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Abstract

Over the past few years, space missions to minor celestial bodies have gained increased attention
from the space community. A prime example is the selection of Psyche as the National Astronautics
and Space Administration’s (NASA) fourteenth Discovery Program mission. Orbital dynamics in the
vicinity of small irregular bodies pose great challenges for trajectory design. In particular, science
orbits close to the surface of small bodies are often strongly perturbed by the irregular gravity field.
These irregularities can potentially perturb the trajectory of a spacecraft in such a way that it be-
comes uncontrollable, resulting in impact on the surface of the central body or escape from the
system. A less dramatic consequence would be the need for costly orbit maintenance maneuvers to
counteract these instabilities, which is undesirable. For uniformly rotating bodies such as the Psy-
che asteroid, mean motion resonances with the asteroid rotation amplify instabilities even further,
warranting the need for a systematic study of orbital stability in such systems.

In this research project, to increase our understanding of these dynamically challenging envi-
ronments, firstly analytical approximate solutions are derived in a uniformly rotating gravity field.
The starting point of these derivations is the Gauss Planetary Equations (GPE) for the semi-major
axis and the eccentricity of the orbit. The resulting expressions clearly show the detrimental impact
of mean motion resonances with asteroid rotation. For prograde orbits, terms appear that become
infinitely large in magnitude as the mean motion of orbiting spacecraft approaches the 1:2, 1:1, 3:2
and 2:1 resonances with the rotation of the central body. Similar terms appear for retrograde or-
bits. However, the magnitude of these terms always remains finite, which shows that retrograde
orbits are more robust against instabilities caused by mean motion resonances. A comparison with
numerical results validates that the analytically derived solutions adequately approximate the real
solution under the specified assumptions.

Secondly, an extensive numerical characterization of stability in the uniformly rotating second
degree and order gravity field is carried out by uniformly sampling the initial condition space and
the gravity field harmonic coefficients. In doing so, a stability condition similar to Bounded-Input,
Bounded-Output (BIBO) stability is applied. Using the BIBO-stability condition, stability plots are
generated that can be used to quickly inform mission designers on stable and unstable regions in
the phase space for the majority of small bodies. In addition, a conservative sufficient empirical
stability condition for the maximum unstable semi-major axis of circular orbits around small bod-
ies is derived. The BIBO-stability plots are used to assess the current science orbit selection for
the Psyche mission and show that the two exterior circular orbits at an inclination of 90 degrees are
BIBO-stable. However, it is advised to increase the inclination of the second innermost orbit beyond
90 degrees to ensure orbit stability in case the gravity field of the Psyche asteroid is very irregular.
Similarly, the innermost orbit is likely to only be stable beyond an inclination of 140 degrees and
an eccentricity close to 0.1 is recommended to reach altitudes closer to the surface of the Psyche
asteroid in order to increase the science output of the mission. A comparison of the orbital results
obtained in a second and eighth degree and order gravity field demonstrates the validity of using a
low degree and order field for the preliminary characterization of stability around the Psyche aster-
oid.

After that, a different notion of stability is applied to the same search space. This condition is
based on the regularity or chaoticity of spacecraft trajectories, quantified by the Fast Lyapunov In-
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dicator (FLI). Our results show that FLI maps provide more rich information, especially regarding
the detection of families of periodic solutions. In addition, the FLI distinguishes between stable
and unstable motion more effectively when compared to a BIBO-stability constraint. Often, it is
able to detect the instability of a trajectory very soon, even when the trajectory appears to be sta-
ble. However, this comes at the cost of an increased computational workload due to the required
numerical integration of deviation vectors using the variational equations. Nonetheless, the FLI is
recommended as an effective and independent complementary mission design tool. Stability plots
using the FLI condition overall lead to the same conclusions as mentioned in the previous para-
graph when it comes to the selection of science orbits for the Psyche mission.

The initial work presented in this thesis can be developed further into a complementary mission
design tool for future small-body missions.
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1
Introduction

On January 4, 2017, the National Astronautics and Space Administration (NASA) selected Psyche as
the fourteenth mission of its Discovery Program. The mission targets asteroid (16) Psyche and aims
to be launched in 2022, arriving at its target in 2026 (Oh et al., 2017). Psyche is a large object residing
within the Main Asteroid Belt at approximately 3 Astronomical Units (AU). The asteroid is unlike
any other body in our Solar System. Observations from Earth using radar, occultations, lightcurve
inversions and reflection spectra have led to the hypothesis that Psyche may be almost entirely com-
posed of metal (Hanuš et al., 2017, Shepard et al., 2016). This would make Psyche the largest M-type
asteroid of our Solar System, which opens up a world full of questions regarding its formation his-
tory, connection with other Solar System bodies and its current state. Planetary formation models
show that bodies with a similar size to Psyche are likely to be differentiated, meaning that heavier
materials such as metals sink to the core of the body and silicates form the mantle. Surprisingly,
Psyche’s density is too high to conform with the existence of a significant silicate mantle and its re-
flection spectra show similarities with metal bodies. Consequently, the leading hypothesis is that
Psyche is a remnant of a planetary formation process and that multiple impacts stripped away its
silicate mantle after differentiation, leaving an exposed core. By investigating this unusual body, we
can learn more about the formation of our Solar System and the cores of rocky planets such as Earth
(Oh et al., 2016).

The trajectory design of the Psyche mission in the vicinity of the body shows great similarities
with the Dawn mission, which successfully explored asteroids Ceres and Vesta. Four quasi-circular
orbits are proposed to explore the asteroid. Each orbit has a radius smaller than the previous one,
getting closer to the surface of the asteroid as the mission progresses and the gravity field of the
asteroid is mapped in greater detail (Oh et al., 2017). A major challenge in the design of trajec-
tories close to irregular bodies such as Psyche is the selection of orbits which are stable. Due to
large gravity-field perturbations, orbital parameters can vary significantly over relatively short time
spans, possibly resulting in a spacecraft impact on the asteroid surface or an escape from the system
(Hu and Scheeres, 2004). Therefore, it is essential to characterize stability in the vicinity of Psyche
in order to ensure safe mission operations. In addition, by providing a general characterization of
stability in the uniformly rotating two-body problem, the obtained results can be applied to a large
number of small bodies beyond the Psyche asteroid as well.

In recent years, research has focused significantly on the search for periodic orbit solutions in
the body-fixed frame of small bodies (Hu and Scheeres, 2008, Yu and Baoyin, 2012) by using tech-
niques such as differential correction (Russell, 2006) and Poincaré maps (Scheeres, 1999a). These
methods can provide quasi-stable periodic solutions and look at stability from a dynamical systems
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point of view. Hu and Scheeres (2004), Araujo et al. (2015) and other authors analyzed stability from
a more practical point of view, which is deemed more applicable and useful for the majority of space
exploration missions. From a mission perspective, the orbital parameters of orbits should remain
bounded between a certain range of values for an extended period of time to ensure that the space-
craft does not undergo excursions to unwanted regions around the small body. During the literature
study preceding this research, gaps were found in literature concerning the analysis of stable orbits
from this practical point of view. Scheeres (2012) postulates that a second degree and order grav-
ity field captures the most important perturbations in the vicinity of a small body, but it is unclear
whether this low-order field is sufficiently complex to globally characterize stability near an irregular
body. To the best of the author’s knowledge, an extensive parametric numerical characterization of
stability in the uniformly rotating two-body problem is lacking from literature. Finally, it was iden-
tified that it is uncertain whether chaos indicators, such as the Fast Lyapunov Indicator (FLI), can
be used effectively to characterize stability near an irregular body and what their advantages and
disadvantages are for globally characterizing stability. Consequently, the research objective of this
study is to provide recommendations to mission designers at the Jet Propulsion Laboratory (JPL),
regarding how to select stable science orbits in the vicinity of the Psyche asteroid by numerically
determining stability regions, while taking into account uncertainties in the gravity field model and
providing an assessment on the effectiveness of FLIs for the determination of stability. Based on this
research objective and the identified gaps in literature, three research questions can be formulated:

1. Which orbits around the Psyche asteroid are stable and robust against uncertainties in the
gravity field?

2. Can a second degree and order gravity field be used to globally characterize stability near a
small body?

3. Are chaos indicators, such as the FLI, an effective tool for characterizing orbit stability?

By answering these questions, significant contributions will be made to the field of small-body
dynamics in general and the Psyche mission in particular.

The outline of this thesis is as follows. Firstly, Chapter 2 gives a background on asteroids, the
Psyche asteroid and the Psyche mission. Secondly, the physical model used in the orbit simulations
along with the equations of motion are introduced in Chapter 3. After that, the system is analyzed
in an analytical way in Chapter 4 by deriving analytical solutions of the equations of motion. The
external software, the numerical integrator and the software architecture are described in Chapter
5. Subsequently, Chapter 6 presents the methodology and results of an extensive parametric nu-
merical characterization of stability in the small-body problem with results applied to the Psyche
mission. Then, stability is characterized by applying the FLI in Chapter 7. In this chapter, it will
be assessed whether a chaos indicator is an effective tool to characterize stability. Finally, the sim-
ulations and results are validated in Chapter 8, after which conclusions and recommendations are
presented in Chapters 9 and 10 respectively.

2 1. Introduction
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2
Mission Background

To support answering the research objective, this chapter provides background information on as-
teroids, the Psyche asteroid and the Psyche mission. Firstly, Section 2.1 gives a brief overview of
asteroids in general, after which Section 2.2 focuses specifically on the Psyche asteroid. Then, the
Psyche mission will be described in Section 2.3, including relevant information on its objectives,
spacecraft and trajectory design.

2.1. Asteroids
Asteroids are a taxonomic subset of small bodies that reside within our Solar System and are de-
fined as minor planets which do not experience visible outgassing (Scheeres, 2012, p. 25), although
a strict definition is always ambiguous and arbitrary. Other subsets of small bodies include moons
(or natural satellites) of planetary bodies, Oort Cloud objects, Kuiper Belt objects, dwarf planets and
interplanetary dust. Asteroids are often considered to be the remnants of Solar System formation
and therefore carry great scientific value. By exploring these pristine worlds, it is deemed that one
can attain a greater understanding of the history and formation of the Solar System. In addition,
asteroids have gained an increased amount of attention in recent years due to the possible exploita-
tion of these objects for scarce natural resources.

The most common way to subdivide asteroids further is to classify them based on their orbital
parameters. Figure 2.1 (Scheeres, 2012, p. 27) shows the distribution of asteroids within the So-
lar System. Most asteroids reside within the Main Asteroid Belt between the orbits of Mars and
Jupiter. In the figure, the Kirkwood Gaps caused by resonances with Jupiter’s orbit are clearly vis-
ible. Other notable families of asteroids are the Trojans (residing in the vicinity of Jupiter’s fourth
and fifth Lagrange points), the Centaurs (residing between the orbits of Jupiter and Neptune) and
the Near-Earth Asteroids (with orbits in proximity of Earth’s orbit).

Another property used to classify small bodies is their spin state, which is often determined
from variations in light curves. This property is especially relevant to the current research since the
spin state of the body can severely influence the dynamics in the vicinity of the body. Three main
classes can be identified: uniform rotation, complex rotation and synchronized rotation, with the
latter class only being applicable to multi-body systems (Scheeres, 2012, p. 35). The majority of the
asteroids are uniform rotators with their angular momentum vector being approximately constant
in magnitude and orientation within an inertial frame and aligned with the principal moment of
inertia of the body. This is expected since it results in the lowest energy state of the body, whereas
complex rotation causes tidal energy dissipation. Apart from the type of spin state, one can also
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Figure 2.1: Distribution of asteroids and comets within the Solar System based on orbital characteristics. Image
courtesy: Alan Chamberlain, JPL/Caltech and retrieved from (Scheeres, 2012, p. 27).

classify bodies based on the magnitude of their rotational rate (Scheeres, 2012, p. 35).

Finally, asteroids can be subdivided based on their spectral features which give indications on
their composition. A common subdivision is the following (DeMeo et al., 2015):

− C-complex: Asteroids associated with a carbonaceous chondrite composition due to low
albedo’s, flat or low spectral slopes and subtle to no spectral features. This group contains
the C-type asteroids, which make up more than 75 percent of all asteroids.

− S-complex: Asteroids associated with a silicate composition due to silicate absorption fea-
tures within its spectra. These asteroids are assumed to be ‘stony’ and make up approximately
17 percent of the asteroids.

− X-complex: Asteroids with moderate spectral slopes, subtle to no spectral features and low
to high albedo’s. This complex can be broken down further into E-, M- and P-types, ranging
from high to low albedo’s respectively. The M-type asteroids are also known as the metallic
asteroids and form the third largest group of asteroids.

Note that there are multiple classes that do not fit these complexes such as the very red D-type
asteroids and the olivine A-type asteroids.

2.2. Psyche
Using ground-based observations, several studies have indicated that Psyche could be the largest
metal-rich (M-type) asteroid in the Main Asteroid Belt (Sanchez et al., 2017). It measures approxi-
mately 200 km across and contains 1% of the mass of the Main Asteroid Belt (Shepard et al., 2016),
making it a large and massive asteroid. Estimates of the asteroid’s density, analysis of its reflec-
tion spectra and radar observations characterizing its albedo and size, indicate that Psyche could
be composed almost entirely of Fe-Ni metal. Due to its size, density and estimated composition, it
is hypothesized that Psyche is the remnant of a planetary formation process. It is thought to be the
exposed core of a small planet that never formed, unable to complete its accretion process into a
regular planet. This would have been the result of multiple impacts on the asteroid during the for-
mation of the Solar System, which stripped away any silicates encapsulating its core. Therefore, the

4 2. Mission Background



Stable Orbits in the Small-Body Problem

asteroid is the target of the Psyche mission which can provide valuable insight in planetary forma-
tion and planetary interiors. Furthermore, it is the only body in the Solar System that could provide
this kind of information since no other known bodies with a similar composition have a size com-
parable to Psyche (Oh et al., 2016).

2.2.1. Orbital Parameters
The orbital parameters of the Psyche asteroid are known with high accuracy and are summarized in
Table 2.1 along with the orbit period of Psyche around the Sun, the siderial rotation period of the as-
teroid and the rotational rate (JPL, 2018). Furthermore, Psyche rotates uniformly and it is assumed
that it does so about its principal moment of inertia axis.

Parameter Value Units
a 2.928 AU
e 0.1339 -
i 3.095 deg
Ω 150.2 deg
ω 227.9 deg
M 210.5 deg
T 5.0138 yr
Ts 4.1939 hr
ωA 4.1616 10−4 rad/s

Table 2.1: Orbital elements of Psyche at epoch 2458200.5 (23 March 2018) TDB (JPL, 2018).

Going from top to bottom in the table above, the symbols represent the semi-major axis, the
eccentricity, the inclination, the right ascension of the ascending node, the argument of periapsis,
the mean anomaly, the rotation period of Psyche around the Sun, the siderial rotation period of
Psyche about its rotation axis and the uniform rotational rate of Psyche.

2.2.2. Mass
Several studies have attempted to determine the mass of the Psyche asteroid using astrometric mea-
surements. By tracking encounters of Psyche with smaller asteroids and fitting a two-body problem
to the observations, estimates can be obtained of the mass of the asteroid. Then, these estimates
can in turn be used to determine a single weighted average of the asteroid’s mass. Estimates of Psy-
che’s mass were summarized by Baer et al. (2011) and showed mass estimates ranging from 0.87
10−11 to 3.38 10−11 solar masses by different studies. However, the approach mentioned earlier is
only a first approximation since the asteroid encounters are not isolated. By solving simultaneously
for the mass of the asteroid and the epoch state vector(s) of the asteroid, the accuracy of asteroid
mass estimates can be increased. Baer and Chelsey (2017) implemented this technique for simulta-
neous mass determination for gravitationally coupled asteroids and obtained a more precise mass
estimate M for the Psyche asteroid, which is listed in Table 2.2 (Baer and Chelsey, 2017) along with
Psyche’s gravitational parameter µ. This mass estimate is currently also used by Psyche’s mission
design team. The 1:1 resonance radius rs of the mean motion of an orbiting body with the asteroid
rotation of Psyche can be determined with µ and Ts and is presented in Table 2.2 as well.

2.2.3. Shape
Several methods exist to obtain shape models of asteroids from Earth observations. The most com-
mon methods are radar observations, Adaptive Optics (AO) images, lightcurve shape model inver-
sions and occultations. Multiple attempts have been made to construct shape models of the Psyche
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Property Value 1σUncertainty Units
M 2.29 1019 7.0 1017 kg
µ 1.53 0.047 km3/s2

rs 207 6.3 km

Table 2.2: Mass, gravitational parameter and 1:1 resonance radius of the Psyche asteroid (Baer and Chelsey, 2017).

asteroid using these techniques. Kaasalainen et al. (2002) developed the first convex shape model
of Psyche using lightcurve inversions. Since then, more observations have been made including
more accurate radar observations by Shepard et al. (2016) in 2015. The developed shape model
compared with these new radar observations is shown in Figure 2.2 (Shepard et al., 2016). Images
are presented in groups of three, where the left one is the radar image of Psyche, the middle one is
the simulated radar image using the shape model of Psyche and the right one is the shape model of
Psyche including its rotation axis.

Figure 2.2: Shape model of the Psyche asteroid compared with delay-Doppler radar imaging observations (Shepard
et al., 2016). Images are presented in groups of three, where the left one is the radar image of Psyche, the middle one is

the simulated radar image using the shape model of Psyche and the right one is the shape model of Psyche including its
rotation axis.

The figure presented above clearly illustrates the low resolution of the radar observations, which
makes it difficult to generate an accurate shape model of the Psyche asteroid. Hanuš et al. (2017)
also developed a shape model, but this one deviates significantly from the other two shape models
that were developed for Psyche. Furthermore, Shepard et al. (2016) use a large set of different types
of observations and is deemed more reliable for that reason. Their model has been shown to be
consistent with previously published AO images and occultations. Several properties of their shape
model of the Psyche asteroid are summarized in Table 2.3 (Shepard et al., 2016) and the model itself
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is illustrated in Figure 2.3. The model shows that Psyche has an ellipsoidal shape with a mass deficit
over a region spanning 90 degrees in longitude.

Property Value 1σUncertainty Units
Rmean 113 12 km
Rmi n 88 9 km
Rmax 140 14 km

ellipsoidal dimensions 279×232×189 28×23×19 km

Table 2.3: Shape model characteristics of the Psyche asteroid (Shepard et al., 2016).

(a) Top view. (b) Isometric view.

Figure 2.3: Shape model of the Psyche asteroid (Shepard et al., 2016).

2.2.4. Gravity Field
The shape model presented in Subsection 2.2.3 contains large uncertainties, which is expected
when analyzing the raw radar images of Figure 2.2. Combined with the mass uncertainty of the
asteroid and the fact that it is not possible to derive information on the density distribution within
the asteroid, any gravity field derived from the shape model will contain large uncertainties as well.
Using the Small-Body Dynamics Toolkit (SBDT) developed by Broschart et al. (2015) in MATLAB©, it
is possible to determine the normalized spherical harmonic gravity field coefficients from the poly-
hedron shape model derived by Shepard et al. (2016) up to and including degree and order 20 and
assuming a uniform density distribution.

Here, the nominal gravity field is assumed to be the gravity field corresponding to a uniform-
density Psyche asteroid. To account for a possible heterogeneous density distribution, researchers
at JPL also generated multiple other spherical harmonics gravity fields assuming density variations
within the asteroid. A case resulting in a more irregular gravity field (and larger magnitudes in the
spherical harmonic coefficients) would be one with strong density concentrations in the exterior of
the asteroid. In this way, more mass is closer to the orbiting spacecraft, causing greater perturba-
tions on its trajectory. Such a gravity field will be used for comparison with the nominal (uniform
density) gravity field to study and quantify orbit stability of Psyche’s science orbits in a conservative
way. Mass concentrated near the center of the asteroid would result in a less irregular gravity field
compared to the nominal case.

Both the nominal and the conservative gravity field will be used throughout the stability analy-
sis. In this way, results will be generated based on a realistic and conservative estimate of the spher-
ical harmonic coefficients. To increase computational efficiency, both gravity fields are truncated at
degree and order eight since it is assumed that a spherical harmonic degree and order above eight
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will be associated with large uncertainties compared to the magnitudes of the coefficients and those
of lower degree and order (as will be shown in the next chapter). The values of the zonal and sectoral
spherical harmonic coefficients of second degree and order (C20 and C22) are given in Table 2.4 for
both gravity fields. The reference radius re is equal to Rmean . For confidentiality reasons, additional
spherical harmonic coefficients of Psyche’s gravity field are not reported in this thesis.

Coefficient Nominal Conservative
C20 -0.1031 -0.1566
C22 0.01910 0.03266

Table 2.4: Spherical harmonic coefficients C20 and C22 of Psyche’s nominal and conservative gravity field with reference
radius Rmean . The conservative gravity field was generated by the Psyche mission design team at JPL.

2.3. Mission
On January 4, 2017, Psyche was selected as NASA’s next mission as part of its Discovery Program.
It was selected along with the Lucy mission, which will explore six Trojan asteroids. Both missions
competed against 25 other proposals for selection. The Discovery Program aims to develop low-
cost and low-risk exploration missions by leveraging flight heritage and commercial partnerships.
So far, the program has an extensive list of mission successes, including NEAR Schoemaker, Mars
Pathfinder, MESSENGER and Dawn, to name few. Due to the success of the Dawn mission (which
completed its science objectives at Vesta and Ceres in 2012 and 2016 respectively), the concept of
using Solar Electric Propulsion (SEP) has gained increased attention in recent years. Dawn demon-
strated that SEP can be leveraged in favor of other traditional propulsion techniques for planetary
science purposes. Of the five final mission proposals for the new round of Discovery Program mis-
sions in 2016, Psyche was the only one utilizing SEP, which undoubtedly contributed to its selection.
The information presented in this section originates from the work presented by Oh et al. (2016) and
Oh et al. (2017) unless stated otherwise.

2.3.1. Objectives
As mentioned before, the Psyche asteroid is one-of-a-kind. Psyche is assumed to be the largest
metal-rich asteroid in the Solar System and has not been explored before. The Psyche mission has
three main goals: understand how planets are formed by looking at its earliest building block (the
core), gain insight in the cores of terrestrial planets by directly observing what is thought to be the
exposed core of a small terrestrial planet, and explore a type of world that has never been explored
before, namely a metal world. To reach these goals, the Psyche mission has five science objectives:

− Determine whether Psyche is a core, or whether it is unmelted material.

− Determine the relative ages of regions of its surface.

− Determine whether small metal bodies incorporate the same light elements as in the Earth’s
high-pressure core.

− Determine whether Psyche was formed under conditions more oxidizing or more reducing
than Earth’s core.

− Characterize the topography and impact crater morphology of Psyche.

2.3.2. Spacecraft
A single spacecraft will be sent to the asteroid to explore this mysterious world. To achieve the goal
of having a low-cost and low-risk mission, the design of the mission and the spacecraft is robust.
This will be accomplished by maximizing flight heritage, the experience of partner organizations
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and hardware with a high Technology Readiness Level (TRL). Following in the footsteps of the Dawn
mission, Psyche will use SEP throughout its entire life cycle, excluding the need for chemical propul-
sion. For the power and propulsion subsystem, JPL has partnered with by Space Systems/Loral
(SSL), a commercial spacecraft manufacturer. This partnership is illustrated through the current
spacecraft architecture in Figure 2.4 (Oh et al., 2016). The goal is to combine the deep-space explo-
ration experience of JPL with the SEP subsystem experience of SSL.

Figure 2.4: Psyche spacecraft architecture (Oh et al., 2016).

Assuming the nominal launch opportunity of August 2022, the spacecraft will approximately
have 915 kg of cruise propellant and a delivered mass of 1965 kg at the asteroid. Since the Psyche
mission is in its early design stages, these numbers are subject to change. Using an array of five
solar panels, the power output at Beginning-of-Life (BoL) at 1 AU is approximately 20 kW. The esti-
mated bus power consumption lies at 780 W. To achieve the science objectives of the mission, the
spacecraft has a payload of three remote sensing instruments and uses its X-band communications
antenna to conduct radio science. The payload instruments are listed in Table 2.5 (Oh et al., 2017).

Instrument Flight Heritage Measurements
Multi-spectral

imager
Curiosity Rover Mastcam

Surface geology, composition
and topography

Gamma ray and
neutron

spectrometer
MESSENGER

Key elemental composition
and surface compositional

heterogeneity
Fluxgate

magnetometer
Magnetospheric Multiscale Mission

(MMS) and Insight
Magnetic field characterization

X-band antenna multiple Gravity field mapping

Table 2.5: Payload of the Psyche spacecraft consisting of three remote sensing instruments and a communications
antenna (Oh et al., 2017).
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A clear requirement following from the science objectives is that the spacecraft should glob-
ally map the surface of the asteroid. The elemental composition observation should be conducted
at the lowest altitude possible and at an inclination as close as possible to 90 degrees, which is a
challenge for orbit design, especially when considering the irregularities and uncertainties in the
environment.

