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Time-lapse data prediction by Marchenko-based reservoir transplantation
Kees Wapenaar and Evert Slob, Delft University of Technology

SUMMARY

In a time-lapse experiment, changes in a reservoir cause
changes in the reflection response. We discuss a method which
predicts these changes from the baseline survey and a model
of the changed reservoir. This method, which takes all multi-
ple scattering into account, is significantly more efficient than
modeling the response of the entire medium containing the
changed reservoir. This can be particularly attractive for appli-
cations in time-lapse full wave form inversion, which requires
repeated modelling of the reflection response.

INTRODUCTION

In a time-lapse experiment, changes in the medium often occur
only locally, for example in a reservoir. Robertsson and Chap-
man (2000) devised a method to efficiently model the response
of a medium after a local change of the medium parameters.
They first model the wave field in the full original medium,
define a boundary around the domain in which changes are go-
ing to take place, and evaluate the field at this boundary. Next,
they numerically inject this field from the same boundary into
a model of the changed domain (e.g. a reservoir after produc-
tion). Because this domain usually covers only a small part
of the full medium, this injection process takes only a fraction
of the time that would be needed to model the time-lapse field
in the full medium. This method is very well suited to model
different time-lapse scenarios of, say, a producing reservoir in
an efficient way. A limitation of the method is that multiple
scattering between the changed domain and the embedding
medium is not taken into account. The method was adapted
by van Manen et al. (2007) to account for this type of multi-
ple scattering, by modifying the field at the boundary around
the changed domain at every time-step of the simulation. Wave
field injection methods are not only useful for efficient numeri-
cal modelling of time-lapse wave fields, but can also be used to
inject a field from a large numerical environment into a finite-
size physical model (Vasmel et al., 2013).

Instead of numerically modelling the field at the boundary en-
closing the changing domain, Elison et al. (2016) propose to
use the Marchenko method to derive this field from reflection
data at the surface. Hence, to obtain the time-lapse wave field
in the changed domain (e.g. a reservoir), they need a mea-
sured reflection response at the surface of the original medium
(the baseline survey) and a model of the changing domain.
Their method exploits an attractive property of the Marchenko
method, namely that redatumed reflection responses from above
(RY) and from below (R™) can both be obtained from single-
sided reflection data at the surface and an estimate of the direct
arrivals (Wapenaar et al., 2014).

In all methods discussed above, the time-lapse fields are de-
rived inside the changed domain. Here we discuss a method

which predicts time-lapse data at the surface (monitor surveys)
from reflection data at the surface (the baseline survey). The
proposed method consists of two main steps. In the first step,
which is analogous to the method proposed by Elison et al.
(2016), we use the Marchenko method to surgically remove
the response of the reservoir from the baseline survey. In the
second step, we transplant the response of a new reservoir,
yielding a monitor survey. Both steps fully account for multi-
ple scattering. Note that, to predict different monitor surveys
for different time-lapse scenarios, only the second step needs
to be repeated. This procedure may be useful for example for
time-lapse full wave form inversion.

A SIMPLE TIME-LAPSE EXPERIMENT

Before introducing the proposed methods, we discuss a simple
time-lapse experiment. Figure 1 shows a horizontally layered
medium. The velocities for the baseline survey are given in
m/s, and the depth of the interfaces (denoted by the solid lines)
in m. The layer between 1200 m and 1400 m is defined as the
reservoir. To emphasise internal multiples, the mass densities
are given the same numerical values as the propagation veloc-
ities. Figure 2(a) shows the plane-wave reflection response at
Sp (which is a transparent surface), using a Ricker wavelet with
a central frequency of 50 Hz. This is the baseline survey. The
reflections from the top and bottom of the reservoir are indi-
cated. Next, the velocity in the reservoir is changed from 4000
m/s to 3000 m/s (and a similar change is applied to the mass
density). The plane-wave reflection response after this change,
designated as the monitor survey, is shown Figure 2(b). The
difference between the monitor and baseline surveys is shown
in Figure 2(c). Note the significant multiple train following the
difference response of the reservoir.

The aim of this paper is to show how a monitor survey can
be predicted from the baseline survey by reservoir transplan-
tation. The dotted lines in Figure 1 distinguish three different
units. Unit a is the overburden, unit b contains the reservoir,
and unit ¢ is the underburden. Reservoir transplantation in-
volves removing the response of unit b from the baseline sur-
vey and replacing it by the response of a new unit b. In the
following, the theory will be discussed for the 3D situation,
but the method will be applied to the 1D example of Figures 1
and 2.

