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Abstract

As offshore wind turbines are moving further from the coast, floating wind turbines are being
considered. These structures need to be able to endure high dynamic loads while remaining as still
as possible in order to minimize internal stresses and maximize the efficiency of the turbine. To find
ways to combat large responses, the effectiveness of tuned mass dampers (TMDs) and tuned liquid
dampers (TLDs) has been widely researched. While both systems have been shown to be effective,
these damping systems are being used separately. This thesis investigates the effectiveness of vertical
TMDs combined with a TLD by analysing three barge-turbine structures. The first system is the
undamped structure, which works as a control. The second system combines vertical TMDs with a
TLD. These damping systems are not directly linked. The third system interdependently combines
vertical TMDs with a TLD by stacking the damping systems. This makes the TMD displacement
determine the shape of the TLD tank, which causes the system to be significantly nonlinear.

The analysis of the three systems begins with the development of a program that creates the
frequency response function for each of these systems. The basis for these programs is a linear
modal analysis. The nonlinearity of the third system is accounted for by Newton iteration.

The effectiveness of each damping system is determined by the performance index, which is
based on the integral of the frequency response function.

The damping parameters of the independent TMD and TLD are optimized. Due to computa-
tional difficulties no parameter optimization is performed for the interdependent damping system.
In order to judge possible performance improvement for this system, a rough sensitivity study is
performed on the damping parameters of this system.

The results of the optimization and sensitivity study show that the independently damped
system performs best of all three systems when using these particular parameters. The interdepen-
dently damped system has unknown damping potential.

It is not possible to definitively conclude from this research whether the TMDs and TLD damp
more effectively when they work either separately or interdependently. Both damped systems are
able to perform better than the undamped system with the correct damping parameters.

The developed programs give reasonable frequency response spectra for all three systems. From
this it is concluded that the programs of the three systems work as intended, including the nonlinear
part.
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1 | Introduction

1.1 Floating wind turbines

Due to a scarcity of land, more structures are now being built in offshore and coastal areas. This is
especially the case for wind turbines, which are pushed as far out of sight as feasible. Apart from
aesthetic reasons to build wind parks further away from the coast, this also increases wind quality.
Offshore wind resources are of higher quality than on land, and get increasingly consistent when
moving further away from the coast [20].

However, moving further away from the coast gives deeper water construction sites. Fixed
structures in deep water are not always economical, which is why fixed wind turbines are usually
only being build at water depths up to 60 m. Waters deeper than that are where floating structures
come into play. Floating structures also have the advantage that they are less dependent on the
seabed conditions than fixed structures [45].

Structures in deep water environments are subject to high dynamic loads, such as wind, water
waves, drift, currents, and dynamic load of the rotor. These loads can cause large motions of the
floating structures, which is undesirable for various reasons. First of all, large acceleration of the
barge, causes yet higher loads throughout the structure, making it more expensive to build safe
structures as maintenance costs go up and life span goes down. This is especially relevant for cyclic
loads that can potentially cause resonance in the structure. Even aside from resonance, these cyclic
loads cause fatigue and thus structural accelerations need to be kept down. Lastly, in the specific
case of wind turbines, efficiency needs to be kept in mind. Wind turbines are most efficient when in
an upright position. When the floating barge rotates, the turbines therefore become less profitable.

1.2 Damping systems

In order to mitigate the dynamic response of structures, tuned mass dampers (TMDs) and tuned
liquid dampers (TLDs) have been under investigation. A TMD is a damping system that vibrates at
an eigenfrequency that counteracts the vibration of the main structure. Different versions of tuned
mass dampers and tuned liquid dampers in floating windmill systems have been analyzed. He, E.M.
et. al (2017) studied a 2D floating wind turbine system with a horizontal tuned mass damper in
the nacelle. They concluded a significant impact on response vibrations [18]. Yang, J. et. al (2019)
studied a similar 2D floating windmill system with horizontal TMD’s in the platform, comparing
them with a similar system with a TMD attached to the nacelle of the windmill. They concluded
that the TMD placed in the platform did indeed effectively improve the dynamic response of the
system as well [43].

A TLD is simular to a TMD, but instead of a solid mass, fluid is used. This can be in the form
of column TLDs, where the damping largely depends on mass distribution, or in the form of tank
TLDs, where apart from mass distribution the damping also depends on a sloshing effect. Sloshing
of a liquid in a structure has a pronounced effect on the vibration of a rotating system [15][6].

A study by Ha, M. et. al (2016) concludes that the use of a multilayered tuned liquid damper
in the nacelle of a spar type floating turbine is effective for reducing pitch vibration, although its
effectiveness is negligible for vertical and horizontal vibration reduction. It is also stated that the

1



CHAPTER 1. INTRODUCTION 2

effectiveness increases with increasing layers [15]. Placing a multi-column tuned liquid damper in
the platform of the system, shows effectiveness against pitch as well [6].

1.3 Combination damping system

The effectiveness of both TMDs and TLDs in the platform of a floating wind turbine has been shown
separately. It is worth asking whether improving the effectiveness of these dampers is possible when
combining them. Further, does the placement of these systems make a significant difference?

In this thesis, a multi mass vertical TMD is combined with a sloshing TLD as shown in figure
1.1. In this configuration, the TLD is placed directly on top of the TMDs. This effectively makes
the TMD displacement determine the shape of the TLD sloshing tank. This is relevant as the
eigenfrequency of the TLD depends on the shape of its tank.

There are a couple of reasons to conjecture that the stacked damper configuration is more
effective than separate dampers. First of all, with a TLD tuned to the pitch eigenfrequency of the
system, the TLD’s mass distribution causes the TMDs to displace as well. More pressure is exerted
on the TMDs on the highest side of the barge due to the TLD wave. Thus, even with TMDs tuned
to a different frequency, during pitch of the platform the TMDs at the low end of the platform go
up, while the TMDs at the high end go down. This means that the liquid mass of the TLD will be
distributed inversely proportional to the platform’s elevation even more so than a TLD on its own,
effectively creating a restoring moment with its displaced mass.

This stacked damper placement also causes the TLD liquid to exert pressure on the TMDs
below. Most pressure is exerted when a TMD is at its lowest point, increasing its displacement.
This amplifies not only the before mentioned effect, but also the effectiveness of the TMDs themself.
The increased displacement of both the TLD and the TMDs leads to a higher portion of the energy
in the system to go into the dampers instead of the barge system.

Further, the displacement of the TMDs during pitch does not only increase the effectiveness of
the TLD, but also causes the TMDs to take energy out of the system so that they behave as dampers
at this frequency. This means that the TMDs can function at both heave and pitch frequency when
tuned to only the heave eigenfrequency of the system.

Lastly, the damping ability of a TMD depends largely on its mass. TMDs with bigger mass are
able to absorb more energy. Since the movement of a TMD in the stacked configuration also moves
the mass of the TLD section above it, the TMD mass is effectively bigger when stacked.
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Figure 1.1: Wind turbine on a barge with a combined TMD-TLD system. Here, U is the vertical
degree of freedom (DoF) of the barge, θ the rotational DoF, u4 the DoF of the 4th TMD with u0 as
baseline. µ(x, t) is the wave elevation of the TLD, h + Δh is the resting TLD liquid line. k1 and
c1 are the TMD stiffness and damping coefficients of the first TMD respectively, while kf and cf
are the hydrostatic stiffness and hydrodynamic damping of the floating surface respectively.

1.4 Scope and objectives

Since the response of a system can be reduced by the redistribution the liquid of a TLD, it raises the
question if magnifying this phenomenon also magnifies the effectiveness of a TLD. The damping
effectiveness due to magnified mass redistribution by combining TMDs with TLDs as described
above has not yet been researched, however.

The aim of this thesis is twofold.

1. To build an adjustable program to determine the response of the barge described above under a
dynamic excitation. Developing an adaptable program enables further research using the same
model. Linear modal analysis has established itself as a standard tool for engineers. It provides
a reliable approach to determine responses of structures of a linear or low nonlinear degree.
However, as nonlinearity increases, linear analysis becomes unreliable. For the program linear
modal analysis is used in conjunction with numerical methods to function as nonlinear analysis
of the coupled damping system.

2. To find out whether a tuned fluid damper can be more effective when its tank’s shape depends
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on the displacements of tuned mass dampers. Since the TLD eigenmode and eigenfrequencies
depend on the shape of its tank, this will impact the eigenmodes and eigenfrequencies of the
complete system.

Three models are created using Python to represent the barge without a damping system, with
a damping system in the form of a separate TLD and TMD and finally with a TLD and TMDs
that are interdependent. These models can be adjusted to fit different parameters, the amount of
eigenmodes accounted for and a specific number of tuned mass dampers. For the sake of simplicity,
the effectiveness of this type of damping system is determined using only its first eigenmode. Also,
the evaluation is limited to two TMDs. The TMDs are tuned to the heave eigenfrequency of the
barge, while the TLD is tuned to the pitch eigenfrequency.

A standard barge [22] will be used as the system’s platform. Even though the barge restricts the
height of TMD and TLD displacements, the response will be considered unrestricted for simplicity.

To determine the damping efficiency of the proposed system, it needs to be compared to the
system without tuned mass dampers and the system with independent TMDs and TLD. Each system
has the same total mass and dimensions, independent of the presence of tuned mass dampers and
damping fluid. The total mass of the dampers is the same in each case. The stiffness and damping
parameters of the mass dampers in each damped system is tuned to the system’s optimum. The
optimal parameters are calculated numerically by minimizing the performance index [26]. This index
is the integral of the frequency response spectrum. The performance index also gives comparable
results between the different systems. The optimum is found using a white noise spectrum as load.
While the excitement of the barge depends on wave and wind spectra, not white noise, these spectra
are situation specific and therefor not relevant in a general case.

The same base structure is used for each system. The chosen system parameters are those of a
5-MW, three bladed NREL wind turbine with variable speed [22].

The equations of motion of the damping liquid are modeled using boundary conditions on the
platform and TMDs in conjunction with linear velocity potential theory. In order to determine
the effect of the damping liquid, it is important to account for its sloshing effect since this has
been found to be a significant factor [28], as well as its mass distribution. If the right amount
of liquid is chosen, the liquid behaves as a tuned liquid damper, which is why the damping and
mass parameters of the liquid are also optimized for a TLD using optimal design theory for a single
degree of freedom mass damper in combination with the first sloshing eigenfrequency as an initial
guess [13] [46]. Since TLDs are not nearly as effective for vertical and horizontal damping as for
pitch damping [6], the liquid is tuned for the eigenfrequency of the rotational degree of freedom of
the platform. The tuned mass dampers are tuned to the heave eigenfrequency.

The response of all systems (undamped, damped with independent TMD-TLD system and
damped with interdependent TMD-TLD system) is determined numerically in 2D. For simplicity
it assumed that the platform is rigid, so that only the global response will be given. This means
that the platform itself can be modeled as a rigid mass with 3 degrees of freedom, namely vertical
translation, horizontal translation, and rotation. In this thesis, the horizontal motion is disregarded
since the investigated dampers are expected to only mitigate heave and pitch, not surge. The
structural deformations are also neglected in this thesis. Due to additional energy dissipation, the
response would be slightly lower when local deformations are taken into account, making the rigid
case slightly conservative. The wind turbine itself is also modeled as a rigid beam, rigidly connected
to the platform.

Lagrange’s equation is used to establish the equations of motion of the system with Rayleigh
dissipation to account for damping. The response of the system is determined by doing an frequency
response analysis of the system, based on linear modal analysis.
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In order to do so, additional hydrodynamic mass, damping and stiffness matrices are determined
first. The contributing mass, stiffness and damping for the ‘wet’ system are found using velocity
potential theory.

The third model (damped with interdependent TMD-TLD system) is nonlinear and its system
is solved using the Newton method of iteration.



2 | Theory

The objective of this chapter is to give all necessary theory to find the movement pattern of the
floating barge structures investigated in this thesis.

First, fluid-structure interaction will be addressed to find the fluid potential and wave shape
functions of the TLD, as well as the hydraulic damping, stiffness and additional mass effects on the
structure due to the ocean water.

Next, creating the equation of motion using Lagrange’s equation including Rayleigh dissipation
is discussed.

In order to find the movement patterns, eigenvalue analysis has to be performed so that the
response function of each structure can be found.

Next, the optimization scheme of the parameters of the damping system is discussed. Fair
comparison between barge structures can after all only be made when each is designed optimally.

Lastly, iteration is addressed as an approach to solve the non-linear system of the non-linear
third model (barge damped with interdependent TMD-TLD system).

2.1 Fluid-structure interaction

The movement of the structure is influenced by fluid interaction. Both the interaction with the
TLD fluid and the interaction with the surrounding water need to be modeled. This is possible
using potential flow theory.

2.1.1 Potential flow theory

The behaviour of fluid can be described using potential flow theory as long as its flow is irrotational.
Assuming that there is zero angular velocity in the fluid, the velocity of the fluid can be expressed
as the spatial gradient of the fluid potential.

In case of shallow liquid and absence of high frequency loading, the compressibility of most
liquids can be neglected. The governing equation of motion for a non-compressible fluid is:

∇2ϕ(x, z, t) = 0 (2.1)

Where ∇
ϕ

=
=

∂
∂x + ∂

∂z = nabla operator;
scalar velocity potential [m2/s.

The fluid velocity vector vf and the fluid pressure pf respectively are related to the fluid potential
scalar as follows:

vf (x, z, t) = ∇ϕ(x, z, t) (2.2)

pf (x, z, t) = −ρf
∂ϕ(x, z, t)

∂t
(2.3)

Where: ρf = fluid density [kg/m3].

6
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2.1.2 Boundary conditions

There are different boundary conditions for the liquid inside and outside of a floating barge with a
TLD. Both will be discussed here.

Fluid inside a tank

Figure 2.1: Boundary conditions of a two-dimensional fluid domain (Ω) confined to a tank with free
surface Sf, wave elevation µ(x, t). The liquid height in rest is h and half the tank width is a.

The two-dimensional fluid domain of a fluid in a tank is shown in figure 2.1. Its boundary conditions
can be expressed as follows:

vf (x = −a, z, t) = −zθ̇ (2.4)

vf (x = a, z, t) = −zθ̇ (2.5)

vf (x, z = −h, t) = U̇ + xθ̇ (2.6)
∂ϕ(x, z, t)

∂z
− ∂η(x, z, t)

∂t
= 0 (2.7)

∂ϕ(x, z = 0, t)

∂t
+ gη(x, z = 0, t) = 0 (2.8)

Where: U
θ
vf (x, z, t)
η(x, z, t)

=
=
=
=

vertical translation of the tank [m];
rotation of the tank [rad];
the TLD fluid velocity vector normal to the tank wall [m/s];
free surface elevation [m].

Equations 2.4, 2.5 and 2.6 give the relative velocity continuity normal to the tank wall. The
liquid and tank wall velocity are equal at all times, so that the fluid does not pass through the wall,
nor do fluid and wall lose contact. Zero horizontal velocity of the tank and rigid walls are assumed,
so that only vertical and angular velocity play a role.

The kinematic free boundary condition 2.7 implies that the surface elevation velocity is equal
to the vertical flow velocity of the TLD liquid.

Finally, using Bernoulli’s law gives condition 2.8, which denotes that the pressure on the free
surface level is constant and equal to zero.

Solving the governing equation for these boundary conditions gives the potential and surface
wave elevation of the liquid. Setting 2.4, 2.5 and 2.6 equal to zero for a tank in rest, gives the
homogeneous solution and gives the eigenvalues of the sloshing liquid.



CHAPTER 2. THEORY 8

Fluid outside of a floating structure

The boundary conditions outside of a tank are slightly different, as seen in figure 2.2.

Figure 2.2: Boundary conditions of a two-dimensional fluid domain (Ω) with a floating body.
With free surface (Sf), fluid-structure interaction (SFSI) and seabed (Ssb) boundary conditions and
radiation conditions at infinite distance from the structure.

The boundary conditions can be expressed as follows:

vf (x, z, t)n⃗ = 0

∣∣∣∣∣
Ssb

(2.9)

vf (x, z, t)n⃗ = U̇FSI(x)

∣∣∣∣∣
SFSI

(2.10)

∂ϕ(x, z = 0, t)

∂z
− ∂η(x, z = 0, t)

∂t
= 0

∣∣∣∣∣
Sf

(2.11)

∂ϕ(x, z = 0, t)

∂t
+ gη(x, z = 0, t) = 0

∣∣∣∣∣
Sf

(2.12)

(2.13)

Where: n⃗
UFSI(x)

=
=

outward normal vector to the boundary;
translation of the structure [m].

Equation 2.9 gives the boundary condition at the seabed. The velocity normal to the seabed
is zero (assuming a rigid seabed), accounting for impermeability. Similarly, the velocity normal to
the floating structure is equal to the velocity of the (rigid) structure itself, as expressed in 2.10.
The free surface boundary conditions (2.11 and 2.12) are the same here as in the case of the liquid
contained in the tank as described above.

The radiation condition is satisfied by using a trial solution with a decreasing amplitude for
an absolutely increasing x-coordinate. Assuming that the potential modes can be separated into
variables as ϕm(x, z, t) = Xm(x)Zm(z)qm(t), a possible trial solution for Xm(x) could be Xm(x) =
Amexp(−ikmx), where Am is the amplitude and km is the wave number of the mth mode. More on
this in section 2.1.4.

2.1.3 Sloshing inside a tank

Sloshing commonly occurs to liquid inside a tank. The tuned liquid damper used in this thesis is
effectively a large tank with a sloshing liquid. The effectiveness of the TLD depends on the sloshing
mechanics of this liquid and the interaction with its tank. Similar to the TMD, the sloshing
frequency of the TLD needs to be tuned to the frequency of the main structure, in this case the
tank itself.
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It is possible to describe the potential and wave elevation of a sloshing fluid in a tank with an
analytical approximation [27] [37]. In order to do so, first of all, the following trial solutions are
proposed:

η(x, z, t) =
∑

fm(x, z)exp(iωmt) =
∑

fm(x, z)qm(t) (2.14)

ϕ(x, z, t) =
∑

iωmφm(x, z)exp(iωmt) =
∑

φm(x, z)
∂qm(t)

∂t
(2.15)

Here, qm(t) is the generalized surface motion degree of freedom of sloshing mode m (m = 1, 2,
3 ...). It is the amplitude of the wave shape at x=0 for free vibration. When modalized, the qm(t)
of every sloshing mode depends on the mode’s eigenfrequency ωm. φm(x,z) and fm(x,z) are the
modal amplitude functions of the velocity potential and the wave height respectively. Decoupling
the modes is possible in this case, since linearity of the subsystem is assumed.

Combining and rewriting the boundary conditions for a tank at rest and the trial solutions gives
the eigenvalue problem:

∇2φm(x, z) = 0 (2.16)
∂φm(x, z)

∂n⃗
|x=−a,x=a,z=−h = 0 (2.17)

∂φm(x, z = 0)

∂z
− ω2

m

g
φm(x, z = 0) = 0 (2.18)

Where n⃗ is the outward normal vector to the tank wall.
Assuming that every φm can be written as a multiplication of two functions with only one

variable (φm(x, z) = Xm(x)Zm(z)), these functions can be approximated using trial functions again.
Choosing a function fitting the boundary conditions for Xm(x) and substituting into equation 2.16,
gives the approximation to Zm(z). The following trial solutions for X(x) fit the boundary conditions
for the symmetric and anti-symmetric modes respectively:

Xm(x) =

{
cos(αmx)

sin(βmx)
(2.19)

With:

αm =
(2m− 1)π

2a
, βm =

2π

a
(2.20)

Using these possible solutions for Xm(x), then give that the solutions for Zm(z) are:

Zm(z) =

{
Amsinh(αmz) + cosh(αmz) (symmetric)
Bmsinh(βmz) + cosh(βmz) (anti-symmetric)

(2.21)

So that:

φm(x, z) = X(x)Z(z) =

{
cos(αmx)(Amsinh(αmz) + cosh(αmz)) (symmetric)
sin(βmx)(Bmsinh(βmz) + cosh(βmz)) (anti-symmetric)

(2.22)

Substitution of φm(x, z) into equation 2.18 gives the modal eigenfrequencies:

ω2
m =

{
Amαmg (symmetric)
Bmβmg (anti-symmetric)

(2.23)
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According to Faltinsen et al. (2001) [10], the Rayleigh-Kelvin variational formula can be used to
estimate the sloshing eigenfrequencies as:

ω2
m = g

∫ ∫
Ω(∇φm)2 dx dz∫
Sf

φ2
m dSf

(2.24)

Or, in case of a square tank:

ω2
m = g

∫ a
−a

∫ 0
−h(∇φm)2 dz dx∫ a
−a φ

2
m

∣∣
z=0

dx
(2.25)

Combining this with equation 2.23 gives:

g

∫ a
−a

∫ 0
−h(∇φm)2 dz dx∫ a
−a φ

2
m

∣∣
z=0

dx
=

{
Amαmg (symmetric)
Bmβmg (anti-symmetric)

(2.26)

Here Ω is the static liquid region, and Sf is the static free liquid surface, as shown in figure 2.1.

When combining 2.23 and 2.26, Am and Bm can be found to be:

Am =
−bSm −

√
b2Sm − 4aSmcSm

2aSm
(2.27)

With: (2.28)

aSm =

∫ ∫
Ω
cos2(βmx) + sinh2(βmz) dx dz (2.29)

bSm = 2

∫ ∫
Ω
cosh(βmz) + sinh(βmz) dx dz − a

βm
(2.30)

cSm =

∫ ∫
Ω
sin2(βmx) + sinh2(βmz) dx dz (2.31)

(2.32)

Bm =
−bAm −

√
b2Am − 4aAmcAm

2aAm
(2.33)

With: (2.34)

aAm =

∫ ∫
Ω
sin2(αmx) + sinh2(αmz) dx dz (2.35)

bAm = 2

∫ ∫
Ω
cosh(αmz) + sinh(αmz) dx dz − a

αm
(2.36)

cAm =

∫ ∫
Ω
cos2(αmx) + sinh2(αmz) dx dz (2.37)

Now the potential function is known, the wave shape function can easily be found from the
dynamic boundary condition 2.7:

η =

∫
δϕ

δz
dt (2.38)

2.1.4 Fluid movement outside of a floating structure

The fluid movement outside of a floating barge does not only cause excitation forces on said struc-
ture. It also causes hydrostatic stiffness and damping as well as additional mass to the structure.
This ’wet’ situation gives a different dynamic response than the ’dry’ situation. The additional
parameters will be discussed here.
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The potential and wave elevation outside of the tank will need to be solved to determine the
additional ’wet’ parameters. The same trial solutions to the ones in section 2.1.3 are used:

η(x, z, t) =
∑

fm(x, z)exp(iωmt) =
∑

fm(x, z)qm(t) (2.39)

ϕ(x, z, t) =
∑

iωmφm(x, z)exp(iωmt) =
∑

φm(x, z)
∂qm(t)

∂t
(2.40)

Together with the boundary conditions this gives the following eigenvalue problem:

∇2φm(x, z) = 0 (2.41)
∂φm(x, z)

∂n⃗

∣∣∣∣
SFSI ,Ssb

= 0 (2.42)

∂φm(x, z)

∂z

∣∣∣∣
Sf

− ω2
m

g
φm(x, z)

∣∣∣∣
Sf

= 0 (2.43)

Assuming that separation of variables is accurate, φm(x, z) can be expressed as φm(x, z) =
Xm(x)Zm(z). These functions will be approximated as trial functions again, fitting the boundary
conditions. This is how the radiation condition will be satisfied. The following trial solutions for
Xm(x) fit the radiation conditions:

Xm(x) = exp(−αmx) (2.44)

The trial solutions for Xm(x) and Zm(z) need to satisfy 2.41. This gives a possible Zm(z):

Zm(z) = Amcos(αmz) (2.45)

With:
αm =

(2m− 1)π

2H
(2.46)

Where H is the water depth. So that:

φm(x, z) = Amcos(αz)exp(−αx) (2.47)

Substitution into 2.43 gives the eigenfrequencies:

ω2
m = Amαmg (2.48)

Using the Rayleigh-Kelvin equation again to estimate the eigenfrequencies:

ω2
m = g

∫∞
−∞

∫ 0
−H(∇φm)2 dz dx∫∞

−∞ φ2
m

∣∣
z=0

dx
(2.49)

Combining 2.47, 2.48 and 2.49 gives Am:

Am =
1

2
(2m− 1)π − 1 (2.50)

With the potential function now known, the wave shape function can be found from the dynamic
boundary condition 2.11:

φ(x, z) =
∑

(
1

2
(2m− 1)π − 1)cos(αmz)exp(−αmx) (2.51)

η(x, z) =

∫
δϕ

δz
dt (2.52)
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Additional mass and hydrodynamic damping

As a physical body moves through fluid, its inertia is bigger compared to the same body moving
through a vacuum. This increased inertia is accounted for with an additional virtual mass and
damping load [9] [39]. The hydrodynamic damping caused by the fluid movement due to the bodies
own movement is, more specifically, radiation damping. The viscous effects of the fluid is another
damping source to be accounted for. As potential flow deals with non-viscous fluids, this effect is
included in the form of drag forces on the barge.

First, the theoretical potential flow situation is analysed; As the floating body accelerates,
the fluid around it needs to accelerate as well, causing an additional force. This force in the
direction of acceleration can be calculated by integrating the hydrodynamic pressure over area
of the body perpendicular to the acceleration direction: Fh =

∫
p dAh. Bernoulli’s equation for

unsteady potential flow gives the pressure as p = −ρ(∂ϕ∂t +
1
2 |∇ϕ|2) [40].

The exact potential flow directly bordering a rectangular prism can not be given, since this
flow must be turbulent around the corners and potential flow theory demands irrotational flow.
Nonetheless, the potential around a rectangular tank will here be approximated with the potential
flow as determined in the section above. The potential will be assessed at z = 0 to determine
vertical movement, where the vertical fluid velocity is equal to the motion of the floating body
U̇ + θ̇x:

ϕ(x, z = 0, t) =
∑

(
1

2
(2m− 1)π − 1)exp(−αx)(U̇ + θ̇x) (2.53)

This gives the following pressure and hydrodynamic force on the body:

p =− ρ
∑

Am(exp(−αmx)(Ü + θ̈x) + exp(−2αmx)

· α2
m(−1

2
U̇2 + (

1

2
x2 − x+

1

2
)θ̇2 + (x+ 1)θ̇U̇)) (2.54)

Fh =b

∫ a

−a
p dx (2.55)

=ρb
∑

A2
m

[
exp(−2αma)(−1

4
αmU̇2 + ((−1

4
a2 + a− 1

2
)αm − 1

4
a+

1

4
+

1

8αm
)θ̇2

− (
1

2
αm(a+ 1) +

1

4
)U̇ θ̇)− exp(2αma)(

1

4
αmU̇2 + (

1

4
αm(a2 + 2a+ 1)− 1

4
a− 1

4
− 1

8αm
)θ̇2

− ((
1

2
a− 1

2
)αm − 1

4
)θ̇U̇)

]
+ ρb

∑
Am

[
exp(−αma)(

1

αm
Ü + (

1

αm
a− 1

α2
m

)θ̈)

+ exp(αma)(− 1

αm
Ü − (

1

αm
a− 1

α2
m

)θ̈)
]

(2.56)

Where b is the width of the rectangular floating area and where Am and αm as defined in equations
2.50 and 2.46 respectively. When disregarding the non-linear elements, this simplifies to:

Fh =ρb
∑

Am

[
exp(−αma)(

1

αm
Ü + (

1

αm
a− 1

α2
m

)θ̈) + exp(αma)(− 1

αm
Ü − (

1

αm
a− 1

α2
m

)θ̈)
]

(2.57)

The linear part of the additional hydrodynamic force, gives zero additional damping terms, but
the additional mass terms are expressed as follows:

mh,U = −ρb
∑

Am
1

αm

[
exp(−αma)− exp(αma)

]
(2.58)

mh,θ = −ρb
∑

Am(
1

αm
a− 1

α2
m

)
[
exp(−αma)− exp(αma)

]
(2.59)

mh,θU = mh,Uθ = 0 (2.60)
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Which then gives the additional mass (A) matrice:

A =


mh,U mh,θU 0 . . . 0
mh,Uθ mh,θ 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , (2.61)

As discussed, there are no linear radiation damping terms. There are however drag forces
working on the body as well, creating damping. The total drag on a body can be subdivided into
friction forces on the body’s skin and pressure forces. While the friction forces depend on the
Reynolds number, the total drag force can be approximated as constant when the shape of the
body causes predominantly pressure drag. This is the case for bodies with sharp edges that cause
separation of flow along the sides of the body, thus also for a barge, which is a rectangular prism
[44], [41].

