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Role of elasticity forces in thermodynamics of intercalation compounds:
Self-consistent mean-field theory and Monte Carlo simulations

V. I. Kalikmanova) and S. W. de Leeuw
Department of Applied Physics, Computational Physics Section, University of Delft, Lorentzweg 1,
2628 CJ Delft, The Netherlands

~Received 11 October 2001; accepted 27 November 2001!

We propose a self-consistent mean-field lattice-gas theory of intercalation compounds based on
effective interactions between interstitials in the presence of the host atoms. In addition to
short-range screened Coulomb repulsions, usually discussed in the lattice gas models, the present
theory takes into account long-range effective attractions between intercalants due to elasticity of
the host matrix. The mean-field phase diagram in the space of interaction parameters contains the
domains of first- and second-order transitions of the order-disorder type, separated by a tricritical
line, and the domain of the first-order transition of the gas–liquid-type separated from the
homogeneous state by a critical line. Theoretical predictions are shown to be in qualitative
agreement with the grand canonical Monte Carlo simulations. The peculiarities of the phase diagram
give an insight into different types of behavior of the open circuit voltage observed in rechargeable
batteries, in which an intercalation compound is used as an electrode material. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1436472#
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I. INTRODUCTION

An intercalation compound represents a host matrix w
a number of guest atoms occupying interstitial sites. In alk
metal intercalation compounds—an example is LixMO2

where lithium is intercalated into a metal~M!–oxide
matrix—the guest is fully ionized and donates itss-electron
to the host’s energy bands. These materials attract cons
able attention because of their potential use as high-den
battery electrodes~see e.g. Refs. 1, 2, and referenc
therein!.

Absorption of ions in the course of intercalation is fr
quently accompanied by structural transformations of
host matrix,3,4 suggesting the importance of elasticity effec
This statement is supported by x-ray measurements5 andab
initio calculations.6 A statistical mechanical description o
intercalation compounds is usually based on lattice gas m
els with the total neglect of elasticity effects. In the pres
paper we take into account the elastic properties of the
material in a simplified manner using the self-consist
mean-field approximation~Sec. II!. The model gives rise to
the mean-field phase diagram. Analyzing it we identify va
ous types of phase transitions~Sec. III!—order–disorder,
gas–liquid—which occur in the compound at a certain ran
of parameters~temperature, elasticity coupling!. To test the
theory we performed Monte Carlo simulations in the gra
canonical ensemble~Sec. IV!. The phase diagram qualita
tively explains the peculiarities of the experimenta
observed open circuit voltage of intercalation cells in wh
an intercalation compound is used as an electrode mate
An application of the theory for the open circuit voltag
calculations and comparison with experiment is presen
in Sec. V.

a!Electronic mail: V.Kalikmanov@tn.tudelft.nl
3080021-9606/2002/116(7)/3083/7/$19.00

oaded 20 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
h
li

er-
ity
s

e
.

d-
t
st
t

-

e

d

al.

d

II. MODEL

We treat an intercalation compound as a one-compon
lattice gas of interstitials interacting via effective potentia
mediated by the host matrix. We assume that the interst
lattice is bichromatic with a coordination numberq and a
total number of sitesN. All sites are assumed to be equiv
lent. The basic effective interactions are due to~i! electro-
static forces and~ii ! elasticity of the host material. We dis
cuss them below in more detail.

Coulomb repulsion between intercalated ions is scree
by the negative charge of the host electrons. In typical co
pounds the large electron concentration of the host res
in a small screening length—of the order of a lattice spaci
It is therefore plausible to assume that repulsions
between nearest neighbors, the pair interaction energu
;30– 70 meV.7 With each sitei we associate a variablepi ,
which is unity if the site is occupied and zero otherwise. T
repulsive energy of an arbitrary configuration is

E0~p1 ,..,pN!5u (
~ i , j !nn

pipj , ~1!

where (i , j )nn denotes summation over nearest neighb
with each pair counted only once.

