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Role of elasticity forces in thermodynamics of intercalation compounds:
Self-consistent mean-field theory and Monte Carlo simulations
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2628 CJ Delft, The Netherlands
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We propose a self-consistent mean-field lattice-gas theory of intercalation compounds based on
effective interactions between interstitials in the presence of the host atoms. In addition to
short-range screened Coulomb repulsions, usually discussed in the lattice gas models, the present
theory takes into account long-range effective attractions between intercalants due to elasticity of
the host matrix. The mean-field phase diagram in the space of interaction parameters contains the
domains of first- and second-order transitions of the order-disorder type, separated by a tricritical
line, and the domain of the first-order transition of the gas-liquid-type separated from the
homogeneous state by a critical line. Theoretical predictions are shown to be in qualitative
agreement with the grand canonical Monte Carlo simulations. The peculiarities of the phase diagram
give an insight into different types of behavior of the open circuit voltage observed in rechargeable
batteries, in which an intercalation compound is used as an electrode materiaDOZAmerican
Institute of Physics.[DOI: 10.1063/1.1436472

I. INTRODUCTION Il. MODEL

An intercalation compound represents a host matrix Wiﬂ]atti We treat an intercalation compound as a one-component

A o ce gas of interstitials interacting via effective potentials
a number of guest atoms occupying interstitial sites. In alkall__ . . ) "
. ; . mediated by the host matrix. We assume that the interstitial
metal intercalation compounds—an example isSMO,

o . . . lattice is bichromatic with a coordination numbgrand a
where lithium is intercalated into a meflsl)—oxide . . .
. . S . total number of sitedN. All sites are assumed to be equiva-
matrix—the guest is fully ionized and donates stelectron

to0 the host’ bands. Th terials attract id lent. The basic effective interactions are due(ifoelectro-
0 e hos .S energy bands. . ese ma. enais a ra(; consl %fatic forces andii) elasticity of the host material. We dis-
able attention because of their potential use as high-dens

'Buss them below in more detail.

battew electrodes(see e.g. Refs. 1, 2, and references Coulomb repulsion between intercalated ions is screened

therein. . , o by the negative charge of the host electrons. In typical com-
Absorption of ions in the course of intercalation is fre- 45 the large electron concentration of the host results

host matrixX* suggesting the importance of elasticity effects.; is therefore plausible to assume that repulsions are

This statement is supported by x-ray méasurefﬁﬂ'ﬁm‘?'ab between nearest neighbors, the pair interaction energy
initio calculationg. A statistical mechanical description of ~30-70 meV’ With each sité we associate a variabg

intercalation compounds is usually based on lattice gas moqyhich is unity if the site is occupied and zero otherwise. The
els with the total neglect of elasticity effects. In the presentenisive energy of an arbitrary configuration is
paper we take into account the elastic properties of the host

material in a simplified manner using the self-consistent
mean-field approximatiofSec. ). The model gives rise to
the n:ean-ﬂelfd pr?ase ?lagr_atl_m.gnalyﬁllng I (\;ve |dde_nt|f3é Vart\where @,j)nn denotes summation over nearest neighbors
ous types of phase transt lor(ec. ll)—order-— ISOTAET,  \vith each pair counted only once.

gas—liquid—which occur in the compound at a certain range The host lattice is deformable and absorption of guest

of parameterstemperature, elastlcny_ coupl_mgTq test the ions induces a long-range strain field in it. The elastic energy
theory we performed Monte Carlo simulations in the grand

. . i of the strained crystal is equivalent to an effective interac-
canonical ensembléSec. 1V). The phase diagram qualita- 4 d

el lai h it t th ) I tion, ugj;, between intercalants mediated by the host. Its
tively explains t € pecu |ar|t|e§ of t € experlmenta' Y strength is independent of the size of the sample but depends
observed open circuit voltage of intercalation cells in which

! _ _ lon elastic conditions imposed on its boundarin the
an intercalation compound is used as an electrode mate”%llowing 9 we divideuy,; into two parts
’ el,ij ’

An application of the theory for the open circuit voltage
calculations and comparison with experiment is presented  Ueiij=Ug(Fij) +Ug(r1,T2), 2
in Sec. V.