2.3.3. Trajectory Design
Currently, the nominal launch date for the Psyche mission is the 6th of August of 2022. After a
3.6 year cruise and a Mars flyby, the spacecraft should arrive at the asteroid in January 2026. Other
launch opportunities exist as well, some of which include additional gravity assists with Earth. How-
ever, the 2022 launch opportunity has several advantages compared with the other launch oppor-
tunities (Oh et al., 2017):

− The spacecraft does not need to travel to heliocentric distances below 1 AU, which decreases
constraints on the thermal subsystem of the spacecraft.

− The spacecraft arrives at Psyche during optimal lighting conditions.

− The cruise time is the shortest of all proposed launch opportunities.

Once the spacecraft arrives at Psyche, it will orbit the asteroid in quasi-circular orbits. In total,
four orbits are proposed, with each orbit having a smaller semi-major axis compared to the previ-
ous one. In this way, more information on Psyche and its gravity field is obtained as the mission
progresses, which allows the spacecraft to be navigated safely when reaching lower and lower alti-
tudes. This strategy has been successfully demonstrated by Dawn at Ceres and Vesta. The spacecraft
will operate in the vicinity of the asteroid for 21 months. The first orbit (A) lasts for 56 days during
which the magnetometer captures scientific data. Then, the spacecraft will transfer to orbit B during
which the topography will be mapped and the spectral imager will be used for 76 days. After that,
the spacecraft will transfer to orbit C to capture the gravity field of Psyche in more detail for 100
days. The final mission orbit is D, during which elemental composition observation of the surface
will take place for 100 days. Orbits A, B, C and D are illustrated in Figure 2.5 (Oh et al., 2017). Again,
this is a preliminary mission scenario and is subject to change before and throughout the mission.

Figure 2.5: Science orbits of the Psyche mission (Oh et al., 2017).
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A major challenge in the mission design is the selection of orbits at low altitudes (such as orbits
C and D), which are stable for long periods of time. Due to gravity-field perturbations and mean
motion resonances with the asteroid rotation, orbit instability can be detrimental for the mission
since it can cause the spacecraft to impact or escape the asteroid. Orbits A and B are assumed to
be far enough from the asteroid to ensure stability and are both polar Sun-synchronous orbits with
repeat ground-tracks. Orbit C is deemed to be the lowest stable polar Sun-synchronous orbit with
a repeat ground-track above the 1:1 resonance of the asteroid. Finally, orbit D is deemed stable as
well, but has to be inclined to a retrograde orbit to ensure stability. Figure 2.6 shows that orbits B, C
and D fall within the stable region according to a preliminary stability analysis (Oh et al., 2017).

Figure 2.6: Orbit (in)stability as a function of orbit radius and inclination. Results followed from an extensive numerical
survey on orbit stability (Oh et al., 2017).

Stability is a major challenge due to the expected irregular shape of the Psyche asteroid and the
fact that the gravity field is still very uncertain, which will remain the case until the spacecraft arrives
at the asteroid. Consequently, it is essential to select highly stable science orbits in order to mini-
mize the influence of uncertainties in the dynamical environment and the spacecraft state. This
approach will also reduce the number of orbit maintenance maneuvers required.

With respect to the Psyche mission in particular, a significant contribution to the mission design
will be made by characterizing the stable and unstable regions in the vicinity of the asteroid. This
will be done by considering a nominal and a conservative gravity field and an extensive parametric
search of the initial condition space using two different notions of stability, namely BIBO-stability
and the regularity or chaoticity of orbits. Subsequently, the current mission design can be validated
or different (more optimal) orbits can be suggested from the perspective of orbit stability and cov-
erage.
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3
Physical Environment

Spacecraft trajectories can only be propagated to a finite accuracy. This chapter will describe the
simplified physical environment that will be modeled to simulate the spacecraft trajectories. Firstly,
the perturbations in the vicinity of Psyche will be discussed in general in Section 3.1. Then, the
perturbations due to the gravity field of Psyche will be described and discussed in more detail in
Section 3.2. Finally, the equations of motion are described in Section 3.3. The relevant reference
frames and coordinate transformations are described in Appendix A.

3.1. Perturbations
Most often, the main force acting on a spacecraft trajectory is the central gravity of the body which
the spacecraft is orbiting. However, this trajectory can be perturbed by irregularities in the gravity
field of the body, Solar Radiation Pressure (SRP), third-body gravity and others. Even though most
perturbations are small when compared to the central gravity of the body, their influence can be
significant over large timescales. Below, each type of perturbation will be analyzed in a first-order
and conservative way in order to assess which perturbations should be taken into account in the
force model.

Gravity-field perturbations
Due to the irregular shape of Psyche, its gravity field cannot be modeled as a point mass. Since the
shape of Psyche is very different from a sphere, it is expected that gravity-field perturbations will
significantly influence spacecraft trajectories. To conservatively estimate the effect of gravity-field
perturbations, the maximum accelerations due to the zonal spherical harmonic terms J2, J4 and J8

will be determined (note that Jn = −Cn0). The magnitude of the maximum acceleration due to the
n’th Jn term is given by Equation 3.1 and is shown for J2 in (Wakker, 2015, p. 532).

|a Jn |max = (1+n)µJn
r n

e

r n+2 (3.1)

Here, µ represents the gravitational parameter of the body, re is the reference radius of the as-
sumed spherical harmonics gravity field and r is the distance from the spacecraft to the center of
the body.

Solar Radiation Pressure
Solar radiation exerts a force on the spacecraft through a momentum exchange between photons
and the spacecraft. Impacting photons can either be reflected or absorbed by the surface of the
spacecraft. The magnitude of the acceleration caused by solar radiation is given in Equation 3.2
(Wakker, 2015, p. 541).
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|aSRP | = CRWS

BSC c

1

d 2 (3.2)

Here, CR is the spacecraft’s reflectivity (assumed to be 1.4), WS is the mean solar irradiance at
1 AU, BSC is the spacecraft mass-to-area ratio (assumed to be 20 kg/m2 similar to the Rosetta mis-
sion), c is the speed of light, and d is the distance of Psyche from the Sun in astronomical units
(assumed to be equal to Psyche’s semi-major axis).

Third-Body Gravity
The gravitational attraction of other celestial bodies can perturb spacecraft trajectories. This is
caused by the difference in acceleration exerted on the spacecraft relative to the central body. The
magnitude of this relative acceleration is given by Equation 3.3 (Wakker, 2015, p. 540).

|aT B | = 2µT B r

d 3 (3.3)

In the equation above, µT B is the gravitational parameter of the perturbing celestial body, r is
the radial distance from the spacecraft to the center of the central body and d is the distance from
the central body to the third body. The third-body gravity of the Sun and Jupiter will be analyzed,
assuming Psyche and Jupiter have circular orbits and a close approach between Psyche and Jupiter
occurs.

Other
There are several other perturbations which may influence the trajectories of the spacecraft orbiting
Psyche such as particle interactions and electromagnetic forces. In addition, relativistic effects and
apparent forces (due to the rotation of Psyche around the Sun) influence the accuracy of the orbit
propagations as well. Nevertheless, it is assumed that these effects are negligible compared to the
perturbations presented above.

Now, the magnitude of the central gravity and the magnitudes of the perturbing accelerations
can be compared as a function of distance from the center of the central body for the Psyche aster-
oid. Subsequently, it can be assessed which perturbations are relevant for the orbit stability analysis
in the vicinity of the asteroid. The relative acceleration of each perturbation with respect to the
central gravity of the body is presented in Figure 3.1. The accelerations due to the zonal spherical
harmonic coefficients assume the nominal gravity field of Psyche.

From Figure 3.1, it is clear that dynamics in the vicinity of the asteroid are dominated by its
gravity field. The largest non-gravitational perturbation is caused by SRP and is more than 4 orders
of magnitude smaller when compared to the central gravity. Therefore, non-gravitational accelera-
tions are not included in the force model of the simulations. In addition, the gravity field will not be
modeled beyond degree eight. The magnitude of the maximum acceleration due to J8 is less than
0.5% of the central gravity and less than 2% of the gravity due to J2 at a radial distance of 150 km.
Since it needs to be considered that the gravity field coefficients still contain large uncertainties,
terms beyond degree eight can be omitted from the model.

3.2. Gravity Field
3.2.1. Spherical Harmonics
Since gravity is a conservative force, its field can be described by a potential. The gradient of this
potential gives the acceleration due to gravity as given in Equation 3.4. Other conventions for the
sign of the potential U are used in literature as well.
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Figure 3.1: Ratio of maximum acceleration for each perturbation with respect to the central gravity acceleration for
trajectories near Psyche. The gravity accelerations due to J2, J4 and J8 are shown in the black curves from top to bottom.
The x-axis captures all proposed mission orbits. It is assumed that trajectories with radial distances smaller than 150 km

are unsafe (Rmax = 140 km).

ag =∇U (3.4)

There are various mathematical descriptions available for the gravity potential of a small body.
A common one is the polyhedron model originally developed by Werner and Scheeres (1997). When
the shape of the body is accurately known, the polyhedron method provides more accurate results
when compared to traditional methods, especially close to the surface of the body. The model
assumes a uniform-density body and calculates a closed-form solution to Laplace’s equation of a
polyhedron with triangular faces. Another well-known method is the mass concentration method,
which models the body’s mass by a series of point masses. Then, the gravity or potential of each
point mass can be determined and superimposed with the fields of all other point masses to ap-
proximate the total gravitational field of the body as shown by Yu (2016).

Both methods are computationally expensive and require an accurate shape model of the body.
This is not the case for the Psyche asteroid and computational power is an important constraint
when globally characterizing stability regions. Therefore, the gravity field will be modeled using
the well-known spherical harmonics representation, which is computationally efficient (especially
when considering a low degree and order gravity field). By separating variables in terms of spherical
coordinates, Laplace’s equation (∇2U = 0) can be solved. The spherical coordinates are given as a
function of Cartesian coordinates in Equations 3.5 through 3.7.

r =
√

x2 + y2 + z2 (3.5)

sinδ= z

r
(3.6)

tanλ= y

x
(3.7)

Here, δ and λ represent the latitude and longitude of the spacecraft position with respect to the
central body respectively. The spherical harmonic potential field is given by Equation 3.8 (Scheeres,
2012, p. 43).
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U = µ

r

{ ∞∑
n=0

n∑
m=0

(re

r

)nPnm(sinδ)[Cnm cosmλ+Snm sinmλ]
}

(3.8)

In the equation above, n and m represent the order and degree of the spherical harmonics re-
spectively, µ is the gravitational parameter of the body, r is the radial distance from the center of
the body, re is the reference radius of the spherical harmonic field, Pnm are the associated Legendre
polynomials and Cnm and Snm are the spherical harmonic coefficients that ultimately describe the
gravity field. The associated Legendre polynomials can be determined using Equations 3.9 and 3.10
(Hofmann-Wellenhof and Moritz, 2006, p. 14).

Pn(x) = 1

(−2)nn!

d n

d xn (1−x2)n (3.9)

Pnm(x) = (1−x2)m/2 d mPn(x)

d xm (3.10)

3.2.2. Second Degree and Order Gravity Field
The coefficient C00 is equal to 1 for any body. Furthermore, if the center of the coordinate system
coincides with the CoM of the body, it can be shown that C11 = S11 = C10 = 0. For most gravity fields,
this is the case. In addition, relationships exist between the mass moments of inertia of the body
and the second degree and order gravity field coefficients. These relations are given in Equations
3.11 through 3.16 (Scheeres, 2012, p. 45) and hold for any body.

Ixx − Iy y =−4Mr 2
e C22 (3.11)

Iy y − Izz = Mr 2
e (C20 +2C22) (3.12)

Izz − Ixx =−Mr 2
e (C20 −2C22) (3.13)

Ix y =−2Mr 2
e S22 (3.14)

Iy z =−Mr 2
e S21 (3.15)

Izx =−Mr 2
e C21 (3.16)

In the equations above, the I ’s represent the moments of inertia of the body and M represents
the mass of the body. For any mass distribution, the coordinate system can be oriented in such a
way that all products of inertia are zero such that S22 = S21 = C21 = 0. Consequently, the second
degree and order gravity field of any small body can be described fully by coefficients C20 and C22

only.

The second degree and order gravity field is the simplest non-trivial gravity field that can be
used to describe the dynamics in the vicinity of an irregular body. It has been shown in several
studies in the past that this simple model accounts for the majority of the gravity-field perturba-
tions (Scheeres, 1999b, Scheeres et al., 1996) (see also Figure 3.1). The gravitational potential of the
second degree and order gravity field (excluding the central gravity term) is given in spherical and
Cartesian coordinates in Equations 3.17 and 3.18 respectively (Scheeres, 2012, p. 45).
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U2 =
µr 2

e

r 3

[
C20

(
1− 3

2
cosδ2

)
+3C22 cosδ2 cos(2λ)

]
(3.17)

U2 =
µr 2

e

r 5

[
− 1

2
C20(x2 + y2 −2z2)+3C22(x2 − y2)

]
(3.18)

Hu and Scheeres (2004) analyzed stability in the vicinity of a small body using a second degree
and order gravity field, but only in the equatorial plane of the body. However, most missions re-
quire inclined orbits such that the entire surface of the body can be observed. A part of the research
objective is to extend their analysis to consider inclined orbits as well. Throughout the rest of this
subsection, the gravity field will be parameterized in an alternative and more convenient way and a
normalization will be introduced to remove the dependence onµ andωA from the equations of mo-
tion. The methods and equations presented throughout the rest of this subsection originate from
Hu and Scheeres (2004).

The first step is to introduce a length and time normalization. It is assumed that the body rotates
uniformly at a rate ωA and its mass is defined by the gravitational parameter µ. Then, the total
number of independent parameters of the system can be reduced from four (µ, ωA , C20 and C22)
to two (C20 and C22). The length and time normalizations that are introduced are presented in
Equations 3.19 and 3.20 respectively,

rs = (µ/ω2
A)1/3 (3.19)

τ=ωA t (3.20)

where rs is the 1:1 resonance radius of the asteroid and τ is the rotation angle of the asteroid.
The reference radius of the spherical harmonic field re is here defined as the resonance radius rs .
Finally, by setting re = µ = 1 in Equations 3.17 and 3.18, the normalized potential is obtained. The
gravity-field coefficients C20 and C22 normalized with respect to rs instead of Rmean are given in Ta-
ble 3.1.

Coefficient Nominal Conservative
C20 -0.03081 -0.04678
C22 0.005708 0.009758

Table 3.1: Spherical harmonic coefficients C20 and C22 of Psyche’s nominal and conservative gravity fields with reference
radius rs .

Assuming that the z-axis in the body-fixed frame is aligned with the principal moment of inertia
of the body, the y-axis is aligned with the intermediate moment of inertia and the x-axis is aligned
with the smallest moment of inertia, it follows that Izz > Iy y > Ixx . From this, it can easily be shown
that C20 ≤ 0 and C22 ≥ 0 (see Equations 3.11 through 3.13). Similar to Hu and Scheeres (2004), a
mass distribution parameter σ can be introduced, which is defined in Equation 3.21.

σ= Iy y − Ixx

Izz − Ixx
= 4C22

2C22 −C20
(3.21)

For any body, 0 ≤ σ ≤ 1. For σ = 0, the body has rotational symmetry about its z-axis and for σ
= 1, the body has rotational symmetry about its x-axis. In addition, the parameter ν is defined in
Equation 3.22.
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ν= Izz − Ixx

Mr 2
s

= 2C22 −C20 (3.22)

In this way, the second degree and order gravity field can be defined completely by parameters
σ and ν. The coefficients C20 and C22 can be written in terms of σ and ν in Equations 3.23 and 3.24
respectively.

C20 =−1

2

Izz − Ixx

Mr 2
s

(2−σ) =−1

2
ν(2−σ) (3.23)

C22 = 1

4

Izz − Ixx

Mr 2
s

σ= 1

4
νσ (3.24)

Parameters σ and ν can be determined for Psyche using Equations 3.21 and 3.22. Their values
are presented in Table 3.2.

Parameter Nominal Conservative
σ 0.5406 0.5888
ν 0.04223 0.06630

Table 3.2: Parameters σ and ν of Psyche’s nominal and conservative gravity fields.

Since the stability analysis will consider variations in the gravity field of the asteroid, it is useful
to place realistic bounds on the magnitudes of C20 and C22. Under the assumption that the body
is a uniform ellipsoid with semi-major axes α ≤ β ≤ γ along its x-, y- and z-axis respectively, the
moments of inertia of the body are given in Equations 3.25 through 3.27.

Ixx = M
β2 +γ2

5
(3.25)

Iy y = M
α2 +γ2

5
(3.26)

Izz = M
α2 +β2

5
(3.27)

Now, Equations 3.23 and 3.24 can be rewritten into Equations 3.28 and 3.29 respectively.

C20 =− 1

10

α2 −γ2

r 2
s

(2−σ) (3.28)

C22 = 1

20

α2 −γ2

r 2
s

σ (3.29)

For most asteroids, it holds that rs > α. Otherwise, the asteroid’s rotation would be so large
that it experiences tensile stress and material on its surface would be accelerated into space. From
this condition and using the equations above, the following limits on C20 and C22 can be placed:
−0.2 ≤C20 ≤ 0 and 0 ≤ C22 ≤ 0.05. Again, it is important to note that these coefficients are normal-
ized with respect to the resonance radius of the body. In addition, it can be shown through proof by
contradiction that the upper limit of ν is 0.2 in Equations 3.30 through 3.32.

ν= Izz − Ixx

Mr 2
s

> 0.2 (3.30)
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M
α2 −γ2

5

1

Mr 2
s
> 0.2 (3.31)

α2 > r 2
s +γ2 (3.32)

Under the assumption that rs > α, the inequalities above are false. Consequently, ν ranges be-
tween 0 and 0.2 and σ ranges between 0 and 1 throughout the stability analysis. The relations be-
tween gravity coefficients C20 and C22 and the newly defined parameters are illustrated in Figure 3.2.
The nominal and conservative gravity fields of Psyche are mapped onto these figures with a circle
and a star respectively.

(a) C20 as a function of σ and ν. (b) C22 as a function of σ and ν.

Figure 3.2: Magnitude of spherical harmonic gravity coefficients C20 and C22 as a function of σ and ν. The nominal
gravity field is indicated with a black circle and the conservative gravity field is indicated with a black star.

From Figure 3.2, it is clear that large values of ν correlate with large values of C20 and C22, and
large values of σ correlate with large values of C22 and small values of C20.

3.2.3. Higher Degree and Order Gravity Field
The second degree and order gravity field lends itself well to a parametric analysis in terms of va-
riety in the gravity field of a small body since there are only two coefficients that define the gravity
field. However, for a stability analysis specifically tailored to the Psyche asteroid, a second degree
and order gravity field might not provide the required accuracy. Therefore, the results of the stability
analysis using the second degree and order gravity field will be compared to results using an eighth
degree and order gravity field. Furthermore, an analysis with a higher degree and order gravity field
can also be used to assess the impact of higher degree and order terms on orbital stability.

Since the spherical harmonic coefficients vary greatly in magnitude for most gravity fields, they
are often given in normalized form. This is also the case for the gravity field coefficients of Psy-
che. The relation between the spherical harmonic coefficients and their normalized counterparts is
given in Equation 3.33 (Montenbruck and Gill, 2000, p. 58), where δ represents the Kronecker delta
function.

{
C̄nm

S̄nm

}
=

√
(n +m)!

(2−δ0m)(2n +1)(n −m)!

{
Cnm

Snm

}
(3.33)

There are many recursion formulas available in literature to calculate the accelerations in x-, y-
and z-directions in the body-fixed frame for a given spherical harmonics gravity field. An elegant,
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computationally efficient and stable recursive method is outlined in (Montenbruck and Gill, 2000,
p. 66-68), which will be used to determine the accelerations caused by the higher degree and order
gravity field of Psyche. The method is based upon recurrence relations for the Legendre polyno-
mials. Below, the necessary steps and equations are presented to calculate the accelerations for a
position vector in the body-fixed frame (defined by coordinates x, y and z and length r ) and an ar-
bitrary gravity field with coefficients Cnm and Snm , reference radius re and gravitational parameter
µ.

The first step is to calculate the intermediate parameters Vnm and Wnm for all possible combi-
nations of n and m with Equations 3.34 through 3.37 (Montenbruck and Gill, 2000, p. 66-67).

Vmm = (2m −1)
[ xre

r 2 Vm−1,m−1 − yre

r 2 Wm−1,m−1

]
(3.34)

Wmm = (2m −1)
[ xre

r 2 Wm−1,m−1 + yre

r 2 Vm−1,m−1

]
(3.35)

Vnm = 2n −1

n −m

zre

r 2 Vn−1,m − n +m −1

n −m

r 2
e

r 2 Vn−2,m (3.36)

Wnm = 2n −1

n −m

zre

r 2 Wn−1,m − n +m −1

n −m

r 2
e

r 2 Wn−2,m (3.37)

To initialize the recursion, V00 = re /r and W00 = 0. Then, the zonal terms Vn0 can be determined
(Wn0 is zero for all n). After that, the sectoral terms Vmm and Wmm can be calculated. Finally, the
remaining tesseral terms can be calculated as well. The recursion scheme is presented in Figure 3.3
(Montenbruck and Gill, 2000, p. 67).

Figure 3.3: Recursion scheme to determine parameters Vnm and Wnm for all n and m
(Montenbruck and Gill, 2000, p. 67).

After determining these intermediate parameters, the gravity field accelerations can be deter-
mined as well. The accelerations in x-, y- and z-directions in the body-fixed frame for spherical har-
monic degree n and order m are given in Equations 3.38, 3.39 and 3.40 respectively (Montenbruck
and Gill, 2000, p. 68).

ẍnm =


µ

r 2
e

[−Cn0Vn+1,1
]
, if m = 0

µ

r 2
e

1
2

[
(−CnmVn+1,m+1 −SnmWn+1,m+1)

+ (n−m+2)!
(n−m)! (CnmVn+1,m−1 +SnmWn+1,m−1)

]
, if m > 0

(3.38)

ÿnm =


µ

r 2
e

[−Cn0Wn+1,1
]
, if m = 0

µ

r 2
e

1
2

[
(−CnmWn+1,m+1 +SnmVn+1,m+1)

+ (n−m+2)!
(n−m)! (−CnmWn+1,m−1 +SnmVn+1,m−1)

]
, if m > 0

(3.39)
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z̈nm = µ

r 2
e

[
(n −m +1)(−CnmVn+1,m −SnmWn+1,m)

]
(3.40)

3.3. Equations of Motion
Newton’s equations are the most well-known equations to describe the motion of a spacecraft. Since
it is assumed that the only perturbing force on the spacecraft originates from the central body’s
gravity field, the equations of motion in the inertial frame are described by Equation 3.41.

r̈ =∇U (r ) =−µr

r 3 +∇Up (r ) (3.41)

In the equation above, Up (r ) is defined as the perturbing gravity potential of the body. Since the
potential field is time-independent in the body-fixed frame, it is convenient to express the equa-
tions of motion in that frame. Subsequently, the equations of motion are given by Equation 3.42
(Scheeres, 2012, p. 89).

r̈ =−µr

r 3 +∇Up (r )− ω̇A × r −2ωA × r −ωA ×ωA × r (3.42)

In the equation above, r is defined as the position vector of the spacecraft in the body-fixed
frame andωA is the rotational rate vector of the asteroid. Since it is assumed that Psyche is rotating
uniformly, the term ω̇A × r disappears.

For a uniformly rotating asteroid, the equations of motion presented above are time-invariant.
A useful property is that an integral of motion exists for this set of equations. The Hamiltonian of
these equations of motion is an energy integral and is more commonly known as the Jacobi integral
defined in Equation 3.43.

H(r , ṙ ) = 1

2
ṙ · ṙ −V (r ) = 1

2
ṙ · ṙ − 1

2
(ωA × r ) · (ωA × r )−U (r ) (3.43)

In the equation above, V (r ) is the effective potential in the uniformly rotating frame. The Jacobi
integral is constant for a given point mass following a trajectory in the dynamical system described
above. More commonly, the Jacobi constant C J (r , ṙ ) = −H(r , ṙ ) is used. This conserved quantity
can be used to verify whether the equations of motion, the numerical integration scheme and the
spherical harmonics gravity field are implemented correctly, by checking that C J remains constant
(round-off and truncation errors may cause C J to vary slightly).

The expression for the effective potential V (r ) can be simplified assuming the asteroid rotates
about its z-axis such thatωA = [0 0 1]TωA . The simplified expression is given in Equation 3.44.

V (r ) = 1

2
ω2

A(x2 + y2)+ µ

r
+Up (r ) (3.44)

Similarly, the expression for the equations of motion given in Equation 3.42 can be simplified.
In scalar form, the equations of motion are given in Equations 3.45, 3.46 and 3.47.

