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This article covers the design of an L1-adaptive Incremental Nonlinear Dynamic Inversion
(INDI) autopilot applied to the control of the ballistic trajectory of a 155mm dual-spin projectile
supplied with a roll-decoupled course-correction fuze. Associated with a Zero Effort Miss
guidance law, the discrete-time INDI baseline successfully controls the lateral load factors of the
projectile, resulting in a ballistic dispersion reduced to metric precision. However, aerodynamic
data for dual-spin projectiles are often not very accurate because they rely on simplified CFD
simulation and time-consuming wind tunnel tests aren’t always possible. Therefore significant
parametric uncertainties are present in the model. Even if INDI is a sensor-based control
technique, this approach is still sensitive to model mismatch. For this reason, L1-adaptive
control theory was used to compensate for the degraded inversion of the INDI autopilot under
the presence of parametric uncertainties. Nonlinear simulation results show the interest of
an L1-adaptive augmentation of an INDI autopilot where the performance of the autopilot is
guaranteed under a large range of time-varying matched uncertainties.

I. Introduction
The general context of this article comes from the observation of a common lack of precision regarding standard

155mm spin-stabilized ammunition. As a matter of fact, this class of projectiles is known to suffer from ballistic
dispersion toward the mission target and some solutions in the literature can be found to correct spin-stabilized projectiles
deviation using impulse thrusters [1] or canards[2]. The considered corrective device is part of the latter approach,
it consists of equipping existing shells with a roll-decoupled guidance fuze which includes embedded guidance and
control laws, two pairs of canards and necessary sensors. This so-called dual-spin guided projectile is then expected to
have a reduced ballistic dispersion and reach sub-metric precision.

The dynamics of dual-spin projectiles is nonlinear with many varying parameters because of its aerodynamics.
Moreover, the lateral dynamics are strongly coupled due to the high spin rate of the main body of the projectile. All
these elements make the control of the projectile difficult by the means of classical and linear control techniques like
gain-scheduling [2, 3] because linear controllers designed for numerous operating points are needed to cover the flight
envelope. Besides, gain-scheduling can guarantee performance and stability only locally around these flight points [4].

On the other hand, nonlinear control techniques are a relevant alternative to gain-scheduling because they avoid the
local linearization procedure. Among them, Incremental Nonlinear Dynamic inversion is a sensor-based methodology
which was used successfully in several aerospace applications in the latter years [5–7]. An interesting aspect of INDI is
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its capacity to perform dynamic inversion with only a reduced part of the dynamical model which renders the control
law more robust to model mismatch. For this reason, INDI was used in the article as a baseline autopilot for the control
of the fuze roll motion and the projectile trajectory .

However, parameters related to control effectiveness of the system are involved in the INDI inversion and therefore
uncertainties on these parameters affect INDI performance and stability. As a matter of fact, aerodynamic coefficients,
especially those related to the canards aerodynamics are not precisely known. The inaccuracy of Computational Fluid
Dynamics (CFD) simulations and the time-consumption of wind tunnel tests motivate the need for a control design
approach which doesn’t rely on a precise model and can tolerate a large range of uncertainties.

In order to guarantee the performance of the autopilot even under a large range of parametric uncertainties, L1
adaptive control theory was used to counteract the degraded dynamic inversion. More precisely, the roll and lateral
channels INDI autopilot were augmented with a L1 adaptive scheme similarly to [8, 9]. In opposition to Model
Reference Adaptive Control (MRAC), L1 theory offers a decoupling between adaptation and robustness by the mean of
an underlying low pass filter. This decoupling is appealing when applied to the considered guided projectile because
the embedded CPU has a limited frequency and the control law may be subjected to delays. By this filter, L1 theory
guarantee minimal time-delay margin with fast adaptation[10].

The paper is organized as follows: Section II summarizes the nonlinear flight dynamics model of the dual-spin
projectile, in Section III the design of the INDI baseline autopilot is detailed with analytical investigation of INDI
inversion in discrete-time and with non-perfects actuators. Then, Section IV is dedicated to the L1 adaptive augmentation
of the roll and lateral channels autopilot.

II. Flight Dynamics Modeling
The considered decoupled fuze guided projectile is represented by Fig. 1. It has two independent roll motions due to

its dual-spin configuration. The main body is rotating at 300 Hz to maintain the projectile stability and the fuze roll is
controlled by the canards and is stabilized during the controlled phase of the trajectory. Because of the extra roll motion
of the fuze, the flight dynamics model described in Section II is called a 7DoF model.

A. Frames and Coordinate systems
The Earth inertial frame 𝐸 is used as a reference frame. The projectile has a limited range (<30 kms) therefore a

flat earth assumption is considered and a local geodesic coordinate system ]𝐿 with (North, East, Down) directions is
employed. The projectile has two frames related to its two separated parts: 𝐵1 is linked to the main body and 𝐵2 to
the fuze. The dynamic equations are expressed in a non-rolling Body Fixed Frame (BFR) related coordinate system
]𝐵′

1 [11], it undergoes the same movement as the main body of the projectile except for the roll motion which is fixed:
𝜙𝐵𝐹𝑅 = 0 deg. The use of BFR avoids the simulator to integrate the high spin rate of the projectile which naturally
demands a small integration step and could lead to numerical errors.

Fig. 1 Decoupled Fuze Guided Projectile
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B. Translation and Attitude Dynamics
The Newton translation equation (1) describes the velocity of the projectile center of mass 𝐵 with respect to the

Earth inertial frame 𝐸 expressed in the ]𝐵′
1 coordinate system [12].

[ 𝑓𝐵]𝐵
′
1 = 𝑚𝐵

[
d𝑣𝐸
𝐵

d𝑡

]𝐵′
1

+ 𝑚𝐵
[
Ω𝐵

′
1𝐸

]𝐵′
1 [
𝑣𝐸𝐵

]𝐵′
1 (1a)


¤𝑢
¤𝑣
¤𝑤

 =

(
1
𝑚𝐵

) 
𝑋

𝑌

𝑍

 −


0 −𝑟 𝑞

𝑟 0 𝑟 tan 𝜃
−𝑞 −𝑟 tan 𝜃 0



𝑢

𝑣

𝑤

 (1b)

In Eq (1a),
[
𝑣𝐸
𝐵

]𝐵′
1 = [𝑢 𝑣 𝑤]⊤ is the velocity vector of the projectile c.m. 𝐵 with respect to the Earth frame 𝐸 ,[

Ω𝐵
′
1𝐸

]
is the skew-symmetric form of the non-rolling frame rate vector

[
𝜔𝐵

′
1𝐸

]𝐵′
1 . 𝑚𝐵 is the projectile total mass and

[ 𝑓𝐵]𝐵
′
1 = [𝑋 𝑌 𝑍]⊤ is the external forces applied on the projectile detailed in Section II.D. The equation (1b) is

obtained by isolating
[
d𝑣𝐸
𝐵
/d𝑡

]𝐵′
1 and reformulate Eq (1a) in matrix form.

[
𝑚𝐵1

]𝐵′
1 =

[
𝐼
𝐵12
𝐵

]𝐵′
1
[
d𝜔𝐵1𝐸

d𝑡

]𝐵′
1

+
[
Ω𝐵

′
1𝐸

]𝐵′
1
[
𝐼
𝐵12
𝐵

]𝐵′
1 [𝜔𝐵1𝐸]𝐵′

1 (2a)

[
𝑚𝐵2 {1, 1}

]𝐵2
=

[
𝐼
𝐵2
𝐵2
{1, 1}

]𝐵2

[
d𝑝𝐵2𝐸

2
d𝑡

]𝐵2

(2b)


¤𝑝2

¤𝑝1

¤𝑞
¤𝑟


=


𝐼−1
𝑥2 0 0 0
0 𝐼−1

𝑥1 0 0
0 0 𝐼𝑡

−1 0
0 0 0 𝐼𝑡

−1


©­­­­«

0 0 0 0
0 0 𝑟 −𝑞
0 −𝑟 0 −𝑟 tan 𝜃
0 𝑞 𝑟 tan 𝜃 0



𝐼𝑥2 0 0 0
0 𝐼𝑥1 0 0
0 0 𝐼𝑡 0
0 0 0 𝐼𝑡



𝑝2

𝑝1

𝑞

𝑟


+


𝐿2

𝐿1

𝑀

𝑁


ª®®®®¬

(2c)

The Euler attitude dynamic equations (2a)-(2b) represent, in tensor form, the attitude of the main body and
the fuze of the projectile respectively [12]. The fuze attitude equation is only made of the roll motion. For the

main body, the computation of the effective moment of inertia
[
𝐼
𝐵12
𝐵

]𝐵′
1 is detailed in a previous publication [13].[

𝜔𝐵1𝐸
]𝐵′

1 = [𝑝1 𝑞 𝑟]⊤ is the angular velocity vector of the main body and
[
𝑚𝐵1

]𝐵′
1 = [ 𝐿1 𝑀 𝑁]⊤ is the

external sum of moments applied on the main body of the projectile. In another part, 𝑝2 is the spin rate of the fuze,[
𝐼
𝐵2
𝐵2

]𝐵2
is the MoI of the fuse part and

[
𝑚𝐵2 {1, 1}

]𝐵2
= 𝐿2 is the external roll moment applied on the fuze. The

equation (2c) summarizes the attitude dynamic equation of both part in matrix form.