The pressure drag can be approximated as Fdrag = −1
2bCdρ

∫ a
−a(Ẋ + Θ̇x)|Ẋ + Θ̇x| dx, where

Cd is the drag coefficient [14] [2] [8]. Since the linearized equivalent equation of cos(ωt)|cos(ωt)| ≈
8
3π cos(ωt) and the vertical displacement of the barge is harmonic, the pressure drag is approximated
as Fdrag = − 8

6π ÛbCdρ
∫ a
−a Ẋ + Θ̇x dx. Where Û is the amplitude of the vertical movement of the

barge, which is the same as the amplitude of the velocity potential at z = 0, namely Am.
Thus, the total drag force on the floating body is:

Fdrag = − 4

3π
((2m− 1)π − 1)abCdρẊ (2.62)

According to Ezoji et al. [8], the drag coefficient Cd can be approximated as:

Cd = A(KC)n (2.63)

Where KC is the dimensionless Keulegan-Carpenter number, which describes the relative im-
portance of drag compared to inertia forces, and A and n are non-dimensional coefficients.

The Keulegan-Carpenter number is determined as KC = 2πÛ
D , where Û is the amplitude of

the oscillations and D is the diameter of the floating body. In the case of the floating barge the
diameter is 2a and the amplitudes of the oscillations at z=0 are Am.

The n is related to the separation angle of the fluid vortexes around the edges of the body. This
number depends on the inner angle of the body’s edges δ as n = 3−2λ

2λ−1 , λ = 2− δ
π . In case of a sharp

square edge δ = 0, which gives n = −1
3 .

The A factor is given by the ratio of the body’s height hplate versus its width dplate: A =
hbody

dplate
.

In the case of the floating barge A = H
2a , where H is the floating depth of the barge at rest.

This gives a drag coefficient Cd = H
2a(

2π( 1
2
(2m−1)π−1)

2a )−
1
3

(2.62) gives a heave damping term only:

cd,U =
2

3π
((2m− 1)π − 1)bρH(

2π(12(2m− 1)π − 1)

2a
)−

1
3 (2.64)

cd,θ = cd,θU = cd,Uθ = 0 (2.65)

Which gives the additional damping matrix:

B =


cd,U cd,θU 0 . . . 0
cd,Uθ cd,θ 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 (2.66)
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Hydrostatic stiffness

The hydrostatic stiffness is directly related to the hydrostatic buoyancy pressure p. Archimedes’
principle states that the weight of a displaced volume of liquid by a body is equal to the upward
pressure on that body. This means that the buoyancy force is:

Fh =

∫ a

−a
ρgb(H − U − θx) dx

= 2ρgbaH − 2ρgbaU − ρgba2θ (2.67)

With H the floating depth of the body at rest, so that the additional hydrostatic stiffness matrix
(D) and force vector are respectively:

D =


2ρgba 0 0 . . . 0
0 ρgba2 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , Fh =


2ρgbaH

0
0
...
0

 (2.68)

2.2 Equation of motion

The barge-wind turbine structure under investigation in this thesis is simplified as one rigid body,
so that only the global response of the barge-system is given. The local response of the tank walls
are therefore disregarded. The system’s response is considered in 2D, so that there are 3 degrees of
freedom, namely vertical and horizontal translation (heave and surge) and rotation (pitch). Each
tuned mass dampers gives one additional translational degree of freedom. The tuned liquid damper
gives an additional translational degree of freedom of its equivalent mass. For the analysis of the
proposed model, surge is ignored since neither damping system in its original form has been shown
to be considerably effective against surge. Presuming that the horizontal motion is minor, lets the
horizontal degrees of freedom be omitted.

The equations of motion are found using Lagrange’s equation:

d

dt

∂L
∂q̇i

− ∂L
∂qi

+
∂R
∂q̇i

= Qi (2.69)

Where L is the Lagrangian, R is the Rayleigh dissipation function, qi are the generalized degrees of
freedom and Qi is the generalized loading vector. Here, L = K − P in which potential and kinetic
energy respectably can be generally expressed as follows:

P =
1

2

n∑
i=0

kiq
2
i + gmiqi (2.70)

K =
1

2

n∑
i=0

miq̇
2
i (2.71)

Where: ki
mi

n

=
=
=

stiffness parameter for DoF qi [N/m];
mass for DoF qi [kg];
number of DoFs.
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The damping forces are incorporated into the Rayleigh dissipation function R:

R =
1

2

n∑
i=0

ciq̇
2
i (2.72)

Where ci is the damping coefficient for qi.

2.70, 2.71 and 2.72 are inserted into the Lagrange equation in order to find the equations of
motion. This gives the mass-, damping and stiffness matrices M, C and K.
The resulting equation of motion will be in the form:

(M +A)ẍ+ (C +B)ẋ+ (K +D)x = F (2.73)

Where M, C and K are the mass, damping and stiffness matrices of the dry system respectively.
A, B and D are the additional ’wet’ mass, hydraulic damping and stiffness matrices respectively as
determined in section 2.1.4. Force vector F gives the excitation loads, Fh gives the hydraulic force
(2.68) and x is the displacement vector of the system. When analysing only the heave and pitch of
the platform, the following force vector and displacement vector are used:

F =



Fv(t)
M(t)
0
...
0
0


, x =



U(t)
θ(t)
q(t)
u1(t)

...
un(t)


(2.74)

Here, n is the number of tuned mass dampers and Fv(t) and M(t) are the external vertical force
and moment respectively.

2.3 Modal analysis

A modal analysis consists of decoupling the modes of a system and treating the total response of
said system as a superposition of the responses to each excitation mode. This is of course possible
only when analysing linear systems. The total response looks as follows:

x(t) =

N∑
i=1

Φ̂iui(t) (2.75)

In which Φ̂i is the ith eigenvector, ui(t) is the corresponding modal coordinate and N is the number
of eigenmodes. The modal analysis is exact for non-damped systems, but only an approximation in
the case of damped systems. Since eigenfrequencies and eigenmodes of a damped system are very
close to their undamped counterpart, this is not a problem.

2.3.1 Linear eigenvalue analysis

An eigenvalue analysis of the system will be performed based on free vibration. This means that a
solution to the homogeneous equation of motion in the form of Mẍ+Cẋ+Kx = 0 needs to be
found. The general solution to this equation can be found in the form of:

x =
N∑
i=1

Xiexp(iωit) (2.76)
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Substituting this trial solution into the equation of motion, gives:

(−ω2
iM + iC +K)Xi = 0 (2.77)

Which only gives a non-trivial solution when:

det(−ω2
iM + iC +K) = 0 (2.78)

Solving 2.78, gives the eigenfrequencies ωi.
Substituting the eigenfrequencies into 2.77 gives the corresponding non-trivial solution for Xi

and the response in turn:

Xi = (−ω2
iM + iC +K)−1 (2.79)

x(t) =

N∑
i=1

Xi exp (iωit) = Φu =

N∑
i=1

Φ̂iui(t) (2.80)

Where Φ is the eigenmatrix, with the eigenvectors being its columns:

Φ =
[
Φ1 Φ2 . . . ΦN

]
(2.81)

The unit response function H(ω) is determined by solving the inhomogeneous equation of mo-
tion, with non-specific frequencies and the load amplitude F̂ :

(−ω2
i (M +A) + i(C +B) +K +D)Xi = F̂ (2.82)

H(ω) = (−ω2(M +A) + i(C +B) +K +D)−1 (2.83)

2.3.2 Nonlinear eigenvalue analysis

In the case of a nonlinear system, the mass M(X), damping C(X) and stiffness K(X) matrices
depend on the response amplitude X(t). The response amplitude in turn is depends on the wave of
the TLD, not only its amplitude, so that the whole system response amplitude is time dependent.
This system can therefor not be solved accurately using linear modal analysis. The first iteration is
approximated using the equivalent nonlinear modal analysis in the frequency domain [35] however,
where the amplitude dependency has been acknowledged. The mass, damping and stiffness matrices
are determined for zero response amplitude:

H(ω,X = 0) = (−ω2(M(0) +A) + i(C(0) +B) +K(0) +D)−1 (2.84)

Since the system is nonlinearly dependent on the response amplitude, a response change gives
the following system change:

(−ω2(M(X +∆X) +A) + i(C(X +∆X) +B) +K(X +∆X) +D)(X +∆X) = F̂ (2.85)

From there, the system is solved by using Newton iteration (see section 2.5) until ∆X approaches
zero, correcting the residual response [30], [29].

The above is a local state description of the nonlinear problem for a particular time and response
amplitude. This process can be repeated at any time t in order to determine the time dependency
of the frequency response spectrum.

As nonlinear eigenmodes are not necessarily orthogonal and can therefor not be superimposed,
each eigenvector at each mode likely contains contributions of all other modes. It has been observed
that the nonlinear part of the eigenmode is fairly small in the vicinity of the eigenfrequency, but
becomes dominant when farther from resonance [35]. The system does not have fixed eigenmodes
and eigenfrequencies. These have to be found for each local state.
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2.4 Damping system optimization

Optimal damping of a structure gives minimum displacements of said structure under load. This is
specified more practically as the minimum performance index J, which is the mean square displace-
ment response of the structure under a particular dynamic load. The optimal parameters (TMD
mass, damping ratio and stiffness) for a single degree of freedom (SDoF) structure with the system
subjected to white noise excitation is known [26] [34]. Numeric solutions have been found in the
form of:

f =
ωTMD

ωS
(2.86)

f =

√
1 + µ/2

1 + µ
(2.87)

ξ =
cTMD

2mωTMD
(2.88)

ξ =

√
µ(1 + 3

4µ)

4(1 + µ)(1 + µ/2
(2.89)

µ =
m

M
(2.90)

Where: f
ξ
µ
M
m

= frequency ratio between the TMD and the structure;
= damping ratio of the TMD;
= mass ratio between the TMD and the structure;
= mass of the structure [kg];
= mass of the TMD [kg].

Knowing that the TMD should be in resonance with the structure (f = 1), the optimal param-
eters can be found for the SDoF system.

The optimal paramaters for a SDoF system with a TLD are determined by using the first
sloshing frequency ωTLD of the TLD [12]. The equivalent stiffness parameter of a TLD is related
to the liquid height. The damping parameter is determined by multiple factors, such as liquid
viscosity and potential damping screens in the tank. The design of this damping system are out of
the scope of this thesis. So, the TLD is optimized towards the optimal liquid height hTLD and a
general damping constant cTLD.

ωTLD =

√
πg

2a
tanh(

πhTLD

2a
) (2.91)

This gives:

ωS · f =

√
πg

2a
tanh(

πhTLD

2a
) (2.92)

hTLD = tanh−1(
2a

πg
f2ω2

S)
2a

π
(2.93)

Since the frequency ratio f and liquid depth hTLD depend in each other via the mass ratio, they
are determined by means of iteration.

When determining the optimal parameters for more complex systems, the performance index
needs to be minimized by letting its derivative go to zero [26]. The performance index for a white
noise is defined as follows:
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J =

∫ ∞

0
H(ω)S0 dω (2.94)

Where: H(ω) = unit response function [m/N ];
S0 = white noise spectrum [N ].

Calculate the gradients of the performance index over the parameters and the newly calculated
parameters as follows:

∂Jn
∂cn

=
J(cn + 1

2s)− J(cn − 1
2s)

s
, cn+1 = cn − ∂Jn

∂cn
s (2.95)

∂Jn
∂kn

=
J(kn + 1

2s)− J(kn − 1
2s)

s
, kn+1 = kn − ∂Jn

∂kn
s (2.96)

∂Jn
∂mn

=
J(mn + 1

2s)− J(mn − 1
2s)

s
, mn+1 = mn − ∂Jn

∂mn
s (2.97)

Where s is the incremental step to determine the parameters. Each original parameter (n = 0) is
determined as the optimal parameter for a SDoF system in the first frequency of the desired degree
of freedom.

The process is repeated with the new parameters until the gradient is lower than the tolerated
error ϵ:

|
J ′
n − J ′

n+1

J ′
n

| < ϵ (2.98)

Each parameter influences the optimization of the remaining parameters. Therefor, all param-
eters either need to be optimized in tandem (one at a time) or they need to be optimized using an
iteration scheme appropriate for nonlinearity (see section 2.5.

Due to the serialized nature of parameter optimization, these computations are too
extensive for a nonlinear system under the time constraints of this research. For this
reason a rough sensitivity study is performed on the parameters in this case instead.
While this makes a comparison between different systems difficult, a sensitivity study
does give an indication about the potential effectiveness of the interdependent damping
system.

2.5 Iteration

Iteration can be used for root finding and for finding minima and maxima. Both uses are explained
here.

As nonlinear systems are concerned, the Newton method is an appropriate iteration method
[33].

2.5.1 Newton method for root finding

In principle, the unit response function H(ω) for the total system can be found for every tank
shape in the manner described in this chapter. However, the shape of the tank in the case of the
investigated system of this thesis is determined by the displacement of the tuned mass dampers
(see section 3.1.3 for a description of the system). This means that the response of the system and
the tank shape are interdependent and need to be computed using iteration.

Only one initial guess is needed as a starting point, as well as the derivative at this point. In
case of a system of equations this would be the Jacobian. The process to solve a system G(x) = 0
is defined as:

xk+1 = xk − J(xk)
−1G(xk) (2.99)
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where: xk

J(xk)
−1

G(xk)

= unknown vector at the kth step;
= inverse Jacobian at the kth step;
= system at the kth step

In case of the system specified here, the Jacobian can not be determined analytically. Therefor
a finite difference approximation is used for a numerical approach:

Ji,j =
∂gi(xj)

∂xj
≈ gi(xj + ϵ)− gi(xj)

ϵ
(2.100)

Where ϵ is the step size and approaches 0.
While this method is not guaranteed to converge to the desired solution or any solution, modified

methods exist that do [16][7]. As the iterations by the Newton method give declining Gk as k
increases as long as the step size is small enough, controlling the step size leads to the desired
outcome. The global or damped Newton method reduces the step size per iteration by using a
damping term r:

xk+1 = xk − r · J(xk)
−1G(xk) (2.101)

or: (2.102)
xk+1 = xk −∆xk,k+1 (2.103)

For a regular Newton iteration, r = 1. Armijo’s rule [19] gives the following procedure to
determine the damping term for the modified method, using a temporary vector G(t) = G(xk+1)
for r = 1:

While |G(t)| > |G(xk)| :
t = xk − r · J(xk)

−1G(xk) (2.104)

r =
1

2
r (2.105)

G(t) = G(xk)− r · J(xk)
−1G(xk) (2.106)

This gives the next iteration as:

xk+1 = t (2.107)
G(xk+1) = G(t) (2.108)

2.5.2 Newton method for optimization

Finding the optimal damping parameters for a system are found iteratively. This can be done one
parameter at a time, or simultaneously. The Newton method can be used to find the maxima,
minima and saddle-points of a system by looking for the root of the derivative of the system. The
final iteration gives a local minimum if and only if the Hessian is positive definite, which needs to be
checked. If the Hessian is negative definite, the final iteration gives a maximum. If some eigenvalues
of the Hessian are negative and some positive, the critical point that is found is a saddle point.

Since the optimization problem adapts the root finding problem to the derivative of the system,
it is defined as:

xk+1 = xk −H(xk)
−1∇kG(xk) (2.109)

where: xk

H(xk)
−1

∇k

G(xk)

= unknown vector at the kth step;
= inverse Hessian at the kth step;
=

∑ ∂
∂xi,k

= the nabla operator at the kth step;
= system at the kth step.
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The Hessian is determined using finite difference approximation:

Hi,j =
∂2gi(x1, .., xi, .., xj , .., xn)

∂xixj
(2.110)

≈gi(x1, .., xi + ϵ, .., xj + ϵ, .., xn)− gi(x1, .., xi + ϵ, .., xj , .., xn)

ϵ2
(2.111)

− gi(x1, .., xi, ..xj + ϵ, .., xn) + gi(x1, .., xi, ..xj , .., xn)

ϵ2
(2.112)

Where step size ϵ approaches 0. Like the root finding process, the optimization process does
not always converge, but can be made to by controlling the step size. The damping term r then
changes equation 2.109 into:

xk+1 = xk − r ·H(xk)
−1∇kG(xk) (2.113)

To ensure convergence, require the gradient of the system ∇G(xk) to go down. Starting as an
undamped iteration using r = 1, r is determined by Armijo’s rule as follows:

While |∇G(t)| > |∇G(xk)| :
t = xk − r ·H(xk)

−1∇kG(xk) (2.114)

r =
1

2
r (2.115)

∇G(t) = ∇G(xk)− r ·H(xk)
−1∇G(xk) (2.116)

This gives the next iteration as:

xk+1 = t (2.117)
∇G(xk+1) = ∇G(t) (2.118)

2.5.3 Sensitivity study

In order to survey whether the optimum for any of the damping parameters found is merely a local
minimum, a rough sensitivity analysis is performed for each parameter. This analysis gives the
change of the performance index depending on the change of a particular parameter.

The interdependent TMD-TLD system is analyzed for the optimal parameters of the indepen-
dent TMD-TLD system. The optimal parameters for these systems are not the same. The effect
of varying damping parameters on the efficiency of the interdependent system are analyzed. The
parameters checked for are the damping constant cTMD of the TMD’s, the stiffness constant kTMD

of the TMD’s and the damping constant cTLD of the TLD.

In favor of simplicity each parameter is adjusted separately to analyze the impact of its change
on the system. The performance index is determined for each parameter within a range of the
optimized parameter. All other parameters are kept constant when analysing any one parameter.

While it is easier to judge the impact of each parameter this way, the parameters of the TMD
and TLD influence each other’s effectiveness. To get a clearer picture of the sensitivity, a series of
parameter combinations need to be computed and plotted. This is out of the scope of this thesis.



3 | Model set-up

The general theory to calculate the motion of a floating barge have been discussed in chapter 2.
However, the method to compute specific barge structures can deviate slightly. In this chapter,
the model set up of three different barge structures with increasing complexity will be discussed.
The first two barge structures can be analysed straightforwardly, whereas the last structure (the
structure under investigation in this thesis) will need some more attention as it behaves nonlinearly.
The first two structures are mainly explored in order to have a reference point for the latter structure.

All systems have the same main structure consisting of a floating barge and a wind turbine.
The barge structure is based on a preliminary design by the Department of Naval Architecture and
Marine Engineering at the Universities of Glasgow and Strathclyde [3]. The wind turbine used for
these systems was developed as a representational turbine for concept studies known as the ’NREL
offshore 5-MW baseline wind turbine’ [22].

3.1 System description

3.1.1 Undamped barge

Figure 3.1: Basic barge, no structural damping system. The hydrostatic stiffness coefficient is
shown as kf and the hydrodynamic damping coefficient as cf .

The first barge to be analysed is the basic barge structure as shown in figure 3.1. Since this structure
only includes the barge itself, it is treated as a foundation for the other two systems. Everything
discussed here, also holds true for the damped structures.

First of all, the barge of each structure will be regarded as a floating stiff body. The barge
itself has two degrees of freedom: the vertical translation U and the rotation θ. Any horizontal
translation by the barge is disregarded. The water the barge floats on is modeled as a continuous
base with a stiffness matrix D and a damping matrix B. D and B are the hydrostatic stiffness
and hydrodynamic damping matrices respectively. The barge does not have a stiffness matrix K,
since it is modeled as infinitely stiff so that no potential energy is present in the form of structural
deformation.

21
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3.1.2 Barge with separate TMD and TLD system

Figure 3.2: Barge with independent TMD and TLD system. Here, u4 is the DoF of the 4th TMD
with u0 as baseline. µ(x, t) is the wave elevation of the TLD, h is the resting TLD liquid line and kf
and cf are the hydrostatic stiffness and hydrodynamic damping of the floating surface respectively.

The system shown in figure 3.2 has a damping system consisting of multiple TMDs and a TLD.
The TLD is placed at the bottom of the barge so that the TMDs do not interfere with the TLD’s
tank shape and therefore not with its eigenfrequencies. Granted that the distance between TLD
and TMD is large enough, the TMDs and TLD do not affect eachother.

For readability of the figure, the springs and dampers of the TMDs are left out of the figure.
However, each TMD has a spring stiffness of ki and a damping coefficient of ci, where i is the ith

TMD from left to right. Each TMD has one vertical degree of freedom ui, with the TMD height in
rest marked in the figure as u0.

The TLD has one representational degree of freedom q(t), which is the wave shape amplitude
at x = 0 (see paragraph 2.1.3). In order to find the sloshing modes, the local coordinates x and z
are used. The water height in rest is h, while the free surface elevation is denoted as η.

3.1.3 Barge with interdependent TMD and TLD system

Figure 3.3: Barge with interdependent TMD and TLD system. Here, u4 is the DoF of the 4th TMD
with u0 as baseline. µ(x, t) is the wave elevation of the TLD, h + Δh is the resting TLD liquid
line and kf and cf are the hydrostatic stiffness and hydrodynamic damping of the floating surface
respectively.

The barge system discussed here is the most complex one and the main focus of this thesis. The
barge structure is shown in figure 3.3. In this case, the TLD is placed directly over the TMDs. The
purpose of the proposed TMD - TLD combination is to enhance the effect of each damping system.
Here, the TMDs are also the bottom of the TLD tank. The weight distribution of the TLD liquid
creates a restoring moment. Letting the bottom of the TLD tank be be related to the pressure of
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the TLD so that it is reversely related to the displacement of the platform, increases the restoring
moment created by a standard TLD. Similarly, the increased pressure on the TMDs by the damping
liquid gives a bigger response by the TMDs, which in turn increases their restoring forces onto the
platform.

The wave shape and sloshing modes of the liquid depend on the tank shape. Thus, in case of a
time dependent tank shape, the Lagrangian and therefore the mass- and stiffness matrices are time
dependent. Also, the response amplitude of the TMDs is dependent on the wave of the TLD, not
just its amplitude and is therefor time dependent. In principle, the unit response function H(ω) for
the total system can be found for every tank shape in the manner described in 2.3.1. However, the
shape of the tank in the case of this model is determined by the displacement of the tuned mass
dampers. This means that the response of the system and the tank shape are interdependent and
need to be computed using iteration.

The boundary conditions change after every iteration. Apart from the changing eigenfrequency
and eigenmodes of the liquid, the liquid pressure on the TMDs changes depending on the height of
the liquid over the TMD.

The volume of damping liquid stays the same, so that the level water height changes per iteration.
This needs to be accounted for to prevent invalid large integrations over the liquid volume in case
of a big response of the TMDs near the eigenfrequencies. This means that depending on the TMD
movement, the ’resting’ water height changes with a Δh, as shown in figure 3.3.

When calculating the fluid potential of the TLD, volume integration is performed. In the case
of multiple TMDs, this integration is done as a sum of the integration over each compartment of a
TMD. Volume integration over the resting liquid is done only where the level water height is higher
than the TMD in question. In case of integration over the volume under the wave shape, integration
over x is limited to where the wave is higher than the TMD in question. This to prevent negative
integration values in case of a TMD displacement higher than the liquid surface. See figure 3.4 for
additional clarification.

Figure 3.4: Volume integration is performed over sections of the fluid domain. In the situation
depicted, integration starts from the intersection of the wave shape η(x, t) with the third TMD.
Integration before the intersection would give negative results.

3.2 Assumptions and boundary conditions

Some assumptions are applied to the liquid in and outside of the structure, which influence the
potential flow computations.
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First of all, while the abrupt angles in the structure would cause turbulence, this is ignored.
The liquid movement inside the TLD and outside the structure are assumed to be irrotational so
that linear velocity potential theory can be applied. For limited liquid velocities, this is still a good
approximation.

Secondly, all used fluid is deemed homogeneous and incompressible. This means most notably
that the water pressure at the seabed does not influence the water density there despite the water
depth. Increased density at this depth could slightly alter the velocity potential, but is not significant
considering the size of the fluid domain.

A number of simplifications are made with regards to the structure and its situation as well.
First of all, the most important simplification of the models is the use of a stiff body for the

barge-turbine structure. This modification reduces the amount of degrees of freedom, namely the
local degrees of freedom are disregarded. The energy dissipation due to movement in these local
degrees of freedom is omitted in the stiff models, making them more conservative. However, the
reduction of degrees of freedom also means less eigenfrequencies and less chance at resonance.

Also, horizontal movement is disregarded as the implemented damping systems are not expected
to affect surge of the barge system.

Thirdly, the displacement response of each model depends on the type of loading. Each of the
models is subjected to a white noise load instead of a characteristic ocean wave load. The reason
for this is the influence of the parameters of the main structure on the response to certain loading.
Shifting its eigenvalues by the additional dampers could either positively or negatively influence
the response to loading other than white noise. The effectiveness of the damping systems loaded
by white noise, shows their potential for damping capacity rather then their damping capacity in a
more specific loading situation. Where these systems used in real life, the main structure would be
designed in conjunction with the damping systems.

Lastly, the effect of mooring cables is not included in the models.

Regarding the boundary conditions: the stiff walls of the barge give boundary conditions con-
forming to the continuity of liquid velocity normal to the tank walls by only using global displace-
ments of the structure, not local deformations. See 2.1.2 for the complete set of boundary conditions
of both the TLD liquid in a given tank and the ocean water.

The boundary conditions for the model with the interdependent TMD and TLD system, are
time dependent, because the tank shape is time dependent. The boundary condition concerning
liquid velocity continuity at the bottom of the tank, now depends on the velocity of the TMDs
instead of only the velocity of the barge. Thus, to account for the velocity at each TMD, equation
2.6 becomes:

vf (x, z = −h+ ui(t), t) = u̇i (3.1)

And in order to determine the potential for each tank shape, the modal amplitudes of the TLD
need to be calculated using an altered liquid domain. Equations 2.27 to 2.37 become:
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Am =
−bSm −

√
b2Sm − 4aSmcSm

2aSm
(3.2)

With: (3.3)

aSm =
n∑

i=0

∫ 0

−h+ui(t)

∫ −a+2 a
n
(i+1)

−a+2 a
n
i

cos2(βmx) + sinh2(βmz) dx dz (3.4)

bSm =
n∑

i=0

2

∫ 0

−h+ui(t)

∫ −a+2 a
n
(i+1)

−a+2 a
n
i

cosh(βmz) + sinh(βmz) dx dz − a

βm
(3.5)

cSm =
n∑

i=0

∫ 0

−h+ui(t)

∫ −a+2 a
n
(i+1)

−a+2 a
n
i

sin2(βmx) + sinh2(βmz) dx dz (3.6)

Bm =
−bAm −

√
b2Am − 4aAmcAm

2aAm
(3.7)

With: (3.8)

aAm =

n∑
i=0

∫ 0

−h+ui(t)

∫ −a+2 a
n
(i+1)

−a+2 a
n
i

sin2(αmx) + sinh2(αmz) dx dz (3.9)

bAm =
n∑

i=0

2

∫ 0

−h+ui(t)

∫ −a+2 a
n
(i+1)

−a+2 a
n
i

cosh(αmz) + sinh(αmz) dx dz − a

αm
(3.10)

cAm =

n∑
i=0

∫ 0

−h+ui(t)

∫ −a+2 a
n
(i+1)

−a+2 a
n
i

cos2(αmx) + sinh2(αmz) dx dz (3.11)

As explained in paragraph 3.1.3, the potential flow of the TLD is determined by these amplitudes
and can give a response of the TMDs different to the ones used in the first place. This means that
the potential and the response calculations need to be iterated until the used tank shape is near
enough the displacement equivalent of the TMDs.