ẍ = 2ωA ẏ +ω2
A x − µx

r 3 + dUp

d x
(3.45)

ÿ =−2ωA ẋ +ω2
A y − µy

r 3 + dUp

d y
(3.46)
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z̈ =−µz

r 3 + dUp

d z
(3.47)

To simplify the equations of motion further for the case of the second degree and order gravity
field, they will be converted to a set of non-dimensional equations using Equations 3.19 and 3.20
as introduced in Section 3.1. The normalized parameters are ˜̈x = ẍ/(rsω

2
A), ˜̇x = ẋ/(rsωA), x̃ = x/rs

and r̃ = r /rs . The normalizations for y and z are similar and it is assumed that the potential field
is already normalized as described in the previous section. From now on, the tilde symbol will be
dropped. The normalized equations of motion using the second degree and order gravity field are
presented in Equations 3.48 through 3.50 (Hu and Scheeres, 2004).

ẍ = 2ẏ +x − x

r 3 − C20x

r 5 + 5C20x(x2 + y2 −2z2)

2r 7 + 6C22x

r 5 − 15C22x(x2 − y2)

r 7 (3.48)

ÿ =−2ẋ + y − y

r 3 − C20 y

r 5 + 5C20 y(x2 + y2 −2z2)

2r 7 − 6C22 y

r 5 − 15C22 y(x2 − y2)

r 7 (3.49)

z̈ =− z

r 3 + 2C20z

r 5 + 5C20z(x2 + y2 −2z2)

2r 7 − 15C22z(x2 − y2)

r 7 (3.50)

The normalized effective potential V of the second degree and order gravity field, and its first-
and second-order Cartesian derivatives are presented in Appendix C.
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4
Analytical Analysis

Analyzing a system in an analytical manner allows for a deeper understanding of the problem when
compared to solely applying numerical techniques. Analytically derived equations and results can
also be used to better understand and interpret numerically obtained results and can be used to
verify numerical simulations. This chapter deals with such an analytical analysis applied to the uni-
formly rotating second degree and order gravity field, with a specific focus on the Psyche asteroid.

The shape and orientation of any given orbit around a body are defined by five of its six Keple-
rian elements: the semi-major axis a, the eccentricity e, the inclination i , the right ascension of the
ascending node Ω and the argument of periapsis ω. Two of these elements (a and e) describe the
size and shape of the orbit and the others (i ,Ω and ω) describe its orientation around the body. For
oblate bodies and bodies with small rotational rates, the size and shape of the orbit remain constant
on average, whereas its orientation can change over time due to periodic and secular changes in Ω
and ω (Hu and Scheeres, 2004). However, for bodies with considerable ellipticity (contained largely
in the coefficient C22), it was shown analytically by Scheeres (1999b) that orbits close to the body
experience significant short-term non-periodic variations in a and e due to energy and angular mo-
mentum exchange with the central body. These large and sudden variations in a and e can result
in impact on the body or escape from the system and need to be avoided. Therefore, it is desirable
to derive analytical expressions that relate changes in the shape parameters of the orbit (a and e) to
initial Keplerian elements and gravity field coefficients.

Approximate analytical expressions will be derived starting from the Gauss Planetary Equations
(GPE) for d a

d t and de
d t . The Lagrange Planetary Equations (LPE) are avoided because of the singularity

appearing in the expression of de
d t for e approaching zero. Deriving approximate analytical solutions

for a and e will provide crucial insight into the dynamics of the system and can be used to inter-
pret the numerical results presented later on. To the best of the author’s knowledge, the derivations
presented throughout this chapter are new and have not been presented in literature to this day.
Firstly, Section 4.1 presents the necessary assumptions and simplifications used to derive the ana-
lytical solutions. Secondly, Section 4.2 starts the derivations with the GPE. After that, solutions of
the derivatives of a and e and solutions of a and e are presented in Sections 4.3 and 4.4 respectively.
Finally, the analytical results are compared with high-fidelity numerical solutions in Section 4.5.

Another common way to attain a deeper understanding of a dynamical system is to characterize
its phase space. A brief characterization of the phase space of Psyche’s second degree and order
gravity field is presented in Appendix B.
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4.1. Assumptions and Simplifications
In order to derive analytical expressions, it is necessary to simplify the problem. Firstly, it is assumed
that the results are restricted to orbits in a uniformly rotating second degree and order gravity field
with coefficients C20 and C22. Secondly, the analysis is restricted to equatorial orbits (prograde or
retrograde). Thirdly, the orbits are assumed to have a small initial eccentricity such that second
order terms in e can be neglected (e ¿ 1). Also, it is assumed that a and e do not experience strong
variations over short time spans. Finally, averaged short- and long-term periodic variations in a
and e are assumed to be negligible. In the following paragraphs of this section, several essential
approximations will be introduced.

4.1.1. Second Degree and Order Gravity Potential
The perturbing potential in spherical coordinates was given in Equation 3.17. Since the analytical
expressions will restrict themselves to motion in the equatorial plane of the body, the latitude δ can
be set to zero. Consequently, Equation 3.17 can be simplified to Equation 4.1.

U2 =
µr 2

e

r 3

[
− 1

2
C20 +3C22 cos(2λ)

]
(4.1)

The longitude of the orbiting object with respect the central body λ can easily be expressed in
terms of the true longitude of the orbiting object λt and the rotational state of the central body for
equatorial orbits. An expression for λ is given in Equation 4.2 for prograde (+) and retrograde (−)
equatorial orbits.

λ± =±λt −ωA t (4.2)

For non-circular orbits, λt = θ + ω̄ with ω̄ being the longitude of periapsis. Since it is defined
that the central body is uniformly rotating in counterclockwise direction about the z-axis, it adds a
negative linear term in t to the longitude of the orbiting body. Equation 4.2 also implicitly assumes
that the body-fixed frame and the inertial frame coincide at t = 0.

4.1.2. Radial Distance to Center of Body
The distance between a central body and an orbiting object can be expressed by Equation 4.3. A
first-order Taylor-series expansion of this expression in e is shown on the right-hand side of the
equation,

r = a(1−e2)

1+e cosθ
= a

1+e cosθ
+O (e2) = a(1−e cosθ)+O (e2) (4.3)

where θ is the true anomaly and O contains the error made by the Taylor-series approximation.

4.1.3. True Anomaly and Longitude of Periapsis
In order to analytically integrate d a

d t and de
d t over time, the true anomaly and the longitude of peri-

apsis need to be expressed as a function of time. To zeroth-order accuracy in e, the true anomaly is
equal to the mean anomaly which results in Equation 4.4.

dθ

d t
= d M

d t
+O (e) (4.4)

The longitude of periapsis ω̄ is defined as the sum of Ω and ω. Consequently, dω̄
d t is given in

Equation 4.5.
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dω̄

d t
= dΩ

d t
+ dω

d t
(4.5)

Firstly, the GPE show that dω
d t and d M

d t suffer from singularities as the eccentricity goes to zero
(Wakker, 2015, p. 609). Secondly, by integrating the expressions above to first order due to the effect
of J2, it can be shown thatω,Ω and M are composed of secular, short-period and long-period terms
(Wakker, 2015, p. 616). It is also noted that only zonal harmonic terms (such as J2) can potentially
cause a secular change in these Keplerian elements (Wakker, 2015, p. 624). Therefore, C22 does not
induce a secular component in any of these elements. In its simplest form, the time history of ω̄ or
M can be broken down into its components as illustrated in Figure 4.1.

Figure 4.1: Time history of ω̄ or M broken down into its secular, long-period and short-period variations.

Going forward, only secular changes in ω̄ an M will be considered. Averaging ω̄ and M over
time without accounting for resonant terms due to C22 will cause the long- and short-period oscil-
lations to collapse onto or near the secular term. In addition, it is not possible to include periodic
terms of ω̄ and M since this would prohibit the analytical integration of d a

d t and de
d t with respect to

time. Equations 4.6, 4.7 and 4.8 show the approximate secular terms in dΩ
d t , dω

d t and dθ
d t respectively

(Wakker, 2015, p. 624). Furthermore, these equations are first-order accurate in C20. Due to the
singularity, the accuracy of these expressions deteriorates as e approaches zero, as it also does for
large eccentricities.

dΩ

d t
≈ 3

2
nC20

(re

a

)2
cos i (4.6)

dω

d t
≈−3

4
nC20

(re

a

)2
(5(cos i )2 −1) (4.7)

dθ

d t
≈ n (4.8)

By summing up and analytically integrating the first-order secular contributions of dΩ
d t and dω

d t ,
a distinction can be made between the prograde and retrograde secular drift in ω̄ (i = 0 deg and
i = 180 deg respectively). Assuming ω̄= ω̄0 at t = 0, ω̄ is expressed as a function of time in Equations
4.9 and 4.10 for prograde and retrograde orbits respectively. Similarly, Equation 4.11 expresses θ as
a function of time assuming θ = θ0 at t = 0.

ω̄+ ≈ ω̄0 − 3

2
nC20

(re

a

)2
t (4.9)
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ω̄− ≈ ω̄0 − 9

2
nC20

(re

a

)2
t (4.10)

θ = θ0 +nt (4.11)

In order to simplify the equations presented in the following sections, a new parameter ψ is
introduced in Equation 4.12 for prograde and retrograde orbits. Generally, ψ is close to one and
approximates the ratio of the secular rate of change of the true longitude over the mean motion n.

ψ± = 1+3C20

(re

a

)2(
−1± 1

2

)
(4.12)

With the approximations of the true anomaly and the longitude of periapsis, the true longitude
can be given as an explicit function time in Equation 4.13 for prograde and retrograde orbits.

λt± ≈ θ0 + ω̄0 +ψ±nt (4.13)

4.2. Gauss Planetary Equations
Now that several essential assumptions and simplifications have been introduced, the focus can be
turned to the starting point of the derivation. The GPE for d a

d t and de
d t are given in Equations 4.14 and

4.15 respectively (Haranas and Ragos, 2010).

d a

d t
= 2

n
p

1−e2

[
Fr e sinθ+ a(1−e2)

r
Fλt

]
(4.14)

de

d t
=

p
1−e2

na

[
Fr sinθ+

( e +cosθ

1+e cosθ
+cosθ

)
Fλt

]
(4.15)

In the equations above, Fr is the acceleration of the orbiting object experienced in radial di-
rection and Fλt is the acceleration experienced in direction of motion, perpendicular to the radial
direction in the orbital plane. Again, the equations above can be simplified by applying a first-order
Taylor-series expansion in e. The simplified expressions are given in Equations 4.16 and 4.17 for d a

d t

and de
d t respectively.

d a

d t
= 2

n

[
Fr e sinθ+ (1+e cosθ)Fλt

]
+O (e2) (4.16)

de

d t
= 1

na

[
Fr sinθ+ (

2cosθ+e(sinθ)2)Fλt

]
+O (e2) (4.17)

Fr and Fλt can be computed by substituting Equation 4.1, solving the partial derivatives and
simplifying the expressions. The results are given in Equations 4.18 and 4.19 respectively. Note that
the central gravity term is already excluded from the potential since it is well known that a and e
remain constant in a point-mass gravity field. Both expressions differentiate between prograde (+)
and retrograde (−) orbits.

Fr± =
(
∂U2

∂r

)
±
= 3µr 2

e

r 4

[1

2
C20 −3C22 cos(2λ±)

]
(4.18)

Fλt± = 1

r

(
∂U2

∂λt

)
±
=∓6µr 2

e C22

r 4 sin(2λ±) (4.19)
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The equations above can be simplified further by substituting Equation 4.3 and neglecting higher-
order terms in e. The simplified expressions for Fr and Fλt are presented in Equations 4.20 and 4.21
respectively.

Fr± = 3µr 2
e

a4 (1+4e cosθ)
[1

2
C20 −3C22 cos(2λ±)

]
+O (e2) (4.20)

Fλt± =∓6µr 2
e C22

a4 (1+4e cosθ)sin(2λ±)+O (e2) (4.21)

4.3. Solutions for d a
d t and de

d t
Firstly, new parameter χ is introduced, which will greatly simplify equations presented below. χ is
defined in Equation 4.22 and is a parameter closely related to the longitude of the orbiting body with
respect to the central body.

χ± = 2(θ0 + ω̄0 +ψ±nt ∓ωA t ) ≈±2λ± (4.22)

Now, by substituting Equations 4.20 and 4.21 into Equation 4.16, an expression for d a
d t can be

obtained in which all state variables can be expressed as a function of time. After substituting, lin-
earizing to first order in e, grouping terms and simplifying using trigonometric properties, Equation
4.23 can be obtained.

(
d a

d t

)
±
≈−6µr 2

e

na4

[
2C22 sin(χ±)

+e

((
− 1

2
C20 +3C22 cos(χ±)

)
sinθ+10C22 sin(χ±)cosθ

)] (4.23)

Similarly, the same can be done to obtain an expression for de
d t . The result is presented in Equa-

tion 4.24.

(
de

d t

)
±
≈−3µr 2

e

na5

[(
− 1

2
C20 +3C22 cos(χ±)

)
sinθ+4C22 sin(χ±)cosθ

+e

(
2
(
− 1

2
C20 +3C22 cos(χ±)

)
sin2θ+C22 sin(χ±)

(
9+7cos2θ

))] (4.24)

4.4. Solutions for a(t ) and e(t )
Using the equations derived in the previous section, it is now possible to obtain analytical expres-
sions for a and e as a function of time. a(t ) and e(t ) are given in Equations 4.25 and 4.26 respectively
assuming a = a0 and e = e0 at t = 0.

a(t ′) = a0 +
∫ t ′

0

d a

d t
d t (4.25)

e(t ′) = e0 +
∫ t ′

0

de

d t
d t (4.26)

Due to the assumptions and simplifications introduced before, it is possible to integrate the
equations above analytically. It is not trivial to carry out the integrations by hand and simplify the
resulting expressions. Therefore, Wolfram Mathematica is used for this purpose. The solution of
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a(t ) for prograde and retrograde orbits is presented in Equation 4.27. The solution of e(t ) for pro-
grade and retrograde orbits is presented in Equation 4.28. Again, it is assumed that changes in a, n
and e are small such that they can be treated as constants throughout the integration.

a(t )± ≈ a0 −
3µr 2

e

n0a0
4

[
2C22

cos(2(θ0 + ω̄0))−cos(χ±)

ψ±n0 ∓ωA

+e0

(
C20

cosθ−cosθ0

n0

+7C22
cos(θ0 +2ω̄0)−cos(θ0 +2ω̄0 + (2ψ±−1)n0t ∓2ωA t )

(2ψ±−1)n0 ∓2ωA

+13C22
cos(3θ0 +2ω̄0)−cos(3θ0 +2ω̄0 + (2ψ±+1)n0t ∓2ωA t )

(2ψ±+1)n0 ∓2ωA

)]
(4.27)

e(t )± ≈ e0 −
3µr 2

e

2n0a0
5

[
C20

cosθ−cosθ0

n0

+C22
cos(θ0 +2ω̄0)−cos(θ0 +2ω̄0 + (2ψ±−1)n0t ∓2ωA t )

(2ψ±−1)n0 ∓2ωA

+7C22
cos(3θ0 +2ω̄0)−cos(3θ0 +2ω̄0 + (2ψ±+1)n0t ∓2ωA t )

(2ψ±+1)n0 ∓2ωA

+e0

(
C20

cos(2θ)−cos(2θ0)

n0
+9C22

cos(2(θ0 + ω̄0))−cos(χ±)

ψ±n0 ∓ωA

+ 1

2
C22

cos(2ω̄0)−cos(2(ω̄0 + (ψ±−1)n0t −ωA t ))

(ψ±−1)n0 ∓ωA

+ 13

2
C22

cos(2(2θ0 + ω̄0))−cos(2(2θ0 + ω̄0 + (ψ±+1)n0t −ωA t ))

(ψ±+1)n0 ∓ωA

)]

(4.28)

With the expressions for a(t ) and e(t ), it is also possible to obtain an analytical expression for
r (t ), which is given in Equation 4.29.

r (t )± ≈ a(t )±(1−e(t )± cosθ) (4.29)

The results presented above are notable. After opening the square bracket, a(t ) contains one
term independent of eccentricity and three terms proportional to e. All terms dependent on C22 are
singular at specific prograde resonant orbits. The first, third and fourth term approach infinity as
the mean motion of the orbiting body gets close to the 1:1, 1:2 and 3:2 resonances with the rotation
of the central body respectively. The amplitude of the second term (which depends on C20) does not
grow at a particular resonant orbit. This result is expected as it is well known that C22 contributes
strongly to the instability of orbits. These analytical equations clearly demonstrate the origin of the
instabilities and their relation to gravity field coefficients and resonances of the mean motion with
the rotation of the central body. It is expected that it will be possible to observe these instabilities at
resonant orbits in numerical results. Similarly, e(t ) contains three terms independent of eccentricity
and four terms proportional to e. Again, singularities appear at resonant orbits for terms propor-
tional to C22. The second, third, fifth and seventh term approach infinity as the mean motion of
the orbiting body gets close to the 1:2, 3:2, 1:1 and 2:1 resonances with the rotation of the central
body respectively. By including second- and higher-order terms in e and higher degree and order
spherical harmonic coefficients, it is expected that more resonances will appear, although it is likely
that the resonant orbits presented here cause the strongest instabilities.
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To give an indication of the relative importance of the different terms in Equations 4.27 and 4.28,
the magnitudes of the amplitudes of the periodic terms are presented below. Tables 4.1 and 4.2 list
the amplitudes of the periodic terms in the expressions of the semi-major axis and the eccentricity
respectively. These are given for a prograde (i0 = 0 deg) and a retrograde (i0 = 180 deg) orbit with
initial conditions a0 = 500 km and e0 = 0.1 in Psyche’s nominal second degree and order gravity field.

Term 1 2 3 4
Prograde Amplitude [km] 1.06 0.79 0.16 0.42

Retrograde Amplitude [km] 0.61 0.79 0.12 0.18

Table 4.1: Amplitudes of periodic terms in Equation 4.27. Values are given for a prograde (i0 = 0 deg) and a
retrograde (i0 = 180 deg) orbit with initial conditions a0 = 500 km and e0 = 0.1 in Psyche’s nominal second degree and

order gravity field.

Term 1 2 3 4 5 6 7
Prograde Amplitude [10−4] 79.01 2.25 22.73 7.90 4.78 0.20 5.43

Retrograde Amplitude [10−4] 79.01 1.71 9.69 7.90 2.75 0.19 1.64

Table 4.2: Amplitudes of periodic terms in Equation 4.28. Values are given for a prograde (i0 = 0 deg) and a
retrograde (i0 = 180 deg) orbit with initial conditions a0 = 500 km and e0 = 0.1 in Psyche’s nominal second degree and

order gravity field.

Firstly, it can be observed that the amplitudes of the periodic terms of the retrograde orbit are
equal or smaller than those of the prograde orbit. This is expected when analyzing the denominators
of Equations 4.27 and 4.28. Secondly, the importance of terms proportional to e0 is slightly smaller
when compared to terms not proportional to e0. However, it is clear that they still have a relatively
large impact. Finally, it is noted that the relative importance of each term changes for different orbits
(especially close to resonance) and gravity field coefficients.

4.5. Comparison with High-Fidelity Numerical Integration
Now, the analytical first-order expressions derived in the previous sections will be compared to
a high-fidelity numerical simulation. The orbits are propagated in the equatorial plane of Psy-
che’s nominal uniformly rotating second degree and order gravity field for a duration of three or-
bital periods (of the orbiting object). All orbits are integrated in prograde (i0 = 0 deg) and retro-
grade (i0 = 180 deg) direction with respect to the rotation of the central body with ω̄0 = 80 deg and
θ0 = 130 deg (arbitrary values).

Orbit a0 [km] e0 [-] Orbit a0 [km] e0

a 500 0.01 e 450 0.1
b 500 0.1 f 400 0.1
c 500 0.3 g 350 0.1
d 500 0.5 h 300 0.1

Table 4.3: Initial conditions of orbits a through h in Psyche’s uniformly rotating second degree and order nominal gravity
field. Each orbit is integrated in prograde (i0 = 0 deg) and retrograde (i0 = 180 deg) direction with respect to the rotation

of the central body with ω̄0 = 80 deg and θ0 = 130 deg for a duration of approximately three orbital periods.

As can be seen in the table above, the semi-major axis and the eccentricity are varied in order to
demonstrate when the analytical expressions match the numerical results well and when they break
down (for this specific model). It is expected that the approximations are less accurate for smaller
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semi-major axes since the orbits will experience stronger perturbations and instabilities closer to
the surface of the body. Moderately eccentric orbits are expected to have a similar effect due to
low-altitude periapsis approaches and higher-order effects in e. In addition, the phase of the os-
cillations in orbital elements is expected to be off for small eccentricities due to the singularity for
e approaching zero (affecting θ and ω̄). Finally, the analytical expressions are expected to match
the numerical results better for retrograde orbits when compared to prograde orbits since they are
much more stable and resilient to gravity-field perturbations. Firstly, Figures 4.2 and 4.3 present
a detailed comparison of analytical and numerical results for orbit b propagated in prograde and
retrograde direction respectively.

Figure 4.2: Comparison of analytical and numerical results of a, e, r , d a
d t , de

d t , θ and ω̄ for prograde orbit b. The orbit is
propagated for approximately three orbital periods and initialized with the conditions presented in Table 4.3.

The figures show that the analytical and numerical results match very well for orbit b. It is clear
that the omission of periodic terms in ω̄ and θ does not have a large detrimental impact on the
results. Qualitatively, these results demonstrate the validity of the analytical expressions given the
assumptions that were introduced. In addition, it can be seen that the analytical results for retro-
grade orbit b match the numerical results better when compared to prograde orbit b, which was
expected. Retrograde orbits are known to be more stable and resilient against mean motion reso-
nances. One way to explain this is the fact that the perturbing frequencies are larger when compared
to prograde orbits due to the counter rotation of the orbiting object with respect to the central body,
which causes averaging of the perturbations.

Now, a comparison between numerical and analytical results is shown for all orbits listed in
Table 4.3. Time histories of the radial distance r are presented in Figures 4.4 and 4.5 for prograde
and retrograde orbits respectively. In addition, a more extensive assessment of the analytical re-
sults is presented in the form of color plots, where the parameter space of a0 and e0 is explored and
the Root-Mean-Square (RMS) of the difference in r (between the analytical and numerical results)
over three orbital periods is presented. These color plots are shown in Figure 4.6. Again, results
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Figure 4.3: Comparison of analytical and numerical results of a, e, r , d a
d t , de

d t , θ and ω̄ for retrograde orbit b. The orbit is
propagated for approximately three orbital periods and initialized with the conditions presented in Table 4.3.

are shown considering Psyche’s nominal second degree and order gravity field with ω̄0 = 80 deg and
θ0 = 130 deg.

As expected, the analytical results are accurate for small eccentricities (e0 < 0.2) and generally
deteriorate for larger eccentricities for prograde and retrograde orbits. The analytical approxima-
tions also become slightly worse for orbits with eccentricities close to zero, due to the singular
terms in e for ω̄ and θ. However, increasing the eccentricity has a much more detrimental impact
on the accuracy of the analytical solutions as can be seen in Figures 4.4, 4.5 and 4.6. In addition,
the analytical solutions for retrograde orbits are more accurate for lower semi-major axes. This is
simply due to the fact that the retrograde orbits are much more stable at these low altitudes. The
trajectories of prograde orbits become unstable much sooner, such that the analytical approxi-
mations cannot describe the orbits anymore. Unsurprisingly, the analytical results for prograde
orbits do not match the numerical results as the semi-major axis gets closer and closer to the body
(the 2:1 resonance corresponds to a semi-major axis of approximately 330 km). From Figure 4.6,
it can be conclude that the analytical solutions match the real solutions well, under the specified
assumptions in Section 4.1. Finally, note that an absolute RMS error is presented in Figure 4.6. For
larger semi-major axes, the RMS is expected to grow as well. A relative RMS error could have been
used as well.

Approximate analytical expressions were derived for the uniformly rotating second degree and
order gravity field. Several resonant terms appear in the analytical expressions of the semi-major
axis and the eccentricity. Those terms flag instabilities occurring at mean motion resonances with
the asteroid rotation for prograde orbits. The equations clearly show that these singularities disap-
pear for retrograde orbits, which will be validated with numerical results later on.
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Figure 4.4: Comparison of analytical and numerical results of the radial distance r for all orbits listed in Table 4.3. The
orbits are prograde (i0 = 0) and propagated for approximately three orbital periods.
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Figure 4.5: Comparison of analytical and numerical results of the radial distance r for all orbits listed in Table 4.3. The
orbits are retrograde (i0 = 0 deg) and propagated for approximately three orbital periods.
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(a) Prograde orbits.

(b) Retrograde orbits.

Figure 4.6: Comparison of analytical and high-fidelity numerical results. The RMS of ∆r over three orbital periods (of the
orbiting object) is shown for retrograde and prograde orbits. Results are shown for Psyche’s nominal second degree and

order gravity field with ω̄0 = 80 deg and θ0 = 130 deg.
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5
Simulator

This chapter will give a description of the software used and developed while carrying out the re-
search. Firstly, Section 5.1 describes the SBDT, which is used for visualization and validation pur-
poses. Then, the numerical integration scheme is selected and described in Section 5.2. Finally,
Section 5.3 presents the software architecture by means of software flow diagrams.

