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ABSTRACT
Additive Manufacturing (AM) processes intended for large scale components deposit
large volumes of material to shorten process duration. This reduces the resolution
of the AM process, which is typically defined by the size of the deposition nozzle. If
the resolution limitation is not considered when designing for Large-Scale Additive
Manufacturing (LSAM), difficulties can arise in the manufacturing process, which
may require the adaptation of the deposition parameters. This work incorporates
the nozzle size constraint into Topology Optimization (TO) in order to generate
optimized designs suitable to the process resolution. This article proposes and com-
pares two methods, which are based on existing TO techniques that enable control of
minimum and maximum member size, and of minimum cavity size. The first method
requires the minimum and maximum member size to be equal to the deposition noz-
zle size, thus design features of uniform width are obtained in the optimized design.
The second method defines the size of the solid members sufficiently small for the
resulting structure to resemble a structural skeleton, which can be interpreted as the
deposition path. Through filtering and projection techniques, the thin structures are
thickened according to the chosen nozzle size. Thus, a topology tailored to the size
of the deposition nozzle is obtained along with a deposition proposal. The methods
are demonstrated and assessed using 2D and 3D benchmark problems.

KEYWORDS
Nozzle Size; WAAM; Design for AM; Topology Optimization; Maximum Size

1. Introduction

Topology Optimization (TO) and Additive Manufacturing (AM) are recognized as
promising technologies for the realization of high performance structural components
due to their ability to create designs with unprecedented sophistication. The potential
of these technologies has caught intense interest across a wide range of industries (Zhu,
Zhang, and Xia 2016; Culmone, Smit, and Breedveld 2019; Tino et al. 2020), which
promotes their accelerated development. While AM techniques are becoming more
versatile, stable and precise (Li et al. 2019; Bajaj et al. 2020), TO is adapting to the
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limitations of the AM processes (Liu et al. 2018; Meng et al. 2019).
Topology Optimization is well known for its ability to generate highly efficient de-

signs. However, TO designs often come with high geometrical complexity which hin-
ders manufacturing for even the most advanced AM processes. This drawback has
established a research field seeking to facilitate the manufacturability of TO design
(Liu et al. 2018). To date, a number of TO methods have been proposed for specific
AM processes, such as powder-based processes, stereolithography or Fused Deposition
Modeling (FDM). For instance, there are methods to prevent closed cavities in opti-
mized designs in order to ensure the removal of support structures or unfused powder
(Li et al. 2016; Langelaar 2019; Gaynor and Johnson 2020). To reduce or avoid the
use of support structures, the maximum permissible overhang angle of parts can be
controlled during TO (Langelaar 2016; Gaynor and Guest 2016; Zhang and Cheng
2020; van de Ven et al. 2020) along with the printing direction (Langelaar 2018; Wang
and Qian 2020). In addition, minimum member size and minimum cavity size can be
imposed in TO to ensure their printability (Wang, Lazarov, and Sigmund 2011; Pel-
lens et al. 2019). More complex methods take into account thermal residual stresses
in TO (Allaire and Jakabčin 2018), or incorporate continuity constraints to facilitate
the printability of multiple materials (Yu et al. 2020). Experimental studies (Fu et al.
2019) and industrial applications (Zhu, Zhang, and Xia 2016) have demonstrated that
such AM-specific TO methods enhance the manufacturability of the optimized design
when it comes to FDM, stereolithography or powder-based AM processes.

There is an emerging interest in the industry for Large-Scale Additive Manufactur-
ing (LSAM) processes, as they are able to produce components in short time spans
(Lim et al. 2012), either to manufacture large-scale parts (Greer et al. 2019), or to
speed up mass production (Bishop and Leigh 2020). Among others, processes such
as Direct Metal Deposition (DMD), Wire-Arc Additive Manufacturing (WAAM), 3D
Concrete Printing (3DCP), and large-scale Fused Deposition Modelling (FDM) stand
out. These LSAM processes achieve high production rates by depositing relatively
large volumes of material per unit time. Though they operate using the layer-by-
layer principle, they exhibit distinctive limitations compared to low production rate
processes, such as powder bed fusion. For example, the large amount of deposited ma-
terial complicates the deposition path planning (Jiang and Ma 2020), since crossover
of deposition paths leads to local agglomerations of material that accumulate geomet-
rical defects from layer to layer (Mehnen et al. 2014), as shown in Fig. 1(a). Similarly,
design features with sharp corners and small radii of curvature may also cause lo-
cal agglomeration of material (Geng et al. 2017; Comminal et al. 2019), as shown in
Fig. 1(b), while deposition paths with T-joints can induce defects during stops and
starts, such as excess or lack of deposited material (Venturini et al. 2016), as shown in
Fig. 1(c). These difficulties have been included in path planning algorithms (Liu et al.
2020). However, when the design to be manufactured has features with geometrical
details smaller than the nominal resolution of the LSAM process, the path planning
becomes extremely difficult, since the deposition process parameters must be included
in the planning algorithm. For example, the nozzle size can be reduced, but if this is
not possible, then the feed rate and travel speed can be modified, or the deposition
beads can be overlapped. Changing the deposition parameters can reduce the process
stability, induce geometrical or metallurgical defects and demand extensive testing,
thus increasing production costs (Rodrigues et al. 2019). For these reasons, a discrete
number of paths must be considered when designing for LSAM, as shown in Fig. 1(d).
Thus, designs with resolution and geometrical features compatible with the nominal
production are obtained.
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(a) Crossover weld paths

(Mehnen et al. 2014).

(b) Sharp corner. (c) T-type connection

(Venturini et al. 2016).

(d) Discrete welding

beads (Jackson 2016).

Figure 1. Some geometric features to be considered when designing for a Large-Scale Additive Manufacturing
(LSAM) process. Figure 1b is courtesy of Institute Soudure (www.isgroupe.com). Figure 1d is courtesy of

AML3D (www.aml3d.com).

Ways to fully ensure the above mentioned compatibility between design and process
are not yet available. Only recently, few studies have appeared that address this gap.
Carstensen (2020) considers the size of the deposition nozzle in the TO problem using
the formulation that embeds discrete particles in a continuous domain (Guest 2015).
The author proposes a formulation that binds the discrete particles to produce a
continuous material bead. Numerous examples in 2D are reported, which at first sight
meet the imposed resolution of the desired AM process. However, the method binds
the particles in a orthogonal pattern, which makes it difficult to generate inclined
structural members, therefore, the method is not able to fully exploit the form freedom
provided by the AM process. The work of Vantyghem et al. (2020) takes a pragmatic
approach to deal with the low resolution issue imposed by 3D Concrete Printing. The
authors post-process 2D topology-optimized solutions to propose a large-scale three-
dimensional design. In the post-processing step, the authors enforce the design details
to match the printing resolution of the LSAM process. However, in this manner the
optimality of the final design is likely lost.

This article adopts a strategy different from that proposed by Carstensen (2020), al-
though with the same intent. Consequently, it is aimed to generate topology-optimized
designs complying with the low resolution of Large-Scale AM processes, which is typ-
ically defined by the size of the deposition nozzle. For this purpose, we propose two
methods based on recent developments in minimum and maximum size control in
topology optimization (Fernández et al. 2020). The first method forces the minimum
and maximum size of all solid members to be equal to the size of the deposition noz-
zle. This approach proves to be simple yet effective in producing designs suitable for
the desired resolution. However, the maximum size restriction prevents solid members
greater than the prescribed nozzle size, which can significantly reduce the achievable
design performance. The second method restricts the maximum size of the solid mem-
bers sufficiently to render a structural skeleton, which can also be interpreted as the
deposition path. Through filtering and projection techniques (Wang, Lazarov, and
Sigmund 2011), the skeleton is dilated according to the nozzle size and thus the actual
design is defined. Therefore, a design adapted to the desired resolution is obtained and
a low performance penalization is introduced. The proposed strategies are explained,
assessed and compared using 2D and 3D numerical examples. Results exhibit designs

3



that conform to the size of the deposition nozzle, allowing optimized topologies to be
filled by a discrete number of material beads. Thus, the design requirement shown
in Fig. 1(d) is met. Furthermore, for a specific set of printing parameters, deposition
paths free of crossovers, T-type connections and sharp corners can be obtained.

