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Preface

There are many different flavors of artificial intelligence (AI), but none has raised the awareness of both

capabilities and potential risks as much as generative AI. This has made the importance of in-depth

understanding of these models more important. Unfortunately, the latter has not kept up with the rate

at which the capabilities of these models developed. This thesis report details my research focused on

normalizing flows, a deep generative model, with a particular emphasis on understanding its likelihood

behavior. The overlying theme in this research was simplification. I designed a set of controlled test cases

to explore model behavior and extrapolated how these results might help explain the normalizing flow

behavior of real-world datasets. The thesis paper contains all the necessary background information for

understanding this work. For interested readers, a supplementary appendix outlining some of the more

complex architecture extensions of the normalizing flow model.

This thesis was conducted within the pattern recognition group of the EEMCS faculty under the su-

pervision of Prof. dr. Marco Loog. I want to thank all members of the group for allowing me to join

the weekly discussions. I am particularly thankful to Marco for all the guidance and support during the

somewhat extended period of this thesis. During this thesis, there were many ups and downs. I want to

thank my friends for their support, with a special mention to Shaad, Amey, Sharayu, Henrique, Alexandra,

Bing, Kian, Henry, Garazi, Aniket, Max, Wessel, Anna, and most importantly, I wish to thank my parents

for unwavering support during my whole of my education.

Finally, I want to acknowledge my graduation committee consisting of Dr. J. van Gemert, Prof. dr.

M. Loog, and Dr. ir. R. Bidarra.

Niels de Bruin

Delft, Februari 2024
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A Step Towards Understanding Normalizing Flows and their Likelihood
Behavior

Niels de Bruin
Delft University of Technology

February 8, 2024

Abstract

Normalizing flows have demonstrated their ability to
learn complex and high-dimensional distributions. How-
ever, the behavior of normalizing flow likelihoods are not
yet fully understood, particularly when exposed to out-
lier data, where it has been observed that large likeli-
hoods are often assigned to inputs that are substantially
different from the training set. To better understand the
likelihood behavior and outlier detection capabilities of
normalizing flows, we analyze a more restricted version
of the model using synthetic test data from paramet-
ric distributions, allowing access to the density of the
underlying distribution.

1 Introduction

Normalizing flows are a class of generative models that
provide both efficient inference, generation, and exact
estimation of the log-likelihood [1], which should make
them a promising candidate for density-based out-of-
distribution (OOD) detection. However, it has been
shown that normalizing flows often assign disproportion-
ate log-likelihoods to inputs substantially different from
the data they have been trained on, raising questions
about the robustness of these models [2].

Various hypotheses have been proposed to explain the
occurrence of this phenomenon, especially in the realm
of image data [3]. However, we found that existing
research primarily concentrates on empirically demon-
strating the presence of this phenomenon in complex
high-dimensional data or developing new components
tailored to compel normalizing flows to identify outliers
[4, 5], often at the expense of generalization rather than
examining the underlying mechanics. The absence of
such an in-depth analysis is not entirely unexpected,
as normalizing flows, even for a deep-learning model,

are particularly challenging to analyze for a number of
reasons. We argue the two most important of these
are: Firstly, model complexity, to solve increasingly
challenging tasks on high-dimensional datasets, mod-
els keep growing in both size and architecture complex-
ity. For normalizing flows, which, due to their bijective
nature, are especially resource-intensive in high dimen-
sional space, are often augmented with more complex
architecture components, such as RealNVP’s multi-scale
method [6, 1], Flow++’s variational dequantization of
the inputs [7], GLOW’s invertible 1x1 convolutions and
actnorm [8]. Hence, if unexpected and possibly unde-
sirable behavior does arise, explaining and assigning it
to a specific attribute or component of the model is ex-
tremely challenging.

Secondly, when training normalizing flows, which typ-
ically employs unsupervised learning, there’s often no ac-
cess to the ground truth density function. This lack of a
concrete reference point complicates assessing how accu-
rately these models capture the data distribution. Un-
like supervised learning, where the ground truth is avail-
able, predictions can often be evaluated using bounded
metrics such as accuracy, precision, and recall, which
provide a more straightforward interpretation of model
performance. The evaluation of normalizing flows often
relies on differential cross-entropy, an unbounded prob-
ability measure highly dependent on the underlying dis-
tribution’s descriptive statistics, which means that mak-
ing quantitative statements about its magnitude is often
challenging without a point of reference provided by the
true density function. This introduces numerous prob-
lems. For example, learning curves can still be used
to estimate whether the model has stopped converging.
Yet, we cannot say if this results from model misspecifi-
cation or if the model has reached a reasonable approx-
imation. Consequently, rather than directly comparing
their outputs to a known true density, evaluating their
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effectiveness often relies on indirect evaluation methods,
such as analyzing generated samples’ quality or utility
in unsupervised downstream tasks. This approach, how-
ever, becomes convoluted for data types that do not lend
themselves to intuitive human interpretation.

When computational limitations make an in-depth
model analysis challenging, a lot can still be learned
through straightforward simplification. For instance, if
the model behavior of interest can be reproduced in a
simplified and controlled setting, it could indicate that
this behavior might not be (fully) attributed to, e.g., a
high-dimensional dataset or a complex architecture but
could instead be an inductive bias of the model being
tested.

To further bridge the gap in understanding between
the theoretical promise of normalizing flows to provide
exact densities and the less-understood empirical obser-
vations from complex real-world scenarios. This work
explores the behavior of the core normalizing flow model
using artificially constructed test distributions. These
test distributions are specifically designed to evaluate
the model’s likelihood behavior in response to statis-
tical variations from the training data. Our primary
interest lies in observing and understanding the trends
in model behavior across these different test sets rather
than focusing on exact values. This approach aims to
explore how these behavioral trends might contribute to
less understood aspects of model likelihood behavior, as
highlighted in previous studies [2, 3]. Our experimental
setup, concentrating on the core elements of the normal-
izing flow model, utilizes Gaussian distributions with
known parameterizations for testing. The well-defined
nature of these distributions allows for the systematic
construction of test scenarios with varying degrees of
typicality, and provides access to their density functions,
facilitating a more nuanced and precise analysis. This
enables a broad, comparative analysis, focusing on gen-
eral behavioral patterns rather than precise numerical
outputs, using the distributions’ density functions to ex-
amine the model’s likelihood behavior in diverse testing
environments.

Our experiments are organized around two principal
themes: the generalization and robustness of the model.
These are underpinned by our objective to replicate and
thereby gain a better understanding of the atypical be-
haviors noted in prior research.

The generalization experiments are designed to an-
swer how well the model can adapt to test distributions
that maintain key statistical properties, especially cor-
relations, or undergo only minor perturbations to these

features. Furthermore, we generate a series of affine vari-
ants of these test distributions, varying in scale and lo-
cation. This methodology facilitates a systematic eval-
uation by targeting specific regions of the data distribu-
tion. It also enables us to observe the general trends in
the model’s response to variations in factors like loca-
tion or scale, thereby providing a deeper insight into its
generalization capabilities.

The robustness experiments are designed to assess the
model’s likelihood behavior with test distributions that
significantly diverge from the training set’s properties,
like correlations, location, and scale, to the extent that
they are considered full outlier distributions. Similar
to our generalization experiments, we create a set of
affine variants of these test distributions. In this sim-
plified and controlled setting, where we have access to
a ground truth density, our objective is to closely ex-
amine the model’s response patterns. Previous research
has shown that normalizing flows can assign dispropor-
tionately high likelihoods to outlier distributions. Our
goal is to determine the occurrence and the specific con-
ditions and scenarios under which this happens, as well
as its implications for the model’s effectiveness in dis-
tinguishing outlier distributions, which is crucial for its
capability in out-of-distribution (OOD) detection.

This work offers a detailed and systematic analysis
of normalizing flows through the use of nearly 300 dis-
tinct test distributions, providing a clearer picture of
these models’ inherent properties and behaviors. We
demonstrate that the abnormal likelihoods observed in
previous work can be replicated in a simplified and con-
trolled environment using only the core of the normal-
izing flow model. This suggests that such behaviors are
not solely attributable to architectural or data complex-
ity but likely originate from an inductive prior inher-
ent to the normalizing flow model. Furthermore, our
wide range of test distributions facilitated the identifi-
cation of particular characteristics of a test distribution
that significantly impair the performance of normaliz-
ing flows. Moreover, we illustrate an intriguing inverse
relation: as the divergence between training and test
distributions increases, the model increasingly tends to
disregard the distinctive features of the test distribution,
instead favoring likelihoods akin to those of the train-
ing distribution. In our final analysis, we illustrate the
consequential impact on OOD detection performance in
earlier identified scenarios. Moreover, by extrapolating
on our combined results, we hypothesize why normaliz-
ing flows may have previously underperformed in OOD
detection, particularly on image datasets. Overall, this

3



work sheds light on past challenges and may guide future
research in normalizing flows.

The remainder of this work is organized as follows:
section 2 provides the necessary background founda-
tional material, such as an explanation of the core nor-
malizing flow model and relevant concepts from informa-
tion theory. section 3 will further formalize the defini-
tions of generalization and robustness used in this work,
lay out the experimental design, and elaborate on the
evaluation methods used. section 4 provides a baseline
evaluation of the model. section 5 covers the results
of our experiments on the model’s generalization per-
formance. section 7 discusses the results of evaluating
model robustness. section 8 briefly evaluates the outlier
performance for our different experiments. Finally, sec-
tion 9 offers a combined discussion and conclusion of the
main results.