Eo(ply--,pN):U(i% PiP;j 1)

wherer;j=|r;—r,| is the separation between intercalants.
The first term is the interaction in an infinite host medium
dElectronic mail: V.Kalikmanov@tn.tudelft.nl and the second arises from image forces which are required
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to satisfy the boundary conditions imposed on the surface din the spirit of a mean-field approach we introduce the aver-
the sample. In our investigation of the elasticity effects weage density of intercalants=(p;) and approximaté6) as
will resort to a simplified description based on the following
approximations(a) The host material is assumed to be elas-
tically isotropic, which means that its elasticity properties are
described by the two scalar parametéesg., the Young
modulusY and the Poisson ratie). (b) The intercalation ~Summarizing, the full Hamiltonian is
process causes equal extension of the host in all three dimen-
sions.(c) The surface of the sample is free. B 5
In elasticity theory the effect of an intercalated particle E(plv---’F’N)—U(i]j)nn pipj_Ae|Xi21 PitZ AN (8)
on a host can be adequately described by the “force dipole
tensor”% which is a first moment tensor of the body forces Consider the grand canonical(N,T) ensemble, whergw

1
Ee|(p1,...,pN)%—Ae|in pi+5 AN, @)

N

f in the elastic medium, is the chemical potential of an intercalant, ahdé the tem-
perature. The number of occupied sites is not fixed implying
Pij:f drx; f;, that the average oc'cupation depe'nds onu gnd T. The .
grand partition function of the lattice gas with the Hamil-

wherex; and f; are Cartesian coordinates ofand f. As- tonian (8) is
sumptionga) and(b) lead to a particularly simple form d,

Pij = Potsij y

1
E(M,N,T)zexr{—E,BAe,sz

where §;; is the Kronecker delta. The bulk contribution in N
Eqg. (2) can be expressed in terms of the diagonal compo- X > ex ,82 (et AegX)pi | expl— ,BEO]},
nents of P and the infinite medium Green’s function {p} =1
Gik(r).> If a particle is intercalated in the origin, then for (9)
another particle located at the pointthe bulk interaction
energy with the first one is given by where the summation in the outer sum is over all configura-
s 3 tions of intercalantsp=1/(kgT), kg is the Boltzmann con-
" 5 JGk stant. We stress that entersE in a self-consistent wayx
Ue(r) = POi:l ,Zl m 3 =Xx(u,T). An important observation is that elastic interac-

tions in our model give rise to the renormalization of the
For an isotropic mediunjassumption(@)] Green’s function  chemical potential,

reads?

p— pt AeX(u, T),

Gu—a R iply @

k=873 r ke compared to the system with pure repulsi¢tie latter case
refers to the topotactic intercalatithh

with the coefficienta(Y,») andb(Y,») depending on the At this stage it is convenient to formulate an equivalent

elastic constants of the host material. From Eg8s.and (4) spin system: a fully occupied lattice f spinss,=*1 de-

we find ug(r)=0. Thus, under assumptioita) and (b) the fined through the relationship=2p;— 1. Using the standard

bulk contri_buti_on to the elastic inter_action vanishes. The SuriechniquéS we find for the grand potential of the lattice gas
face contribution depends on the imposed boundary condi, — —KeTINE

tions. For a completely free samplassumption(c)] it is

known to be attractive and infinitely long-rantfe:® [Note u qu Ay

that for a perfectly clamped surface, whose volume is kept ~ (u,N,T)==N|Z— =+ —=(1+m)
constant(no expansio) the effective elastic interaction can
be repulsive; in practice, however, it is difficult to clamp the
sample without hindering the intercalation procgSaimma-
rizing, we can write

—%(Hm)z + Fis,
where F s is the Helmholtz free energy of the antiferromag-
Uelij = = Ael PiP; - (3 netic Ising model with a coupling energy4 in an external
Thus, the effective elastic interactions in our model reduce tdield
the infinitely long-range attractions. The elastic couplig
can be expressed in terms6f v, andP,. However, in the H= fad
present model, we considér, a fitting parameter for com- 2
parison with experimental data. . o
The elastic interaction energy of an arbitrary configura-Wh_ere m=(si_>:2x—} S the average magnetization per
tion of intercalants reads spin. The “Ising Hamiltonian” reads

qu AeI
T+T(1+m), (10)

1
Ee|(p1,-..,pN)=—AemiEj Pip; (6) H.S=Z(i2 sisj—H2 ;. (1)
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FIG. 1. Chemical potential vs concentration for the lattice with the coordi-FIG. 2. Phase diagram of an intercalation compound. I, domain of 1st order

nation numberg=4 at the temperature=2. The mean-field critical tem-
peraturet™™=q=4. Curves are labeled with the value #fF; ¢F=0 cor-
responds to the absence of attractions.

antiferromagnetic—paramagnetis—P) transitions; I, domain of second or-
der A—P transitions; Ill, domain of gas-liquiG—L) transitions; 1V,
homogeneous state.