REPRESENTATION OF THE REFLECTION RESPONSE

The starting point for the derivation of a suited representation
of the reflection response is formed by flux-normalised one-
way reciprocity theorems for down- and upgoing wave fields
(Wapenaar and Grimbergen, 1996). We outline the main steps
and leave the full derivation for a journal paper. Figure 3 shows
six media which are used in the derivation. Media a, b and
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Figure 1: Horizontally layered medium.
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Figure 2: Timelapse experiment. (a) Baseline survey. (b) Mon-
itor survey. (c) Difference (monitor minus baseline).

c in the left column contain units a (the overburden), b (the
reservoir) and ¢ (the underburden), each embedded in a ho-
mogeneous background. The grey areas indicate arbitrary in-
homogeneous units, whereas the white areas represent the ho-
mogenous embedding. Reflection responses from above and
below are denoted by RY and R, respectively, and transmis-
sion responses by 7. Because of the flux-normalisation, the
transmission responses in the upward direction (not shown) are
identical to those in the downward direction. The subscripts a,
b and c refer to the units to which these responses belong. The
rays are simplifications of the actual responses, which contain
all orders of multiple scattering in the inhomogeneous units.
Media A, B and C in the right column in Figure 3 consist of
one to three units, as indicated. The reflection and transmis-
sion responses are indicated by capital subscripts A, B and C.
In addition, the Green’s functions G and G~ in these media
represent the downgoing (4) and upgoing (—) responses at the
top boundary of the deepest unit in response to a source at the
upper boundary. Note that media a and A are identical.
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Figure 3: Six media with their responses. Grey areas represent
arbitrary inhomogeneous units. The rays stand for the full re-
sponses, including all orders of multiple scattering.

The one-way reciprocity theorems relate down- and upgoing
wave fields at the boundaries of two media. By choosing ap-
propriate combinations of the media in Figure 3 for the one-
way reciprocity theorems, we obtain a representation for Rg,
being the reflection response from above of medium C (i.e.,
the total medium). This representation reads in the space-
frequency domain

RE(xg,Xs,®) = Ry (Xg,Xs, ®) (1)

//TA(XR,X',a))Rf(x’,x,a))Gz;(X,xS,a))dxdx'

S /S,

+/ / Ts(xg, X, 0)R; (X', x,0)G} (x, X5, 0)dxdx'.
S, JS,

Here xg and xp represent the source and receiver coordinate,
respectively, at the upper boundary Sy, and @ stands for an-
gular frequency. The first term on the right-hand side is the
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reflection response of the overburden (Figure 3, medium A).
The second and third terms on the right-hand side are visu-
alised in Figure 4. When there are more units below unit c,
equation 1 is trivially extended with additional terms on the
right-hand side. On the other hand, when unit ¢ includes all
inhomogeneities below S, then equation 1 is a complete rep-
resentation of the reflection response at Sg. Note that equation
1 is akin to the generalised primary representation (Wapenaar,
1996), in which the sum on the right-hand side is replaced by
an integral along the depth coordinate, and the reflection re-
sponses under the integrals are replaced by local reflection op-
erators.

For notational convenience we rewrite the representation of
equation 1 with the following compact notation

Rg:Rng/ / TAR,L,JGg+/ / TsRIGL. (2
S] S] SZ SZ

This is the representation for the baseline survey. With the
same notation, the representation for the monitor survey reads

Rg:R;ur/ / TARL;G;+/ / TsR)GL. ()
Sl Sl SZ 2

Here the bar in RZJ denotes the reflection response of the new
reservoir. Rg stands for the monitor survey. The bars on some
of the other quantities indicate that these quantities are also ef-
fected by the new reservoir. In the following we discuss how
all quantities needed for evaluating equation 3 are obtained
from the baseline survey Rg and a model of the new reservoir.

REMOVING THE RESERVOIR FROM THE BASELINE
SURVEY

Using the baseline survey Rg(xR,xS, ) as input, assuming in
addition that an estimate of the direct arrival of the transmis-
sion response Ty (xg, X, @) is available, the Marchenko method
yields the focusing functions f,"(x,x/, ) and f; (x,X',®) in
medium A, for focal point X" at S; and for x at Sy (Wapenaar
et al., 2014; Slob et al., 2014). Subsequently, R/Lj is resolved
by inverting

ﬁ=éﬁﬁ 4)

(we use again the compact notation of equation 2). In a similar
way, RQ is resolved by inverting

ﬁ:é@g7 ®)

with £, = f;" and f;” = —(f;)*, where the asterisk denotes
complex conjugation. Finally, T is obtained from

S=Taf, (6)

where 0 is a spatial delta function. For the 1D example, the
resolved response RX is shown in the time domain in Figure
5(b). Note that it contains the first two events of Rg and a
coda due to the internal multiples in the low-velocity layer in
medium A.
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Figure 4: Visualization of the second an third term in repre-
sentation 1.
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Figure 5: Removal of the reservoir, using the Marchenko

method. (a) Baseline survey (input). (b) Response of medium
A (output). (c) Response of unit ¢ (output).