2 Preliminaries

This section aims to provide a brief overview of the the-
ory essential for a basic understanding of the normalizing
flow model.

2.1 Essence of Normalizing Flows

Arbitrarily complex distributions can be constructed by
transforming a simper base distribution pZ(z) into a
more complex target distribution pX(x) through an in-
vertible mapping f : X → Z. We can express the density
function of X in terms of Z by applying the change of
variable theorem. Given continuous random variables Z

with density function pZ(z), and let f : R → R be a bi-
jective monotonic function such that x = f−1(z) and its
inverse is equal to z = f(x). Then the random variable
X that results from the mapping f−1(Z) ∼ pZ will have
a density function given by:

pX(x) = pZ (fθ(x))

∣∣∣∣
d

dx
fθ(x)

∣∣∣∣ . (1)

When used with vectors, the last term of Equation 1 is
replaced with the determinant of the Jacobian matrix,
resulting in:

pX(x) = pZ (fθ(x)) |det (∇fθ(x))| . (2)

Normalizing flows are designed to learn the parame-
terization θ for mapping fθ(x); it does so by decom-
posing fθ(x) into a sequence of affine transformations
f = f1 . . . fk which are referred to as coupling layers.

Densities flow through each coupling layer undergo-
ing re-normalization to a valid density function follow-
ing each application through the use of the change of
variables Apart from being invertible, there are no re-
strictions on fθ(x). However, the normalization of the
densities after each subsequent application of f i

θ(x) us-
ing Equation 2 requires computing the Jacobian deter-
minant |det (∇fθ(x))|, often an intractable computation
that becomes infeasible for high dimensional data. Nor-
malizing flows employ affine coupling layers to solve this
problem by constructing each transformation as a tri-
angular map, which results in a triangular Jacobian
matrix whose determinant can be computed in linear
time, as the determinant of a triangular matrix is merely
the product of its diagonal elements. By utilizing this
property, the computation becomes feasible for high-
dimensional data.

2.1.1 Construction of the affine coupling layers

To ensure a triangular map, each affine coupling layer
produces a transformation conditioned on only a part of
the input. More formally, given a D dimensional input
and output vector x and y respectively, a dimension in-
dex d ∈ Z+ such that d < D. The affine coupling layer
as per Equation 3, will copy the first d dimensions of
the input without modification, thus y1:d = x1:d. The re-
maining {d − 1 : D} dimensions are scaled exp (sθ (x1:d))

and translated tθ(x1:d) by with the Hadamard product
of the transformation conditioned {1 : d}. The functions
exp (sθ (x1:d)) and tθ(x1:d) can be parameterized with any
complex function, such as a deep neural network.

f i
θ(x) =

{
y1:d = x1:d

yd+1:D = xd+1:D ⊙ exp (sθ (x1:d)) + tθ (x1:d)

(3)

f i
θ(y)

−1 =

{
x1:d = y1:d
xd+1:D = (yd+1:D − tθ (y1:d))⊙ exp (−sθ (y1:d))

(4)
Since x1:d has not been changed but merely copied into
y1:d, it can trivially be retrieved. Recovering xd+1:D is
analogous to recomputing the original transformation,
using the unmodified part of the input and inverting the
original linear operations on yd+1:D, which can be done
straightforwardly using Equation 4.
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2.1.2 Computation of the Jacobian

∇f i
θ(x) =

∂y

∂xT
=




∂y1:d

∂xT
1:d

∂y1:d

∂xT
1+d:D

∂yd+1:D

∂xT
1:d

∂yd+1:D

∂xT
d+1:D


 (5)

=

[
ID 0

∂yd+1:D

∂xT
1:d

diag (exp (s (x1:d)))

]
(6)

The Jacobian of the transformation derived from Equa-
tion 3 forms a lower triangular matrix. Thanks to this
structure, the calculation of the determinant becomes
feasible, as it is directly given by the product of the
diagonal of the matrix, demonstrated in Equation 6.
This adjustment allows for a tractable computation that
scales linearly, O(D), with the dimensionality, thereby
mitigating the previous computational challenges asso-
ciated with high dimensional data.

2.1.3 Choice of Prior

The last element of our model is the prior, which is
subject to minimal constraints. Primarily, its sup-
port must comply with the condition supp(pX(x)) ⊆
supp(pZ(f(x))). Non-adherence to this requirement
could lead to instances where an input x with non-zero
density is mapped to an output z = f(x) for which the
log likelihood is not defined. However, using a prior
with either larger or infinite support is still possible to
approximate a training distribution with finite support.
For normalizing flows, the most common choice is the
standard Gaussian distribution N (0, ID). Apart from in-
finite support, it’s computationally efficient for large di-
mensionality as its density function can be computed in
O(D). Additionally, its smoothness and symmetry can
be beneficial in stabilizing gradient descent-based opti-
mization.

2.1.4 Generation

The generation process follows a straightforward proce-
dure. Samples are drawn from the prior z ∼ pZ . Sub-
sequently, these samples are transformed back into the
data space through the application of the inverse map-
ping to x = fθ(z)

−1.

2.1.5 Core Characteristics

Normalizing flows distinguish them self from other
prominent deep generative models like generative ad-
versarial networks (GANs) [9], variational autoencoders

(VAEs) [10], and transformers [11] by their unique abil-
ity to provide a valid probability density function. This
density function, being directly optimizable through a
maximum likelihood objective equips normalizing flows
with enhanced resilience against overfitting and reduces
common training instabilities in generative modeling,
such as the mode collapse frequently seen in GANs.
However, this strength also introduces a notable limi-
tation: the necessity for fθ to be bijective limits the
model’s capacity to compress its input into a lower-
dimensional latent space, resulting in computational in-
efficiencies in high-dimensional spaces.

2.1.6 Normalizing Flows Architecture Exten-
sions

As discussed, this work centers on the core components
of the normalizing flow model, an architecture that be-
comes computationally infeasible as dataset complexity
and dimensionality grows. This has led to many ex-
tensions and model variants not studied in this work.
Hence, an understanding of these extensions is not re-
quired for this work. However, for the interested reader,
we have compiled a more in-depth introduction to nor-
malizing flows and the most prominent extensions of the
model, which can be found in Appendix D.

2.2 Relevant concepts from Information
Theory

In information theory, entropy, specifically Shannon’s
entropy, is a measure of the uncertainty or randomness
associated with a random variable [12]. Given a discrete
random variable with probability mass function P (X)

Shannon’s entropy H(X) is defined as

H(X) = −
∑

x∈X
P (x) logP (x) = −E [logP (x)] ≥ 0 (7)

It provides a way to quantify the information contained
in a random variable. Higher entropy indicates greater
uncertainty or randomness, while lower entropy implies
more predictability. Differential entropy is the continu-
ous counterpart of Shannon’s discrete entropy, used to
measure uncertainty or randomness in continuous prob-
ability distributions. It is defined similarly to discrete
entropy but adapted for continuous random variables.
Given a continuous random variable with probability
density function p(x), the differential entropy H(X) is
defined as:

H(X) = −
∫

x∈X
p(x) log p(x) dx = −E [log p(x)] (8)
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Just like with discrete entropy, a higher differential en-
tropy value implies greater uncertainty or randomness
in the continuous random variable, while a lower value
suggests more predictability. However, it’s important to
note that, unlike discrete entropy, differential entropy
can also be negative as a probability density function
can, unlike a probability mass function, be greater than
one and doesn’t have the same straightforward interpre-
tation as discrete entropy, making its use and interpre-
tation more nuanced.

2.2.1 Kullback-Leibler Divergence

The Kullback-Leibler (KL) divergence, also called rel-
ative entropy, is a measure of the statistical difference
between two distributions [13]. Given probability den-
sity functions p(x) and q(x), the KL-divergence between
them is defined as

DKL(p || q) =
∫

p(x) log

(
p(x)

q(x)

)
dx (9)

Additionally, the KL-divergence has the useful property
of always being non-negative 0 ≤ DKL(p || q) and is equal
to 0 if and only if the two distributions p and q are iden-
tical. However, it noted that the KL-divergence is not
symmetric: DKL(p || q) ̸= DKL(q || p) and therefore is not
a metric as it does not conform the triangle inequality.
Moreover, it can become infinite if p and q do not share
the same support.

2.2.2 Cross Entropy

When training a normalizing flow model pθ(x), we opti-
mize the expected log-likelihood Ep[log p

θ(x)] over sam-
ples drawn from our target distribution. This opti-
mization is equivalent to minimising the cross-entropy
H(p, pθ) between the target and model distribution. The
cross-entropy can be expressed as the sum of the entropy
of the data distribution H(p) and the KL-divergence
DKL(p || pθ) between the data and target distribution.

H(p, pθ) = H(p) +DKL(p || pθ). (10)

3 Methodology and Experiment De-
sign

3.1 Generalization and Robustness

We will conduct experiments to examine the likelihood
behaviour of the normalizing flows model in terms of

generalization and robustness. As discussed, our simpli-
fied method will use synthetic data from Gaussian dis-
tributions with known parameterizations and study how
the model pθ(x) behaves when trained on data generated
from p(x). We will evaluate the model using a test set
QN (qλ) that is generated from a test distribution qλ(x)

with parameterization λq.

