
 
 

Delft University of Technology

Fourier series for eclipses on exoplanet binaries

Visser, Paul; Mol, M.A.

Publication date
2020
Document Version
Final published version
Published in
Astronomy & Astrophysics

Citation (APA)
Visser, P., & Mol, M. A. (2020). Fourier series for eclipses on exoplanet binaries. Astronomy & Astrophysics,
633(January), 1-12. Article A18.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



Astronomy
&Astrophysics

A&A 633, A18 (2020)
https://doi.org/10.1051/0004-6361/201936529
© ESO 2019

Fourier series for eclipses on exoplanet binaries
P. M. Visser and M. A. Mol

Delft Institute of Applied Mathematics, Technical University Delft, Van Mourik Broekmanweg 6, 2628 XE Delft, The Netherlands
e-mail: p.m.visser@tudelft.nl

Received 20 August 2019 / Accepted 15 November 2019

ABSTRACT

Context. A double planet system or planet binary undergoes eclipses that modify the reflective light curve. In the time domain, the
eclipse events are fast and weak. This would make their signal difficult to find and recognize in the phase light curve, even for small
inclinations when eclipses happen frequently. However, due to the quasiperiodic nature of the phenomenon, the Fourier transform of
the direct reflection signal consists of a double sum of sharp peaks. These peaks can be resolved for large close binaries and sufficiently
long observation times with a star coronagraph.
Aims. Eclipses modulate the phase curve, having an orbital period 2π/ω, with a contribution from the relative motion in the binary
plane of a period 2π/Ω. This leads to a spectral structure with basis frequencies ω and Ω. We aim to characterize these spectra.
Methods. We studied the regime of short eclipses that occur when the planet radii are small compared to the planet separation.
We derived formulas for the peak amplitudes applicable to homogeneous (Lambertian) planet binaries in circular orbit with small
inclination.
Results. The effects of an eclipse and of double reflection appear as first- and second-order contributions (in planet radius over
separation) in the reflection signal, respectively. Small peaks appear as observable side bands in the spectrum. Identical structures
around mΩ are characteristic of short-duration eclipses. Deceasing side bands could indicate double reflection between companions.
Conclusions. Fourier analysis of the light curve of non-transiting planets can be used to find planets and their moons. Difficulties in
interpreting the structures arise for small planet separation and when there are several moons in mean-motion resonance.

Key words. Moon – eclipses – planets and satellites: detection – methods: analytical – techniques: interferometric –
techniques: photometric

1. Introduction

The discovery of extensive multi-planet systems around other
stars (Lovis et al. 2011; Gillon et al. 2017; Shallue & Vanderburg
2018) shows that the Solar System is not unique. Therefore,
we may expect exoplanets to also have their own satellites, like
the Solar-System planets; Mercury and Venus being exceptions
(Namouni 2010; Ogihara & Ida 2012; Barr 2016). Simulations
show that in three-planet systems, two planets often cross orbit
and then bond via tidal dissipation, forming a pair called a planet
binary (Ochiai et al. 2014; Lewis et al. 2015). Knowledge of
planet binaries and moons is important for our understanding
of the origins and formation of planetary systems. A large moon
can determine the stability of the planet’s spin, generate strong
(ocean) tides, and lock its companion into a spin-orbital reso-
nance. These effects in turn influence (geo)physical processes in
the crust, oceans, and atmosphere of the planet companion.

Direct imaging of exoplanets is beginning to come within
reach with a new generation of ground-based telescopes, that is,
the Thirty Meter Telescope and the Extremely Large Telescope,
and two dedicated space telescopes, the James Webb Space
Telescope and the Wide Field Infrared Survey Telescope, which
have star-occulting coronagraphs with an angular resolution of
below 10−1 au ly−1 and contrast of 10−6 (Boccaletti et al. 2004;
Krist et al. 2007; Douglas et al. 2018). However, the spatial res-
olution of an exomoon or exoplanet binary requires an angular
resolution of much less than a milliarcsecond. This will not
be possible in the foreseeable future, not even for the nearest
stars. Therefore, astronomers will have to rely on a single time-
dependent light signal, which is the sum of the light from the

parent star, the infrared emission, and the total reflected light
from all planets and their moons. Because the phases of the
two companions (in orbit around their parent) are the same,
their contributions to the modulated radial velocity of the star
are equal, as are the contributions to the phase light curve.
This makes their individual contribution to the signal indis-
tinguishable. However, there do exist several effects that may
reveal the presence of an exomoon: (i) the photocenter wobble,
(ii) the Rossiter-MacLaurin effect during a transit, and (iii) the
transit timing variation or transit timing duration, which can
be detected using the methods of Kipping (2011) and Heller
et al. (2016). Cabrera & Schneider (2007a,b) proposed the use of
(iv) the planetary and lunar transits that occur when the two
binary companions become precisely aligned with the observer,
and (v) the eclipses that occur for alignments between the planets
and the star.

During an eclipse, the shadow from the planet or moon tem-
porarily reduces the reflection signal of the companion. This
leads to a small reduction in the already weak phase light curve
for the short duration of the event. Although small, the eclipses
are actually the dominant effect from a moon in the reflective
phase light curve. The close binary Jupiters found in the simu-
lations by Ochiai et al. (2014) have separations of between four
and eight times their radii. In such a system, the shadows would
be large and eclipses would happen frequently.

