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Abstract—We propose a systematic approach to describe pla-
nar slot antennas, embedded in generic stratified media. An
equivalent transmission line model for the slot is proposed, based
on a spectral domain analysis. First, we introduce a method of
moments solution to model semi-infinite or finite slots, fed by a
delta-gap excitation. The solution entails only two basis functions,
one located at the feed and the other at the terminations. The
latter basis function is chosen to properly account for the field
diffractive behavior at the antenna end points. An approximate
circuit model is then introduced, which describes the main mode
propagating along the slot as an equivalent transmission line.
Lumped impedances are extracted to accurately describe the
source and the end points: the reactances account for the reactive
nature of the feed and the termination, while the resistances
represent the radiated space waves, emerging from both the feed
and the end points. This procedure can be used to derive the
input impedance of planar antennas with arbitrary length in
generic layered media or the interaction between multiple feeds
within the same slot.

Index Terms—Equivalent circuit, input impedance, slot an-

tenna.

I. INTRODUCTION

Printed slot antennas are among the most common planar

antennas in use today and have been studied extensively in

the literature, both as isolated elements and in array con-

figurations. Their structure is complementary to the printed

dipoles, thus all known analytical solutions of canonical dipole

antennas can be applied also to slots by using Babinet’s

principle [1]. However, realistic slot antennas are not radiating

in free space but in the presence of a more complex dielectric

stratification. In these cases, the input impedance is typically

determined with general-purpose numerical methods.

A convenient way to describe a center-fed slot is by an

equivalent transmission line model, where the excitation is

modeled as a shunt generator and the slot arms are represented

as two transmission line sections. For example, equivalent

transmission line models were used in [2]–[4] to aid the

design of slot antennas with different loadings. To compute

the characteristic impedance and the propagation constant of

the slot lines, different methods have been proposed in [5]–[7].

Transmission line models for slot antennas were given in [8],

[9]. In particular, the approach in [8] was based on equating

the power radiated by the slot to the power delivered to a lossy

transmission line. However, both the equivalent transmission

lines considered short circuits to describe the slot terminations,

thus did not account for the reactance associated with the end

points. An improved model was proposed in [10], where the

inductance of the slot shorted ends was considered.

However, all the existing models do not account for the

reactance of the feed and the diffraction from the edge.

Moreover the radiation is modeled as a distributed resistance

through a lossy line or as a single lumped resistance. A

different approach is presented here, where an improved model

is proposed that accurately describes the reactive nature of both

the feed and the terminations of the slot. First, a Method of

Moments (MoM) solution is given where, by using the Green’s

function of an infinite slot [11], only two basis functions are

employed to describe the current in the feeding gap and at the

edges of the antennas. The basis functions are appropriately

chosen to represent the reactance due to finite dimension of

the feed and due to the diffraction of the electromagnetic

field at the end points. Moreover, the MoM solution allows

representing the radiation from the slot in terms of three

separate resistances, one associated with the feed point and two

located at the edges. Such configuration give more physical

insight, as the radiated field can be interpreted as three space

waves, emerging from the feed and the end points.

An additional advantage of the proposed method is that the

characteristic impedance of the transmission line is derived

by extracting the polar singularity contribution of the spectral

domain Green’s function as in [12], [13], thus can be general-

ized to arbitrary stratified media, as long as the polar and the

branch singularity do not coincide.

II. MOM SOLUTION FOR SEMI-INFINITE SLOT

This section describes an efficient MoM calculation to com-

pute the input impedance and the magnetic current distribution

of a semi-infinite slot in stratified media. The x-oriented slot is

assumed to be electrically narrow and excited by a feeding gap,

which is small in terms of the wavelength (δ-gap excitation).

First, an infinite slot is considered as in [12], where it was

shown that the voltage along the slot is represented accurately

by:

v(x) =
1

2π

∫

∞

−∞

iδFδ(kx)

Ds(kx)
e−jkxxdkx (1)

where iδ is the average current in the feeding gap, Fδ(kx)
is the spectral basis function representing the magnetic field

excited in the gap:

Fδ(kx) = sinc

(

kxδ

2

)

(2)

and

Ds(kx) =
1

2π

∫

∞

−∞

Ghm
xx (kx, ky)Mt(ky)dky (3)



Fig. 1. (a) Interrupted infinite slot in free space. (b) Space domain basis
functions with respect to their location along the semi-infinite slot.

is the spectral longitudinal Green’s function of an infinite

slot. Ghm
xx is the xx-component of the spectral dyadic Green’s

function relating magnetic field to magnetic source, and kx
and ky are the spectral counterparts of the spatial variables

x and y, respectively. As the transverse current distribution

is assumed to be edge-singular, its Fourier transform is

Mt(ky) = −J0 (kyw/2). The integral in (3) can be solved

analytically for free space, while it is computed numerically

for generic stratification.