QN (qλ) = {x1, x2, ..., xN | xi ∼ qλ} (11)

Generalization and robustness can be challenging to
quantify and share a certain degree of overlap. As their
interpretations might depend on the type of data, task
(e.g. supervised, unsupervised), or model (e.g. genera-
tive, discriminative). In this work, based on the context
of our experiments using Gaussians, we will use the fol-
lowing definitions inspired by [14]:

Definition 3.1 (Generalization). In this work, the
ability to generalize is defined by the degree to which
model pθ(x) can correctly estimate p(x) for test set
QN(qλ) containing previously unseen samples that still
largely preserve statistical properties such as correlation
and mutual information but might be atypical (from low-
mass regions or outside the typical set). The assumption
is that if pθ(x) does generalize well, then the quality of
the density estimate should not be affected too much by
changes in the parameterization of qλ relative to p.

Definition 3.2 (Robustness). Similar to generaliza-
tion, the robustness of pθ is determined by its ability
to accurately estimate log p(x) for QN(qout

λ ). However,
QN(qout

λ ) is constructed to consist of data that does not
preserve the underlying properties of the training dis-
tribution, such as correlations and mutual information.
Hence, qout

λ can be considered a true outlier distribution.

We will now detail our experimental design based on
Definition 3.1 and Definition 3.2. The experiments aim
to test generalization by examining how normalizing
flows trained on Gaussians with full covariance behave
when evaluated on Q(λq) specific from different regions of
the training distribution. While these test sets maintain
the underlying correlations of the training distribution,
their location and scale may differ. Conversely, when
evaluating robustness, we focus on data derived from
distributions that lack the underlying properties of the
training samples, in other words, an outlier distribution
with both different covariance and location. A signifi-
cant component of the experiments involves the use of
affine transformations to construct a variety of test dis-
tributions. This allows a straightforward way to evaluate
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model behavior in various regions of the training distri-
bution through a combination of scaling and translation.
More formally, in the case of evaluating model general-
ization, let the training distribution p(x) = N (λp) be a
Gaussian with parameterization λp = {µp,Σp}. Let the
test distribution be a Gaussian, qλ(x) = N (λq), with pa-
rameters λq constructed as a mapping of λp as follows:

λq(s, t)→ {µp + t, s2Σp}. (12)

Alternatively, an equivalent definition qλ is the applica-
tion of the affine mapping g(x; s, t) to x ∼ p(x), repre-
sented by:

g(x; s, t)→ (x− µp)s+ µp + t (13)

In the case of robustness evaluation, the definition
λout
q (s, t) is nearly identical but differs in the fact that

it is no construct as a mapping based on λp but instead
uses {µq,Σq}. In both scenarios, a normalizing flow pθ(x)

is trained on data generated from p(x) and is then evalu-
ated using data generated from qλ(x). Finally, we will as-
sess the model behavior and performance under different
conditions, such as varying levels of scaling, translation,
and dimensionalities, using various evaluation methods,
which will be further elaborated upon in subsequent sec-
tions. Our methodology ensures that we always have
access to and precise control of the density functions,
which provides a straightforward approach to evaluating
how the model reacts to different test sets. More impor-
tantly, it enables a direct comparison of these estimates
with the densities designated by the true density func-
tion of the training distribution for different test sets. In
short, this controlled approach, combined with a model
architecture simplified to only the essence of the nor-
malizing flow model, facilitates a more comprehensive
analysis of normalizing flow capabilities and potential
limitations in different scenarios.

3.2 Evaluation Methods

This section briefly elaborates on the evaluation method
used in this work, building up the explanations in sub-
section 2.2. For the artificially constructed train and test
distributions, the exact value for most evaluation meth-
ods can be computed analytically since the parameter-
ization of these distributions is known. For the model,
we require a numerical or combination of analytical and
numerical estimates of both. Hence, we will elaborate
further on the evaluation methods and how they are
computed or approximated with sufficient accuracy.

3.2.1 Estimation of Cross-Entropy for different

To compute an estimate of the cross-entropy H∗(q, pθ)
over the test set Q(qλ) for different parameterization λq

we use the fact that the loss over our test distribution
Eqλ

[
log pθ

]
and cross-entropy H(q, p) are identical apart

from their sign (Equation 15). Hence, we construct the
cross entropy estimate for the a finite test set by com-
puting:

H(q, pθ) = −Eq

[
log pθ

]
≈ 1

N

∑

x∈XN

log pθ(xi) = H∗(q, pθ)

(14)

Further detailed in section 4, we validated the reliabil-
ity of H∗(q, pθ), by comparing the estimates to the an-
alytical solution for H(q, p), as defined in Equation 10.
Figure 2 shows the results for H(q, p), H∗(q, p), H∗(q, pθ),
and differential entropy H(q) for different choices of s, t

and dimensionalities. We can see that H(q, p) overlaps
nearly perfectly with its estimate H∗(q, p); thus, we argue
that this method is sufficiently accurate to approximate
H∗(q, pθ).

3.2.2 Estimation of the KL-Divergence

As already discussed in subsubsection 2.2.1, the Kull-
back–Leibler divergence is a measure of statistical dis-
tance between two distributions but not a distance met-
ric as it’s non-symmetric, does not satisfy the trian-
gle inequality. Moreover, its absolute values can be
hard to interpret without context. Additionally, the
KL-divergence can be infinite when the support is ei-
ther disjoint or non-overlapping. In our experiments,
the latter does not occur, as only distributions with
identical support are used. Regardless of shortcomings,
when comparing q(x) with other distributions, a lower
KL-divergence means a better approximation of q(x).
We will compare the degree of difference in the KL-
divergences DKL(q(x)||p(x)) and DKL(q(x)||pθ(x)). The
former can be obtained easily through the analytical so-
lution for the KL-divergence between two multivariate
Gaussians.

Proposition 1. ([15]) Given two multivariate Gaus-
sians q, p, the Kullback–Leibler divergence between them
is given by:

DKL(q ∥ p) =
1

2
[log
|Σp|
|Σq|

− k

+
(
µq − µp

)T
Σ−1

p

(
µq − µp

)
+ tr

{
Σ−1

p Σq

}
]
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While DKL(q(x) ∥ p(x)) can be analytically computed
using Proposition 1, the KL-divergence between the test-
distribution DKL(q ∥ pθ) cannot be directly computed as
this would require solving a non-tractable integral. In-
stead, we choose to use estimate D∗

KL(q∥pθ) constructed
with finite sample XN of size N. The KL divergence can
be written as the difference between the H(q, p) and the
H(q) [16]. Since we control the parameterization of q,
we can compute H(q) analytically. The negative log-
likelihood computed for an i.d.d. sample from q is used
to approximate D∗

KL(q || pθ).

DKL(q || pθ) = H(q, pθ)−H(q)

= H(q, pθ)− 1

2
log det(2πeΣq)

≈
( ∑

x∈XN

− log pθ(xi)

)
− log det(2πeΣq)

= D∗
KL(q || p)

To validate the reliability of our method for estimating
D∗

KL(q || pθ), we computed an estimate for D∗
KL(q || p) us-

ing the same method and compared it with the ground
truth obtained by calculating DKL(q || p) analytically
using Proposition 1. We found that for all parame-
terizations and dimensionalities tested, the estimated
D∗

KL(q || p) was nearly identical to the ground truth
DKL(q || p) as shown by Figure 6. Hence, we concluded
that this approach would be sufficiently precise for eval-
uation.

3.2.3 Evaluation of distribution using Kernel
Density Estimation

Although KDEs may not be entirely precise, they offer
a simple way to assess fit by comparing location, vari-
ance, shape, and potential skewness. While we recognize
their limitations, we argue they can still yield useful in-
formation. For instance, they enable rapid assessment
of potential overlap between two distributions (critical
for identifying outliers using likelihood bounds). Addi-
tionally, we can easily determine if the model is over or
underestimating by examining the location of the KDE.

3.2.4 Outlier detection and its relationship to
distribution overlap

In the following sections, the concept of distribution
overlap will be discussed often as it plays an important
role in outlier detection. Consider a simple case where
there are predefined lower (L) and upper (U) bounds,

such that densities falling outside this range are consid-
ered outliers. The location and number of bounds are
task-specific, but a basic strategy would be to estimate
bounds such that approximately α of training distribu-
tion’s mass is captured, hence α = P[L ≤ log pθ(X) ≤
U ] = True Positive Rate (TPR) and False Positive Rate
FPR = P[L ≤ log pθ(Q) ≤ U ]. The effectiveness of this
method thus depends on the overlap between two dis-
tributions, with less overlap being better as this makes
them more separable and thus yields better performance.
This highlights the importance of exploring possible in-
ductive priors that cause outliers’ likelihoods to be sim-
ilar to those of the training distributions. The overlap-
ping coefficient is a similarity between two distributions
(OVL) that can be used as a measure of separability [17].
It is defined as the integral of the minimum between two
density functions

OVL =

∫

Rd
min [p(x), q(x)] dx

The OVL is appealing due to its natural simplicity and
straightforward visual interpretation. However, in our
experimental setup, it is not possible to calculate the
OVL directly through analytical means. Instead, we will
use its aforementioned visual interpretation on the esti-
mated KDEs to get an indication of the separability.
Though this is a less quantitative approach, we argue
that it is still valuable since we are not interested in the
exact performance of our models; rather, we are inter-
ested in how they behave when applying perturbations,
such as affine transformations, affect the model.