2. Fourier series

In all generality, the light signal at a time t from an exoplanet
binary is a function of the geometric configuration at that time t.
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Fig. 1. Geometry: the central star (yellow) is at the origin of the i jk-
frame. Vector R points to the binary barycenter, and the vector r points
from the planet to the moon (orange day sides). The orbital plane of the
binary barycenter has normal k. The lunar plane has normal ê3 and is
inclined by angle α. The angles ϑ and ϕ denote the orbital and lunar
phases. The ascending node is in direction i.

There are two phase angles involved: the orbital phase (mean
anomaly) ϑ of the motion of the barycenter and the lunar phase
ϕ of the relative motion between the two companions (see Fig. 1
and Table 1). Therefore, we may write the ideal reflection signal
from a planet binary as

f (t) = f (ϑ, ϕ), ϑ = ωt, ϕ = Ωt.

We denote with ω, Ω the mean motions: these are the angular
frequencies of the respective barycenter motion and the relative
motion. The sidereal month is then equal to 2π/Ω and the syn-
odic month is 2π/(Ω−ω). Because the phase angles are periodic
variables, f is a double periodic function when considered as a
function of ϑ and ϕ, with periods of 2π. Substitution gives a
quasiperiodic function of time, with the multi-Fourier series:

f (t) = f (ωt,Ωt) =

∞∑

n=−∞

∞∑

m=−∞
ei(nω+mΩ)t f m

n . (1)

If the planets are inhomogeneous, the signal can also contain
the diurnal period. In fact, the three-body system may have up
to 15 basis frequencies, but these include the star’s spin as well
as very slow precessions. Figure 2 shows an example of a phase
curve with the two periods of an exoplanet binary.

The planets are illuminated by light from the host star that
may have a variable intensity I(t). On orbital timescales the
noise is caused by star spots and solar-type cycles. Therefore,
the observed signal is the product F(t) = f (t)I(t) of the ideal
quasiperiodic function from Eq. (1) with the intensity of the star.
The Fourier transform (truncated to observation duration T ) of a
measured reflection signal from the two planets has the form

FT (ν) =

∞∑

n=−∞

∞∑

m=−∞
f m
n IT (ν − nω − mΩ). (2)

It has distinct peaks, as shown in Fig. 3. One sees from this
expression that every coefficient in Eq. (1) is the amplitude of
a peak in Eq. (2). The peak shape IT (ν) is the Fourier transform
of the intensity spectrum of the source I(t). The peak height is
I0T 1/2, if we call I0 the average of I(t). Expression (2) also shows
that noise from the star spills over to the neighboring peaks in the
spectrum: stellar noise aroundω or Ω reduces the visibility of the
peaks. Hence, the noise level in the power spectrum of the star
at the orbital frequencies determines the visibility of the peaks.

Without coronagraph one receives the nett signal I(t) + F(t)
and the spectrum is IT (ν) + FT (ν). The coefficients f m

n that arise
from an exoplanet are of the order of N1/2s2/R2 (s and R are

Table 1. Parameters used in modeling.

Symbol Quantity

t Time
tk, t̄k Time of lunar, planetary eclipse
T Observation duration
L Distance to the observer on Earth
S Star radius
α Binary inclination angle, w.r.t. orbital plane
s1, s2 Planet, moon radius
a1, a2 Planet, moon albedo
R1, R2 Planet, moon position vector
R = R̂R Binary c.m.-position vector
r = r̂r Reduced position vector
s = ŝs Arbitrary planet surface vector

θ Azimuth angle
z Vertical coordinate w.r.t. planet center
l Vertical displacement of shadow center
v Shadow velocity
τ(l) Eclipse duration
Υ(l) Eclipse magnitude

ν Continuous frequency variable
ω Barycenter angular frequency, mean motion
ϑ = ωt Barycenter phase angle, mean anomaly
Ω Lunar orbital frequency
ϕ = Ωt Lunar phase

ô Observation direction
θo Observation inclination, polar angle
φo Phase at inferior conjunction, azimuth
I(t) Variable star luminosity
IT (ν) Fourier transform of star luminosity
I0 Average star luminosity
F(t) Observed reflection signal
FT (ν) Fourier transform of reflection signal
f (t) = f (ϑ, ϕ) Total reflected light curve
f m
n Fourier coefficient of light curve
g(ϑ) Time-integrated dip for lunar eclipse
gn Fourier coefficient of g
h(ϑ) Single-planet phase light curve
hn Fourier coefficient of h

i, j, k, Basis vectors for orbital plane
ê1, ê2, ê3 Basis vectors for lunar plane
N = ωT/2π Number of orbits
k Eclipse index number
n, m Integer indices

Notes. Symbol and significance of the physical quantities used.