C. Translation and Attitude Kinematics
The translation kinematics equation expresses the velocity vector of the projectile center of mass 𝐵 in the local frame

coordinate system ]𝐿 using a change of coordinate system by the transformation matrix [𝑇]𝐵′
1𝐿 . Then, by integrating

[𝑣𝐸
𝐵
]𝐿 the position vector [𝑠𝐵𝐸]𝐿 = [𝑥 𝑦 𝑧]⊤ is obtained. The transformation matrix is calculated from the Euler

angles 𝜙1, 𝜃, 𝜓 resulting from Eq. (5)[
𝑣𝐸𝐵

]𝐿
=

[
𝑇

]
𝐵′

1𝐿
[
𝑣𝐸𝐵

]𝐵′
1 (3a)

¤𝑥
¤𝑦
¤𝑧

 =


cos𝜓 cos 𝜃 − sin𝜓 cos𝜓 sin 𝜃
sin𝜓 cos 𝜃 cos𝜓 sin𝜓 sin 𝜃
− sin 𝜃 0 𝑐𝑜𝑠𝜃



𝑢

𝑣

𝑤

 (3b)

The Euler angles from the projectile main body [𝜙1 𝜃 𝜓]⊤ are calculated by integrating the Directive Cosine
Matrix (DCM), it may be notice that a singularity is present during the computation of Eq. (5) at 𝜃 = 𝜋

2 and 𝜓 = 𝜋
2

but this conditions exceeds the flight envelope. Because of the fixed null roll of the BFR frame, 𝜙1 and 𝜙2 can’t be
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determined with [𝑇]𝐵′
1𝐿 . The fuse roll angle 𝜙2 and the main body roll angle 𝜙1 are directly integrated from the attitude

dynamics.

d[𝑇]𝐵′
1𝐿

d𝑡
=

[
Ω
𝐵1𝐸

]
𝐵′

1 [𝑇]𝐵′
1𝐿 (4a)

[𝑇]𝐵′
1𝐿 =


cos𝜓 cos 𝜃 sin𝜓 cos 𝜃 − sin 𝜃
− sin𝜓 cos𝜓 0

sin𝜓 sin 𝜃 sin𝜓 sin 𝜃 cos 𝜃

 (4b)

¤𝜙2 = 𝑝2 + 𝑟 tan 𝜃 (5a)
¤𝜙1 = 𝑝1 + 𝑟 tan 𝜃 (5b)

𝜃 = − arcsin
(
𝑇𝐵

′
1𝐿{1, 3}

)
(5c)

𝜓 = − arctan
(
𝑇𝐵

′
1𝐿{2, 1}

𝑇𝐵
′
1𝐿{2, 2}

)
(5d)

D. Forces and Moments
During its flight, the projectile is subjected to the gravity force (G), and aerodynamic actions. The resultant forces

and moments applied on the projectile are mostly due to drag and lift (P), damping (D) and Magnus effect (M) which
creates an important lateral deviation of the trajectory due to the high spin rate of the projectile. In addition, the four
embedded canards on the fuze create control forces and moments (C), influencing the projectile motions. Finally,
mechanical friction between the fuze and the main body produces a moment 𝐿 𝑓 reducing the spin rate of the main
body and increasing the spin rate of the fuze. Equation (7) is the vector representation of the external forces and
moments tensor equations (6). Where 𝑆 is the projectile reference area and 𝑑 is the caliber. 𝐶𝐴, 𝐶𝑁𝛼, 𝐶𝑌 𝑝𝛼 , 𝐶𝑁𝑞

, 𝐶𝑚𝛿 ,
𝐶𝑚𝛼

, 𝐶𝑛𝑝𝛼 , 𝐶𝑙𝑝 , 𝐶𝑚𝑞
, 𝐶𝑙𝛿 , 𝐶𝑚𝛿

are the aerodynamic coefficients. The flight parameters including, the airspeed 𝑉 , the
aerodynamic angles [𝛼 𝛽]⊤ and the mach number M are defined by Eq. (8d).[

𝑓 12
𝐵

]𝐵′
1 =

[
𝑓 𝑃𝐵

]𝐵′
1 +

[
𝑓 𝑀𝐵

]𝐵′
1 +

[
𝑓 𝐷𝐵

]𝐵′
1 +

[
𝑓 𝐶𝐵

]𝐵′
1 +

[
𝑓𝐺𝐵

]𝐵′
1 (6a)[

𝑚12
𝐵

]𝐵1′2
=

[
𝑚𝑃𝐵

]𝐵1′2 +
[
𝑚𝑀𝐵

]𝐵1′2 +
[
𝑚𝐷𝐵

]𝐵1′2 +
[
𝑚𝐶𝐵

]𝐵1′2 +
[
𝑚𝐹𝐵

]𝐵1′2 (6b)


𝑋

𝑌

𝑍

 = 𝑞𝑆
©­­«


−𝐶𝐴
−𝐶𝑁𝛼

sin 𝛽
−𝐶𝑁𝛼

sin𝛼 cos 𝛽

 +
𝑝1𝑑

2𝑉


0

𝐶𝑌 𝑝𝛼 sin𝛼 cos 𝛽
−𝐶𝑌 𝑝𝛼 sin 𝛽

 +
𝑑

2𝑉


0

𝐶𝑁𝑞
𝑟

−𝐶𝑁𝑞
𝑞

 +


0
𝐶𝑁𝛿

(𝛿𝑟 − 𝛽)
𝐶𝑁𝛿

(−𝛿𝑞 − 𝛼)


ª®®¬ + 𝑚𝑔


− sin 𝜃

0
cos 𝜃

 (7a)


𝐿2

𝐿1

𝑀

𝑁


= 𝑞𝑆𝑑

©­­­­«


0
0

𝐶𝑚𝛼
sin𝛼 cos 𝛽

−𝐶𝑚𝛼
sin 𝛽


+ 𝑃1𝑑

2𝑉


0
0

𝐶𝑛𝑝𝛼 sin 𝛽
−𝐶𝑛𝑝𝛼 sin𝛼 cos 𝛽


+ 𝑑

2𝑉


0

𝐶𝑙𝑝 𝑝1

𝐶𝑚𝑞
𝑞

−𝐶𝑚𝑞
𝑟


+


𝐶𝑙𝛿 𝛿𝑝

0
𝐶𝑚𝛿

(𝛿𝑞 + 𝛼)
𝐶𝑚𝛿

(𝛿𝑟 − 𝛽)


ª®®®®¬
+


𝐿 𝑓

−𝐿 𝑓
0
0


(7b)

𝐿 𝑓 = 𝑞𝑆𝑑𝐶𝐴sgn (𝑝1 − 𝑝2) (𝐾𝑠 + 𝐾𝑣) |𝑝1 − 𝑝2 | (7c)

𝑉 =
√︁
𝑢2 + 𝑣2 + 𝑤2 (8a)

𝛼 = arctan
(𝑤
𝑢

)
(8b)

𝛽 = arctan
(

𝑣
√
𝑢2 + 𝑤2

)
(8c)

M =
𝑉

𝑎
(8d)
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E. Control Allocation and Actuator Model
The relation from Eq. (9a) gives the correspondence between the signal given to each physical servomotors

moving the canards [𝛿r] = [ 𝛿1 𝛿2 𝛿3 𝛿4]⊤ and the virtual roll, pitch and yaw signals given by the autopilot
[𝛿v] = [ 𝛿𝑝 𝛿𝑞 𝛿𝑟 ]⊤. From the control allocation matrix [𝑇]𝑉𝑅 it can be seen that the four canards have a contribution
to the roll command 𝛿𝑝, only the canards on the yaw plane [ 𝛿1 𝛿3]⊤ affects the pitch commands 𝛿𝑞 and only the
canards on the pitch plane [ 𝛿2 𝛿4]⊤ affect the yaw command 𝛿𝑟 .