Although this paper addresses a purely geometric limitation that has to do with
the size of the deposition nozzle, the obtained results suggest that the nozzle size
restrictions proposed for topology optimization improve the printability of optimized
components. Other AM constraints that may apply such as critical overhang angles or
thermal-induced restrictions are outside the scope of this work. Potential combinations
and extensions with other AM constraints are discussed in the Perspectives section
towards the end of this manuscript.

The remainder of this article is organized as follows. Section 2 introduces the for-
mulation of the TO problem that imposes the minimum and maximum size of solid
members. Section 3 presents and compares the two methods proposed in this arti-
cle using a compliance minimization formulation. In addition to 2D examples in the
preceding section, Section 4 compares the two methods on a 3D test case. Section 5
validates the methods on benchmarks including stress constraints and displacement
functions. Finally, Section 6 provides the conclusions and future perspectives of this
work.

2. Base topology optimization formulation

The topology optimization problem is formulated using the density method (Bendsøe
and Kikuchi 1988). Therefore, the design domains are discretized into N finite elements
and their densities are described by N design variables. The value of these design
variables range from 0 to 1, where the value 0 represents the void phase and the value
1 represents the solid phase (Bendsøe 1989). To avoid the presence of intermediate
densities, we use the Solid Isotropic Material with Penalization (SIMP) interpolation
law (Bendsøe 1989). Note that, for simplicity and because the focus of this work is on
the nozzle size restriction, anisotropic material behavior is not considered.

It is well-known that SIMP exhibits numerical difficulties, such as the mesh-
dependency and the presence of checkerboard patterns (Sigmund and Petersson 1998).
In addition, the formulation does not allow to impose precisely a minimum size control
in the solid and void phases (Wang, Lazarov, and Sigmund 2011), which is an essen-
tial requirement for the methods proposed in this work. For this reason, we adopt the
robust formulation proposed by Sigmund (2009). This formulation considers manufac-
turing errors that may result in a thinner (eroded) or thicker (dilated) design with
respect to the reference one intended for manufacturing (intermediate). These designs
are constructed using filtering and projections techniques, which are described below.

The filtering operation utilizes a weighted average of the design variables within a
circular (or spherical) domain of radius rfil (Bruns and Tortorelli 2001; Bourdin 2001).
The numerical procedure is defined as follows:

ρ̃i =

N∑
j=1

ρjvjw(xi,xj)

N∑
j=1

vjw(xi,xj)

, (1)
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(a)

(b)

Figure 2. A 2D cantilever beam solution (see boundary conditions in Fig. 6) illustrating the three-field

scheme. (a) Filtering, and (b) projection operations to obtain the eroded, intermediate and dilated designs.

where ρi and ρ̃i are the design variable and the filtered variable associated with the
finite element i, respectively. The volume of element i is denoted as vi and the weight
of the design variable ρj in the definition of ρ̃i is denoted by w(xi,xj). The weighting
function depends on the distance between the centroids of elements i and j, which
are denoted as xi and xj , respectively. Here, the weighting function is defined by the
following decreasing linear function:

w(xi,xj) = max

(
0 , 1− ‖xi − xj‖

rfil

)
. (2)

The projection operation transforms the value of all the filtered variables that are
greater than a given threshold µ close to 1, and close to 0 otherwise (Guest, Prévost,
and Belytschko 2004). This is done using the following smoothed Heaviside function:

ρ̄i =
tanh(βµ) + tanh(β (ρ̃i − µ))

tanh(βµ) + tanh(β (1− µ))
, (3)

where ρ̄i is the projected density and β is the parameter that controls the steepness of
the smoothed Heaviside function (Wang, Lazarov, and Sigmund 2011). The parameter
µ controls the projection threshold and can be used to impose a uniform manufacturing
error. As can be seen in Fig. 2(b), the eroded, intermediate and dilated designs are
denoted by ρ̄ero, ρ̄int and ρ̄dil, and they are created selecting the values of thresholds
µero, µint and µdil, respectively. Fig. 2(b) depicts the eroded and dilated designs colored
green to emphasize the fact that the intermediate design is the actual design intended
for manufacturing.

2.1. Minimum size formulation

As mentioned above, the eroded and dilated fields can be seen as the outcome product
of a manufacturing error. As illustrated in Fig. 3, the manufacturing error can be
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Figure 3. Misplacement of a milling tool. Illustration of the manufacturing error considered in the robust

formulation.

caused by the misplacement of a milling tool with respect to the reference line, where
tero and tdil represent the placement errors.

Sigmund (2009) proposed a robust formulation with respect to manufacturing er-
rors, i.e. the component must provide high performance even if the optimized design is
eventually eroded or dilated during the manufacturing process. For example, consider-
ing the compliance minimization problem subject to a volume restriction, the robust
formulation reads as follows:

min
ρ

max
(
c(ρ̄ero) , c(ρ̄int) , c(ρ̄dil)

)
s.t. : vᵀρ̄ero ≤ V ero

vᵀρ̄int ≤ V int

vᵀρ̄dil ≤ V dil

0 ≤ ρi ≤ 1 ,

(4)

where c is the compliance, v is the array containing the elemental volumes, and V ero,
V int and V dil are the maximum volume of material allowed in the eroded, intermediate
and dilated designs, respectively.

The compliance of each design field is computed as c = fᵀu, where f is an array
containing the external forces and u is array containing the nodal displacement of
the design field. A linear-elastic response is assumed in the finite element model that
yields u, and the finite element analysis is performed prior to solving the iteration of
the optimization problem (approach known as Nested Analysis and Design (Arora and
Wang 2005)).

An interesting outcome of the robust formulation is that the design intended for
manufacturing features a minimum size in both the solid and void phases (Wang,
Lazarov, and Sigmund 2011). The minimum size of the solid is defined by the radius
rmin.Solid of the largest circle (or sphere), that can be inscribed in the thinnest solid
member. Conversely, the minimum size of the void is defined by the radius rmin.Void

of the largest circle (or sphere), that can be inscribed in the smallest cavity of the
topology. Thus, rmin.Solid may represent the radius of a deposition nozzle in an AM
process, while rmin.Void may represent the radius of a cylindrical (or spherical) milling
tool.

It is well known that in the robust formulation, the desired minimum length scale
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is implicitly imposed through the parameters that define the filtering and projection
processes (Wang, Lazarov, and Sigmund 2011). Thus, rmin.Solid and rmin.Void must be
defined through rfil, µ

ero, µint, and µdil. The relation between the desired minimum
length scales and the parameters that impose it can be obtained numerically (Wang,
Lazarov, and Sigmund 2011) or analytically (Qian and Sigmund 2013). To facilitate
the description of the proposed methodology, the minimum length scale is fixed at
rmin.Solid = rmin.Void, which is imposed through:

µero = 0.75 ,

µint = 0.50 ,

µdil = 0.25 ,

rfil = 2.0 rmin.Solid .

(5)

It is important to note that other combinations of length scales and threshold param-
eters do not change the findings of this work, as long as 0 < µdil < µint < µero < 1.

The eroded design is the most compliant. Therefore, in the compliance minimization
problem of Eq. (4), the intermediate and dilated designs can be excluded from the
objective function (Amir and Lazarov 2018). In addition, the volume restriction can be
applied to one field only and implicitly restrict the volume of the other two (Sigmund
2009). Thus, the robust compliance minimization problem reduces to the following
formulation:

min
ρ

c(ρ̄ero)

s.t. : vᵀρ̄dil ≤ V dil(V int)

0 ≤ ρi ≤ 1 .