the planet and orbital radii, N is the number of observed orbits)
and their contribution must exceed the stellar noise in order to
be visible. The famous light curves from the hot Jupiters found
by Borucki et al. (2009) and Snellen et al. (2009) show that it
is possible to observe phase curves without an occultor. With-
out the transit dip, these stars might have been discarded, while
a Fourier transform would have shown huge peaks from the
phase variation alone. One would however still need a close-in
binary with a short inter-planet distance to detect the effect of an
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Fig. 2. Typical light curve in the time domain for a planet binary, as
observed edge on. The system has zero inclination and the planet radii
have ratio s1/s2 = 2. The bottom horizontal axis shows two annual peri-
ods, the top horizontal axis shows the lunar periods. Orange: signal from
the planet, light blue: signal from the moon, blue: nett signal. The fre-
quencies have ratio Ω/ω = 254/19, as for Earth’s approximate Metonic
cycle, so that the overall periodicity is actually 19 orbits.
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Fig. 3. Left: light curve from Fig. 2 for one halve orbit. Right: corre-
sponding signal in the Fourier domain. The bottom horizontal axis are
in steps of the (fast) lunar frequency. The top horizontal scale are in
steps of the (slow) orbital frequency. The side structures that appear due
to the eclipses are centered around multiples of Ω − ω. They are nearly
identical copies of each other. Since the eclipse magnitudes of the two
types are comparable (and the albedos are equal), the structures at odd
m have almost disappeared. Noise would wash out the dips in the time
domain and broaden these ideal Fourier peaks.

actual eclipse. Blocking the direct starlight with a coronagraph
allows measurement of f 0

0 and eases this severe restriction for
the other peaks to the condition | f m

n | � 10−3 f 0
0 as was shown

in Visser & van de Bult (2015). In Table 2 we give estimates of
the order of magnitude of the principal peak f 0

1 . The calculation
of the (intensity) spectrum FT (ν) for a N-fold orbit phase light
curve allows (i) separation of individual planet contributions in a
multi-planet system (Kane & Gelino 2013), (ii) removal of stellar
noise, and (iii) amplification of the signal by N1/2. Project Blue
(Belikov et al. 2015; Morse et al. 2018) proposes to make a long
and continuous observation of the Alpha-Centauri system with
an occultor, obtaining a signal that would be ideal for Fourier
analysis.

3. Peak pattern in the spectrum of binary eclipses

We decompose the reflective light curve of a double planet as:

f (t) = fD(t) + fE(t) + fS(t), (3)

where D, E, and S indicate the components for direct reflection,
eclipses, and secondary reflections. The D term sums two indi-
vidual planet contributions, where light is reflected off either
planet directly towards the observer. It is the pure phase curve
with the period 2π/ω of the orbit. The E term describes eclipses.
This term is negative: it subtracts the contributions of rays that
are blocked by the companion. The third S term accounts for
rays that are first scattered off one planet in the direction of
the companion and are then scattered a second time into the

Table 2. Estimates for orders of magnitude of Fourier-peak strengths.

System HZ Jupiter HZ Earth
Jupiter M-dwarf Sun-type

Orbital axis R 10S 102S 103S
Lunar axis r S 10S S

Effect | f 0
1 |

Transit
s2

S R
10−1 10−2 10−7

Reflection
s2

R2 10−2 10−4 10−10

Binary transit
s1s2

2

rR2 10−2 10−5 10−12

Binary eclipse
s1s2

2

rR2 10−2 10−5 10−12

Second reflection
s1

2s2
2

r2R2 10−2 10−6 10−14

Lunar tide
s1

3s2
2

r3R2 10−2 10−7 10−16

Stellar tide
s3

R3 10−3 10−6 10−15

Planet tide
s2S 3

R5 10−4 10−9 10−18

Notes. Red and blue numbers indicate swamping by stellar noise at
a level of 10−3, with and without occultor, respectively. We assumed
an observation duration T of one orbital period; longer observation
increases the values of | f m

n |. Bottom three rows estimate strengths from
the gravitational tide of a nearby moon on the planet, of the planet on
the star, and of the star on the planet, respectively.

observer direction. The measured Fourier spectrum (Eq. (2)) has
a corresponding decomposition with coefficients of the form

f m
n = fDnδ

m
0 + f m

En
+ f m

Sn
.

Here, the Kronecker-delta is introduced to cancel the frequencies
mΩ in the direct component, since these do not occur.

We assume the orbits of the barycenter and of the relative
motion are circular. The longitude angles of the two motions
(the true anomalies) are therefore equal to the orbital phases
(the mean anomalies). Now we consider eclipses. The planet
(number 1) is between the central star and the moon (planet num-
ber 2) for Ωt = ωt + 2πk, while the moon is between the star and
the planet for Ωt = ωt + 2πk + π (here k is an integer), see Fig. 4.
We denote the times for these events with

tk =
2πk

Ω − ω, t̄k =
2πk + π

Ω − ω . (4)

We consider first the case that the planet is very dark and that the
moon is very bright; the albedos are a1 = 0 and a2 = 1, so in this
case only the lunar eclipses at t = tk are observable. In the sum-
mary at the end of this paper, we put the albedo factors back in
the equations. The separation between two (possible) successive
eclipse events is the synodic month: tk+1 − tk = 2π/(Ω − ω). The
distance r between planet and moon will generally be large com-
pared to the radii, s1 and s2. Because the velocity at which the
shadow moves over a surface is equal to v = |Ω − ω|r, the dura-
tion of an eclipse is less than or equal to (2s1 + 2s2)/v. Figure 2
shows that the eclipses are of comparatively short duration.
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We now approximate the contribution from eclipses to the
light curve as a sum of delta functions. In terms of the phase
variables we write

fE(ϑ, ϕ) =
v

r
g(ϑ)

∞∑

k=−∞
δ(ϕ − ϑ − 2πk). (5)

As function of time, using Eq. (4) this becomes

fE(t) = fE(ωt,Ωt) =

∞∑

k=−∞
g(ωtk)δ(t − tk). (6)

The function g can be interpreted as the time integral of an
eclipse occurring around phase ϑ = ωt. It is also periodic in ϑ.
The approximation ignores the details of the peaks in the time
domain.