We now interrupt the infinite slot with a short circuit at

a certain distance d from the feeding gap, as shown in Fig.

1(a). The short is realized with a metallic interruption of

length lshort that is assumed to be sufficiently large, so that

the magnetic current induced in the slot for x > d+ lshort does

not influence the current at x < d. This assumption allows

modeling a semi-infinite slot with infinitely extended metal

(for x > d) as an infinite slot with a finite metal termination.

Such approximation is convenient due to the availability of

the infinite slot spectral Green’s function in (3). To satisfy

the boundary conditions on the metal, an electric current is

induced with an edge-singular behavior, as shown in Fig. 1(b).

The edge singular basis function is described by:

fg(x) =
2

gπ

rectg/2(x− (d+ g/4))
√

1−
(

2(x−(d+g/2))
g

)2
−

2

gπ
(4)

The parameter g in (4) is related to the width of the current

distribution on the metallic interruption. The value of g was

found empirically to be linked to the width of the slot and the

free-space wavelength as

g =
5

3

√
wλ. (5)

The average voltage on the delta-gap (vδ) and on the

metallic interruption (vg), can be expressed as the following

system of two linear equations [16]:

{

vδ = iδZδδ + igZδg

vg = iδZgδ + igZgg = 0
(6)

Fig. 2. Comparison between the input impedance of a semi-infinite slot
calculated with our method and CST. The geometrical parameters of the
structure are d = λ0/4, w = λ0/50 and δ = λ0/40. λ0 is the wavelength in
free space at f0. (a) The slot is surrounded by free space. (b) A thin dielectric
substrate is added: εr = 4, h = λd/20 when λd is the wavelength in the
dielectric at f0.

where ig is the amplitude of the current on the metallic

interruption and we imposed vg = 0 for the perfect conducting

termination. The self and mutual impedances are given by

Zj,i =
1

2π

∫

∞

−∞

Fi(kx)Fj(−kx)e
jkx(xi−xj)

Ds(kx)
dkx (7)

where the subscripts i and j are either δ or g, xδ = 0 and

xg = d. Fg(kx) is the spectral expression for the edge singular

basis function:

Fg(kx) = ejkxg/2×
(

J0

(

kxg

2

)

− jH0

(

kxg

2

)

−
2

π
sinc

(

kxg

2

)

e−jkxg/4

)

(8)

where H0 is the zeroth order Struve function.

The input impedance of the slot can now be derived from

(6) as the ratio between the average voltage and the current

on the delta-gap:

Zin =
vδ
iδ

= Zδδ −
ZδgZgδ

Zgg
. (9)

Figure 2(a) shows the input impedance of a semi-infinite slot

in free space calculated as described above, compared to CST.

The distance between the excitation gap and the termination

of the slot is d = λ0/4, the width of the slot is w = λ0/50
and the length of the delta-gap is δ = λ0/40, where λ0 is the

wavelength in free space at f0. Figure 2(b) shows the results

of the same slot when a thin dielectric substrate is added. The

relative permittivity of the material is εr = 4 and the height

of the substrate is h = λd/20, where λd is the wavelength in

the dielectric at f0. An excellent agreement is shown in both

cases.

III. EQUIVALENT TRANSMISSION LINE MODEL

The integrand in (7) presents two types of singularities:

square-root branch points representing the space waves radi-

ating away from the slot, and poles associated with quasi-

TEM waves launched along the slot. When the poles and the

branch points coincide, e.g. for a slot on perfectly conducting

ground plane radiating in a homogeneous medium, the two



Fig. 3. Equivalent transmission line circuit representing the two basis
functions of the semi-infinite slot. (a) The end-point is represented by a
transformer and a remaining impedance in parallel to an infinite line. (b)
The impedances are represented as resistor accounting for radiation and an
inductor accounting for the reactive energy at the feed and the end point.

contributions cannot be considered separately. In these cases

the integral in (7) can be solved asymptotically with the

method in [14]. This approach allows writing the voltage on

the slot for large values of x as the solution of a tapered

transmission line with x-dependent characteristic impedance,

which is not convenient to model multiple feed points or

terminations.