(6)

In the simplified robust topology optimization problem of Eq. (6), the volume con-
straint is applied to the dilated design. As the intermediate design is the one intended
for manufacturing, the desired volume constraint V int is used to scale the upper bound
V dil that defines the volume constraint (Amir and Lazarov 2018). There are two main
reasons for this implicit approach to impose the volume constraint. The first one is the
most known in the literature (Amir and Lazarov 2018; Fernández et al. 2020; Sigmund
2009; da Silva, Beck, and Sigmund 2019; Wang, Lazarov, and Sigmund 2011) and it is
due to the fact that applying the restriction in the dilated design reduces numerical
instabilities and promotes convergence to better optimum. The second reason, which
is rarely mentioned in the literature (Trillet, Duysinx, and Fernández 2021), is that
the implicit volume restriction allows to involve all 3 design fields in the optimization
problem, which is an essential requirement to ensure the minimum size control on the
solid and void phases (Trillet, Duysinx, and Fernández 2021).

The minimum compliance optimization problem in Eq. (6) is denoted as the Refer-
ence problem hereafter.

2.2. Minimum and Maximum size formulation

The topology optimization methods accounting for the size of the deposition nozzle re-
quire in addition control over the maximum size of the solid members. To this end, the
approach proposed by Fernández et al. (2020) is used. In (Fernández et al. 2020), the
maximum size of a solid feature is imposed using the following local volume restriction
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Figure 4. The annular region Ωi where the local volume constraint gi is applied.

(Guest 2009):

gi(ρ̄, ε, q,Ωi) = ε−

∑
j∈Ωi

vj (1− ρ̄j)q∑
j∈Ωi

vj
≤ 0 , (7)

where gi is the volume restriction applied within a region Ωi. The expression (1− ρ̄j)q
is a measure of the amount of void within the element j, where q is a parameter
penalizing intermediate densities to avoid their appearance during the optimization
process, similar to the SIMP penalty parameter. Therefore, the volume restriction in
Eq. (7) computes the fraction of void within the local region Ωi and enforces it to be
equal or greater than a given fraction ε. The local region Ωi is defined as an annulus
(or spherical shell), with an outer radius rmax and inner radius rmin.Solid, as shown in
Fig. 4. Similar to (Fernández et al. 2020; Guest 2009), the void fraction within the
local region is set as ε = 0.05 and the penalty parameter is set as q = 2.

Fernández et al. (2020) showed that to obtain an intermediate design ρint satisfying
the desired length scale, i.e. the minimum member size (rint

min.Solid), the minimum cavity
size (rint

min.Void) and the maximum member size (rint
max), it is sufficient to apply the local

volume restriction gi at least in the dilated design. Thus, the compliance minimization
problem with minimum and maximum length scale control is defined as:

min
ρ

c(ρ̄ero)

s.t. : vᵀρ̄dil ≤ V dil(V int)

Gms(ρ̄
dil) ≤ 0

0 ≤ ρi ≤ 1 ,

(8)

The optimization problem in Eq. (8) is named the Size-
Constrained problem hereafter. The Gms constraint represents the global maxi-
mum size restriction that aggregates the local ones (gi). The aggregation is performed
with a p-mean function, as follows:

Gms =

(
1

N

N∑
i=1

(gi + 1− ε)p
)1/p

− 1 + ε ≤ 0 . (9)
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Figure 5. The local Ωi in the eroded, intermediate and dilated designs.

where p is the aggregation exponent and ε a shift parameter to control aggregation
accuracy. Similar to (Fernández et al. 2019, 2020), p is set to 100 and ε to 0.05 in all
the examples reported in this work.

To apply the local volume constraint gi in the dilated design, the local region Ωdil
i

must be scaled according to the dilation distance tdil, as illustrated in Fig. 5. Thus,
the annular region Ωdil

i is defined by the following outer and inner radii:

rdil
max = rint

max + tdil ,

rdil
min.Solid = rint

min.Solid + tdil .
(10)

Given the filter and projection parameters defining the minimum length scale in
Eq. (5), the dilation distance is (Fernández et al. 2020; Trillet, Duysinx, and Fernández
2021):

tdil = 0.60 rint
min.Solid . (11)

Since the methods presented above are available in the literature, sensitivity analysis
is omitted for brevity. Interested readers are referred to (Bendsoe and Sigmund 2004)
for the sensitivity analysis of the objective function and of the volume restriction,
to (Wang, Lazarov, and Sigmund 2011) for the sensitivity analysis of the eroded,
intermediate and dilated designs, and to (Fernández et al. 2020) for the sensitivity
analysis of the maximum size restriction.

2.3. Implementation details

Given the highly non-linearity of the Heaviside projection and of the aggregation func-
tion that builds the maximum size constraint, it is useful to implement a continuation
scheme. As done in (Fernández et al. 2020), the Heaviside parameter β is initialized at
1.5 and is increased by 1.5 times up to a maximum of 38. The SIMP penalty parameter
is initialized at 1.0 and is increased up to 3.0 in increments of 0.25. The parameter in-
crements are performed every 50 iterations. The stopping criterion of the complete TO
process is met either when 450 iterations are reached, or when the maximum change
in the design variables between two consecutive iterations is smaller than 0.001.

The reference and the maximum-size-constrained problems, i.e. Eqs. (6) and (8),
are implemented in free access codes. Here we use the 88-line code (Andreassen et al.
2011) and the TopOpt code (Aage, Andreassen, and Lazarov 2015). The first one is

9



Figure 6. 2D cantilever beam design domain.

written in MATLAB aimed at solving 2D problems whereas the latter is a C++ code
intended to solve large scale 3D problems. These codes use the density method, the
SIMP interpolation scheme and the density filter. Therefore, the Heaviside projection
that builds the eroded, intermediate and dilated designs has been added, along with
the maximum size restriction and the robust topology optimization formulation. The
optimization problems are solved using the Method of Moving Asymptotes (MMA)
(Svanberg 1987).

The reader interested on implementation details is referred to (Fernández et al.
2020), since the TopOpt code with the corresponding modifications to solve the refer-
ence and the maximum size constrained problems are provided.

3. TO for LSAM

Having introduced the framework to control minimum and maximum size within a
topology optimization framework, we proceed with the discussion of the two methods
to ensure designs compatible with the intended LSAM process. First, a test problem
is introduced by which the methods are explained. Also solutions from the reference
optimization problem are discussed to clarify the need for specific design restrictions,
after which in subsection 3.1 a method based on a nozzle size constraint is presented.
Subsection 3.2 proceeds with the second method, which is based on dilating a maxi-
mum size-constrained design.

The proposed strategies are explained using a 2D cantilever beam for compliance
minimization. For the sake of clarity, arbitrary yet realistic dimensions are chosen in
this test case. The design domain is defined by a rectangle of 300 mm × 150 mm, as
shown in Fig. 6. This domain is discretized into 300 × 150 quadrilateral finite elements,
resulting in square elements of 1 mm length. The optimized design is intended for an
AM process equipped with a deposition nozzle of 5 mm diameter. Henceforth, the size
of the deposition nozzle is defined by its radius, which is denoted as rnozzle.

To provide an insight into the printability of the reported designs, the deposition
paths obtained with the PrusaSlicer (v.2.2.0) software are provided. PrusaSlicer (Pr̊uša
2020) is a freely available software that generates G-codes from STL files. The soft-
ware is designed for desktop 3D printers, where the nozzle diameter is approximately
0.4 mm, which is rather small compared to a typical component intended for LSAM
machines. Although the nozzle size can be modified to a bigger size, the slicing algo-
rithms of PrusaSlicer (v.2.2.0) do not take into account the low-resolution issue caused
by large deposition nozzle sizes. Nonetheless, this software is employed herein as a tool
to provide the reader with an idea of the printability of the component when large
nozzle sizes are used. In this work, the printability of the optimized designs appears
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next to the symbol on the corresponding figures and it represents the percentage
of the design that can be filled using a nozzle of a given size. Thus, the printability
index ( ) is be defined as:

Printability :=

nLayers∑
i=1

Afilled
i

nLayers∑
i=1

Ai

× 100 [%] , (12)

where nLayers is the number of layers resulting from the slicing procedure, which takes
the value 1 in 2D designs. The surface area of the layer desired to be filled by the
deposition process is denoted by Ai, and the actual surface area filled is denoted by
Afilled
i , where i is the index of the ith layer.
PrusaSlicer offers different infill patterns, from which the perimeter one is chosen.