It follows from Fourier theory that the continuous Fourier
transform of the sum of equally spaced delta peaks (Eq. (6)) in
the time-domain is a periodic function in the frequency domain,
with periodicity Ω − ω. Hence, we have the identity
∑

n

∑

m

f m
En

IT (ν − nω − mΩ + Ω − ω)

=
∑

n

∑

m

f m
En

IT (ν − nω − mΩ).

For the frequency behavior to be periodic in ν by Ω − ω, the
coefficients must be related by f m+1

En−1
= f m

En
. However, this implies

f m
En

= f 0
En+m

. The overall Fourier transform (Eq. (2)) of a detected
signal, neglecting double reflections for the moment, is therefore

FT (ν) =
∑

n

fDnIT (ν − nω) +
∑

n

∑

m

f 0
En+m

IT (ν − nω − mΩ),

and is characterized by the two sets of coefficients fDn, f 0
En

. The
effect of reflection between companions is discussed in Sect. 7.

Figure 3 shows a spectrum of an eclipsing binary with two
eclipses every month: one lunar and one planetary eclipse. The
peaks at the frequencies nω that correspond to the annual motion
are found near the origin. These peaks have values f 0

0 , f 0
1 , f 0

2 , and
f 0
3 , and so on. They arise predominantly from direct reflection

and have almost the same values as the spectrum of one planet.
The structures around ν = mΩ for m , 0 are due to eclipses.
They have peak amplitudes like f m

0 , f m
1 , f m

2 , and f m
3 . One has

to compare these with the first side structure around ν = Ω.
For a dark planet and a bright moon (or for a dark moon and
a bright planet), the side bands at m = 1 and m = 2 are copies of
one another, because the peak values are related by f 1

−1 = f 2
−2,

f 1
0 = f 2

−1, f 1
1 = f 2

0 , and so on. If both companions are bright
there is destructive interference at the odd values for m. Because
of the doubling of eclipses, the structure in the Fourier trans-
form repeats after 2Ω − 2ω. This is the case in Fig. 3, where the
even and odd side bands are comparable. This pattern of iden-
tical copies is repeated as long as |m| � r/s1. The motion of a
moon and planet around each other thus gives rise to side bands
in the spectrum at the frequency Ω, with a smaller structure of
peaks separated by the ω of the annual motion. The peak f 1

−1 at
Ω − ω is the average of the (integrated) eclipse dips and should
be negative (for a suitable choice of phase) and is the largest peak
in the first side band. Retrograde relative motion has a negative
Ω.

The short duration of the eclipse events results in frequency
side bands that are approximately identical. An alternative

derivation of this elementary result is the following. The Fourier
coefficients of Eq. (1) can be expressed as the double integral:

f m
n =

1
(2π)2

2π∫

0

dϑ

2π∫

0

dϕ e−inϑ−imϕ f (ϑ, ϕ). (7)

We consider short eclipse duration. Consequently, the integrand
in Eq. (7) from the eclipse contribution fE is only nonzero for
times t near Eq. (4). This implies that the phase difference ϑ − ϕ
is near an integer multiple of 2π; see Eq. (5). We may therefore
replace the exponent e−inϑ−imϕ in the integrand with e−inϑ−imϑ, so
that a good approximation is obtained:

f m
En

=
1

(2π)2

2π∫

0

dϑ e−i(n+m)ϑ

2π∫

0

dϕ fE(ϑ, ϕ) = f 0
En+m

.

By integrating Eq. (5) over one period of the independent
variable ϕ, one obtains the ϑ-periodic function g(ϑ):

r
v

2π∫

0

fE(ϑ, ϕ)dϕ = g(ϑ) =

∞∑

n=−∞
gneinϑ,

which has Fourier coefficients gn. After using these results again
in the combination of Eqs. (5) with (7), one obtains

f 0
E n+m =

v

(2π)2r

2π∫

0

dϑ e−i(n+m)ϑg(ϑ) =
v

2πr
gn+m. (8)

The identical side-band structures in the spectrum are given by
the coefficients of the periodic function g describing the time-
integrated dips due to eclipses as a function of orbital phase,
multiplied by the number of eclipses per unit time.

4. Numerical and observational implementation

In this paper we implicitly assume that Ω and ω do not have
a simple ratio, so that f is quasiperiodic. However, if the ratio
of the frequencies is simple, that is, Ω/ω = h/k with h, k
small coprime integers, the light curve is purely periodic, with
an overall period 2πk/ω. This situation would correspond to
a peculiar type of orbital resonance. Due to the fact that now
nω + mΩ = (nk + mh)ω/k, many pairs n,m correspond to the
same frequency, each contributing to the same spectral peak. It
is no longer possible to find the individual coefficients f m

n from
the Fourier-transformed light curve.