4 Evaluation Baseline Performance

This section provides an initial performance evaluation
of the chosen model based on the simplified architecture
discussed earlier. Our goal is to confirm the model’s ar-
chitecture capability to closely approximate its training
distribution p(x) = qλ(s=1,t=0)(x) across the examined di-
mensionalities. This serves as a baseline and sets the
stage for subsequent evaluations later in this work.

Figure 1 shows the KDEs of the estimated and true
log-likelihoods for different dimensionalities. We argue
that by judging by the shape and overlap pθ has been
able to provide a good estimate for each. In addition,
Figure 2 shows that the estimated cross entropy for each
D is nearly identical to the ground truth. Note that the
expected value of the log-likelihood of the data under the
model parameters is consistently less than the expected
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Figure 1: KDE of model pθ(x) and training distribution
p(x) log-likelihood estimates for different dimensionali-
ties.

value of the log-likelihood of the data under the true dis-
tribution Ep[log p

θ] ≤ Ep[log p] also indicated by the minor
left shift of the model’s KDE. The fact that we observe
this behaviour can be explained from an entropy point
of view. The model’s objective function is to maximize
the likelihood function L(θ), which in this case is equiv-
alent to minimizing the cross-entropy H(p, pθ) between
the model and data distribution since

L(θ) = Ex∼X [log pθx] = −H(p, pθ). (15)

The cross-entropy can be written as the sum of H(p)

and KL divergence between the model and data distri-
bution Equation 10. As the KL divergence is always
non-negative, we can reorder the terms of Equation 10
to show that Ep[log p

θ] ≤ Ep[log p] will always hold except
when DKL(px||pθx) = 0 in which case equality is achieved.

H(p, pθ)−DKL(p||pθ) = H(p) (16)
H(p, pθ) = −Ep[log p

θ] ≥ H(p) = −Ep[log p] (17)
Ep[log p

θ] ≤ Ep[log p]. (18)

In this scenario, we have access to the parameteriza-
tion of p(x), which allows for the analytical computation
of Ep[log p]. However, for model pθ the computation of
Ep[log p

θ] which requires integration over RD is not fea-
sible. Instead, we rely on empirical estimates. Using a
finite test set, we inherently lose the theoretical guaran-
tee the aforementioned inequality holds. The likelihood
of observing erratic behavior in our estimates is inversely
proportional to the sample size. If the sample size is cho-
sen to be large enough, the chances of erratic behavior
are negligible. We experimented with different sample
sizes and finally chose to use N = 1000000 for further
experiments in this work. Repeated sampling of test
sets Q1000000(pθ) yielded a consistent estimate of Ep[log p

θ]

with σ ≤ 0.01 for all tested dimensionalities, serving as a
heuristic that our chosen sample size is large enough to
yield a negligible chance of inconsistent estimates.

In summary, the simplified model architectures can
correctly model the base case test distributions where

qλ(x) = p(x) and performance is consistent across tested
dimensionalities. Hence, we conclude the base case to
be validated and will continue evaluating more complex
scenarios.

5 Evaluation Generalization

5.1 Construction test-distributions

This section aims to investigate how the simplified model
generalizes under different circumstances. To achieve
this, we will evaluate various parameterizations of test
distribution qλ using the evaluation methods discussed
in subsection 3.2. These parameterizations based on dif-
ferent values of s and t effectively consist of three types.
They either vary s and t individually while keeping the
other at their base value or modify both at the same
time. Our analysis will focus on systematically exploring
the effects of each type on the model’s behavior. More
formally, let S and T be the sets containing the chosen
values of s and t respectively, then the set of test dis-
tributions denoted Λ is constructed from the mapping
λ(s, t) (Equation 12) for all (s,t) pairs in the cartesian
product of sets S, T.

Λ = {λq(s, t) | s ∈ S, t ∈ T} (19)

In this and subsequent sections, S will consist of val-
ues {0.25, 0.5, 0.75, 1, 1.25, 1.75} and T of {0, 0.25, 0.5, 0.75}.
Chosen to explore both compressing (s < 1) and expan-
sive (s > 1) scaling transformations, with the baseline
where s = 1 to examine various distribution scalings. T
is selected to include transformations that vary between
none (t = 0) and a substantial dissimilarity increase.
We acknowledge that choosing specific values that rep-
resent a substantial increase in dissimilarity is subjec-
tive and depends on the characteristic, e.g., the vari-
ance of the baseline distribution. Based on analytical
solutions to the KL divergence Figure 6, cross-entropy
Figure 2, KDEs, and empirical observations, we heuris-
tically chose S, T such that they ranged from a mild
to substantial increase in dissimilarity. Additionally, we
opted to include exclusively non-negative values due to
the symmetric characteristics of the Gaussian distribu-
tion, yielding highly analogous results for positive and
negative values.

The results for each member of Λ, over all tested di-
mensions, will lead to a large results set. Hence, in sub-
sequent sections, we will use subsets of our results rel-
evant to the research questions that will be discussed.
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However, the full result set can be found in Appendix A
and Appendix B.

5.2 Results and discussion

Figure 2: Cross entropy for different D where the plots
have a fixed t in each column. The cross-entropy esti-
mates are plotted as a function of s

5.2.1 Modifying s

For Gaussian in high dimensional space, the mass tends
to concentrate in a shell at a fixed distance from the
mean. Hence, even though the maximum density is still
at the mean, the total probability mass in this high-
density region is very small. Consider a contractive oper-
ation that reduces s < 1. The resulting test distribution
qλ will have more probability mass towards the mean
relative to the training distribution. In other words,
decreasing s will result in a test set Q(qλ) oversampled
from high-density yet low-mass regions of p(x). Figure 2
shows the evolution of the cross-entropy for the analyt-
ically computed H(q, p) relative to H∗(q, p) and H(q, pθ)

over all test sets {Q(qλ) | λ ∈ Λ}. First, note that the an-
alytical H(q, p) and estimated H∗(q, p) cross-entropy are

approximately equal, which, as discussed before, we take
as a heuristic that the chosen sample size is sufficiently
large. For a model that generalizes well, the gap between
the two approximations ∆HC = |H∗(qλ, p) − H(qλ, p

θ)|
should remain as small as possible. The first column
in Figure 2 shows for each tested dimensionality the re-
sults when only s is modified. The gap ∆HC remains
fairly constant for both the expanding s > 1 and con-
tracting s < 1 test distributions. Hence, we argue that
the model, in these scenarios, generalizes well in terms
of the cross-entropy’s point estimate. Figure 3 show the

Figure 3: Estimated KDEs for model log pθ and ground
truth log p(x) over Q(qλ) for D = 20.

estimated KDEs for different a subset of the evaluated
test distribution. The relatively constant gap ∆HC in
cross-entropy is also reflected by the KDEs where the dif-
ference in modes is approximately equal to ∆HC . Com-
paring the variances of training Var({log p(x) ∈ Q(qλ)})
and model Var({log pθ(x) ∈ Q(qλ)}) distribution over the
test sets show no significant difference. Effectively, the
distribution of log pθ is just a slightly shifted version of
log p(x), which is both desired and expected as discussed
in section 4. Hence, we conclude that within our exper-
imental setup, when varying only the volume of the test
distribution between 0.25 ≤ s ≤ 1.75 the model pθ is able
to generalize to a test distribution qλ adequately.

5.2.2 Modifying t

Figure 4: Example of increasing only t for D=20, the
images shows estimates for both model log pθ and ground
truth log p(x) for Q(qλ). The estimates for the training
distribution have also been included to provide context.
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Using the same methodology as in the previous sec-
tion, we explore how the model behaves when on test
distributions where only t is modified. The second and
third columns of Figure 2 show the effects on modified
t with 0.25 and 0.5. As t is increased, the cross-entropy
estimates H(q, pθ) show substantial underestimation rel-
ative to both estimated H∗(q, p) and true H(q, p), which
is equivalent to overestimation of Eqλ

[
log pθ

]
. The mag-

nitude ∆HC consistently grows with increased t. The
behaviour occurs across various dimensionalities, though
it is relatively less noticeable in higher dimensions. The
discrepancy between the estimates becomes especially
clear when comparing the KDEs in Figure 4. After a mi-
nor shift of t=0.25 the estimated KDE for pθ(x) and p(x)

over the test set Q(qλ) are completely non-overlapping.
This shows that the model is no longer able to general-
ize to these low-density regions, resulting and showing
severe overestimation of Eqλ

[
log pθ

]
. The latter is also

reflected in the estimates of the KL-divergence shown in
Figure 6. Note DKL(q||pθ) is substantially smaller than
DKL(q||p), as shown in Figure 6. Note that an under-
estimated KL divergence implies that the model finds
the test distribution more similar to the training dis-
tribution than it should be. As previously mentioned,
when the estimated KDE for the model pθ over the train-
ing and test distribution starts to overlap, it can signifi-
cantly reduce the effectiveness of likelihood-based OOD
detection.