However, introducing losses in the ground plane [12], [15]

or a thin dielectric substrate, the pole singularity moves away

from the branch point in the complex kx-plane, so that the

polar contribution can be isolated. The location of the pole,

kxp, can be found using a local-search algorithm (e.g. New-

ton’s method) starting from k0. Using Cauchy’s theorem the

polar contributions to the integrals of (7) in kxp are evaluated.

The self impedances are split into their residue contributions

and remaining terms Zδδ,rem and Zgg,rem. For sufficiently large

electrical distances d between the feed and the termination,

the mutual impedances are well represented by their residual

contribution. This allows us to draw an equivalent transmission

line circuit representing a semi-infinite slot as shown in Fig.

3(a). For small distances d the interaction between the two

basis functions is not described by the mode only propagating

along the slot, but also by the space wave coupling, which is

not accounted for in the transmission line model.

The turn ratios of the two transformers are equal to nδ =
Fδ(−kxp) and ng = Fg(−kxp). The characteristic impedance

of the transmission line is [12]:

Z0,s = −
2j

D′

s(kxp)
(10)

where the prime (′) indicates the operation of differentiation.

The propagation constant along the line is kxp.

Fig. 4. Comparison between the input impedance of a semi-infinite slot in
a lossy ground plane calculated with our method and CST. The geometrical
parameters of the structure are d = λ0/4, w = λ0/90 and δ = λ0/90. λ0 is
the wavelength in free space at f0. The locations of the pole with respect to the
branch point are also shown. (a) σ = 6× 107 Sm−1 (b) σ = 1000 Sm−1.

We define a single impedance to represent the end-point of

the semi-infinite slot:

Zend =

(

Zgg,rem/n
2
g

)

Z0,s
(

Zgg,rem/n2
g

)

+ Z0,s

. (11)

The two impedances in the circuit are represented explicitly

as resistors accounting for radiation and inductors accounting

for the reactive energy at the feed and the end point, such that

the transmission line circuit is drawn as shown in Fig. 3(b).

Figure 4 shows the comparison between the input

impedance of a semi-infinite slot in free space calculated using

the previously introduced method of moments and with the

transmission line model. The distance between the end-point

of the slot and the feeding gap d = λ0/4 and the width

of the slot is w = λ0/90. The length of the feeding gap

is δ = λ0/90. Two different surface conductances of the

ground plane are considered: σ = 6× 107 Sm−1 (copper) and

σ = 1000 Sm−1. The corresponding distances between kxp
and k0 are (0.0002 − 0.0002j)k0 and (0.086 − 0.0691j)k0,

respectively, as shown in the figure. It can be seen that for

σ = 6× 107 Sm−1 the transmission line does not describe

the input impedance accurately, as the distance between kxp
and k0 in the complex kx-plane is too small. In the case

when σ = 1000 Sm−1 this distance is larger and the polar

contribution represents better the wave launched along the slot.

Figure 5 shows a similar comparison when a small dielectric

is introduced. The dimensions of the structure are the same as

in Fig. 2(b). A good agreement is obtained, as the distance

between kxp and k0 is 0.339k0 at f = f0. The location of the

pole with respect to the branch point is also shown in Fig. 5.

IV. END-POINT IMPEDANCE

In the previous section an impedance is introduced which

describes the end-point of the slot. The impedance is found

to be inductive and to have a non-zero resistance, accounting

for radiation emerging from the end-point.



Fig. 5. Comparison between the input impedance of a semi-infinite slot on a
dielectric substrate calculated with the transmission line model and the MoM.
The geometrical parameters of the structure are d = λ0/4, w = λ0/50,
δ = λ0/40, h = λd/20 and εr = 4. λ0 and λd are the wavelengths at f0
in free space and in the dielectric respectively. The location of the pole with
respect to the branch point is also shown.

Fig. 6. Comparison between the voltage along a semi-infinite slot on a
dielectric substrate calculated with the transmission line model and the MoM.
The excitation current is iδ = 1A. The geometrical parameters of the
structure are d = λ0, w = λ0/20, δ = λ0/500, h = λd/20 and εr = 4.
λ0 and λd are the wavelengths at f0 in free space and in the dielectric
respectively.