The host lattice is deformable and absorption of gu
ions induces a long-range strain field in it. The elastic ene
of the strained crystal is equivalent to an effective inter
tion, uel,i j , between intercalants mediated by the host.
strength is independent of the size of the sample but depe
on elastic conditions imposed on its boundary.8 In the
following,9 we divideuel,i j into two parts,

uel,i j 5uel
`~r i j !1uel

s ~r1 ,r2!, ~2!

where r i j 5ur12r2u is the separation between intercalan
The first term is the interaction in an infinite host mediu
and the second arises from image forces which are requ
3 © 2002 American Institute of Physics

se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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to satisfy the boundary conditions imposed on the surfac
the sample. In our investigation of the elasticity effects
will resort to a simplified description based on the followin
approximations.~a! The host material is assumed to be ela
tically isotropic, which means that its elasticity properties a
described by the two scalar parameters~e.g., the Young
modulusY and the Poisson ration!. ~b! The intercalation
process causes equal extension of the host in all three dim
sions.~c! The surface of the sample is free.

In elasticity theory the effect of an intercalated partic
on a host can be adequately described by the ‘‘force dip
tensor’’10 which is a first moment tensor of the body forc
f in the elastic medium,

Pi j 5E drxi f j ,

where xi and f j are Cartesian coordinates ofr and f. As-
sumptions~a! and~b! lead to a particularly simple form ofP,

Pi j 5P0d i j ,

whered i j is the Kronecker delta. The bulk contribution
Eq. ~2! can be expressed in terms of the diagonal com
nents of P and the infinite medium Green’s functio
Gik(r ).9,11 If a particle is intercalated in the origin, then fo
another particle located at the pointr the bulk interaction
energy with the first one is given by

uel
`~r !5P0

2(
i 51

3

(
j 51

3
]Gik

]xixk
. ~3!

For an isotropic medium@assumption~a!# Green’s function
reads12

Gik5a
xixk

r 3 1b
1

r
d ik , ~4!

with the coefficientsa(Y,n) and b(Y,n) depending on the
elastic constants of the host material. From Eqs.~3! and ~4!
we find uel

`(r )[0. Thus, under assumptions~a! and ~b! the
bulk contribution to the elastic interaction vanishes. The s
face contribution depends on the imposed boundary co
tions. For a completely free sample@assumption~c!# it is
known to be attractive and infinitely long-range.11,13 @Note
that for a perfectly clamped surface, whose volume is k
constant~no expansion!, the effective elastic interaction ca
be repulsive; in practice, however, it is difficult to clamp t
sample without hindering the intercalation process.# Summa-
rizing, we can write

uel,i j 52Ael pipj . ~5!

Thus, the effective elastic interactions in our model reduc
the infinitely long-range attractions. The elastic couplingAel

can be expressed in terms ofY, n, andP0 . However, in the
present model, we considerAel a fitting parameter for com
parison with experimental data.

The elastic interaction energy of an arbitrary configu
tion of intercalants reads

Eel~p1 ,...,pN!52Ael

1

2N (
i , j

pipj . ~6!
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In the spirit of a mean-field approach we introduce the av
age density of intercalantsx5^pi& and approximate~6! as

Eel~p1 ,...,pN!'2Aelx(
i

pi1
1

2
Aelx

2N. ~7!

Summarizing, the full Hamiltonian is

E~p1 ,...,pN!5u (
~ i , j !nn

pipj2Aelx(
i 51

N

pi1
1

2
Aelx

2N. ~8!

Consider the grand canonical (m,N,T) ensemble, wherem
is the chemical potential of an intercalant, andT is the tem-
perature. The number of occupied sites is not fixed imply
that the average occupationx depends onm and T. The
grand partition function of the lattice gas with the Ham
tonian ~8! is

J~m,N,T!5expF2
1

2
bAelx

2NG
3(

$p%
expH Fb(

i 51

N

~m1Aelx!pi Gexp[2bE0] J ,

~9!

where the summation in the outer sum is over all configu
tions of intercalants,b51/(kBT), kB is the Boltzmann con-
stant. We stress thatx entersJ in a self-consistent way;x
5x(m,T). An important observation is that elastic intera
tions in our model give rise to the renormalization of t
chemical potential,

m→m1Aelx~m,T!,

compared to the system with pure repulsions~the latter case
refers to the topotactic intercalation14!.

At this stage it is convenient to formulate an equivale
spin system: a fully occupied lattice ofN spinssi561 de-
fined through the relationshipsi52pi21. Using the standard
technique15 we find for the grand potential of the lattice ga
V52kBT ln J,

V~m,N,T!52NFm22
qu

8
1

Ael

4
~11m!