The stability analysis tool is developed in C++ using Microsoft Visual Studio and the code is
executed in parallel on a Linux machine of the Astrodynamics & Space Missions Department at the
Faculty of Aerospace Engineering at TU Delft. The machine has a total of two Intel® Xeon® CPU
E5-2683 v3 sockets that operate at 2.00 GHz. Each socket consists 14 cores and each core has two
threads. 14 out of 56 threads were made available for this research.

5.1. Small-Body Dynamics Toolkit
The SBDT is a MATLAB© toolkit developed by Broschart et al. (2015) of which a significant part has
been developed at JPL. It is specifically aimed at providing preliminary mission analysis capabili-
ties around small bodies and is therefore a useful additional software tool for the stability analyses
carried out throughout this research. Several of the toolkit’s main capabilities are listed below.

− Numerical integration of spacecraft trajectories

− Visualization of trajectories around a small body

− Usage of various gravitational field models: point mass, constant density (polyhedron or el-
lipsoidal) and spherical harmonics

− Taking into account SRP and comet out-gassing forces

− Handling various sets of equations of motion: two-body, Hill, circular and elliptical restricted
three-body problem and four-body problem

− Generation of spherical harmonic coefficients from polyhedron shape models and vice versa

− Propellant budget calculations

The SBDT has many other capabilities as well and has been used for various purposes including
orbit stability analysis, designing control laws for hovering spacecraft at asteroids, analyzing plan-
etary defense strategies, autonomous spacecraft navigation strategies, etc. Furthermore, the SBDT
has been used for at least eight NASA Discovery and New Frontiers proposals (Broschart et al., 2015).

Here, the tool is used exclusively for the following purposes.
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− Visualization of spacecraft trajectories in the vicinity of the Psyche asteroid

− Numerical integration of the spacecraft trajectories in the body-fixed frame of the uniformly
rotating second and eighth degree and order gravity fields (for validation purposes)

− Generation of spherical harmonic coefficients corresponding to the shape model of the Psy-
che asteroid (Shepard et al., 2016) assuming uniform density (nominal gravity field)

Unsurprisingly, the nominal spherical harmonic gravity generated using SBDT and the one pro-
vided by Psyche’s mission design team match exactly.

5.2. Integrator
Instead of developing a numerical integration scheme purposely, use is made of an existing and
well-know library in C++. This approach saves valuable time and energy. odeint is a free and open-
source C++ library that offers the capability of numerically integrating sets of Ordinary Differential
Equations (ODEs). The library is distributed under the peer-reviewed Boost Software License and
was originally developed by Ahnert and Mulansky (2011). Its main goal "is to provide a modern and
fast C++ library for solving the Initial Value Problem (IVP) of ODEs" and its software design approach
emphasizes container independence, operation independence, high performance and generality.

Currently, odeint contains 21 numerical integration schemes. However, many of these (such as
the explicit Euler or the implicit Euler) can easily be ruled out as viable candidates due to their weak
performance in astrodynamics applications. In a literature study preceding this research, several
favorable characteristics of a suitable numerical integration scheme were identified:

− Explicit: Implicit integration schemes depend on the current state and a state at a later time.
Therefore, they require the non-analytical solution of a set of complex equations, which are
often solved iteratively. Consequently, implicit methods require more function evaluations
per step when compared to explicit methods. However, the main advantage of these methods
is that they are more stable and therefore preferred when solving stiff ODEs. Since the equa-
tions of motion at hand are generally non-stiff (no large discrepancies between slow and fast
dynamics), an explicit integration scheme is preferred for its efficiency.

− Single Step: Multistep methods rely on states before the state at the current step and take ad-
vantage of that information. The accuracy of the multistep method increases with the num-
ber of past states used in the integration scheme. Generally, classical multistep methods are
not preferred for long-duration numerical integrations of Hamiltonian systems (Hairer et al.,
2006, p. 566). Single-step methods are often more efficient for the same accuracy. Multi-
step methods are most useful when function evaluations are very costly, which is not the case
here due to the low degree and order gravity fields used. Therefore, single-step methods are
preferred over multistep methods.

− Variable Step Size: For the majority of applications in astrodynamics, variable step size in-
tegrators are preferred. For example, when considering an elliptic orbit around an aster-
oid, smaller step sizes are required during periapsis when compared to apoapsis since the
spacecraft state varies more strongly and rapidly during periapsis. Therefore, the integration
scheme preferably has a variable step size.

Considering the properties listed above, the majority of the 21 integration schemes of odeint can
be ruled out. The remaining candidates are listed in Table 5.1.
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Class Family Type
runge_kutta_dopri5 Runge-Kutta Dormand-Prince 5(4)

runge_kutta_cash_karp54 Runge-Kutta Cash-Karp 5(4)
runge_kutta_fehlberg78 Runge-Kutta Fehlberg 7(8)

bulirsch_stoer Bulirsch-Stoer variable order

Table 5.1: Numerical solvers for ordinary differential equations provided by the odeint library in C++ (Ahnert and
Mulansky, 2011). These numerical integration schemes are the only ones which are explicit, single-step integrators with

a variable step size.

To select the most suitable integrator (high accuracy for lowest computational effort), the per-
formance of the four integrators listed in Table 5.1 is compared. For each integrator, the final in-
tegration time is plotted as a function of the error in Jacobi constant, which is supposed to remain
constant for the considered dynamical system. An orbit in Psyche’s uniformly rotating second de-
gree and order gravity field is integrated 11 times for each integrator for a duration of 90 days. For
each integration, the absolute and relative error tolerances are varied. The results are presented in
Figure 5.1 by means of a logarithmic plot. Here, the integrations are carried out on a laptop com-
puter so overall performance is low.

Figure 5.1: Performance of several numerical integration schemes provided by odeint. An orbit in Psyche’s uniformly
rotating second degree and order gravity field is integrated for 90 days on a laptop computer. C J is normalized with

Equations 3.19 and 3.20.

It can be observed that the Runge-Kutta Fehlberg 7(8) (RKF78) is the most suitable integrator for
accuracies ∆C J < 10−8 over 90 days and the Bulirsch-Stoer integrator is most optimal for higher ac-
curacies. Since ∆C J is normalized, this roughly corresponds to eight digit accuracy (~cm accuracy),
which is much more than required for the integrations performed in this research. Consequently,
RKF78 is selected as the integration scheme. Due to the normalization, the absolute and relative er-
ror tolerances can be set equal to each other. Their values are set at 10−9 such that ∆C J ≈ 10−7 over
90 days (~m accuracy). This accuracy is still higher than required by one or two orders of magnitude
to remain conservative. The resolution of the uniform sampling presented in the following chapter
will provide additional justification for the selection of this accuracy.

5.3. Software Architecture
Before starting on this section, the reader is referred to Chapters 6 and 7. These chapters present
the methodology, results and discussion of the numerical stability analyses using BIBO- and FLI-
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stability conditions respectively. It is recommended to read these chapters first in order to better
understand the flow diagrams presented in this section.

The software architectures of the stability analysis tools are modular and simple. As mentioned
before, the majority of the code is developed in C++, with data visualization and validation done in
MATLAB©. Many initial conditions are sampled in the BIBO-stability analyses A, B and C . For a
single orbit, the software flow diagrams are presented in Figures 5.2, D.1 and D.2 respectively.

Figure 5.2: Flow diagram of sampled orbit in BIBO-stability analysis A.

Since the flow diagrams of analyses B and C are very similar to those of analysis A, they are
shown in Appendix D. Figure 5.2 shows the flow diagram of a single sampled orbit. Due to the acces-
sibility of 14 threads on a Linux computer, for-loops sampling the search space can be executed in
parallel which decreases computation time. As can be seen in the diagram, the minimum and max-
imum radii of the orbit are stored in .csv-files. These files can later be accessed by scripts developed
in MATLAB© to generate the required stability plots. Finally, the flow diagram of the FLI-stability
analysis is shown in Figure 5.3.
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Figure 5.3: Flow diagram of sampled orbit in FLI/OFLI stability analysis.
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6
Numerical Stability Analysis

Since the set of differential equations defining the physical environment around the asteroid can
only be solved analytically to first order, it is favorable to carry out a large numerical parametric
stability analysis in order to identify stability regions near the asteroid. This can be achieved by
numerically integrating a large number of initial conditions in the phase space around the asteroid
and quantitatively determining whether the resulting trajectories are stable or unstable. In addi-
tion to varying the initial conditions of the sampled trajectories, it is also possible and desirable to
consider variations in the gravity field of the asteroid. In this way, it can be assessed whether the
stability of a certain trajectory is robust against gravity field uncertainties and the results become
applicable to a wide range of small bodies. In this chapter, stability in the vicinity of the Psyche as-
teroid and a general second degree and order gravity field will be analyzed and discussed. The main
focus is a numerical analysis of stability using BIBO-stability constraints. Firstly, a practical defi-
nition of stability similar to BIBO-stability is introduced in Section 6.1. Secondly, the methodology
of the numerical analyses is presented in Section 6.2. After that, Section 6.3 presents and discusses
the results of the general stability analysis and introduces an empirical conservative stability limit.
Finally, Sections 6.4 and 6.5 focus on the Psyche mission specifically and analyze the influence of
higher-order spherical harmonic coefficients.

6.1. Practical Definition Stability
One option to analyze stability in a dynamical system is eigenvalue analysis. However, this method
gives a mathematical and therefore restrictive test of stability. In addition, most common stability
tests are often limited to a certain class of motion such as equilibria and periodic solutions. To find
suitable orbits for the Psyche mission, it is more applicable to analyze stability from a practical point
of view similar to Hu and Scheeres (2004) and Araujo et al. (2015). Instead of restricting the analysis
to a certain class of orbits around the asteroid and mathematical constraints, numerical conditions
can be imposed on the orbits that define stability from a mission perspective.

Hu and Scheeres (2004) proposed a numerical stability condition based on the evolution of Kep-
lerian elements of the trajectory. As mentioned before, it was shown analytically by Scheeres (1999b)
that orbits close to the body experience significant short-term non-periodic variations in a and e.
This behaviour is clearly illustrated in Figure 6.1, which shows stable, impact and escape trajectories
in Psyche’s second degree and order gravity field for prograde equatorial orbits. All three orbits were
initialized with C J > C JX . However, the orbit that impacts the asteroid was initialized inside the zero-
velocity surface C J = C JX and the other two orbits were initialized outside this surface, conforming
with the concept of zero-velocity surface analysis presented in Appendix B.
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(a) View in equatorial plane in the inertial frame.

(b) Orbit size and shape parameters a and e.

Figure 6.1: Stable, impact and escape trajectories in Psyche’s nominal second degree and order gravity field. The
trajectories are initialized as circular orbits in the x y-plane at semi-major axes 290, 210 and 250 km respectively.

From Figure 6.1b, it is clear that stability correlates strongly with the extent to which a and e vary
over time. By the definition of Hu and Scheeres (2004), the impacting and escaping orbits are both
size-shape unstable and the regular orbit is size-shape stable. A possible criterion for stability is
that the maximum change in eccentricity∆emax cannot be larger than a specified value. The choice
of this value is somewhat arbitrary, but 0.25 appears realistic as Hu and Scheeres (2004) noted that
any ∆emax between 0.2 and 0.6 can be appropriate. In addition, it is sufficient to track changes in e
since a considerable change in the semi-major axis of an orbit is not possible without a change in
eccentricity. To determine the stability of an orbit, a limit has to be set on the duration of propaga-
tion T f . This duration is set at 90 days, which is considerably longer than the time the spacecraft
has to be able to orbit safely without operator intervention (28 days as specified by Oh et al. (2017)).
Subsequently, a practical stability constraint is presented in Equation 6.1.

|e(t )−e0| <∆emax ,
{

t |0 ≤ t ≤ T f
}

(6.1)

Another possible stability criterion is to specify a range of allowable radii. Again, it is arbitrary to
specify numerical values for rmi n and rmax . However, values which are assumed to be realistic and
compatible with the orbits of Figure 2.5 are presented in Equations 6.2 and 6.3.

rmi n = 0.75rp 0 = 0.75(1−e0)a0 (6.2)
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rmax = 1.5ra 0 = 1.5(1+e0)a0 (6.3)

In the equations above, rp 0 and ra 0 are the initial periapsis and apoapsis distances respectively.
In addition, the discrepancy between rmax and r is allowed to be larger since impact is considered
more detrimental from a mission and planetary protection perspective compared to escape. This
stability criterion is presented in Equation 6.4.

rmi n < r (t ) < rmax ,
{

t |0 ≤ t ≤ T f
}

(6.4)

Both stability criteria can be compared for a large sample of orbits. Initially circular orbits are
propagated in Psyche’s nominal uniformly rotating second degree and order gravity field for varying
initial semi-major axes and varying ν with i0 = 70 deg,Ω0 = 120 deg, θ0 = 45 deg and σ = 0.5. A com-
parison of both criteria is presented in Figure 6.2, where the black and white regions indicate initial
conditions leading to stable and unstable orbits respectively, according to the imposed stability cri-
terion.

(a) Stability plot according to criterion on e. (b) Stability plot according to criterion on r .

Figure 6.2: Comparison of stability criteria for a large sample of orbits within a second degree and order gravity field,
where i0 = 70 deg,Ω0 = 120 deg, θ0 = 45 deg and σ = 0.5. The black and white regions indicate initial conditions leading

to stable and unstable orbits respectively. Trajectories were propagated for 515 asteroid rotations (90 days in Psyche’s
denormalized system).

From Figure 6.2, it is clear that the choice of stability criterion does not affect the global char-
acterization of stability. Unsurprisingly, variations in e and r are strongly correlated. Therefore, the
stability criterion on r (Equation 6.4) will be used, since it is even more intuitive when compared to
the condition on e (Equation 6.1). Furthermore, a condition based on the distance between the or-
biting body and the central body is more directly related to the mission requirement for safe science
orbits. In some cases, a condition on e might be too restrictive (if e varies more strongly over a short
time span when compared to r ) or not restrictive enough.

The stability condition presented in Equation 6.4 is a relative one and can generally be applied
to any body. In addition to this condition, it is possible to define an absolute condition specifically
applicable to the Psyche mission. The maximum radius of the Psyche asteroid is 140 km. Therefore,
it is realistic to place an additional constraint on r (t ) based on this maximum radius. To limit the
probability of impact on the asteroid surface, r (t ) shall be larger than 150 km over the 90-day period.
This stability condition is then presented in Equation 6.5.

max(rmi n ,150km) < r (t ) < rmax ,
{

t |0 ≤ t ≤ T f
}

(6.5)
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6.2. Methodology
6.2.1. Analysis A
The first numerical analysis builds upon the work done by Hu and Scheeres (2004) and considers
initially circular orbits in a uniformly rotating second degree and order gravity field. However, the
work is extended drastically by including variations in the initial inclination of the orbit i0, the initial
right ascension of the ascending node Ω0 and the initial argument of latitude u0. In this way, the
analysis also has a practical value for Psyche’s mission design and possibly many other future small-
body missions which consider circular orbits for their nominal mission phase. Consequently, the
initial conditions will be sampled for varying a0, i0, Ω0 and u0. It is required to represent the initial
position of the spacecraft in its orbit by the argument of latitude u = ω+θ for non-equatorial circu-
lar orbits since the argument of periapsis and the true, eccentric and mean anomaly are undefined
for circular orbits. Furthermore, for the special case of circular equatorial orbits, u is also unde-
fined and the true longitude λt = Ω+ω+θ is used to represent the position of the spacecraft within
its instantaneous Kepler orbit. Non-circular orbits are excluded from this analysis to decrease the
dimensionality of the search space.

The main goal of analysis A is to characterize stability, while considering large variations in the
gravity field of the asteroid as well. Therefore, a simple second degree and order gravity field will
be used. In this way, variations in the gravity-field parameters are restricted to variations in C20 and
C22, or equivalently σ and ν. Consequently, the search space for analysis A is six-dimensional. The
sampling scheme is presented in Table 6.1. In case of equatorial orbits, λt 0 is sampled according
to the sampling scheme ofΩ0. Since the results of analysis A are general for any uniformly rotating
body, the stability condition is the inequality presented in Equation 6.4, without an additional (and
absolute) condition for impact.

Parameter Sampling Range Sampling Interval Number of Samples Unit
(a0/rs)3/2 [0.01,4] 0.01 400 -

i0 [0,180] 10 19 deg
Ω0 [0,160] 20 9 deg
u0 [0,135] 45 4 deg
ν [0,0.2] 0.02/3 301 -
σ [0.5,1.0] 0.25 3 -

Table 6.1: Sampling scheme of analysis A. The orbital parameters of initially circular orbits are varied as well as the
second degree and order gravity-field parameters σ and ν. Total number of trajectories propagated: 2.47 108.

Since resonances of the spacecraft’s mean motion with the rotation of the asteroid have a cru-
cial impact on stability close to the body, (a0/rs)3/2 is sampled with a high resolution. At Psyche’s 1:1
resonance radius, the resolution is smaller than 1.5 km. For completeness, (a0/rs)3/2 ranges from
0.01 to 4 such that the obtained results can be applied to almost any combination of central body
and orbiting object. Furthermore, it will be clear that all orbits are stable for (a0/rs)3/2 > 4. The
motivation for sampling (a0/rs)3/2 instead of a0/rs is to clearly show the influence of mean motion
resonance on stability, since (a0/rs)3/2 ∝ T , where T is the orbital period.

ν is a variable that accounts for the ellipticity of the body and correlates strongly with C22. It
was shown by Hu and Scheeres (2004) to have a large impact on orbital stability. Consequently, ν is
sampled with a high resolution as well: it ranges from 0 to 0.2 (see Section 3.2).
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Orbital elements i0,Ω0 and u0 are all sampled with decreasing resolution since their impact on
stability is assumed to be smaller. Of these three orbital elements, i0 correlates the most with stabil-
ity as it is well known that retrograde orbits are generally more stable when compared with prograde
orbits (Zhang and Innanen, 1988). Furthermore, it is assumed that the initial position of the space-
craft within its orbit influences stability the least. However, it was identified that u0 does have some
influence on stability, especially close to the body (where changes in a and e can occur on a very
short time span). In addition, the problem is point-symmetric about the origin. It can easily be
shown that V (−r ) =V (r ) for the second degree and order gravity field (see Equations 3.17 and C.1).
Therefore,Ω0 and u0 are both sampled for values below 180 deg only. Otherwise trajectories would
be propagated which are mirrored about the origin, which is redundant.

Finally, trajectories are propagated for σ = 0.5, 0.75 and 1.0. As mentioned by Hu and Scheeres
(2004), this brackets the parameter space since σ > 0.5 for most asteroids. For example, asteroids
Castalia and Itokawa have values of 0.9 and 0.92 for σ. In contrast, the Earth (which has a roughly
oblate spheroidal shape) has a σ-value close to zero, meaning that also trajectories close to the
body are almost always stable. In addition, stability varies moderately and linearly with σ, which
will be shown in the results and justifies a low-resolution sampling for this parameter.

This analysis is extremely valuable for mission design since it will allow the identification stable
regions in the parameter space for any uniformly rotating asteroid assuming its second degree and
order gravity field (excluding asteroids experiencing tensile stress due to fast rotation). In addition,
the results are general for any asteroid mass and rotational rate. For any combination of µ, ωA , C20

and C22, it will be possible to identify which circular orbits are stable, moderately stable or com-
pletely unstable given the initial semi-major axis a0 and inclination i0. The analysis will be used to
assess stability in the vicinity of the Psyche asteroid as an example. To generate these generalized
results, a total of number of approximately 250 million trajectories are propagated for a duration of
515 asteroid rotations (90 days in Psyche’s denormalized system).

6.2.2. Analysis B

The second analysis considers the second degree and order gravity field similar to analysis A. How-
ever, analysis B is specifically aimed at characterizing stability near the Psyche asteroid and covers
both its nominal and conservative gravity fields. Consequently, analysis B will be especially valuable
for the Psyche mission. The analysis is executed forσ and ν presented in Table 3.2. By removing sig-
nificant variations in σ and ν throughout the analysis, it is possible to consider non-circular orbits
as well, which adds an additional dimension to the parameter space of initial conditions. Since two
dimensions in the parameter space of analysis A are removed (σ and ν), the parameter space is five-
dimensional, with θ0 set to zero for non-circular non-equatorial orbits. For circular non-equatorial
orbits ω is undefined and the initial argument of latitude u0 is sampled according to the sampling
scheme ofΩ0. For non-circular equatorial orbits,Ω is undefined and the initial longitude of periap-
sis ω̄0 is sampled according to the sampling scheme ofΩ0. Finally for circular equatorial orbits, the
true longitude λt is used to represent the position of the spacecraft within its instantaneous Kepler
orbit. The sampling scheme of analysis B is presented in Table 6.2.

Since Analysis B considers variations in the eccentricity as well, (rp 0/rs)3/2 is sampled instead
of (a0/rs)3/2 from 0.01 to 4. In this way, it is easier to deduct from the stability plots, how close the
sampled orbits get to the asteroid. Since the dimensionality of the parameter space is reduced, the
initial inclination can be sampled with a higher resolution compared to analysis A with intervals of 1
deg. The eccentricity is sampled with an interval of 0.05 ranging from 0 to 0.5. Larger eccentricities
are not considered due to their limited practical value for the Psyche mission. Finally, Ω0 and ω0
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Parameter Sampling Range Sampling Interval Number of Samples Unit
(rp 0/rs)3/2 [0.01,4] 0.01 400 -

i0 [0,180] 1 181 deg
e0 [0,0.5] 0.05 11 -
Ω0 [0,150] 30 6 deg
ω0 [0,135] 45 4 deg

Table 6.2: Sampling scheme of analysis B . Five Keplerian elements are sampled and orbits are propagated in Psyche’s
nominal and conservative second degree and order gravity field. Total number of trajectories propagated: 1.91 107.

are sampled with a lower resolution compared to analysis A, such that the discrepancy with the
sampling intervals forΩ0 and ω0 of analysis C is limited.

6.2.3. Analysis C
The final numerical stability analysis is almost identical to analysis B , but differs in two ways. Firstly,
and most importantly, analysis C uses the nominal and conservative eighth degree and order grav-
ity fields. This is essential to answer one of the research goals, which is to assess whether a second
degree and order gravity field can be used to globally characterize stability around a small body. By
comparing the results of analysis B with analysis C , this question can be answered. In addition,
the results will provide valuable information for the Psyche mission. It can be assessed whether the
orbits that are currently proposed are stable (for both the nominal and conservative gravity fields),
and alternative mission scenarios can potentially be suggested.

Secondly,Ω0 and ω0 are sampled from 0 to 360 deg since the effective potential for a higher de-
gree and order gravity field is generally not point-symmetric about the origin. The use of a higher
degree and order gravity field requires considerably more function evaluations during orbit propa-
gations. Consequently, the computation time for analysis C is higher compared to analysis B . The
sampling interval of Ω0 and ω0 is therefore slightly increased when compared to analysis B (still,
with more samples for these two parameters). The sampling scheme of analysis C is presented in
Table 6.3.

Parameter Sampling Range Sampling Interval Number of Samples Unit
(rp 0/rs)3/2 [0.01,4] 0.01 400 -

i0 [0,180] 1 181 deg
e0 [0,0.5] 0.05 11 -
Ω0 [0,320] 40 9 deg
ω0 [0,300] 60 6 deg

Table 6.3: Sampling scheme of analysis C . Five Keplerian elements are sampled and orbits are propagated in Psyche’s
nominal and conservative eighth degree and order gravity field. Total number of trajectories propagated: 4.30 107.

6.3. Analysis A
6.3.1. Stability plots
For all trajectories propagated in the normalized second degree and order gravity field, the mini-
mum and maximum radial distance (rmi n and rmax ) of the spacecraft with respect to the CoM of
the body can be stored. By subjecting these values to the stability condition specified in Equation
6.4, it can be assessed whether a given initial condition leads to a stable or unstable orbit around
the body.
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Subsequently, surface plots can be generated with (a0/rs)3/2 along the x-axis and ν along the
y-axis. These stability plots can be produced for a given combination of i0,Ω0, u0 and σ, similar to
what was shown in Figure 6.2. In these plots, the black and white regions indicate initial conditions
leading to stable and unstable trajectories respectively. To show the influence of Ω0 and u0 on sta-
bility, four stability plots are shown in Figure 6.3 for i0 = 90 deg and σ = 1.0 and varying Ω0 and u0.
This figure only shows a small subset of the 36 combinations ofΩ0 and u0 for a given i0 and σ.

(a)Ω0 = 0 deg and u0 = 45 deg. (b)Ω0 = 0 deg and u0 = 135 deg.

(c)Ω0 = 80 deg and u0 = 45 deg. (d)Ω0 = 80 deg and u0 = 135 deg.

Figure 6.3: Stable and unstable regions for σ = 1.0 and i0 = 90 deg for a second degree and order gravity field. Different
plots show stability regions for varying initial conditions inΩ0 and u0. The black and white regions indicate stable and

unstable trajectories according to Equation 6.4.