Figure 6 shows the voltage along the semi-infinite slot

calculated with the MoM and from the transmission line

circuit. Clear differences can be seen around the feeding gap

and near the end-point of the slot. The voltage calculated

using the transmission line circuit is not zero at the end-point

but equal to the voltage across the load Zend. The voltage

calculated with the method of moments goes to zero at the end

point, but deviates from the sinusoidal distribution close to the

termination. This deviation from the sine can be explained by

observing the electric field inside the slot. The direction of the

electric field inside the slot near the end-point is visualized in

CST, and the result is shown in Fig. 7. The electric field along

the slot is oriented in the transverse direction, while near the

end the field lines bend, in order to be normal to the metal

on all three sides. The impact of this bending of the field, and

with it the magnetic current, is dependent on the width of the

slot. Figure 8 shows the value of Zend for different w. It can

be seen that both the inductance and the radiation resistance

associated with the end point decrease for narrower slots.

V. FINITE SLOTS

Let us consider the infinite slot on a dielectric substrate,

interrupted on both sides of the feeding gap as shown in Fig.

9(a). The edge-singular electric current is induced on both

Fig. 7. Electric field lines inside a semi-infinite slot near the end-point.

Fig. 8. Values of the end-point impedance Zend as a function of frequency
for three different widths of a semi-infinite slot on a dielectric substrate. The
height of the substrate is h = λd/40 and εr = 4. λ0 and λd are the
wavelengths at f0 in free space and in the dielectric respectively.

Fig. 9. (a) Infinite slot on a dielectric substrate interrupted on both sides
of the feeding gap. (b) Space domain basis functions with respect to their
location along the finite slot.

metallic interruptions as shown in Fig. 9(b), such that the

boundary conditions are verified.

Since the structure is symmetric, two edge-singular currents

on the metal have the same amplitude and the two individual

basis functions are combined into one term which is centered

around the center of the finite slot:

Fg
double(kx) = Fg (kx) e

jkxl/2 + Fg (−kx) e
−jkxl/2 (12)

where l is the length of the slot. The input impedance of the

finite slot can be found, by following the same steps as the

semi-infinite slot, to be:

Zin = Zδδ −
Zdouble
δg Zdouble

gδ

Zdouble
gg

. (13)

The transmission line model for the finite slot is very

similar to the model of the semi-infinite slotline, but including



Fig. 10. Equivalent transmission line circuit representing the finite slot in the
presence of a thin dielectric substrate.

Fig. 11. Comparison between the input impedance of a finite slot calculated
with the transmission line model, our MoM and CST. The geometrical
parameters of the structure are l = λ0/2, w = λ0/50 and δ = λ0/40.
λ0 is the wavelength in free space at f0. (a) The slot is surrounded by free
space. (b) A thin dielectric substrate is present: εr = 4, h = λd/20 when
λd is the wavelength in the dielectric at f0.

terminated transmission lines on both sides, as shown in Fig.

10. Figure 11(a) shows the input impedance of a finite slot in

free space calculated with (13), compared to CST. The length

of the slot is l = λ0/2, the width of the slot is w = λ0/50
and the length of the delta-gap is δ = λ0/40, where λ0 is the

wavelength in free space at f0. Figure 11(b) shows the results

of the same slot when a thin dielectric substrate is added. The

relative permittivity of the material is εr = 4 and the height

of the substrate is h = λd/20, where λd is the wavelength in

the dielectric at f0. An excellent agreement between the MoM

and CST is shown in both cases. The result of the transmission

line model is also presented in Fig. 11(b). It can be seen that

the accuracy of the transmission line model is better for higher

frequency, for which the electrical distance between the feed

and the slot ends is larger.

VI. CONCLUSION

An equivalent transmission line model for planar slots

embedded in generic stratified media was presented. The

procedure started with deriving an efficient method of mo-

ments solution for semi-infinite slots, with only two basis

functions, one located at the feeding point and one at the

termination of the slot. The basis functions were chosen such

that they properly account for the reactive energy localized at

these points. The procedure was then extended to a double

termination, as to find the input impedance of a finite slot

antenna with arbitrary length.

Based on the numerical solution, an equivalent transmission

line circuit was derived, by extraction of the pole contribution

from the mutual impedance integrals. To be able to separate

the residue contribution from the space wave, a thin dielectric

slab or losses in the metal can be introduced. The radiation

is described in the model as resistances located at the feed

and the end points. This approach allows representing the

radiation from the slot as the generation of different space

waves, one associated with the feeding gap and two emerging

from the end points. The physical dimensions and the shape of

the basis functions was accounted for in the circuit by means

of transformers.
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