The self-consistent nature of the original lattice gas is inher=—2- Curves are labeled by the values of the elastic coupling.
ited by the spin system by virtue of the external field depen©ONe can see that a shape of a curve strongly depends on the

dence on the magnetizatipiq. (10)] which itself is a func-
tion of the field,m=m(H,T).
The magnetization is an odd function ldfimplying that

X(—H)=1-x(H). In turn for eachx there is a unique value
of u; thus, using Eq(10) we find a general property of the

model reflecting the equivalence of sités “particle—hole
symmetry”),

p(X)+p(l=x)=(q—&"u

In particular, at the half-filling,
1) (g=&")u
M A=A .

for all t.

=3 > (12

Where we introduced a reduced temperatiredkgT/
u, and a reduced elastic coupling,

Ael

MF _
¢ u

13

representing a relative strength of the elastic interactions

value of ¢F. All the curves shown in Fig. 1 contain singu-
larity points—kinks and/or plateaus—signaling about phase
transitions of different types.

Ill. PHASE DIAGRAM

Equations(14)—(15) give rise to the mean-field phase
diagram. Let us first discuss some of its features qualita-
tively. At low temperatures in the absence of elastic forces
(éMF=0) the short-range repulsions result in the order—
disorder(antiferromagnetic—paramagnet@ontinuous phase
transitiort* at a certain critical value of the chemical poten-
tial; the order parameter being the staggered magnetization,

p=(my—my)/2.

Note, that in the original lattice-gas formulatio#h=x;
—X,, Wherex; and x, are the average occupations of the
sublattices, the ordered state corresponds to the preferential
occupation of one of the sublattices.

If attractive (elastio interactions are “switched on”

with respect to(electrostatig repulsions. Recalling that the (£MF>0),'® they compete with repulsions and beyond a cer-
interstitial lattice is bichromatic and applying the mean-fieldtain value of &M this transition is driven first order. In this

approximation, we obtain from Ed11) the coupled self-
consistent mean-field equations for magnetizationsand
m, of the sublattices,

MF
> _ _ ¢MF
m1+tan}{h+ or M 5 (29—¢ )mz}, (14
MF 1
_ _ _ ¢MF
mz—tanr{th Sy M 5 (20— ¢ )ml}, (19
where
2u MF_ g
h= F + Y, Y= t (16)

The magnetization per spin for the entire latticaris- (m;
+m,)/2.
In the general casé.e., whenm;#m,) the equations

case¢ jumps at the transition poini.e., at someu) from

zero to a finite value. An infinitesimally small jump corre-
sponds to the tricritical point, where both types of transition
meat each other. If attractions are sufficiently strong the an-
tiferromagnetic ordering does not occur at all being replaced
by the ferromagnetic ordering making no distinction between
sublattices. In this case at low temperatures a first-order tran-
sition of the gas—liquid type takes place.

Figure 2 shows the phase diagram of an intercalation
compound in the space of parametetty(éMF/q). In the
low-temperature region€t/q<1 domains | and Il corre-
spond to the antiferromagnetic—paramagnétie-P) transi-
tion, which is first-order in | and continuous in Il. By this we
mean that, if we fix an arbitrary point/@,&F/q) in 1 or lI
and study the behavior of the system at different values, of
then at a certainu. the system undergoes the A—P phase

must be solved numerically. Figure 1 illustrates the behaviotransition (either first-order or continuolyisthe latter results

of w(x) resulting from Eqs(14) and (15 for g=4 andt

in the presence of singularity points on thgu) curve.
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In the symmetric phase; =m,=m and Eqgs.(14) and If elastic interactions are sufficiently strong\'¥/q>2,
(15) reduce to the single equation, the antiferromagnetic state is unstable for allwhile the
stable ordered phase is ferromagnetic with= m,=m sat-
—-q s _ —y L
mztam{m )m} isfying m=tanhf+ym). The first-order transition of the
gas-liquid type(G-L) with the jump in the magnetization
yielding the analytical solution, which in the original lattice M— —m takes place in the zero fielth0) when y>1
gas variables reads (domain Ill in Fig. 2. Thus, from Eq(16) the value ofu at
the G-L transition point,
X
™M) = (q— ) ux+kgT In(—)- 17 (q— EVFyu
1-x =— 24)
MG-L 2 (