2
Ael

8
~11m!2G1FIs ,

whereFIs is the Helmholtz free energy of the antiferroma
netic Ising model with a coupling energyu/4 in an external
field

H5
m

2
2

qu

4
1

Ael

4
~11m!, ~10!

where m5^si&52x21 is the average magnetization p
spin. The ‘‘Ising Hamiltonian’’ reads

HIs5
u

4 (
~ i , j !nn

sisj2H(
i

si . ~11!
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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The self-consistent nature of the original lattice gas is inh
ited by the spin system by virtue of the external field dep
dence on the magnetization@Eq. ~10!# which itself is a func-
tion of the field,m5m(H,T).

The magnetization is an odd function ofH implying that
x(2H)512x(H). In turn for eachx there is a unique value
of m; thus, using Eq.~10! we find a general property of th
model reflecting the equivalence of sites~a ‘‘particle–hole
symmetry’’!,

m~x!1m~12x!5~q2jMF!u for all t.

In particular, at the half-filling,

mS x5
1

2D5
~q2jMF!u

2
. ~12!

Where we introduced a reduced temperaturet54kBT/
u, and a reduced elastic coupling,

jMF5
Ael

u
~13!

representing a relative strength of the elastic interacti
with respect to~electrostatic! repulsions. Recalling that th
interstitial lattice is bichromatic and applying the mean-fie
approximation, we obtain from Eq.~11! the coupled self-
consistent mean-field equations for magnetizationsm1 and
m2 of the sublattices,

m11tanhFh1
jMF

2t
m12

1

2t
~2q2jMF!m2G , ~14!

m25tanhFh1
jMF

2t
m22

1

2t
~2q2jMF!m1G , ~15!

where

h5
2m

ut
1g, g5

jMF2q

t
. ~16!

The magnetization per spin for the entire lattice ism5(m1

1m2)/2.
In the general case~i.e., whenm1Þm2! the equations

must be solved numerically. Figure 1 illustrates the behav
of m(x) resulting from Eqs.~14! and ~15! for q54 and t

FIG. 1. Chemical potential vs concentration for the lattice with the coo
nation numberq54 at the temperaturet52. The mean-field critical tem-
peraturetc

MF5q54. Curves are labeled with the value ofjMF; jMF50 cor-
responds to the absence of attractions.
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52. Curves are labeled by the values of the elastic coupl
One can see that a shape of a curve strongly depends o
value ofjMF. All the curves shown in Fig. 1 contain singu
larity points—kinks and/or plateaus—signaling about pha
transitions of different types.

III. PHASE DIAGRAM

Equations~14!–~15! give rise to the mean-field phas
diagram. Let us first discuss some of its features qual
tively. At low temperatures in the absence of elastic forc
(jMF50) the short-range repulsions result in the orde
disorder~antiferromagnetic–paramagnetic! continuous phase
transition14 at a certain critical value of the chemical pote
tial; the order parameter being the staggered magnetizat

f5~m12m2!/2.

Note, that in the original lattice-gas formulationf5x1

2x2 , wherex1 and x2 are the average occupations of th
sublattices, the ordered state corresponds to the prefere
occupation of one of the sublattices.

If attractive ~elastic! interactions are ‘‘switched on’’
(jMF.0),16 they compete with repulsions and beyond a c
tain value ofjMF this transition is driven first order. In this
casef jumps at the transition point~i.e., at somem! from
zero to a finite value. An infinitesimally small jump corre
sponds to the tricritical point, where both types of transiti
meat each other. If attractions are sufficiently strong the
tiferromagnetic ordering does not occur at all being repla
by the ferromagnetic ordering making no distinction betwe
sublattices. In this case at low temperatures a first-order t
sition of the gas–liquid type takes place.

Figure 2 shows the phase diagram of an intercalat
compound in the space of parameters (t/q,jMF/q). In the
low-temperature region 0<t/q<1 domains I and II corre-
spond to the antiferromagnetic–paramagnetic~A–P! transi-
tion, which is first-order in I and continuous in II. By this w
mean that, if we fix an arbitrary point (t/q,jMF/q) in I or II
and study the behavior of the system at different values om,
then at a certainmc the system undergoes the A–P pha
transition~either first-order or continuous!; the latter results
in the presence of singularity points on thex(m) curve.

-FIG. 2. Phase diagram of an intercalation compound. I, domain of 1st o
antiferromagnetic–paramagnetic~A–P! transitions; II, domain of second or
der A–P transitions; III, domain of gas–liquid~G–L! transitions; IV,
homogeneous state.
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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In the symmetric phasem15m25m and Eqs.~14! and
~15! reduce to the single equation,

m5tanhFh1S jMF2q

t DmG
yielding the analytical solution, which in the original lattic
gas variables reads

msymm~x!5~q2jMF!ux1kBT lnS x

12xD . ~17!