[𝛿𝑣]𝐵
′
1 =

[
𝑇

]𝐵2𝐵
′
1 [𝑇]𝑉𝑅 [𝛿𝑟 ]𝐵2 (9a)

[𝑇]𝑉𝑅 =


−1/4 1/4 1/4 −1/4
1/2 0 1/2 0
0 1/2 0 1/2

 (9b)

[𝑇]𝐵2𝐵
′
1 =


1 0 0
0 cos 𝜙2 sin 𝜙2

0 − sin 𝜙2 cos 𝜙2

 (9c)

The dynamics of each canard is modeled by a second order transfer function and is taken into account in the design
and the simulations. The modeling of actuators dynamic is important because INDI control laws give an incremental
control signal which must be added to the last time-step actuators position. Actuators speed therefore affects INDI
performance and stability.

𝐺 𝛿 (𝑠) =
𝜔2
𝛿

𝑠2 + 2𝜉𝛿𝜔𝛿𝑠 + 𝜔2
𝛿

(10)

F. Sensor Model
The roll decoupled fuze embeds all necessary sensors to measure the states of the systems: gyroscope, magnetometers,

GNSS and IMU. In this paper, the dynamic of the sensors is not considered and each one is supposed to be instantaneous
and unbiased. The expressions of the load factors measured by the IMU is defined by Eq. (11).

𝑛𝑥

𝑛𝑦

𝑛𝑧

 =
1
𝑚𝑔

©­­«

𝑋

𝑌

𝑍

 − 𝑚𝑔

− sin 𝜃

0
cos 𝜃


ª®®¬ (11)

III. INDI Baseline Autopilot
The flight of the presented dual-spin projectile is decomposed into multiple phases as shown in Fig. 2. First, from

the launch to the apogee where 𝑡 < 𝑡3 the projectile is completing its ascension, no control is applied on the lateral
channels thus the projectile stays in ballistic behavior. At the same time, because of the friction between the main
body and the fuze, the roll rate of the fuse increases. In the second phase, when 𝑡2 > 𝑡 > 𝑡1 all the canards are put on
maximum deflections in order to reduce the roll rate of the fuse until 𝑝2 < 𝑝20 . After 𝑝2 is sufficiently reduced, the
roll autopilot, detailed in Section III.A is launched to maintain a fixed roll angle given by the guidance law to the fuze.
During the descent of the projectile when 𝑡 > 𝑡3, the trajectory is controlled by a cascaded INDI autopilot structure
based on time-scale separation. The fast and slow inversion stages are detailed in Section III.B.1and Section III.B.2
respectively.

The design procedure for the roll autopilot and load factors autopilot are quite similar to a previous publication [14],
however, the load factors dynamics is directly used in the inversion without need for measurement on the aerodynamic
angles. First, the expression of the INDI command is from the general equation (12), then the quality of inversion
of discrete time INDI with real actuators is verified analytically. A discrete model of the inverted plant is obtained
which is then converted into an equivalent continuous time model using inverted Tustin’s bilinear transform. This
continuous-time linear model is used to design the outer loop linear controller following the Modified Continuous
Design method [15] associated to H∞ robust control theory. Finally, the resulting controller is validated in nonlinear
simulations.

u𝑘 = u𝑘−1 + 𝐺−1
(
v𝑘 −

x𝑘 − x𝑘−1
𝑇

)
(12)
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Fig. 2 Flight phases of the projectile

INDI theory is based on the reformulation of the system dynamic equations in an incremental form using first-order
Taylor series approximation (27). INDI autopilots are structured in an inner/outer loop configuration illustrated by
Fig. 3. The inner loop inverts the plant using Eq. (12), where 𝑇 is the sampling period, x are the states, u is the control
signal and v is the pseudo-control variable defined by the outer loop controller. 𝐺 is the control effectiveness matrix
calculated with Eq. (13).

𝐺 =
𝜕 ¤x(x, u)
𝜕u (13)

A. Roll autopilot
The roll dynamics equations are recalled by Eq. (14). If the friction moment and the motion of the BFR frame are

considered as external disturbances, the system is linear and can be described with a state space representation.{
¤𝜙2 = 𝑝2 + 𝑟 tan 𝜃
¤𝑝2 = 𝐼𝑥2

−1𝐿2
(14)

[
¤𝜙2

¤𝑝2

]
=

[
0 1
0 0

] [
𝜙2

𝑝2

]
+

[
0

𝐼𝑥2
−1𝐿𝑐

]
𝛿𝑝 +

[
𝑟 tan 𝜃
𝐿 𝑓

]
(15a)[

𝑦1

𝑦2

]
=

[
0 1
1 0

] [
𝜙2

𝑝2

]
(15b)

At this point a clarification must be made, as the relation between 𝜙2 and 𝑝2 is already a simple integrator, INDI is
used to invert ¤𝑝2 dynamics. Afterward, in the ideal case, the input-output map from 𝛿𝑝 to 𝜙2 will be a double integrator.

Fig. 3 INDI autopilot architecture
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The INDI command for the roll channel is obtained from Eq. (14) applied to the roll dynamics.

𝛿𝑝 [𝑘] = 𝛿𝑝 [𝑘 − 1] + 𝐺−1
(
𝑣 [𝑘] − 𝑝2 [𝑘] − 𝑝2 [𝑘 − 1]

𝑇

)
(16a)

𝐺 =
𝜕 ¤𝑝2
𝜕𝛿𝑝

= 𝐼 −1
𝑥2 𝑞𝑆𝑑𝐶𝑙𝛿 (16b)

All the parameters involved in 𝐺 are strictly positive for all the flight envelope then 𝐺 is always invertible. The
INDI command is summarized by Eq. (17).

𝛿𝑝 [𝑘] = 𝛿𝑝 [𝑘 − 1] +
𝐼𝑥2

𝑞𝑆𝑑𝐶𝑙𝛿

(
𝑣 [𝑘] − 𝑝2 [𝑘] − 𝑝2 [𝑘 − 1]

𝑇

)
(17)

It can be proven analytically that in absence of delays on measurement and with perfects actuators the inversion
is valid in discrete time and obtain ¤𝑝2 = 𝑣 by injecting Eq. (17) in Eq. (14). For the sake of clarity and to avoid any
confusion for the reader between the continuous roll acceleration ¤𝑝2 and its discrete expression with the INDI command,
in the following analytical development, the discrete counter part of ¤𝑝2 is noted 𝑝2. However, in the presented system,
the actuators are modeled by 𝐺 𝛿 (𝑠) and therefore by replacing 𝛿𝑝 (𝑧) by Z{𝐺 𝛿 (𝑠)} 𝛿𝑝 (𝑧) in Eq. (18), the real inversion
is obtained in Eq (18).

¤𝑝2 = 𝐺𝐺 𝛿 (𝑠)𝛿𝑝 (𝑠)

⇔ 𝑝2 = 𝐺Z{𝐺 𝛿 (𝑠)} 𝛿𝑝 (𝑧) = 𝐺Z{𝐺 𝛿 (𝑠)}
(
Z{𝐺 𝛿 (𝑠)} 𝑧−1𝛿𝑝 (𝑧) + 𝐺−1

(
𝑣 − 𝑝2 − 𝑧−1𝑝2

𝑇

))
⇔ 𝑝2 = 𝑧−1Z{𝐺 𝛿 (𝑠)}2 𝑝2 + Z{𝐺 𝛿 (𝑠)} 𝑣 −Z{𝐺 𝛿 (𝑠)} 𝑝2

⇔ 𝑝2

(
1 − 𝑧−1Z{𝐺 𝛿 (𝑠)}2 + Z{𝐺 𝛿 (𝑠)}

)
= Z{𝐺 𝛿 (𝑠)} 𝑣

⇔ 𝑝2 =
1

Z{𝐺 𝛿 (𝑠)}−1 − 𝑧−1Z{𝐺 𝛿 (𝑠)} + 1
𝑣 (18)

It can be verified that with perfect actuators and continuous time (𝐺 𝛿 (𝑠) = 1 and 𝑧 = 1 in Eq. (18)) the inversion is
perfect (𝑝2 = 𝑣). The figure 4 compares the modeling of the inverted model described by Eq. (18), the real inversion in
simulation, and a perfect inversion in discrete time (chain of discrete-time integrators). The inversion is very close to a
double integrator for the roll channel, the INDI inner-loop transfer function can be approximated by a double integrator
for the design of the external controller. H∞ robust control theory associated with Modified Continuous Design was
used to tune, in continuous time the gains of the controller, while taking into account digital implementation constraints
like Zero Order Hold and computational delay. In the roll external controller design model in Fig. 5 𝐺ZOH (𝑠) and 𝐺𝑑 (𝑠)
are Pade approximation of Zero Order Hold and computational delay transfer function respectively and 𝐺𝑟 (𝑠) is the
second-order reference model with 𝜔𝑟 = 17.1 rad/s and 𝜉𝑟 = 0.78. Each filter𝑊𝑟 (𝑠),𝑊𝑆𝑜 (𝑠),𝑊𝐾𝑆 (𝑠) [16] is used to
defined the H∞ optimization problem which was solved with Matlab systune.