The system is not linear, but will be approximated as such for the modal analyses.

3.3 Model parameters

3.3.1 Barge and wind turbine parameters

While the barge in the models is based on a particular preliminary design, this design includes a
moon pool for wave energy extraction, which is not adopted for the models in this thesis. This
barge is chosen as it was designed specifically to support the reference wind turbine [3].

One additional parameter that was not specified for the designed barge is its seabed depth, as it
should be useful at varying depth. Since floating wind turbines become appealing for ocean depths
of 60m and over, the models will be analysed at an ocean depth of H = 60m. This is relevant for
determining the potential flow outside of the structure and therefor the additional hydrodynamic
parameters.

The adopted wind turbine is the ’NREL offshore 5-MW baseline wind turbine’, which is a
conceptual turbine [22]. It was developed to represent utility-scale multi-megawatt turbines for
offshore wind technology. Its features are a composite of representational properties obtained from
turbine manufacturers.

Since large part of the mass of the barge consists of added ballast, this will be replaced by the
mass dampers. While the total amount of ballast is unknown, the mass for all TMD’s combined
is set to 10% of the total mass. The total mass stays consistent independent of the TLD or TMD
mass.



CHAPTER 3. MODEL SET-UP 26

All necessary parameters for the base structure for the models in this thesis is summarized in
table 3.3.1.

Barge
Size (W x L x H) 40 x 40 x 10

Mass 5 452 000 kg
Depth seabed 60 m

Wind turbine
Hub height 87.7 m

Turbine radius 63 m
Blade structural and aerodynamic damping ratio 0.5 %

Tower structural damping ratio 1 %
Mass 697 460 kg

Vertical centre of mass 64 m
Mass dampers

Mass ratio TMD to total mass 1/10
Number of TMD’s 2

Mass per TMD 272 600 kg

Table 3.1: Parameters base structure

3.3.2 Additional hydrodynamic and hydrostatic parameters

From the derivation in section 2.1.4, the additional hydrodynamic mass and damping matrices and
the hydrostatic stiffness matrix and force vector are known.

The additional hydrodynamic mass and damping parameters for the barge-turbine system are
the following for each modal mode m:

αm =
(2m− 1)π

120
(3.12)

Am =
1

2
(2m− 1)π − 1 (3.13)

mh,U =− 4 · 104
∑

(60− 120

(2m− 1)π
)(exp(−(2m− 1)π

6
)− exp(

(2m− 1)π

6
)) (3.14)

mh,θ =− 4 · 104
∑

(1200 +
61 · 120

(2m− 1)π
+

14400

(2m− 1)2π2
)

· (exp(−(2m− 1)π

6
)− exp(

(2m− 1)π

6
)) (3.15)

mh,θU =mh,Uθ = 0 (3.16)

cd,U =
∑ 4

3π
((2m− 1)π − 1)800ρ

1

4
(
2π(12(2m− 1)π − 1)

40
)−

1
3 (3.17)

cd,θ =
∑

cd,θU = cd,Uθ = 0 (3.18)

Which then gives the additional mass (A) and damping (B) matrices:

A =


mh,U mh,θU 0 . . . 0
mh,Uθ mh,θ 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , B =


ch,U ch,θU 0 . . . 0
ch,Uθ ch,θ 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 (3.19)
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The additional stiffness matrix D and the added hydrostatic force vector Fh on the barge for
the base structure are found from equations 2.68. Fh depends on the floating depth H of the barge,
which can be determined using Archimedes’ principle as H = (MBarge+MTurbine)/(2ρab) = 3.84m.
This gives:

D =


1.57 · 107 0 0 . . . 0

0 1.57 · 108 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 , Fh =


6.03 · 107

0
0
...
0

 (3.20)

3.3.3 Parameters damping systems

The parameters of the damping systems are determined by optimization. As discussed in section 2.4,
optimization of multi degree of freedom systems is done through iteration. The starting parameters
for this iteration are given by the optimized parameters of an equivalent single degree of freedom
system. These starting parameters are the same for both the model with independent TLD and
TMD system and the model with interdependent TLD and TMD system. These starting parameters
are determined after the modal analysis of the undamped structure is finished, see paragraph 4.3.1.
After all, the eigenfrequencies and mode shapes need to be determined before optimization is
possible.

3.3.4 Subscribed load

Each model is subjected to the same normalized force in a range of frequencies. Since the response
amplitude for very high amplitudes goes to zero for all models, this range is limited to ω = ⟨0, 3]
rad/s. The models are subjected to a positive translation force Fv and a positive moment M with
the magnitude of the system’s dead weight. Thus:

Fload =


Fv

M
0
...
0

 =


5.452 · 103kN
5.452 · 103kNm

0
...
0

 (3.21)

3.4 Equations of motion

The equations of motion of the three systems are constructed as explained in section 2.2.

3.4.1 Undamped barge

Without the stiffness and damping from the surrounding fluid, the potential energy P and the
kinetic energy K of the undamped system (section 3.1.1) are:

P = MgU (3.22)

K =
1

2
MU̇2 +

1

2
M

∫ a

−a

1

2a
θ̇2x2 dx =

1

2
MU̇2 − 1

6
Mθ̇2a2 (3.23)

Where: M
U
θ
a

=
=
=
=

mass of the structure [kg];
vertical translation [m];
rotation [rad];
half the barge width [m].
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This gives the following mass matrix M and force vector F:

M =


M 0 0 . . . 0
0 1

6a
2M 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 =


6, 149 · 106 0 0 . . . 0

0 4.099 · 108 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 (3.24)

F =


−Mg
0
0
...
0

 =


−6.033 · 107

0
0
...
0

 (3.25)

The complete equation of motion with the given matrices then is:

(M +A)ẍ+Bẋ+Dx = F + Fh + Fload (3.26)

3.4.2 Independently damped barge

The model of the independently damped barge (section 3.1.2) has 2 + n degrees of freedom, namely
vertical translation U of the barge (heave), rotation θ of the barge (pitch) and translation of the n
TMDs ui. Without the influence of the floating surface, the potential energy P, the kinetic energy
K and the Rayleigh dissipation R are determined as follows:

P =
n∑

i=0

(
1

2
ki(ui − (U + θ(−a+ (2a

i

n− 1
))))2 +mig(ui + θ(−a+ (2a

i

n− 1
))) +MgU

+ ρgb

∫ a

−a

∫ η

0
(z + U + θx) dz dx

=

n∑
i=0

(
1

2
ki(ui − (U + θ(−a+ (2a

i

n− 1
))))2 +mig(ui + θ(−a+ (2a

i

n− 1
)) +MgU

+ ρgb

∫ a

−a
(
1

2
η + U + θx)η dx (3.27)

K =

n∑
i=0

1

2
miu̇

2
i +

1

2
MU̇2 +

1

6
Ma2θ̇2 +

1

2
ρb

∫ 0

−h

∫ a

−a
(U̇ + θ̇x+

∂ϕ

∂z
)2 + (

∂ϕ

∂x
)2 dx dz (3.28)

R =
1

2

n∑
i=0

ci(u̇i − (U̇ + θ̇(−a+ (2a
i

n− 1
))))2 +

1

2
bcTLD

n∑
i=0

∫ 0

−h

∫ −a+2 a
n
(i+1)

−a+2 a
n
i

(
∂ϕ

∂z
)2 + (

∂ϕ

∂x
)2 dx dz

(3.29)

Where: U
θ
a
ki
ci
cTLD

M
mi

ui
µ
ϕ
n

=
=
=
=
=
=
=
=
=
=
=
=

vertical translation [m];
rotation [rad];
half the barge width [m];
stiffness of the ith TMD [N/m];
damping coefficient of the ith TMD [Ns/m];
equivalent damping coefficient of the TLD [Ns/m];
mass structure [kg];
mass of the ith TMD [kg];
displacement of the ith TMD [m];
wave elevation function [m];
velocity potential function [m2/s];
number of TMDs.
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This gives the following mass (M), damping (C) and stiffness (K) matrices and load vector (F)
for n = 2:

M =


6.981 · 105 0 0 3.075 · 105 0

0 2.571 · 108 1.269 · 105 6.149 · 106 0
0 1.269 · 105 1.323 · 104 0 0

3.075 · 105 −6.149 · 106 0 3.075 · 105 0
3.075 · 105 6.149 · 106 0 0 3.075 · 105

 (3.30)

C =


0 0 0 0 0
0 0 0 0 0
0 0 7.456 · 103 0 0
0 0 0 1.805 · 105 1.805 · 105
0 0 0 1.805 · 105 1.805 · 105

 (3.31)

K =


0 0 0 0 0
0 0 3.537 · 105 0 0
0 3.537 · 105 1.029 · 103 0 0
0 0 0 9.265 · 105 0
0 0 0 0 9.265 · 105

 (3.32)

F =


6.033 · 107

0
0
0
0

 (3.33)

3.4.3 Interdependently damped barge

The model of the interdependently damped barge (section 3.1.3) has 2 + n degrees of freedom,
namely vertical translation U of the barge (heave), rotation of the barge θ and translation of the n
TMDs ui. Because the damping systems (TMDs and TLD) are interdependent in this model, the
potential and kinetic energy of the TLD differs slightly from the model with independent damping.
The total distance the fluid gets displaced now changes as a result of the TMD displacements as
well. As the TMD response is not yet known, this is done iteratively, using the previously estimated
response of the TMDs ui,k−1 to determine the kth iteration step.

With the influence of the floating surface omitted, the potential energy P, the kinetic energy K
and the Rayleigh dissipation R are determined as follows:

P =
n∑

i=0

(
1

2
kiu

2
i,k +mig(ui,k + Uk + θk(−a+ (2a

i

n− 1
))) +MgUk

+ ρgb
n∑

i=0

∫ −a+2 a
n
(i+1)

−a+2 a
n
i

(
1

2
(η +∆h) + Uk + θk(−a+ (2a

i

n− 1
)))(η +∆h) dx (3.34)

K =
n∑

i=0

1

2
mi(u̇i,k + U̇k + θ̇k(−a+ (2a

i

n− 1
)))2

+
1

2
ρb

n∑
i=0

∫ ∆h

−h+ui,k−1

∫ −a+2 a
n
(i+1)

−a+2 a
n
i

(u̇i,k + U̇k + θ̇k(−a+ (2a
i

n− 1
)) +

∂ϕ

∂z
)2 + (

∂ϕ

∂x
)2 dx dz

+
1

2
MU̇2

k +
1

6
Ma2θ̇2k (3.35)

R =
1

2

n∑
i=0

ciu̇
2
i,k +

1

2
bcTLD

n∑
i=0

∫ ∆h

−h+ui,k−1

∫ −a+2 a
n
(i+1)

−a+2 a
n
i

(
∂ϕ

∂z
)2 + (

∂ϕ

∂x
)2 dx dz (3.36)
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Where: Uk

θk
a
ki
h
∆h
ci
cTLD

M
mi

ui,k
µ
ϕ
n

=
=
=
=
=
=
=
=
=
=
=
=
=
=

vertical translation at the kth iteration step [m];
rotation at the kth iteration step [rad];
half the barge width [m];
stiffness of the ith TMD [N/m];
height TLD liquid [m];
displacement of TLD level [m];
damping coefficient of the ith TMD [Ns/m];
equivalent damping coefficient of the TLD [Ns/m];
mass structure [kg];
mass of the ith TMD [kg];
displacement of the ith TMD at the kth iteration step [m];
wave elevation function [m];
velocity potential function [m2/s];
number of TMDs .



4 | Results

Modal analysis of each of the systems is performed in this chapter. The response spectrum in the
frequency domain is given for each system, as well as the response in the time domain.

4.1 Additional hydrodynamic and hydrostatic parameters

The additional hydrodynamic mass and damping, and the hydrostatic stiffness and external force
are the same for each system. They are given in section 3.3.2. For the first eigenmode, the additional
mass (A) and damping (B) matrices are:

A =


9.556 · 105 0 0 . . . 0

0 2.187 · 108 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 (4.1)

B =


4.009 · 106 0 0 . . . 0

0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 (4.2)

The additional hydrostatic stiffness matrix D and hydrostatic force vector Fh are also the same
for all models and are given in section 3.3.2

4.2 Undamped system

The model as described in paragraph 3.1.1 is analysed here.

4.2.1 Response spectrum

The response spectrum of the undamped system to the normalized force shows that the barge has
two eigenfrequencies, see figure 4.1. The first peak gives the pitch eigenfrequency ω = 0.389 rad/s2

of the barge. This response has been multiplied by the height of the turbine mast to give the
approximate horizontal displacement of the hub. The second peak gives the heave eigenfrequency
ω = 1.486 rad/s2 of the barge.

31
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Figure 4.1: Frequency response functions of the heave U [m] and pitch Θ [rad] of the undamped
system.

The integral of both response spectra gives the performance index J, see chapter 2.4. This gives
J = 12.32 for the undamped system.

4.3 Barge with separate TMD and TLD system

The model as described in paragraph 3.1.2 is analysed here.

4.3.1 Optimization first step

The first step in finding the optimal system parameters is described in chapter 2.4. As described
here, the optimal parameters for a single degree of freedom system under white noise loading are
known. Using the eigenfrequencies found for the undamped system, estimates are made for the
optimal stiffness parameters and damping parameters of the TMD’s and the TLD. The equivalent
stiffness of a TLD is related to its fluid height h, which also determines the weight of the TLD.
The TMD’s are tuned to the vertical translation eigenfrequency ω = 1.486 rad/s, while the TLD
is mostly responsive to rotation and is therefore tuned to the rotation eigenfrequency ω = 0.389
rad/s.

Combined with the given TMD to barge mass ratio (table 3.3.1), this gives the starting param-
eters as seen in table 4.3.1.

Starting parameters

kTMD 533.74 kN/m
cTMD 137.01 kNs/m
hTLD 0.181 m
cTLD 12.65 kNs/m

Table 4.1: Starting parameters for the optimization of the damped system with separate TMD’s
and TLD.

4.3.2 Optimization

As described in chapter 2.4, the performance index J are minimized as a measure for the optimal
stiffness and damping parameters of the TMD’s and the TLD. This can be done by looking for
a minimum one parameter at a time in a serialized fashion or all parameters at once using an
appropriate iteration scheme. In this section serial optimization is performed as described in section
2.4 and combined optimization is performed using the Newton method as described in section 2.5.
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Serial optimization

The algorithm for serial optimization can be found in appendix B.6.
Starting with the optimal damping parameters for a single degree of freedom system, the progres-

sion of the performance index to the optimal parameters for the actual system reaches convergence
in very few steps. This is clear from the convergence charts 4.2.

Figure 4.2: Convergence of the performance index J to its optimum using serial optimization,
depending on the parameters of the TMD’s and TLD.

A possible problem arises, as it is not known whether the minimum found is only a local
minimum. A rough sensitivity study is done to combat this. From figures 4.4, 4.6 it is clear that
there is a distinct minimum for the TMD and TLD damping parameters cTMD, cTLD.

This is not the case for the TMD stiffness parameter k, see figure 4.3. The minimum found
by starting from the SDOF optimum is a local minimum, but there are distinct peaks and valleys.
Within the studied range the local minimum suffices, though it is unknown if a lower performance
index may be found. The multiple minima along different kTMD are caused by the changes in
eigenfrequency as the stiffness changes.

A clear patern of maxima and minima can also be seen for the TLD height h (figure 4.5. The
equivalent stiffness of the TLD depends in part on the liquid heigth, as well as its mass. Therefor
the eigenfrequency of the TLD is highly susceptible to changes in h. There seems to be a more
apparent optimum for the TLD height than for the TMD stiffness within the range of the sensitivity
study. When taking the mass of the system into account, any minima found for larger TLD heights
are not relevant, as the TLD weight can not be bigger than the total weight.

The minima in the sensitivity figures coincide with the parameters found, which suggests that
the parameters found are adequately close to optimal. See table 4.3.2 for the final values.

Optimized parameters

kTMD 503.81 kN/m
cTMD 87.13 kNs/m
hTLD 0.313 m
cTLD 11.85 kNs/m

Table 4.2: Optimized parameters for the damped system with separate TMD’s and TLD using
serial optimization.
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Figure 4.3: Performance index depending on the TMD stiffness constant kTMD[kN/m]. Best
performance index for kTMD = 503.81kN/m

Figure 4.4: Performance index depending on the TMD damping parameter cTMD[kNs/m]. Best
performance index for cTMD = 87.13kNs/m
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Figure 4.5: Performance index depending on the TLD liquid height h [m]. Best performance index
for h = 0.313 m

Figure 4.6: Performance index depending on the TLD equivalent damping parameter cTLD[kNs/m].
Best performance index for cTLD = 11.85kNs/m

Newton optimization

The algorithm for Newton optimization can be found in appendix B.7. As discussed in section 2.4,
the Newton method can be used for optimization of a system by looking for gradients of the system
of zero. In this case the function to analyse is the performance index J(X), giving the system
∇J(X) = 0. Equation 2.109 then becomes:

Xk+1 = Xk −H(Xk)
−1∇J(Xk) (4.3)

where: Xk

H(xk)
−1

∇J(xk)

=
[
cTMD kTMD h cTLD

]T
k
= Parameter vector at the kth step;

= Inverse Hessian at the kth step;
= Performance index gradient at the kth step.



CHAPTER 4. RESULTS 36

Similarly to the serial optimization, the initial parameters are the optimal damping parameters
for a single degree of freedom system. The number of iterations to reach convergence is 25 in this
case (figure 4.7), where the serial optimization used less than 10 iterations per parameter (figure
4.2). While the number of convergence steps for this optimization scheme is higher than the number
of iterations of the individual parameters in the serial optimization scheme, the total amount of
iterations is comparable as only one set of iterations needs to be performed.

Figure 4.7: Convergence of the performance index J to its optimum using Newton optimization,
depending on the parameters of the TMD’s and TLD.

Figure 4.7 shows that the performance index per iteration step does not gradually go down,
but fluctuates before reaching convergence when using the Newton method. It is evident that the
critical point that is found is not the global minimum. Inspection of the Hessian of the system
at convergence gives both positive and negative eigenvalues (λ = 6.78647680; 3.72361138e−09;
−1.05920466e−09; −9.77932808e−09), which means that the optimization process has led to a saddle
point.

Moreover, while the Newton optimization gives a lower performance index than the serial opti-
mization (J = 6.49), the given parameters are not all positive (see table 4.3.2). Thus, the resulting
parameters can not be physically applied. Thus, henceforth the parameters from the serial opti-
mization are used.

Optimized parameters

kTMD 517.55 kN/m
cTMD -366.60 kNs/m
hTLD 0.942 m
cTLD 12.78 kNs/m

Table 4.3: Optimized parameters for the damped system with separate TMD’s and TLD using
Newton optimization.

4.3.3 Frequency response spectra

The response using the starting parameters as seen in table 4.3.1 gives a performance index J = 8.92.
The response spectra (figure 4.8) show that the response at both the heave eigenfrequency and the
rotation eigenfrequency are blunted by the damping system. However, it has also created additional
rotation response peaks. The TMD response is clearly connected to the heave response, while the
TLD response is connected to the pitch response (figure 4.9).
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Figure 4.8: The heave U and rotation Θ response spectra of the independent damping system, using
non-optimized damping parameters.

Figure 4.9: The response spectra of all degrees of freedom of the independent damping system,
using non-optimized damping parameters.

The system with optimized parameters gives a response spectrum with similar eigenfrequencies
(table 4.5), but smaller peaks, see figures 4.10, 4.11. The optimization gives a performance index
J= 7.38.
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Figure 4.10: The heave U and rotation Θ response spectra of the independent damping system,
using optimized damping parameters.

Figure 4.11: The response spectra of all degrees of freedom of the independent damping system,
using optimized damping parameters.

A direct comparison (figures 4.12, 4.13) shows that most performance improvement comes from
the pitch response.
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Figure 4.12: The heave U response spectra of the independently damped system with the initial
parameters and the optimized parameters.

Figure 4.13: The pitch Θ response spectra of the independently damped system with the initial
parameters and the optimized parameters.

The eigenshape of the TLD does not change when the liquid height does as its shape depends
on the shape of its tank. However, its amplitude does change. See figure 4.14. The increased
amplitude causes a higher pitch damping contribution.
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Figure 4.14: The eigenshape of the TLD of model 2.

4.4 Barge with interdependent TMD and TLD system

The model as described in paragraph 3.1.3 is analysed here.

4.4.1 Initial parameters

The optimized parameters (table 4.3.2) for the independent TMD-TLD damping system are used
for the interdependent TMD-TLD damping system as well. See paragraphs 4.3.1 and 4.3.3 for the
computation.

4.4.2 Iteration

In order to find the response spectrum of the system, the displacements of the barge system need to
be found for a range of frequencies of applied unit force. The first guess for the displacement at any
frequency will simply be the solution to the equations of motion with zero displacement for all the
degrees of freedom. This solution will be different from the solution to the independent TLD-TMD
system, since the TMD’s are subjected to the pressure from the TLD. This pressure is uniform, as
this first approximation will be gotten from the system at rest.

As discussed in chapter 2.5, the Newton method is used to find the response of the barge, the
TLD and the TMD’s. For the barge system, the system G(X) = (−ω2(M +A)+ i(C +B)+K +
D)X − F̂ = 0 needs to be solved (see section 2.3.1). The following iteration scheme is used:

Xk+1 = Xk − J(Xk)
−1G(Xk) (4.4)

Where Xk

J(Xk)
−1

G(Xk)

= response amplitude vector at the kth step;
= inverse Jacobian at the kth step;
= system at the kth step

Using the finite difference method (equation 2.100) gives the Jacobian:

Ji,j =
Gi(X1, X2 . . . Xj + ϵ . . .Xn)−Gi(X1, X2 . . . Xj . . . Xn)

ϵ
(4.5)

Where Xn is the displacement of the final TMD.
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Since the Lagrangian and therefor the response of the system only changes depending on the
displacements of the TMD’s in the previous iteration but not on the displacements of the other
degrees of freedom (see section 4.4 and appendix C.7), this gives:

J =


0 0 0 G1(X4+ϵ...Xn)−G1(X4...Xn)

ϵ . . .
G1(X4...Xp+ϵ)−G1(X4...Xn)

ϵ

0 0 0 G2(X4+ϵ...Xn)−G2(X4...Xn)
ϵ . . . G2(X4...Xn+ϵ)−G2(X4...Xn)

ϵ
...

...
...

...
. . .

...
0 0 0 Gn(X4+ϵ...Xn)−Gn(X4...Xn)

ϵ . . . Gn(X4...Xn+ϵ)−Gn(X4...Xn)
ϵ

 (4.6)

The first iteration step X1 = X0 − J(X0)
−1G(X0) uses X0 = H(ω,0)F̂.

4.4.3 Frequency response spectra

The first iteration is based on a zero initial displacement at time t = 1 s. This gives X0 = H(ω,0)F̂
and the spectra in figures 4.15, 4.16. This iteration suggests a performance index J = 12.76. The
eigenfrequencies of the TMD’s and TLD lay closer to the pitch eigenfrequency than the heave
frequency of the barge (see table 4.5).

As the first iteration is based on zero displacement of the TMD’s, the eigenshape of the TLD is
the same as that of the optimized model 2 (see figure 4.14).

Figure 4.15: The heave U and pitch Θ response spectra of the interdependent damping system, first
iteration (using non-optimized damping parameters).
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Figure 4.16: The response spectra of all degrees of freedom of the interdependent damping system,
first iteration (using non-optimized damping parameters).

Response spectra

The response spectra of the interdependently damped barge with parameters optimized to the
independently damped system give a performance index J= 12.85. The response spectra (figures
4.17 and 4.18 ) show a blunted response around heave resonance, but not around pitch resonance.
The response of the TMDs is clearly linked to the pitch response (through the response q of the
TLD) as well as to the heave response. The response of the TLD is related to the pitch response.

The eigenfrequencies of the system depend on the displacement of the system. Thus, they are
not constant throughout the frequency response spectrum and are not conclusively determined.

Figure 4.17: The heave U and pitch Θ response spectra of the interdependent damping system at
t= 1 s, final iteration (using non-optimized damping parameters).
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Figure 4.18: The response spectra of all degrees of freedom of the interdependent damping system
at t= 1 s, final iteration (using non-optimized damping parameters).

The initial guess of the frequency response spectra is compared to the final iteration in figures
4.19 and 4.20. There is a clear shift in resonance frequencies, although the overall shape of the
spectra is similar.

Figure 4.19: The heave U response spectra of the interdependently damped system. The initial
guess of the spectrum compared to the fully iterated spectrum.
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Figure 4.20: The pitch Θ response spectra of the interdependently damped system. The initial
guess of the spectrum compared to the fully iterated spectrum.

Sensitivity

As explained in section 2.5.3, a rough sensitivity study is performed for each parameter at a time.
The sensitivity study for the TMD damping parameter (figure 4.21) shows a clear decrease of

the performance index as the damping coefficient of the TMDs goes up. Its optimum is not in the
range of the sensitivity study. The lowest performance index found in this range is J = 12.48.

Figure 4.21: Performance index depending on the TMD damping parameter cTMD[kNs/m]. No
minimum of the performance index found.

The sensitivity study for the TMD stiffness parameter does include a minimum in its range, see
figure 4.22. It is unknown if this is a local minimum or the global optimum. The minimum found
gives a performance index J = 11.96.
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Figure 4.22: Performance index depending on the TMD stiffness parameter kTMD[kN/m], with a
minimum J for kTMD = 419.84kN/m.

The sensitivity study of TLD liquid height (figure 4.23) shows a clear peak with valleys. The
current liquid height is clearly not the optimal height in combination with the other parameters.
The minimum performance index found in the range of this analysis is J = 10.85.

Figure 4.23: Performance index depending on the TLD liquid height h [m], with a minimum J for
h = 0.441m.

Figure 4.24 shows low sensitivity of the TLD damping parameter within the range of the analysis.
The performance index does not change significantly over this range and remains J = 12.85.
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Figure 4.24: Performance index depending on the TLD damping parameter cTLD[kN/m/s], without
a distinct minimum for J.

4.5 Comparison

In this section the three different systems are compared. The frequency response spectra, eigen-
frequencies and the performance index J of each system is set side by side. Both damped systems
show a damped heave response (figure 4.25). These models also both show additional pitch response
peaks (figure 4.26). Figures 4.11 and 4.18 show that the TMDs of model 2 do not respond to pitch
exitation, while the TMDs of model 3 do respond.

The eigenfrequencies of the models are shown in table 4.5. The final (iterated) version of
model 3 does not have constant eigenfrequencies and are therefor not shown. Table 4.5 shows the
performance index based on the total heave and pitch response.