We are interested in the case where Ω/ω is not a simple ratio.
However, in order to numerically simulate the system, we have
to choose a smallest time-step dt and a total integration time
T . Because we want our theoretical Fourier peaks to be sharp,
we require an overall periodicity. The most accurate approach
is to use two coprime multiples of dt for the two periods. This
also allows the eclipse maxima tk, t̄k and the maxima for the
orbital phase to occur at exact data points. The fast Fourier
transform cannot be used, since our domain size is not a power
of two.

The Babylonians and ancient greek astronomers also wanted
to approximate the ratio of the duration of a year to that of a
month on Earth and they used Ω/ω = 1 + 235/19. The over-
all period of 19 yR is called the Metonic cycle; see Pannekoek
(1947). In the numerical calculations for all figures in this paper,
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Fig. 4. Top view of the system. For a lunar eclipse, the moon is in
the shadow of the planet, and the orbital phases must be equal: ϑ = ϕ
modulo 2π. For a planetary eclipse, with the planet in the shadow of the
moon, the orbital phases are opposite: ϑ = ϕ + π modulo 2π.

we also used this ratio. Obviously quasiperiodic motion is better
approximated as the numbers h, k become larger.

For analysis of observational data we encounter the same
problem because there is also a smallest observational time res-
olution dt and a total observation duration T . If ω is known in
advance, it may help to consider an integral number of orbits,
but the peaks mΩ will be displaced due to the random cutoff,
roughly by ωN−1/2. On the other hand, it could be that the rele-
vant frequencies only appear after the Fourier transform has been
made. In that situation, comparing FT with IT seems best.

For planets very close to an M-type star, it may be possible
to obtain an uninterrupted signal for several orbits. Fourier peaks
may be found even without spatially isolating the planets (as
individual points) from the star. For planets near a bright G-type
star, the direct light must be blocked with a coronagraph (Cash
2006; Mawet et al. 2010). When continuous observations are not
available due to the length of the period, several short-duration
observations along the orbit may be sufficient. For example, one
could make four separate observations during intervals of equal
length ∆T , along points that are 90◦ apart in orbital phase. If ∆T
is several lunar periods but still small compared to the annual
period, that is,ω � (∆T )−1 � Ω, an approximation for the peaks
in Eq. (2) is

f m
n ≈

1
4∆T I0

3∑

k=0

i−nk
∫ πk

2ω+ ∆T
2

πk
2ω− ∆T

2

e−imΩtF(t)dt, n = 0, 1, 2, 3.

One could neglect f m
4 and higher n because these coefficients are

small and decay fast with n. This method is analogous to com-
bining several telescopes in astronomical interferometry. Now,
peak height of the side bands scales as Ω∆T , not as Ω/ω.

5. Eclipses in the time domain

5.1. Description of planet binary

Let the positions of the planet and its moon be the vectors R1
and R2 and let R be the coordinate vector from the star to the
barycenter of the binary. The difference vector r = R2 −R1 is the

relative coordinate (pointing from the larger planet to the smaller
moon). The position vectors are given by

R(t) = R̂(t)R = (i cosωt + j sinωt)R, (9)
r(t) = r̂(t)r = (i cos Ωt + ê2 sin Ωt)r.

The ascending node is in direction i if the lunar plane is inclined
with respect to the orbital plane. See Fig. 1 for the geometry. For
the orbits to be stable, the planet separation distance r must be
smaller than R. We assume that the bodies are spheres, with radii
s1, s2 that are small compared to r, and that the stellar radius S
is small compared to the distance R between the star and the
barycenter of the binary. We thus consider the regime where

s2 ≤ s1 � r � R, S � R � L. (10)

As L is the distance of the system to Earth, the system could be
spatially resolved from the star for inner working angles below
R/L. One requires an unfeasible angular resolution below r/L for
separation of the planet and moon.

Now, when one planet moves between the star and its com-
panion, an eclipse does occur when the shadow of the planet
falls onto the companion. One instant of a lunar eclipse is found
at t = 0, because at that moment R = Ri and r = ri and there-
fore ϑ = ϕ = 0. The eclipse is then at maximum, with the moon
completely in the shadow of the planet.

Because S � R, light rays are almost parallel when they hit
the surface of the planet. In that case, the distance between the
moon center and the axis of the shadow cylinder is |R̂ × r|. We
introduce the displacement l = lk as the minimal value of this
distance. This is simply the minimal distance between the disk
centers when the planets are projected on the plane normal to
R̂, that is, from the viewpoint of the star. In general, |R̂ × r| is
minimal for

d(R • r)
dt

= 0.

The minima indeed occur at the times given by Eq. (4). We refer
to an eclipse as complete if the moon gets inside the shadow
cylinder of the larger planet or if the planet fully intercepts the
shadow cylinder of the moon. From the viewpoint of the cen-
tral star, the disks of the two bodies overlap each other. In the
parallel-ray approximation, the complete eclipses arise for

lk < s1 − s2. (11)

We refer to an eclipse as partial when the shadow cylinder of one
planet just intersects the other planet. The condition is

s1 − s2 < lk < s1 + s2. (12)

There is no eclipse at tk if s1 + s2 < lk. Our distinction between
complete and partial eclipse is the same as for lunar eclipses on
Earth. However, in our approximation S � R, on the surface, the
penumbra is negligible compared to the umbra (Link 1969). Of
course, the distinction between total and partial solar eclipse on
Earth usually refers to different observer locations.