Fig. 4 Modeling of the INDI inversion error for the roll channel
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Fig. 5 Roll external controller design model

B. Load Factor Autopilot
The projectile trajectory is controlled by the mean of the lateral desired load factors [𝑛𝑧,𝑐 𝑛𝑦,𝑐]⊤ computed by the

embedded Zero Effort Miss guidance law [17]. To ensure that the real load factors are following the guidance law, a two
cascaded INDI autopilot structure illustrated by Fig. 6 was used under the assumption of time-scale separation between
two identified fast and slow dynamics. More precisely, the lateral rates of the projectile [𝑞 𝑟]⊤ are considered to vary
much faster than the load factors. This time-scale separation scheme has been proven valid and is presented by [18].
The following subsections details the design of each stage of the autopilot.

1. Fast Dynamic controller
The fast dynamic controller decouples and controls the lateral channels [𝑞 𝑟]⊤ of the projectile using the lateral

control inputs [𝛿𝑞 𝛿𝑟 ]⊤. The nonlinear MIMO system to be controlled is summarized by Eq. (19).{
¤𝑞 = − 𝐼𝑥1

𝐼𝑡
𝑝1𝑟 − 𝑟2 tan 𝜃 + 𝑀

𝐼𝑡

¤𝑟 = 𝐼𝑥1
𝐼𝑡
𝑝1𝑞 − 𝑞𝑟 tan 𝜃 + 𝑁

𝐼𝑡

(19)

The design of the fast dynamic INDI autopilot is not explained in details in this paper because it has already been
involved in previous work [13] and therefore doesn’t contribute to the novelty of the paper. However the main equations
are recalled and additional analytical analysis on INDI inversion is added in this paper. The control effectiveness matrix
𝐺 and the INDI command are obtained from Eq. (12) and Eq. (13) applied to the lateral channels equations Eq. (19).

𝐺 =

[
𝜕 ¤𝑞
𝜕𝛿𝑞

𝜕 ¤𝑞
𝜕𝛿𝑟

𝜕 ¤𝑟
𝜕𝛿𝑞

𝜕 ¤𝑟
𝜕𝛿𝑟

]
=


(
𝑞𝑆𝑑

𝐼𝑡

)
𝐶𝑚𝛿

0

0
(
𝑞𝑆𝑑

𝐼𝑡

)
𝐶𝑚𝛿

 (20)

[
𝛿𝑞 [𝑘]
𝛿𝑟 [𝑘]

]
=

[
𝛿𝑞 [𝑘 − 1]
𝛿𝑟 [𝑘 − 1]

]
+


𝐼𝑡

𝑞𝑆𝑑𝐶𝑚𝛿

0

0 𝐼𝑡
𝑞𝑆𝑑𝐶𝑚𝛿


[
𝑣𝑞 [𝑘] − 𝑞 [𝑘 ]−𝑞 [𝑘−1]

𝑇

𝑣𝑟 [𝑘] − 𝑟 [𝑘 ]−𝑟 [𝑘−1]
𝑇

]
(21)

Similarly to the notation introduced in Eq. (18), the discrete counter part of ¤𝑞 and ¤𝑟 are noted 𝑞 and 𝑟 respectively.
The same analysis as for the roll is conducted, the objective is to verify that the INDI inner-loop inversion in discrete-time

Fig. 6 Load factor autopilot architecture
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Fig. 7 Modeling of the INDI inversion error for the lateral channels

and with non perfect actuators is valid: [𝑞 𝑟]⊤ = [𝑣𝑞 𝑣𝑟 ]⊤.[
¤𝑞
¤𝑟

]
=

[
−
(
𝐼𝑥1 𝐼𝑡

−1𝑝1+𝑟 tan 𝜃
)
𝑟(

𝐼𝑥1 𝐼𝑡
−1𝑝1+𝑟 tan 𝜃

)
𝑞

]
+ 𝑞𝑆𝑑
𝐼𝑡

([
𝐶𝑚𝛼

sin𝛼 cos 𝛽
−𝐶𝑚𝛼

sin 𝛽

]
+ 𝑃1𝑑

2𝑉

[
𝐶𝑛𝑝𝛼 sin 𝛽

−𝐶𝑛𝑝𝛼 sin𝛼 cos 𝛽

]
+ 𝑑

2𝑉

[
𝐶𝑚𝑞

𝑞

−𝐶𝑚𝑞
𝑟

]
+
[
𝐶𝑚𝛿

(𝛿𝑞+𝛼)
𝐶𝑚𝛿

(𝛿𝑟−𝛽)

])
⇔

[
𝑞

𝑟

]
=

[
−

(
𝐼𝑥1 𝐼𝑡

−1𝑝1 + 𝑟 tan 𝜃
)
𝑟(

𝐼𝑥1 𝐼𝑡
−1𝑝1 + 𝑟 tan 𝜃

)
𝑞

]
+ 𝑞𝑆𝑑

𝐼𝑡

([
𝐶𝑚𝛼

sin𝛼 cos 𝛽
−𝐶𝑚𝛼

sin 𝛽

]
+ 𝑃1𝑑

2𝑉

[
𝐶𝑛𝑝𝛼 sin 𝛽

−𝐶𝑛𝑝𝛼 sin𝛼 cos 𝛽

]
+ 𝑑

2𝑉

[
𝐶𝑚𝑞

𝑞

−𝐶𝑚𝑞
𝑟

]
+


𝐶𝑚𝛿

Z{𝐺 𝛿 (𝑠)}
(
𝑧−1𝛿𝑞 + 𝐼𝑡

𝑞𝑆𝑑𝐶𝑚𝛿

(
𝑣𝑞 − 𝑞−𝑧−1𝑞

𝑇

)
+ 𝛼

)
𝐶𝑚𝛿

Z{𝐺 𝛿 (𝑠)}
(
𝑧−1𝛿𝑟 + 𝐼𝑡

𝑞𝑆𝑑𝐶𝑚𝛿

(
𝑣𝑟 − 𝑟−𝑧−1𝑟

𝑇

)
− 𝛽

) ª®¬
⇔

[
𝑞

𝑟

]
=

[
𝑞

𝑟

]
−

(
1 − 𝑧−1Z{𝐺 𝛿 (𝑠)}

)
𝐺

[
𝛿𝑞

𝛿𝑟

]
+ Z{𝐺 𝛿 (𝑠)}

[
𝑣𝑞 − 𝑞

𝑇
(1 − 𝑧−1)

𝑣𝑟 − 𝑟
𝑇
(1 − 𝑧−1)

]
⇔

[
𝑞

𝑟

]
=

[
𝑞

𝑟

]
−

(
1 − 𝑧−1Z{𝐺 𝛿 (𝑠)}

)
𝐺

[
𝛿𝑞

𝛿𝑟

]
+ Z{𝐺 𝛿 (𝑠)}

[
𝑣𝑞 − 𝑞̃

𝑇
𝑇𝑧
𝑧−1

𝑧−1
𝑧

𝑣𝑟 − 𝑟
𝑇
𝑇𝑧
𝑧−1

𝑧−1
𝑧

]
⇔

[
𝑞

𝑟

]
=

(
Z{𝐺 𝛿 (𝑠)} − 𝑧
𝑧Z{𝐺 𝛿 (𝑠)}

) 
𝑞𝑆𝑑𝐶𝑚𝛿

𝐼𝑡
0

0 𝑞𝑆𝑑𝐶𝑚𝛿

𝐼𝑡


[
𝛿𝑞

𝛿𝑟

]
+

[
𝑣𝑞

𝑣𝑟

]
(22)

In the same way as for the roll channel, the analytical expression of the real inversion enlightens the impact of
sampling frequency and actuators speed on the INDI inversion. Fig. 7 shows the comparison between the simulation
model of the INDI inversion and the analytical expression of Eq. (22). The analytical model matches very well the INDI
simulation and it can be checked that with perfect actuators and with continuous time, the inversion is perfect. The
sampling frequency has a direct impact on decoupling capacities and therefore a full order H∞ controller was designed
to handle non-perfect inversion, the design has been detailed in [13] with time domain specifications sets to a settling
time of 0.3 s and a 2% max overshoot.