Figure 4.25: Frequency response spectra of the heave U for model 1, optimized model 2 and com-
pletely iterated model 3.
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Figure 4.26: Frequency response spectra of the pitch Θ for model 1, optimized model 2 and com-
pletely iterated model 3.

Eigenfrequencies [rad / s]

Model 1 0.389 1.486 - - -
Model 2 (non-optimized) 0.108 0.443 1.412 1.736 1.771

Model 2 (optimized) 0.107 0.439 1.175 1.280 1.535
Model 3 - iteration 1 (non-optimized) 0.218 0.394 1.176 1.280 1.585

Model 3 N/A N/A N/A N/A N/A

Table 4.4: Eigenfrequencies of each system

Performance index J

Model 1 12.32
Model 2 (non-optimized) 8.92

Model 2 (optimized) 7.38
Model 3 - iteration 1 (non-optimized) 12.76

Model 3 - final iteration (non-optimized) 12.85

Table 4.5: The total performance index for each system
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5.1 Discussion results

5.1.1 Program development

As stated in section 1.4, one of the objectives of this project was the development of adjustable
programs to determine the frequency response of the three different barge systems as described in
chapter 3.3.3.

The analyses of the models show convincing frequency response functions. The two models of
the damped systems show blunted responses as expected. This effect is lacking for the pitch response
of the interdependently damped model, but this does not seem to be caused by divergence during
the iteration due to the nonlinear effects, as this is also the case for the first iteration. The peaks
of the pitch response is still in accordance with the completely undamped model. The nonlinearity
problem for the interdependent damping system has been resolved as the interdependently damped
model reaches convergence for all frequencies. Judging on the analysis performed in this thesis, it
looks like the modeling programs are successful.

The optimization of the models is also successful, if accounted for the limitations as described in
section 5.2. The fast convergence to the respective optima of the parameters (see figure 4.2) shows
the advantage of running the serialized optimization as opposed to determining the performance
for a range of parameters.

5.1.2 Effectiveness interdependent damping system

The second aim of this research is the investigation of the effectiveness of an interdependent damping
system as described in section 3.1.3 as compared to an independent damping system (section 3.1.2)
and an undamped system (section 3.1.1).

From this research can not be deduced decisively whether or not the interdependent damping
system is more effective than the independent damping system. The comparison of the two damping
systems can only happen effectively if both systems are tuned optimally. As the interdependently
damped model lacks optimization, any direct comparison falls short.

However, the sensitivity studies of the interdependently damped model give some insight into
the potential of the damping system. While the performance index of this system is higher than
that of both the undamped and the independently damped model, it is clear from the sensitivity
studies that the interdependently damped model leaves a lot on the table. The study of the TLD
liquid height h (figure 4.5) shows that even optimization of this parameter alone gives a significantly
lower performance index (∆J = 2.00, which is a 15.6 % decrease of the performance index). In fact,
there is considerable possibility for improvement with regards to the TMD damping and stiffness
parameters as well.

Figure 4.13 shows the effect optimization has on the pitch response of the independently damped
model. Its response dramatically decreases after optimization. As the pitch response peaks of
the interdependently damped model are sharp and look mostly undamped (figure 4.20), a similar
reaction to parameter optimization would result in a significantly lower performance index for the
interdependently damped model as well.

48
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5.2 Research limitations

The set-up of the models operates under certain limitations, which have to be taken into account
when assessing the accuracy of the results.

First of all, the modeling of fluid-structure interaction is simplified in multiple ways. By applying
linear potential flow theory, the flow of the TLD and the surrounding ocean water is assumed to
behave irrotationally, not taking into account the nonlinear effects from turbulence. Any nonlinear
effects due to fluid separation from the structure is disregarded as well. The compressibility of fluid
is neglected likewise.

The nonlinear terms are also omitted from the additional hydraulic mass, damping and stiffness
matrices. These matrices have furthermore been determined based on free vibration so that the
hydrodynamic terms include only the movement of the barge itself, not that of the surrounding
fluid.

Further, the degrees of freedom are limited. The horizontal motion of the barge is disregarded
and the structure is considered to be ridged so that local deformations in the structure are neglected.
The analysis of the models is only determined for the first eigenmode of the TLD and with merely
two TMDs to aid simplicity. A higher number of TLD eigenmodes gives more accurate results, but
is also more computationally demanding. Since only the first TLD mode is tuned to the pitch fre-
quency of the barge, if the TLD is modeled with multiple modes, the TLD sloshing movement likely
does not fully contribute to the pitch damping anymore. This decreases the damping contribution
of the TLD. The models are programmed in such a way that the number of modes and the number
of TMDs is adjustable.

Lastly, constraints on the barge such as mooring cables are not included in the model. Mooring
lines have been shown to increase platform stability, but their effect is difficult to accurately predict
[17], [32]. There are furthermore no height constraints on the displacement of the TMDs and the
TLD.

Apart from the limitations of the models, the research itself has deficiencies. In particular, the
lack of optimization for the interdependently damped model is an issue as it prohibits the one on
one comparison between the three models. While the sensitivity analysis for this model gives some
insight into its damping potential, it does not give a definitive answer about the effectiveness of the
damping system.

Also, the optimization of the independently damped model does not necessarily lead to the
best parameter combination possible. From the serialized and the Newton optimization only the
serialized optimization gives usable results. The individual parameters are optimized while keeping
the rest of the parameters at their original values. Changing any of these parameters would result
in a different optimization of the other parameters. Thus, going through the same optimization
process using different parameters as a starting point would likely give a different outcome. As it
is, the values found with the serial optimization process are an acceptable estimation.

5.3 Recommendations

5.3.1 Improvement program and research

First and foremost, improvement of the optimization is useful for a better damping result, for both
damped models. Not only is the current optimization process not suitable to the interdependently
damped model, it also does not necessarily give the best overall parameters for the systems. The
effectiveness of each parameter depends on the other parameters, which is why the optimization
in this study is done one parameter at a time. This also implies multiple possible parameter
compositions. It is worth investigating whether optimizing all parameters simultaneously followed
by iteration of this process leads to a lower performance index. It is not likely that fixed point
iteration would lead to convergence of the optimization however, a more intricate iteration scheme
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might be necessary. While the Newton method as described in chapter 2.5 seems a more prudent
scheme for a multivariate optimization like this, it does not give the desired results. Since the
parameter range can not be controlled with this method, some of the optimized parameters are
outside of the range of physical possibility. Apart from that, it can not be guaranteed that the
critical point the iterations converge to is a minimum and not to either a maximum or a saddle
point. In the case of the independently damped system the optimization converges to a saddle point
and furthermore gives a negative damping parameter of the TMDs and a TLD liquid height that
would lead to a TLD mass bigger than the system mass (see section 4.3.2 and table 4.3.2).

Also, the nonlinearity of the third system poses the problem of a time dependent frequency
response. The potentially significant time-dependence of the eigenfrequencies and eigenmodes needs
to be analysed as well. If their time-dependence is indeed significant, this could affect the response
of the system either negatively or positively.

However, this might not be the case. The nonlinearity of the system shows itself in a shift of the
resonance frequencies (figures 4.19, 4.20) between the first and final iteration of the system. As this
is the nonlinearity is biggest at the largest response amplitude, the time dependent displacement of
the TLD is not expected to be large enough to significantly increase nonlinearity further. However,
the spectrum is likely to deform more when a larger force amplitude is applied to the system since
this increases the displacements.

Increasing the degrees of freedom of the models can give a better understanding of the behaviour
of the physical system. Placing the models in a 3D space and giving up the rigid body assumption
strongly increases their complexity.

Adding local deformations to the model causes some energy dissipation. More importantly it
causes additional eigenfrequencies and eigenmodes. If the energy of the system is distributed over
more eigenfrequencies, damping of the base frequency could be less effective. If this is the case it
could be that increasing the number of TMDs and varying their mass is beneficial to the damping
performance of the system.

Including nonlinear effects of the fluid-structure interaction increases both accuracy and com-
plexity of the models as well. The shallowness of the TLD causes a large portion of the liquid to
contribute to wave forming. The bigger the contribution of the waves, the higher the contribution
of nonlinearity to the energy dissipation of the TLD. The breaking of waves is the primary cause
of energy dissipation in sloshing [25], [36]. When using nonlinear flow, vorticity is also taken into
account. Vortex shedding and turbulence cause additional energy dissipation as well. This means
that a nonlinear model would show more damping at high response amplitudes. However, since
the damping constant for the TLD in the current model is used as an adaptable design variable,
this does not change the outcome much. While the equivalent damping parameter is not constant
anymore, its magnitude is most relevant during pitch frequency and the damping parameter can
be designed as such. The damping constant can be increased with the use of damping screens, but
can be lowered only by changing the properties of the damping fluid.

When using nonlinear flow theory the eigenmodes of the TLD can not be superimposed anymore.

5.3.2 Improvement damping system

The damping systems of the two damped models can be further improved by experimenting with
a different number of tuned mass dampers. The floating structure vibrates at different modes. It
might therefore be beneficial to use TMDs with varying parameters throughout the platform. It
remains to be seen whether tuning TMDs to the system’s secondary eigenmodes is effective, or
takes too much damping potential away from the primary eigenmode.

Having different TMDs designated for different degrees of freedom could also make a difference.
While the TMDs toward the centre of the platform are best used for heave motion, the outer TMDs
could be useful for combating pitch.
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5.3.3 Nonlinear analysis approach

This research used modal analysis in the frequency spectrum with Newton method iteration to
analyse the nonlinear model. This method is computationally heavy and could either be modified
or replaced by other analysis methods for faster computation.

Some possible alternative analysis methods are described here.
Coupling of linear and nonlinear substructures is described in various literature [21], [5], [11],

[24], [23]. Here, pre-modeled substructures are combined using a coupling matrix. The linear and
nonlinear parts of the system can be modeled separately, which allows for cheaper computations.

Similarly, the describing function method where a nonlinear system is described as a linear
system with an additional nonlinearity matrix [31], [38], [21] allows for a largely linear computation.

Finally, nonlinear systems can be described most accurately in the time domain using Runge-
Kutta iteration [42], [4]. This method does have stability concerns as the initial displacement guess
gets farther from the final iteration [21].

5.3.4 Further research

The efficiency of the damping systems depends on the applied load to the barge-turbine system.
Looking at specific locations gives the relevant wave states and wind loads necessary to determine
the performance index of either system. Further research into the stochastic loading on the barge-
turbine system is needed to validate the interdependent damping system in specific design situations.

Further, the effect of damping of the barge movement on the lifetime and serviceability of the
turbine needs to be established to verify the concrete usefulness of the system. Any damping of
the hull increases efficiency of the turbine. Since a rigid body is assumed, damping of the barge
also damps the movement of the hull, this is not necessarily the case when using a flexible tower.
Disproportionate damping of the barge with respect to the turbine could increase tension in the
tower, decreasing its lifespan. This needs to be examined.

5.4 Conclusion

5.4.1 Program development

The program for all three models is based on linear modal analysis, which is an already established
analytic theory. The interdependently damped model is further developed using Newton iteration
to account for nonlinearity. Since the frequency response spectra of the nonlinear system found by
the program are reasonable and match the shape of the linear systems, it can be concluded that
the program is successful.

5.4.2 Effectiveness interdependent damping system

Lack of optimization for the parameters of the interdependently damped model prevents the direct
comparison of the efficacy of the two damped systems.

The independently damped system proves to be effective, decreasing the performance index
significantly compared to the undamped system.

Optimizing the TLD liquid height alone gives the interdependently damped system an advantage
over the undamped system. Whether complete optimization improves the response enough to edge
out the independently damped system can not be inferred from the current results.
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A.1 Input

import numpy as np
import s c ipy
import sympy

A= np . z e r o s ( ( 2 , 2 ) ) # added hydrau l i c mass
B= np . z e r o s ( ( 2 , 2 ) ) # added hydrau l i c damping
C= np . z e r o s ( ( 2 , 2 ) ) # added hydrau l i c s t i f f n e s s

a= 20 # ha l f o f barge width
L= a∗2
b= 2 ∗ a # barge depth
rho= 1000 # water dens i ty
g= 9.81
h_hub= 87.74 # hub he ight

M_b= 6149460 # Mass o f system
H= M_b / ( rho ∗ b ∗ 2 ∗ a ) # Float ing depth
k_m= rho ∗ g # Hydrostat i c s t i f f n e s s
c_w= 0 # Hydrodynamic damping

A[0 ,0 ]= 9.556 ∗ 10∗∗5
A[1 ,1 ]= 2.187 ∗ 10∗∗8

B[0 ,0 ]= 2/(3 ∗ np . p i ) ∗ ( np . p i − 1) ∗ b ∗ rho ∗ H ∗ (2 ∗ np . p i ∗( 1/2 ∗
np . p i − 1) / (2 ∗ a ) ) ∗∗(1/3)

C[0 ,0 ]= 2 ∗ rho ∗ g ∗ b ∗ a
C[1 ,1 ]= rho ∗ g ∗ b ∗ a∗∗2

A.2 Lagrangian

de f Lagrangian ( rho , a , M, g ) :
X= Symbol ( ’X’ )
T= Symbol ( ’T’ )
U= sympy . Function ( ’U’ ) # Heave
phi= sympy . Function ( ’ phi ’ ) # Pitch

ver t= U(T) + phi (T) ∗ X
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# Kinet i c energy without tmds
K= M / 2 ∗ (U(T) . d i f f (T) ∗∗2 + 1/3 ∗ a∗∗2 ∗ phi (T) . d i f f (T) ∗∗2)

# Poten t i a l energy without tmds
P= M ∗ g ∗ U(T)

L= K − P
return L

A.3 Response

omega= 1
Load= np . array ( [M_b, M_b] ) # Exc i ta t i on

de f d i sp lacement (omega , M, a , A, B, C, Load ) :
X= Symbol ( ’X’ )
T= Symbol ( ’T’ )
U= sympy . Function ( ’U’ )
phi= sympy . Function ( ’ phi ’ )

L= Lagrangian ( rho , a , M, g )

Lagrange_phi= L . d i f f ( Der iva t i ve ( phi (T) , T) ) . d i f f (T) − L . d i f f ( phi (T)
)

Lagrange_U= L . d i f f ( Der iva t i ve (U(T) , T) ) . d i f f (T) − L . d i f f (U(T) )

Mass_matrix= np . z e r o s ( ( ( 2 ) , ( 2 ) ) )

Mass_matrix [ 0 , 0 : 2 ] = [ Lagrange_U . c o e f f ( Der iva t i ve (U(T) , (T, 2 ) ) ) ,
Lagrange_U . c o e f f ( Der iva t i ve ( phi (T) , (T, 2 ) ) ) ]

Mass_matrix [ 1 , 0 : 2 ] = [ Lagrange_phi . c o e f f ( Der iva t i ve (U(T) , (T, 2 ) ) ) ,
Lagrange_phi . c o e f f ( Der iva t i ve ( phi (T) , (T, 2 ) ) ) ]

S t i f f_matr ix= np . z e r o s ( ( ( 2 ) , (2 ) ) )

St i f f_matr ix [ 0 , 0 : 2 ] = [ Lagrange_U . c o e f f (U(T) ) , Lagrange_U . c o e f f (
phi (T) ) ]

S t i f f_matr ix [ 1 , 0 : 2 ] = [ Lagrange_phi . c o e f f (U(T) ) , Lagrange_phi .
c o e f f ( phi (T) ) ]

Force_vec= −np . array ( [ sympy . Poly (Lagrange_U) .TC( ) , sympy . Poly (
Lagrange_phi ) .TC( ) ] )

Eigenmatrix= np . l i n a l g . inv(−omega∗∗2 ∗ (Mass_matrix + A) + 1 j ∗
omega ∗ B + St i f f_matr ix + C)

d i sp= Eigenmatrix @ Load

return d i sp . r e a l + di sp . imag
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B.1 Input

import numpy as np
import s c ipy
import sympy
from sc ipy import i n t e g r a t e
from sympy import Symbol , Poly , d i f f , De r iva t ive
from sympy . u t i l i t i e s . lambdify import lambdify
from sympy . abc import t , x , z , T, X, Z
from copy import copy
import j son
from sympy . par s ing . sympy_parser import parse_expr

# In case o f a re−run
try :

f= open (" model2 . j son " , " r+")
data= json . load ( f )
f . c l o s e ( )

except FileNotFoundError :
# Sta r t i ng without t l d :
data= {"h " : 0 , " c_tld " : 0}

jdata = json . dumps( data , indent=4)
f= open ("model2_3 . j son " , "w")
f . wr i t e ( jdata )
f . c l o s e ( )

c_tld= data [ ’ c_tld ’ ] # Equivalent damping c o e f f i c i e n t (TLD)
h= data [ ’ h ’ ] # Liquid he ight in r e s t (TLD)

m= 1 # Number o f modes
a= 20 # Hal f o f tank width
b= 2 ∗ a # Tank depth
rho= 1000 # Water dens i ty
g= 9.81 # Grav i t a t i ona l constant
h_hub= 87.74 # Hub he ight
n= 2 # Number o f TMDs
M_total= 6149460 # System mass

de f M_structure (h) : # Mass barge + turb ine ( without TLD and TMD’ s )
re turn M_total ∗ . 9 − ( rho ∗ 2 ∗ a ∗ b ∗ h)
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M = M_structure (h)
M_tmd= np . ones (n) ∗ 0 .1 ∗ M_total / n # Mass o f the TMDs

H= M_total / ( rho ∗ b ∗ 2 ∗ a ) # Float ing depth

A= np . z e r o s ( ( n+3, n + 3) ) # Hydraul ic mass matrix
A[0 ,0 ]= 9.556 ∗ 10∗∗5
A[1 ,1 ]= 2.187 ∗ 10∗∗8

B= np . z e r o s ( ( n+3, n + 3) ) # Hydraul ic damping matrix
B[ 0 , 0]= 2/(3 ∗ np . p i ) ∗ ( np . p i − 1) ∗ b ∗ rho ∗ H ∗ (2 ∗ np . p i ∗( 1/2

∗ np . p i − 1) / (2 ∗ a ) ) ∗∗(1/3)

D= np . z e r o s ( ( n+3, n + 3) ) # Hydraul ic s t i f f n e s s matrix
D[0 ,0 ]= 2 ∗ rho ∗ g ∗ b ∗ a
D[1 ,1 ]= rho ∗ g ∗ b ∗ a∗∗2

# SDoF optimal parameters :
m_ratio= 1/8 # Mass r a t i o o f t o t a l TMD/ s t ru c tu r e
f= np . sq r t ( (1 + m_ratio /2) / (1 + m_ratio ) ) # Frequency r a t i o TMD/

s t ru c tu r e
eps= np . sq r t ( ( m_ratio ∗ (1 + 3/4 ∗ m_ratio ) ) / (4 ∗ (1 + m_ratio ) ∗ (1

+ m_ratio / 2) ) ) # Damping r a t i o
om_s= np . sq r t (D[ 0 , 0 ] / ( M_total ∗ . 8 ) ) # Heave e i gen f r equency
om_tmd= f ∗ om_s # TMD eigen f r equency
k_tmd= om_tmd ∗∗ 2 ∗ M_tmd # TMD s t i f f n e s s
c_tmd= 2 ∗ M_tmd ∗ om_tmd ∗ eps # TMD damping c o e f f i c i e n t s

B.2 TLD sloshing

For the definitions of these functions, see section 2.1.3

de f alpha (a , m) :
alpha= np . z e r o s (m)
f o r i in range (m) :

alpha [ i ] = (2 ∗ ( i +1) − 1) ∗ np . p i / (2 ∗ a )
re turn alpha

de f beta (a , m) :
beta= np . z e r o s (m)
f o r i in range (m) :

beta [ i ] = ( i + 1) ∗ np . p i / a
re turn beta

de f B_A(a , h , m) :
a_A= np . z e r o s (m)
b_A= np . z e r o s (m)
c_A= np . z e r o s (m)
B_A= np . z e r o s (m)
omega2_A= np . z e r o s (m)
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f o r i in range (m) :
a_A[ i ] = i n t e g r a t e . dblquad ( lambda x , z : np . s i n ( alpha (a , m) [ i ] ∗

x ) ∗∗2 + np . s inh ( alpha (a , m) [ i ] ∗ z ) ∗∗2 , −h , 0 , lambda x : −a
, lambda x : a ) [ 0 ]

b_A[ i ] = 2 ∗ i n t e g r a t e . dblquad ( lambda x , z : np . s inh ( alpha (a , m)
[ i ] ∗ z ) ∗ np . cosh ( alpha (a , m) [ i ] ∗ z ) , −h , 0 , lambda x : −a ,
lambda x : a ) [ 0 ] − a / alpha (a , m) [ i ]

c_A[ i ] = i n t e g r a t e . dblquad ( lambda x , z : np . cos ( alpha (a , m) [ i ] ∗
x ) ∗∗2 + np . s inh ( alpha (a , m) [ i ] ∗ z ) ∗∗2 , −h , 0 , lambda x : −a

, lambda x : a ) [ 0 ]

B_A[ i ] = (−b_A[ i ] − np . sq r t (b_A[ i ]∗∗2 − 4 ∗ a_A[ i ] ∗ c_A[ i ] ) ) /
(2 ∗ a_A[ i ] )

omega2_A [ i ] = B_A[ i ] ∗ alpha (a , m) [ i ] ∗ g
re turn B_A

def B_S(a , h , m) :
a_S= np . z e r o s (m)
b_S= np . z e r o s (m)
c_S= np . z e r o s (m)
B_S= np . z e r o s (m)
omega2_S= np . z e r o s (m)

f o r i in range (m) :
a_S [ i ] = i n t e g r a t e . dblquad ( lambda x , z : np . cos ( beta (a , m) [ i ] ∗

x ) ∗∗2 + np . s inh ( beta (a , m) [ i ] ∗ z ) ∗∗2 , −h , 0 , lambda x : −a ,
lambda x : a ) [ 0 ]

b_S [ i ] = 2 ∗ i n t e g r a t e . dblquad ( lambda x , z : np . s inh ( beta (a , m) [
i ] ∗ z ) ∗ np . cosh ( beta (a , m) [ i ] ∗ z ) , −h , 0 , lambda x : −a ,
lambda x : a ) [ 0 ] − a / beta (a , m) [ i ]

c_S [ i ] = i n t e g r a t e . dblquad ( lambda x , z : np . s i n ( beta (a , m) [ i ] ∗
x ) ∗∗2 + np . s inh ( beta (a , m) [ i ] ∗ z ) ∗∗2 , −h , 0 , lambda x : −a ,
lambda x : a ) [ 0 ]

B_S[ i ] = (−b_S [ i ] − np . sq r t (b_S [ i ] ∗∗2 − 4 ∗ a_S [ i ] ∗ c_S [ i ] ) ) /
(2 ∗ a_S [ i ] )

omega2_S [ i ] = B_S[ i ] ∗ beta (a , m) [ i ] ∗ g
re turn B_S

de f Omega_A( alpha , B_A, g , m) :
omega2_A= np . z e r o s (m, dtype= ’ complex_ ’ )
f o r i in range (m) :

omega2_A [ i ] = B_A[ i ] ∗ alpha [ i ] ∗ g
re turn np . s q r t (omega2_A)

de f Omega_S( beta , B_S, g , m) :
omega2_S= np . z e r o s (m, dtype= ’ complex_ ’ )
f o r i in range (m) :

omega2_S [ i ] = B_S[ i ] ∗ beta [ i ] ∗ g
re turn np . s q r t (omega2_S)
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# Numerical a s symetr i c mode func t i on
de f mode_func_nA(x , z , alpha , B_A) :

num= (np . s i n ( alpha ∗ x ) ∗ (np . cosh ( alpha ∗ z ) + B_A ∗ np . s inh ( alpha
∗ z ) ) )

re turn num

# Symbolic a s symetr i c mode func t i on
de f mode_func_sA( alpha , B_A) :

X= Symbol ( ’X’ )
Z= Symbol ( ’Z ’ )
T= Symbol ( ’T’ )
sym= (sympy . s i n ( alpha ∗ X) ∗ ( sympy . cosh ( alpha ∗ Z) + B_A ∗ sympy .

s inh ( alpha ∗ Z) ) )
re turn sym

def mode_func_nS(x , z , beta , B_S) :
num= (np . cos ( beta ∗ x ) ∗ (np . cosh ( beta ∗ z ) + B_S ∗ np . s inh ( beta ∗

z ) ) )
re turn num

def mode_func_sS ( beta , B_S) :
X= Symbol ( ’X’ )
Z= Symbol ( ’Z ’ )
T= Symbol ( ’T’ )
sym= (sympy . cos ( beta ∗ X) ∗ ( sympy . cosh ( beta ∗ Z) + B_S ∗ sympy .

s inh ( beta ∗ Z) ) )
re turn sym

def potential_nA (x , z , t , omega , alpha , B_A) :
nump= mode_func_nA(x , z , alpha , B_A) ∗ (1 j ∗ omega ∗ np . exp (1 j ∗

omega ∗ t ) ) . r e a l
r e turn nump

de f potentia l_sA ( alpha , B_A) :
X= Symbol ( ’X’ )
Z= Symbol ( ’Z ’ )
T= Symbol ( ’T’ )
q= sympy . Function ( ’ q ’ )
symp= mode_func_sA( alpha , B_A) ∗ Der iva t i ve ( q (T) , T)
re turn symp

de f potent ia l_nS (x , z , t , omega , beta , B_S) :
nump= mode_func_nS(x , z , beta , B_S) ∗ (1 j ∗ omega ∗ np . exp (1 j ∗

omega ∗ t ) ) . r e a l
r e turn nump

de f potent ia l_sS ( beta , B_S) :
X= Symbol ( ’X’ )
Z= Symbol ( ’Z ’ )
T= Symbol ( ’T’ )
q= sympy . Function ( ’ q ’ )
symp= mode_func_sS ( beta , B_S) ∗ Der iva t i ve ( q (T) , T)
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return symp

de f wave_shape_sA( alpha , B_A) :
X= Symbol ( ’X’ )
Z= Symbol ( ’Z ’ )
T= Symbol ( ’T’ )
p= potentia l_sA ( alpha , B_A)
dp_dz= p . d i f f (Z)
shape= sympy . i n t e g r a t e (dp_dz , T)
shape= shape . subs (Z , 0)
re turn shape

de f wave_shape_nA(x , t , omega , alpha , B_A) :
z= Symbol ( ’ z ’ )
X= Symbol ( ’X’ )
T= Symbol ( ’T’ )
p o t e n t i a l= 1 j ∗ omega ∗ sympy . exp (1 j ∗ omega ∗ T) ∗ ( sympy . s i n (

alpha ∗ X) ∗ ( sympy . cosh ( alpha ∗ z ) + B_A ∗ sympy . s inh ( alpha ∗ z
) ) )

df_dz= po t en t i a l . d i f f ( z )
f= sympy . re ( sympy . i n t e g r a t e ( df_dz , T) )
p= lambdify ( [ z , X, T] , f , ’numpy ’ )
re turn p (0 , x , t )

de f wave_shape_sS ( beta , B_S) :
X= Symbol ( ’X’ )
Z= Symbol ( ’Z ’ )
T= Symbol ( ’T’ )
p= potent ia l_sS ( beta , B_S)
dp_dz= p . d i f f (Z)
shape= sympy . i n t e g r a t e (dp_dz , T)
shape= shape . subs (Z , 0)
re turn shape

de f wave_shape_nS(x , t , omega , beta , B_S) :
z= Symbol ( ’ z ’ )
X= Symbol ( ’X’ )
T= Symbol ( ’T’ )
p o t e n t i a l= 1 j ∗ omega ∗ sympy . exp (1 j ∗ omega ∗ T) ∗ ( sympy . cos ( beta