From the stability plots presented in Figure 6.3, several important characteristics can be ob-
served. Firstly, the basic trend is that stability increases with decreasing values of ν and increas-
ing values of (a0/rs)3/2. This is expected since ν is strongly correlated with C22, which is known
to cause large variations in orbital energy (Scheeres, 1999b) and the influence of gravity-field per-
turbations decreases with distance away from the body. Secondly, mean motion resonances with
central body rotation have a strong detrimental impact on orbit stability. Referring back to the ana-
lytically derived solutions in Equations 4.27 and 4.28 for a and e respectively, the numerical results
confirm the instabilities caused by mean motion resonances appearing in the analytical equations.
The strongest resonances that can be observed for this set of initial conditions are 1:2, 1:1, 3:2 and
2:1. These are the resonances that also appeared in the analytical expressions. It is clear that many
other resonances (like 5:2) have influence as well, but do not show up in the analytical equations
due to the assumptions that were made. Thirdly, Ω0 and u0 have a small influence on the stability
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plots, which was anticipated in the methodology outlined in the previous section. Although only
a subset of the data is presented, these observations and conclusions hold for all combinations of
i0, Ω0, u0 and σ of Table 6.1 (except for i0 approaching 180 deg, for which the influence of mean
motion resonance becomes negligible).

A more effective (and paper-saving) way of illustrating stability as a function of (a0/rs)3/2, i0, ν
and σ is by overlaying the stability plots (as shown in Figure 6.3) for all sampled combinations of
Ω0 and u0 (36 in total for analysis A). Then, stability can be expressed as a percentage as shown in
Equation 6.6. The overlaid stability plot is shown in Figure 6.4 for σ = 1.0 and i0 = 90 deg.

Stability [%] = Number of stable orbits

Total number of orbits
·100 (6.6)

Figure 6.4: Stable (black), intermediate (blue) and unstable (white) regions in a uniformly rotating second degree and
order gravity field, where σ = 1.0 and i0 = 90 deg. Ω0 and u0 are varied for 36 combinations according to the sampling

scheme presented in Table 6.1. The plot shows the percentage of initial conditions that result in stable trajectories
according to Equation 6.4.

6.3.2. Comparison σ = 0.5, 0.75 and 1.0
In order to assess the influence ofσ on orbital stability, a comparison can be made between stability
plots for different values of σ. A stability plot for i0 = 90 deg and σ = 1.0 was already shown in Figure
6.4. Therefore, stability plots for i0 = 90 deg and σ = 0.75 and 0.5 are shown in Figures 6.5a and 6.5b
respectively.

By comparing the results for σ = 0.5, 0.75 and 1.0, it is clear that more trajectories are unstable
for increasing values ofσ. Again, although only a subset of the data is presented, these observations
and conclusions hold for all combinations of i0 and σ of Table 6.1 (except for i0 approaching 180
deg). To understand this behaviour, Equation 3.21 can be rewritten into Equation 6.7.

σ= 4

2+ J2
C22

(6.7)

By setting a value for σ, the ratio between J2 and C22 is fixed. From Equation 6.7, it can clearly
be seen that C22/J2 increases for increasing values ofσ. This is expected since large values of C22 are
more detrimental for stability compared with large values of J2. The flattening of the body does not
cause variations in a and e averaged over an orbital period (Scheeres, 1994).
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(a) σ = 0.75

(b) σ = 0.5

Figure 6.5: Stable and unstable regions for i0 = 90 deg and varying σ for a second degree and order gravity field.

6.3.3. Empirical stability limit
Holman and Wiegert (1999) investigated the long-term stability of planets in binary systems. In their
analysis, the researchers investigated which regions in the phase space of the system allow for or-
bits to survive extended periods of time. Although the dynamical system is different and on a much
larger length and time scale, their analysis holds many similarities to the analysis presented in this
work regarding the uniformly rotating second degree and order gravity field. In their study, they
varied the binary eccentricity and mass ratio and the semi-major axis of planets orbiting the system
in circular orbits. By generating a sufficiently large set of trajectories, stable and unstable regions
in the parameter space were identified. From these numerical results, the researchers were able to
develop empirical expressions for the critical semi-major axis ac as a function of binary eccentricity
and mass ratio. For orbits with an initial semi-major axis larger than ac (in the regime far away from
the binary system), their orbit is very likely to be long-term stable.

In a similar fashion, an empirical expression for semi-major axis as a function of i0, σ and ν

will be developed. The empirical expression will result in a conservative bound for the stable semi-
major axis as , above which orbits are stable (according to Equation 6.4) in the second degree and
order gravity field. That is, the circular orbit with initial conditions a0, i0, Ω0 and u0 is stable in the
second degree and order gravity field if a0 > as(i0,σ, ν), where a0 and as are normalized with respect
to the resonance radius rs of the body. The developed inequality will be a sufficient condition for
stability, but not a necessary one.

6. Numerical Stability Analysis 49



Stable Orbits in the Small-Body Problem

The first step in developing an empirical expression for as is to generate a set of data points that
ideally represents the limit for stable orbits. Then, as (which contains several free parameters) will
be fitted to this data set. For every stability plot (i.e. combination of i0 andσ), samples are generated
automatically at some arbitrary distance from the resonance ’cuts’ within the stable (black) region
to ensure that the final fit for as is a conservative one. The samples for two combinations of i0 and
σ are illustrated in Figure 6.6.

(a) i0 = 50 deg and σ = 1.0 (b) i0 = 130 deg and σ = 0.5

Figure 6.6: Sampling data points in stability plots to generate empirical expression for as . Grey dots indicate samples.

The stable limit as is not guaranteed to hold for i0 = 63.435 ± 5 deg and i0 = 116.565 ± 5 deg.
These inclinations are known as the critical inclinations for which the argument of periapsis does
not exhibit secular variations according to first-order approximations, which can easily be verified
with Equation 6.8 (Wakker, 2015, p. 624).

ω̇= 3

4
ñC20

( re

a(1−e2)

)2
(1−5cos2 i ) (6.8)

In the expression above, ñ is the perturbed mean motion, approximately equal to the mean mo-
tion n (accurate to first order in C20). Only even zonal harmonic terms produce secular variations
in M , Ω and ω (Wakker, 2015, p. 624), causing only C20 to appear in the expression for the second
degree and order gravity field. Since the orbit precesses very slowly about its angular momentum
vector for inclinations close to these critical inclinations, resonances will have an even larger detri-
mental impact on stability. Therefore, it was decided to limit the applicability of the conservative
stability limit to inclinations at least 5 degrees smaller or larger than the critical inclinations. Conse-
quently, the stability plots for i0 = 60 and 120 degrees will not be used to sample data points for the
development of the empirical expression for as . The total number of stability plots used to sample
data is equal to 51 and the total number of samples amounts 177.

The second step is to parameterize the volume as . Since the relation is empirical, the param-
eterization of as is arbitrary. Ideally, the expression for as is simple and fits the data points in an
acceptable way (which again, is arbitrary). The proposed parameterization is presented in Equa-
tion 6.9.

as

rs
= ν(α1 +β1i0 +γ1σ)+p

ν(α2 +β2i0 +γ2σ)+1 (6.9)

In the equation above, α1, α2, β1, β2, γ1 and γ2 are coefficients that will be solved for and i0

should be given in radians. An important property of the empirical expression is that as = 1 for
ν = 0. From Figures 6.3, 6.4, 6.5 and 6.6, it is clear that the orbits are almost completely unstable
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at the 1:1 resonance radius. Therefore, an ideal property of the expression for as is that it equals
1 for ν = 0. Secondly, stability varies most strongly with ν. Therefore, two different powers of ν (1
and 1/2) appear in the expression. By observing the aforementioned figures and carrying out mul-
tiple fitting procedures with various powers of ν, it appears that a square root in ν helps in fitting
the sampled data points considerably. Lastly, linear terms in i0, σ and ν appear in the expression
in order to fit the data adequately, while still maintaining a simple and easy-to-use expression for as .

In order to fit Equation 6.9 and its free parameters to the sampled data points, a weighted least
squares is executed. The weights are distributed in such a way that each stability plot has the same
weight. This is not the case with a regular least squares fit since the number of data points can vary
over different stability plots (see Figure 6.6). For completeness, the weighted least squares formula
is given in Equation 6.10,

x = (AT W A)−1 AT W (as −1) (6.10)

where x contains the coefficients of Equation 6.9, A is the matrix containing the function eval-
uations of the terms in Equation 6.9, W is the weighting matrix and as is a vector containing the
observed values of as for each sampled data point. After executing Equation 6.9, the best-fit pa-
rameters are obtained in vector x and are presented in Table 6.4. In addition, the RMS can be com-
puted between vector as and the empirical fit values of as

rs
using Equation 6.9. This is done using

MATLAB©.

Parameter Value
α1 -3.41
α2 4.35
β1 3.86
β2 -2.29
γ1 -4.98
γ2 2.41

RMS 0.08

Table 6.4: Weighted least squares fit for as
rs

.

To ensure that the expression is conservative and sufficient for stability, the RMS is added to
as
rs

. Comparing the RMS to the model parameters, it is clear that the empirical expression fits the

data well. In addition, the R2-value (which is a quantitative measure of the goodness of a fit) of the
empirical function is calculated as well and is equal to 0.95, which indicates that the model fits the
data well. The final empirical expression for as

rs
is given in Equation 6.11,

as

rs
= ν(−3.41+3.86i0 −4.98σ)+p

ν(4.35−2.29i0 +2.41σ)+1.08 (6.11)

which holds within the parameter space presented in Table 6.5. It is emphasized that the devel-
oped empirical stability limit is generally applicable to the majority of small bodies. Knowing the
mass, the uniform rotation rate, C20 and C22 of an irregular body, it is possible to determine a suf-
ficient condition for the stability of initially circular orbits in the uniformly rotating second degree
and order gravity field. Equation 6.11 can be used for verification purposes and is especially of prac-
tical value for back-of-the-envelope preliminary mission design. To illustrate the empirical stability
limit, as is shown on the stability plots of Figure 6.6 in Figure 6.7.
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Parameter Constraint Unit
as/rs as/rs > 0 -

i0

0 ≤ i0 ≤ 1.020 or
1.194 ≤ i0 ≤ 1.947 or

2.122 ≤ i0 ≤π
rad

e0 e0 = 0 -
σ 0.5 ≤ σ ≤ 1.0 -
ν 0 ≤ ν ≤ 0.2 -

Table 6.5: Constraints for which the empirical expression in Equation 6.11 holds.

(a) i0 = 50 deg and σ = 1.0 (b) i0 = 130 deg and σ = 0.5

Figure 6.7: Empirical stability limit as (grey dotted line). Orbits with a0 > as are stable.

6.3.4. Results for Psyche (σ≈ 0.5)
In Table 3.2, σ is given for Psyche’s nominal and conservative second degree and order gravity field
as 0.5406 and 0.5888 respectively. The results of analysis A are given for σ = 0.5, 0.75 and 1.0. To ex-
tract useful information on stability for orbits around the Psyche asteroid, it is assumed thatσ= 0.5.
To ensure that the approximation is conservative, ν is calculated again for σ = 0.5 and C22 fixed.
Now, ν has values 0.0457 and 0.0781 for the nominal and conservative gravity fields respectively.
Therefore, the error made by the approximation results in an overestimation of the magnitude of
C20, which is conservative.

Stability plots can be generated for σ = 0.5 at various inclinations. First, results are shown for
i0 = 0 deg in Figure 6.8.

Again, the figure presents the stable and unstable regions around a uniformly rotating second
degree and order gravity field. In addition, the values of ν for Psyche’s nominal and conservative
gravity fields are indicated by the lower and upper blue horizontal lines respectively. The red left-
most vertical line indicates the lowest allowable radial distance of 150 km and the three dashed
green lines represent mission orbits D, C and B from left to right (orbit A has a semi-major axis
outside of the sampled range and is always stable). Finally, the stability limit as is shown as well.
Figure 6.8 is of limited practical value to the Psyche mission since equatorial orbits are unfavorable
due to limited coverage capabilities. In addition, it can be seen that orbits B and C are unstable for
both the nominal and the conservative gravity fields. This is not surprising since orbits with low
inclinations are more often unstable when compared to orbits of higher inclinations.
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Figure 6.8: Stable (black), intermediate (blue) and unstable (white) regions in a uniformly rotating second degree and
order gravity field, where σ = 0.5 and i0 = 0 deg.

According to Oh et al. (2017), Psyche’s currently selected orbits A, B and C are polar orbits with
inclinations i0 ≈ 90 deg, whereas orbit D is a retrograde orbit with an inclination of i0 = 160 deg.
In order to analyze various realistic inclinations for all mission orbits, stability plots are shown for
inclinations i0 = 90, 120, 140, 160 and 180 deg in Figure 6.9.

For orbits propagated in the second degree and order gravity field, it can be seen in Figure 6.9a
that the vertical lines of polar orbits B and C intersect with both horizontal lines (representing ν for
the nominal and conservative gravity field) in the black (stable) region. Therefore, it can be con-
cluded that polar orbits B and C are stable over a duration of at least 90 days and that these orbits
are robust against variations in the dominant C22 gravity field term. Also, these orbits remain stable
for varying Ω0 and u0. This observation provides external validation to the trajectory design of the
Psyche mission for these orbits. However, considering the conservative gravity field, orbit C is on
the verge of becoming only marginally stable. Higher-order gravity terms might cause orbit C to be-
come unstable in the conservative gravity field (which will be explored in Section 6.5). In the same
figure, it can also be seen that orbit D (which is closest to the asteroid surface) is unstable at an incli-
nation of 90 deg, which again, complies with the results presented by Oh et al. (2017). Consequently,
for orbit D to remain stable over a duration of at least 90 days, it is required that its inclination i0 is
larger than 90 deg.

Figure 6.9a also shows the empirical stability limit as , which provides a conservative value for
the initial semi-major axis above which all circular orbits are stable. Using Equation 6.11, as = 311.4
km and 339.2 km considering the nominal and conservative gravity fields respectively. According to
these values, polar orbits A and B are guaranteed to be stable, which is true. However, orbits C and
D have a semi-major axes which lie below these values so nothing can be stated on the stability of
these orbits and an analysis such as the one presented in the previous paragraph must be executed.

Figures 6.9b, 6.9c, 6.9d and 6.9e show stability plots for retrograde orbits in order to determine
which inclinations are suitable for orbit D from a stability and coverage perspective. Firstly, it can
be seen in Figure 6.9b that an inclination of 120 degrees for orbit D places the intersections of the
vertical line for orbit D and both horizontal lines in the blue (intermediate) region. Therefore, it is
possible to find stable trajectories at i0 = 120 deg depending on the choice of Ω0 and u0. Conse-
quently, stability at i0 = 120 deg is not robust against variations in initial conditions and therefore
not ideal. In addition, i0 = 120 deg lies very close to the critical inclination of 116.565 deg, which is
undesirable. At i0 = 140 deg (shown in Figure 7.16c), orbit D is completely stable for both the nom-
inal and conservative gravity fields. At this inclination, the stability of the orbit is robust against
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(a) i0 = 90 deg (b) i0 = 120 deg

(c) i0 = 140 deg (d) i0 = 160 deg

(e) i0 = 180 deg (f) Legend of stability plots.

Figure 6.9: Stable (black), intermediate (blue) and unstable (white) regions in a uniformly rotating second degree and
order gravity field, where σ = 0.5 and i0 varies for each plot.

variations in Ω0 and u0 and the dominant C22 gravity field term. Finally, at inclinations 160 and
180 degrees, the stability of orbit D deteriorates and coverage of the asteroid diminishes. Therefore,
an inclination of 140 degrees for orbit D is recommended from a stability and coverage perspec-
tive. This recommendation is different from the currently proposed inclination of 160 degrees by
Oh et al. (2017).
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6.4. Analysis B
As mentioned before, analysis B is specifically aimed at analyzing stability near the Psyche asteroid
in the second degree and order gravity field by fixing values of σ and ν to the values determined for
the nominal and conservative gravity fields. In addition, the stability and behaviour of non-circular
orbits is analyzed as well. Figures 6.10 and 6.11 present stability plots for the nominal (left) and
conservative (right) gravity fields. The initial eccentricity e0 varies from 0 to 0.3 with steps of 0.1.
In these figures, the initial inclination i0 is shown on the y-axis and the initial periapsis distance
rp 0 is shown on the x-axis. Note that the stability condition used in analyses B and C contains the
additional constraint that r must always be larger than Rmax , which is 150 km.

(a) Nominal gravity field, e0 = 0. (b) Conservative gravity field, e0 = 0.

(c) Nominal gravity field, e0 = 0.1. (d) Conservative gravity field, e0 = 0.1.

(e) Legend of stability plots.

Figure 6.10: Stable (black), intermediate (blue) and unstable (white) regions in the vicinity of asteroid Psyche in a
uniformly rotating second degree and order gravity field. The empirical stability limit is also shown for the stability plots

with initially circular orbits.

6. Numerical Stability Analysis 55



Stable Orbits in the Small-Body Problem

(a) Nominal gravity field, e0 = 0.2. (b) Conservative gravity field, e0 = 0.2.

(c) Nominal gravity field, e0 = 0.3. (d) Conservative gravity field, e0 = 0.3.

(e) Legend of stability plots.

Figure 6.11: Stable (black), intermediate (blue) and unstable (white) regions in the vicinity of asteroid Psyche in a
uniformly rotating second degree and order gravity field.

Firstly, it can be seen that the stable regions for the conservative gravity field are smaller when
compared to the nominal gravity field, which is expected. Secondly, Figures 6.10a and 6.10b illus-
trate that the empirical stability limit works well, even at inclinations close to the critical inclina-
tions. Furthermore, these figures show that circular orbits B and C are stable at an inclination of 90
deg and an inclination of approximately 140 deg is suitable for orbit D. Unsurprisingly, this com-
plies with the analysis of Section 6.3. Figures 6.10 and 6.11 also show the detrimental impact of the
critical inclination (116.656 deg) on orbital stability.
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Going from top to bottom in Figures 6.10 and 6.11 (increasing initial eccentricity e0), it can be
seen that selecting a non-zero eccentricity for orbits with high inclinations (i0 > 120 deg) can have
a positive impact on orbit stability close to the central body. The stability regions close to the body
seem to increase in size going from e0 = 0 to 0.1. Eccentricities larger than 0.1 do not seem to in-
crease stability regions significantly. Especially for orbit D, it is recommended to select an initial ec-
centricity of 0.1. In this way, low altitudes can be reached safely by the spacecraft in order to conduct
high-resolution observations of the asteroid surface using its gamma ray and neutron spectrometer.

6.5. Analysis C
Lastly, results using Psyche’s eighth degree and order gravity field are shown in this section. Most of
the observations made and conclusions drawn from analysis B hold for analysis C as well. First, the
goal is to focus on the differences and assess the validity of using a second degree and order gravity
field for the characterization of stable regions near a small body. To clearly compare the results of
both analyses, Figure 6.12 shows the stability plots for the nominal gravity field with initial eccen-
tricity e0 = 0 using the second and eighth degree and order gravity fields.

(a) Second degree and order gravity field. (b) Eighth degree and order gravity field.

(c) Legend of stability plots.

Figure 6.12: Comparison of stability plots using a second and eighth degree and order gravity field. The stability plots are
shown for Psyche’s nominal gravity field and initially circular orbits (e0 = 0). The empirical stability limit is also shown.

Figure 6.12 shows that the stable regions shrink when going from the low to the high degree
and order gravity field. This result is expected since additional gravity terms (even though smaller
in magnitude) give rise to additional perturbations causing instability. In addition to shrinking the
stability regions slightly, new ’islands’ of unstable orbits appear at the intersections of the critical
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inclinations and the mean motion resonances. Furthermore, the empirical stability limit is not a
sufficient condition in the higher degree and order gravity field due to the fact that it crosses the
blue regions and islands of intermediate stability appear.

Nonetheless, it is clear that the second degree and order gravity field does an excellent job at
capturing the global stability behaviour, even though its gravity field contains only two terms. By
selecting orbits in the black regions using this simple gravity field, a conservative approach is taken
and the corresponding color in the high degree and order gravity field will either be black or blue.
Consequently, the second degree and order gravity field can successfully be used to characterize sta-
bility near a small body such as Psyche during preliminary mission design. The major advantage of
using such a low degree and order gravity field is a tremendous increase in efficiency when numer-
ically integrating trajectories and a small parameter space allowing for large parametric analyses as
shown in analysis A. In addition, most asteroids which have not been visited by spacecraft, contain
very large uncertainties in their estimated gravity-field coefficients. Therefore, assuming a higher
degree and order gravity field is more accurate when compared to a lower degree and order gravity
field is false.

Similar to analysis B , a subset of stability plots is presented using the eighth degree and order
gravity field for both the nominal and conservative gravity fields and varying initial eccentricities.
The results are presented in a similar fashion in Figure 6.13. Results for eccentricities e0 ≥ 0.2 are
not presented as motivated by the discussion in the previous section.

Considering both the nominal and conservative eighth degree and order gravity fields, the polar
and initially circular orbit B remains stable. Orbit C is always stable at an inclination of 90 degrees
in the nominal gravity field, but not in the conservative field. There, its stability depends onΩ0 and
u0. A very conservative mission design approach would be to select an inclination of 105 degrees for
orbit C instead of the currently proposed inclination of 90 degrees, such that the orbit is stable for
allΩ0 and u0. Similarly, orbit D is stable for i0 ≥ 140 deg and e0 = 0 or 0.1 using the nominal gravity
field for all Ω0 and u0. Again, this is not the case in the conservative gravity field. Firstly, it can be
concluded that an initial eccentricity of 0.1 is more optimal when compared to an initial eccentricity
of zero (complying with the results of Section 6.4). Secondly, i0 must be increased from 140 to 150
deg in order for orbit D to remain stable for allΩ0 and u0 in the most conservative scenario.

The stability analysis can be concluded by proposing two mission scenarios for orbits C and D.
The first mission scenario assumes a nominal gravity field and the second scenario is a conserva-
tive mission design approach. The proposals are presented in Tables 6.6 and 6.7 respectively along
with the originally proposed science orbits by JPL (Oh et al., 2017). Finally, a candidate trajectory
for orbit D is propagated in Psyche’s nominal eighth degree and order gravity field for 90 days as
shown in Figure 6.14. In this figure, it can be observed that the spacecraft trajectory remains stable
since its eccentricity and radial distance remain bounded. Figure 6.14a shows the trajectory in the
body-fixed frame of the Psyche asteroid, which clearly illustrates that the proposed trajectory allows
the spacecraft to observe the majority of the asteroid surface. Furthermore, it can be seen in Figure
6.14b that the spacecraft can reach altitudes below 20 km, while still remaining stable (assuming the
nominal gravity field is an accurate representation of the actual gravity field).
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(a) Nominal gravity field, e0 = 0. (b) Conservative gravity field, e0 = 0.

(c) Nominal gravity field, e0 = 0.1. (d) Conservative gravity field, e0 = 0.1.

(e) Legend of stability plots.

Figure 6.13: Stable (black), intermediate (blue) and unstable (white) regions in the vicinity of asteroid Psyche in a
uniformly rotating eighth degree and order gravity field.

Orbit e0 [-] i0 [deg] a0 [km]
Cnew 0 90 296
CJPL 0 90 296
∆C 0 0 0

Dnew 0.1 140 188
DJPL 0 160 188
∆D 0.1 -20 0

Table 6.6: Nominal mission design approach.

Orbit e0 [-] i0 [deg] a0 [km]
Cnew 0 105 296
CJPL 0 90 296
∆C 0 15 0

Dnew 0.1 150 188
DJPL 0 160 188
∆D 0.1 -10 0

Table 6.7: Conservative mission design approach.
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(a) Spacecraft trajectory shown in Psyche’s body-fixed frame for
the first 10 days of the propagation.

(b) Spacecraft trajectory radial distance r to Psyche’s CoM as a function of
time for 90 days.

(c) Spacecraft trajectory eccentricity e as a function of time for 90 days.

Figure 6.14: Candidate trajectory for orbit D. The trajectory is propagated in the nominal eighth degree and order gravity
field, where a0 = 188 km, e0 = 0.1, i0 = 140 deg,Ω0 = 0 deg, ω0 = 60 deg and θ0 = 0 deg.
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7
Chaos Indicators

One of the research questions presented in the introduction relates to the effectiveness of using
chaos indicators for the characterization of stability near an irregular body. This chapter will at-
tempt to answer that. Firstly, Section 7.1 gives a general description and overview of chaos indi-
cators. Secondly, Section 7.2 describes two chaos indicators and their computation in more detail,
namely the FLI and its variant, the Orthogonal Fast Lyapunov Indicator (OFLI). After that, examples
of regular and chaotic trajectories and their FLIs in the second degree and order gravity field are
shown in Section 7.3. Finally, Section 7.4 assesses whether FLIs can be used to effectively character-
ize stability of orbits in the vicinity of an irregular body.