Thus, the slicing algorithm tracks the design perimeter sequentially, which is a common
practice in LSAM processes, especially those equipped with large deposition nozzles.
However, the software requires at least two deposition paths per solid member, one
for each side of the member. Therefore, to ensure that each solid member found in the
optimized design contains at least two deposited beads, the minimum size of the solid
phase must be twice the size of the nozzle, i.e. rint

min.Solid = 2rnozzle = 5 mm.
Given that the deposition paths follow the contour of the design, it is convenient to

control the minimum size of the void phase in order to impose a radius of curvature
at the reentrant corners of the design and avoid the difficulties associated to the sharp
corners in the deposition path. Arbitrarily, the minimum radius of curvature is set as
rint

min.Void = 5 mm, which is imposed with the filter and projection parameters listed in
Eq. (5).

Three reference problems (Eq. (6)) are solved for the cantilever beam depicted in
Fig. 6 with different volume restrictions, i.e. V int = 30%, V int = 40% and V int =
50%. It is recall that no maximum size constraint is used. The optimized designs
and the perimeter deposition paths are shown in the first and second rows of Table
1, respectively. The two circles next to each optimized solution indicate the desired
length scale. The blue circle represents the minimum size of the void phase while
the black circle represents the minimum size of the solid phase. Both have been set
to 5 mm. Regarding the deposition paths, the deposited material is shown in light
blue and the regions that cannot be filled are shown in yellow. The printability of
the optimized design is reported next to the deposition paths. To complement the
analysis and discussion, deposition paths obtained with a rectilinear filling pattern,
and combination of perimeter and rectilinear are included in the third and fourth rows
of Table 1, respectively.

Considering the perimeter infill pattern in Table 1, the reference designs allow fab-
rication by at least two adjacent beads per solid member, which is attributed to the
minimum size control imposed on the topology. However, perimeter paths present large
unfilled areas that do not match the nozzle size. Better printability can be achieved us-
ing other deposition paths or combinations of infill patterns, as shown in the third and
fourth rows of Table 1. Even though, it is not possible to guarantee filling all or most
of the design during the deposition process, because it is highly likely that numerous
design features will not meet the resolution of the deposition nozzle, as this condition
is not imposed on the geometry of the reference optimized designs. For example, it
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Table 1. Optimized reference cantilever beams for compliance minimization with minimum size control, for

the problem defined in Fig. 6. The circles next to each solution represent the minimum size of the solid (black
circle) and void (blue circle) phases. The second row shows the deposition path provided by the PrusaSlicer

software using a perimeter pattern, the third row using a rectilinear pattern, and the fourth row using a

combination of rectilinear and perimeter pattern. Next to each deposition path, the printability ( ) is reported,
as defined in Eq. (12).
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can be seen that a rectilinear pattern covers more area than the perimeter pattern,
especially in designs with large volume (V int equal to 40% and 50%) as shown in the
third row of Table 1, but it does not cover more than 95% of the surface due to the
small gaps that are present at the outer edge of the design as a result of the numer-
ous path turns. Undoubtedly, the optimal deposition path must consider not only the
ability to cover the largest surface area but also other aspects such as the anisotropy
of the deposited material, the step-over distance, the number of deposition passes and
path continuity, surface finish, and post-machining work among others (Ding et al.
2015; Liu et al. 2018). These aspects are not considered in this work and the proposed
methods for topology optimization are limited to producing optimized designs tailored
to the process resolution in order to facilitate the path planning and guarantee higher
printability.

It is also worth noting that better printability can be achieved not only by optimizing
the deposition path, but also using a smaller deposition nozzle size in the remaining
unfilled areas, by overlapping the beads, or by modifying the feed rate and travel speed.
Nevertheless, each of these measures adds a degree of complexity, cost and risk to the
process, which is not desired. Instead, the aim of this work is to propose optimized
designs suitable with the nozzle size and thus reduce or avoid the need to modify the
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Figure 7. Maximum size-constrained cantilever beam solved for V int = 40% and rint
min.Solid = 4rnozzle =

10mm. The design domain is defined in Fig. 6. The symbol represents the printability index defined in

Eq. (12).

deposition parameters. For this purpose, the maximum size constraint is used in two
different forms, which leads to the two methods proposed in this article.

3.1. Method 1: Nozzle size constraint

The first method conforms the optimized design to the size of the deposition nozzle by
tailoring the minimum and maximum size of the solid phase according to the size of the
deposition nozzle. Given that in this study it is decided to place two deposited beads
per solid member, the minimum and maximum length scales are chosen as follows:

rint
min.Solid = 2rnozzle = 5mm ,

rint
max = 2rnozzle + ∆r = 6mm ,

(13)

where ∆r is a small distance to avoid contradictions between the minimum size im-
posed by the Heaviside projection and the maximum size imposed by the maximum
size constraint. In this work, ∆r is equal to the size of a finite element, which was
found to work well. The specific choices in Eq. (13) ensure the width of all structural
features ranging from 5 mm to 6 mm, i.e. twice the bead width, which facilitates
manufacturability by a LSAM process equipped with a large deposition nozzle fixed
in size.

The resulting maximum-size-constrained designs and the corresponding deposition
paths are shown in Table 2. The desired maximum size of the solid phase is indicated
by a black circle next to each solution. Unlike the reference designs, those constrained
in maximum feature size possess structural members of uniform width, which leads to
fewer unfilled gaps in the designs. The size-constrained members admit two parallel
paths, notably without gaps between the deposited beads. In addition, as designs are
filled with two parallel beads that follow the surface of the design, no T-joints or path
crossovers are obtained. Furthermore, as the minimum size of the void phase is set
equal to the radius of the deposition nozzle, no sharp corners are obtained in the de-
position path. Note also that the printability of all designs with nozzle size constraint
(95.1-98.1%) is superior to that of the reference designs (85.9-91.5%). Therefore, de-
signs constrained in maximum size (Table 2) are demonstrated to be much easier to
manufacture by LSAM than the reference designs (Table 1).

Despite the benefits introduced by the maximum size restriction, some drawbacks
can be noted. For instance, small unfilled zones can be observed at the intersection of
two or more solid members. There, the perimeter deposition path exposes triangular
unfilled regions, which represent about 2% of the design obtained with V int = 30%
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Table 2. Optimized cantilever beams and the deposition paths obtained with PrusaSlicer. Design optimized

for compliance minimization with simultaneous minimum and maximum size control, for the problem defined
in Fig. 6. The difference in compliance with respect to the corresponding reference design (Table 1) is indicated

in parentheses. Next to each design, its printability ( ) is reported, as defined in Eq. (12). The arrows point

to areas where the length scale is not fulfilled.

V int = 30% V int = 40% V int = 50%

c(ρ̄int)=136.6 (+9.8 %) c(ρ̄int)=119.1 (+34.1 %) c(ρ̄int)=94.4 (+29.0 %)

in Table 2. Due to these unfilled zones, it is expected that performance of the man-
ufactured component will be different from that of the optimized design, although
the performance reduction is not quantified in this study. Regarding this geometrical
drawback at the intersection of two or more solid members, we point out that the print-
ability of such zones depends on the intended AM process and the deposition path.
For example, if the nozzle size is chosen to be equal to the width of the solid members,
the intersection between solid members would represent a T-joint or a crossover of
paths. In such cases, it may be advantageous to have an intersection larger than the
prescribed size since, in practice, it is difficult to achieve a joint with high dimensional
accuracy (Venturini et al. 2016).

The size-constrained design in Table 2 for a volume restriction of V int = 50%
exhibits zones that do not meet the desired minimum size, such as those indicated by
the red arrows in the deposition path in Table 2. In addition, given that the global
maximum size constraint Gms is defined by a p-mean aggregation function, it is possible
to find parts of the topology that do not meet the imposed maximum size, as the one
highlighted by the blue arrow in Table 2. These undesirable features typical of a local
optimum can be reduced by adjustment of parameters. For instance, by increasing
the p exponent of the aggregation function and increasing the value of the penalty
parameters (β and SIMP) more slowly, i.e. by adapting the continuation method to
involve a larger number of iterations (Fernández et al. 2020).