It gives the free energy cost for the insertion of an intercal
into the host matrix. The second term is the entropic con
bution. The first term is caused by interactions; depending
the strength of elastic forces it can be both positive and ne
tive. In the nonsymmetric phase Eqs.~14!–~15! must be
solved numerically.

The boundary between the domains I and II is given
the line of tricritical points~tricritical line!. In numerical cal-
culations it is difficult to determine accurately the location
the tricritical pointj3c

MF , since the first-order transition in it
vicinity is very weak. To findj3c

MF we apply the molecular
field theory. Let us write the magnetization of sublattices
the vicinity of the tricritical point asm15m1f, m25m
2f. Equations~14!–~15! can be presented as

2m5tanh~y1rf!1tanh~y2rf!, ~18!

2f5tanh~y1rf!2tanh~y2rf!, ~19!

wherer[q/t andy[h1gm. Note that bothy andm depend
on f. Using the smallness off near the tricritical point and
expanding all quantities in powers off to the third order, we
derive a self-consistent equation

f5b1f1b3f31O~f5!

with the coefficients

b15
r

cosh2 y0
, ~20!

b35F2 sinh2 y021

3 cosh4 y0
2

2ga0 tanhy0

cosh2 y0
G r 3, ~21!

where

y05arctanhm0 , a05
m0~12m0

2!

~12m0
2!g21

,

andm0 satisfies the self-consistency relation,

m05tanh~h1gm0!.

The tricritical point is given by the conditions,b151 and
b350. The first equality using Eq.~20! yields

m056A12
t

q
~22!

imposing the standard mean-field temperature requirem
t,tc

MF5q. The second equality combined with Eqs.~21! and
~22! leads to the value ofjMF at the tricritical point,

j3c
MF

q
5 f S t

qD , f ~z![
2

423z
, 0<z<1. ~23!
oaded 20 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
t
i-
n
a-

y

f

nt,

If elastic interactions are sufficiently strong,jMF/q.2,
the antiferromagnetic state is unstable for allm while the
stable ordered phase is ferromagnetic withm15m25m sat-
isfying m5tanh(h1gm). The first-order transition of the
gas–liquid type~G–L! with the jump in the magnetization
m→2m takes place in the zero field (h50) when g.1
~domain III in Fig. 2!. Thus, from Eq.~16! the value ofm at
the G–L transition point,

mG–L5
~q2jMF!u

2
~24!

is independent of the temperature.
If one continued the critical lineg51 into the low-

temperature regiont/q,1, one would observe that a part o
the domain I above this line is also a candidate for the G
transition. To decide which of the two transitions, A–P
G–L, is realized one has to determine the thermodynamic
stable phase. A straightforward way to do this is to comp
the energies per spin of the antiferromagnetic and ferrom
netic states att50. From Eqs.~10! to ~13!,

e5
HIs

N
5

u

4N (
~ i , j !

sisj2
H

N (
i

si ,

where H5
m

2
2

qu

4
1

jMFu

4
~11m!.

In the antiferromagnetic state att50 all spins of one of the
sublattice are ‘‘up,’’ and those of the other are ‘‘down
si

(1)5m151, si
(2)5m2521 for all i, implying that

H5Ha5
m

2
2

qu

4
1

jMFu

4
.

The energies of the sublattices are

ea
~1!52

qu

4
2Ha , ea

~2!52
qu

4
1Ha ,

yielding the energy per spin of the entire system,

e5ea5
ea

~1!1ea
~2!

2
52

qu

4
. ~25!

In the ferromagnetic state att50, all spins have the
same value,si

(1)5si
(2)5m and m is either 11 or 21. For

m511,

H5H f ,↑5
m

2
2

qu

4
1

jMFu

2
,

e5ef ,↑5
qu

4
2H f ,↑52

m

2
1S q2jMF

2 Du.

For m521,

H5H f ,↓5
m

2
2

qu

4
, e5ef ,↓5

qu

4
1H f ,↓5

m

2
.

Note that from the three quantitiesef ,↑ , ef ,↓ , and ea only
ef ,↑ depends on the elastic coupling. Figure 3 comparesea

with ef ,↑ andef ,↓ . If jMF/q,2 the antiferromagnetic state i
stable in a certain range ofm. For illustration we show in
Fig. 3 the dashed line corresponding toef ,↑ for jMF/q51;
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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one can see that the antiferromagnetic state is stable
21/2,m/(qu),1/2. WhenjMF/q exceeds 2, the antiferro
magnetic ordering becomes energetically unfavorable. T
inside the entire domain I of the phase diagram the first-or
A–P transition takes place.