7.1. Overview
A chaos indicator is a quantitative measure of how sensitive a given trajectory is with respect to a
change in its initial conditions. For two degrees of freedom systems, it can be suitable to employ
techniques based on graphical treatments such as Poincaré sections. However, as the dimensional-
ity of the system increases to three degrees and beyond (as is generally the case for satellite orbits),
quantitative non-graphical methods are much more practical (Darriba et al., 2012). Chaos indica-
tors are used to differentiate between regular and chaotic regions in the phase space. Perturbed
trajectories diverging linearly from its reference can be classified as regular and those diverging ex-
ponentially can be classified as chaotic. Consequently, for a given trajectory around a central body,
the evaluation of such an indicator can provide valuable information on the level of chaoticity of the
orbit. Clearly, it is preferred that mission orbits show regular behaviour since chaotic trajectories
(with rapid divergence from a given reference trajectory) can cost a significant amount of propel-
lant for orbit maintenance, and possibly become uncontrollable resulting in impact on the body or
escape from the system. Figure 7.1 illustrates the difference between a regular and a chaotic orbit
and compares the value of the FLI (a commonly used chaos indicator) for both orbits. It can be seen
that the chaos indicator attains substantially different values for the chaotic orbit when compared
to the regular orbit, and can effectively be used to differentiate between regular and chaotic motion.

The foundation of characterizing (in)stability quantitatively was laid by Lyapunov (1892). In
his work, Lyapunov introduced the Lyapunov Characteristic Exponents (LCEs), which are asymp-
totic measures of the growth rate of small deviations from a trajectory. However, considerable re-
search on chaos indicators only initiated after the early work of Hénon and Heiles (1964). They
showed that the phase space in Hamiltonian systems can be characterized by regions of regular
and chaotic motion. Oseledec (1968) was the first to apply Lyapunov’s theory to chaotic orbits and
Benettin et al. (1980) provided a first general method of computing all LCEs of a given dynamical
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(a) Regular orbit. (b) Chaotic orbit.

(c) Comparison of time histories of the FLI of the regular orbit (reg) and the chaotic orbit (ch).

Figure 7.1: Comparison of a regular and a chaotic orbit. These trajectories were propagated in Psyche’s second degree
and order gravity field in the equatorial plane. Both orbits are initially circular but differ in their initial semi-major axis.

system. The most well-known quantitative way to distinguish between regular and chaotic motion
is by computing the maximum Lyapunov Characteristic Exponent (mLCE) of a given trajectory. This
parameter is defined in Equation 7.1 (Skokos, 2010).

χ1 = lim
t→∞

1

t
ln

||w (t )||
||w (t0)|| (7.1)

In this equation, χ1 is the mLCE and w (t ) is a deviation vector at time t . Details on the compu-
tation of w (t ) will be given in Section 7.2. For a regular trajectory χ1 would be zero and for a chaotic
trajectory it would equal a strictly positive value. However, since integration time is limited, only a
truncated version of the LCEs can be calculated. These truncated approximations of the LCEs are
referred to as the Lyapunov indicators (LIs). A major disadvantage of using LIs for chaos detection
is their slow convergence to their real values (the LCEs). To make a distinction between regular and
chaotic orbits, required integration times are long, resulting in a considerable computational effort.
This property is especially detrimental when one has to integrate large sets of initial conditions,
which is the case when globally characterizing chaoticity of a given dynamical system such as Psy-
che’s. For a recent and extensive overview of the numerical computation of LIs, the reader is referred
to Skokos (2010).

Fortunately, a variety of ’fast’ chaos detection techniques has been developed over the years.
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Froeschlé et al. (1997a,b) were the first to develop a chaos indicator that can discriminate between
regular and chaotic motion more quickly: the FLI. A useful extension of the FLI is the OFLI, which is
also able to distinguish between periodic and non-periodic orbits among regular motion by consid-
ering the component of the deviation vector(s) orthogonal to the flow (Fouchard et al., 2002). Other
well-known chaos indicators are: the Mean Exponential Growth factor of Nearby Orbits (MEGNO)
(Cincotta and Simó, 2000), the Smaller ALignment Index (SALI) (Skokos, 2001) and its generaliza-
tion, the General ALignment Index (GALI) (Skokos, 2007), the spectral distance (D) (Voglis et al.,
1999), the Relative Lyapunov Indicator (RLI) (Sándor et al., 2000) and several more. The list pre-
sented here is not exhaustive. A description or comparison of these indicators is out of scope of
this research. For this, the reader is referred to the works of Maffione et al. (2011) and Darriba et al.
(2012).

7.2. Fast Lyapunov Indicators
To characterize regular and chaotic motion around an irregular body, FLIs and OFLIs will be com-
puted for large sets of initial conditions and varying gravitational parameters in the second degree
and order gravity field. These chaos indicators are chosen for their ability to distinguish between
regular and chaotic motion effectively, their convergence speeds, their heritage and their perfor-
mance compared to other chaos indicators (see Maffione et al. (2011) and Darriba et al. (2012)). In
addition, the results will be compared with the numerical study of stability presented in Chapter 6.

7.2.1. Background and Motivation

Villac and Aiello (2005) were the first to employ FLIs for the characterization of long-term stable or-
bits for space mission applications. In their analysis, Villac and Aiello analyzed distant retrograde
orbits around Jupiter’s moon Europa in the circular restricted three-body problem to find end-of-
life disposal orbits. They found that FLIs can predict the long-term stability of orbits with only a
relatively short integration time span. Later, Villac (2008) presented FLIs as a tool for complement-
ing preliminary mission design by introducing the concept of FLI maps. These maps can be used by
mission designers to select long-term stable orbits which are robust to model parameter perturba-
tions. An example of such an FLI map is shown in Figure 7.2 (Villac and Aiello, 2005). In this figure,
the regions of regular motion (purple) and chaotic motion (orange) can be identified very clearly.
This information can be used during preliminary mission design to select regular mission orbits.

Figure 7.2: FLI map in the vicinity of a stable periodic orbit in the circular restricted three-body problem (Villac and
Aiello, 2005). The purple and orange regions indicate regular and chaotic orbits respectively.
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It is important to understand that the notion of stability presented in Section 6.1 is not the same
as regular motion defined more strictly by Lyapunov’s theory and not the opposite of chaotic mo-
tion. It will be analyzed whether FLIs and/or OFLIs provide an effective means of characterizing
stability, how regions of regular motion compare with stability regions and whether the computa-
tional requirement of FLIs makes them attractive to complement preliminary mission design. In
addition, this research considers orbits during the nominal mission phase of an observation mis-
sion of an irregular body with a highly-dimensional initial condition search space in the uniformly
rotating two-body problem. To the best of the author’s knowledge, this is a promising application of
chaos indicators which has not been investigated before.

7.2.2. Variational Equations
The variational equations are the starting point of the calculation of any variational chaos indicator
such as the FLI and OFLI. For any time-independent Hamiltonian system, the equations of motion
can be written in first-order form as in Equation 7.2.

ẋ = f (x) (7.2)

This set of equations can be linearized to first order by introducing a Taylor-series expansion
with respect to a reference trajectory according to Equations 7.3 and 7.4.

x = x∗+δx (7.3)

ẋ∗+δẋ = f (x∗+δx) ≈ f (x∗)+ ∂ f

∂x

∣∣∣
x∗
δx (7.4)

In the equations above, x∗ represent the reference trajectory and δx represents the deviation
in the state vector (replaced by w from now on). Substituting Equation 7.2 into Equation 7.4, the
first-order linear variational equations are obtained, which are given in Equation 7.5.

ẇ (t ) = ∂ f (x)

∂x

∣∣∣
x∗(t )

w (t ) = A(t )w (t ) (7.5)

Equation 7.5 represents a set of linear differential equations with respect to w . This set of differ-
ential equations contains time-dependent coefficients since matrix A(t ) is a function of the refer-
ence trajectory x∗(t ). The solution to these differential equations is given by Equation 7.6 (Skokos,
2010),

w (t ) =Φ(t , t0)w (t0) (7.6)

whereΦ(t , t0) is known as the state transition matrix or the fundamental matrix. By substituting
Equation 7.6 into Equation 7.5, it can be shown thatΦ(t , t0) satisfies Equations 7.7 and 7.8,

Φ̇(t , t0) = A(t )Φ(t , t0) (7.7)

Φ(t0, t0) = I (7.8)

where I is the identity matrix. Considering the length and time normalizations (according to
Equations 3.19 and 3.20 respectively), the flow f of the dynamical system is given by Equation 7.9.
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f =



ẋ
ẏ
ż

2ẏ +Vx

−2ẋ +Vy

Vz

 (7.9)

In Equation 7.9, V is the effective potential of the uniformly rotating second degree and order
gravity field. The full expression of V and its first- and second-order Cartesian derivatives are given
in Appendix C. By taking the partial derivatives of the flow with respect to the components of the
state, A can be obtained. Matrix A is given in Equation 7.10.

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

V ∗
xx V ∗

x y V ∗
xz 0 2 0

V ∗
y x V ∗

y y V ∗
y z −2 0 0

V ∗
zx V ∗

z y V ∗
zz 0 0 0

 (7.10)

Now, all the ingredients are present to numerically integrate a deviation vector to a given ref-
erence trajectory in the second degree and order gravity field. It is essential that the numerical
integration of the variational equations is executed simultaneously with the general equations of
motion of the dynamical system. In this way, the coefficients of matrix A at time t can be computed.
Therefore, the computational cost of a variational chaos indicator is always higher than a simple
numerical integration of the equations of motion for a given time span and reference trajectory.

7.2.3. Definition and Computation of FLI/OFLI
First, the definition and computation of the FLI will be described, since the OFLI was introduced
after the FLI and their definitions are closely related.

In their first work on FLIs, Froeschlé et al. (1997a) introduced three definitions of the FLI given
in Equations 7.11, 7.12 and 7.13,

F LI1(t ) = 1

||w 1(t )||n (7.11)

F LI2(t ) = 1∏n
j=1 ||w j (t )|| (7.12)

F LI3(t ) = 1

max1≤ j≤n ||w j (t )||n (7.13)

where n is the dimension of the phase space. These definitions differ in their dependence on the
choice of the initial deviation vector(s) w (t0) and their ability to distinguish between resonant and
non-resonant regular motion (Villac and Aiello, 2005). The definition in Equation 7.11 is only based
on a single deviation vector. Therefore, its value has a stronger dependence on the choice of w (t0),
whereas it is computationally more efficient (since it requires the numerical integration of only one
deviation vector) and able to distinguish between resonant and non-resonant regular motion.

For the purpose of this research, it is not required to distinguish between resonant and non-
resonant regular motion. The most important characteristic of the FLI is that it is able to distinguish
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between regular and chaotic motion effectively, independent on the choice of the initial deviation
vectors. Therefore, a definition will be adopted that depends on a subset of deviation vectors rather
than just a single vector. This definition is presented in Equation 7.14.

F LI (t ) = max
t0≤ti≤t

max
1≤ j≤n

||w j (t )||

= max
[

max
t0≤ti≤t

||w 1(t )||, max
t0≤ti≤t

||w 2(t )||, . . . , max
t0≤ti≤t

||w 6(t )||
] (7.14)

The definition of F LI (t ) presented above takes the length of the largest deviation vector and the
maximum length of a given deviation vector over the time history of that vector. The former reduces
the dependence of F LI (t ) on the choice of initial deviation vector(s) and the latter is to remove the
oscillatory behaviour of ||w (t )||. The length of a deviation vector is defined as the Euclidean norm
of w (t ) shown in Equation 7.15. Since the equations of motion are normalized in length and time
(see Equations 3.19 and 3.20 respectively), there is no need for additional scaling between units of
distance and velocity in the definition of the norm.

||w || =
√

w2
x +w2

y +w2
z +w2

ẋ +w2
ẏ +w2

ż (7.15)

The number of deviation vectors is taken equal to the dimensionality of the phase space of the
system (here: n = 6). In this way, the six initial deviation vectors w (t0) completely encompass the
subspace tangent to the phase space of the system when they are chosen as a set of linearly inde-
pendent vectors. Every deviation vector will evolve under the action of the largest characteristic
exponent (Froeschlé et al., 1997a). However, if the dominating expanding manifold is close to being
perpendicular to the set of initial deviation vectors, a transitional regime could occur during which
it requires a long time before the deviation vectors align themselves with the expanding manifold.
By choosing a set of n orthogonal (linearly independent) initial deviation vectors, this drawback is
completely removed since there will always be at least one vector which quickly aligns itself with the
expanding manifold.

The definition presented here is arbitrary and the actual value of F LI (t ) also depends on the in-
tegration time, the coordinate system and the metric. However, we are not interested in the absolute
value of F LI (t ) but rather in the relative values among trajectories in order to distinguish between
regular and chaotic motion. Therefore, different integration times, coordinate systems and/or met-
rics could be used as long as they are the same for all numerical integrations of a given system. To
remain consistent, T f is chosen to be 90 days considering the Psyche asteroid. This is the same in-
tegration time selected for the stability analyses presented in the previous chapter and corresponds
to 515 central body rotations. The initial deviation vectors all have unit length and are obtained
with the Gram–Schmidt orthonormalization process, which is very straightforward. For details on
this routine, the reader is referred to Rice (1966). The direction of the orthonormal set of initial de-
viation vectors is sampled randomly for each trajectory. Each component of every initial deviation
vector is sampled from a uniform distribution between -1 and 1 before executing the Gram–Schmidt
orthonormalization process.

The FLI can be used to distinguish between regular and chaotic motion. However, for a con-
tinuous system, the differential rotation along the flow makes it unable for the FLI to distinguish
between regular periodic and non-periodic orbits (Fouchard et al., 2002). The component of the
deviation vector parallel to the flow is affected by this differential rotation and will grow at least lin-
early over time. By considering the components of the deviation vectors orthogonal to the flow, the
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effect of differential rotation on the value of the FLI is removed. For illustrative purposes, the com-
ponents of the deviation vector parallel and orthogonal to the flow are shown in Figure 7.3.

Figure 7.3: Illustration of deviation vector and its components parallel and orthogonal to the flow of the dynamical
system.

Consequently, Fouchard et al. (2002) introduced the OFLI, which is able to distinguish between
periodic and non-periodic regular motion as well. The definition of the OFLI adopted here is pre-
sented in Equation 7.16.

OF LI (t ) = max
t0≤ti≤t

max
1≤ j≤n

||w⊥
j (t )||

= max
[

max
t0≤ti≤t

||w⊥
1 (t )||, max

t0≤ti≤t
||w⊥

2 (t )||, . . . , max
t0≤ti≤t

||w⊥
6 (t )||

] (7.16)

The additional computational cost of the OFLI compared to the FLI is minimal. It only requires
the computation of the orthogonal component of the deviation vectors with respect to the flow. The
computation of the orthogonal component is given in Equation 7.17,

||w⊥|| =
√

||w ||2 − (w · f )2

|| f ||2 (7.17)

where (·) indicates the dot product of two vectors. Even though the focus of this research is not
aimed at periodic solutions, the straightforward and effortless computation of the OFLI is a com-
pelling argument to analyze this chaos indicator as well. In addition, the OFLI has not shown to be
less effective in its ability to distinguish between regular and chaotic motion when compared to the
FLI (Darriba et al., 2012, Maffione et al., 2011).

Finally, it is important to point out a practical constraint when computing FLIs or OFLIs. Since
the length of a deviation vector can grow exponentially under chaotic motion, numerical overflow
is common. The process of renormalization is often used to omit such behaviour as thoroughly
outlined by Skokos (2010). However, the only goal is to effectively distinguish between regular and
chaotic motion. In case numerical overflow occurs, the value of the FLI or OFLI will be close to the
maximum positive double in C++, which clearly indicates that the trajectory is chaotic. Therefore,
the process of renormalization is not required and numerical overflows are allowed to occur in case
of chaotic motion.

7.3. Regular and Chaotic Motion
By comparing FLI and OFLI values for regular and chaotic motion, an effective threshold can be set
for these chaos indicators to distinguish between regular and chaotic motion. In addition, a brief
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analysis of the time history of the deviation vectors and chaos indicators for regular and chaotic
orbits partially serves as verification.

7.3.1. Comparison Regular and Chaotic Orbits
First, a comparison is made between regular and chaotic orbits. This is to illustrate the behaviour
of the deviation vectors and the FLI of the orbits. It will be established whether the time history
of these parameters complies with expectations. The orbits are propagated for 90 days in Psyche’s
nominal second degree and order gravity field with parameters σ and ν shown in Table 3.2. The ini-
tial conditions of both orbits are presented in Table 7.1. Regions of regular motion are separated very
distinctly from regions of chaotic motion. Consequently, a small change in the initial conditions of
the orbit can affect the behaviour of the orbit drastically as will be shown in the figures presented
later on.

Parameter Regular Orbit Chaotic Orbit Unit
(a0/rs)3/2 1.5 1.4 -

e0 0 0 -
i0 70 70 deg
Ω0 40 40 deg
u0 135 135 deg

Table 7.1: Initial conditions of a regular and a chaotic orbit in Psyche’s second degree and order gravity field.

Firstly, the trajectory of the regular orbit is shown in Figure 7.4. The time history of the length of
all deviation vectors and the FLI value are shown in Figure 7.4a, the radial distance as a function of
time is shown in Figure 7.4b and the trajectory in the inertial frame is shown in Figure 7.4c.

The behaviour of the regular orbit is as expected. The growth of the FLI and the length of the
deviation vectors is linear, which indicates that the motion is regular. The lengths of the deviation
vectors also show the anticipated oscillatory behaviour. This result complies with results from lit-
erature, which have also shown this behaviour for the lengths of the deviation vectors and the FLI
in case of regular motion. Therefore, this result partially validates the correct implementation of
the variational equations and the computation of the FLI. Furthermore, Figure 7.4b shows that the
radial distance varies very consistent and regular over time, which is unsurprising. The stability
condition presented in Section 6.1 would have indicated this orbit as stable based on the time his-
tory of the radial distance. Therefore, this specific orbit is both regular and stable, which is favorable
from a mission perspective. It would be interesting to analyze in which regions of the phase space
these conditions do not overlap. Are there bounded chaotic orbits and/or unbounded regular orbits
and what causes these discrepancies? This will be addressed later.

The trajectory of the chaotic orbit is shown in Figure 7.5. The time history of the length of all
deviation vectors and the FLI value are shown in Figure 7.5a, the radial distance as a function of
time is shown in Figure 7.5b and the trajectory in the inertial frame is shown in Figure 7.5c.

The lengths of the deviations vectors of the chaotic orbit and the value of the FLI initially grow
linearly until approximately 0.7 106 seconds (8.1 days). After this, they start to grow exponentially,
indicating that the motion is chaotic. The time history of the radial distance clearly shows chaotic
behaviour as well, which becomes evident after approximately 1.0 106 seconds (11.6 days). The
spacecraft appears to be escaping from the system when analyzing the time history of the radial
distance and the trajectory in the inertial frame (shown for the initial 20 days of the integration). For
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(a) Lengths of deviation vectors and FLI as a function of time.

(b) Radial distance of spacecraft trajectory to CoM of Psyche as a function of time.

(c) Spacecraft trajectory shown in non-rotating inertial frame. The Psyche asteroid is shown stationary, but
rotates uniformly in the inertial frame in reality. The trajectory is shown for the duration of the initial 20 days

to avoid a cluttered plot.

Figure 7.4: Spacecraft trajectory of a regular orbit in Psyche’s nominal second degree and order gravity field. The
trajectory is propagated for a total duration of 90 days with initial conditions specified in Table 7.1.

this specific orbit, the FLI is able to detect chaotic motion slightly sooner compared to the stability
condition utilized in the previous chapter.

Finally, a comparison of the FLI and OFLI time histories of the regular and chaotic orbits is
presented in Figure 7.6.
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(a) Lengths of deviation vectors and FLI as a function of time.

(b) Radial distance of spacecraft trajectory to CoM of Psyche as a function of time.

(c) Spacecraft trajectory shown in non-rotating inertial frame. The Psyche asteroid is shown stationary, but
would rotate uniformly in the inertial frame in reality. The trajectory is only shown for the duration of the

initial 20 days to avoid a cluttered plot.

Figure 7.5: Spacecraft trajectory of a chaotic orbit in Psyche’s nominal second degree and order gravity field. The
trajectory is propagated for a total duration of 90 days with initial conditions specified in Table 7.1.

Firstly, this figure shows that the discrepancies between the values of the FLI and OFLI are neg-
ligible when one has to distinguish between regular and chaotic motion. Therefore, either chaos
indicator can be chosen to distinguish between regular and chaotic motion. Secondly, it is clear
that the final value of the FLI/OFLI can be used to distinguish between regular and chaotic motion.
The discrepancy between the final values of the FLI/OFLI is several tens of orders of magnitude. In
fact, FLI maps (as the one presented in Figure 7.2) use the final value of the FLI of a given trajectory
to make the distinction between regular and chaotic motion.
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Figure 7.6: Comparison of FLI and OFLI values of regular and chaotic orbits shown in Figures 7.4 and 7.5.

7.3.2. Sampling of Initial Conditions
To generate FLI maps, large samples of initial conditions in the dynamical system must be inte-
grated numerically for a given duration. Then, their final values can be illustrated in a 2D color plot
in order to visually characterize the dynamics of the phase space. Again, the goal is to assess whether
chaos indicators provide a useful complementary tool for preliminary design purposes. Therefore,
a sampling scheme almost identical to analysis A will be used. Subsequently, a comparison can
be made between the stability plots of analysis A (introduced in the previous chapter) and the FLI
maps. In this way, the stability condition presented in Section 6.1 and an FLI threshold separating
regular and chaotic motion can be compared. The sampling scheme for the FLI maps is presented
in Table 7.2 (note similarity with Table 6.1).

Parameter Sampling Range Sampling Interval Number of Samples Unit
(a0/rs)3/2 [0.01,4] 0.01 400 -

i0 [0,180] 10 19 deg
Ω0 [0,160] 20 9 deg
u0 [0,135] 45 4 deg
ν [0,0.2] 0.02/3 301 -
σ 0.5 - 1 -

Table 7.2: Sampling scheme of the FLI analysis. The orbital parameters of initially circular orbits are varied, as well as the
second degree and order gravity-field parameters ν, while σ is kept constant at a value of 0.5. Total number of

trajectories propagated: 82.4 106.

Note that the only discrepancy between Tables 6.1 and 7.2 is the sampling ofσ, which is omitted
here. The reason for fixing σ at 0.5 is to reduce computational cost. It was observed that numerical
integration of the trajectory with six deviation vectors increases the computational cost by approx-
imately a factor of seven when compared to the integration of the trajectory alone. In addition, the
goal of this chapter is to assess the effectiveness of an FLI/OFLI analysis, which is completely possi-
ble while keeping σ fixed. Also, 0.5 is approximately the value of σ of the Psyche asteroid such that
the FLI maps can be used to analyze orbits in the Psyche system.

7.3.3. Threshold Regular and Chaotic Orbits
To differentiate between regular and chaotic motion, use can be made of the fact the FLIs of regular
orbits grow linearly over time. This proportionality is shown in Equation 7.18 (Darriba et al., 2012)
and also holds for the OFLI in case of non-periodic regular motion.
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F LIr eg (t ) ∝ t (7.18)

Nonetheless, the rate at which the FLI of the regular orbit increases over time differs from one
trajectory to another. The FLIs of regular orbits experiencing strong dynamics (orbits close to the
central body) have a larger rate of change compared to orbits experiencing weaker dynamics (orbits
further away from the central body). A good proxy variable to capture this discrepancy is the number
of steps N executed throughout the numerical integration of the trajectory in case of variable step
size integration, which will be larger for orbits experiences strong dynamics compared to orbits
experiencing weak dynamics for a given set of absolute and relative error tolerances. The final value
of the FLI normalized by N is deemed a better variable to distinguish between regular and chaotic
motion when compared to the FLI alone. Since the final integration time is the same for all orbits,
the condition for orbits to be classified as regular is shown in Equation 7.19.

F LI (tend )

N (tend )
< F LI /Nthr eshol d (7.19)

In order to find an adequate value for F LI /Nthr eshol d , F LI (tend )
N (tend ) is shown in a histogram in Figure

7.7 for all orbits with i0 = 0 deg, which indicate the threshold most effectively compared to other
inclinations. The full-scale histogram is shown in Figure 7.7a and a focus on the threshold is shown
in Figure 7.7b.

Firstly, The histogram shows a clear discrepancy in values of F LI (tend )
N (tend ) between regular and chaotic

orbits with R indicating the group of regular orbits and C1, C2 and C3 indicating groups of chaotic
orbits. Based on these results, F LI /Nthr eshol d is set to 10

3
2 . In a similar fashion, OF LI /Nthr eshol d

can be set to 10
1
2 (a similar histogram for OFLIs is not shown here). Secondly, distinctions can be

made among the chaotic orbits. Chaotic orbits of group C1 are orbiting the body with large irregular
variations in radial distance r and do not converge towards r = 0 km. These chaotic orbits are usu-
ally close to regular regions of the phase space. Chaotic orbits of groups C2 and C3 impact the body
after an unpredictable amount of time and the numerical integration breaks down as the trajectory
approaches the singularity at r = 0 km. Even though unfavorable, this behaviour is not problematic
since it only occurs for chaotic orbits. The only important result is that a clear distinction between
regular and chaotic orbits is found. Finally, Group C3 is the group of chaotic orbits that experi-
enced numerical overflow. C++ flagged their FLIs as +Inf. The relative size of each group of orbits
is completely dependent on the sampling scheme utilized. For each group of orbits shown in the
histogram, the time history of the radial distance to the CoM of the body of an arbitrarily selected
orbit is presented in Figure 7.8.