2. Slow Dynamic controller
The slow dynamics stage of the load factor autopilot computes the desired lateral rates dynamic [ ¤𝑞𝑐 ¤𝑟𝑐]⊤ from

the desired load factors [𝑛𝑦,𝑐 𝑛𝑧,𝑐]⊤. To obtain the analytical expression of the INDI inversion, [𝑛𝑦 𝑛𝑧]⊤ must be
time-differentiated. [

¤𝑛𝑦
¤𝑛𝑧

]
=

1
𝑚𝑔

([
d𝑌
d𝑡

d(𝑍−cos 𝜃 )
d𝑡

])
(23)

In the nonlinear MIMO system described by Eq. (23), the states are the load factors [𝑛𝑧 𝑛𝑦]⊤ and the control inputs
are [𝑞 𝑟]⊤, thus the control effectiveness matrix of this system 𝐺 is then obtained with Eq. (25a). The computation of
[ ¤𝑛𝑦 ¤𝑛𝑧] and 𝐺 involves a lot of time varying parameters and states therefore to avoid any mistakes Matlab symbolic
Toolbox was used. The influence of the lateral rates does not completely appear in the expression of Eq. (23), but it can
be revealed by replacing ¤𝛼 and ¤𝛽 by their analytical expression obtained from the reformulation of Eq. (1b) using a

9

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
26

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

19
98

 



Fig. 8 Load factor external controller design model

change of variable [2].
¤𝛼 = 𝑞 + 𝑟 (cos𝛼 tan 𝜃 − sin𝛼) tan 𝛽

1
𝑚𝑉

(
− sin𝛼
cos 𝛽

𝑋 + cos𝛼
cos 𝛽

𝑍

)
¤𝛽 = −𝑟 (cos𝛼 + sin𝛼 tan 𝜃) + 1

𝑚𝑉
(cos𝛼 sin 𝛽𝑋 + cos 𝛽𝑌 − sin𝛼 sin 𝛽𝑍)

(24)

The analytical analysis of the slow dynamic inversion in discrete time hasn’t been conducted yet but simulation results
show the satisfactory decoupling and linearization of the slow dynamic controller. As for the dynamic inversion applied
to the roll and lateral channels, the invertibility of 𝐺 was verified for all the flight envelope.[

𝜕 ¤𝑛𝑦
𝜕𝑞

𝜕 ¤𝑛𝑦
𝜕𝑟

𝜕 ¤𝑛𝑧
𝜕𝑞

𝜕 ¤𝑛𝑧
𝜕𝑟

]
=
𝑞𝑆

𝑔𝑚


−𝐶𝑁𝛿

− 𝐶𝑁𝛼
(tan 𝜃 − 𝛼)𝛽

(
𝐶𝑁𝛿

− 𝐶𝑁𝛼

)
− (tan 𝜃𝛼 + 1)

(
𝑝1𝑑
2𝑉 𝐶𝑌 𝑝𝛼

)(
𝑝1𝑑
2𝑉

)
𝐶𝑌 𝑝𝛼 (tan 𝜃𝛼 + 1)

(
𝐶𝑁𝛿

+ 𝐶𝑁𝛼

)
+ (tan 𝜃 − 𝛼)

(
𝑝1𝑑
2𝑉

)
𝐶𝑌 𝑝𝛼 𝛽

 (25a)[
𝑞𝑐 [𝑘]
𝑟𝑐 [𝑘]

]
=

[
𝑞𝑐 [𝑘 − 1]
𝑟𝑐 [𝑘 − 1]

]
+ 𝐺−1

[
𝑣𝑛𝑧 [𝑘] −

𝑛𝑧 [𝑘 ]−𝑛𝑧 [𝑘−1]
𝑇

𝑣𝑛𝑦 [𝑘] −
𝑛𝑦 [𝑘 ]−𝑛𝑦 [𝑘−1]

𝑇

]
(25b)

The decoupling of 𝑛𝑦 and 𝑛𝑧 by the INDI slow dynamic stage allows to reduce the external controller design model
to a SISO system. The same design methodology as for the roll was employed, where Matlab systune was used to tune
the external controller. The design model shown in Fig. 8 includes the closed-loop fast dynamics modeled as a first
order system with 𝜏 = 0.07. To ensure time scale separation between fast and slow dynamics, a 2% settling time of 1.5 s
was imposed which is sufficiently slower compared to fast dynamics settling time of 0.3 s, a maximum overshoot of 2%
is specified as well.

C. Nonlinear simulation results
The figures 9,10,11 show nonlinear simulations of the roll, lateral rates and load factors autopilots respectively. In

Fig. 9, the fuze roll is oscillating due to the friction and the spin rate is reduced by putting the four canards into saturation
at 𝑡 = 20 s. Then for performance evaluation purposes, the fuze roll angle is stabilized between 0 and 90 degrees. It
can be observed that the control input is scaled to the flight point thanks to dynamic inversion. Around apogee, the
airspeed is low thus the system has less control authority and therefore the control input is at its peak. In Fig. 10, the
performance of the lateral channels controller launched at 𝑡 = 30s is not homogeneous through the trajectory, because
the real inversion Eq. (22) is not perfect. More precisely Eq. (22) reveals that with non perfects actuators the inverted
model is still impacted of the flight point (flight parameters are presents in Eq. (22)). A single controller is therefore not
sufficient for all the flight envelope. This issue is one of the motivation for an adaptive control augmentation and is
addressed in Section IV.D. Thirdly, in Fig. 11, a satisfactory tracking of the desired load factors can be observed with
the implementation of the cascaded INDI autopilot. Finally, full trajectory nonlinear simulation in Fig. 12 shows the
capacity of the baseline autopilot coupled with a Zero Effort Miss guidance law to correct the ballistic dispersion and
successfully reach the target under nominal conditions.
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Fig. 9 Roll autopilot nonlinear simulation

Fig. 10 Lateral channels autopilot nonlinear simulation

Fig. 11 Load factor autopilot nonlinear simulation
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Fig. 12 Guided trajectory simulation

IV. L1 Adaptive Augmentation
This section deals with the implementation of an L1 adaptive augmentation scheme for the INDI baseline autopilot

designed in Section III. As a matter of fact, even if INDI is more robust to model mismatch than classical Nonlinear
Dynamic Inversion because INDI uses only parameters related to control effectiveness, in this end a lot of parameters are
involved in the inversion, like in Eq. (25a). Among these parameters, some are well known or reliably estimated like the
projectile parameters [𝑆 𝑑 𝑚]⊤ and others are subjected to important uncertainties like the aerodynamic coefficients.
The estimation of these coefficients rely on expensive and time-consuming wind tunnel tests. Adaptive control can be a
solution to counteract the effect on model mismatch on the autopilot and also correct the undesired effects of actuators
speed and sampling frequency on INDI performance which is very significant for the lateral channels inversion.

The interest of the international scientific community for adaptive control has grown in the last few decades thanks
to a lot of interesting results especially in the domain of aerospace [19, 20]. However, the beginnings of research in
adaptive control date back to the 1950s with the development of adaptive autopilot for supersonic aircraft. An important
step in adaptive control theory in the first publications from Whitaker and Osburn in 1958 and 1961 [21, 22] on a
novel control architecture called Model Reference Adaptive Control(MRAC). In the 1980’s, the work of Ioannou and
Kokotovic [23] led to an improvement of the robustness and further analysis of the MRAC.

