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Abstract The unstable invariant solutions in the large eddy simulation of homogeneous shear turbulence with vanishing kinematic
viscosity are obtained by Newton-Krylov-hookstep method. The small scale is represented by the standard Smagorinsky model with a
constant Cs. It is shown that these solutions appear by a saddle-node bifurcation as decreasing Cs and have the same symmetry with
Nagata’s equilibrium solution in Couette flow (JFM 217, 519-527 (1990)). Both lower- and upper- branch solutions are characterized
by staggered streamwise-inclined vortex pairs. Also, lower-branch solutions are localized in the vertical direction, while upper-branch
solutions are characterized by taller flow structures, which is consistent with the asymptotic theory of any shear flow at high-Reynolds
numbers (K. Deguchi & P. Hall, Phil. Trans. R. Soc A, 372:20130352 (2014)).

INTRODUCTION

It has been known that coherent structures in turbulence are incomplete representations of unstable equilibrium solutions
or periodic orbits in the Navier-Stokes equations [5, 4]. These invariant solutions have advantages to elucidate the dy-
namics of turbulence, since they are reproducible. At high Reynolds numbers, however, these solutions are hard to be
tracked as a function of the Reynolds number, and their relevance to fully-developed turbulence are not revealed yet. The
key idea is to model the small scale dynamics and to focus on large-scale motions, as previous works [3, 8], which will
reduce the size of the nonlinear systems that we need to solve to obtain an invariant solution. The main purpose of this
study is to capture such invariant solutions in the large eddy simulations (LES) of homogeneous shear turbulence (HST)
with an eddy viscosity model (here we use the standard Smagorinsky model).
The filtered incompressible Navier-Stokes equation and continuity equations
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where ui, p, ν and νt are the filtered velocity, modified pressure (including the diagonal part of the subgrid-scale stress
tensor), kinematic viscosity (ν = 0) and eddy viscosity νt ≡ (Cs∆)2(2SijSij)

1/2 (Sij is the grid-scale strain-rate tensor
and ∆ ≡ 3

√
∆x∆y∆z is the grid-scale filter size), are formulated in terms of the vertical vorticity and of the Laplacian

of the vertical velocity [2]. The computational domain is periodic in the streamwise (x) and spanwise (z) directions,
and periodic between shifting points of the lower and upper boundaries (so-called “shear-periodic" boundary condition).
The discretization is the dealiased Fourier expansion in (x, z), and compact finite differences in the vertical direction (y),
with the shear-periodic boundary conditions embedded in the finite-difference matrices for each Fourier mode [6]. The
nondimensional parameters are the two aspect ratios of the computational box, Axz = Lx/Lz and Ayz = Ly/Lz and
the Smagorinsky constant Cs, where Lx, Ly and Lz are streamwise, vertical and spanwise length of the computational
domain. The physical grid points are (64, 48, 32). In this study, the solutions are obtained by Newton-Krylov-hookstep
method [7] in the symmetric subspace: (I) a reflection with respect to the plane of z = 0 plus a streamwise shift by Lx/2,
and (II) a rotation by π around the line x = y = 0 plus a spanwise shift by Lz/2:

(I) [u, v, w](x, y, z) = [u, v,−w](x+ Lx/2, y,−z); (II) [u, v, w](x, y, z) = [−u,−v, w](−x,−y, z + Lz/2). (2)

The lower- and upper-branch solutions are continued along Cs by using the arc-length method.
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Figure 1. The box-averaged velocity fluctuations normalized by SLz as a function of the Smagorinsky constant Cs for the box-aspect
ratios (Axz, Ayz) = (3, 1.33). (a) urms/SLz; (b) vrms/SLz; (c) wrms/SLz .



0 100 200 300 400
0

0.02

0.04

0.06

0.08

0.1

−0.5 0 0.5

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 2. The flow structure of the lower- (a,d) and upper-branch (b,e) solution for (Axz, Ayz) = (3, 1.33) and Cs = 0.42. (a,b) The
streamwise-averaged ωx(y, z)/S (contours), and the total streamwise velocity U/Lz = 0.0 (white solid line); (c) the mean streamwise
velocity of the lower- (blue thick line) and upper-branch solution (red dashed line), the black thin line is Sy/Lz; (d,e) isosurfaces of
|ωx| = 0.6|ωx|max (red, blue) and U/Lz = 0.0 (green), representing 3d-vortical structures and streaks of the lower- (b) and upper-
branch (d) solutions. (f) The time-evolution of kinetic energy K from the lower-branch solution (blue). The red dashed line represents
K of the corresponding upper-branch level. Values are normalized by (SLz)

2.

RESULTS

Figure 1 shows the box-averaged velocity fluctuations continued along the Smagorinsky constant Cs of the lower- and
upper-branch solutions (LB, UB, hereafter). LB is characterized by the weaker streamwise velocity fluctuation and slightly
larger cross-streamwise velocity fluctuations. As shown in Fig. 2 (a,b,c), the LB solution is localized in y direction (at
around y = 0 because of the symmetry), which may be represented by the asymptotic theory of the exact coherent
structure [1]. Figure 2 (d,e) shows isosurfaces of |ωx| = 0.6|ωx|max and U/Lz = 0.0, representing 3d-vortical structures
and streaks of LB and UB solutions at Cs = 0.42. The streamwise-velocity streak of the LB solution meanders more
than that of UB, on the other hand, the UB solution is characterized by the taller structure of the streak and the vortical
structures. The time-evolution from a LB solution with Cs = 0.42 is performed, being restricted in the above symmetric
subspace, as shown in Fig. 2(f). It exhibits that the kinetic energy bursts-up toward the level of the UB solution, and later,
the flow represents the chaotic behaviour. In ongoing work, we are tracking these solutions up to Cs = 0.1 − 0.2 which
are the standard values for the LES of homogeneous shear turbulence to represent turbulence velocity spectra. Also, these
LES solutions will be compared with the previously computed unstable periodic orbits in the direct numerical simulation
of HST.
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