∗ X) ∗ ( sympy . cosh ( beta ∗ z ) + B_S ∗ sympy . s inh ( beta ∗ z ) ) )
df_dz= po t en t i a l . d i f f ( z )
f= sympy . re ( sympy . i n t e g r a t e ( df_dz , T) )
p= lambdify ( [ z , X, T] , f , ’numpy ’ )
re turn p (0 , x , t )

de f dpotentia l_dx (a , h , m) :
X= Symbol ( ’X’ )
dpot_dx = 0
f o r i in range (m) :

dpot_dx += ( potentia l_sA ( alpha (a , m) [ i ] , B_A(a , h , m) [ i ] ) ) . d i f f
(X) + ( potent ia l_sS ( beta (a , m) [ i ] , B_S(a , h , m) [ i ] ) ) . d i f f (X)

re turn dpot_dx
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de f dpotent ia l_dz (a , h , m) :
Z= Symbol ( ’Z ’ )
dpot_dz = 0
f o r i in range (m) :

dpot_dz += ( potentia l_sA ( alpha (a , m) [ i ] , B_A(a , h , m) [ i ] ) ) . d i f f
(Z) + ( potent ia l_sS ( beta (a , m) [ i ] , B_S(a , h , m) [ i ] ) ) . d i f f (Z)

re turn dpot_dz

B.3 Equation of motion

de f Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd , m, n , dpot_dx , dpot_dz ) :
X= Symbol ( ’X’ )
Z= Symbol ( ’Z ’ )
T= Symbol ( ’T’ )
U= sympy . Function ( ’U’ ) # DoF heave
phi= sympy . Function ( ’ phi ’ ) # DoF pi t ch
q= sympy . Function ( ’ q ’ ) # DoF TLD wave

amplitude
u= [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ] # DoF TMD

ver t= U(T) + phi (T) ∗ X

wave= 0
f o r i in range (m) :

wave+= wave_shape_sA( alpha (a , m) [ i ] , B_A(a , h , m) [ i ] ) +
wave_shape_sS ( beta (a , m) [ i ] , B_S(a , h , m) [ i ] ) + h

# Kinet i c energy without tmds
K= sympy . expand (1/2 ∗ rho ∗ b ∗ sympy . i n t e g r a t e ( sympy . i n t e g r a t e ( (

dpot_dx ) ∗∗ 2 + ( ve r t . d i f f (T) + dpot_dz ) ∗∗ 2 , (Z , −h , 0) ) , (X,
−a , a ) ) ) + M / 2 ∗ (U(T) . d i f f (T) ∗∗2 + 1/3 ∗ a∗∗2 ∗ phi (T) . d i f f (T
) ∗∗2)

# Poten t i a l energy without tmds
P= M ∗ g ∗ U(T)
f o r i in range (m) :

P += sympy . expand ( g ∗ rho ∗ b ∗ sympy . i n t e g r a t e ( (1/2 ∗ wave +
ver t ) ∗ wave , (X, −a , a ) ) )

# Addi t iona l energy tmds :
f o r i in range (n) :

K += sympy . expand (1/2 ∗ M_tmd[ i ] ∗ (u [ i ] (T) . d i f f (T) + U(T) . d i f f
(T) + phi (T) . d i f f (T) ∗ (− a + (2 ∗ a ∗ i ) / (n − 1) ) ) ∗∗2)

P += sympy . expand (1/2 ∗ k_tmd [ i ] ∗ u [ i ] (T) ∗∗2 + M_tmd[ i ] ∗ g ∗
(u [ i ] (T) + U(T) + phi (T) ∗ (− a + (2 ∗ a ∗ i ) / (n − 1) ) ) )

L= K − P
return L
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de f Reighley (a , h , c_tmd , c_tld , n , dpot_dx , dpot_dz , m) :
T= Symbol ( ’T’ )
U= sympy . Function ( ’U’ )
phi= sympy . Function ( ’ phi ’ )
q= sympy . Function ( ’ q ’ )
u= [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ]

wave= 0
f o r i in range (m) :

wave+= wave_shape_sA( alpha (a , m) [ i ] , B_A(a , h , m) [ i ] ) +
wave_shape_sS ( beta (a , m) [ i ] , B_S(a , h , m) [ i ] ) + h

# Reighley d i s s i p a t i o n without tmds
R= 1/ 2 ∗ c_tld ∗ b ∗ sympy . i n t e g r a t e (wave . d i f f (T) ∗∗2 , (X, −a , a ) )

# Addi t iona l energy tmds :
f o r i in range (n) :

R += sympy . expand (1/2 ∗ c_tmd [ i ] ∗ (u [ i ] (T) . d i f f (T) ) ∗∗2)

re turn R

de f Mass_matrix ( Lagrange , Reighley , n) :
X= Symbol ( ’X’ )
Z= Symbol ( ’Z ’ )
T= Symbol ( ’T’ )
U= sympy . Function ( ’U’ )
phi= sympy . Function ( ’ phi ’ )
q= sympy . Function ( ’ q ’ )
u= [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ]

L= Lagrange
R= Reighley

Lagrange_phi= L . d i f f ( Der iva t i ve ( phi (T) , T) ) . d i f f (T) − L . d i f f ( phi (T)
) + R. d i f f ( Der iva t i ve ( phi (T) , T) )

Lagrange_U= L . d i f f ( Der iva t i ve (U(T) , T) ) . d i f f (T) − L . d i f f (U(T) ) + R.
d i f f ( Der iva t i ve (U(T) , T) )

Lagrange_q= L . d i f f ( Der iva t ive ( q (T) , T) ) . d i f f (T) − L . d i f f ( q (T) ) + R.
d i f f ( Der iva t i ve ( q (T) , T) )

Lagrange_u= [0 f o r i in range (n) ]

f o r i in range (n) :
Lagrange_u [ i ]= L . d i f f ( Der iva t i ve (u [ i ] (T) , T) ) . d i f f (T) − L . d i f f (

u [ i ] (T) ) + R. d i f f ( Der iva t i ve (u [ i ] (T) , T) )

Mass_matrix= np . z e r o s ( ( ( n + 3) , (n + 3) ) )

Mass_matrix [ 0 , 0 : 3 ] = [ Lagrange_U . c o e f f ( Der iva t i ve (U(T) , (T, 2 ) ) ) ,
Lagrange_U . c o e f f ( Der iva t i ve ( phi (T) , (T, 2 ) ) ) , Lagrange_U . c o e f f (
Der iva t i ve (q (T) , (T, 2 ) ) ) ]

Mass_matrix [ 1 , 0 : 3 ] = [ Lagrange_phi . c o e f f ( Der iva t i ve (U(T) , (T, 2 ) ) ) ,
Lagrange_phi . c o e f f ( Der iva t i ve ( phi (T) , (T, 2 ) ) ) , Lagrange_phi .

c o e f f ( Der iva t i ve ( q (T) , (T, 2 ) ) ) ]
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Mass_matrix [ 2 , 0 : 3 ] = [ Lagrange_q . c o e f f ( Der iva t ive (U(T) , (T, 2 ) ) ) ,
Lagrange_q . c o e f f ( Der iva t i ve ( phi (T) , (T, 2 ) ) ) , Lagrange_q . c o e f f (
Der iva t i ve ( q (T) , (T, 2 ) ) ) ]

f o r i in range (n) :
Mass_matrix [ 0 , 3 : i + 3]= Lagrange_U . c o e f f ( Der iva t i ve (u [ i ] (T) ,

(T, 2) ) )
Mass_matrix [ 1 , 3 : i + 3]= Lagrange_phi . c o e f f ( Der iva t ive (u [ i ] (T

) , (T, 2) ) )
Mass_matrix [ 2 , 3 : i + 3]= Lagrange_q . c o e f f ( Der iva t i ve (u [ i ] (T) ,

(T, 2) ) )

Mass_matrix [ i + 3 , 0]= Lagrange_u [ i ] . c o e f f ( Der iva t i ve (U(T) , (T,
2) ) )

Mass_matrix [ i + 3 , 1]= Lagrange_u [ i ] . c o e f f ( Der iva t i ve ( phi (T) , (
T, 2) ) )

Mass_matrix [ i + 3 , 2]= Lagrange_u [ i ] . c o e f f ( Der iva t i ve ( q (T) , (T,
2) ) )

f o r j in range (n) :
Mass_matrix [ i + 3 , j + 3]= Lagrange_u [ i ] . c o e f f ( Der iva t i ve (u

[ j ] (T) , (T, 2) ) )

r e turn Mass_matrix

de f St i f f_matr ix ( Lagrange , Reighley , n) :
X= Symbol ( ’X’ )
Z= Symbol ( ’Z ’ )
T= Symbol ( ’T’ )
U= sympy . Function ( ’U’ )
phi= sympy . Function ( ’ phi ’ )
q= sympy . Function ( ’ q ’ )
u= [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ]

L= Lagrange
R= Reighley

Lagrange_phi= L . d i f f ( Der iva t i ve ( phi (T) , T) ) . d i f f (T) − L . d i f f ( phi (T)
) + R. d i f f ( Der iva t i ve ( phi (T) , T) )

Lagrange_U= L . d i f f ( Der iva t i ve (U(T) , T) ) . d i f f (T) − L . d i f f (U(T) ) + R.
d i f f ( Der iva t i ve (U(T) , T) )

Lagrange_q= L . d i f f ( Der iva t ive ( q (T) , T) ) . d i f f (T) − L . d i f f ( q (T) ) + R.
d i f f ( Der iva t i ve ( q (T) , T) )

Lagrange_u= [0 f o r i in range (n) ]

f o r i in range (n) :
Lagrange_u [ i ]= L . d i f f ( Der iva t i ve (u [ i ] (T) , T) ) . d i f f (T) − L . d i f f (

u [ i ] (T) ) + R. d i f f ( Der iva t i ve (u [ i ] (T) , T) )
St i f f_matr ix= np . z e r o s ( ( ( n + 3) , (n + 3) ) )

St i f f_matr ix [ 0 , 0 : 3 ] = [ Lagrange_U . c o e f f (U(T) ) , Lagrange_U . c o e f f (
phi (T) ) , Lagrange_U . c o e f f ( q (T) ) ]

S t i f f_matr ix [ 1 , 0 : 3 ] = [ Lagrange_phi . c o e f f (U(T) ) , Lagrange_phi .
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c o e f f ( phi (T) ) , Lagrange_phi . c o e f f ( q (T) ) ]
S t i f f_matr ix [ 2 , 0 : 3 ] = [ Lagrange_q . c o e f f (U(T) ) , Lagrange_q . c o e f f (

phi (T) ) , Lagrange_q . c o e f f ( q (T) ) ]

f o r i in range (n) :
S t i f f_matr ix [ 0 , 3 : i + 3]= Lagrange_U . c o e f f (u [ i ] (T) )
St i f f_matr ix [ 1 , 3 : i + 3]= Lagrange_phi . c o e f f (u [ i ] (T) )
St i f f_matr ix [ 2 , 3 : i + 3]= Lagrange_q . c o e f f (u [ i ] (T) )

St i f f_matr ix [ i + 3 , 0]= Lagrange_u [ i ] . c o e f f (U(T) )
St i f f_matr ix [ i + 3 , 1]= Lagrange_u [ i ] . c o e f f ( phi (T) )
St i f f_matr ix [ i + 3 , 2]= Lagrange_u [ i ] . c o e f f ( q (T) )
f o r j in range (n) :

S t i f f_matr ix [ i + 3 , j + 3]= Lagrange_u [ i ] . c o e f f (u [ j ] (T) )
re turn St i f f_matr ix

de f Damp_matrix ( Lagrange , Reighley , n) :
X= Symbol ( ’X’ )
Z= Symbol ( ’Z ’ )
T= Symbol ( ’T’ )
U= sympy . Function ( ’U’ )
phi= sympy . Function ( ’ phi ’ )
q= sympy . Function ( ’ q ’ )
u= [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ]

L= Lagrange
R= Reighley

Lagrange_phi= L . d i f f ( Der iva t i ve ( phi (T) , T) ) . d i f f (T) − L . d i f f ( phi (T)
) + R. d i f f ( Der iva t i ve ( phi (T) , T) )

Lagrange_U= L . d i f f ( Der iva t i ve (U(T) , T) ) . d i f f (T) − L . d i f f (U(T) ) + R.
d i f f ( Der iva t i ve (U(T) , T) )

Lagrange_q= L . d i f f ( Der iva t ive ( q (T) , T) ) . d i f f (T) − L . d i f f ( q (T) ) + R.
d i f f ( Der iva t i ve ( q (T) , T) )

Lagrange_u= [0 f o r i in range (n) ]

f o r i in range (n) :
Lagrange_u [ i ]= L . d i f f ( Der iva t i ve (u [ i ] (T) , T) ) . d i f f (T) − L . d i f f (

u [ i ] (T) ) + R. d i f f ( Der iva t i ve (u [ i ] (T) , T) )

Damp_matrix= np . z e r o s ( ( ( n + 3) , (n + 3) ) )

Damp_matrix [ 0 , 0 : 3 ] = [ Lagrange_U . c o e f f ( Der iva t ive (U(T) , T) ) ,
Lagrange_U . c o e f f ( Der iva t i ve ( phi (T) , T) ) , Lagrange_U . c o e f f (
Der iva t i ve ( q (T) , T) ) ]

Damp_matrix [ 1 , 0 : 3 ] = [ Lagrange_phi . c o e f f ( Der iva t i ve (U(T) , T) ) ,
Lagrange_phi . c o e f f ( Der iva t ive ( phi (T) , T) ) , Lagrange_phi . c o e f f (
Der iva t i ve ( q (T) , T) ) ]

Damp_matrix [ 2 , 0 : 3 ] = [ Lagrange_q . c o e f f ( Der iva t i ve (U(T) , T) ) ,
Lagrange_q . c o e f f ( Der iva t i ve ( phi (T) , T) ) , Lagrange_q . c o e f f (
Der iva t i ve ( q (T) , T) ) ]
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f o r i in range (n) :
Damp_matrix [ 0 , 3 : i + 3]= Lagrange_U . c o e f f ( Der iva t i ve (u [ i ] (T) )

)
Damp_matrix [ 1 , 3 : i + 3]= Lagrange_phi . c o e f f ( Der iva t i ve (u [ i ] (T

) ) )
Damp_matrix [ 2 , 3 : i + 3]= Lagrange_q . c o e f f ( Der iva t i ve (u [ i ] (T) )

)

Damp_matrix [ i + 3 , 0]= Lagrange_u [ i ] . c o e f f ( Der iva t ive (U(T) ) )
Damp_matrix [ i + 3 , 1]= Lagrange_u [ i ] . c o e f f ( Der iva t ive ( phi (T) ) )
Damp_matrix [ i + 3 , 2]= Lagrange_u [ i ] . c o e f f ( Der iva t ive ( q (T) ) )
f o r j in range (n) :

Damp_matrix [ i + 3 , j + 3]= Lagrange_u [ i ] . c o e f f ( Der iva t i ve (u
[ i ] (T) , T) )

re turn Damp_matrix

B.4 Response

de f Response ( Lagrange , Reighley , omega , Mass_m, Stiff_m , Damp_m, A, B,
D, n , load= None ) :
X= Symbol ( ’X’ )
Z= Symbol ( ’Z ’ )
T= Symbol ( ’T’ )
U= sympy . Function ( ’U’ )
phi= sympy . Function ( ’ phi ’ )
q= sympy . Function ( ’ q ’ )
u= [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ]

L= Lagrange
R= Reighley

Lagrange_phi= L . d i f f ( Der iva t i ve ( phi (T) , T) ) . d i f f (T) − L . d i f f ( phi (T)
) + R. d i f f ( Der iva t i ve ( phi (T) , T) )

Lagrange_U= L . d i f f ( Der iva t i ve (U(T) , T) ) . d i f f (T) − L . d i f f (U(T) ) + R.
d i f f ( Der iva t i ve (U(T) , T) )

Lagrange_q= L . d i f f ( Der iva t ive ( q (T) , T) ) . d i f f (T) − L . d i f f ( q (T) ) + R.
d i f f ( Der iva t i ve ( q (T) , T) )

Lagrange_u= [0 f o r i in range (n) ]

f o r i in range (n) :
Lagrange_u [ i ]= L . d i f f ( Der iva t i ve (u [ i ] (T) , T) ) . d i f f (T) − L . d i f f (

u [ i ] (T) ) + R. d i f f ( Der iva t i ve (u [ i ] (T) , T) )

Eigenmatrix= np . l i n a l g . inv(−omega∗∗2 ∗ (Mass_m + A) + 1 j ∗ omega ∗
(Damp_m + B) + ( Stiff_m + D) )

i f load i s None :
Load= np . z e r o s (3 + n , dtype= ’ complex_ ’ ) . t ranspose ( )
Load [0 ]= M_total
Load [1 ]= M_total
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e l s e :
Load= np . z e r o s (3 + n , dtype= ’ complex_ ’ ) . t ranspose ( ) + load
Load [ 0 ] += M_total
Load [ 1 ] += M_total

d i sp= ( Eigenmatrix @ Load )

re turn d i sp

B.5 Initial guess parameters

de f h_tld ( Lagrange , Reighley , n) :
Stiff_m= St i f f_matr ix ( Lagrange , Reigh , n)
Mass_m = Mass_matrix ( Lagrange , Reigh , n)
Damp_m = Damp_matrix ( Lagrange , Reigh , n)
f_ra t i o= np . sq r t ( (1 + m_ratio /2) / (1 + m_ratio ) )
f_eigen= np . sq r t ( s c ipy . l i n a l g . e i g v a l s ( Stiff_m + D, b= Mass_m + A) )
p r i n t ( ’ Eigen : ’ , f_eigen )
h= np . arctanh ( ( f_eigen [ 1 ] ∗ f_ra t i o ) ∗∗2 ∗ 2 ∗ a / (np . p i ∗ g ) ) ∗ 2

∗ a / np . p i
r e turn abs (h . r e a l )

de f Mass_tld (h) :
r e turn h ∗ 2 ∗ a ∗ b ∗ rho

dpot_dx= dpotentia l_dx (a , h , m)
dpot_dz= dpotent ia l_dz (a , h , m)
Lagrange= Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd , m, n , dpot_dx ,

dpot_dz )
Reigh= Reighley (a , h , c_tmd , c_tld , n , dpot_dx , dpot_dz , m)
Stiff_m= St i f f_matr ix ( Lagrange , Reigh , n)
Mass_m = Mass_matrix ( Lagrange , Reigh , n)
Damp_m = Damp_matrix ( Lagrange , Reigh , n)
f_eigen= np . sq r t ( s c ipy . l i n a l g . e i g v a l s ( Stiff_m + D, b= Mass_m + A) )

# Calcu la t e i n i t i a l c and k
c_tmd= abs (2 ∗ M_tmd ∗ np . sq r t ( f_eigen [ 0 ] ) ∗ eps )
k_tmd= abs ( f_eigen [ 0 ] ∗ M_tmd)

h = h_tld ( Lagrange , Reigh , n)

M = M_structure (h)

M_tld= Mass_tld (h)
m_ratio_tld= M_tld / M_total # Mass r a t i o TLD/ t o t a l s t r u c tu r e
f_t ld= 1 / (1 + m_ratio_tld ) # frequency r a t i o TLD/ t o t a l s t r u c tu r e

data [ ’ c_tld ’ ]= abs (np . s q r t ( m_ratio_tld / (1 + m_ratio_tld ) ) ∗ 2 ∗ M_tld
∗ f_eigen [ 1 ] ∗ f_t ld ) . t o l i s t ( )

data [ ’ c_tmd’ ]= abs (c_tmd) . t o l i s t ( )
data [ ’ k_tmd’ ]= abs (k_tmd) . t o l i s t ( )
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jdata= json . dumps( data , indent=4)

f= open (" model2 . j son " , "w")
f . wr i t e ( jdata )
f . c l o s e ( )

B.6 Serial optimization

# Performance index
de f J ( Lagrange , Reigh , A, B, D, n , load= None ) :

omega= np . l i n s p a c e (10∗∗−5 , 5 , 100)

S0= 1 # White no i s e spectrum ( constant )

Mass_m= Mass_matrix ( Lagrange , Reigh , n)
Stiff_m= St i f f_matr ix ( Lagrange , Reigh , n)
Damp_m= Damp_matrix ( Lagrange , Reigh , n)

H_U= np . z e r o s ( l en ( omega ) )
H_phi= np . z e r o s ( l en ( omega ) )
d i s= np . z e r o s ( ( l en ( omega ) , n + 3) )
f o r i in range ( l en ( omega ) ) :

d i s [ i ] = Response ( Lagrange , Reigh , omega [ i ] , Mass_m, Stiff_m ,
Damp_m, A, B, D, n , load= None)

f o r i in range ( l en ( omega ) ) :
H_U[ i ] = d i s [ i ] [ 0 ]
H_phi [ i ] = d i s [ i ] [ 1 ]

# Performance o f U and phi :
E_U= S0 ∗ np . t rapz ( abs (H_U) , x= omega )
E_phi= S0 ∗ np . t rapz ( abs (H_phi ∗ h_hub) , x= omega )

re turn E_U + E_phi

# I t e r a t i o n s o f the parameters
de f c_tmd_new( s_c , c_tmd , n) :

r e turn c_tmd + np . ones (n) ∗ s_c

de f k_tmd_new(s_k , k_tmd , n) :
r e turn k_tmd + np . ones (n) ∗ s_k

de f h_new(h , sh ) :
r e turn abs (h . r e a l + sh )

de f c_tld_new( s_tld , c_tld , n) :
r e turn c_tld + s_tld

# Determining the s t e p s i z e f o r the parameter i t e r a t i o n s
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s_u= 10∗∗4 # upper bound s
s_l= 0 # lower bound s

golden= (3 − np . sq r t (5 ) ) / 2 # golden r a t i o
s1= s_l + (1 − golden ) ∗ (s_u − s_l )
s2= s_l + golden ∗ (s_u − s_l )

# Upper bound
c_tmd_1= c_tmd_new( s1 , c_tmd , n)
k_tmd_1= k_tmd_new( s1 , k_tmd , n)
Lagrange_1= Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd_1, m, n , dpot_dx ,

dpot_dz )
Reigh_1= Reighley (a , h , c_tmd_1 , c_tld , n , dpot_dx , dpot_dz , m)

J_1= J (Lagrange_1 , Reigh_1 , A, B, D, n , load= None )

# Lower bound
c_tmd_2= c_tmd_new( s2 , c_tmd , n)
k_tmd_2= k_tmd_new( s2 , k_tmd , n)
Lagrange_2= Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd_2, m, n , dpot_dx ,

dpot_dz )
Reigh_2= Reighley (a , h , c_tmd_2 , c_tld , n , dpot_dx , dpot_dz , m)
J_2= J (Lagrange_2 , Reigh_2 , A, B, D, n , load= None )
t o l= 10
max_it= 20

f o r i in range (max_it ) :
i f abs ( s_u − s_l ) < t o l :

break
e l s e :

i f J_1 < J_2 :
s_u= s1
s1= s2
J_2= J_1
s1= s_l + (1 − golden ) ∗ (s_u − s_l )
# Upper bound
c_tmd_1= c_tmd_new(−s1 , c_tmd , n)
k_tmd_1= k_tmd_new(−s1 , k_tmd , n)
Lagrange_1= Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd_1, m,

n , dpot_dx , dpot_dz )
Reigh_1= Reighley (a , h , c_tmd_1 , c_tld , n , dpot_dx , dpot_dz

, m)
J_1= J (Lagrange_1 , Reigh_1 , A, B, D, n , load= None )
# Lower bound
c_tmd_2= c_tmd_new(−s2 , c_tmd , n)
k_tmd_2= k_tmd_new(−s2 , k_tmd , n)
Lagrange_2= Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd_2, m,

n , dpot_dx , dpot_dz )
Reigh_2= Reighley (a , h , c_tmd_2 , c_tld , n , dpot_dx , dpot_dz

, m)
J_2= J (Lagrange_2 , Reigh_2 , A, B, D, n , load= None )

e l s e :
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s_l= s2
s2= s1
J_1= J_2
s1= s_l + golden ∗ (s_u − s_l )

s= ( s_l + s_u) /2

data [ " s "]= s

jdata= json . dumps( data , indent=4)

f= open (" model2 . j son " , "w")
f . wr i t e ( jdata )
f . c l o s e ( )

# Determining the optimal TMD damping parameter

f= open (" model2 . j son " , " r+")
data= json . load ( f )
f . c l o s e ( )

s= data [ " s " ]

c_tmd_n= c_tmd_new( s , c_tmd , n) # new i t e r a t i o n o f c_tmd

Reigh_new= Reighley (a , h , c_tmd_n, c_tld , n , dpot_dx , dpot_dz , m)

J_old = J ( Lagrange , Reigh , A, B, D, n , load= None )
J_new= J( Lagrange , Reigh_new , A, B, D, n , load= None )
J_le f t= J_old
J_right= J_new

conv_J_ctmd= np . array ( [ J_old ] )
conv_ctmd= np . array ( [ c_tmd ] )

t o l= 10∗∗−4 # to l e r an c e
c_previous= np . z e r o s (n)
max_iterat ions= 20
so lut ion_c= False
f o r i in range ( max_iterat ions ) :

i f abs ( ( J_old − J_new) / J_old ) <= t o l :
i f J_old < J_new :

c_tmd= c_tmd
J_f ina l= J_old
Reigh= Reighley (a , h , c_tmd , c_tld , n , dpot_dx , dpot_dz , m)

e l s e :
c_tmd= c_tmd_n
J_f ina l= J_new
Reigh= Reigh_new

so lut ion_c = True
conv_J_ctmd= np . append (conv_J_ctmd , J_f ina l )
conv_ctmd= np . append ( conv_ctmd , np . array ( [ c_tmd ] ) , ax i s =0)



APPENDIX B. APPENDIX MODEL 2 68

break
e l i f np . a l l ( c_previous == c_tmd_n) :

i f J_old < J_new :
c_tmd= c_tmd
J_f ina l= J_old
Reigh= Reighley (a , h , c_tmd , c_tld , n , dpot_dx , dpot_dz , m)

e l s e :
c_tmd= c_tmd_n
J_f ina l= J_new
Reigh= Reigh_new

so lut ion_c = True
conv_J_ctmd= np . append (conv_J_ctmd , J_f ina l )
conv_ctmd= np . append ( conv_ctmd , np . array ( [ c_tmd ] ) , ax i s =0)
break

e l s e :
c_previous= c_tmd
i f J_le f t < J_right :

i f i == 0 :
c_tmd= c_tmd

e l s e :
c_tmd= c_tmd_n

c_tmd_n= c_tmd_new(−s , c_tmd , n)
J_old= J_le f t
J_right= J_le f t
Reigh_new= Reighley (a , h , c_tmd_n, c_tld , n , dpot_dx ,

dpot_dz , m)
J_new= J( Lagrange , Reigh_new , A, B, D, n , load= None )
J_le f t= J_new

e l s e :
c_tmd= c_tmd_n
c_tmd_n= c_tmd_new( s , c_tmd , n)
J_old= J_right
J_le f t= J_right
Reigh_new= Reighley (a , h , c_tmd_n, c_tld , n , dpot_dx ,

dpot_dz , m)
J_new= J( Lagrange , Reigh_new , A, B, D, n , load= None )
J_right= J_new

conv_J_ctmd= np . append (conv_J_ctmd , J_new)
conv_ctmd= np . append ( conv_ctmd , np . array ( [ c_tmd_n ] ) , ax i s =0)
cont inue

i f so lut ion_c == False :
p r i n t ( ’ no convergence , c_tmd : ’ , c_tmd)

e l s e :
p r i n t ( ’ opt imal c_tmd : ’ , c_tmd , ’\n ’ , ’ J : ’ , J_f ina l )

data [ " J"]= J_f ina l
data [ " Reighley "]= s t r ( Reigh )
data [ " c_tmd"]= c_tmd . t o l i s t ( )

jdata= json . dumps( data , indent=4)
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f= open (" model2 . j son " , "w")
f . wr i t e ( jdata )
f . c l o s e ( )