It gives the free energy cost for the insertion of an intercalant

into the host matrix. The second term is the entropic contriis independent of the temperature.

bution. The first term is caused by interactions; depending on  If one continued the critical liney=1 into the low-

the strength of elastic forces it can be both positive and negdemperature regiot/q<1, one would observe that a part of

tive. In the nonsymmetric phase Eqd4)—(15 must be the domain I above this line is also a candidate for the G-L

solved numerically. transition. To decide which of the two transitions, A—P or
The boundary between the domains | and Il is given byG—L, is realized one has to determine the thermodynamically

the line of tricritical pointg(tricritical line). In numerical cal- ~ stable phase. A straightforward way to do this is to compare

culations it is difficult to determine accurately the location of the energies per spin of the antiferromagnetic and ferromag-

the tricritical point£yy , since the first-order transition in its netic states at=0. From Eqs(lO) to (13,

vicinity is very weak. To findéyr we apply the molecular Hls
field theory. Let us write the magnetization of sublattices in  e= N E SiSj— E Si,
the vicinity of the tricritical point asm;=m+ ¢, m,=m N &) '
— ¢. Equations(14)—(15) can be presented as MF|,
where H—ﬁ—%+§ (1+m).
2m=tanhy+r¢)+taniy—ro), (18 2 4
2¢p=tanh(y+r¢)—tanhy—r¢), (19 In the antiferromagnetic state &t 0 all spins of one of the

sublattice are “up,” and those of the other are “down;”
wherer=g/t andy=h+ ym. Note that botly andm depend Si(l): my=1, Si(2)=mz= —1 for all i, implying that

on ¢. Using the smallness ap near the tricritical point and
expanding all quantities in powers gfto the third order, we w o qu &M

derive a self-consistent equation H=H.= 2 272
d=b1¢p+b3¢*+0(4°) The energies of the sublattices are
with the coefficients G qu ’ RO qu h
r a 4 ar Ta 4 a
b=, (20) i : _
cosityg yielding the energy per spin of the entire system,
_[2sintfy,—1  2yagtanhy,] o1 elV+e?  qu
where In the ferromagnetic state &at=0, all spins have the
mo(1—md) same valuest!’=s®=m and m is either +1 or —1. For
yo=arctanhmy, ay=——7——, m=+1,
(1-mg)y—1
- ) , w qu &MFy
andm, satisfies the self-consistency relation, H= Hmzi— e >
my=tanhh+ ymy).
- o , qu po (-
The tricritical point is given by the conditiong;=1 and e:em:T—Hm: - §+ 2

b;=0. The first equality using Eq20) yields

t
M=+ /1~ 22
o q (22 H '_,u_qu _ . _qu ’_,u,

imposing the standard mean-field temperature requirement, -
t<tMF=q. The second equality combined with E¢g1) and  Note that from the three quantities ;, e, ande, only

(22) leads to the value ofF at the tricritical point, er,; depends on the elastic coupling. Figure 3 compares
with e; ; andey | . If €F/q<2 the antiferromagnetic state is

stable in a certain range @f. For illustration we show in
Fig. 3 the dashed line correspondingep, for &F/q=1;

MF
23 ¢ 3) f(2)= 2 0=z<1 (23)
q q/’ T 4-3z27 T

Downloaded 20 Sep 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



J. Chem. Phys., Vol. 116, No. 7, 15 February 2002 Thermodynamics of intercalation compounds 3087

1

.“\ L éMF=6 ¢00000¢000"°°é MF=2
Zeﬁ‘//c—]u\i:;“ Zeu/qu 05 “,“/wwn ‘i‘ﬁ““
051 \/ oal / f
g_ O B '.‘."‘ < 0.3 L ! fﬂ i
S *, 1
L 2e,/ :
N 05 L 02| j ]‘ 4*}‘/‘ ]
S 5 t=1.63
1t S%\\) 01 Xﬁx“ Eq .
. oA iq=
0 mqsﬁgg."ﬂxx A , L
153 ” 5 2 45 4 05 0 05

p/u

FIG. 4. Density vs chemical potential for the square latticet-afl.63:
Monte Carlo simulations. Curves are labeled by the valug™5t Arrows
show the direction of changing in simulations. Hysteresis observed for
&MF=6 manifests a first-order transition.