5.2.3 Combined change of s,t

Figure 5: KDE of model log pθ and ground truth log p(x)

over both training and test set for D = 20

In the previous sections, we explored the model’s be-
havior through individual modification of either s or
t and explored the effect on the cross-entropy, KL di-
vergence, and estimated KDEs. Roughly summarizing,
we found that the model was still able to generalize
well to changes to changes of s, which did not substan-
tially affect the magnitude of gap ∆HC . Yet, modify-
ing t led to an increasingly larger underestimation of

H(q, pθ). The simultaneous modification of both s and
t for t = {0.25, 0.5} shows the same impact on H∗(q, p)
and H(q, pθ) as their individual modification. As before,
the estimates of H∗(q, p) and H(q, pθ) in Figure 2 show
the gap ∆HC grows as t increases but is not substan-
tially affected while simultaneously modifying s. For a
very large shift, increasing s does further increase ∆HC

and is also reflected in increasingly underestimated KL-
divergence DKL(q || pθ) shown in Figure 6. This is not
unexpected, as we apply scaling before translation Equa-
tion 12 thus particularly for a large t contracting the dis-
tribution before shifting results in test distribution that
can be considered less challenging. Overall, the experi-
mental results suggest that during simultaneous modifi-
cation of s and t, the performance, as measured by the
gap ∆HC , is fairly robust. In section subsubsection 3.2.4,

Figure 6: KL-divergence estimates for initial evaluation
of generalization behavior using test-distribution qλ(x)

constructed through affine transformations of the train-
ing distribution p.

we discussed the role of overlap and how it relates to
the model’s ability to perform well at likelihood-based
OOD detection. Plainly put, the less overlap between
the model estimates for the training distribution rela-
tive to the test distribution, the better the model will
perform at the OOD detection task for this test distri-
bution. For the distribution used in this work, any un-
derestimation or overestimation tends to be harmful to
OOD detection if it reduces the gap between the model’s
cross-entropy estimates over Q(p) and Q(qλ) and, more
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importantly, if this also leads to an increase in overlap.
Once more, consider the findings from the previous two
sections, where we observed that a reduction of s < 1

will cause Var({log pθ(x) ∈ Q(qλ)}) to decrease and in-
crease t will cause underestimation of H(qλ, p

θ). A worst-
case scenario in terms of likelihood-based OOD detection
would be a situation in which the underestimation of
H(q, pθ) caused by increasing t would shift H(q, pθ) closer
H(p, pθ) to a degree where they might (partially) over-
lap as shown by the KDEs in Figure 4 if combined with
contraction s < 1 that reduces Var({log pθ(x) ∈ Q(qλ)})
of the distribution that results from s < 1, which poten-
tially could significantly increase the overlap. The KDEs
estimated for combined modification shown Figure 5 il-
lustrates this exact scenario. For a relatively small shift
and scale modification s = 0.75, t = 0.25, the estimated
KDEs for model pθ over the Q(qλ) and Q(p) fully over-
lap, making it impossible to distinguish the two based
on bounds.

The findings in this section help answer a key part of
our main question. By utilizing a simplified model, we
explored how the model responds to different modifica-
tions to different test distributions qλ, all of which still
preserved the correlations underlying the training set.
Moreover, we were able to reproduce scenarios where the
likelihood is significantly overestimated, and the overlap
between in-distribution and out-of-distribution overesti-
mation becomes so large that bound-based OOD detec-
tion becomes infeasible. An immediate follow-up ques-
tion we aim to explore in the subsequent section is how
the model behaves when these underlying correlations
are also slightly perturbed.

6 Evaluation Generalization Per-
turbed Distribution

6.1 Method

In continuation of the experiments in the previous sec-
tion, we will again construct a set of test distributions
largely derived from those of the preceding experiment.
However, we will introduce two minor perturbations to
these test distributions. The first is the addition of stan-
dard Gaussian noise, which causes a decrease in the
strength of correlations. Formally, given a probability
density function p(x) its perturbation pδ(x) is defined as

pδ(x) =

∫
p(t)N (x − t | 0, αId) dt (20)

The second perturbation is a slight modification of mean
µ such that µδ = µ+βu where u is randomly sampled uni-
formly from U([−1, 1]d). The mapping defined in Equa-
tion 12, which was utilized to construct the parameter-
izations of test distributions in subsection 5.2, can be
amended to incorporate the aforementioned perturba-
tions. The new mapping is given by

λδ
q(s, t, α, β)→ {µp + t+ βu, s2Σp + αId} (21)

The hyper-parameters α and β allow control over the
degree of perturbation applied to the covariance matrix
and mean, respectively. By substituting the previous
mapping inside Equation 19 with the new perturbed ver-
sion Equation 21, a new set of test distributions param-
eterizations Λδ are defined by

Λδ = {λq(s, t, α, β) | s ∈ S, t ∈ T} (22)

In the remainder of this work, any mention of the per-
turbed distribution will refer to the modified (perturbed)
version of the training distribution constructed through
the process just discussed.

6.2 Results and Discussion

6.2.1 Coupling layer adaptability

Figure 7: KDE of model and true distribution log-
density estimates for the perturbed and training distri-
bution.

Figure 7 presents the KDEs for true and model log-
densities across both training set Q(p) and perturbed
test-distribution Q(qδλ) (s = 1 and t = 0). The KDE es-
timated by p(x) over the perturbed test set Q(qδλ) shows
that qδλ maintains a resemblance to the training distri-
bution both in shape and location. Nevertheless, while
being similar, it is evident that qδλ is different from p(x) as
was the goal of our perturbation process. Yet, compared
to the KDE constructed from the estimates of pθ, a sur-
prising observation can be made: the model appears to
longer differentiate in its estimates for the perturbed and
original density. This trend intensifies with increased di-
mensionality, so much so that for D ≥ 50 the KDEs of
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the model over both the training and test distribution
become indistinguishable.

We hypothesize that the coupling layer might utilize
the knowledge learned during training to offset the intro-
duced perturbations. This hypothesis is consistent with
the findings made by [3] using image data where, after
removing half of the pixels in an image, they found that
the coupling layers could still yield reasonable estimates
for the missing pixels. They posited that each cou-
pling layer incrementally introduces information learned
during training, enabling subsequent coupling layers to
leverage some of the additional information, a mecha-
nism they termed coupling layer co-adaptation. How-
ever, their research, limited to visual inspections of the
coupling layer’s output for a single image in an extreme
scenario, leaves open questions about the model’s behav-
ior and adaptability in various specific scenarios. The
first is: Does the typicality of a sample impact the de-
gree of this compensation phenomenon? Specifically, for
a sample closely resembling those in the training distri-
bution, would the compensation effect be more or less
pronounced compared to samples that differ greatly from
the training data?

Secondly, if atypical samples trigger stronger compen-
sation, might this mean that the model, when faced with
increasingly atypical inputs, tends to disregard the ac-
tual input in favor of aligning them with more recogniz-
able, densely populated areas of the data distribution

The remaining part of this section will focus on ex-
ploring the first part of this question by analyzing the
various test distribution parameterizations in Λδ follow-
ing the same approach used in section 5. Allowing us
to evaluate how the model will behave when the per-
turbed distribution through scaling or shifting alters its
similarity to the training distribution. We will compare
the results of different s,t to those on the non-perturbed
test distributions discussed in section 5. The robust-
ness evaluation in section 7 will explore further how the
model will behave when presented with complete outlier
examples.

6.2.2 Modification of s, t

The evaluation in section 5 included an in-depth analy-
sis into the model’s behavior when subjected to different
modifications, be it combined or individual, of s and t.
As previously noted, this work does not focus on the
exact numerical values of our evaluation metrics but in-
stead on the general patterns in our evaluation metric
that can be observed when applying a modification. We

Figure 8: Cross-entropy estimates for different affine
transformations of perturbed test distributions qδλ and
training distribution qλ.

Figure 9: KL-divergence estimates for different affine
transformations of perturbed test distributions qδλ and
training distribution qλ.

found that the trends discussed in section 5 are very sim-
ilar to those of the perturbed test distribution qδλ ∈ Λδ

apart from the absolute magnitude. This is unsurprising
since the perturbed distributions still closely resemble
the training distribution from which they were derived.
Hence, when analyzing different s,t will instead focus on
highlighting the differences between their training and
perturbed distribution, further analyzing the question
raised earlier in this section regarding the effects of the
test distribution typically relative to the training distri-
bution.

Figure 8 presents the cross-entropy estimates for the
analytically computed H(qδ, p) relative to H(q, pθ) over
perturbed test sets {Q(qδλ) | λδ ∈ Λδ}. From gap
|H(qδλ, p) −H(qδλ, p

θ)| it is evident that the cross-entropy
estimates based on ground truth p(x) diverge notably
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from those estimated using pθ, especially when s is
increased contrasting with our earlier findings in sec-
tion 5 shown in Figure 2, where the disparity in the
cross-entropy remained relatively consistent regardless
of modification of s. It should be noted that an incre-
ment in s leads to a more significant increase in diver-
gence between qδλ and p as than it does between qλ and
p, posing a more pronounced challenge. This effect is
illustrated by the variation in the analytically computed
DKL(q

δ
λ || p) as relative to DKL(qλ || p), which are de-

picted in Figure 6 and Figure 9, respectively.
Interestingly, upon comparing the gap between the

estimated cross-entropy estimates between the model
pθ estimates over {Q(qδλ) | λ ∈ Λ} with those over
{Q(qδλ) | λδ ∈ Λδ} we find for a given combination of s,t
the gap |H(qδλ, p

θ)−H(qλ, p
θ)| remains reasonably small.

