical-Phased-Array-Design
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