Model Reference Adaptive Control has nonetheless several issues that needs to be addressed. The main problem of
MRAC is that to capture a large scale of uncertainties the adaptation gain must be high which could lead to output
oscillation and reduce significantly the time delay margin. From this observation, L1 adaptive control proposes an
alternative to MRAC where the adaptation is decoupled from robustness. In L1 adaptive control theory, the problem
formulation is different than MRAC. In MRAC, the cancellation of uncertainties in the entire frequency domain is
addressed. Whereas, the main assumption of L1-AC is that the controller is only able to cancel uncertainties in the
bandwidth of the control channel [24]. The key point of L1-AC is the so-called underlying low-pass filter which
decoupled adaptation or performance and robustness (time delay margin). L1 has been applied to several aerospace
systems in simulation and flight tests [25–27] In the following subsection, the impact of uncertainties on INDI inversion
is evaluated analytically, secondly, the L1 adaptive augmentation architecture used is presented, then the augmentation
for the roll and the lateral channels INDI autopilot are detailed with nonlinear simulations results.

A. Parametric uncertainties effect on INDI performance
For the evaluation of the effect of parametric uncertainties on INDI in the general case, the inversion is considered

perfect before the introduction of uncertainties in the system. Then the effect on real inversion will be detailed in the
design of the adaptive augmentation of each channel. The starting point of INDI theory is to rewrite the dynamic
equation the nonlinear system Eq. (26) in an incremental form using Taylor series approximation, resulting in Eq. (27).

¤x = 𝑓 (x, u) (26)

¤x ≈ 𝑓 (x0, u0) +
d 𝑓 (x, u)

dx

���
x=x0 ,u=u0

(x − x0) +
d 𝑓 (x, u)

du

���
x=x0 ,u=u0

(u − u0) (27)

¤x = ¤x0 + 𝐹Δx + 𝐺Δu (28)

The main assumption of INDI theory is to consider time scale separation between the states and the actuators
dynamics, more precisely the states are supposed to vary much slower than the actuator Δx« Δu. A simplified
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approximation of the dynamics is obtained in Eq.(29) by neglecting 𝐹Δx in Eq. (28).

¤x = ¤x0 + 𝐺Δu = v (29)
Δu = 𝐺−1 (v − ¤x0) (30)

In the nominal case Eq. (30) inverts perfectly Eq. (29) and ¤x = 𝑣 is obtained. However, in the case of uncertainties
the inversion is degraded.

𝐺 = 𝐺𝑛 + Δ𝐺 (31a)
¤x = ¤x0 + (𝐺𝑛 + Δ𝐺)𝐺−1

𝑛 (v − ¤x0)
= v + Δ𝐺𝐺−1

𝑛 (v − ¤x0) (31b)

In Eq.32, 𝐺𝑛 is the nominal value of the control effectiveness matrix and Δ𝐺 is the uncertainty component. If
an adaptive augmentation is considered as in Eq. (32) then a perfect cancellation of all the uncertainties is obtained,
however this control law is not implementable because it requires to know the uncertainties beforehand.

Δu = Δubl + Δuad

Δubl = 𝐺
−1
𝑛 (v − ¤x0)

Δuad = −Δ𝐺𝐺−1
𝑛 Δu

(32)

B. L1 adaptive augmentation architecture
The purpose of this adaptive augmentation is to generate the incremental control signal Δuad that will cancel the

error on dynamic inversion. The adaptive augmentation scheme used is shown in Fig. 13 and is similar to Bhardwaj et al.
in [8] for the adaptive augmentation of an F-16 extend model. The L1 adaptive part is composed of three main blocks.
First, the state predictor reproduces the output of the system taking into account the estimation of the uncertainties,
the prediction error is then fed to the estimation law which calculates the value of the uncertainty represented by the
parameter 𝜎 that will drive the prediction error to 0. Several approaches can considered for the adaptation law, based on
projection [24] or piecewise-constant [28]. The estimated parameter 𝜎̂ is filtered by the low-pass filter 𝐶 (𝑠) that will set
the trade-off between performance and minimal time-delay margin. In the end, the adaptive incremental control law is :

Δuad = −𝐶 (𝑠)𝜎̂ (33)

1. Output Predictor
The state predictor equation comes from the incremental form of the uncertain dynamic equation.

¤𝑥 = ¤𝑥0 + (𝐺𝑛 + Δ𝐺) Δ𝑢

= ¤𝑥0 + 𝐺𝑛
(
Δ𝑢 + 𝐺−1

𝑛 Δ𝐺Δ𝑢

)
= ¤𝑥0 + 𝐺𝑛 (Δ𝑢 + 𝜎) (34)

Fig. 13 L1 adaptive augmentation architecture
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Where ¤𝑥0 = 𝑧−1 ¤𝑥 is the last time step value of ¤𝑥. In order to help the convergence of the predictor, a corrective
proportional term to the prediction error is added to the predictor dynamics, where 𝐾𝑝 is the proportional gain. The
value of the matched uncertainties 𝜎 is replaced by its estimation from the adaptation law 𝜎̂ . Additionally, the states of
the systems are all considered observable and are measured.

¤̂𝑥 = 𝑧−1 ¤𝑥 + 𝐺𝑛 (Δ𝑢 + 𝜎̂) − 𝐾𝑝 (𝑥 − 𝑥) (35)

¤̂𝑦 = 𝑧−1 ¤𝑦 + 𝐺𝑛 (Δ𝑢 + 𝜎̂) − 𝐾𝑝 ( 𝑦̂ − 𝑦) (36)

The prediction error dynamics is defined by Eq. (37).

¤𝑒𝑝 = ¤̂𝑦 − ¤𝑦
= −𝐾𝑝𝑒𝑝 + 𝐺𝑛 (𝜎̂ − 𝜎) (37)

2. Adaptation Law
The piecewise constant adaptation law is first introduced in [28]. This adaption law is constant between two time

steps and therefore the sampling frequency of the system influence directly the adaptation speed and accuracy. The
authors in [8] have detailed the estimation of 𝜎̂ from the error dynamics. For the reader comprehension, the main steps
of the adaptation law design are recalled. From Eq. (37), the prediction error at the next time step is defined as follows.

𝑒𝑝 (𝑖𝑇 + 𝑡) = 𝑒−𝐾𝑝 𝑡𝑒𝑝 (𝑖𝑇) +
∫ 𝑡

0
𝑒−𝐾𝑝 (𝑡−𝜏 )𝐺𝑛𝜎̂(𝑖𝑇)d𝜏 (38)

The objective is to find the expression of 𝜎̂ that will drive the prediction error to zero at the next time step.

𝑒𝑝 (𝑖𝑇 + 𝑡) = 0

⇔ 𝑒−𝐾𝑝𝑇𝑒𝑝 (𝑖𝑇) = −
∫ 𝑡

0
𝑒−𝐾𝑝 (𝑇−𝜏 )𝐺𝑛𝜎̂(𝑖𝑇)d𝜏

⇔ 𝑒−𝐾𝑝𝑇𝑒𝑝 (𝑖𝑇) = −
[
𝐾𝑝

−1𝑒−𝐾𝑝 (𝑇−𝜏 )𝐺𝑛𝜎̂(𝑖𝑇)
]𝑇

0

⇔ 𝑒−𝐾𝑝𝑇𝑒𝑝 (𝑖𝑇) = 𝐾𝑝−1
(
𝑒−𝐾𝑝𝑇 − I

)
𝐺𝑛𝜎̂(𝑖𝑇) (39)

The variable Φ(𝑖𝑇) and 𝜇(𝑖𝑇) are defined as follows and the final expression of the piecewise constant adaptation is
obtained in Eq. (59).

Φ(𝑖𝑇) = 𝐾𝑝
−1

(
𝑒−𝐾𝑝𝑇 − I

)
(40a)

𝜇(𝑖𝑇) = 𝑒−𝐾𝑝𝑇𝑒𝑝 (𝑖𝑇) (40b)

𝜎̂(𝑖𝑇) = 𝐺−1
𝑛 Φ(𝑖𝑇)−1𝜇(𝑖𝑇) (41)

3. Underlying Filter
This section recalled the main results from [10] and how the design of the low pass filter 𝐶 (𝑠) influence the

performance of the adaptive controller and its robustness. In Eq. (43a), 𝑦ref is the non-adaptive version of this adaptive
controller (without uncertainties) and 𝑟 is the reference input. The parameter 𝜆 can be render arbitrary small by
increasing the bandwidth of 𝐶 (𝑠) and therefore reduce the gap between 𝑦ref and 𝑦. 𝜆 < 1 guarantee the stability of the
system with uncertainties under a predefined convex set Θ[24].