The same holds when we compare the gap in the KL
divergence |DKL(q

δ
λ || pθ)−DKL(qλ || pθ)|. Moreover, for

the more challenging scenarios e.g., t = 1 and s > 1, the
KL-divergence estimate for the perturbed test distribu-
tion DKL(q

δ
λ || pθ) will even be smaller than DKL(qλ || pθ).

Suggesting that the model may perceive the perturbed
distribution to be more similar to the ground truth than
its non-perturbed equivalent. These findings align with
our baseline evaluation where KDEs of the model esti-
mate for Q(qλ) and Q(qδλ) were almost identical, further
re-enforcing our earlier hypothesis that the model, to
some degree, appears to ignore the added perturbations
and assigns densities similar to the training distribution.

These findings allow us to address our earlier ques-
tion regarding the impact of test distribution typicality
on the model’s adaptability. Firstly, our experiments
using perturbed distributions show the typicality of the
test distribution does impact the degree of the hypothe-
sized coupling layer adaptability. Or at least indicate an
inverse relation between the degree of test-distributions
atypicality and the model’s ability to distinguish it as
atypical. Allowing a situation to occur where two test
distributions exist, one of which is more atypical com-
pared to the training distribution, yet paradoxically, the
more atypical distribution is perceived by the model to
be more similar.

7 Evaluation of Robustness

In this section, we will explore model robustness using
a test distribution qout

λ constructed as an outlier distri-
bution. This means their correlations, covariance, and
means are entirely different.

Figure 10: KDEs of log pθ and ground truth log p(x) for
Q(qδλ) while s and t are adjusted either separately or
simultaneously for D=50

7.1 Results and discussion

Figure 11: KDE of model and true distribution LLH
estimate using outlier data for different dimensionalities
shown next to those of the training distribution.

Figure 11 shows the estimated KDEs for the model
pθ and ground truth log-densities p over both the test
Q(qout

λ ) and training set Q(p) accross all tested dimen-
sionalities. When comparing the shape and location of
the KDE derived from the ground truth p, it is clear that
the test set Q(qout

λ ) has been assigned vastly smaller log-
densities by p compared to those assigned to the training
set Q(p), with minimal shared mass and overlap. This
result is desirable as it confirms that the outlier distri-
bution qλ is, as intended, substantially different from the
training distribution.

Considering the characteristics of the test distribution
qout
λ , it is likely that the model was exposed to few sam-

ples typical of qout
λ during training. Hence, expecting pθ

to produce density estimates for Q(qout
λ ) close to those

of the data distribution p(x) would be overly optimistic.
Nevertheless, it would be reasonable to expect the pθ
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to assign densities to Q(qout
λ ) different than those typi-

cal of the training set Q(p). Contrary to expectations,
the KDEs illustrate that pθ overestimates densities for
Q(qout

λ ) to such a degree that its KDE shows a large over-
lap with the Q(p), as depicted in Figure 11. This trend
becomes more apparent as dimensionality increases, to
the extent that for D = 100, qout

λ is assigned even slightly
larger densities than the training distribution.

7.1.1 Variations of the outlier distribution.

Figure 12: KDEs of log pθ and ground truth log p(x) for
the outlier testset Q(qout

λ ) while s and t are adjusted
either separately or simultaneously for D=50

Using the same method as in the generalization ex-
periments, we will modify the outlier distribution, us-
ing different variants of its parameterization in Λout

and explore their effects. A selection of KDEs over
{Q(qout

λ ) | λout ∈ Λout} where s and t are adjusted sep-
arately or simultaneously is illustrated by Figure 12.
These show that for the tested s, t overestimation always
occurs. Additionally, the modifications result in behav-
ior consistent with the findings of the generalization ex-
periments across the tested dimensionalities. That is, a
decrease in s yields an increase in the log-likelihood and a
decrease in variance. An increase in s leads to a decrease
in the log-likelihood and an increase in variance, and an
increase in t results in a decrease in the log-likelihood.

Simultaneous modification of s,t to simply results in a
combination of their individual effects.

To some degree, these findings align with those using
perturbed test distribution qδλ in section 6, where we used
a perturbed test distribution qδλ to evaluate our model’s
performance. We found that as the test distribution be-
came more atypical, the cross-entropy was increasingly
underestimated. However, for extreme values of s and
t (such as s=1.25 and t=0.75), the perturbed test dis-
tribution still had a small overlap, even though the gap
between H(qδλ, p) and H(qδλ, p

θ) became larger. In such
cases, the model could still accurately detect OOD data.

8 Outlier Detection Performance

In this section, we will explore how different combina-
tions of parameters s and t impact out-of-distribution
(OOD) detection. Once more, note that our goal is not
to hone in on exact numerical values but rather to iden-
tify which scenarios are most challenging and extrapo-
late upon these findings to provide a better understand-
ing of the factors that influence the performance of these
models in real-world scenarios.

8.1 Method

Our method, already briefly discussed in subsubsec-
tion 3.2.4, will use straightforward lower (L) and upper
(U) bounds where any value falling outside these bounds
is considered an outlier, such that the decision function
Dout(x) is given by

Dout(x) =

{
1 if log pθ(x) < L or log pθ(x) > U

0 otherwise

The precise upper and lower bounds were determined
by employing estimates of log pθ over the Q(p) to en-
sure that the true positive rate (TPR) equals a constant
predetermined level. While the minimum required TPR
will always be application-dependent, for the purpose
of this discussion, we choose a TPR of 0.975, which
we deemed reasonable for a general classifier. Subse-
quently, we estimated the true negative rate (TNR)
for both the perturbed {Q(qδλ) | λδ ∈ Λδ} and outlier
{Q(qout

λ ) | λout ∈ Λout} test sets. The results of each are
depicted in Figure 13. The TNRs for the ground truth
log p(x) over {Q(qout

λ ) | λout ∈ Λout} were not included
in Figure 13 because they had an average score of 0.98
with a minimum of 0.96. This means that the selected
bounds would be enough for accurate OOD detection on
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(a) TNR based on log pθ(x) for Q(qout
λ ) (b) TNR based on log pθ(x) for Q(qδλ) (c) TNR based on log p(x) for Q(qδλ)

Figure 13: True Negative Rate (TNR) for different OOD detection tasks for D=50 with fixed TPR set to 0.975

the outlier distributions, given that someone can access
p(x).

8.2 Discussion and Results

8.2.1 OOD detection performance for Q(qout
λ )

In section 7, outlier test-distributions {qout
λ ∈ Λout} were

designed to be substantially different from the training
distribution p(x). For these atypical distributions, we
anticipated that the estimates pθ(x) might not closely
match p(x), but we did expect them to still differ suffi-
ciently from those across the Q(p) to enable effective out-
of-distribution detection. However, subsequent analysis
in subsection 7.1 revealed severe overestimation com-
bined with a significant overlap between the training and
test-distributions KDEs as shown by Figure 12. Conse-
quently, the subpar TNRs in Figure 13a align with our
earlier results and further illustrate poor performance at
the OOD task, particularly for qout

λ with smaller variance
than p, a trend earlier discussed in subsubsection 5.2.3.

8.2.2 OOD detection performance for Q(qδλ)

The perturbed test distributions constructed in section 6
were designed to maintain a large degree of resemblance
to p(x). As was illustrated in the KDE of the perturbed
distribution in Figure 10, the perturbed tests distribu-
tions still overlap with the p(x). Hence, apart from the
most atypical variants, e.g., t ≥ 0.5, a perfect separation
between these distributions is impossible, even with ac-
cess to a perfect density model. The TNR estimated us-
ing p(x) over Q(qδλ) shown in Figure 13c further illustrate
this, showing that while the perturbed test distribution
is similar to the training distribution, they still differ.
However, when we compare the latter results with the
TNR estimated using pθ in Figure 13b, we find that the

TNR is very small 0.02 vs 0.38 for the ground truth, in-
dicating the inability of two to distinguish the test and
training distribution. Moreover, for s=0.25 and t=0.5
the TNR for pθ is close to very close while the p pro-
vides a TNR of 0.91. This result aligns with our pre-
vious findings discussed in subsubsection 6.2.2, further
strengthening our hypothesis that pθ, to some degree, ig-
nores the perturbations in its estimates. As in previous
experiments, the TNR of pθ is particularly vulnerable to
contractions s < 1 combined with a shift.

8.2.3 Combined implications

This analysis reveals a significant challenge in detect-
ing low-variance, shifted data as outliers. This aligns
with our previous results based on analysis of the cross-
entropy, KL-divergence, and KDEs, where we found the
model struggles in the same scenario.

9 Discussion and Conclusion

In this section, we will summarize our experiment’s find-
ings and discuss their collective implications.

In section 5, we conducted initial experiments to
investigate the behavior of the model across different
test distributions

{
qλs,t

∈ Λ
}
, which represented scaled

or shifted variants of the training distribution p(x) yet
maintained its underlying correlations. When vary-
ing s, effectively contracting or expanding the train-
ing distribution, the estimated KDEs of pθ(x) and p(x)

mostly overlapped. Moreover, the cross-entropy gap
between actual and estimated log-density |H∗(qλ, p) −
H(qλ, p

θ)| remained largely unaffected. Contrarily, in-
creasing t caused cross-entropy estimates H(qλ, p

θ) to
show substantial underestimation relative to both esti-
mated H∗(qλ, p) and true H(q, p) and implicitly overes-
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timation of the log density. Analysis of their combined
modification in subsubsection 5.2.3 demonstrated that
a combination of a slight shift t=0.25 and minor con-
traction s=0.75 caused a nearly complete overlap of the
test and training distributions KDEs effectively render-
ing the model useless for OOD detection and gave rise
to the hypothesis that scenarios in which the variance
of the test distribution is smaller than the training dis-
tribution combined with a shift could be particularly
harmful to OOD detection.