It is worth noting that the choice of placing two material beads is to make use of
the perimeter deposition path of PrusaSlicer, which is used for illustrative purposes.
That is, the proposed method can be used to place any number of beads along the
structural members by choosing the maximum and minimum size of the solid phase
according to the desired number of beads. For illustrative purposes, a cantilever beam
is optimized taking into account 4 material beads along the structural members. Since
an even number of beads is assumed, the perimeter pattern can be used to illustrate
the deposition path, which is shown in Fig. 7. It is noticeable that a large part of the
design is filled with 4 material beads arranged in a parallel fashion, and the remaining
gaps at the intersection of solid members are filled with triangular patterns, which
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may present difficulties when printing due to the sharp corners of the trajectory, as
outlined in Fig. 7. Therefore, positioning two material beads per solid member may
be a preferable strategy when using maximum size constraints.

Certainly, one of the most significant drawbacks of the maximum size restriction is
the performance reduction. It can be seen that the size-constrained design obtained
with V int = 40% has a 34% higher compliance compared to the reference design.
Requiring all structural members to have the same width of, in this case, two beads, is
a rather strong design restriction. Allowing for design features to have varying integer
multiples of adjacent beads in various places throughout the structure would also
result in a manufacturable design, while offering more design freedom. To conform
the optimized design to the size of the deposition nozzle and to avoid a significant
reduction on the structural performance, the following subsection presents a second
strategy, which is also based on maximum size constraints.

3.2. Method 2: Skeleton-based deposition paths

In the method discussed above, the chosen minimum and the maximum length scales
dictate structural members to have uniform width, which facilitates the generation of
a feasible deposition path. However, the structural members remain separated from
each other, which negatively affects the structural performance. This subsection shows
that the separation between members can be eliminated through a dilation projection
while retaining the manufacturability. The proposed method is based on the numerical
study presented in (Fernández et al. 2020).

Fernández et al. (2020) revealed the behaviour of the maximum size constraint in the
context of the robust formulation by restricting the size of the eroded, intermediate and
dilated designs separately. The authors concluded that in order to impose the desired
minimum and maximum length scales, it is necessary to restrict at least the dilated
design. Part of the numerical study developed in (Fernández et al. 2020) is reproduced
in Table 3 in order to highlight the property in interest for our work. To this end,
the maximum-size-constrained problem in Eq. (8) is solved but with variations on
the field where the maximum size constraint is applied. The first and second rows of
the table show the result obtained when the maximum size restriction is applied to
the intermediate and to the dilated design, respectively. The local region Ωi is shown
next to the field in which the maximum size constraint is applied, while the desired
minimum length scale is shown by the blue and black circles next to the intermediate
design. As concluded in (Fernández et al. 2020), the minimum and maximum length
scales are met only when Gms(ρ̄

dil) is included in the topology optimization problem.
However, in this work we emphasize another important observation.

The first row of Table 3 suggests that if the maximum size constraint is applied only
in the intermediate design, the dilated design does not feature a maximum member
width, since the dilation projection closes the cavities present in the intermediate
design, as illustrated in Fig. 8. Under this formulation, the eroded and intermediate
designs can be interpreted as the structural skeleton or the deposition lines of an AM
process, and the dilated design would be the component obtained after deposition.
For suitably chosen length scales, the bonding of adjacent beads can be represented in
this way. This observation allows us to formulate the following topology optimization
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Table 3. Optimized designs obtained with maximum size constraints applied on different design fields. Circles

next to the intermediate design illustrate the desired minimum size in the void phase (blue circle), in the solid
phase (black circle), and the maximum size in the solid phase (black ring).

Constraint ρ̄ero ρ̄int ρ̄dil

Gms(ρ̄
int)

Gms(ρ̄
dil)

Figure 8. Illustration of the bonding of bars resulting from the dilation projection. Labels A, B and C

represent the zones highlighted in Table 3. The zone C emphasizes the fact that the design to be manufactured

is the dilated one, for which it is now defined as ρ̄AM.

problem:

min
ρ

α c(ρ̄AM) + (1− α) c(ρ̄ero)

s.t. : vᵀρ̄AM ≤ V AM

Gms(ρ̄
int) ≤ 0

0 ≤ ρi ≤ 1 ,

(14)

where ρ̄AM represents a dilated projection and the design to be manufactured. Hence-
forth, this optimization problem (14) is denoted as the AM-constrained problem.

The AM-constrained problem contains the sum of two compliances in the objective
function. The compliance of the eroded design serves to impose the minimum size
of the solid members (Wang, Lazarov, and Sigmund 2011), while the compliance of
the dilated design is to ensure a good performance of the component intended for
manufacturing. The compliances are weighted by α, where 0 ≤ α ≤ 1. To define α,
the following must be considered. If the eroded compliance is prioritized (α ≈ 0),
the minimum size of the solid phase is guaranteed, but as insignificant emphasis is
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placed on the performance of the printed structure, the bars of the AM design could
still be separated by a very thin layer of gray elements (as seen in zone labeled as
C in Table 3), which could impair structural performance. In addition, if a large
volume of material is allowed in the design domain, floating structures can arise in the
dilated design (Fernández et al. 2020). On the other hand, if the dilated compliance is
prioritized (α ≈ 1), the bonding of bars is promoted but the minimum size control is
not ensured. If the compliances are weighted equally (α = 0.5), a topology that does
not meet the desired minimum size and/or that does not completely merge the bars
could be obtained. To avoid these issues, the weighting parameter α is defined with
a continuation scheme. At the beginning of the optimization problem, the minimum
size is prioritized, and as the optimization progresses, the structural performance is
prioritized. Thus, α can be defined by the following function:

α =
Iter− 1

Itermax − 1
, (15)

where Itermax is the maximum number of iterations defined for the continuation scheme
and Iter is the current iteration number. Although this continuation scheme causes the
objective to change in every iteration, it was found to have no detrimental effect on
convergence, and has been used successfully in all the cases considered in this study.

To select appropriate length scales and obtain designs suitable for Large-Scale AM
processes, i.e. members composed of an integer number of parallel beads, the following
must be considered. Given that the design intended for manufacturing is ρ̄AM, the
desired minimum size in the solid phase is rAM

min.Solid, as illustrated in Fig. 8. Therefore,
the set of projection and filtering parameters (µero, µint, µAM and rfil) must be found for
a length scale defined in the dilated design. The information available in the literature
to obtain the filtering and projection parameters are meant for a length scale defined
in the intermediate design (Wang, Lazarov, and Sigmund 2011; Fernández et al. 2020),
but it can be used here knowing that the length scale of the intermediate and dilated
designs are related by the dilation distance, as follows:

rAM
min.Solid = rint

min.Solid + tdil (16)

Taking into account that the following set of thresholds is adopted:

[µAM, µint, µero] = [0.25 , 0.50 , 0.75] , (17)

it only remains to find the relationships between rint
min.Solid, tdil and rfil, and to re-

place these relationships in Eq. (16) to obtain the filter radius leading to rAM
min.Solid.

To assist the reader in understanding the procedure for obtaining the required re-
lationships, we include in Fig. 9 graphs relating the projection parameters and the
minimum sizes of the intermediate design. For the generation of these graphs, the
MATLAB code provided in (Trillet, Duysinx, and Fernández 2021) has been run as
NumericalSolution(10,38). The input parameter ”10” denotes a representative size
of the filter radius (given in finite elements) simply needed to reduce rounding errors
resulting from the finite element discretization. ”38” represents the maximum value
of the smoothed Heaviside projection parameter. The procedure to obtain the filter
radius for a given nozzle size is detailed hereafter.