𝐺 (𝑠) = (𝑠I − 𝐴𝑚)−1 𝑏 (1 − 𝐶 (𝑠)) (42a)
𝜆 = ∥𝐺 (𝑠)∥L1𝜎max < 1 (42b)

The performance of the adaptive controller can be enhanced by augmenting the bandwidth 𝜔𝑐 of the filter. However,
a high bandwidth of 𝐶 (𝑠), implies more high frequency in the control loop and reduce the delay margin. Asymptotically,
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with 𝜏 the delay margin, the robustness similar to an MRAC is obtained.

lim
𝑤𝑐→∞

∥𝑦𝑟𝑒 𝑓 − 𝑦∥L∞ = lim
𝑤𝑐→∞

𝜆

1 − 𝜆 ∥𝑐∥L1 ∥𝐺 (𝑠)∥L1 ∥𝑟 ∥L∞ = 0 (43a)

lim
𝑤𝑐→∞

𝜏 = 0 (43b)

The desired structure and the parameters of 𝐶 (𝑠) can be obtained by trial and error or the optimal solution between
performance (smallest 𝜆) and maximum delay margin 𝜏 can be solved using LMI [29] or multi-objective optimization
[30]. In the presented implementation, LMI constraints are used to obtain a minimal upper-bound for 𝜆 and thus
guarantee satisfactory performance of the adaptation.

C. Roll Autopilot Augmentation
As explained is Section. III.A, without friction, the roll dynamic equations are already linear and therefore parametric

uncertainties on the roll channel are not critical. More precisely, even in the presence of uncertainties, the INDI
inner-loop transfer function will still be a chain of integrators, the only difference is that the chain of integrators does
not have a unitary gain. In the end, a robust external controller with a sufficiently important gain margin can keep the
system stable under a moderate range of uncertainties but may provide much lower performance. For this reasons, an
adaptive augmentation is still relevant. The analytical expression of the INDI inversion for the roll channel in discrete
time, with real actuators and under parametric uncertainties is given by Eq. (44).

𝑝2 =

(
Δ𝐺𝐺−1

𝑛 + 1
Z{𝐺 𝛿 (𝑠)}−1 + Δ𝐺𝐺−1

𝑛 Z{𝐺 𝛿 (𝑠)}−1 + 1 − 𝑧−1Z{𝐺 𝛿 (𝑠)}

)
𝑣 (44a)

𝐺𝑛 =

[
𝐼−1
𝑥2 𝑞𝑆𝑑𝐶𝑙𝛿

0

]
(44b)

A focus is given on the design of the predictor and filter design because the design of the adaptation law depends
only on the gains of the predictor 𝐾𝑝 which are defined in the output predictor design subsection.

1. Output predictor design
The gains of the predictor 𝐾𝑝 are tuned to obtained an identification time scale 5 to 10 times faster than the

closed-loop dynamics to avoid interactions which could lead to instability. In equation (45) 𝑝 are the poles of the roll
channel closed-loop dynamics and 𝑝𝑒 are the predictor poles.

𝑝 = −13.3 ± 10.7 𝑗
𝑝𝑒 = −133 ± 10.7 𝑗

(45)

From the desired poles of the predictor and the state space representation of the roll dynamics (15), the gains of the
predictor are obtained using classical linear estimator pole placement.

0 =

���𝑠I − (
𝐴 − 𝐾𝑝𝐶

) ��� (46a)

𝐾𝑝 =

[
133 −10.7
11.7 133

]
(46b)

[
¤̂𝑝2
¤̂𝜙2

]
=

[
¤𝑝2

𝑝2

]
+

[
𝐼−1
𝑥2 𝑞𝑆𝑑𝐶𝑙𝛿

0

] (
𝛿𝑝 + 𝜎̂

)
−

[
133 −10.7
11.7 133

] [
𝑝2 − 𝑝2

𝜙2 − 𝜙2

]
(47)

2. LMI-based filter design
LMI optimization is used to obtain the parameters of the underlying filter 𝐴 𝑓 ,𝑏 𝑓 ,𝑐 𝑓 that will guarantee minimal

upper bound for 𝜆. In the following generalized eigenvalue problem 𝜆 is the decision variable to minimize.

Φ(𝛼, 𝑃1, 𝑃2, 𝑀, 𝑞) ≤ 0 (48a)
𝑃1 ≤ 𝜆I (48b)
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where

Φ(𝛼, 𝑃1, 𝑃2, 𝑀, 𝑞) =


[
𝐴𝑚𝑃1 + 𝑃1𝐴

⊤
𝑚 + 𝛼𝑃1 −𝑏𝑞⊤

−𝑞𝑏⊤ 𝑀 + 𝑀⊤ + 𝛼𝑃2

] [
𝑏

𝑏 𝑓

]
[
𝑏⊤ 𝑏⊤

𝑓

]
−𝛼

 (49)

In Eq. 48, 𝑃1 ∈ R𝑛×𝑛 and 𝑃2 ∈ R𝑛 𝑓 ×𝑛 𝑓 are positive definite matrices, 𝑞 ∈ R𝑛 𝑓 is a vector, 𝑀 ∈ R𝑛 𝑓 ×𝑛 𝑓 is a matrix
and 𝛼 ∈ R+ is bounded as 0 < 𝛼 < −2ℜ(𝜆max (𝐴𝑚)) The parameters of the filter are obtained from the solution of
Eq. 48.

𝐴 𝑓 = 𝑀𝑃2
−1 𝑐 𝑓 = 𝑃

−1
2 𝑞 𝑏 𝑓 = [0 − 1]⊤ (50)

With 𝛼 = 32.5 and 𝐴𝑚 and 𝑏 the state space representation of the roll channel closed-loop dynamics, the filter in
Eq.(51) is obtained guaranteeing 𝜆 < 1. 𝐶 (𝑠) is then discretized using Tustin’s bilinear transform to obtain 𝐶𝑑 (𝑧).

𝐶 (𝑠) = −414𝑠2 − 13670𝑠 − 11280
𝑠3 + 447.2𝑠2 + 13940𝑠 + 11280

(51)

𝐶𝑑 (𝑧) =
−0.4082 + 0.3645𝑧−1 + 0.407𝑧−2 − 0.3657𝑧−3

1 − 2.076𝑧−1 + 1.243𝑧−2 − 0.1641𝑧−3 (52)

3. Simulation results
For the analysis of the performance of the proposed L1 adaptive augmentation, two simulation scenarios are

presented. In Fig. 14, where 𝜎 is the real value of the uncertainties and 𝜎̂ is its estimation from the adaptation law,
an acceptable and realistic level of uncertainties is introduced in the system. In this simulation both the baseline and
the adaptive augmentation are close to the reference model. The uncertainties on the dynamic pressure 𝑞 and the
aerodynamic coefficient 𝐶𝑙𝛿 affects the control input of the system but it is still linear Eq. (44) that’s why the baseline
autopilot achieve acceptable performance. In Fig. 15, a much higher level of parametric uncertainties is introduced in
the system which may not be realistic but it demonstrated the capacity of the adaptive augmentation to keep a high
performance level where the performance of the baseline would have been very degraded. In this situation, the real
control authority of the system is much less than the nominal case, then the baseline autopilot doesn’t provide enough
amplitude on the control signal, the compensation is made from the adaptive part which estimate from the prediction
error the difference between the real and nominal control effectiveness.

parameter uncertainty level

𝑞 5%
𝐶𝑙𝛿 30%

Fig. 14 Performance comparison between the roll baseline autopilot and the L1 adaptive augmentation
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parameter uncertainty level

𝑞 45%
𝐶𝑙𝛿 50%

Fig. 15 Performance comparison between the roll baseline autopilot and the L1 adaptive augmentation

D. Lateral rate autopilot Augmentation
Nonlinear simulations of the lateral channel autopilot in Fig. 10 show the impact of implementation constraints on

the INDI inversion. As a matter of fact, Eq. (22) reveals the expression of the inversion error which depends on the
flight parameters, the actuators dynamics and sampling frequency.[

𝑞

𝑟

]
=

(
Z{𝐺 𝛿 (𝑠)} − 𝑧
𝑧Z{𝐺 𝛿 (𝑠)}

) 
𝑞𝑆𝑑𝐶𝑚𝛿

𝐼𝑡
0

0 𝑞𝑆𝑑𝐶𝑚𝛿

𝐼𝑡


[
𝛿𝑞

𝛿𝑟

]
+

[
𝑣𝑞

𝑣𝑟

]
⇔

[
𝑞

𝑟

]
=

[
𝜖𝑞

𝜖𝑟

]
+

[
𝑣𝑞

𝑣𝑟

]
(53)