In this figure, it can be seen that orbits from group C1 become very elliptical. The time at which
orbits from groups C2 and C3 converge towards the center is unpredictable. Because these orbits
are chaotic in nature, a small change in its initial conditions can completely change its subsequent
time history.

7.4. Characterizing Stability
FLI and OFLI maps will be presented in a similar fashion as the stability plots of analysis A (see
for example Figure 6.3) in order to characterize the regularity and chaoticity of orbits in the second
degree and order gravity field in a global way. Then, the maps can be compared with the stability
plots of analysis A, as mentioned before. Finally, its relevance as a complementary mission design
tool for the Psyche mission will be shown and discussed.
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(a) Full-scale histogram.

(b) Focus on threshold regular and chaotic orbits.

Figure 7.7: Histograms of final FLI values normalized with respect to the number of steps taken during the numerical
integration of the trajectories. R indicates the group of regular orbits and C1, C2 and C3 indicate groups of chaotic orbits.

The histogram shows data for all orbits with i0 = 0 deg of the sampling scheme presented in Table 7.2.

Figure 7.8: Time history comparison of the radial distance for arbitrarily selected orbits of groups R, C1, C2 and C3.
These groups are indicated in the histogram of Figure 7.7.

7. Chaos Indicators 73



Stable Orbits in the Small-Body Problem

7.4.1. FLI and OFLI Maps
For all maps, the horizontal axis represents the initial semi-major axis and the parameter ν is given
along the vertical axis. In this way, a total of 684 FLI and OFLI maps could be generated for each
combination of i0, Ω0 and u0 (see Table 7.2). However, only a few arbitrarily selected plots will be
presented and their features will be discussed and compared. Figure 7.9 shows an FLI and an OFLI
map for equatorial orbits with initial conditions i0 = 0 deg and λt 0 = 80 deg. After that, Figure 7.10
shows a similar comparison for non-equatorial orbits with initial conditions i0 = 140 deg,Ω0 = 0 deg
and u0 = 90 deg. The lower and upper boundaries of the color scale for all maps are fixed at 10−7/2

and 103/2 respectively. This ensures a focus on the regular orbits. Since the upper boundary is set at
103/2, the chaotic region has a dark red color. For the OFLI maps, the upper boundary could be set
at 101/2, since this value would be the optimal threshold for OFLIs as mentioned before. However,
equal color scales were chosen to ensure a clear comparison between the FLI and OFLI maps.

(a) FLI map.

(b) OFLI map.

Figure 7.9: Comparison of FLI and OFLI map for orbits propagated in the second degree and order gravity field with
parameters: σ = 0.5, i0 = 0 deg and λt 0 = 80 deg.

Firstly, it can be observed that mean motion resonances with the asteroid rotation are corre-
lated with chaotic regions. This behaviour is similar to the stability plots presented in the previous
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(a) FLI map.

(b) OFLI map.

Figure 7.10: Comparison of FLI and OFLI map for orbits propagated in the second degree and order gravity field with
parameters: σ = 0.5, i0 = 140 deg,Ω0 = 0 deg and u0 = 90 deg.

chapter. Generally, there are strong similarities in the structures of the FLI and OFLI maps and the
BIBO-stability plots, influenced by these resonances. Comparing Figures 7.9 and 7.10, the size of
chaotic regions increases with decreasing inclination, decreasing semi-major axis and increasing
irregularity of the body. Also, the maps show a distinct boundary between regular and chaotic mo-
tion, which was identified in the histogram of Figure 7.7.

Secondly, FLI and OFLI maps show structures caused by resonances with more detail compared
to the stability plots presented in the previous chapter. The color plots allow a clearer identification
of resonant orbits (see subtle 2:1 resonance in Figure 7.10). In addition, FLI and OFLI maps can be
used to identify families of quasi-periodic orbits in the body-fixed frame. In Figures 7.9a and 7.10a,
regions with a more blue color (and lower final values of F LI

N or OF LI
N ) among the regular orbits can

indicate the presence of quasi-periodic orbits. For example, a region of distinctly lower values of
F LI

N and OF LI
N can be identified at the 1:1 resonance in both figures. One orbit from Figure 7.9 (orbit

1) and one orbit from Figure 7.10 (orbit 3) within these regions are shown in the body-fixed frame in
Figure 7.11a. The time history of their FLI and OFLI is shown in Figure 7.11b.
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(a) Trajectories of orbits 1 through 4 shown in the uniformly rotating frame. The shape of the Psyche asteroid
is shown for illustrative purposes. However, ν for these orbits does necessarily correspond with a realistic

value of ν for the Psyche asteroid.

(b) Time history of FLI and OFLI values of orbits 1 through 4.

Figure 7.11: Trajectories and time histories of FLI and OFLI values shown for orbits 1 through 4. Initial conditions in the
uniformly rotating second degree and order gravity field are given in Table 7.3.

From the trajectories shown in the body-fixed frame, it is clear that orbits 1 and 3 are quasi-
periodic orbits. It was possible to identify these quasi-periodic orbits because the values of their FLI
and OFLI started increasing linearly only after a considerable amount of integration time resulting
in lower final F LI

N and OF LI
N values compared to other orbits. Orbit 1 corresponds to a stable quasi-

periodic orbit about one of the stable equilibria, similar to the orbits presented in Figure B.3. Fur-
thermore, several isolated islands of regular motion can be identified in Figure 7.9. A quasi-periodic
orbit from one of these islands (orbit 2) is presented in Figure 7.11. Figure 7.10 also shows a distinct
regular structure in the top left corner of the plot. This region corresponds to orbits that escape
almost immediately from the system. Because of their rapid escape, their FLI or OFLI values do not
have the time to grow considerably during the initial phase when the trajectory is chaotic and the
spacecraft is still orbiting the body. Orbit 4 is an example of such a trajectory. Due to the ellipticity
of the body, a large momentum exchange occurs between the rotating body and the spacecraft that
causes the trajectory of the spacecraft to become hyperbolic almost immediately within the time
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period of one orbital revolution. The initial conditions of orbits 1 through 4 are given in Table 7.3.
Refer to Figures 7.4 and 7.5 for a comparison of a standard regular orbit and a chaotic orbit respec-
tively.

Parameter Orbit 1 Orbit 2 Orbit 3 Orbit 4 Unit
(a0/rs)3/2 1.0 1.84 1.09 0.12 -

e0 0 0 0 0 -
i0 0 0 140 140 deg
Ω0 - - 0 0 deg
u0 - - 90 90 deg
λt 0 80 80 - - deg
ν 0.018 0.0667 0.1 0.15 -

Table 7.3: Initial conditions of orbits 1 through 4 indicated in Figures 7.9 and 7.10 and shown in Figure 7.11.

Finally, something can be said about the difference between the FLI and OFLI maps. As men-
tioned before, the OFLI is different from the FLI in the sense that it only considers the orthogonal
component of the deviation vectors to the flow in its computation. Therefore, OFLI values are always
smaller than FLI values for a given orbit. This is clear when comparing the color of the OFLI maps
to the FLI maps in Figures 7.9 and 7.10 (discrepancy is too small to be observable in Figure 7.6). Be-
cause of this, the OFLI is able to distinguish between periodic and non-periodic orbits. Comparing
Figures 7.9a and 7.9b, it can be seen that the OFLI map shows much more contrast among the regu-
lar orbits compared to the FLI map. Circular equatorial orbits around a body with a value of ν close
to zero, will remain quasi-circular since ν = 0 corresponds to point-mass gravity. The OFLI map of
Figure 7.9b successfully identifies periodic orbits at ν = 0. In Figure 7.10, the OFLI map does not
provide additional information simply because there are no (or close to no) periodic orbits in those
maps. A family of quasi-periodic orbits was identified, but it was also possible to identify these or-
bits with the FLI map. The cause of the increased contrast in Figure 7.9b is the fact that these orbits
are equatorial. When orbits are non-equatorial, periodic orbits are less common since inclined or-
bits have two additional degrees of freedom (position and velocity) along the z-direction that need
to map onto itself in order to be periodic. In addition, non-equatorial circular orbits around a point
mass are generally non-periodic in the rotating frame. Therefore, the advantage of using OFLI maps
instead of FLI maps for a systematic global analysis is minor.

Only a tiny subset of FLI and OFLI maps and orbits have been illustrated and discussed. The
analysis presented here is kept brief due to the sheer size of the search space. The objective is to
show how FLI and OFLI maps can be used to characterize regular and chaotic motion in the small-
body problem and to demonstrate their intuitive characteristics that can be leveraged for prelimi-
nary mission design purposes. Major advantages of FLI and OFLI maps that were identified are their
ability to distinguish between different types of regular motion among the regular orbits (specifi-
cally the identification of families of quasi-periodic orbits) and their ability to distinguish between
regular and chaotic motion effectively.

7.4.2. Comparison BIBO- and FLI-Stability Conditions
So far, two methods have been introduced to classify the stability of orbits in the uniformly rotat-
ing second degree and order gravity field: a method based on BIBO-stability and a method based
on the expansion of deviation vectors in the tangent subspace using FLIs and OFLIs. A systematic
comparison of both methods in the small-body problem is currently lacking from literature. In or-
der to compare both methods, stability maps using both methods can be overlaid. By doing so, it is
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possible to effectively identify in which regions of the phase space the conditions conform (regular,
BIBO-stable orbits and chaotic, BIBO-unstable orbits) and more interestingly, where these condi-
tions do not conform (regular, BIBO-unstable orbits and chaotic, BIBO-stable orbits). To distinguish
between regular and chaotic motion, the final F LI

N value is used with a threshold of 103/2 as men-
tioned before. To distinguish between BIBO-stable and -unstable orbits, Equation 6.4 is used.

The stability plots presented here were selected for two reasons: they show the largest regions
of discrepancy between both conditions and they show the largest diversity of orbits that lie within
these regions. Figures 7.12a, 7.12b and 7.12c present three comparative stability plots at inclinations
40, 120 and 160 degrees respectively.

It can be observed that both conditions result in remarkably similar stability plots. Note that
these plots were specifically chosen to show large regions of discrepancy. For most stability plots
that were generated, regions of regular orbits and BIBO-stable orbits conform even better. The plots
also show that for inclinations smaller than approximately 140 degrees and semi-major axes larger
than the 1:1 resonance radius, the F LI

N condition is more conservative and shows the mean motion
resonances with more detail compared to the BIBO-stability condition of Equation 6.4 (see green
regions). In contrast, there are several large regions of regular, BIBO-unstable orbits around and
below the 1:1 resonance radius.

As was already identified in the previous subsection, the red region in the top left corner of Fig-
ure 7.12b corresponds to orbits escaping rapidly from the system. In order to also understand the
cause of the other discrepancies, four orbits are sampled in those regions. Orbits 5, 7 and 8 are sam-
pled in regular, BIBO-unstable regions and orbit 6 is sampled in a chaotic, BIBO-stable region. The
initial conditions of these orbits are presented in Table 7.4 and their radial distance and FLI values
as a function of time are shown in Figures 7.13a and 7.13b respectively. The initial conditions of
these orbits are also indicated in Figure 7.12.

Parameter Orbit 5 Orbit 6 Orbit 7 Orbit 8 Unit
(a0/rs)3/2 0.65 2.0 0.95 1.05 -

e0 0 0 0 0 -
i0 40 40 120 160 deg
Ω0 0 0 0 0 deg
u0 0 0 90 0 deg
ν 0.06 0.04 0.04 0.112 -

Table 7.4: Initial conditions of orbits 5 through 8 indicated in Figures 7.12a, 7.12b and 7.12c and shown in Figure 7.13.

Figure 7.13b shows that orbits 5, 7 and 8 can be be classified as regular since their FLIs grow
linearly over time. The regularity of these orbits is also clear from Figure 7.13a. Although regular,
the amplitudes of the oscillations in radial distance of these orbits are so large, that they exceed
the BIBO-stability condition of Equation 6.4. By increasing the range between rmax and rmi n , or-
bits in the red regions (excluding the top left region of Figure 7.12b) would be classified as regular
and BIBO-stable as well. It depends on mission design requirements whether one wants to consider
orbits with strong oscillations in radial distance as well. However, it became clear that most of the re-
gions classified as regular and BIBO-unstable are in fact BIBO-stable with relaxed constraints. This
is a remarkable result as it shows that both conditions are very strongly correlated in their classifica-
tion of stable and unstable orbits. Figure 7.14 shows this by comparing Figure 7.12b with the original
BIBO constraint (on the left) and a relaxed BIBO constraint (on the right) with rmi n = 0.5a0(1− e0)
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(a) i0 = 40 deg,Ω0 = 0 deg and u0 = 0 deg.

(b) i0 = 120 deg,Ω0 = 0 deg and u0 = 90 deg.

(c) i0 = 160 deg,Ω0 = 0 deg and u0 = 0 deg.

Figure 7.12: Stability plots in the uniformly rotating second degree and order gravity field. A comparison is made
between conditions of BIBO-(in)stability and the regularity/chaoticity or orbits.

and rmax = 2.0a0(1+e0).

Orbit 6 is classified as chaotic and BIBO-stable. Figure 7.13b shows that the FLI of orbit 6 grows
exponentially with time (which confirms the chaoticity of the orbit) and Figure 7.13a shows that the
orbit is bounded during the integration time period of 90 days (which confirms the classification of
BIBO-stability of the orbit). Only after integrating the orbit for a duration of 450 days, the chaotic
nature becomes apparent in the time history of its radial distance. This is shown in Figure 7.15.
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(a) Time history of radial distance to center of body of orbits 5 through 8.

(b) Time history of FLI values of orbits 5 through 8.

Figure 7.13: Time histories of radial distance to center of body and FLI values shown for orbits 5 through 8. Initial
conditions in the uniformly rotating second degree and order gravity field are given in Table 7.4.

(a) BIBO condition with rmi n = 0.75a0(1−e0)
and rmax = 1.5a0(1+e0).

(b) BIBO condition with rmi n = 0.5a0(1−e0) and
rmax = 2.0a0(1+e0).

Figure 7.14: Comparison of stability plots with the original BIBO-stability condition and a relaxed version of it for
i0 = 120 deg,Ω0 = 0 deg and u0 = 90 deg.
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Figure 7.15: Radial distance with respect to center of body as a function of time of orbit 6. The integration time is
extended from 90 days to 450 days. The initial conditions of orbit 6 are presented in Table 7.4.

The FLI was able to detect the chaotic nature of orbit 6 much more quickly compared to the
BIBO-stability condition. The green regions shown in Figure 7.13 are orbits that are chaotic and
might become BIBO-unstable if the integration time is increased. By only using BIBO-stability con-
ditions in the mission design process, the chaotic nature of orbits such as orbit 6 might not be
identified. In addition, under neglected or unforeseen perturbations, orbit 6 might become BIBO-
unstable much more quickly which would result in an unsafe trajectory.

These results clearly demonstrate the advantage of using chaos indicators like the FLI or OFLI
as a stability characterization method. Consequently, it is highly recommended to use FLI maps
as a complementary mission design tool to effectively characterize regions of regular and chaotic
motion. Relying solely on a BIBO-stability detection method can result in classifying chaotic orbits
as stable. For this particular system (the uniformly rotating second degree and order gravity field), it
was found that additionally integrating six deviation vectors increased the computational effort by a
factor of 7 approximately. Nonetheless, the advantage of computing chaos indicators outweighs the
additional computational cost. Furthermore, this factor can be decreased by decreasing the num-
ber of deviation vectors (6 is a conservative maximum) or decreasing the integration time (chaos
indicators detect instability sooner and more effectively). A combination of a BIBO-stability condi-
tion with the computation of a chaos indicator such as the FLI or OFLI is recommended for mission
design purposes.

7.4.3. Psyche Mission
Finally, stability plots similar to those shown in Figure 6.9 can be generated. Now, the stability condi-
tion is based on the regularity or chaoticity of the orbits using a final F LI

N value of 103/2 as threshold.
For each plot, 36 individual FLI maps are overlaid for all combinations ofΩ0 and u0 or λt 0 given in
Table 7.2. Since σ = 0.5 is approximately the value of the Psyche asteroid, these stability plots can
be used to analyze which initially circular orbits in Psyche’s nominal and conservative gravity fields
are regular for a large variety of initial conditions. The stability plots at inclinations similar to Figure
6.9 are shown in Figure 7.16.

It can be observed that Orbit B is regular for all combinations of Ω0 and u0 at the proposed in-
clination of 90 degrees. Therefore, orbit B is both BIBO-stable and regular in the second degree and
order gravity field. The same holds for orbit C , which is both regular and BIBO-stable at i0 = 90 deg.
Nonetheless, the margin is small considering the conservative gravity field and orbits are not always
regular for intermediate values of ν. Again, it might be required to select a slightly higher inclination
for orbit C in order to ensure its regularity (and BIBO-stability). This will only affect observability
of the asteroid slightly. Finally, to ensure regularity of Orbit D in both gravity fields, an inclination
beyond 140 degrees is recommended, which complies with the recommendations given in Chapter
6.
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(a) i0 = 90 deg (b) i0 = 120 deg

(c) i0 = 140 deg (d) i0 = 160 deg

(e) i0 = 180 deg (f) Legend of stability plots.

Figure 7.16: Stable (black), intermediate (blue) and unstable (white) regions in a uniformly rotating second degree and
order gravity field, where σ = 0.5 and i0 varies for each plot.

Again, it has been shown that FLI maps can be a very attractive and valuable tool during the
preliminary design stage of a space mission. This has been demonstrated by validating the regularity
of the Psyche mission science orbits.
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8
Verification and Validation

Verification and validation are essential processes when developing software. They aim to answer
two different questions:

• Verification: Are we building the product right?

• Validation: Are we building the right product?

In terms of software development, verification aims to check whether the software is free of any
bugs or internal errors, which can often be checked with simple tests and/or comparison with ana-
lytical results. Validation on the other hand, is executed on a higher level in the problem space and
checks whether the right problem is solved. This can be achieved by analyzing whether the obtained
results are consistent with results obtained by other tools or results presented in literature.

Since verification is intertwined with the software development process and culminates into val-
idation as the software matures, this chapter will focus on presenting the validation of the software
tool. Firstly, Section 8.1 compares the numerical integration of trajectories in the second and eighth
degree and order gravity fields of the tool developed in C++ to JPL’s SBDT. Secondly, the results of
the BIBO-stability analysis are validated by comparing them to equivalent results presented in Hu
and Scheeres (2004) in Section 8.2. Finally, an effort is made towards validation of the FLI and OFLI
maps by comparing values of second-order derivatives of the potential obtained by the tool in C++
and Wolfram Mathematica and by discussing the behaviour of the FLI and OFLI in Section 8.3.

8.1. Comparison with Small-Body Dynamics Toolkit
Using SBDT presented in Section 5.1, trajectories integrated by the tool developed in C++ can be
validated. This is done with Psyche’s nominal second and eighth degree and order uniformly rotat-
ing gravity fields. In total, two orbits are integrated using the tool developed in C++ and SBDT: an
equatorial orbit and an inclined orbit. Each orbit is integrated in the second and eighth degree and
order gravity fields. The initial conditions of both orbits are presented in Table 8.1 and are chosen
such that they represent two very distinct regular orbits.

Each orbit is integrated numerically for 10 days with absolute and relative error tolerances set
at 10−15 in SBDT and C++ (assuming normalized equations of motion). In this way, the step error
approaches double precision. The time history of ∆r and ∆V is used to assess the validity of the
integration in C++. These parameters represent the magnitude of the difference in position and
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Parameter Equatorial Orbit Inclined Orbit Unit
a0 500 900 km
e0 0.2 0.6 -
i0 0 140 deg
ω̄0 320 - deg
Ω0 - 70 deg
ω0 - 190 deg
θ0 50 260 deg

Table 8.1: Initial conditions of equatorial and inclined orbits used for validation purposes.

velocity vectors of a given orbit between the trajectories obtained in SBDT and C++. The state dif-
ference is illustrated in Figure 8.1.

Figure 8.1: Vector ∆x represents the difference between the states of a trajectory integrated in SBDT and C++.

Figure 8.2: Time histories of ∆r and ∆V for orbits integrated numerically using SBDT and the C++ tool. The initial
conditions of the orbits are presented in Table 8.1.

The results presented in Figure 8.2 clearly show that the discrepancies in position and velocity
between the orbits in SBDT and the C++ tool are extremely small. In fact, when computing the av-
erage step error, it can be shown that the origin of the discrepancies is a combination of integration
and round-off errors. These results validate the correct implementation of the second and eighth
degree and order spherical harmonics gravity fields, the normalized equations of motion and the
implementation of the RKF78 integrator in C++. In addition, Figure 8.3 presents the relative Jacobi
constant error made throughout the numerical integrations in the second degree and order gravity
field for both orbits in SBDT and C++. Since the Jacobi constant is a conserved quantity in the uni-
formly rotating gravity field, ∆C J is defined in Equation 8.1.
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∆C J (t ) = C J (t )−C J (t0)

C J (t0)
(8.1)

Figure 8.3: Time histories of relative Jacobi constant errors for orbits integrated numerically using SBDT and the C++
tool. The initial conditions of the orbits are presented in Table 8.1.

This figure again confirms that the equations of motion are integrated correctly in the second
degree and order gravity field. The discrepancy between the equatorial orbit error and inclined
orbit error is caused by the larger eccentricity of the inclined orbit, which makes the numerical
integration more difficult (problem is more stiff).

8.2. BIBO-Stability Analysis
Since this research builds upon the initial work of Hu and Scheeres (2004), the results presented in
their paper can be reproduced as a means of validating the stability plots. Hu and Scheeres (2004)
present two stability plots (forσ = 0.5 andσ= 1.0) for orbits initialized with e0 = 0, i0 = 0 and λt 0 = 0.
In their analysis, orbits are flagged as unstable if∆e >∆emax over the course of the trajectory, where
∆emax ranges between 0.2 and 0.6 (characteristics of results do not change strongly as a function of
∆emax between these limits) for an unspecified duration. After setting ∆emax at 0.4 and integrating
the orbits for a duration of 515 asteroid rotations (90 days in Psyche’s denormalized system), Figure
8.4 compares the original stability plots presented in Hu and Scheeres (2004) (left) and their repro-
duced counterparts (right).

Comparing the reproduced plots of the figure to the original plots, it is apparent that these match
to a very high degree. Any observed discrepancy can be attributed to a difference in sampling (re-
produced plots show a higher resolution), a difference in integration time and/or a difference in
∆emax . This result validates to a high degree the correct generation of the stability plots.

8.3. FLI-Stability Analysis
To the best of the author’s knowledge, FLI or OFLI values in the uniformly rotating second degree
and order gravity field have not been documented in literature to date. Therefore, a high-level one-
to-one comparison of results to literature or another tool (which is able to compute FLI or OFLI
values) is not possible. Nonetheless, several other methods of verification and validation can pro-
vide sufficient certainty that the FLI and OFLI values are computed in a correct way.

Firstly, the most complex and error-prone aspect of numerically integrating deviation vectors
in the tangent subspace is the computation of the second-order derivatives of the potential. These
second-order derivatives appear in the variational equations (see Equations 7.5 and 7.10). Using
Wolfram Mathematica, Equation C.1 can be differentiated using its symbolic manipulation capabil-
ities to obtain and compute the second-order derivatives of the potential for any given position in
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(a) Original plot with σ = 1.0. (b) Reproduced plot with σ = 1.0.

(c) Original plot with σ = 0.5. (d) Reproduced plot with σ = 0.5.

Figure 8.4: Comparison of original (left) (Hu and Scheeres, 2004) and reproduced (right) stability plots in the uniformly
rotating second degree and order gravity field. Stable (dark) and unstable (light) regions can be observed. For the plots

on the right, ∆emax is set at 0.4 and orbits are integrated for a duration of 515 central body rotations. Although different
axis labels have been used in the figures on the right, they represent identical variables when compared to the axis labels

on the left.

the phase space. Then, these values can be compared to the second-order derivatives computed
before being entered into the variational equations as a way of verifying their computation. The
comparison is presented in Table 8.2 for coordinates x = 0.7, y =−1.6 and z = 1.1 in the body-fixed
frame of Psyche’s nominal second degree and order gravity field.

Comparing the results presented in Table 8.2, it can be seen that the obtained values match to
16-digit accuracy. The observed discrepancies can be attributed to the precision of the double data
type in C++ (approximately accurate to 16 digits). Multiple other coordinates (covering all eight
quadrants) were checked as well and show the same level of accuracy. Therefore, it can be con-
cluded that a major component of the computation of FLI and OFLI values is verified.