Exoplanet eclipses must occur frequently in order that they
may be recognized. Therefore, inclination of the lunar plane with
respect to the barycenter plane must be sufficiently small. We
assume 0 ≤ α � 1 and approximate the unit basis vectors in
Eq. (9) by

ê2 = j + αk, ê3 = k − α j.
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Fig. 5. Eclipse magnitude Υ, defined in Eq. (14), vs. displacement l
of the shadow trace, for radii s1 = 2s2 (left) and s1 = 3s2 (right). The
visuals show the viewpoint from the star: the eclipses (both types) trace
out a nearly horizontal band. Blue and red: Υ and Ῡ for lunar and plan-
etary eclipses, respectively. For |l| = s1 ± s2, the shadow cylinder of one
partner grazes its companion (and the projected disks touch). There, the
third derivative is infinite, resulting in a tail in the Fourier spectrum.
When Υ(lk) is multiplied with the phase curve h(ϑk − φo), one obtains
|g(ϑk)| which equals the integrated dip in the light curve for edge-on
observation of an eclipse.

The displacement for eclipse at time tk is now

±lk = −rR̂(tk) • ê3 = r(tk) • k = αr sinωtk = αr sin Ωtk. (13)

The eclipses can occur frequently, but not necessarily every
month. We consider three cases: (i) complete eclipses occur
every month when lk is always less than the difference in the
planet radii. Because ±lk oscillates between −αr and αr, this
is the case where αr < s1 − s2. The Galilean satellites Io,
Europa, and Ganymede fall in this case. (ii) Eclipses occur every
month but are sometimes partial in cases where s1 − s2 < αr <
s1 + s2. (iii) Eclipses do not always occur for s1 + s2 < αr,
like for Jupiter-Callisto and the Saturn-Titan, Pluto-Charon, and
Earth-Moon systems.

5.2. Eclipse duration and eclipse magnitude

As an eclipse happens on the moon (or the planet), the shadow
of one body crosses the surface of its companion. It will be
convenient to parametrize the surface vector s in cylindrical
coordinates θ, z, as:

s = (i cos θ + j sin θ)
√

s2 − z2 + kz.

The surface element in cylindrical coordinates is d2A = sdθdz.
From the viewpoint of the star, this shadow is a disk of radius s1
(or s2). The planet shadow traces out a nearly horizontal band
along the surface; see insets in Fig. 5. This band for z is the
intersection [z−, z+] = [−s2, s2] ∩ [l − s1, l + s1], or

z− = max(−s2, l − s1) < z < z+ = min(s2, l + s1).

The global eclipse duration, which is the time between first
contact (of the shadow cylinders) and last contact, is equal to

2
v

√
(s1 + s2)2 − l2.

The local duration of the eclipse for one fixed point on the moon
(in a nonrotating frame) is the cord length at z divided by the
shadow velocity:

τ(z) =
2
v

√
s1

2 − (z − l)2.

The following definition of a “magnitude”, as an average of the
eclipse duration as a function of the displacement l, will prove
useful:

Υ(l) =

z+∫

z−

dz (s2
2 − z2)τ(z)

s2∫

−s2

dz (s2
2 − z2)

=
3
2

z+∫

z−

dz
v

(
1 − z2

s2
2

) √
s1

2 − (z − l)2

s2
.

(14)

The corresponding eclipse magnitude Ῡ(l) is of the same form
as Eq. (14) but with s1 and s2 interchanged. Graphs of Υ and Ῡ

are plotted in Fig. 5. Although the areas of intersection of the
projected disks for the two types are equal, the magnitude of
the lunar eclipse is only slightly different from the magnitude
of the planetary eclipse.

5.3. General phase light curve

We now derive the standard phase light curve and the cor-
rection due to eclipses. The light output from the star that is
directly intercepted by our telescope (without occultor) is equal
to the solid angle fraction of the total luminosity I0d2 ô/4π.
Each element ŝd2A of planet surface (with unit albedo) that
intercepts starlight reflects the following luminosity into our
telescope:

I0
(−R̂ • ŝ)d2A

4πR2

(ŝ • ô)d2 ô
π

. (15)

Here we use Lambert’s cosine law for reflection. The second
factor for the reflected ray is properly normalized, because
∫ ∫

ŝ•ô>0
d2 ô

(ŝ • ô)
π

= 1.