These initial results addressed two critical parts of our
research objectives: Firstly, reproduction showing both
overestimation or underestimation can be reproduced in
simplified normalizing flows and is therefore not limited
to complex architectures or data with greater dimension-
ality or complexity indicating the presence of an induc-
tive prior in the core model. Secondly, identifying and
reproducing a scenario where the latter will also render
the model ineffective at the OOD detection task and,
moreover, providing an initial explanation for this be-
havior.

Experiments in section 6 addressed the natural follow-
up question of whether the previous results would also
hold for test distributions perturbed with Gaussian noise
to decrease correlation strengths minor, combined with
a minor perturbation of the mean using uniformly dis-
tributed noise. Interestingly, an initial evaluation of test-
distribution qδλ for s=1, t=0, showed no significant dif-
ference in the estimated KL-divergence, cross-entropy,
and KDE of the model pθ over Q(qλ) compared to Q(qδλ).
In other words, the model ignores the perturbations in
its density estimates such that Q(p) and Q(qδλ) are ef-
fectively indistinguishable. The adaptability of the cou-
pling layers to reproduce missing or altered by aligning
them with more familiar patterns in the data distribu-
tion was hypothesized by [3]. In subsubsection 6.2.1,
we discussed this phenomenon, raising the question of
whether more atypical inputs could cause the model to
ignore further the actual input values in favor of placing
them into denser areas, potentially inflating the density
estimates of atypical distributions and if so, to what de-
gree?

In subsubsection 6.2.2, we addressed the first part
of this question by showing that for increasing atypical
variants of qδλ constructed (through variations in s and
t), the model’s ability to provide accurate density esti-
mates for Q(qδλ) diminished. Interestingly, given a spe-
cific s, t, the model estimates in terms of cross-entropy,
KL-divergence, and KDE for qδλ kept closely resembling
those of their non-perturbed counterpart qλ. This pro-

vides further evidence of an inverse relationship between
the typicality of the test distribution and the model’s
ability to discriminate it from its training distribution.

Our evaluation of model robustness in section 7 fur-
ther explored this relation by evaluating pθ over out-
lier distributions {Q(qout

λ ) | λout ∈ Λout} specifically con-
structed to be completely atypical to the training set.
We found underestimation of both the H(qout

λ , pθ) and
DKL(q

out
λ || pθ). Moreover, there is considerable over-

lap between the kernel density estimates for Q(p) and
those of the {Q(qout

λ ) | λout ∈ Λout}. Similar to our find-
ings in section 5 and section 6, OOD performance de-
grades, especially in scenarios where the variance of qθλ
is smaller than p. Given the atypicality of the outlier
distributions, it would be overly optimistic to expect pθ

to supply estimates that would allow separation between
them. Hence, an intriguing aspect of our findings is not
just the occurrence of this behavior but the degree to
which it occurs.

One of the reasons behind this work was to better un-
derstand the behavior of normalizing flow on outlier data
by using only the core model, paired with a well-defined
training distribution, contrasting with earlier work that
focused on complex architecture extensions with rela-
tively high dimensional datasets. While we cannot state
the influence of intricate architectures, our experiments
have shown that the core model already exhibits behav-
ior that makes it not robust against complete outliers
and even minor perturbation of the training distribu-
tion. This strongly suggests that a lack of OOD detec-
tion performance is not caused exclusively by increased
complexity either in the model or data but instead il-
lustrates the presence of an inductive prior at the core
of normalizing flows. Though we cannot make a state-
ment about the exact nature of the inductive prior, we
hypothesize that co-adaptability in the coupling layers,
as discussed in subsubsection 6.2.1, plays an important
role.

While this work’s primary focus isn’t to directly com-
pare our results to the high likelihoods found in previ-
ous research on image data, it is worth considering the
potential connections. Semantically, two sets of images
might be considered outliers completely atypical. How-
ever, the inherent nature of image data is such that im-
ages retain strong correlations between adjacent pixels
despite semantic differences. As pixel values are dis-
crete and often bounded in the [0, 255] range, variances
and deviations from the mean are generally inherently
restricted. Deviations between means might not be suf-
ficient for the model to consider something an outlier.
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Moreover, in all of our experiments, we showed that the
normalizing flows are particularly harmful to a decrease
in variance s < 1 combined with a minor shift. These
observations coincide with previous findings from ear-
lier works [2, 3] demonstrated that a normalizing flow
trained on a dataset with larger variance than the test
set (ImageNet[18] and CIFAR[19]) was often not able to
distinguish between them, which aligns with our find-
ings.

Future Work and Limitations

Our pursuit of simplicity led to the removal of com-
plex components from the architecture, leaving room
for future studies to evaluate the impact of reintroduc-
ing complexity. Systematically adding complex compo-
nents, evaluation, and comparison with the plain more
could offer insights into their influence on the model’s
behavior.

We utilized data featuring a dimensionality between
10 and 100. This decision was a compromise to en-
sure computational feasibility amid many experiments.
While we anticipate our results to also hold with higher
dimensional data, it remains a hypothesis that allows for
further research in this field.
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A Log-likelihoods for basic s,t experiments

Figure 14: D=10 KDE of log-likelihoods p(x) and pθ(x) for different test-distribution combined with training distri-
bution estimates.
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Figure 15: D=20 KDE of log-likelihoods p(x) and pθ(x) for different test-distribution combined with training distri-
bution estimates.
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Figure 16: D=50 KDE of log-likelihoods p(x) and pθ(x) for different test-distribution combined with training distri-
bution estimates.
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Figure 17: D=100 KDE of log-likelihoods p(x) and pθ(x) for different test-distribution combined with training
distribution estimates.
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B Log-likelihoods for perturbed s,t experiments

Figure 18: D=10 KDE of log-likelihoods p(x) and pθ(x) for different affine variants of the perturbed test-distribution
qδλ combined with training distribution estimates.
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Figure 19: D=20 KDE of log-likelihoods p(x) and pθ(x) for different affine variants of the perturbed test-distribution
qδλ combined with training distribution estimates.
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Figure 20: D=50 KDE of log-likelihoods p(x) and pθ(x) for different affine variants of the perturbed test-distribution
qδλ combined with training distribution estimates.
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Figure 21: D=100 KDE of log-likelihoods p(x) and pθ(x) for different affine variants of the perturbed test-distribution
qδλ combined with training distribution estimates.
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C Log-likelihoods for robustness s,t experiments

Figure 22: D=10 KDE of log-likelihoods p(x) and pθ(x) for different affine variants of the outlier test-distribution
qoutλ contrasted with log-likelihoods of over the training distribution estimates.
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Figure 23: D=20 KDE of log-likelihoods p(x) and pθ(x) for different affine variants of the outlier test-distribution
qoutλ contrasted with log-likelihoods of over the training distribution estimates.
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Figure 24: D=50 KDE of log-likelihoods p(x) and pθ(x) for different affine variants of the outlier test-distribution
qoutλ contrasted with log-likelihoods of over the training distribution estimates.
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Figure 25: D=100 KDE of log-likelihoods p(x) and pθ(x) for different affine variants of the outlier test-distribution
qoutλ contrasted with log-likelihoods of over the training distribution estimates.
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1. Introduction

Generative models have the ability to create new data-
instances, a task which requires the ability to learn a real-
istic world-model approximating all dependencies in high-
dimensional data; a generative model does so by approx-
imating the joint distribution of all random variables in
the dataset. The ability to create realistic world-models
is a promise towards models with better generalizability.
Though no overlapping theorem is present, the hypothesis
is that generative models can learn efficiently from limited
examples provided that the examples roughly represent the
data distribution; which is crucial for a data-efficiency: the
capability to learn from limited examples. Both generaliz-
ability and data-efficiency are two of the notable open chal-
lenges within the field of machine learning [1].

Though substantial progress has been made in generative
models for tasks such as super-resolution over the last few
years, a core problem remains. The best performing method
such as Generative Adversarial Networks (GANs) [2] and
Variational Autoencoders (VAEs) [3] tend to have a decoder
component generally leading to intractable log-likelihood
estimation. During training, GANs use a trick to forego
optimizing log-likelihood directly. VAEs maximize the evi-
dence lower bound (ELBO) but have an intractable marginal
log-likelihood. Normalizing flows (NF) are a type of fully
invertible generative models with tractable log-likelihood,
allowing for direct optimization and evaluation of the log-
likelihood. This makes it simpler to quantitatively compare
the quality of models and is more robust against a problem
common to GANs: model collapse [2].

The main goal of this document is provide an introduc-
tion into normalizing flow models particularly RealNVP [4]
and it successor GLOW [1].

2. Background: Flow models

The goal of this section is to provide a brief overview of
the core theory essential for understanding the flow models
and their implementations in subsequent sections.