FIG. 3. Energy per spin of the antiferromagneti,)( and ferromagnetic
(er; andey)) state att=0.

one can see that the antiferromagnetic state is stable for
—1/2< ul(qu)<1/2. WhenéMF/q exceeds 2, the antiferro-

magnetic ordering becomes energetically unfavorable. Thugglye the model. This should also hold for MC and can serve

inside the entire domain | of the phase diagram the first-ordegs 3 test for MC results. For the square lattice aM&=6,
A-—P transition takes place. Eq. (12) predicts

In the high-temperature regiotig>1 the system can
either undergo a G-L transition or be in a homogeneous (g)meory
state. The boundary between Ill and IV is given by the line u
of critical points(critical line) y=1,

=-—1.
x=1/2

From the simulations we obtain

gMF t
—=—+1. LS
a d —) =—0.95+ —1. (27)
The G-L transition in 1l results in a broad plateau ©fx) U k=112
symmetric abouk=1/2. The valueu at coexistence is given For ¢gMF=2,
by Eq. (24). u theory u MC
7 (5 o 2
IV. MONTE CARLO SIMULATIONS U/ ip X=1/2

The phase diagram discussed in Sec. Il is by constructhis comparison shows that MC results satisfy the particle—
tion mean-field. As such it is expected to be qualitativelyhole symmetry.

correct, though quantitative differences with the “exact so-  For ¢MF=2 the point ¢/q,£MF/q)=(0.41,0.5) falls in

lution” are unavoidable(except for the zero temperature the domain Il of the phase diagram of Fig. 2 predicting the
where the mean-field description becomes exddte mean-  second-order transition of the order—disorder-type at some
field phase diagram does not depend on the dlmenSIOI’Billty critical value of yo For gMF=6 the point (/q,gMF/q)

of the lattice; at the same time the “exact solution” must —(0.41,1.5) falls in the domain |, where this transition is
possess &-dependence. In order to verify predictions of the first-order. A clear indication of a first-order transition ob-
theory we performed Monte Carl®1C) simulations(which

can be viewed as the “exact solutiondf the lattice gas in

the grand canonicalu, N, T) ensemble with the Hamil-

tonian, &= EMFp

B
05 | t=1.63 £0000000000000000060¢

1 ot

H=u 2 pipj_AelmZ pip; - (26) / b
(i:Dnn ¥ \

0 Al

|
\

AALA,
ALAL:
AL

X1-Xo

Simulations were performed for the 2D square lattice (
=4) containingN =900 sites with periodic boundary condi-
tions and 18 MC steps per lattice site. Some of the results
are presented in Figs. 4 and 5 showing the pidig) and |
¢(u), respectively, for the temperature 1.63 and the two D
values of the elastic couplingM™=2 and¢VF=6. 2 '
A general property of the model with the Hamiltonian
(26), manifesting the particle—hole symmetry, is the value of

w at a half-filling gi_Ven_bY_ EQ-(_]-Z)- This result _iS indepen-  FiG. 5. Order parameter vs chemical potential for the square lattite at
dent of the approximatiofin this case, mean-fieldused to  =1.63: Monte Carlo simulations. Notations are the same as in Fig. 4.

(p:

e

LKx
0000000000000 0000000° : ks
i

-1.5 -1 0.5 0 0.5
w/u
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served in simulations is a hysteresis on #{@) curve for et 1=63.5 meV
EMF=6 (Fig. 4 and ¢(u) curve (Fig. 5), where the arrows 441 ook ga"—.z of
show the direction of changing. — 1_1_65
For éMF=2 the “forward” and “backward” curves co- S 40 -
o . . " > 4 V,=4.107 V
incide to within the error bars; the location of the transition =
point u./u~—0.05 (vertical dashed lineis determined :
from the maximum of the staggered susceptibility monitored > 4y
during the simulation runs, > : : : :
Al A+B ! B i B+ i C
nyi—n, 38 : : :
=N[(xD)—((X))?], Xe=—c—, :
Xs [< s> (< s>)] s N 0 0.2 0.4 06 0.8 ]
wheren; andn, are occupations of the sublattices. The lo- X
cation of the transition point foeV"=6 (first-order phase rig. 6. OCV for LiMn,0; at 300 K. Circles, experiment of Liet al. (Ref.
transition can be found from the Maxwell construction. 17); solid line, theory.