Secondly, the time histories of FLI and OFLI values presented in the previous chapter partly
serve as validation as well. In particular, Figures 7.4 and 7.5 show the time history of the FLI, the
deviation vectors and the radial distance of a regular and a chaotic orbit respectively. The oscilla-
tory and linearly increasing behaviour of the deviation vectors of a regular orbit comply with results
presented in literature, as does the exponentially increasing behaviour of the length of the devia-
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Parameter Wolfram Mathematica C++ ∆

Vxx 0.9254092450199238 0.9254092450199238 4.84 10−17

Vx y -0.08605736768268550 -0.08605736768268547 3.47 10−17

Vxz 0.06056849606088782 0.06056849606088782 1.68 10−18

Vy y 1.089179569782646 1.089179569782646 1.23 10−16

Vy z -0.1422200057462166 -0.1422200057462166 4.77 10−17

Vzz -0.01458881480256971 -0.01458881480256974 2.91 10−17

Table 8.2: Quantitative comparison of second order potential derivatives of a symbolic computation in
Wolfram Mathematica and values computed in C++. The values are normalized and correspond to coordinates x = 0.7,

y =−1.6 and z = 1.1 in the body-fixed frame of Psyche’s nominal second degree and order gravity field. The fourth
column contains the absolute difference between the results.

tion vectors for chaotic trajectories. The reader is referred to one of the initial papers on the FLI by
Froeschlé et al. (1997a), which shows similar behaviour for a regular and a chaotic trajectory in the
standard map (although a slightly different definition of the FLI is used). An additional validation
can be provided by comparing the FLI and OFLI time history of a periodic orbit, which has not been
shown so far. The OFLI is known to remain constant after a given period of time (Fouchard et al.,
2002), whereas the value of the FLI will continue to increase indefinitely with time. The time history
of the FLI and OFLI values of an equatorial circular orbit in a point-mass gravity field is presented
in Figure 8.5. In the body-fixed frame, this orbit is clearly periodic.

Figure 8.5: Time history of FLI and OFLI values of an equatorial circular orbit in a point-mass gravity field. The orbit is
periodic in the body-fixed frame.

Again, it can be observed in this figure that the FLI and OFLI values behave as expected. The
OFLI becomes constant after a given period of time, whereas the FLI continues to increase linearly
with time.

Finally, refer back to Figure 7.12, which compared BIBO-stability plots to FLI maps. It clearly
showed that the main characteristics of the BIBO-stability plots and the FLI maps comply, which
is expected. In addition, the main discrepancies were successfully characterized and explained.
Furthermore, it was shown that FLI or OFLI values can be used to flag instabilities sooner when
compared to BIBO-stability constraints (see Figure 7.15).

It can be concluded that the results mentioned and illustrated in this section provide sufficient
verification and validation for the computation of FLI and OFLI values and the generation of the FLI
and OFLI maps for the uniformly rotating second degree and order gravity field.
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9
Conclusions

The dynamically complex environment of minor celestial bodies such as the Psyche asteroid pose
significant challenges for mission design. Throughout this work, the dynamics of the two-body
problem with a uniformly rotating central body has been approached from an analytical perspec-
tive and with two conceptually different numerical methods. Significant contributions have been
made to the study of orbit stability in this problem, and the methods presented throughout this
work have been successfully applied to the Psyche mission.

Starting from the GPE, solutions for the semi-major axis and the eccentricity have been derived
in the equatorial plane of the uniformly rotating second degree and order gravity field. The result-
ing expressions clearly show the detrimental impact of mean motion resonance with the asteroid
rotation for prograde orbits. The 1:2, 1:1, 3:2 and 2:1 resonances were identified for prograde orbits.
For retrograde orbits, the singularities in the solutions disappear, clearly indicating that retrograde
orbits are robust against mean motion resonance instabilities. A comparison with numerical results
showed that the expressions for the semi-major axis and eccentricity adequately describe the true
solution for certain parameter ranges. Furthermore, the large parametric study of stability in this
problem showed that the 1:2, 1:1, 3:2 and 2:1 resonances cause the strongest instabilities, which was
expected.

The analytical approach mostly had a qualitative purpose to better understand the dynamics of
the problem at hand. An extensive numerical characterization of stability in the uniformly rotating
second degree and order gravity field proved to be of significant practical value. By sampling the
initial condition space and the gravity field coefficients uniformly over a wide search range, stabil-
ity plots were generated that can be applied to the majority of small bodies in the regions where
gravity-field perturbations from the central body are dominant. These stability plots can be used as
a preliminary mission design tool to quickly identify whether a circular orbit remains bounded for a
duration up to 515 rotational periods of the central body (corresponds to 90 days in Psyche’s denor-
malized system). In addition, these plots allowed for the development of a conservative empirical
stability limit which provides a sufficient condition on stability. Comparing results for the second
degree and order gravity field to the eighth degree and order gravity field showed that the lower de-
gree and order field captures the global stability limits adequately to a level of accuracy which is
suitable for preliminary mission design purposes. The major advantages of using a low degree and
order gravity are the possibility of carrying out a large parametric search over the gravity field coeffi-
cients and a significant increase in computational efficiency. Furthermore, by applying the stability
plots to a nominal and conservative Psyche gravity field, the current mission design was validated
to a certain degree. Increasing the inclination of orbit C beyond 90 degrees might be necessary to
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ensure stability in a conservative way. A non-zero eccentricity of 0.1 also allowed orbit D to reach al-
titudes closer to the surface of Psyche, even with an inclination smaller than the currently proposed
160 degrees. This will allow for a greater science output for the mission due to increased coverage of
the asteroid surface.

It has been shown that variational chaos indicators such as the FLI or OFLI provide a valuable
complementary mission design tool. FLI maps can be used to identify families of periodic orbits. In
addition, it is clear that FLIs and OFLIs distinguish between stable and unstable motion much more
effectively when compared to BIBO-stability constraints. For certain initial conditions, these chaos
indicators detect instability much sooner when compared to BIBO-stability constraints. The only
disadvantages are an increased computational effort (dependent on the number of initial deviation
vectors) and occasionally flagging escape trajectories as regular. However, the latter can be miti-
gated by combining a BIBO-stability constraint with a stability constraint based on the final value
of the FLI or OFLI. Their use has also been demonstrated to the Psyche mission design.
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10
Recommendations

With the research presented in this thesis, a considerable contribution has been made to the small-
body problem and the Psyche mission. Several recommendations can be made in order to extend
this work and to apply it to the preliminary design of small-body missions.

The analytical expressions presented in this work were derived starting from the GPE using Ke-
plerian elements. Consequently, singularities for the eccentricity approaching zero occur for the
longitude of periapsis and the true anomaly. To mitigate this unfavorable characteristic of the de-
rived expressions, it is recommended to derive the same expressions using equinoctial elements in-
stead. Possibly, this will result in similar solutions without a singularity appearing for quasi-circular
equatorial orbits. In addition, by including higher-order terms in the eccentricity throughout the
derivations and/or by including additional spherical harmonic coefficients, it is expected that the
analytical solutions will contain terms that account for additional resonances as well. However,
these additional terms are expected to be weaker.

Additionally, it can be recommended to analyze the problems tackled in this research from a
dynamical systems perspective as well. This can be done by extending the phase space character-
ization to include the following analyses: determine the locations and assess the stability of the
equilibria in Psyche’s eighth degree and order gravity field, apply Poincaré maps to better under-
stand the dynamics of the problem, identify and determine the stability of families of 3D periodic
solutions and search for manifold transfers within the system in order to identify low-cost transfer
trajectories. It is also noted that the Jacobi constant plays an important role in conditions for im-
pact and escape. Therefore, an additional numerical analysis concerning the impact of the Jacobi
constant and zero-velocity surfaces can be valuable as well.

The parametric stability analyses presented throughout this work are limited by the available
computational resources. Increasing the sampling resolution will make the results presented here
even more valuable. Furthermore, it would be interesting to investigate the influence of individual
third or fourth degree and order spherical harmonic coefficients on stability. Again, this comes at
an increased computational cost.

Furthermore, the empirical stability limit can be complemented by an empirical instability limit,
which separates the completely unstable region. In this way, three regions can be identified: a stable
region, an unstable region and an intermediate region for which it is required to conduct additional
stability analyses.

10. Recommendations 91



Stable Orbits in the Small-Body Problem

Finally, it can be recommended to develop this initial work into a complementary small-body
mission design tool. The BIBO-stability plots complemented by the FLI maps have shown to be of
significant practical value for the Psyche mission. It is expected that these tools can be valuable for
other future small-body missions as well.
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A
Reference Frames and Coordinate

Transformations

This appendix contains a brief description of the reference frames used throughout the orbit prop-
agations. Firstly, Section A.1 describes two reference frames and the conversion of Cartesian coor-
dinates between these two frames. Then, Section A.2 presents the equations to convert Cartesian
coordinates to Keplerian elements. Finally, Section A.3 presents the equations to convert from Kep-
lerian elements to Cartesian coordinates.

Due to singularities appearing for equatorial and/or circular orbits in several of the Keplerian
elements, it is required to use different sets of Keplerian elements for those cases than the one pre-
sented here. The conversions between Cartesian coordinates and these different sets of Keplerian
elements is not presented here and the reader is referred to Vallado (2007).

A.1. Rotating and Inertial Reference Frame Transformations
In total, two reference frames are required to carry out the orbit propagations. A uniformly rotating
body-fixed reference frame is needed since the equations of motion are described therein and an
inertial reference frame is needed to describe the orbits in terms of their Keplerian elements. Both
reference frames are centered at the CoM of the asteroid and have their z-axes aligned. The graphi-
cal relation between the two frames is illustrated in Figure A.1.

Figure A.1: Inertial and uniformly rotating body-fixed reference frames used throughout simulations.

Frame transformations are only required around the z-axis and are purely rotational. Equation
A.1 shows the rotation matrix around the z-axis.
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R3(ωA t ) =
cosωA t −sinωA t 0

sinωA t cosωA t 0
0 0 1

 (A.1)

To transform Cartesian position and velocity coordinates from the rotating frame to the inertial
frame and vice versa, use can be made of Equations A.2 and A.3 respectively (Niedling et al., 2016).

r i ner t i al = R3(ωA t )r bod y (A.2)

v i ner t i al = R3(ωA t )(v bod y +ωA × r bod y ) (A.3)

Finally, Keplerian elements are more intuitive to analyze compared to Cartesian coordinates.
The equations to convert from Cartesian coordinates to Keplerian elements and vice versa are pre-
sented in the following two sections.

A.2. Cartesian Coordinates to Keplerian Elements
This section presents the equations to convert from Cartesian coordinates to Keplerian elements in
the inertial frame. All equations in this section and the next are obtained from Wertz (2002).

First, the radial position and velocity can be determined with Equations A.4 and A.5 respectively.

r =
√

x2 + y2 + z2 (A.4)

v =
√

v2
x + v2

y + v2
z (A.5)

Then, the semi-major axis can be obtained with the vis-viva equation shown in Equation A.6.

a = 1/(
2

r
− v2

µ
) (A.6)

The vector describing the specific angular momentum of the spacecraft and the vector N are
given in Equations A.7 and A.8 respectively.

h = r ×v (A.7)

N =
0

0
1

×h (A.8)

The eccentricity vector is given in Equation A.9 and the inclination is given in Equation A.10.
The eccentricity itself is simply the magnitude of the eccentricity vector.

e = v ×h

µ
− r

r
(A.9)

i = arccos
( hz

|h|
)

(A.10)

Next, the right ascension of the ascending node can be calculated with Equation A.11.
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Ω= at an2
(
hx ,−hy

)
(A.11)

Finally, the argument of periapsis and the true anomaly can be calculated with Equations A.12
and A.13 respectively. Note that si g n takes the sign of the expression it contains.

ω= si g n((N ×e) ·h) ·arccos(ê · N̂ ) (A.12)

θ = si g n((e × r ) ·h) ·arccos(r̂ · ê) (A.13)

Six Keplerian elements have been determined. Other definitions for the sixth parameter exist as
well (i.e. the mean anomaly, the eccentric anomaly and the time of periapsis passage) but are not
relevant for the current analysis.

A.3. Keplerian Elements to Cartesian Coordinates
Now, the equations to convert Keplerian elements to Cartesian coordinates in the inertial frame
will be presented. First, the radial distance and the angular momentum can be determined from
Equations A.14 and A.15 respectively.

r = a(1−e2)

1+e cosθ
(A.14)

h =
√
µa(1−e2) (A.15)

A set of six intermediate parameters is introduced in Equations A.16 through A.21.

l1 = cosΩcosω− sinΩsinωcos i (A.16)

l2 =−cosΩsinω− sinΩcosωcos i (A.17)

m1 = sinΩcosω+cosΩsinωcos i (A.18)

m2 =−sinΩsinω+cosΩcosωcos i (A.19)

n1 = sinωsin i (A.20)

n2 = cosωsin i (A.21)

Finally, the Cartesian position and velocity coordinates can be determined from Equations A.22
through A.24 and Equations A.25 through A.27 respectively.

x = l1r cosθ+ l2r sinθ (A.22)

y = m1r cosθ+m2r sinθ (A.23)
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z = n1r cosθ+n2r sinθ (A.24)

vx = µ

h

[− l1 sinθ+ l2(e +cosθ)
]

(A.25)

vy = µ

h

[−m1 sinθ+m2(e +cosθ)
]

(A.26)

vz = µ

h

[−n1 sinθ+n2(e +cosθ)
]

(A.27)
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B
Phase Space Characterization

Since the system under consideration is non-dissipative, the notion of asymptotic stability is not
applicable. In general, stable orbits are defined as orbits which are bounded to a certain region in
the space around the body. Scheeres (1994) found that for a second degree and order gravity field,
the body has four equilibrium points. Two of these points are always unstable and the other two can
either be stable or unstable, which differentiates between Type I and Type II asteroids respectively.
If Psyche were a Type I asteroid, the two stable equilibrium points can be scientifically and prac-
tically interesting as orbits close to these points would not drift away. However, the actual gravity
field might result in the need for active station-keeping and orbit maintenance. Unstable equilibria
can be used for energy-efficient manifold transfers.

Strongly tied with the analysis of equilibria around small bodies is the study of periodic orbits.
These are orbits which close in upon itself in the body-fixed frame after a certain period of time
and repeat this motion indefinitely. Similar to stable equilibria, stable periodic orbits can be scien-
tifically interesting since the phase space around these orbits can exhibit stable behaviour as well
(Scheeres, 2012, p. 121). However, the search for and analysis of such periodic solutions is out of
scope of this research.

This appendix will briefly characterize the phase space of Psyche’s nominal second degree and
order gravity field. Firstly, Section B.1 describes the zero-velocity surfaces. After that, the equilibria
are identified and their stability is analyzed in Section B.2. Finally, stable trajectories in the vicinity
of the equilibria are presented in Section B.3.

B.1. Zero-Velocity Surfaces
In Section 3.3 it was shown that the Hamiltonian of the equations of motion within the uniformly
rotating system is conserved. This integral of motion was defined as the Jacobi energy or Jacobi con-
stant. From its definition, it is clear that a set of initial conditions within the phase space can have
the same Jacobi constant C J . Since the Jacobi constant does not vary for a given particle moving
within the system, the motion of this particle is limited to certain regions within the phase space.
For a given Jacobi constant, the phase space can be divided in an accessible region V (r ) ≥C J and a
forbidden region V (r ) < C J . The boundary of these regions is given by V (r ) = C J and is a so-called
zero-velocity surface.

For C J > 0, a trajectory can potentially collide with these surfaces and bounce off them, never
crossing the surface. On the other hand if C J < 0, the phase space of the system is completely ac-
cessible by the spacecraft. For Psyche and its nominal second degree and order gravity field, these
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zero-velocity surfaces for different Jacobi constants are illustrated in Figure B.1 for the x y-plane. In
addition to the two-dimensional surface plot, zero-velocity surfaces for different Jacobi constants
can be plotted in the full three-dimensional phase space in Figure B.2 for Psyche’s nominal gravity
field.

Figure B.1: Zero-velocity surfaces in Psyche’s equatorial plane assuming a uniformly rotating second degree and order
gravity field. All variables in this figure are normalized according to Equations 3.19 and 3.20.

The geometry of these surfaces have important implications for stability and the accessibility of
spacecraft trajectories with respect to the central body. Firstly, four equilibria can be identified in
Figure B.1: two saddle points along the x-axis and two equilibria along the y-axis, which complies
with the results obtained by Scheeres (1994). Secondly, the volume of the forbidden regions in the
phase space decreases as the Jacobi constant decreases. For C J > 1.54, two surfaces encompass the
body as shown in Figure B.2. One of the surfaces forms a quasi-cylindrical shape and the other
wraps closely around the body. Orbits initialized with C J > 1.54 outside of the quasi-cylinder will
never impact the body, whereas if they are initialized inside the inner surface, they will most likely
impact the body. As the Jacobi constant decreases from 1.54 to 1.52, the two surfaces intersect and
form a single surface, making the body accessible by all trajectories. This intersection occurs at
JC = 1.53109 and will be referred to as the Jacobi constant of intersection JCX . For 1.50 < C J < 1.48, the
zero-velocity surface splits into two branches again, making the phase space even more accessible
as the Jacobi constant decreases. The Jacobi constant of intersection JCX is important since any
trajectory with JC > JCX will either be trapped and impact the body or will never be able to impact
the body, depending on whether the trajectory is initialized within or outside of the zero-velocity
surface.

B.2. Equilibria and Stability
According to Scheeres (1994), a symmetric body with a second degree and order gravity has four
equilibria placed in symmetry across its principal x- and y-axes. The locations of the four equilibria
are given in Equations B.1 and B.2.

E±x = (±xeq ,0,0) (B.1)

E±y = (0,±yeq ,0) (B.2)
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(a) C J = 1.60 (b) C J = 1.54 (c) C J = 1.52

(d) C J = 1.50 (e) C J = 1.48 (f) C J = 1.40

Figure B.2: Zero-velocity surfaces around Psyche’s nominal uniformly rotating second degree and order gravity field. The
normalized Jacobi constant decreases from left to right, which decreases the volume of the forbidden regions.

Coefficients C20 and C22 normalized with respect to rs are given in Table 3.1. For C20, C22 ¿ 1,
xeq and yeq can be determined to first-order accuracy with Equations B.3 and B.4 respectively (Hu
and Scheeres, 2004). Their values for the nominal and conservative gravity fields are listed in Table
B.1.

xeq = 1− 1

2
C20 +3C22 (B.3)

yeq = 1− 1

2
C20 −3C22 (B.4)

As mentioned before, Scheeres (1994) showed that equilibria E±x are always unstable. More
interestingly is the stability of points E±y , especially since unstable equilibria E±y result in unstable
motion close to the 1:1 resonance radius of the body, which is a boundary that has to be crossed
for the Psyche mission in order to transfer from orbit C to D. By linearizing Equations 3.48 and
3.49 about equilibrium points (0,±yeq ), the characteristic equation can be found which is given in
Equation B.5 (Hu and Scheeres, 2004).
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Equilibrium Location Nominal Conservative
xeq 1.0325 1.0527
yeq 0.9983 0.9941

Table B.1: Equilibria locations in the phase space of Psyche for its nominal and conservative second degree and order
gravity fields. The values are normalized with respect to the resonance radius of the body.

λ4 +
y2

eq + 3
2C20 −3C22

y2
eq − 3

2C20 −9C22
λ2 +

36C22(y2
eq − 5

2C20 −15C22)

(y2
eq − 3

2C20 −9C22)2
= 0 (B.5)

Again, assuming C20, C22 ¿ 1, it can be shown that Equation B.6 (Hu and Scheeres, 2004) must
hold for the equilibria to be stable.

−C20 +162C22 < 1 (B.6)

The inequality above can be evaluated for Psyche’s nominal and conservative gravity fields. The
results are presented in Table B.2.

Stability Condition Nominal Conservative
−C20+162C22 0.9555 1.6276

Table B.2: Evaluation of stability condition presented in Equation B.6 for Psyche’s nominal and conservative gravity
fields.

Interestingly, the nominal second degree and order gravity field contains two marginally sta-
ble equilibria E±y , whereas all equilibria are unstable considering the conservative gravity field.
Therefore, it can be concluded that it is impossible to confirm whether Psyche is a Type I or Type
II asteroid. In case Psyche’s real gravity field closely resembles the assumed nominal field, stable
trajectories could be found near its equilibria. This scenario is considered in the following section.

B.3. Stable Trajectories around Equilibria
Since equilibria E±y are stable in Psyche’s nominal second degree and order gravity field, spacecraft
orbits around these equilibria can be of benefit to the mission for station keeping or low-altitude
scientific exploration of a certain area of the surface of the asteroid over an extended period of time.
To verify the results obtained above, a trajectory in proximity of equilibrium (0,yeq ,0) is shown in
Figures B.3a and B.3c for Psyche’s nominal second degree and order field with initial position (5 km,
yeq -2 km, 28 km) and zero relative velocity in the body-fixed frame. To confirm the validity of the
second degree and order gravity field analysis, the same initial condition is used to generate a tra-
jectory in the eighth degree and order gravity field, which is shown in Figures B.3b and B.3d.

The trajectory shown in Figures B.3a and B.3c confirms that the equilibria E±y in the nominal
second degree and order gravity field are stable. In addition, a similar pattern is observed when gen-
erating a trajectory in the eighth degree and order gravity field, while it is clear that the locations of
the equilibria are different. Nonetheless, the trajectory in the higher degree and order field remains
bound as well for at least 1000 days, suggesting that the equilibria remain stable as more gravity field
coefficients are added to the force model. This example illustrates the impact of the second degree
and order gravity coefficients on stability and the validity of using a low degree and order gravity
field model for analyzing stability.
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(a) 3D trajectory in second degree and order gravity
field.

(b) 3D trajectory in eighth degree and order gravity
field.

(c) x y-view of trajectory in second degree and order
gravity field.

(d) x y-view of trajectory in eighth degree and order
gravity field.

Figure B.3: Spacecraft trajectories near stable equilibrium on +y side of Psyche, propagated for 10 days and shown
within the body-fixed frame. It was verified that the trajectories remain bound within the same region for at least 1000
days and do not diverge from the equilibrium. Trajectories were generated for both the second and eighth degree and

order gravity field.
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C
Second Degree and Order Gravity Field

Derivatives

This appendix contains expressions for the first- and second-order derivatives of the uniformly ro-
tating second degree and order gravity field. All expressions in this appendix are normalized with
respect to the 1:1 resonance radius of the uniformly rotating body.

Firstly, the effective potential in the uniformly rotating frame is given by Equation C.1 (Hu and
Scheeres, 2008).

V = 1

2
(x2 + y2)+ 1

r
− C20(x2 + y2 −2z2)

2r 5 + 3C22(x2 − y2)

r 5 (C.1)

The first-order derivatives of the potential with respect to coordinates x, y and z are given in
Equations C.2, C.3 and C.4 respectively.

Vx = x
[

1− 15C22(x2 − y2)

r 7 + 5C20(x2 + y2 −2z2)

2r 7 − C20

r 5 + 6C22

r 5 − 1

r 3

]
(C.2)

Vy = y
[

1− 15C22(x2 − y2)

r 7 + 5C20(x2 + y2 −2z2)

2r 7 − C20

r 5 − 6C22

r 5 − 1

r 3

]
(C.3)

Vz = z
[
− 15C22(x2 − y2)

r 7 + 5C20(x2 + y2 −2z2)

2r 7 + 2C20

r 5 − 1

r 3

]
(C.4)

The second-order derivatives of the potential with respect to coordinates x and x, y and y , z and
z, x and y , x and z and y and z are given in Equations C.5, C.6, C.7, C.8, C.9 and C.10 respectively.
Note that Vy x = Vx y , Vy z = Vz y and Vzx = Vxz .

Vxx =1+x2
[105C22(x2 − y2)

r 9 − 35C20(x2 + y2 −2z2)

2r 9 + 10C20

r 7 − 60C22

r 7 + 3

r 5

]
+

5C20(x2 + y2 −2z2)

2r 7 − 15C22(x2 − y2)

r 7 − C20

r 5 + 6C22

r 5 − 1

r 3

(C.5)
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Vy y =1+ y2
[105C22(x2 − y2)

r 9 − 35C20(x2 + y2 −2z2)

2r 9 + 10C20

r 7 + 60C22

r 7 + 3

r 5

]
+

5C20(x2 + y2 −2z2)

2r 7 − 15C22(x2 − y2)

r 7 − C20

r 5 − 6C22

r 5 − 1

r 3

(C.6)

Vzz =z2
[105C22(x2 − y2)

r 9 − 35C20(x2 + y2 −2z2)

2r 9 − 20C20

r 7 + 3

r 5

]
+

5C20(x2 + y2 −2z2)

2r 7 − 15C22(x2 − y2)

r 7 + 2C20

r 5 − 1

r 3

(C.7)

Vx y = x y
[105C22(x2 − y2)

r 9 − 35C20(x2 + y2 −2z2)

2r 9 + 10C20

r 7 + 3

r 5

]
(C.8)

Vxz = xz
[105C22(x2 − y2)

r 9 − 35C20(x2 + y2 −2z2)

2r 9 − 5C20

r 7 − 30C22

r 7 + 3

r 5

]
(C.9)

Vy z = y z
[105C22(x2 − y2)

r 9 − 35C20(x2 + y2 −2z2)

2r 9 − 5C20

r 7 + 30C22

r 7 + 3

r 5

]
(C.10)
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D
Software Flow Diagrams

This appendix contains the software flow diagrams of a single sampled orbit in stability analyses B
and C in Figures D.1 and D.2 respectively.

Figure D.1: Flow diagram of sampled orbit in BIBO-stability analysis B .
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Figure D.2: Flow diagram of sampled orbit in BIBO-stability analysis C .
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