# Determining the optimal TMD s t i f f n e s s parameter

f= open (" model2 . j son " , " r+")
data= json . load ( f )
f . c l o s e ( )

k_tmd_n= k_tmd_new( s , k_tmd , n)
Lagrange= Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd , m, n , dpot_dx ,

dpot_dz )
Lagrange_new= Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd_n, m, n , dpot_dx

, dpot_dz )
Reigh= parse_expr ( data [ " Reighley " ] )

c_tmd= np . array ( data [ " c_tmd" ] )

J_old = data [ " J " ]
J_new= J(Lagrange_new , Reigh , A, B, D, n , load= None )
J_le f t= J_old
J_right= J_new

conv_J_ktmd= np . array ( [ J_old ] )
conv_ktmd= np . array ( [ k_tmd ] )

t o l= 10∗∗−4 # to l e r an c e
max_iterat ions= 20
k_previous = np . z e r o s (n)
so lut ion_k= False
f o r i in range ( max_iterat ions ) :

i f abs ( ( J_old − J_new) / J_old ) <= t o l :
i f J_old < J_new :

k_tmd= k_tmd
J_f ina l= J_old
Lagrange= Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd , m, n ,

dpot_dx , dpot_dz )
e l s e :

k_tmd= k_tmd_n
J_f ina l= J_new
Lagrange= Lagrange_new

solut ion_k = True
conv_J_ktmd= np . append (conv_J_ktmd , J_f ina l )
conv_ktmd= np . append (conv_ktmd , np . array ( [ k_tmd ] ) , ax i s= 0)
break

e l i f np . a l l ( k_previous == k_tmd_n) :
i f J_old < J_new :

k_tmd= k_tmd
J_f ina l= J_old
Lagrange= Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd , m, n ,

dpot_dx , dpot_dz )
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e l s e :
k_tmd= k_tmd_n
J_f ina l= J_new
Lagrange= Lagrange_new

solut ion_k = True
conv_J_ktmd= np . append (conv_J_ktmd , J_f ina l )
conv_ktmd= np . append (conv_ktmd , np . array ( [ k_tmd ] ) , ax i s= 0)
break

e l s e :
k_previous= k_tmd
i f J_le f t < J_right :

i f i == 0 :
k_tmd= k_tmd

e l s e :
k_tmd= k_tmd_n

k_tmd_n= k_tmd_new(−s , k_tmd , n)
J_old= J_le f t
J_right= J_le f t
Lagrange_new= Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd_n, m

, n , dpot_dx , dpot_dz )
J_new= J(Lagrange_new , Reigh , A, B, D, n , load= None )
J_le f t= J_new

e l s e :
k_tmd= k_tmd_n
k_tmd_n= k_tmd_new( s , k_tmd , n)
J_old= J_right
J_le f t= J_right
Lagrange_new= Lagrangian ( rho , a , h , M, g , M_tmd, k_tmd_n, m

, n , dpot_dx , dpot_dz )
J_new= J(Lagrange_new , Reigh , A, B, D, n , load= None )
J_right= J_new

conv_J_ktmd= np . append (conv_J_ktmd , J_new)
conv_ktmd= np . append (conv_ktmd , np . array ( [ k_tmd_n ] ) , ax i s= 0)
cont inue

i f so lut ion_k == False :
p r i n t ( ’ no convergence ’ )

e l s e :
p r i n t ( ’ opt imal k_tmd : ’ , k_tmd , ’\n ’ , ’ J : ’ , J_f ina l )

data [ " J"]= J_f ina l
data [ " Lagrangian "]= s t r ( Lagrange )
data [ "k_tmd"]= k_tmd . t o l i s t ( )

jdata= json . dumps( data , indent=4)

f= open (" model2 . j son " , "w")
f . wr i t e ( jdata )
f . c l o s e ( )

# Determining the optimal TLD he ight
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f= open (" model2 . j son " , " r+")
data= json . load ( f )
f . c l o s e ( )

sh= s /c_tmd [ 0 ] ∗ h # I t e r a t i o n s t e p s i z e f o r h , s c a l ed to c_tmd

h_n= h_new(h , sh ) # new i t e r a t i o n o f h
c_tmd= np . array ( data [ " c_tmd" ] )
dpot_dx= dpotentia l_dx (a , h_n, m)
dpot_dz= dpotent ia l_dz (a , h_n, m)
Lagrange_new= Lagrangian ( rho , a , h_n, M_structure (h_n) , g , M_tmd, k_tmd

, m, n , dpot_dx , dpot_dz )
J_old = data [ ’ J ’ ]
J_new= J(Lagrange_new , Reigh_new , A, B, D, n , load= None )
J_le f t= copy . copy ( J_old )
J_right= copy . copy (J_new)

conv_J_h= np . array ( [ J_old ] )
conv_h= np . array ( [ h ] )

t o l= 10∗∗−4 # to l e r an c e
h_previous= 0
max_iterat ions= 20
solut ion_h= False
f o r i in range ( max_iterat ions ) :

i f abs ( ( J_old − J_new) / J_old ) <= t o l :
i f J_old < J_new :

h = h
J_f ina l= J_old
Reigh= Reigh
Lagrange= Lagrange

e l s e :
h= h_n
J_f ina l= J_new
Reigh= Reigh_new
Lagrange= Lagrange_new
M = M_structure (h)
M_tld= Mass_tld (h)

so lut ion_h = True
conv_J_h= np . append (conv_J_h , J_f ina l )
conv_h= np . append (conv_h , h)
break

e l i f np . a l l ( h_previous == h_n) :
i f J_old < J_new :

h = h
J_f ina l= copy . copy ( J_old )
Reigh= copy . copy ( Reigh )
Lagrange= copy . copy ( Lagrange )

e l s e :
h = copy . copy (h_n)
J_f ina l= copy . copy (J_new)
Reigh= copy . copy (Reigh_new)
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Lagrange= copy . copy (Lagrange_new )
M = M_structure (h)
M_tld= Mass_tld (h)

so lut ion_h = True
conv_J_h= np . append (conv_J_h , J_f ina l )
conv_h= np . append (conv_h , h)
break

e l s e :
h_previous= copy . copy (h)
i f J_le f t < J_right :

i f i == 0 :
h= h

e l s e :
h= copy . copy (h_n)

h_n= h_new(h , −sh )
J_old= copy . copy ( J_le f t )
J_right= copy . copy ( J_le f t )
M_tld= Mass_tld (h_n)
dpot_dx= dpotentia l_dx (a , h_n, m)
dpot_dz= dpotent ia l_dz (a , h_n, m)
Reigh_new= Reighley (a , h_n, c_tmd , c_tld , n , dpot_dx ,

dpot_dz , m)
Lagrange_new= Lagrangian ( rho , a , h_n, M_structure (h_n) , g ,

M_tmd, k_tmd , m, n , dpot_dx , dpot_dz )
J_new= J(Lagrange_new , Reigh_new , A, B, D, n , load= None )
J_le f t= copy . copy (J_new)

e l s e :
h= copy . copy (h_n)
h_n= h_new(h , sh )
J_old= copy . copy ( J_right )
J_le f t= copy . copy ( J_right )
M_tld= Mass_tld (h_n)
dpot_dx= dpotentia l_dx (a , h_n, m)
dpot_dz= dpotent ia l_dz (a , h_n, m)
Reigh_new= Reighley (a , h_n, c_tmd , c_tld , n , dpot_dx ,

dpot_dz , m)
Lagrange_new= Lagrangian ( rho , a , h_n, M_structure (h_n) , g ,

M_tmd, k_tmd , m, n , dpot_dx , dpot_dz )
J_new= J(Lagrange_new , Reigh_new , A, B, D, n , load= None )
J_right= copy . copy (J_new)

conv_J_h= np . append (conv_J_h , J_new)
conv_h= np . append (conv_h , h_n)
cont inue

i f so lut ion_h == False :
p r i n t ( ’ no convergence ’ )

e l s e :
p r i n t ( ’ opt imal h : ’ , h , ’\n ’ , ’ J : ’ , J_f ina l )

data [ " J"]= J_f ina l
data [ " Reighley "]= s t r ( Reigh )
data [ ’ h ’ ]= h . r e a l
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jdata= json . dumps( data , indent=4)

f= open (" model2 . j son " , "w")
f . wr i t e ( jdata )
f . c l o s e ( )

# Determining the optimal TLD equ iva l en t damping parameter

f= open (" model2 . j son " , " r+")
data= json . load ( f )
f . c l o s e ( )

s = s /c_tmd [ 0 ] ∗ c_tld # I t e r a t i o n s t e p s i z e f o r c_tld , s c a l ed to c_tmd
M = M_structure (h)

c_tld_n= c_tld_new( s , c_tld , n) # new i t e r a t i o n o f c_tld

c_tmd= np . array ( data [ " c_tmd" ] )
k_tmd= np . array ( data [ "k_tmd" ] )
Reigh= Reighley (a , h , c_tmd , c_tld , n , dpot_dx , dpot_dz , m) #

parse_expr ( data [ " Reighley " ] )

dpot_dx= dpotentia l_dx (a , h , m)
dpot_dz= dpotent ia l_dz (a , h , m)
Reigh_new= Reighley (a , h , c_tmd , c_tld_n , n , dpot_dx , dpot_dz , m)
Lagrange= parse_expr ( data [ " Lagrangian " ] )

J_old = data [ ’ J ’ ]
J_new= J( Lagrange , Reigh_new , A, B, D, n , load= None )
J_le f t= copy . copy ( J_old )
J_right= copy . copy (J_new)

conv_J_ctld= np . array ( [ J_old ] )
conv_ctld= np . array ( [ c_tld ] )

t o l= 10∗∗−4 # to l e r an c e
c_tld_previous= 0
max_iterat ions= 20
so lut ion_c_tld= False
f o r i in range ( max_iterat ions ) :

i f abs ( ( J_old − J_new) / J_old ) <= t o l :
i f J_old < J_new :

c_tld= c_tld
J_f ina l= J_old
Reigh= Reigh

e l s e :
c_tld= c_tld_n
J_f ina l= J_new
Reigh= Reigh_new

solut ion_c_tld = True
conv_J_ctld= np . append ( conv_J_ctld , J_f ina l )
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conv_ctld= np . append ( conv_ctld , c_tld )
break

e l i f np . a l l ( c_tld_previous == c_tld_n ) and i > 2 :
i f J_old < J_new :

c_tld= c_tld
J_f ina l= J_old
Reigh= Reigh

e l s e :
c_tld= c_tld_n
J_f ina l= J_new
Reigh= Reigh_new

solut ion_c_tld = True
conv_J_ctld= np . append ( conv_J_ctld , J_f ina l )
conv_ctld= np . append ( conv_ctld , c_tld )
break

e l s e :
c_tld_previous= copy . copy ( c_tld )
i f J_le f t < J_right :

i f i == 0 :
c_tld= c_tld

e l s e :
c_tld= copy . copy ( c_tld_n )

c_tld_n= c_tld_new(−s , c_tld , n)
J_old= copy . copy ( J_le f t )
J_right= copy . copy ( J_le f t )
Reigh_new= Reighley (a , h , c_tmd , c_tld_n , n , dpot_dx ,

dpot_dz , m)
J_new= J( Lagrange , Reigh_new , A, B, D, n , load= None )
J_le f t= copy . copy (J_new)

e l s e :
c_tld= copy . copy ( c_tld_n )
c_tld_n= c_tld_new( s , c_tld , n)
J_old= copy . copy ( J_right )
J_le f t= copy . copy ( J_right )
Reigh_new= Reighley (a , h , c_tmd , c_tld_n , n , dpot_dx ,

dpot_dz , m)
J_new= J( Lagrange , Reigh_new , A, B, D, n , load= None )
J_right= copy . copy (J_new)

conv_J_ctld= np . append ( conv_J_ctld , J_new)
conv_ctld= np . append ( conv_ctld , c_tld_n )
cont inue

i f so lut ion_c_tld == False :
p r i n t ( ’ no convergence ’ )

e l s e :
p r i n t ( ’ opt imal c_tld : ’ , c_tld , ’\n ’ , ’ J : ’ , J_f ina l )

data [ " J"]= J_f ina l
data [ " Reighley "]= s t r ( Reigh )
data [ " c_tld "]= c_tld
data [ ’ h ’ ]= abs (h)
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jdata= json . dumps( data , indent=4)

f= open (" model2 . j son " , "w")
f . wr i t e ( jdata )
f . c l o s e ( )

B.7 Newton optimization

de f Optimizat ion (c_tmd , k_tmd , h , c_tld , rho , a , M, g , M_tmd, m, A, B,
D, n , max_error= 0 .01 , max_iterat ions= 25 , load= None ) :
# Finding i n i t i a l i n t e r v a l :
dpot_dx= dpotentia l_dx (a , h , m)
dpot_dz= dpotent ia l_dz (a , h , m)
x0= np . array ( [ np . array (c_tmd) , np . array (k_tmd) , h , c_tld ] )
# Create Jacobian :
Jac= np . z e r o s (4 )
Hes= np . z e r o s ( ( 4 , 4) )

eps = np . array ( [ [ np . array ( [ 0 . 1 , 0 . 1 ] ) , 0 , 0 , 0 ] , [ 0 , np . array ( [ 0 . 1 ,
0 . 1 ] ) , 0 , 0 ] , [ 0 , 0 , 0 . 1 , 0 ] , [ 0 , 0 , 0 , 0 . 1 ] ] ) ∗ max_error

s o l u t i o n = False

f_dic= {}
f0 = J ( Lagrangian ( rho , a , x0 , M, g , M_tmd, m, n , dpot_dx , dpot_dz ) ,

Reighley (a , x0 , n , dpot_dx , dpot_dz , m) , A, B, D, n , load= None
)

data [ ’ J( ’+ "c_tmd=" + s t r ( x0 [ 0 ] ) + "k_tmd=" + s t r ( x0 [ 1 ] ) + "c_tld="
+ s t r ( x0 [ 3 ] ) + "h_tld=" + s t r ( x0 [ 2 ] ) + ’ ) ’ ] = f0

f o r dx in range (4 ) : # number o f parameters
f_dic [ ’ f ’ + s t r ( dx ) ] = J ( Lagrangian ( rho , a , x0 + eps [ dx ] , M, g ,

M_tmd, m, n , dpot_dx , dpot_dz ) , Reighley (a , x0 + eps [ dx ] , n
, dpot_dx , dpot_dz , m) , A, B, D, n , load= None)

p r i n t ( ’ f i= ’ , f_dic [ ’ f ’ + s t r ( dx ) ] )
Jac [ dx ] = ( f_dic [ ’ f ’ + s t r ( dx ) ] − f0 ) / eps [ 3 ] [ 3 ]

f o r dx in range (4 ) :
f o r df in range (4 ) :

f_dic [ ’ f i j ’ + s t r ( df ) + s t r ( dx ) ] = J ( Lagrangian ( rho , a , x0
+ eps [ dx ] + eps [ df ] , M, g , M_tmd, m, n , dpot_dx , dpot_dz
) , Reighley (a , x0 + eps [ dx ] + eps [ df ] , n , dpot_dx ,
dpot_dz , m) , A, B, D, n , load= None )

Hes [ df ] [ dx ] = ( f_dic [ ’ f i j ’ + s t r ( df ) + s t r ( dx ) ] − f_dic [ ’ f ’
+ s t r ( dx ) ] − f_dic [ ’ f ’ + s t r ( df ) ] + f0 ) / eps [ 3 ] [ 3 ] ∗∗ 2

delta_x = np . l i n a l g . pinv (Hes ) @ Jac
r = 1 # damping f a c t o r
_t = x0 − r ∗ delta_x
f_t = J ( Lagrangian ( rho , a , _t , M, g , M_tmd, m, n , dpot_dx , dpot_dz )

, Reighley (a , _t , n , dpot_dx , dpot_dz , m) , A, B, D, n , load=
None )
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whi l e ( f_t > f0 ) :
r = 1/2 ∗ r
f_t = J ( Lagrangian ( rho , a , x0 − r ∗ delta_x , M, g , M_tmd, m, n ,

dpot_dx , dpot_dz ) , Reighley (a , x0 − r ∗ delta_x , n , dpot_dx
, dpot_dz , m) , A, B, D, n , load= None)

x1 = x0 − r ∗ delta_x
f1 = J ( Lagrangian ( rho , a , x1 , M, g , M_tmd, m, n , dpot_dx , dpot_dz ) ,

Reighley (a , x1 , n , dpot_dx , dpot_dz , m) , A, B, D, n , load= None
)

data [ ’ J( ’+ "c_tmd=" + s t r ( x1 [ 0 ] ) + "k_tmd=" + s t r ( x1 [ 1 ] ) + "c_tld="
+ s t r ( x1 [ 3 ] ) + "h_tld=" + s t r ( x1 [ 2 ] ) + ’ ) ’ ] = f1

f o r dx in range (4 ) : # number o f parameters
f_dic [ ’ f ’ + s t r ( dx ) ] = J ( Lagrangian ( rho , a , x1 + eps [ dx ] , M, g ,

M_tmd, m, n , dpot_dx , dpot_dz ) , Reighley (a , x1 + eps [ dx ] , n
, dpot_dx , dpot_dz , m) , A, B, D, n , load= None)

Jac [ dx ] = ( f_dic [ ’ f ’ + s t r ( dx ) ] − f1 ) / eps [ 3 ] [ 3 ]
f o r dx in range (4 ) :

f o r df in range (4 ) :
f_dic [ ’ f i j ’ + s t r ( df ) + s t r ( dx ) ] = J ( Lagrangian ( rho , a , x1

+ eps [ dx ] + eps [ df ] , M, g , M_tmd, m, n , dpot_dx , dpot_dz
) , Reighley (a , x1 + eps [ dx ] + eps [ df ] , n , dpot_dx ,
dpot_dz , m) , A, B, D, n , load= None )

Hes [ df ] [ dx ] = ( f_dic [ ’ f i j ’ + s t r ( df ) + s t r ( dx ) ] − f_dic [ ’ f ’
+ s t r ( dx ) ] − f_dic [ ’ f ’ + s t r ( df ) ] + f1 ) / eps [ 3 ] [ 3 ] ∗∗ 2

delta_x = np . l i n a l g . pinv (Hes ) @ Jac
x0 = copy ( x1 )
r = 1 # damping f a c t o r
_t = x1 − r ∗ delta_x
f_t = J ( Lagrangian ( rho , a , _t , M, g , M_tmd, m, n , dpot_dx , dpot_dz )

, Reighley (a , _t , n , dpot_dx , dpot_dz , m) , A, B, D, n , load=
None )

whi l e ( f_t > f0 ) :
r = 1/2 ∗ r
p r i n t ( ’ r : ’ , r )
f_t = J ( Lagrangian ( rho , a , x1 − r ∗ delta_x , M, g , M_tmd, m, n ,

dpot_dx , dpot_dz ) , Reighley (a , x1 − r ∗ delta_x , n , dpot_dx
, dpot_dz , m) , A, B, D, n , load= None)

x2 = x1 − r ∗ delta_x
conv_J= np . array ( [ f0 , f 1 ] )
conv_par = np . array ( [ x0 , x1 , x2 ] )
f o r i in range ( max_iterat ions ) :

i f s o l u t i o n == True :
break

f o r j in range ( l en ( ( x1 ) ) ) :
s o l u t i o n = True
Optimum = (1/2 ∗ ( x1 + x2 ) ) #. r e a l + (1/2 ∗ ( x1 + x2 ) ) . imag
try :

i f ( a l l ( abs ( x1 − x2 ) [ j ] > np . ones ( l en ( ( x1 ) [ j ] ) ) ∗
max_error ) ) :
s o l u t i o n = False
cont inue

except ( TypeError ) :
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i f ( abs ( x1 − x2 ) [ j ] > max_error ) :
s o l u t i o n = False
cont inue

i f s o l u t i o n == True :
break

s o l u t i o n = True
Optimum = (1/2 ∗ ( x1 + x2 ) ) #. r e a l + (1/2 ∗ ( x1 + x2 ) ) . imag
f o r j in range ( l en ( Jac ) ) :

t ry :
i f ( abs ( Jac ) [ j ] > np . ones (n) ∗ max_error ) . any ( ) :

s o l u t i o n = False
cont inue

except ( TypeError ) :
i f ( abs ( Jac ) [ j ] > max_error ) . any ( ) :

s o l u t i o n = False
cont inue

i f s o l u t i o n == True :
break

i f np . array_equal ( x0 , x2 ) : # or any ( abs ( d i sp2 ) > 10 ∗ abs ( d i sp1
) ) :
p r i n t (2 )
break

e l s e :
f 0= copy ( f1 )
x0 = copy ( x1 )
x1 = copy ( x2 )
f 1 = J ( Lagrangian ( rho , a , x1 , M, g , M_tmd, m, n , dpot_dx ,

dpot_dz ) , Reighley (a , x1 , n , dpot_dx , dpot_dz , m) , A, B,
D, n , load= None )

data [ ’ J( ’+ "c_tmd=" + s t r ( x1 [ 0 ] ) + "k_tmd=" + s t r ( x1 [ 1 ] ) +
"c_tld=" + s t r ( x1 [ 3 ] ) + "h_tld=" + s t r ( x1 [ 2 ] ) + ’ ) ’ ] =
f1

f o r dx in range (4 ) : # number o f parameters
f_dic [ ’ f ’ + s t r ( dx ) ] = J ( Lagrangian ( rho , a , x1 + eps [ dx

] , M, g , M_tmd, m, n , dpot_dx , dpot_dz ) , Reighley (a ,
x1 + eps [ dx ] , n , dpot_dx , dpot_dz , m) , A, B, D, n ,

load= None )
Jac [ dx ] = ( f_dic [ ’ f ’ + s t r ( dx ) ] − f1 ) / eps [ 3 ] [ 3 ]

f o r dx in range (4 ) :
f o r df in range (4 ) :

f_dic [ ’ f i j ’ + s t r ( df ) + s t r ( dx ) ] = J ( Lagrangian ( rho
, a , x1 + eps [ dx ] + eps [ df ] , M, g , M_tmd, m, n ,
dpot_dx , dpot_dz ) , Reighley (a , x1 + eps [ dx ] +
eps [ df ] , n , dpot_dx , dpot_dz , m) , A, B, D, n ,
load= None )

Hes [ df ] [ dx ] = ( f_dic [ ’ f i j ’ + s t r ( df ) + s t r ( dx ) ] −
f_dic [ ’ f ’ + s t r ( dx ) ] − f_dic [ ’ f ’ + s t r ( df ) ] + f1
) / eps [ 3 ] [ 3 ] ∗∗ 2

delta_x = np . l i n a l g . pinv (Hes ) @ Jac
r = 1 # damping f a c t o r
_t = x1 − r ∗ delta_x
f_t = J ( Lagrangian ( rho , a , _t , M, g , M_tmd, m, n , dpot_dx ,
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dpot_dz ) , Reighley (a , _t , n , dpot_dx , dpot_dz , m) , A, B,
D, n , load= None )

whi l e ( f_t > f0 ) & ( r > 0 .001 ) :
r = 1/2 ∗ r
f_t = J ( Lagrangian ( rho , a , x1 − r ∗ delta_x , M, g ,

M_tmd, m, n , dpot_dx , dpot_dz ) , Reighley (a , x1 − r ∗
delta_x , n , dpot_dx , dpot_dz , m) , A, B, D, n , load=
None )

x2 = x1 − r ∗ delta_x
conv_J = np . append ( conv_J , [ f 1 ] )
conv_par= np . append ( conv_par , np . array ( [ x2 ] ) , ax i s= 0)

data [ ’ convergence J ’ ] = conv_J
data [ ’ convergence parameters ’ ] = conv_par

i f s o l u t i o n == False :
Optimum= x0 . r e a l + x0 . imag

data [ "Optimum [ c_tmd , k_tmd , h , c_tld ] " ] = Optimum . t o l i s t ( )
data [ ’ J optimal ’ ] = f1 . t o l i s t ( )

r e turn f1 , Optimum



C | Appendix model 3

The script for model 3 is run in DelftBlue [1].