The minimum size of the solid phase in the intermediate design (rint
min.Solid) can be
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(a) Graph to obtain rint
min.Solid(rfil) (b) Graph to obtain tdil(r

int
min.Solid)

Figure 9. Graphs relating the projection thresholds, the filter radius, the minimum size of the solid phase in

the intermediate design and the dilation distance. The highlighted points are used in Eqs. (18) and (19). The
graphs have been constructed with the MATLAB script provided in (Trillet, Duysinx, and Fernández 2021),

running the code as NumericalSolution(10,38).

expressed as a function of the filter radius using Fig. 9(a), which yields to:

rint
min.Solid = 0.5rfil (18)

The dilation distance can be expressed as a function of the filter radius using
Fig.9(b), resulting in:

tdil = 0.60rint
min.Solid (19)

Then, using Eqs. (19) and (18) in Eq. (16), the filter radius as a function of the
desired minimum length scale is obtained:

rfil = 1.25 rAM
min.Solid (20)

The procedure explained in Eqs. (18)-(20) can be used to obtain the filter radius
(rfil) as a function of the desired length scale (rAM

min.Solid) for any other set of thresholds
(µAM, µint and µero) that may be required for a specific reason.

It is emphasized that the relationships between parameters in Eqs. (16)-(20), are
obtained from the graphs of Fig. 9, which are built from a numerical method that
assumes a 1D design domain (Wang, Lazarov, and Sigmund 2011) and a filter radius
of the order of 10 finite elements. For this reason, it is expected that the relationships
provided by Fig. 9 will not be accurately met in practice. A major source of error comes
from rounding the number of finite elements, especially when small distances (close to
one or two finite elements) are involved (Trillet, Duysinx, and Fernández 2021). This
rounding error explains the improved behavior of the method when using a slightly
smaller dilation projection threshold, which in our case is 0.20 instead of 0.25. Taking
into account this observation, the set of parameters that are used hereafter in the
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AM-constrained problem are:

rfil = 1.11 rAM
min.Solid

µero = 0.75

µint = 0.50

µAM = 0.20 .

(21)

where the factor 1.11 comes from the equations rfil = 2rint
min.Solid and tdil = 0.80rint

min.Solid,
which are obtained from Figs. 9(b) and 9(a), respectively. The reason why µAM = 0.20
performs better than µAM = 0.25 is described in the following. It is recalled that in
the illustrative example, the minimum size of the solid phase (rAM

min.Solid) has been set
equal to 5 finite elements. When using a projection µAM = 0.25, the dilation distance is
tdil = 0.6×0.5×1.25×rAM

min.Solid = 1.88 finite elements. On the other hand, if µAM = 0.20
is used, the dilation distance is tdil = 0.8× 0.5× 1.1× rAM

min.Solid = 2.20 finite elements.
Numerically, 1.88 results in one finite element (0.88 elements of rounding error), and
2.2 results in two finite elements (0.2 elements of rounding error). That is, a projection
using µAM = 0.20 induces a smaller rounding error and produces a dilation distance
one finite element larger than the one obtained with µAM = 0.25, which results in a
better bonding between members in the dilated projection. The reader intending to
modify the projection thresholds or imposed length scale is recommended to make
use of the numerical method provided in (Trillet, Duysinx, and Fernández 2021), as it
entails smaller rounding errors and thus less work in parameter tuning compared to
the analytical method provided in the cited work.

Now that the formulation of the topology optimization problem has been presented
and the projection and filtering parameters have been defined, the proposed method
is demonstrated on the cantilever beam presented in the previous section. As the
minimum size of the solid phase is set to twice the size of the nozzle, rfil = 1.11 × 2×
rnozzle = 5.6 mm. The eroded, intermediate and AM designs, along with the deposition
paths are shown in Table 4.

Similar to the maximum-size-constrained designs reported for the first method, the
AM-constrained designs do present small unfilled gaps, which are mostly situated at
the intersection of solid members. In terms of printability, the designs perform similarly
as well. However, the AM-constrained designs exhibit better performance on the face
of increased design freedom. The difference is most noticeable when large volumes of
material are allowed in the topology, which highlights the need to prefer the AM-
constrained optimization problem over the maximum-size-constrained one.

For a small amount of material, such as V = 30%, the reference (Table 1), the
size-constrained (Table 2) and the AM-constrained (Table 4) optimization problems
generate similar topologies. However, for large volumes of material, the topologies can
be very different and therein lies the benefit of the AM-constrained formulation. For
example, for V = 50%, the ρ̄AM design presents zones where two material beads are
placed next to each other to form a bulky zone. As the volume of material is increased
in the design space, more parallel material beads merge, as shown in the fourth column
of Table 4.

Table 5 shows three AM-constrained results obtained with varying nozzle sizes,
and a volume fraction of V AM = 60%. The Table includes the eroded designs
superimposed on the optimized designs and the deposition path obtained with
PrusaSlicer. Note that the deposition paths are obtained with a nozzle size rnozzle =
0.5rAM

min.Solid, which places at least 2 parallel paths per solid member. If the deposition
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Table 4. Optimized designs provided by the AM-constrained topology optimization problem. The difference

in compliance with respect to the reference design is indicated in parentheses. The percentage next to the
symbol represents the printability index defined in Eq. (12).

V AM = 30% V AM = 40% V AM = 50%

ρ̄ero

ρ̄int

ρ̄AM

c(ρ̄AM)=132.3 (+6.4%) c(ρ̄AM)=101.8 (+14.6%) c(ρ̄AM)=80.2 (+9.6%)
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Table 5. AM-constrained designs for different nozzle sizes and V AM = 60%. The firs row shows the optimized
designs. The second row shows the eroded designs superimposed on the AM-designs. The third row shows the

deposition paths obtained with PrusaSlicer (v.2.2.0). The percentage next to the symbol represents the

printability index defined in Eq. (12).
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nozzle were chosen twice the size, i.e. rnozzle = rAM
min.Solid, then each solid member would

consist of at least one bead. In such a case, the eroded and intermediate fields could
be read as the deposition trajectory, since due to the projection strategy, they are
positioned exactly at the center of the design intended for manufacturing, as shown
in the second row of Table 5. Therefore, the deposition path provided by the eroded
or intermediate design is expected to leave fewer unfilled zones than the one proposed
by PrusaSlicer.

An interesting observation can be made from the results depicted in Table 5, where
the AM-constrained designs present material beads, at first sight, oriented with the
major principal stress direction. Surely, this pattern is due to the compliance cost
function that is evaluated for a single load case, yet, it might be beneficial when
considering an orthotropic elasticity of the material bead, for instance, in the WAAM
process (Laghi et al. 2020). This observation, however, is not addressed in this article,
hence it is left open for future research.

As the design intended for manufacturing corresponds to a dilated one, it is not
possible to guarantee the minimum size of the cavities in ρ̄AM. In addition, the presence
of small cavities can be a consequence of utilizing large material beads. Note that in
practice it is difficult to achieve high accuracy in the material bead width for some
LSAM processes, as for instance WAAM (Xia et al. 2020). In such instances, some
dimensional uncertainty is present that could fill the voids present in the design. Such
beneficial uncertainty could potentially be considered in the topology optimization
formulation by using perturbation techniques on the length scale (Lazarov, Schevenels,
and Sigmund 2012). This topic, however, is outside the scope of this work.

The approach that defines Method 2 is based on constraining the maximum size
of a design and dilating it according to the prescribed deposition nozzle size. This
results in a dilated design with improved printability, and in an eroded design that is
placed at the center of the dilated members resembling a structural skeleton that can
be interpreted as the deposition path. It should be noted that the structural skeleton
is a by-product of constraining the intermediate design, and is not explicitly computed
using edge detection algorithms (Zhou et al. 2015). This is the main advantage of the
proposed Method 2 in comparison to other methods that could eventually be used for
improving the printability of the designs, since, to date, the edge detection algorithms
for topology optimization are not robust in the density method, mainly due to the
fact that intermediate densities complicate boundary detection. For this reason, in
the density method, length scale control algorithms based on the explicit calculation
of the structural skeleton are applied almost at the end of the optimization process
(Zhou et al. 2015), when the topology has already been defined, i.e. they operate as
post-processing tools. That being said, Liu (2019) proposes a functional for level set
topology optimization that allows to define a variable length scale within the design,
which would also allow generation of designs adapted to the deposition nozzle, sim-
ilar to Method 2. However, the cited method has not been validated in the density
framework nor in 3D design domains, these two aspects being a major challenge for
algorithms based on the explicit calculation of the skeleton. The following section
demonstrates that the proposed Method 2 can be easily applied to 3D geometries, ei-
ther considering AM processes with a fixed printing direction or with variable printing
direction, such as AM processes assisted by robotic arms.
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(a) (b)

Figure 10. In (a), the 3D cantilever beam for compliance minimization. In (b), the layer and the local region
Ωi where the local maximum size restriction is formulated. The design domain is discretized with 240×120×96

finite elements.