The reflection signal is obtained by integrating Eq. (15). The
light flux from the planet and from the star are both proportional
to the small solid angle d2 ô. Because we consider the relative
signal, we factor out I0d2 ô/4π. The ideal phase light curve from
a Lambertian moon orbiting a dark planet is found to be

fD(t) =
1
πR2

∫ ∫

%
d2A (−R̂(t) • ŝ)(ŝ • ô), (16)

fE(t) =
−1
πR2

∫ ∫

�
d2A (−R̂(t) • ŝ)(ŝ • ô). (17)

The respective integration domains are

% =
{
s = s2 ŝ

∣∣∣∣(−R̂ • ŝ) > 0, (ŝ • ô) > 0
}
, (18)

� =
{
s = s2 ŝ

∣∣∣∣(R • r) > 0, |R̂ × (r + s2 ŝ)| < s1

}
∩%. (19)

For the direct signal, fD, one must integrate over the spherical
lune % defined as the intersection of the illumination with the
visibility. The (negative) surface integral for the eclipses, fE, is
over the shadow region � cast by the planet onto the moon. The
first condition in � states that the vector r points away from the
star: the planet is nearest to the star. The second condition states
that the distance between the point on the surface of the moon
to the axis R is less than s1. These are the points in the shadow
(cylinder) of the planet.
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Fig. 6. Numerical results for the simplest case: face-on observation of
a binary with zero inclination. Shown are the signal and the Fourier
transform (left and right, respectively) for s1/s2 = 2 with axes as in
Fig. 3. The signal has the lunar periodicity only. In contrast to the edge-
on signal, the peak magnitudes for the planet and lunar eclipse differ if
s1 , s2, meaning that the peaks at odd m are not small as compared to
even m.

5.4. Face-on observation

Let us start with the special case of face-on observation. For
ô = k, there are no observable phases, as the lune is permanently
a quarter sphere. However, when the shadow falls on the north-
ern hemisphere, the eclipses are visible. For the calculation of
Eqs. (16) and (17) we require

(−R̂ • ŝ) = cos(θ − ωt − π)

√
s2

2 − z2

s2
, (ŝ • ô) =

z
s2
.

After integration over z in [0, s2] and over θ, we find

fD(t) =
2s2

2

3R2 , fE(t) =
−1
R2

∞∑

k=−∞
δ(t − tk)

z+∫

z−

dz
z
√

s2
2 − z2

s2
τ(z).

The integration interval for z is the intersection of the eclipse
band with the northern hemisphere: [z−, z+] = [l − s1, l + s1] ∩
[0, s2]. The boundary points are then

z− = max(0, l − s1) < z < z+ = min(s2, l + s1).

The simplest case of α = 0, l = 0 has recurring eclipses every
month. The signal in time and Fourier domain is plotted in
Fig. 6 for a1 = a2 = 1. Equation (8) for the lunar eclipses implies
the relation f m

En
= g0δ

n+m
0 v/2πr. The peak values are given by

f −n
En =

−1
8πR2r


(s2

1 + s2
2)s1

2
+

(s2
1 − s2

2)2

4s2
log

s1 − s2

s1 + s2

 . (20)

This is plotted as a function of the radii in Fig. 7. Although the
depth of the dips in the time domain can equal the intensity of
the normal phase curve (namely for complete eclipses), a dip
may be difficult to find due to the short duration of an event.
The value of g0 decreases with decreasing τ, but the f −n

n remain
constant. This is because for increasing Ω, eclipses occur more
frequently, and the Fourier transform adds up all events in one
peak.

For the planetary eclipses, we obtain the same expression
(20), except for an overall factor s2/s1 and with tk replaced by
t̄k. For face-on view, the planetary eclipses are weaker than the
lunar eclipses, because the shadow domain on the planet is flatter
than on the moon, and therefore it appears thinner as the view is
from the side.

5.5. Edge-on observation

Now we consider the case of observation as nearly edge-on to
the orbital plane. The condition for observer inclination angle θo

10−1 1 1010−1

1

10

s1
sJ

s2
sJ

| f −n
n |

Fig. 7. Eclipse-peak height for a double planet without inclination,
when observed face on, as a function of the two planet radii, from for-
mula (20). The radius sJ is of Jupiter and the level curves are for the
values 8πR2r| f −n

n |/s3
J = 10−2, 10−1, . . . , 102 (brown to blue).

will be 0 ≤ π
2 − θo � 1. Here, θo is preferably slightly less than

90◦, so that the planet does not move behind the coronagraph
or behind or in front of the star. The observer direction is
approximated by

ô = i cos φo + j sin φo + k( π2 − θo).

Conditions for observer inclination and azimuth θo, φo for
obtaining uninterrupted phase curves, also prohibiting transits
and occultations of the planets (where both planets and the
observer are aligned), are given in Appendix A.

To facilitate the integration over the spherical lune (Eq. (18)),
one often introduces the positive part c(θ) = max(0, cos θ),
which is equal to cos θ when positive, and zero otherwise
(Cowan & Agol 2008; Cowan et al. 2013; Fujii & Kawahara
2012). These can now replace the dot product in expressions (16)
and (17) and we can extend the azimuth integration to the full
range. This gives

fD(t) =
1
πR2

s2∫

−s2

dz
s2

2 − z2

s2

2π∫

0

dθ c(θ − ωt − π)c(θ − φo), (21)

fE(t) = (22)

−1
πR2

∑

n

δ(t − tn)

z+∫

z−

dz
s2

2 − z2

s2
τ(z)

2π∫

0

dθ c(θ − ωt − π)c(θ − φo).