C.1 Input

import numpy as np
import s c ipy
import sympy
from sc ipy . l i n a l g import e igh
from numpy . l i n a l g import inv , e i g
from sc ipy import i n t eg ra t e , s i g n a l
from sympy import Symbol , so lve , Poly , d i f f , Der ivat ive , I
from sympy . u t i l i t i e s . lambdify import lambdify
from sympy . abc import t , x , z , T, X, Z
import j son
from sympy . par s ing . sympy_parser import parse_expr
import copy
import mpi4py
from mpi4py import MPI

comm = MPI.COMM_WORLD
s i z e = comm. Get_size ( )
rank = comm. Get_rank ( )

data = {}
# Importing s t a r t i n g va lues ( optimum f o r model 2)
i f rank == 0 :

f = open (" model2 . j son " , " r+")
data_model2 = j son . load ( f )
f . c l o s e ( )

# In case o f a re−run
try :

f = open (" model3 . j son " , " r+")
data = json . load ( f )
f . c l o s e ( )

except FileNotFoundError :
data = data_model2
jdata = json . dumps( data , indent=4)
f = open (" model3 . j son " , "w")
f . wr i t e ( jdata )

79
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f . c l o s e ( )

h = data [ " h " ]
c_tld = data [ " c_tld " ]
k_tmd = np . array ( data [ "k_tmd" ] )
c_tmd = np . array ( data [ " c_tmd" ] )

e l s e :
data = None
h= data_model2 [ " h " ]
c_tld= data_model2 [ " c_tld " ]
k_tmd= np . array ( data_model2 [ "k_tmd" ] )
c_tmd= np . array ( data_model2 [ " c_tmd" ] )

data = comm. bcast ( data , root=0)
h = comm. bcast (h , root=0)
c_tmd = comm. bcast (c_tmd , root=0)
k_tmd = comm. bcast (k_tmd , root=0)
c_tld = comm. bcast ( c_tld , root=0)

# po t en t i a l f low re c tangu l a r tank
m = 1 # number o f modes
a = 20 # ha l f o f tank width
b = 2 ∗ a # tank depth
rho = 1000 # water dens i ty
g = 9.81 # g r a v i t a t i o n a l a c c e l e r a t i o n
h_hub = 87.74 # hub he ight
n = 2 # number o f TMDs

M_total = 6149460

de f M_structure (h) : # Mass barge + turb ine
re turn M_total ∗ . 9 − ( rho ∗ 2 ∗ a ∗ b ∗ h)

i f rank == 0 :
M = M_structure (h)

e l s e :
M = 0

M = comm. bcast (M, root=0)

M_tmd = np . ones (n) ∗ 0 .1 ∗ M_total / n # TMD mass
H = M_total / ( rho ∗ b ∗ 2 ∗ a ) # Float ing depth

A = np . z e r o s ( ( n+3, n + 3) ) # Hydraul ic mass matrix
A[ 0 , 0 ] = 9.556 ∗ 10∗∗5
A[ 1 , 1 ] = 2.187 ∗ 10∗∗8

B = np . z e r o s ( ( n+3, n + 3) ) # Hydraul ic damping matrix
B[ 0 , 0 ] = 2/(3 ∗ np . p i ) ∗ (np . p i − 1) ∗ b ∗ rho ∗ H ∗ \

(2 ∗ np . p i ∗ (1/2 ∗ np . p i − 1) / (2 ∗ a ) ) ∗∗(1/3)

D = np . z e r o s ( ( n+3, n + 3) ) # Hydraul ic s t i f f n e s s matrix
D[ 0 , 0 ] = 2 ∗ rho ∗ g ∗ b ∗ a
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D[ 1 , 1 ] = rho ∗ g ∗ b ∗ a∗∗2

C.2 TLD sloshing

The TLD functions for the initial iteration are the same as those for model 2 B.2 and are not
repeated here. The new functions also work for the initial iteration, but are slower due to an
increase in symbolic integrations. The faster functions are used where possible.

de f B_A( disp , a , h , m, n) : # disp : r e sponse o f the prev ious i t e r a t i o n
a_A = np . z e r o s (m)
b_A = np . z e r o s (m)
c_A = np . z e r o s (m)
B_A = np . z e r o s (m)

f o r i in range (m) :
f o r j in range (n) :

i f −h + disp [ j + 3 ] < delta_h :
a_A[ i ] += in t e g r a t e . dblquad ( lambda x , z : np . s i n ( alpha (a

, m) [ i ] ∗ x ) ∗∗2 + np . s inh ( alpha (a , m) [ i ] ∗ z ) ∗∗2 , −h
+ disp [ j + 3 ] , delta_h , lambda x : −a + 2 ∗ a / n ∗

j , lambda x : −a + 2 ∗ a / n ∗ ( j + 1) ) [ 0 ]
b_A[ i ] += 2 ∗ i n t e g r a t e . dblquad ( lambda x , z : np . s inh (

alpha (a , m) [ i ] ∗ z ) ∗ np . cosh ( alpha (a , m) [ i ] ∗ z ) , −
h + disp [ j + 3 ] , delta_h , lambda x : −a + 2 ∗ a / n ∗

j , lambda x : −a + 2 ∗ a / n ∗ ( j + 1) ) [ 0 ] − a /
alpha (a , m) [ i ]

c_A[ i ] += in t e g r a t e . dblquad ( lambda x , z : np . cos ( alpha (a
, m) [ i ] ∗ x ) ∗∗2 + np . s inh ( alpha (a , m) [ i ] ∗ z ) ∗∗2 , −h
+ disp [ j + 3 ] , delta_h , lambda x : −a + 2 ∗ a / n ∗

j , lambda x : −a + 2 ∗ a / n ∗ ( j + 1) ) [ 0 ]

B_A[ i ] = (−b_A[ i ] − np . sq r t (b_A[ i ]∗∗2 − 4 ∗
a_A[ i ] ∗ c_A[ i ] ) ) / (2 ∗ a_A[ i ] )

r e turn B_A

def B_S( disp , a , h , m, n) : # disp : r e sponse o f the prev ious i t e r a t i o n
a_S = np . z e r o s (m)
b_S = np . z e r o s (m)
c_S = np . z e r o s (m)
B_S = np . z e r o s (m)

f o r i in range (m) :
f o r j in range (n) :

i f −h + disp [ j + 3 ] < delta_h :
a_S [ i ] += in t e g r a t e . dblquad ( lambda x , z : np . cos ( beta (a ,

m) [ i ] ∗ x ) ∗∗2 + np . s inh ( beta (a , m) [ i ] ∗ z ) ∗∗2 , −h +
disp [ j + 3 ] , delta_h , lambda x : −a + 2 ∗ a / n ∗ j ,
lambda x : −a + 2 ∗ a / n ∗ ( j + 1) ) [ 0 ]

b_S [ i ] += 2 ∗ i n t e g r a t e . dblquad ( lambda x , z : np . s inh (
beta (a , m) [ i ] ∗ z ) ∗ np . cosh ( beta (a , m) [ i ] ∗ z ) , −h
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+disp [ j + 3 ] , delta_h , lambda x : −a + 2 ∗ a / n ∗ j ,
lambda x : −a + 2 ∗ a / n ∗ ( j + 1) ) [ 0 ] − a / beta (a

, m) [ i ]
c_S [ i ] += in t e g r a t e . dblquad ( lambda x , z : np . s i n ( beta (a ,

m) [ i ] ∗ x ) ∗∗2 + np . s inh ( beta (a , m) [ i ] ∗ z ) ∗∗2 , −h +
disp [ j + 3 ] , delta_h , lambda x : −a + 2 ∗ a / n ∗ j ,
lambda x : −a + 2 ∗ a / n ∗ ( j + 1) ) [ 0 ]

B_S[ i ] = (−b_S [ i ] − np . sq r t (b_S [ i ] ∗∗2 − 4 ∗
a_S [ i ] ∗ c_S [ i ] ) ) / (2 ∗ a_S [ i ] )

r e turn B_S

de f dpotentia l_dx ( disp , a , h , m, n) :
X = Symbol ( ’X’ )

g l oba l delta_h # change in waterhe ight from r e s t p o s i t i o n

d_tmd = disp [ 3 : 3 + n ]
delta_h = 1/n ∗ np . sum(d_tmd)
count = 0
f o r i in range (n) :

i f d_tmd [ i ] > h + delta_h :
np . d e l e t e (d_tmd, [ i ] )

e l s e :
count += 1

delta_h = 1/ count ∗ np . sum(d_tmd)

dpot_dx = 0
f o r i in range (m) :

dpot_dx += ( potentia l_sA ( alpha (a , m) [ i ] , B_A0(a , h , m, n) [ i ] ) ) .
d i f f (X) + ( potent ia l_sS ( beta (a , m) [ i ] , B_S0( a , h , m, n) [ i ] )
) . d i f f (X)

re turn dpot_dx

de f dpotent ia l_dz ( disp , a , h , m, n) :
Z = Symbol ( ’Z ’ )

g l oba l delta_h # change in waterhe ight from r e s t p o s i t i o n

d_tmd = disp [ 3 : 3 + n ]
delta_h = 1/n ∗ np . sum(d_tmd)
count = 0
f o r i in range (n) :

i f d_tmd [ i ] > h + delta_h :
np . d e l e t e (d_tmd, [ i ] )

e l s e :
count += 1

delta_h = 1/ count ∗ np . sum(d_tmd)

dpot_dz = 0
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f o r i in range (m) :
dpot_dz += ( potentia l_sA ( alpha (a , m) [ i ] , B_A0( a , h , m, n) [ i ] ) )

. d i f f (Z) + ( potent ia l_sS ( beta (a , m) [ i ] , B_S0( a , h , m, n) [ i
] ) ) . d i f f (Z)

re turn dpot_dz

C.3 Initial equation of motion

de f L0( rho , a , h , M, g , M_tmd, k_tmd , m, n , dpot_dx0 , dpot_dz0 ) :
X = Symbol ( ’X’ )
Z = Symbol ( ’Z ’ )
T = Symbol ( ’T’ )
U= sympy . Function ( ’U’ ) # DoF heave
phi= sympy . Function ( ’ phi ’ ) # DoF pi t ch
q= sympy . Function ( ’ q ’ ) # DoF TLD wave

amplitude
u= [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ] # DoF TMD

ver t = U(T) + phi (T) ∗ X

# k i n e t i c energy without tmds
K = sympy . expand (1/2 ∗ rho ∗ b ∗ sympy . i n t e g r a t e ( sympy . i n t e g r a t e ( (

dpot_dx0 ) ∗∗ 2 + ( ver t . d i f f (T) + dpot_dz0 ) ∗∗ 2 , (Z , −h , 0) ) , (X,
−a , a ) ) ) + M / 2 ∗ (U(T) . d i f f (T) ∗∗2 + 1/3 ∗ a∗∗2 ∗ phi (T) . d i f f (

T) ∗∗2)

# po t e n t i a l energy without tmds
P = M ∗ g ∗ U(T)
wave = 0
f o r i in range (m) :

wave += wave_shape_sA( alpha (a , m) [ i ] , B_A0(a , h , m, n) [ i ] ) +
wave_shape_sS ( beta (a , m) [ i ] , B_S0(a , h , m, n) [ i ] ) + h

f o r i in range (m) :
P += sympy . expand ( g ∗ rho ∗ b ∗ sympy . i n t e g r a t e (1 / 2 ∗ (wave +

ver t ) ∗ wave , (X, −a , a ) ) )

# add i t i ona l energy tmds :
f o r i in range (n) :

K += sympy . expand (1/2 ∗ M_tmd[ i ] ∗ (u [ i ] (T) . d i f f (T) + U(T) . d i f f
(T) + phi (T) . d i f f (T) ∗ (− a + (2 ∗ a ∗ i ) / (n − 1) ) ) ∗∗2)

P += sympy . expand (1/2 ∗ k_tmd [ i ] ∗ u [ i ] (T) ∗∗2 + M_tmd[ i ] ∗ g ∗
(u [ i ] (T) + U(T) + phi (T) ∗ (− a + (2 ∗ a ∗ i ) / (n − 1) ) ) )

L = K − P

return L

de f R0(a , b , h , c_tmd , c_tld , m, n , dpot_dx , dpot_dz ) :
X = Symbol ( ’X’ )
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Z = Symbol ( ’Z ’ )
T = Symbol ( ’T’ )
U= sympy . Function ( ’U’ ) # DoF heave
phi= sympy . Function ( ’ phi ’ ) # DoF pi t ch
q= sympy . Function ( ’ q ’ ) # DoF TLD wave

amplitude
u= [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ] # DoF TMD

# re i g h l e y d i s s i p a t i o n t l d ( without tmds )
R = 1/2 ∗ b ∗ c_tld ∗ sympy . i n t e g r a t e ( abs ( sympy . i n t e g r a t e ( dpot_dx

∗∗ 2 + dpot_dz ∗∗ 2 , (Z , −h , 0) ) ) , (X, −a , a ) )

# add i t i ona l d i s s i p a t i o n tmds :
f o r i in range (n) :

R += sympy . expand (1/2 ∗ c_tmd [ i ] ∗ (u [ i ] (T) . d i f f (T) ) ∗∗2)

re turn R

C.4 Equation of motion

de f L( disp , omega , t , rho , a , h , M, g , M_tmd, k_tmd , m, n , dpot_dx ,
dpot_dz ) :
X = Symbol ( ’X’ )
Z = Symbol ( ’Z ’ )
T = Symbol ( ’T’ )
U= sympy . Function ( ’U’ ) # DoF heave
phi= sympy . Function ( ’ phi ’ ) # DoF pi t ch
q= sympy . Function ( ’ q ’ ) # DoF TLD wave

amplitude
u= [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ] # DoF TMD

omega_A = Omega_A( alpha (a , m) , B_A0(a , h , m, n) , g , m)
omega_S = Omega_S( beta (a , m) , B_S0(a , h , m, n) , g , m)

g l oba l delta_h # change in waterhe ight from r e s t p o s i t i o n

d_tmd = disp [ 3 : 3 + n ]
delta_h = 1/n ∗ np . sum(d_tmd)
count = 0
f o r i in range (n) :

i f d_tmd [ i ] > h + delta_h :
np . d e l e t e (d_tmd, [ i ] )

e l s e :
count += 1

delta_h = 1/ count ∗ np . sum(d_tmd)

ver t = U(T) + phi (T) ∗ X # v e r t i c a l r e sponse o f the barge

# k i n e t i c energy without tmds
K = M / 2 ∗ (U(T) . d i f f (T) ∗∗2 + 1/3 ∗ a∗∗2 ∗ phi (T) . d i f f (T) ∗∗2)
f o r j in range (n) :
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i f d_tmd [ i ] < h + delta_h :
K += sympy . expand (1/2 ∗ rho ∗ b ∗ sympy . i n t e g r a t e ( sympy .

i n t e g r a t e ( ( dpot_dx ) ∗∗ 2 + (u [ j ] (T) . d i f f (T) + ver t . d i f f (
T) + dpot_dz ) ∗∗ 2 , (Z , −h + d_tmd [ j ] , delta_h ) ) , (X, −a
+ 2 ∗ a / n ∗ j , −a + 2 ∗ a / n ∗ ( j + 1) ) ) )

# Poten t i a l energy without tmds :
# The l i q u i d might not cover the whole l ength o f the barge . The

i n t e g r a l needs to be taken over the covered l ength only ,
o therwi se ( s i g n i f i c a n t ) negat ive i n t e g r a l s are taken , which
causes e r r o r s and over f l ow in the code .

wave_shape_A = 0
wave_shape_S = 0
P = sympy . expand (M ∗ g ∗ U(T) )
g l oba l i n t e r s e c t i o n
i n t e r s e c t i o n = None # The po s s i b l e boundary between ’ dry ’ tmd ’ s

and ’wet ’ tmd ’ s
f o r i in range (m) :

wave_shape_A += wave_shape_sA( alpha (a , m) [ i ] , B_A0(a , h , m, n) [
i ] )

wave_shape_S += wave_shape_sS ( beta (a , m) [ i ] , B_S0(a , h , m, n) [ i
] )

wave = wave_shape_A + wave_shape_S #+ h + delta_h

f o r i in range (m) :
f o r j in range (n) :

t ry : # In case o f an i n t e r s e c t i o n
i n t e r s e c t i o n = sympy . s o l v e ( sympy . re ( (wave_shape_A . subs (

q (T) , sympy . exp (
I ∗ t ∗ omega_A [ i ] ) ) + wave_shape_S . subs (q (T) ,

sympy . exp ( I ∗ t ∗ omega_S [ i ] ) ) ) ) − di sp [ j + 3 ] ,
X)

i f −a + 2 ∗ a / n ∗ j < i n t e r s e c t i o n [ 0 ] < −a + 2 ∗ a /
n ∗ ( j + 1) :

i f ( sympy . re (wave_shape_A . subs (q (T) , sympy . exp ( I ∗
t ∗ omega_A [ i ] ) ) + wave_shape_S . subs (q (T) , sympy
. exp ( I ∗ t ∗ omega_S [ i ] ) ) ) . subs (X, −a + 2 ∗ a /
n ∗ j ) ) > disp [ j + 3 ] :
P += rho ∗ g ∗ b ∗ sympy . i n t e g r a t e ( (1/2 ∗ (wave

+ delta_h ) + ver t ) ∗ (wave + delta_h ) , (X,
−a + 2 ∗ a / n ∗ j , i n t e r s e c t i o n ) )

e l s e :
P += rho ∗ g ∗ b ∗ sympy . i n t e g r a t e ( (1/2 ∗ (wave

+ delta_h ) + ver t ) ∗ (wave + delta_h ) , (X,
i n t e r s e c t i o n , −a + 2 ∗ a / n ∗ ( j + 1) ) )

e l i f sympy . re ( (wave_shape_A . subs (q (T) , sympy . exp ( I ∗ t
∗ omega_A [ i ] ) ) + wave_shape_S . subs (q (T) , sympy . exp ( I
∗ t ∗ omega_S [ i ] ) ) ) . subs (X, −a + 2 ∗ a / n ∗ j ) ) >

disp [ j + 3 ] :
P += rho ∗ g ∗ b ∗ sympy . i n t e g r a t e ( (1/2 ∗ (wave +

delta_h ) + ver t ) ∗ (wave + delta_h ) , (X, −a + 2
∗ a / n ∗ j , −a + 2 ∗ a / n ∗ ( j + 1) ) )
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e l s e :
P += 0

except : # In case the re are no i n t e r s e c t i o n s
P += rho ∗ g ∗ b ∗ sympy . i n t e g r a t e ( (1/2 ∗ (wave +

delta_h ) + ver t ) ∗ (wave + delta_h ) , (X, −a + 2 ∗ a
/ n ∗ j , −a + 2 ∗ a / n ∗ ( j + 1) ) )

# Addi t iona l energy tmds :

f o r i in range (n) :
K += sympy . expand (1/2 ∗ M_tmd[ i ] ∗ (u [ i ] (T) . d i f f (T) + (U(T) .

d i f f (T) + phi (T) . d i f f (T) ∗ (− a + (2 ∗ a ∗ i ) / (n − 1) ) ) )
∗∗2)

P += sympy . expand (1/2 ∗ k_tmd [ i ] ∗ u [ i ] (T) ∗∗2 + M_tmd[ i ] ∗ g ∗
(u [ i ] (T) + (U(T) + phi (T) ∗ (− a + (2 ∗ a ∗ i ) / (n − 1) ) ) ) )

L = K − P

return L

de f R( disp , a , b , h , c_tmd , c_tld , m, n , dpot_dx , dpot_dz ) :
X = Symbol ( ’X’ )
Z = Symbol ( ’Z ’ )
T = Symbol ( ’T’ )
U= sympy . Function ( ’U’ ) # DoF heave
phi= sympy . Function ( ’ phi ’ ) # DoF pi t ch
q= sympy . Function ( ’ q ’ ) # DoF TLD wave

amplitude
u= [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ] # DoF TMD

g loba l delta_h # change in waterhe ight from r e s t p o s i t i o n
d_tmd = disp [ 3 : 3 + n ]
delta_h = 1/n ∗ np . sum(d_tmd)
count = 0
f o r i in range (n) :

i f d_tmd [ i ] > h + delta_h :
np . d e l e t e (d_tmd, [ i ] )

e l s e :
count += 1

delta_h = 1/ count ∗ np . sum(d_tmd)

# r e i g h l e y d i s s i p a t i o n t l d ( without tmds )
R = 0
f o r i in range (n) :

R += 1/2 ∗ b ∗ c_tld ∗ sympy . i n t e g r a t e ( abs ( sympy . i n t e g r a t e (
dpot_dx ∗∗ 2 + dpot_dz ∗∗ 2 , (X, −a + 2∗a∗ i /n , −a + 2 ∗ a ∗
( i + 1) / n) ) ) , (Z , −h + disp [ 3 + i ] , delta_h ) )

# add i t i ona l energy tmds :
f o r i in range (n) :
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R += sympy . expand (1/2 ∗ c_tmd [ i ] ∗ (u [ i ] (T) . d i f f (T) ) ∗∗2)

re turn R

C.5 Initial response

de f Response0 (omega , t , rho , a , h , M, g , M_tmd, c_tmd , k_tmd , c_tld , m,
n , A, B, D, dpot_dx0 , dpot_dz0 , load=None) :
X = Symbol ( ’X’ )
Z = Symbol ( ’Z ’ )
T = Symbol ( ’T’ )
U = sympy . Function ( ’U’ )
phi = sympy . Function ( ’ phi ’ )
q = sympy . Function ( ’ q ’ )
u = [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ]

omega_A = Omega_A( alpha (a , m) , B_A0(a , h , m, n) , g , m)
omega_S = Omega_S( beta (a , m) , B_S0(a , h , m, n) , g , m)

# Lagrangians :
La = L0( rho , a , h , M, g , M_tmd, k_tmd , m, n , dpot_dx0 , dpot_dz0 )
Re = R0(a , b , h , c_tmd , c_tld , m, n , dpot_dx0 , dpot_dz0 )

Lagrange_phi = La . d i f f ( Der iva t i ve ( phi (T) , T) ) . d i f f (T) − La . d i f f ( phi
(T) ) + Re . d i f f ( Der iva t i ve ( phi (T) , T) )

Lagrange_U = La . d i f f ( Der iva t i ve (U(T) , T) ) . d i f f (T) − La . d i f f (U(T) ) +
Re . d i f f ( Der iva t i ve (U(T) , T) )

Lagrange_q = La . d i f f ( Der iva t ive ( q (T) , T) ) . d i f f (T) − La . d i f f ( q (T) ) +
Re . d i f f ( Der iva t i ve ( q (T) , T) )

Lagrange_u = [0 f o r i in range (n) ]

f o r i in range (n) :
Lagrange_u [ i ] = La . d i f f ( Der iva t i ve (u [ i ] (T) , T) ) . d i f f (T) − La .

d i f f (u [ i ] (T) ) + Re . d i f f ( Der iva t i ve (u [ i ] (T) , T) )

# Mass matrix :

Mass_matrix = np . z e r o s ( ( ( n + 3) , (n + 3) ) , dtype=’complex_ ’ )

Mass_matrix [ 0 , 0 : 3 ] = [ Lagrange_U . c o e f f ( Der iva t i ve (U(T) , (T, 2) ) ) ,
Lagrange_U . c o e f f ( Der iva t i ve ( phi (T) , (T, 2) ) ) , Lagrange_U . c o e f f (
Der iva t i ve (q (T) , (T, 2) ) ) ]

Mass_matrix [ 1 , 0 : 3 ] = [ Lagrange_phi . c o e f f ( Der iva t i ve (U(T) , (T, 2) ) )
, Lagrange_phi . c o e f f ( Der iva t i ve ( phi (T) , (T, 2) ) ) , Lagrange_phi .
c o e f f ( Der iva t i ve ( q (T) , (T, 2) ) ) ]

Mass_matrix [ 2 , 0 : 3 ] = [ Lagrange_q . c o e f f ( Der iva t ive (U(T) , (T, 2) ) ) ,
Lagrange_q . c o e f f ( Der iva t i ve ( phi (T) , (T, 2) ) ) , Lagrange_q . c o e f f (
Der iva t i ve (q (T) , (T, 2) ) ) ]

f o r i in range (n) :
Mass_matrix [ 0 , 3 : i + 3 ] = Lagrange_U . c o e f f ( Der iva t i ve (u [ i ] (T) ,
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(T, 2) ) )
Mass_matrix [ 1 , 3 : i + 3 ] = Lagrange_phi . c o e f f ( Der iva t ive (u [ i ] (T

) , (T, 2) ) )
Mass_matrix [ 2 , 3 : i + 3 ] = Lagrange_q . c o e f f ( Der iva t i ve (u [ i ] (T) ,

(T, 2) ) )

Mass_matrix [ i + 3 , 0 ] = Lagrange_u [ i ] . c o e f f ( Der iva t ive (U(T) , (T
, 2) ) )

Mass_matrix [ i + 3 , 1 ] = Lagrange_u [ i ] . c o e f f ( Der iva t ive ( phi (T) ,
(T, 2) ) )

Mass_matrix [ i + 3 , 2 ] = Lagrange_u [ i ] . c o e f f ( Der iva t ive ( q (T) , (T
, 2) ) )

f o r j in range (n) :
Mass_matrix [ i + 3 , j + 3 ] = Lagrange_u [ i ] . c o e f f ( Der iva t i ve (

u [ j ] (T) , (T, 2) ) )

# S t i f f n e s s matrix :

S t i f f_matr ix = np . z e r o s ( ( ( n + 3) , (n + 3) ) , dtype=’complex_ ’ )

St i f f_matr ix [ 0 , 0 : 3 ] = [ Lagrange_U . c o e f f (U(T) ) , Lagrange_U . c o e f f (
phi (T) ) , Lagrange_U . c o e f f ( q (T) ) ]

S t i f f_matr ix [ 1 , 0 : 3 ] = [ Lagrange_phi . c o e f f (U(T) ) , Lagrange_phi .
c o e f f ( phi (T) ) , Lagrange_phi . c o e f f ( q (T) ) ]

S t i f f_matr ix [ 2 , 0 : 3 ] = [ Lagrange_q . coe f fU (T) ) , Lagrange_q . c o e f f ( phi
(T) ) , Lagrange_q . c o e f f ( q (T) ) ]

f o r i in range (n) :
S t i f f_matr ix [ 0 , 3 : i + 3 ] = Lagrange_U . c o e f f (u [ i ] (T) )
St i f f_matr ix [ 1 , 3 : i + 3 ] = Lagrange_phi . c o e f f (u [ i ] (T) )
St i f f_matr ix [ 2 , 3 : i + 3 ] = Lagrange_q . c o e f f (u [ i ] (T) )

St i f f_matr ix [ i + 3 , 0 ] = Lagrange_u [ i ] . c o e f f (U(T) )
St i f f_matr ix [ i + 3 , 1 ] = Lagrange_u [ i ] . c o e f f ( phi (T) )
St i f f_matr ix [ i + 3 , 2 ] = Lagrange_u [ i ] . c o e f f ( q (T) )
f o r j in range (n) :

S t i f f_matr ix [ i + 3 , j + 3 ] = Lagrange_u [ i ] . c o e f f (u [ j ] (T) )

# Damping matrix

Damp_matrix = np . z e r o s ( ( ( n + 3) , (n + 3) ) , dtype=’complex_ ’ )

Damp_matrix [ 0 , 0 : 3 ] = [ Lagrange_U . c o e f f ( Der iva t ive (U(T) , T) ) ,
Lagrange_U . c o e f f ( Der iva t i ve ( phi (T) , T) ) , Lagrange_U . c o e f f (
Der iva t i ve ( q (T) , T) ) ]

Damp_matrix [ 1 , 0 : 3 ] = [ Lagrange_phi . c o e f f ( Der iva t i ve (U(T) , T) ) ,
Lagrange_phi . c o e f f ( Der iva t ive ( phi (T) , T) ) , Lagrange_phi . c o e f f (
Der iva t i ve ( q (T) , T) ) ]

Damp_matrix [ 2 , 0 : 3 ] = [ Lagrange_q . c o e f f ( Der iva t i ve (U(T) , T) ) ,
Lagrange_q . c o e f f ( Der iva t i ve ( phi (T) , T) ) , Lagrange_q . c o e f f (
Der iva t i ve ( q (T) , T) ) ]
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f o r i in range (n) :
Damp_matrix [ 0 , 3 : i + 3 ] = Lagrange_U . c o e f f ( Der iva t i ve (u [ i ] (T) )

)
Damp_matrix [ 1 , 3 : i + 3 ] = Lagrange_phi . c o e f f ( Der iva t i ve (u [ i ] (T

) ) )
Damp_matrix [ 2 , 3 : i + 3 ] = Lagrange_q . c o e f f ( Der iva t i ve (u [ i ] (T) )

)

Damp_matrix [ i + 3 , 0 ] = Lagrange_u [ i ] . c o e f f ( Der iva t i ve (U(T) ) )
Damp_matrix [ i + 3 , 1 ] = Lagrange_u [ i ] . c o e f f ( Der iva t i ve ( phi (T) ) )
Damp_matrix [ i + 3 , 2 ] = Lagrange_u [ i ] . c o e f f ( Der iva t i ve ( q (T) ) )
f o r j in range (n) :

Damp_matrix [ i + 3 , j + 3 ] = Lagrange_u [ i ] . c o e f f ( Der iva t i ve (
u [ i ] (T) , T) )

# Unit f o r c e
Force_vec = np . z e r o s (3 + n , dtype=’complex_ ’ ) . t ranspose ( )
Force_vec [ 0 : 2 ] = M_total

Eigenmatrix = np . l i n a l g . inv(−omega∗∗2 ∗ (Mass_matrix + A) + 1 j ∗
omega ∗ (Damp_matrix + B) + ( St i f f_matr ix + D) )

i f load i s None :
Load = np . ones (3 + n , dtype=’complex_ ’ ) . t ranspose ( )

e l s e :
Load = np . ones (3 + n , dtype=’complex_ ’ ) . t ranspose ( ) + load

d i sp = np . empty (n + 3 , dtype=’complex_ ’ )
f o r i in range (3 + n) :

d i sp [ i ] = ( Eigenmatrix @ ( Force_vec + Load ) ) [ i ]

r e turn d i sp . r e a l + di sp . imag

C.6 System G(X) = 0

de f G( disp , omega , t , rho , a , h , M, g , M_tmd, c_tmd , k_tmd , c_tld , m, n
, A, B, D, dpot_dx , dpot_dz , load=None , max_error=0.01) :
X = Symbol ( ’X’ )
Z = Symbol ( ’Z ’ )
T = Symbol ( ’T’ )
U = sympy . Function ( ’U’ )
phi = sympy . Function ( ’ phi ’ )
q = sympy . Function ( ’ q ’ )
u = [ sympy . Function ( ’ u%d ’ % i ) f o r i in range (n) ]

g l oba l delta_h # change in waterhe ight from r e s t p o s i t i o n

d_tmd = disp [ 3 : 3 + n ]
delta_h = 1/n ∗ np . sum(d_tmd)
count = 0
f o r i in range (n) :
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i f d_tmd [ i ] > h + delta_h :
np . d e l e t e (d_tmd, [ i ] )

e l s e :
count += 1

delta_h = 1/ count ∗ np . sum(d_tmd)

omega_A = Omega_A( alpha (a , m) , B_A0(a , h , m, n) , g , m)
omega_S = Omega_S( beta (a , m) , B_S0(a , h , m, n) , g , m)