Next, the Marchenko method is used to estimate the Green’s
functions Gg(x,xs7 o) and G (x,xg, ®) in medium C, for re-
ceivers at x on Sy. RY is then resolved by inverting

Ge = /S RG{. @)
2

For the 1D example, RY is shown in Figure 5(c). For display
purposes it has been shifted in time, so that the travel times
correspond with those in Figure 5(a).

Summarizing, the method described here resolves the overbur-
den responses RIE\J, RQ and T4, as well as the underburden re-
sponse RY from the baseline survey RY, see the left frame in
Figure 6. The imprint of the reservoir response R on Rg (see
equation 2) is absent in the resolved responses.

TRANSPLANTING A RESERVOIR INTO THE MONI-
TOR SURVEY

Given a model of the reservoir in the monitor state, its reflec-
tion and transmission responses, RZJ and 7}, respectively, can be
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Figure 6: Left: overburden and underburden responses, ob-
tained from the baseline survey Rg, using the Marchenko
method. Right: modelled responses of the new reservoir, to
be transplanted between the overburden and underburden re-
sponses.

obtained by numerical modelling, see the right frame in Fig-
ure 6. For the 1D example, I?f is shown in the time domain in
Figure 7(a). For display it has been shifted in time, so that the
travel time to the top of the reservoir corresponds with that in
Figure 5(a).

To predict the monitor survey RY, equation 3 should be evalu-
ated. Quantities that still need to be obtained are G}, T and
(_;ér. Applying again the one-way reciprocity theorems to ap-
propriate combinations of the media in Figure 3, we obtain the
relations that are needed to resolve these quantities. We out-
line only the main steps. To obtain Gg we need to invert the

relation
/ [5— / RQRIE] Gi =Ty. 8)
S[ S]

Next, Tp is obtained from
Ty = T,G}. 9)

Analogous to equation 8, G_g is obtained by inverting

/ {6—/ RQRB]Gg:TB. (10)
Sz Sz

To this end, we first need to resolve RQ from

/Té‘RQ :—/ (Rg)"Ts (1)
Sz SU
(Wapenaar et al., 2004). Here Rg is the reflection response of

medium B in the monitor state, which is represented by the
first two terms of equation 3, hence

Rg:Rng/S /S TAR; G} (12)
1 1

‘We now have all ingredients to predict the monitor survey with
equation 3, or, since Rg is already available,

Rgzkg+//fBRgc'g. (13)
S, IS,

For the 1D example, Rg obtained in this way is shown in the
time domain in Figure 7(b). The difference with the directly
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Figure 7: Transplantation of the reservoir in the monitor state.
(a) Numerically modelled response of the new reservoir. (b)
Monitor survey, obtained with the representation of equations
12 and 13. (c) Difference between the monitor survey of Figure
7(b) and the directly modelled monitor survey of Figure 2(b).

modelled monitor survey of Figure 2(b) is shown in Figure
7(c). This confirms that the monitor survey has been very ac-
curately predicted by the proposed method.

CONCLUSIONS

We have proposed a two-step process to predict a time-lapse
monitor survey from the baseline survey and a model of the
reservoir in the monitor state. In the first step, the response
of the original reservoir is surgically removed from the base-
line survey, using the Marchenko method. In the second step,
the modelled response of a new reservoir is transplanted be-
tween the overburden and underburden responses. The method
fully accounts for multiple scattering. It can be employed to
predict the monitor state for a range of time-lapse scenarios.
In that case, the first step needs to be carried out only once.
Only the second step needs to be repeated for each reservoir
model. Since the reservoir model covers only a small part
of the entire medium, repeated modelling of the reservoir re-
sponse (and transplanting it each time between the same over-
burden and underburden responses) is a much more efficient
process than repeated modelling of the entire response. This
method may therefore find applications in time-lapse full wave
form inversion. Because all multiples are taken into account,
the coda following the response of the reservoir may be em-
ployed in the inversion. Because of the high sensitivity of the
coda for changes in the medium (Snieder et al., 2002), this
may ultimately improve the resolution of the inverted time-
lapse changes. Finally, when parts of the overburden change as
well during a time-lapse experiment, these can be transplanted
in a similar way as the reservoir, but this will have a limiting
effect on the efficiency gain.