The mean-field tricritical point for the square lattice at
t=1.63 is from Eq.(23): &y ~2.89. Our MC calculations o
predict the higher valuet¥©~5.2+5.3. The boundary be- atx=1/2, whereu is given by Eq.(12), and at some small
tween the G-L and A—P transition is found to be & x= 6<1 corresponding to a disordered state, for which from
~8.25, which is close to the mean-field predictighf=8  Eq.(17),
(the horizontal line in Fig. R 5

w(8)=(q—EMFYus+kgTIn——.

1-6

Using as an estimate~63.5 meV (see, e.g., Ref.)7we
obtain &MF=2.91,V,=4.107V yielding t=1.63,F/q

The phase behavior of an intercalation compound stud= 0.728. These values of parameters correspond to the elastic
ied in the previous sections is intimately related to the operfOUPIing energyAelzl-Jg'_\/'.Fwo_lgz ?A\F/ From Eq(23) we
circuit voltage(OCV) of batteries in which an intercalation find the mean-field tricritical poings; /q=0.722 indicating
compound is used as an electrode material. During a dighat the system falls into the domain | of the phase diagram
charge cycle guest ion®.g., Li*) diffuse through the elec- a@nd therefore at the certain values @fundergoes a first-
trolyte from anode to cathode and are inserted interstitially iPrder A—P transition resulting in the two-plateau profile of
the host lattice donating the equal number of electrons to thé1® OCV. _ ) o
host's energy bands; the counterion transport through elec- Our theory suggests that the intercalation of lithium into
trolyte is completely prohibited. lons accumulated in the hosth€ Spinel structure may be divided into several steps. From
matrix during the discharge cycle are removed from it uporihe fully charged state when=0 the host matrix accommo-

charging(in an ideal cell reversibly The cell voltagev is ~ dates Liions as a single phage,up tox=0.107, this stage
found from the energy balande, corresponds to a sharp voltage drop. Then, the first-order

transition takes place leading to the formation of the two-
sublattice structures. For 0.18%<0.345 Li ions occupy
the sites belonging to one of the sublattices in a way that

] gives rise to a coexistencé+ B, between a lithium-poor
wheree, is the electron charge ant} sets the voltage scale. phase,A, and a lithium-rich phaseB. This leads to a flat

Thus, measuring at equilibrium the cell voltage versuspjateau at a potential 4.15 V. At=0.345 the first sublattice
charge passed between the electrodes is equivalent to M&gnsists solely oB and intercalation proceeds until the first
suring the chemical potential as a function of the concentragp|attice becomes fully occupie@t x=1/2) after which

V. OPEN CIRCUIT VOLTAGE

1
V(X)=— g wm(x)+Vo, (29

tion of intercalants. o occupation of the second sublattice begins causing a substan-
In fact the chemical potential in Eq29) should be a g voltage drop(~100 mV). Intercalation into the second
sum of contributions from ions and electrons, sublattice shows the same features as intercalation into the

first one. Finally, atx=0.893 the first order transition takes
place and lithium ions fill the rest unoccupied sites randomly.
for a singly charged ion. Although this separation is not  Although the agreement between theory and experiment
unique because of strong interactions between ions and elers quite good, one can notice that while the theoretical curve
trons, in metals it is often possible to arrange the interactions symmetric abouk= 1/2 (due to the particle—hole symme-
terms so thajteectonis constant. In what follows we include  try of the model, the experimental data are not. A possible
this constant intd/, and considej(x) in Eq. (29) to be the  qualitative explanation to this discrepancy is that the theory
ionic contributionwign(X). does not take into account the permselectivity effect recently
Figure 6 shows a comparison of the theoretical OCVdiscussed in Ref. 19. The model treats intercalation as a
with the experimental results for spinel,Mn,O, at 300  deposition process of neutral particles in the host lattice. In
K, where Li ions occupy a 3D diamond lattice wig=4.18  reality, however, one deals with the intercalation of posi-
Parameters of the model are found from the fit to experimentively charged ions while the negative ions are completely
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