Two approaches are investigated in order to cancel the inversion error of the lateral channel. The first approach
consists of cancelling

[
𝜖𝑞 𝜖𝑟

]⊤ online by modifying the pseudo-control variables
[
𝑣𝑞 𝑣𝑟

]⊤ given by Eq. 52. The
figure 16 shows the INDI controller architecture with the inversion correction, Fig. 17 and Fig. 18 show the effect of
the inversion correction on the closed-loop dynamics of the lateral channels. It can be seen that this approach provide
successful results by attenuating drastically the coupling between the channels. However this approach has two main
drawbacks that renders it difficult to implement in a real conditions. First, this technique is not robust to parameter
uncertainties, indeed parameters used in Eq. (53) can be subjected to a large range of uncertainties and therefore
the estimated inversion error can diverge from the real one to be cancelled. Second, this approach needs time-scale
separation between the control loop and the inversion correction. Consequently, this technique has only shown successful
results with slow external controller (more than 1.5 second settling time) which is five times slower than the desired
settling time. For all this reasons, another approach is preferred based on the same L1-adaptive augmentation as for the
roll channel with a slight modification of the output predictor in order to take into account the inversion error.[

𝑣𝑞

𝑣𝑟

]
=

[
𝑞des

𝑟des

]
−

[
𝜖𝑞

𝜖𝑟

]
(54)

1. Output predictor modification
The output predictor of the L1-adaptive augmentation for the lateral channels is slightly modified in order to better

counteract the effects of the inversion error. The goal is to use the desired dynamics
[
𝑣𝑞 𝑣𝑟

]⊤ instead of the estimated
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Fig. 16 INDI architecture with inversion error correction

Fig. 17 Lateral channels closed-loop behaviour without inversion correction

Fig. 18 Lateral channels closed-loop behaviour with inversion correction

output derivative [𝑞 𝑟]⊤. In this manner, the predictor given by Eq.(53) is based on the desired dynamics and therefore
the inversion error is estimated from the adaptation law. In the same way as for the roll channel, proportional gains
𝐾PY = 48 are used to help the convergence of the prediction error

¤̂𝑦 = 𝑣 + 𝐺𝑛 (Δ𝑢 + 𝜎̂) − 𝐾PY ( 𝑦̂ − 𝑦)

⇔
[
¤̂𝑞
¤̂𝑟

]
=

[
𝑣𝑞

𝑣𝑟

]
+


𝑞𝑆𝑑𝐶𝑚𝛿

𝐼𝑡
0

0 𝑞𝑆𝑑𝐶𝑚𝛿

𝐼𝑡


([
𝛿𝑞

𝛿𝑟

]
+

[
𝜎̂𝑞

𝜎̂𝑟

])
−

[
48 0
0 48

] [
𝑞 − 𝑞
𝑟 − 𝑟

]
. (55)

2. Filter design
The same LMI optimization as for the roll channel is used to obtain the output filter 𝐶 (𝑠) for the lateral channel

using 𝛼 = 29. The adaptive incremental control signal Δ𝑢ad obtained in Eq.56 where 𝐶𝑑 (𝑧) is the Z-transform of C(s)
using Tustin’s bilinear transformation are given below

Δ𝑢ad = 𝐶𝑑 (𝑧)𝜎 (56)

𝐶𝑑 (𝑧) =
−0.3619 − 0.3619𝑧−1

1 − 0.2762𝑧−1 . (57)
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Fig. 19 Performance comparison between the baseline and the adaptive lateral rate autopilot in nominal
conditions

parameter uncertainty level

𝑞 20%
𝐶𝑚𝛿

45%

Fig. 20 Performance comparison between the baseline and the adaptive lateral rate autopilot in degraded
scenario
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3. Simulation results
For the performance analysis of the L1-adaptive augmentation of the lateral channel autopilot, two scenarios are

proposed. Fig. 19 compares the performance between a baseline autopilot with an external controller tuned considering
perfect inversion and its adaptive augmentation. It can be noticed that even without introducing uncertainties, the
adaptive augmentation improves the performance of the autopilot by cancelling a part of the inversion error. The
performance are slightly better with the modified state predictor. In another part, Fig. 20 proposes a degraded scenario
and shows the capacity of the adaptive augmentation to keep the stability of the system and with improved performance
using the modified state predictor.

E. Load factor autopilot Augmentation
The design of the L1-augmentation for the load factor autopilot is very similar to the lateral rate autopilot

augmentation detailed is Section IV.D without the need to modify the sate predictor because the coupling between the
lateral load factors is negligible. To avoid any redundancy and for the conciseness of the paper, the design of the Load
factor autopilot augmentation will not be detailed. The equation (56) and (57) describe the output predictor and the
filter obtained using LMI respectively. Similarly to Section IV.D.3, the performance of the adaptive augmentation of the
load factor autopilot is assessed by introducing a significant amount of parametric uncertainties in the model.[

¤̂𝑛𝑧
¤̂𝑛𝑦

]
=

[
¤𝑛𝑧
¤𝑛𝑦

]
+ 𝑞𝑆

𝑔𝑚


−𝐶𝑁𝛿

− 𝐶𝑁𝛼
(tan 𝜃 − 𝛼)𝛽

(
𝐶𝑁𝛿

− 𝐶𝑁𝛼

)
− (tan 𝜃𝛼 + 1)

(
𝑝1𝑑
2𝑉 𝐶𝑌 𝑝𝛼

)(
𝑝1𝑑
2𝑉

)
𝐶𝑌 𝑝𝛼 (tan 𝜃𝛼 + 1)

(
𝐶𝑁𝛿

+ 𝐶𝑁𝛼

)
+ (tan 𝜃 − 𝛼)

(
𝑝1𝑑
2𝑉

)
𝐶𝑌 𝑝𝛼 𝛽


[
𝑞 + 𝜎̂𝑛𝑧
𝑟 + 𝜎̂𝑛𝑦

]
−

[
7.5 0
0 7.5

] [
𝑛̂𝑧 − 𝑛𝑧
𝑛̂𝑦 − 𝑛𝑦

]
(58)

𝐶𝑑 (𝑧) =
−0.06855 − 0.06855𝑧−1

1 − 0.8629𝑧−1 (59)

parameter uncertainty level

𝐶𝐴 30%
𝐶𝑁𝛼 80%
𝐶𝑌𝑝𝛼 70%
𝐶𝑁𝛿

70%
𝐶𝑚𝛿

80%

Fig. 21 Performance comparison between the baseline and the adaptive load factor autopilot in degraded
scenario
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parameter uncertainty level

𝐶𝑁𝛿
80%

𝐶𝑚𝛿
80%

𝐶𝑙𝛿 85%

Fig. 22 Performance comparison between the baseline and the adaptive autopilot on a full trajectory

F. Full trajectory simulation
The figure 22 compares the performance between the baseline load factor autopilot and its adaptive augmentation during a

guided trajectory scenario. The objective is to compare only the performance of the two controllers, however uncertainties on some
aerodynamic coefficient (drag, lift, Magnus) affect also the implemented guidance law. To this end, in this simulation, uncertainties
are only considered on the canards aerodynamics coefficients (𝐶𝑁𝛿

,𝐶𝑚𝛿
,𝐶𝑙𝛿 ). Consequently, the guidance law is still functioning in

nominal conditions whereas this autopilot is subjected to significant uncertainties. This guided phase is launched after the apogee at
𝑡 = 40s. It can be noticed that the baseline control signal is divergent and the projectile’s load factors are oscillating, it result that the
projectile crash at several hundred meters of the target which is less than the unguided shot but significantly less accurate than in
nominal conditions (Fig. 12). In the other hand, the L1-adaptive augmented autopilot achieve to follow the desired load factors and
reduce successfully the ballistic dispersion.

V. Conclusion
In this article, the design of an L1-adaptive augmented INDI autopilot applied to a class of dual-spin projectiles is presented.

Nonlinear simulation results show the capacity of the baseline to reduce the ballistic dispersion of the projectile in nominal scenario,
however parameter uncertainties significantly impact the tracking performance of the control law. On the other hand, analytical
results demonstrate the impact of actuator speed and sampling frequency on INDI inversion. To counteract this two phenomena, an
L1-adaptive augmentation scheme has been implemented and reveals to improve the tracking performance of the autopilot over a
large range of parameter uncertainties. Further investigations and robustness analysis must be conducted on the adaptive augmentation
in order to guarantee tracking performance bounds.
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