4. 3D example and discussion

The two methods proposed in the previous sections were presented using a two-
dimensional design case, where the deposition path is defined in a 2D plane. This
section assesses and compares the methods using a three-dimensional design case. To
this end, the cantilever beam shown in Fig. 10(a) is used. The design domain is dis-
cretized into 2.76 million cubic elements of 1 mm edge length. The optimized design
is intended for an AM process equipped with a deposition nozzle of rnozzle = 5 mm. It
is assumed that the AM process generates layers orthogonal to the build direction, as
shown in Fig. 10(b). In addition, it is assumed that each layer is 2 mm thick, so the
final component is made up of 60 layers. As each layer of the optimized design must
conform to the size of the deposition nozzle, the maximum size restriction is applied
in the plane, as shown in Fig. 10(b).

As in the previous section, the finite element model considers an isotropic linear
elastic behavior for both the deposited material and interlayer bond. Undoubtedly, this
consideration may not be representative of some materials and LSAM processes, such
as stainless steel in WAAM (Kyvelou et al. 2020), where material anisotropy should
not be disregarded during topology optimization (Zhang, Liu, and To 2017). However,
as this work focuses on the nozzle size constraint, we keep the material modeling part
general assuming an isotropic behavior instead of using a specific anisotropic model
(see, for instance, Jantos, Hackl, and Junker 2020).

Three designs are reported, the Reference, the Maximum-size-constrained and the
AM-constrained designs. The optimization problems are solved for a volume restriction
of 15% and with a minimum size of rmin.solid = 5 mm. The optimized results are sliced
in PrusaSlicer, and the obtained deposition paths are shown in Table 6. The first
row of the table shows the component after all the layers have been deposited and
the averaged printability of all layers combined. The remaining rows show 4 selected
layers and the associated deposition path. These layers correspond to the least filled,
the most filled, and two representative of the average. The layers are shown inside the
projected perimeter of the complete structure to provide guidance on the location of
the layer with respect to the complete design.

From the printability indices of Table 6, it is clear that as in the 2D examples, the
maximum-size-constrained design contains the least amount of unfilled zones. Also,
since two material beads are placed per solid member width, no T-joints or path
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Table 6. 3D cantilever beams obtained from the Reference, the Maximum-size-constrained and the AM-

constrained topology optimization problems. The design domain is shown in Fig. 10. The optimized designs are
sliced using PrusaSlicer (v.2.2.0). The percentage of the design that is filled with deposited material is indicated

next to the sliced design. The second and third rows show the least and most filled layers, respectively. The

fourth row shows two representative layers for the deposition paths obtained with PrusaSlicer.

Reference Max.-Size-Constrained AM-Constrained
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Layer: 53 , 93.0% Layer: 6 , 98.7% Layer: 42 , 97.4%

Layer: 6 , 89.5% Layer: 24 , 99.1% Layer: 30 , 97.0%

crossovers are obtained. In addition, due to the uniform size of the solid members, the
size-constrained component resembles a design composed of walls of uniform width. As
a number of AM processes are proficient in the production of walls, such as WAAM,
it is expected that the size-restricted component will be the easiest to manufacture
among the three reported designs.

The small unfilled gaps (1.1%) in the maximum-size-constrained design are mainly
zones where the local maximum-size constraint is violated, as those pointed out by
arrows in Table 6. This drawback caused by the smoothed aggregation function could
be reduced, but not completely eliminated, by using a finer mesh or larger aggrega-
tion exponents (Fernández et al. 2019), i.e. at the cost of increasing computational
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Table 7. AM-constrained designs. The layers show the eroded design in red and the AM design in yellow.

V AM = 15% V AM = 20% V AM = 30%
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expense. Another approach to improve printability is to post-process the optimized
designs using the geometric constraints proposed by Zhou et al. (2015), which, in our
experience, enforce length scale more strictly.

Although the size-constrained design is the best candidate for manufacturing, it ex-
hibits the lowest performance, since the maximum size restriction prevents bulky zones
that are required to increase the structural stiffness. This could be even more detrimen-
tal in applications involving stress or fatigue constraints (Collet, Bruggi, and Duysinx
2017). Therefore, it is expected that for cases involving mechanical constraints, the
AM-constrained problem will be a better choice for yielding high performance designs
suitable for AM processes equipped with large deposition nozzles.

It was observed in the 2D examples that the eroded and intermediate designs can be
interpreted as the structural skeleton or the deposition paths in the AM-constrained
formulation. To illustrate this in the 3D design case, Table 7 shows the AM-design
and 3 representative layers of the component. Each layer displays the eroded design
in red and the AM layer in yellow. The table contains 3 optimized solutions obtained
with the same nozzle size but with different volume restriction.

From the eroded design it is rather intuitive to conceive a deposition path for the
layer shown in Table 7. However, there are some places that could hinder the path
interpretation, as those pointed out by arrows in the Layer 2 depicted in Table 7. These
places are in violation of the local volume restriction that imposes the maximum size
and, therefore, it is not possible to ensure that these zones will be filled during the
LSAM process. Due to these zones in conflict with the local maximmum size restriction,
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(a) Size-Constrained (b) AM-Constrained

Figure 11. Optimized 3D cantilever beam for compliance minimization.

the optimized design will likely need to be post-processed to conform these details to
the resolution of LSAM process, for instance, using more strict geometric constraints
on the optimized designs (Zhou et al. 2015).

Notably, the 3D examples shown in this section assume a fixed printing direction.
Nevertheless, there are Large-Scale AM processes that are able to change the stacking
direction of the layers, either by the rotation of the baseplate or of the deposition
tool. Interestingly, the methods proposed in this paper can be easily adapted to such
processes. For this purpose, the local Ωi region where the maximum size restriction is
evaluated should be defined as a sphere instead of a two-dimensional disk, as presented
in (Fernández et al. 2020). For instance, Fig. 11 shows the size-constrained and AM-
constrained designs obtained by using a spherical Ωi region. The volume constraint is
set as V = 15% and the length scale is defined identical to the previous examples. The
inner details of these designs are summarized in Table 8. The first row of the table
contains the optimized designs and the sections planes that display the working layer.
The second row shows the eroded design and the printing direction devised intuitively.
The remaining rows display the sections, where the eroded design is shown in red and
the cross-section in yellow.

The designs in Table 8 are considerably different from their counterparts obtained
with a fixed vertical printing direction (Table 6). The designs having the printing di-
rection freedom possess two thick bars at the loaded side (see also Figure 11) that
connect the upper part of the design with the load transmission zone. These bars are
also present in the reference design (Table 6), which would explain the high perfor-
mance of these solutions (Table 8) with respect to those obtained using a fixed building
orientation (Table 6). Interestingly, these two curved bars present in the designs of Ta-
ble 8 possess different geometry depending on the formulation used. As can be seen
in section D-D, these bars are flat in the size-constrained design, while they are round
in the AM-constrained design. Although both geometries are suited to the size of the
deposition nozzle, the round bar offers a higher area moment of inertia and hence a
higher bending stiffness.