# Lagrangians :
La = L( disp , omega , t , rho , a , h , M, g ,

M_tmd, k_tmd , m, n , dpot_dx , dpot_dz )
Re = R( disp , a , b , h , c_tmd , c_tld , m, n , dpot_dx , dpot_dz )

Lagrange_phi = La . d i f f ( Der iva t i ve ( phi (T) , T) ) . d i f f (T) − La . d i f f ( phi
(T) ) + Re . d i f f ( Der iva t i ve ( phi (T) , T) )

Lagrange_U = La . d i f f ( Der iva t i ve (U(T) , T) ) . d i f f (T) − La . d i f f (U(T) ) +
Re . d i f f ( Der iva t i ve (U(T) , T) )

Lagrange_q = La . d i f f ( Der iva t ive ( q (T) , T) ) . d i f f (T) − La . d i f f ( q (T) ) +
Re . d i f f ( Der iva t i ve ( q (T) , T) )

Lagrange_u = [0 f o r i in range (n) ]

f o r i in range (n) :
Lagrange_u [ i ] = La . d i f f ( Der iva t i ve (u [ i ] (T) , T) ) . d i f f (T) − La .

d i f f (u [ i ] (T) ) + Re . d i f f ( Der iva t i ve (u [ i ] (T) , T) )

# Mass matrix :

g l oba l Mass_matrix

Mass_matrix = np . z e r o s ( ( ( n + 3) , (n + 3) ) , dtype=’complex_ ’ )

Mass_matrix [ 0 , 0 : 3 ] = [ Lagrange_U . c o e f f ( Der iva t i ve (U(T) , (T, 2) ) ) ,
Lagrange_U . c o e f f ( Der iva t i ve ( phi (T) , (T, 2) ) ) , Lagrange_U . c o e f f (
Der iva t i ve ( q (T) , (T, 2) ) ) ]

Mass_matrix [ 1 , 0 : 3 ] = [ Lagrange_phi . c o e f f ( Der iva t i ve (U(T) , (T, 2) ) )
, Lagrange_phi . c o e f f ( Der iva t i ve ( phi (T) , (T, 2) ) ) , Lagrange_phi .
c o e f f ( Der iva t i ve ( q (T) , (T, 2) ) ) ]

Mass_matrix [ 2 , 0 : 3 ] = [ Lagrange_q . c o e f f ( Der iva t ive (U(T) , (T, 2) ) ) ,
Lagrange_q . c o e f f ( Der iva t i ve ( phi (T) , (T, 2) ) ) , Lagrange_q . c o e f f (
Der iva t i ve ( q (T) , (T, 2) ) ) ]

f o r i in range (n) :
Mass_matrix [ 0 , 3 : i + 3 ] = Lagrange_U . c o e f f ( Der iva t i ve (u [ i ] (T) ,

(T, 2) ) )
Mass_matrix [ 1 , 3 : i + 3 ] = Lagrange_phi . c o e f f ( Der iva t ive (u [ i ] (T

) , (T, 2) ) )
Mass_matrix [ 2 , 3 : i + 3 ] = Lagrange_q . c o e f f ( Der iva t i ve (u [ i ] (T) ,

(T, 2) ) )

Mass_matrix [ i + 3 , 0 ] = Lagrange_u [ i ] . c o e f f ( Der iva t ive (U(T) , (T
, 2) ) )
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Mass_matrix [ i + 3 , 1 ] = Lagrange_u [ i ] . c o e f f ( Der iva t ive ( phi (T) ,
(T, 2) ) )

Mass_matrix [ i + 3 , 2 ] = Lagrange_u [ i ] . c o e f f ( Der iva t ive ( q (T) , (T
, 2) ) )

f o r j in range (n) :
Mass_matrix [ i + 3 , j + 3 ] = Lagrange_u [ i ] . c o e f f ( Der iva t i ve (

u [ j ] (T) , (T, 2) ) )

# S t i f f n e s s matrix :

g l oba l St i f f_matr ix

St i f f_matr ix = np . z e r o s ( ( ( n + 3) , (n + 3) ) , dtype=’complex_ ’ )

St i f f_matr ix [ 0 , 0 : 3 ] = [ Lagrange_U . c o e f f (U(T) ) , Lagrange_U . c o e f f (
phi (T) ) , Lagrange_U . c o e f f ( q (T) ) ]

S t i f f_matr ix [ 1 , 0 : 3 ] = [ Lagrange_phi . c o e f f (U(T) ) , Lagrange_phi .
c o e f f ( phi (T) ) , Lagrange_phi . c o e f f ( q (T) ) ]

S t i f f_matr ix [ 2 , 0 : 3 ] = [ Lagrange_q . c o e f f (U(T) ) , Lagrange_q . c o e f f (
phi (T) ) , Lagrange_q . c o e f f ( q (T) ) ]

f o r i in range (n) :
S t i f f_matr ix [ 0 , 3 : i + 3 ] = Lagrange_U . c o e f f (u [ i ] (T) )
St i f f_matr ix [ 1 , 3 : i + 3 ] = Lagrange_phi . c o e f f (u [ i ] (T) )
St i f f_matr ix [ 2 , 3 : i + 3 ] = Lagrange_q . c o e f f (u [ i ] (T) )

St i f f_matr ix [ i + 3 , 0 ] = Lagrange_u [ i ] . c o e f f (U(T) )
St i f f_matr ix [ i + 3 , 1 ] = Lagrange_u [ i ] . c o e f f ( phi (T) )
St i f f_matr ix [ i + 3 , 2 ] = Lagrange_u [ i ] . c o e f f ( q (T) )
f o r j in range (n) :

S t i f f_matr ix [ i + 3 , j + 3 ] = Lagrange_u [ i ] . c o e f f (u [ j ] (T) )

# Damping matrix

Damp_matrix = np . z e r o s ( ( ( n + 3) , (n + 3) ) , dtype=’complex_ ’ )

Damp_matrix [ 0 , 0 : 3 ] = [ Lagrange_U . c o e f f ( Der iva t ive (U(T) , T) ) ,
Lagrange_U . c o e f f ( Der iva t i ve ( phi (T) , T) ) , Lagrange_U . c o e f f (
Der iva t i ve ( q (T) , T) ) ]

Damp_matrix [ 1 , 0 : 3 ] = [ Lagrange_phi . c o e f f ( Der iva t i ve (U(T) , T) ) ,
Lagrange_phi . c o e f f ( Der iva t ive ( phi (T) , T) ) , Lagrange_phi . c o e f f (
Der iva t i ve ( q (T) , T) ) ]

Damp_matrix [ 2 , 0 : 3 ] = [ Lagrange_q . c o e f f ( Der iva t i ve (U(T) , T) ) ,
Lagrange_q . c o e f f ( Der iva t i ve ( phi (T) , T) ) , Lagrange_q . c o e f f (
Der iva t i ve ( q (T) , T) ) ]

f o r i in range (n) :
Damp_matrix [ 0 , 3 : i + 3 ] = Lagrange_U . c o e f f ( Der iva t i ve (u [ i ] (T) )

)
Damp_matrix [ 1 , 3 : i + 3 ] = Lagrange_phi . c o e f f ( Der iva t i ve (u [ i ] (T

) ) )
Damp_matrix [ 2 , 3 : i + 3 ] = Lagrange_q . c o e f f ( Der iva t i ve (u [ i ] (T) )
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)

Damp_matrix [ i + 3 , 0 ] = Lagrange_u [ i ] . c o e f f ( Der iva t i ve (U(T) ) )
Damp_matrix [ i + 3 , 1 ] = Lagrange_u [ i ] . c o e f f ( Der iva t i ve ( phi (T) ) )
Damp_matrix [ i + 3 , 2 ] = Lagrange_u [ i ] . c o e f f ( Der iva t i ve ( q (T) ) )
f o r j in range (n) :

Damp_matrix [ i + 3 , j +
3 ] = Lagrange_u [ i ] . c o e f f ( Der iva t i ve (u [ i ] (T) , T)

)

wave_shape = 0
f o r i in range (n) :

f o r j in range (m) :
wave_shape += wave_shape_sA( alpha (a , m) [ j ] , B_A0(a , h , m, n

) [ j ] ) . subs (q (T) , sympy . exp ( I ∗ omega_A [ j ] ∗ t ) ) +
wave_shape_sS ( beta (a , m) [ j ] , B_S0(a , h , m, n) [ j ] ) . subs (q
(T) , sympy . exp ( I ∗ omega_S [ j ] ∗ t ) ) + h + delta_h

i f load i s None :
Load = np . z e r o s (3 + n , dtype=’complex_ ’ ) . t ranspose ( )
Load [ 0 : 2 ] = M_total # Normalized un i t load

e l s e :
Load = load
Load [ 0 : 2 ] += M_total # Normalized un i t load

eom = (−omega∗∗2 ∗ (Mass_matrix + A) @ disp + 1 j ∗ omega ∗ (
Damp_matrix + B) @ disp + ( St i f f_matr ix + D) @ disp )

re turn (eom . r e a l + eom . imag − Load )

C.7 Iteration

de f i t e r a t i o n (omega , t , rho , a , h , M, g , M_tmd, c_tmd , k_tmd , c_tld , m,
n , A, B, D, max_error= 0 .01 , max_iterat ions= 25 , load= None ) :
# Finding i n i t i a l i n t e r v a l :
dpot_dx0= dpotential_dx0 (a , h , m, n)
dpot_dz0= dpotent ia l_dz0 (a , h , m, n)
d0= Response0 (omega , t , rho , a , h , M, g , M_tmd, c_tmd , k_tmd , c_tld

, m, n , A, B, D, dpot_dx0 , dpot_dz0 , load= None )
x0= copy . copy ( d0 )

# Create Jacobian :
Jac= np . z e r o s ( ( n + 3 , n + 3) )

eps = np . z e r o s ( ( n + 3 , n + 3) ) # The s t e p s i z e f o r the approximate
d e r i v a t i v e

f o r i in range (n + 3) :
eps [ i ] [ i ] = max_error ∗ 0 .01

s o l u t i o n = False
f o r j in range (2 ) :
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i f s o l u t i o n == True :
break

e l i f j > 0 :
x0 = −copy . copy ( d0 )

f 0= G(x0 , omega , t , rho , a , h , M, g , M_tmd, c_tmd , k_tmd , c_tld
, m, n , A, B, D, dpotentia l_dx (x0 , a , h , m, n) ,
dpotent ia l_dz ( x0 , a , h , m, n) , load=None )

f_dic= {}
f o r dx in range (n) :

f_dic [ ’ f ’ + s t r ( dx ) ] = G( x0 + eps [ dx + 3 ] , omega , t , rho , a
, h , M, g , M_tmd, c_tmd , k_tmd , c_tld , m, n , A, B, D,
dpotentia l_dx ( x0 + eps [ dx + 3 ] , a , h , m, n) ,
dpotent ia l_dz ( x0 + eps [ dx + 3 ] , a , h , m, n) , load=None )

f o r df in range (n + 3) :
Jac [ df ] [ dx + 3 ] = ( f_dic [ ’ f ’ + s t r ( dx ) ] [ d f ] − f0 [ df ] ) /

eps [ df ] [ d f ]
delta_x = np . l i n a l g . pinv ( Jac ) @ f0
r = 1 # damping f a c t o r
_t = x0 − r ∗ delta_x
f_t = G(_t , omega , t , rho , a , h , M, g , M_tmd, c_tmd , k_tmd ,

c_tld , m, n , A, B, D, dpotentia l_dx (_t , a , h , m, n) ,
dpotent ia l_dz (_t , a , h , m, n) , load=None )

whi l e ( f_t > disp2 ) . any ( ) :
r = 1/2 ∗ r
_t = x0 − r ∗ delta_x
f_t = G(_t , omega , t , rho , a , h , M, g , M_tmd, c_tmd , k_tmd ,

c_tld , m, n , A, B, D, dpotentia l_dx (_t , a , h , m, n) ,
dpotent ia l_dz (_t , a , h , m, n) , load=None )

delta_x = x0 − _t
f1 = f_t
x1 = x0 − r ∗ delta_x
f o r dx in range (n) :

f_dic [ ’ f ’ + s t r ( dx ) ] = G( x1 + eps [ dx + 3 ] , omega , t , rho , a
, h , M, g , M_tmd, c_tmd , k_tmd , c_tld , m, n , A, B, D,
dpotentia l_dx ( x1 + eps [ dx + 3 ] , a , h , m, n) ,
dpotent ia l_dz ( x1 + eps [ dx + 3 ] , a , h , m, n) , load=None )

f o r df in range (n + 3) :
Jac [ df ] [ dx + 3 ] = ( f_dic [ ’ f ’ + s t r ( dx ) ] [ d f ] − f1 [ df ] ) /

eps [ df ] [ d f ]
delta_x = np . l i n a l g . pinv ( Jac ) @ f1
r = 1 # damping f a c t o r
_t = x1 − r ∗ delta_x
f_t = G(_t , omega , t , rho , a , h , M, g , M_tmd, c_tmd , k_tmd ,

c_tld , m, n , A, B, D, dpotentia l_dx (_t , a , h , m, n) ,
dpotent ia l_dz (_t , a , h , m, n) , load=None )

whi l e ( f_t > disp2 ) . any ( ) :
r = 1/2 ∗ r
f_t = G( x1 − r ∗ delta_x , omega , t , rho , a , h , M, g , M_tmd,

c_tmd , k_tmd , c_tld , m, n , A, B, D, dpotentia l_dx ( x1 −
r ∗ delta_x , a , h , m, n) , dpotent ia l_dz ( x1 − r ∗ delta_x
, a , h , m, n) , load=None )

delta_x = x1 − _t
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f1 = f_t
x0 = copy . copy ( x1 )
x2 = x1 − r ∗ delta_x
f o r i in range ( max_iterat ions ) :

i f ( abs ( ( x2 − x1 ) ) <= max_error ) . a l l ( ) or ( ( abs ( f 1 ) <
max_error ) . a l l ( ) ) :
s o l u t i o n = True
response = 1/2 ∗ ( x1 + x2 )
break

# I f the re i s a cy c l e between two po in t s :
e l i f ( a l l ( x0 == x2 ) ) :

break
e l i f any (np . i snan ( x2 ) ) :

break
e l s e :

f 0= copy . copy ( f1 )
x0 = copy . copy ( x1 )
x1 = copy . copy ( x2 )
f 1= G(x1 , omega , t , rho , a , h , M, g , M_tmd, c_tmd ,

k_tmd , c_tld , m, n , A, B, D, dpotentia l_dx (x1 , a , h ,
m, n) , dpotent ia l_dz ( x1 , a , h , m, n) , load=None )

# Update the Jacobian
f o r dx in range (n) :

f_dic [ ’ f ’ + s t r ( dx ) ] = G( x1 + eps [ dx + 3 ] , omega , t
, rho , a , h , M, g , M_tmd, c_tmd , k_tmd , c_tld , m
, n , A, B, D, dpotentia l_dx ( x1 + eps [ dx + 3 ] , a ,
h , m, n) , dpotent ia l_dz ( x1 + eps [ dx + 3 ] , a , h ,
m, n) , load=None )

f o r df in range (n + 3) :
Jac [ df ] [ dx + 3 ] = ( f_dic [ ’ f ’ + s t r ( dx ) ] [ d f ] −

f1 [ df ] ) / eps [ df ] [ d f ]
delta_x = np . l i n a l g . pinv ( Jac ) @ f1
r = 1 # damping f a c t o r
_t = x1 − r ∗ delta_x
f_t = G(_t , omega , t , rho , a , h , M, g , M_tmd, c_tmd ,

k_tmd , c_tld , m, n , A, B, D, dpotentia l_dx (_t , a , h ,
m, n) , dpotent ia l_dz (_t , a , h , m, n) , load=None )

whi l e ( f_t > f1 ) . any ( ) :
r = 1/2 ∗ r
_t = x1 − r ∗ delta_x
f_t = G(_t , omega , t , rho , a , h , M, g , M_tmd, c_tmd

, k_tmd , c_tld , m, n , A, B, D, dpotentia l_dx (_t ,
a , h , m, n) , dpotent ia l_dz (_t , a , h , m, n) ,

load=None)
delta_x = x1 − _t
f1 = f_t
x2 = x1 − r ∗ delta_x

i f s o l u t i o n == False :
r e sponse= d0

data [ "G(omega=" + s t r ( omega ) + " , t=" + s t r ( t ) + "c_tmd=" + s t r (
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c_tmd) + "k_tmd=" + s t r (k_tmd) + "c_tld=" + s t r ( c_tld ) + "h_tld
=" + s t r (h) + ") " ] = response . t o l i s t ( )

# Saving the wave shape
q = sympy . Function ( ’ q ’ )
omega_A = Omega_A( alpha (a , m) , B_A( response , a , h , m, n) , g , m)
omega_S = Omega_S( beta (a , m) , B_S( response , a , h , m, n) , g , m)
wave_shape = 0
f o r j in range (m) :

wave_shape += wave_shape_sA( alpha (a , m) [ j ] , B_A( response , a , h ,
m, n) [ j ] ) . subs (q (T) , sympy . exp ( I ∗ omega_A [ j ] ∗ t ) ) +

wave_shape_sS ( beta (a , m) [ j ] , B_S( response , a , h , m, n) [ j ] ) .
subs (q (T) , sympy . exp ( I ∗ omega_S [ j ] ∗ t ) )

width = np . l i n s p a c e (−a , a , 50)
w = [ ]
f o r j in range ( l en ( width ) ) :

w = np . append (w, i n t ( sympy . re ( ( wave_shape − h − delta_h ) . subs (X
, width [ j ] ) . e v a l f ( ) ) + sympy . im ( ( wave_shape − h − delta_h ) .
subs (X, width [ j ] ) . e v a l f ( ) ) ) )

data [ ’ wave_shape (Omega : ’ + s t r ( omega ) + ’ , t : ’ + s t r ( t ) + "c_tmd="
+ s t r (c_tmd) + "k_tmd=" + s t r (k_tmd) + "c_tld=" + s t r ( c_tld ) + "
h_tld=" + s t r (h) + ’ ) ’ ] = w. t o l i s t ( )

i f s o l u t i o n == False :
p r i n t ( ’No covergence reached , omega=’ + s t r ( omega ) + ’ t=’ + s t r

( t ) )
e l s e :

p r i n t ( ’ rank : ’ , rank , ’ Convergence ! r e sponse = ’ , r e sponse )

re turn response . r e a l + response . imag

# Performance index
de f J ( t , rho , a , h , M, g , M_tmd, c_tmd , k_tmd , c_tld , m, n , A, B, D,

omega_0 , omega_end , omega_num, max_error=0.01 , max_iterat ions =25,
load=None) :

omega = np . l i n s p a c e (omega_0 , omega_end , omega_num)
S0 = 1 # white no i s e spectrum ( constant )

H_U = np . z e r o s ( l en ( omega ) )
H_phi = np . z e r o s ( l en ( omega ) )

t ry : # i f the f u l l r e sponse matrix a l r eady e x s i s t s , i t doesn ’ t
have to be c a l c u l a t ed again
data [ " r e sponse s (Omega=(" + s t r (omega_0) + " ," + s t r (omega_end)

+ " ," + s t r (omega_num) + ") , t=" + s t r ( t ) + " , c_tmd=" + s t r
(c_tmd [ 0 ] ) + " , k_tmd=" + s t r (k_tmd [ 0 ] ) + "c_tld=" + s t r (
c_tld ) + "h_tld=" + s t r (h) + ") " ]

except KeyError :
data [ " r e sponse s (Omega=(" + s t r (omega_0) + " ," + s t r (omega_end)
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+ " ," + s t r (omega_num) + ") , t=" + s t r ( t ) + " , c_tmd=" + s t r
(c_tmd [ 0 ] ) + " , k_tmd=" + s t r (k_tmd [ 0 ] ) + "c_tld=" + s t r (
c_tld ) + "h_tld=" + s t r (h) + ") " ] = [ ]

d i s = np . z e r o s ( ( l en ( omega ) , n + 3) )

f o r i in range ( l en ( omega ) ) :
t ry : # i f any response array a l r eady e x s i s t s , i t doesn ’ t have

to be c a l c u l a t ed again
data [ " r e sponse s (Omega=(" + s t r (omega_0) + " ," + s t r (

omega_end) + " ," + s t r (omega_num) + ") , t=" + s t r ( t ) +
" , c_tmd=" + s t r (c_tmd [ 0 ] ) + " , k_tmd=" + s t r (k_tmd [ 0 ] )
+ "c_tld=" + s t r ( c_tld ) + "h_tld=" + s t r (h) + ") " ] [ i ]

except ( KeyError , IndexError ) :
t ry :

d i s [ i ] = i t e r a t i o n ( omega [ i ] , t , rho , a , h , M, g , M_tmd,
c_tmd , k_tmd , c_tld , m, n , A, B, D, max_error=0.01 ,
max_iterat ions =25, load=None )

data [ " r e sponse s (Omega=(" + s t r (omega_0) + " ," + s t r (
omega_end) + " ," + s t r (omega_num) + ") , t=" + s t r ( t
) + " , c_tmd=" + s t r (c_tmd [ 0 ] ) + " , k_tmd=" + s t r (
k_tmd [ 0 ] ) + "c_tld=" + s t r ( c_tld ) + "h_tld=" + s t r (h
) + ") " ] . append ( d i s [ i ] . t o l i s t ( ) )

except np . l i n a l g . LinAlgError :
p r i n t ( ’ s i n gu l a r : ’ , i )
data [ " r e sponse s (Omega=(" + s t r (omega_0) + " ," + s t r (

omega_end) + " ," + s t r (omega_num) + ") , t=" + s t r ( t
) + " , c_tmd=" + s t r (c_tmd [ 0 ] ) + " , k_tmd=" + s t r (
k_tmd [ 0 ] ) + "c_tld=" + s t r ( c_tld ) + "h_tld=" + s t r (h
) + ") " ] . append ( d i s [ i − 1 ] . t o l i s t ( ) )

f o r i in range ( l en ( omega ) ) :
H_U[ i ] = d i s [ i ] [ 0 ]
H_phi [ i ] = d i s [ i ] [ 1 ]

data [ "H_U(Omega=(" + s t r (omega_0) + " ," + s t r (omega_end) + " ," +
s t r (omega_num) + ") , t=" + s t r ( t ) + " , c_tmd=" + s t r (c_tmd [ 0 ] ) +
" , k_tmd=" + s t r (k_tmd [ 0 ] ) + "c_tld=" + s t r ( c_tld ) + "h_tld=" +
s t r (h) + ") " ] = H_U. t o l i s t ( )

data [ "H_Phi(Omega=(" + s t r (omega_0) + " ," + s t r (omega_end) + " ," +
s t r (omega_num) + ") , t=" + s t r ( t ) + " , c_tmd=" + s t r (c_tmd [ 0 ] ) +
" , k_tmd=" + s t r (k_tmd [ 0 ] ) + "c_tld=" + s t r ( c_tld ) + "h_tld=" +
s t r (h) + ") " ] = H_phi . t o l i s t ( )

# optimum fo r U and phi wanted :
E_U = S0 ∗ np . t rapz ( abs (H_U) , x=omega )
# the ho r i z on t a l r e sponse o f the hub i s most important here
E_phi = S0 ∗ np . t rapz ( abs (H_phi ∗ h_hub) , x=omega )

data [ " J (Omega=(" + s t r (omega_0) + " ," + s t r (omega_end) + " ," + s t r (
omega_num) + ") , t=" + s t r ( t ) + " , c_tmd=" + s t r (c_tmd [ 0 ] ) + " ,
k_tmd=" + s t r (k_tmd [ 0 ] ) + "c_tld=" + s t r ( c_tld ) + "h_tld=" +
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s t r (h) + ") " ] = E_U + E_phi

re turn E_U + E_phi

omega_0 = 10∗∗−5
omega_end = 3
omega_num = 100

# One parameter at a time :
r e s u l t s = J ( time , rho , a , h , M, g , M_tmd, c_tmd , k_tmd , c_tld , m, n , A,

B, D, omega_0 , omega_end , omega_num, max_error=0.01 , max_iterat ions
=25, load=None )

comm. Bar r i e r ( )

# S e n s i t i v i t y o f any parameter ( here only shown f o r c_tmd) :

c_tmd_sensitive = comm. s c a t t e r (np . l i n s p a c e (c_tmd [ 0 ] − 0 .1 ∗ c_tmd [ 0 ] ,
c_tmd [ 0 ] + 0 .1 ∗ c_tmd [ 0 ] , 25) , root=0)

# k_tmd_sensitive = comm. s c a t t e r (np . l i n s p a c e (k_tmd [ 0 ] − 0 .1 ∗ k_tmd [ 0 ] ,
k_tmd [ 0 ] + 0 .1 ∗ k_tmd [ 0 ] , 25) , root=0)

# h_sens i t i ve= comm. s c a t t e r (np . l i n s p a c e (h ∗ . 95 , h ∗1 .05 , 25) )
# c_t ld_sens i t i ve = comm. s c a t t e r (np . l i n s p a c e ( c_tld [ 0 ] − 0 .1 ∗ c_tld [ 0 ] ,

c_tmd [ 0 ] + 0 .1 ∗ c_tld [ 0 ] , 25) , root=0)

r e s u l t s = J ( time , rho , a , h , M, g , M_tmd, c_tmd_sensitive ∗ np . ones (n) ,
k_tmd , c_tld , m, n , A, B, D, omega_0 , omega_end , omega_num,

max_error=0.01 , max_iterat ions =25, load=None )

comm. Bar r i e r ( )

J = comm. reduce ( r e s u l t s , op=MPI.SUM, root=0)

i f rank == 0 :
f o r i in range (1 , s i z e , 1) :

data_i = comm. recv ( source=i , tag=11)
f o r key in data_i :

i f key in data :
data [ key ] = data [ key ]

e l s e :
data [ key ] = data_i [ key ]

data [ " J_total (" + " , c_tmd=" + s t r (c_tmd [ 0 ] ) + " , k_tmd=" +
s t r (k_tmd [ 0 ] ) + "c_tld=" + s t r ( c_tld ) + "h_tld=" + s t r (h) + ")

" ] = J / s i z e
jdata = json . dumps( data , indent=4)
f = open (" model3 . j son " , "w")
f . wr i t e ( jdata )
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f . c l o s e ( )
p r i n t (" J =" + s t r ( J / s i z e ) , " f o r c_tmd=" +

s t r (c_tmd [ 0 ] ) + " , k_tmd=" + s t r (k_tmd [ 0 ] ) + "c_tld=" + s t r (
c_tld ) + "h_tld=" + s t r (h) + ") ")

e l s e :
data_i = data
comm. send ( data_i , des t =0, tag=11)
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