In the high-temperature regiont/q.1 the system can
either undergo a G–L transition or be in a homogene
state. The boundary between III and IV is given by the li
of critical points~critical line! g51,

jMF

q
5

t

q
11.

The G–L transition in III results in a broad plateau ofm(x)
symmetric aboutx51/2. The valuem at coexistence is given
by Eq. ~24!.

IV. MONTE CARLO SIMULATIONS

The phase diagram discussed in Sec. III is by constr
tion mean-field. As such it is expected to be qualitative
correct, though quantitative differences with the ‘‘exact s
lution’’ are unavoidable~except for the zero temperatur
where the mean-field description becomes exact!. The mean-
field phase diagram does not depend on the dimensionaliD
of the lattice; at the same time the ‘‘exact solution’’ mu
possess aD-dependence. In order to verify predictions of t
theory we performed Monte Carlo~MC! simulations~which
can be viewed as the ‘‘exact solution’’! of the lattice gas in
the grand canonical~m, N, T! ensemble with the Hamil-
tonian,

H5u (
~ i , j !nn

pipj2Ael

1

2N (
i , j

pipj . ~26!

Simulations were performed for the 2D square latticeq
54) containingN5900 sites with periodic boundary cond
tions and 103 MC steps per lattice site. Some of the resu
are presented in Figs. 4 and 5 showing the plotsx(m) and
f(m), respectively, for the temperaturet51.63 and the two
values of the elastic coupling,jMF52 andjMF56.

A general property of the model with the Hamiltonia
~26!, manifesting the particle–hole symmetry, is the value
m at a half-filling given by Eq.~12!. This result is indepen-
dent of the approximation~in this case, mean-field! used to

FIG. 3. Energy per spin of the antiferromagnetic (ea) and ferromagnetic
~ef↑ andef↓! state att50.
oaded 20 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
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solve the model. This should also hold for MC and can se
as a test for MC results. For the square lattice andjMF56,
Eq. ~12! predicts

S m

u D
x51/2

theory

521.

From the simulations we obtain

S m

u D
x51/2

MC

520.95421. ~27!

For jMF52,

S m

u D
x51/2

theory

51, S m

u D
x51/2

MC

50.9541. ~28!

This comparison shows that MC results satisfy the partic
hole symmetry.

For jMF52 the point (t/q,jMF/q)5(0.41,0.5) falls in
the domain II of the phase diagram of Fig. 2 predicting t
second-order transition of the order–disorder-type at so
critical value of m. For jMF56 the point (t/q,jMF/q)
5(0.41,1.5) falls in the domain I, where this transition
first-order. A clear indication of a first-order transition o

FIG. 4. Density vs chemical potential for the square lattice att51.63:
Monte Carlo simulations. Curves are labeled by the value ofjMF. Arrows
show the direction of changingm in simulations. Hysteresis observed fo
jMF56 manifests a first-order transition.

FIG. 5. Order parameter vs chemical potential for the square latticet
51.63: Monte Carlo simulations. Notations are the same as in Fig. 4.
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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served in simulations is a hysteresis on thex(m) curve for
jMF56 ~Fig. 4! andf(m) curve ~Fig. 5!, where the arrows
show the direction of changingm.

For jMF52 the ‘‘forward’’ and ‘‘backward’’ curves co-
incide to within the error bars; the location of the transiti
point mc /u'20.05 ~vertical dashed line! is determined
from the maximum of the staggered susceptibility monito
during the simulation runs,

xs5N@^xs
2&2~^xs&!2#, xs5

n12n2

N
,

wheren1 andn2 are occupations of the sublattices. The
cation of the transition point forjMF56 ~first-order phase
transition! can be found from the Maxwell construction.

The mean-field tricritical point for the square lattice
t51.63 is from Eq.~23!: j3c

MF'2.89. Our MC calculations
predict the higher value:j3c

MC'5.245.3. The boundary be
tween the G–L and A–P transition is found to be atjMF

'8.25, which is close to the mean-field predictionjMF58
~the horizontal line in Fig. 2!.