As before with the fixed printing direction, the AM-constrained design shows better
performance than the maximum-size constrained one, presumably because it allows
thicker members where this is beneficial.
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Table 8. Design details of the 3D cantilever beams shown in Fig. 11.
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5. Other test cases and TO problems

The proposed Method 2, based on dilating a design constrained in maximum size,
was introduced in Eq. (14) using the compliance minimization problem subject to a
volume constraint. This formulation was chosen for the sake of simplicity, but in fact,
Method 2 is applicable to any topology optimization problem where the maximum size
constraint (Eq. (9)) has been validated. Moreover, in our experience, the maximum
size constraint, and hence Method 2, can be applied in most of fields where the robust
formulation based on the eroded, intermediate and dilated designs has been imple-
mented. For the sake of demonstration, in this section we therefore present results of
other topology optimization problems.

In the following, the proposed Method 2 is considered under compliance minimiza-
tion subject to a volume and stress constraints. The topology optimization problem
can be written as:

min
ρ

α c(ρ̄AM) + (1− α) c(ρ̄ero)

s.t. : vᵀρ̄AM ≤ V AM

Gms(ρ̄
int) ≤ 0

max(σ(ρ̄AM)) ≤ σ∗

0 ≤ ρi ≤ 1 ,

(22)

where σ(ρ̄AM) represents the equivalent Von Mises stress computed in the dilated field
and σ∗ is the user-defined stress limit. The max(·) function is computed using a p-mean
approximation, following exactly the same implementation as Verbart, Langelaar, and
Van Keulen (2017). The equivalent Von Mises stress of the dilated field is computed as
described in (da Silva, Beck, and Sigmund 2019). For the sake of brevity, we omit the
numerous equations defining the stress constraint and interested readers are referred
to the cited works.

The classical L-beam with a volume constraint of 40% is considered. For this test
case, three topology optimization problems are solved, the reference (Eq. 6), the AM-
constrained (Eq. 14), and the AM-stress-constrained one (Eq. 22). In the latter, the
imposed stress limit (σ∗) is 0.8 times the maximum stress computed in the reference
design. The three optimized designs are shown in the first row of Table 9.

The two AM-constrained results in Table 9 (second and third columns) clearly reach
the intended purpose, which is the production of designs adapted to the deposition
nozzle size. In addition, in such designs, the eroded field can be interpreted as the
deposition path, as shown in the third row of Table 9. However, the introduction
of stress constraints produces a different arrangement of material beads. The stress-
constrained design places the material beads mostly around the vicinity of the L-beam
curvature, which, along with the smooth curvature of the design, reduces the maximum
stresses in the structure compared to the other two designs. This solution demonstrates
the feasibility of implementing the proposed Method 2 in problems involving stress
constraints.

Although the combination of Method 2 with stress constraints is demonstrated,
there are still aspects that can be improved. For example, it can be seen that the
AM-stress-constrained design does not accurately meet the imposed stress constraint.
This is probably due to the p-mean function, which underestimates the maximum
stress value for the sake of a differentiable approximation, therefore other relaxation
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Table 9. L-Shaped beam optimized for compliance minimization. 200 finite elements discretize the long edge

of the beam. The minimum size of the solid phase is defined by a circle of 4 finite element radius. In these
problems, the maximum Heaviside projection exponent (β) is set to 20, and the SIMP exponent is fixed at 3.0.
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strategies should be examined (da Silva, Beck, and Sigmund 2019). Also, observations
regarding small gaps in the deposition paths hold as before, which could result in
potential stress concentrations. A more in-depth study of these aspects is identified as
a direction for future research.

To close this section, we include results for the well-known force inverter benchmark
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Table 10. Half force inverter design solutions. Boundary conditions are illustrated in the reference design.

There, the red arrow represents the external force and the blue arrow the output displacement to maximize.
The orange dashed line is the symmetry line. The design domain is discretized using 200×100 finite elements.

The minimum size of the solid phase is defined by a circle of 4 finite element radius. c represents the output

displacement of the corresponding design. In these problems, the maximum Heaviside projection exponent (β)
is set to 38, and the SIMP exponent is fixed at 3.0.
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test. The AM-constrained formulation of the force inverter can be written as follows:

min
ρ

max(c(ρ̄ero), c(ρ̄int)) (1− α) + c(ρ̄AM) α

s.t. : vᵀρ̄AM ≤ V AM

Gms(ρ̄
int) ≤ 0

0 ≤ ρi ≤ 1 ,

(23)

where c represents the output displacement of the corresponding design (considered
negative due to the adopted reference system). The force inverter is modeled under
linear elasticity, as is done in many other works in the literature (Sigmund 1997;
Bendsoe and Sigmund 2004), so further formulation and implementation details are
omitted for the sake of brevity and the reader is referred to the cited works.

Here, once again, the reference, the maximum size-constrained, and the AM-
constrained problems are solved. The force inverter design solutions for a volume
contraint of 30% are sumarized in Table 10, along with the eroded fields and the de-
position paths (note that due to symmetry, only half the domain is modeled). These
results exhibit the same pattern observed in previous examples, namely, the maximum
size-constrained design achieves better printability than the reference design by im-
proving conformability to the width of the material beads. However, the maximum
size constraint could introduce a significant performance reduction, as it provides low
design flexibility by imposing a uniform size of solid members throughout the design.
On the other hand, the AM constrained design besides providing a good printability,
offers more design flexibility since it allows the creation of voluminous zones that im-
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prove performance. In addition, as a by-product, Method 2 yields an eroded design
that can be interpreted as the deposition path.

6. Conclusions and Perspectives

This work aims to propose topology-optimized designs suitable to Large-Scale Addi-
tive Manufacturing (LSAM) processes. The design limitation considered here is the
small resolution of LSAM processes resulting from depositing large volumes of ma-
terial to reduce printing time. The process resolution, which is typically defined by
the size of the deposition nozzle, is introduced in the topology optimization problem
through a geometric control of structural features. Specifically, two methods based on
minimum and maximum size control have been proposed. The first method imposes
the minimum and maximum size of the solid members in proportion to the size of the
deposition nozzle. This results in designs with structural features of uniform width,
which matches a discrete number of material beads arranged in a parallel fashion.
The method has been evaluated in 2D and 3D design spaces, showing the capability
to produce optimized designs with improved manufacturability. Interestingly, when a
fixed building orientation is chosen for a 3D design problem, the method generates
structures composed of walls, which are suited for fabrication by most LSAM pro-
cesses. However, this method can lead to substantial reduction of performance due to
the splitting of structural members as enforced by the maximum size restriction. The
second method instead dilates a maximum-size constrained design which, due to a
specific choice of length scales, resembles a structural skeleton or the deposition path.
The dilation operation of this skeleton produces a design tailored to the deposition
nozzle size, allowing for an efficient arrangement of the material beads within the
design domain. Numerical results indicate that this second approach also produces de-
signs that conform to the specified resolution, and, in addition, it comes with a lesser
performance reduction compared to the first method. This is caused by the fact that
the second method allows for thicker members to be created using parallel beads, in
regions where this is beneficial.

In light of the numerous design guidelines that must be taken into account when
designing for LSAM, it is reasonable to think of combining the proposed topology
optimization methods with others existing in the literature. For example, the 3D de-
signs obtained for a fixed printing direction (Table 7) could be difficult to manufacture
with certain LSAM processes due to the presence of extreme overhang angles. When
the use of additional support structures is not considered or feasible, the introduction
of overhang angle constraints (Langelaar 2016) in the topology optimization problem
could be considered. Also, depending on the application, it may be necessary to post-
machine a component manufactured by WAAM for instance, to improve surface finish
and mechanical performance. As illustrated in Fig. 12, the post-machining operation
slims the WAAM component, similar to an erosion process of the robust formulation.
Therefore, it is likely feasible to consider post-processing in the adopted formulation.
Certainly, the access of the machining tool should also be considered, as in the topol-
ogy optimization methods presented in (Li et al. 2016; Langelaar 2019; Gaynor and
Johnson 2020). These ideas and the combination of the proposed methods with other
Topology Optimization methods are subjects of future research.
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(a) ρ̄dil (b) Machining (c) ρ̄int

Figure 12. Post machining of a WAAM component. (a) The component obtained after the WAAM pro-
cess. (b) The component undergoing machining. (c) The final component. Pictures are courtesy of Fronius

International Gmbh (www.fronius.com).
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