2.1. Continuous density function under change of
variable

The change of variable formula from calculus [5] is at
the core of normalizing flow models. Though the formula
itself has more general application when integrating it can
be interpreted in the context of rewriting continuous density
functions as follows:

Definition 2.1. Given continuous random variables Z with
density function fZ(z), and let g : R → R be a invert-
ible monotonic function such that x = g(z) and its inverse
is equal to z = g−1(x). Then the random variable X that
results from the mapping x = g(z) will have a density func-
tion given by:

fX(x) = fZ
(
g−1(x)

) ∣∣∣∣
d

dx

(
g−1(x)

)∣∣∣∣ . (1)

In Equation 1 g is defined only for scalars, but the for-
mula can also be applied to vectors g : Rn → Rn. The last
term of Equation 1 is replaced with the determinant of the
Jacobian matrix of g−1 resulting in:

fX(x) = fZ
(
g−1(x)

) ∣∣∣∣det
(
∂g−1(x)

∂x

)∣∣∣∣ . (2)

When the last term
∣∣∣det

(
∂g−1(x)
∂x

)∣∣∣ is equal to 1, g is
said to be volume-preserving.

3. Normalizing Flows
Approximations of complex distributions can be con-

structed by transforming a simple source distribution pZ(z)
into a more complex target distribution qX(x) through a se-
quence of invertible transformations [6].

The source to target transformation can be described as
a function composition of simple transformations f1 . . . fk.
The density function with flow though the composed trans-
formation and will be re-normalized to a valid density func-
tion after each application using the change of variable for-
mula. For source z ∼ pZ(z) and target x ∼ qX(x) sample
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the relation is as follows:

x
f1←→ h1

f2←→ h2 · · · fK←→ z. (3)

In this way, normalizing flows provide an explicit represen-
tation of the likelihood, unlike GANs or VAEs, which pro-
vided an implicit approximation of the likelihood that can-
not be directly evaluated for individual samples. Note that
the source-to-target transformation is also present in GANs
and VAEs. For GANs the transformation is performed by
the generator G(z) and for VAEs by the decoder pθ(x|z)
but only flow models allow for direct likelihood evaluation.

3.1. Coupling

Assuming standard algorithms, computing the matrix de-
terminant scales O(n3) and quickly becomes a bottleneck.
The feasibility of a flow model is tied to the computation
the change of variable formula Equation 2 in each transfor-
mation; which includes computation of the Jacobian matrix
determinant. In [7] it was shown that constructing the trans-
formation as a triangular map leads to a lower triangular Ja-
cobian with a tractable determinant. These mappings form
the core of so-called coupling layers in normalizing flow
models. The properties of a selection of these implementa-
tions will be discussed in the remainder of this section.

3.1.1 Real-valued Non-Volume Preserving (RealNVP)

RealNVP was introduced in 2017, it idiomatically stands
for real-valued non-volume preserving (transformations),
and introduces the concept of an additive coupling layer [4].
Additive coupling layers allow for the creation of complex
yet cheaply invertible bijective functions through a design
that can be compared with an auto-regressive model; they
can be formalized as follows:

Definition 3.1. Given a D dimensional input and output
vector x and y respectively, a dimension index d ∈ Z+

such that d < D. The affine coupling layer as per Equa-
tion 4, will copy the first d dimensions of the input without
modification, thus y1:d = x1:d. The same copy operation
is performed for the remaining {d − 1 : D} dimensions as
per Figure 1, but these inputs are also scaled and translated
with the Hadamard product of the first {1 : d} dimensions
(hence the affine).

{
y1:d = x1:d

yd+1:D = xd+1:D � exp (s (x1:d)) + t (x1:d)
(4)

∂y

∂xT
=




∂y1:d
∂xT

1:d

∂y1:d
∂xT

1+d:D
∂yd+1:D

∂xT
1:d

∂yd+1:D

∂xT
d+1:D


 (5)

=

[
Id 0

∂yd+1:D

∂xT
1:d

diag (exp [s (x1:d)])

]
(6)

Figure 1-A illustrates the dependencies that now exists
as a result of the forward propagation in the additive cou-
pling layer. From now on x1, x2 will be used to refer to the
first and second part of the vector x1:d, xd+1:D; likewise for
vector y. The Jacobian can now be constructed in an elegant
way that results in a lower triangular matrix Equation 6 with
by tractable determinant. It is also worth pointing out that
we do not need to compute the derivative of ∂yd+1:D

∂xT
1:d

which
is a great advantage as it allows for the choice of an arbi-
trarily complex function.

Figure 1: Shows the dependencies of forward (left) and in-
verse propagation (right) through an additive couple layer.
Source: [4]

Invertibility is a condition for the transformations to fea-
sible. Since x1 has not been changed but merely copied into
y1 it can trivially be retrieved. Recovering x2 is analogous
to inverting the linear scale and translate operations on y2
which can be done straightforward and cheaply using:

{
x1:d = y1:d
xd+1:D = (yd+1:D − t (y1:d))� exp (−s (y1:d)) .

(7)
An observant reader might now have noticed that by

composing transformations in this fashion only half of the
values being modified. By permuting the order of the input
after each transformation the issue is resolved in an efficient
and invertible manner.

3.1.2 Non-Linear Independent Components Estima-
tion (NICE)

Non-Linear Independent Components Estimation (NICE)
[7] was introduced in 2015, and is an important paper as
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Figure 2: Example of the squeeze operations [8]

it lays much of the groundwork for RealNVP. NICE intro-
duces an additive coupling layer that is volume-preserving.
Unlike RealNVP where scaling is applied directly in the
affine coupling layer, NICE uses a separate scaling matrix.

3.2. Masking

The affine coupling layers discussed in section subsub-
section 3.1.1 require the input to be split in parts. Naively
one might choose to simply cut the image data in half. How-
ever, it is arguably more likely that two pixels directly next
to each other are more correlated than two pixels in two dif-
ferent halves of an image. Therefore to create the mask for
an image, RealNVP uses either a checkerboard pattern or
channels wise splitting.

3.3. Multi-Scale Architecture

[9] shows that multi-scale architectures can allow for
deeper networks. RealNVP [4] provides an implementa-
tion of a multi-scale architecture for normalizing flows us-
ing squeeze and split operations. The squeeze operation is
simply a permutation of the input. Given an image with C
channels, a subdivision of 2x2xC subsquares is squeezed
into 1x1x4C tensors. Figure 2 shows an example of this
operation on a 4x4 image.

The split operations will factor out half of the variables
by directly mapping them to Gaussian latent space. There-
fore, repeated application of the split operation will result
in an exponential decrease in dimensionality, a significant
computational advantage. The reduction in dimensionality
and the increased number of parameter dimensions allow
the model to learn more fine-grained features at the higher-
level layers.

3.4. Glow: Generative Flow with Invertible 1x1
Convolutions

The Glow model builds on the methods introduced in
[7, 4], primarily RealNVP’s affine-coupling and multi-scale
architecture. Glow’s most notable architecture change is the
addition of invertible 1x1 convolution in each step. These
steps consist of three sequentially executed components as

Figure 3: One step of the Glow model ([1])

depicted in Figure 3; their roles can be summarized as fol-
lows:

• actnorm is a standard scale and bias layer which will
initialize the input data to zero mean and unit-variance.
After data dependent initialization the parameters in
this layer become trainable and thus data-independent.
RealNVP found that batch normalization [10] could
lead to improved performance. But when using small
mini-batches, batch normalization can lead to instabil-
ity since the variance of its added noise is inversely
proportional to the size of the mini-batch. Actnorm
is an alternative to batch-normalization for use with
mini-batches size of 1.

• invertible 1x1 convolution are convolutions with a fil-
ter of 1x1 for which the input and output dimension are
identical and thus allowing for inversion. Convolutions
with these characteristics can be seen as a generaliza-
tion of permutation matrices with learnable parame-
ters; making them an alternative to other permutations
methods such as the checkerboard approach proposed
by RealNVP.

• affine coupling: identical to affine coupling in Real-
NVP as described in Definition 3.1.

The three steps or Glow block can be stacked to cre-
ate model complex models. Though the concept is simple,
impressive results generating realistic new samples have
been achieved Figure 4b. Currently, the state-of-the-art
flows based models are less powerful as similar methods
using GANs or VAE [2, 3]. Yet the latter statement is
hard to quantify as comparing generative models is particu-
larly challenge even between different instances of the same
model.

4. Conclusion
With this document we provided an brief overview into

normalizing flow models particularly those based on a Re-
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(a) Sample from RealNVP ([4]) (b) Sample from Glow ([1])

Figure 4: Faces generated from two different flow models.

alNVP architecture [4]. We provided a review of the essen-
tial mathematical concepts, followed by an outline and re-
view of prominent normalizing flow models: NICE [7], Re-
alNVP [4] and Glow [1]. Illustrating that generative models
based on normalizing flow are an alternative to state-of-the-
art methods using VAE [3] or GAN based methods [2].

RealNVP [4] demonstrated that using the triangular bi-
jections introduced in [7] can be extended with an addi-
tive coupling and permutation layers allowing the incor-
poration of arbitrary complexity function such as complex
neural networks while maintaining a tractable Jacobian de-
terminant. Moreover, since no sequential dependencies are
present during sampling, efficient parallel sampling can be
performed.

With the introduction of Glow [1] flow models can be
used to generate realistic images. The quality of generated
content in Figure 4 illustrates flows based models can be
viable alternative to state-of-the-art methods using VAE [3]
or GAN based methods [2].

Normalizing flows perform direct optimization of the
likelihood. Though the observation might be trivial, it is
worth considering that in practice models optimizing likeli-
hood alternatives might be faster and obtain better results.
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