V. OPEN CIRCUIT VOLTAGE

The phase behavior of an intercalation compound st
ied in the previous sections is intimately related to the op
circuit voltage~OCV! of batteries in which an intercalatio
compound is used as an electrode material. During a
charge cycle guest ions~e.g., Li1! diffuse through the elec
trolyte from anode to cathode and are inserted interstitially
the host lattice donating the equal number of electrons to
host’s energy bands; the counterion transport through e
trolyte is completely prohibited. Ions accumulated in the h
matrix during the discharge cycle are removed from it up
charging~in an ideal cell reversibly!. The cell voltageV is
found from the energy balance,1

V~x!52
1

ee
m~x!1V0 , ~29!

whereee is the electron charge andV0 sets the voltage scale
Thus, measuring at equilibrium the cell voltage vers
charge passed between the electrodes is equivalent to
suring the chemical potential as a function of the concen
tion of intercalants.

In fact the chemical potential in Eq.~29! should be a
sum of contributions from ions and electrons,

m5m ion1melectron

for a singly charged ion. Although this separation is n
unique because of strong interactions between ions and
trons, in metals it is often possible to arrange the interac
terms so thatmelectronis constant.1 In what follows we include
this constant intoV0 and considerm(x) in Eq. ~29! to be the
ionic contributionm ion(x).

Figure 6 shows a comparison of the theoretical OC
with the experimental results for spinel LixMn2O4 at 300
K,17 where Li ions occupy a 3D diamond lattice withq54.18

Parameters of the model are found from the fit to experim
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at x51/2, wherem is given by Eq.~12!, and at some smal
x5d!1 corresponding to a disordered state, for which fro
Eq. ~17!,

m~d!5~q2jMF!ud1kBT ln
d

12d
.

Using as an estimateu'63.5 meV ~see, e.g., Ref. 7! we
obtain jMF52.91,V054.107 V yielding t51.63,jMF/q
50.728. These values of parameters correspond to the el
coupling energyAel5ujMF'0.182 eV. From Eq.~23! we
find the mean-field tricritical pointj3c

MF/q50.722 indicating
that the system falls into the domain I of the phase diagr
and therefore at the certain values ofm undergoes a first-
order A–P transition resulting in the two-plateau profile
the OCV.

Our theory suggests that the intercalation of lithium in
the spinel structure may be divided into several steps. F
the fully charged state whenx50 the host matrix accommo
dates Li ions as a single phase,A, up tox50.107, this stage
corresponds to a sharp voltage drop. Then, the first-o
transition takes place leading to the formation of the tw
sublattice structures. For 0.107,x,0.345 Li ions occupy
the sites belonging to one of the sublattices in a way t
gives rise to a coexistence,A1B, between a lithium-poor
phase,A, and a lithium-rich phase,B. This leads to a flat
plateau at a potential 4.15 V. Atx50.345 the first sublattice
consists solely ofB and intercalation proceeds until the fir
sublattice becomes fully occupied~at x51/2! after which
occupation of the second sublattice begins causing a sub
tial voltage drop~;100 mV!. Intercalation into the second
sublattice shows the same features as intercalation into
first one. Finally, atx50.893 the first order transition take
place and lithium ions fill the rest unoccupied sites random

Although the agreement between theory and experim
is quite good, one can notice that while the theoretical cu
is symmetric aboutx51/2 ~due to the particle–hole symme
try of the model!, the experimental data are not. A possib
qualitative explanation to this discrepancy is that the the
does not take into account the permselectivity effect rece
discussed in Ref. 19. The model treats intercalation a
deposition process of neutral particles in the host lattice
reality, however, one deals with the intercalation of po
tively charged ions while the negative ions are complet

FIG. 6. OCV for LixMn2O4 at 300 K. Circles, experiment of Liuet al. ~Ref.
17!; solid line, theory.
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excluded from the host matrix. The exclusion of one ion
component from the host costs energy due to electros
attraction between co-ions and counterions. This effect m
fies the energetic and entropic contributions to the free
ergy and destroys the particle–hole symmetry of the orig
lattice gas model.

VI. CONCLUSIONS

A model of an intercalation compound proposed in t
present paper takes into account the short-range electro
netically mediated repulsive interaction between intercala
and their long-range attraction resulting from the strain fi
of the host matrix due to its distortion. The model predi
the basic features of the phase diagram which qualitativ
explain the OCV of intercalation cells. As a future develo
ment of the theory we are planning to take into account
permselectivity effect and discuss other scenarios of dila
of the host material.
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