Evaluating the integral for the direct signal gives the result

fD(t) =
s2

2

4R2 h(ωt − φo), h(θ) =
8 sin |θ| − 8|θ| cos θ

3π
. (23)

Here we used the normalized phase curve h for a single planet
from the paper of van Hulst (1980), for phase angles θ = ωt −
φo in the interval [−π, π]. The factor s2

2/4R2 in Eq. (23) is the
fraction of intercepted light. Evaluating the integrals in Eq. (22)
for the eclipses gives the result

fE(t) = −
∑

k

δ(t − tk)Υ(lk) fD(tk). (24)

Comparing this with the general Eq. (6), the contribution for an
eclipse can be read off: g(ϑk) = −Υ(lk) fD(tk), the product of the
eclipse magnitude (Eq. (14)) with the value of the pure phase
curve at the time of the event.
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6. Eclipses in the Fourier domain

6.1. Coefficients for individual planets

Because the function c is periodic modulo 2π, it has a Fourier
series. This is

c(θ) =

∞∑

n=−∞
einθcn =

eiθ + e−iθ

4
+

1
π

∑

n
even

(−1)n/2einθ

1 − n2 . (25)

Now we substitute this in Eq. (21). Since these integrals are con-
volutions of c with itself, the coefficient for the fD is essentially
the square of cn. We find

fD(t) =
s2

4R2

∞∑

n=−∞
ein(ωt−φo)hn =

8s2

3R2

∞∑

n=−∞
ein(ωt−φo)(−1)nc2

n, (26)

and

h(θ) =

∞∑

n=−∞
einθhn =

−2eiθ − 2e−iθ

3
+

32
3π2

∑

n
even

einθ

(1 − n2)2 . (27)

Odd-numbered coefficients, except h1 and h−1, are zero. Here, h1
and h−1 are negative because for ωt = φo one has an inferior con-
junction (binary between star and observer) and then the signal
is minimal. The peaks with values f 0

n ≈ fDn = (s1
2 + s2

2)hn/4R2

are found near the origin of the spectra in Figs. 2 and 8–10.

6.2. Case I: monthly eclipses

The first case is for αr < s1 − s2, where there is a complete
lunar eclipse and a complete planetary eclipse every month: at
t = tk the moon becomes fully covered by planet shadow and at
t = t̄k the moon shadow falls completely onto the planet. The
planetary eclipses can happen when the planet is bright and the
moon is dark. The corresponding eclipse magnitude Ῡ is given
by Eq. (14) with z− = l− s2 and z+ = l + s2. With the substitution
l = lk from Eq. (13), this gives

Ῡ(αr sinϑ) = 3πs2
2 4s2

1 − s2
2 − 4α2r2 sin2 ϑ

16vs3
1

.

There are three nonzero coefficients:

Ῡ0 = 3πs2
2

4s2
1 − s2

2 − 2α2r2

16vs3
1

, Ῡ±2 = −3πs2
2 α

2r2

16vs3
1

.

We now use ḡn = −∑
m Ῡm fDn−m and find peak amplitudes:

f 0
En

= − vs1
2

8πR2r
(hnΥ0 + hn−2Υ2 + hn+2Υ2).

If there is no inclination, then α = 0 and Ῡ2 = 0 and the side
bands are small copies of the direct spectrum found at m = 0.
This case was plotted in Fig. 3. The situation when the moon
is bright and the planet is dark is very similar, because the
eclipse magnitude function has a similar shape, only slightly
larger in the center (see Fig. 5), however the equations are not
as simple.
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Fig. 8. Signals and spectra for the eclipses in an inclined system. The
inclination angle is α = (s1 − s2)/r = s1/2r. This is the maximum value
where complete eclipses always occur (case I). Same planet radii and
axes as in Fig. 3. Top: observation direction is ô = i, along the line of
nodes. Bottom: observation in direction ô = j. The eclipses are on the
equator for ωtk ≈ π. This is at the full phase and quarter phase, for top
and bottom figures, respectively. Because there is a complete eclipse
twice a month, there is little difference in the signals (see Fig. 5).

6.3. Cases II and III: partial eclipses

When there are partial eclipses, these always occur in a spe-
cific range of orbital phases. For cases II and III, the eclipses
are incomplete in the intervals ϑ1 < |ϑ| < π − ϑ1, modulo 2π.
Here, ϑ1 is the (smallest) angle where the overlapping disks
are touching at the poles: here, αr sinϑ1 = s1 − s2. There are
four of these contact points along the orbit of the barycenter.
Because the magnitude functions Υ and Ῡ are not smooth here,
these points determine the behavior of the Fourier tails of f m

En
for

cases II and III. In Appendix B we derive these tails. For case III,
new (sub)intervals ϑ2 < |ϑ| < π − ϑ2 modulo 2π appear, with ϑ2
being the smallest solution of αr sinϑ2 = s1 + s2. At the bound-
aries, four extra contact points along the orbit are found. Here
the disks have no overlap and touch at the poles. These also turn
up in the Fourier tails.

Figures 8 and 9 show the Fourier spectra for edge-on obser-
vation for two special values of inclination; these respectively
show full eclipses occurring every month and partial eclipses
every month. For observation along the nodes (ô = i), the
eclipse signal is strongest. The case where there is not always an
eclipse is not plotted: then the side bands flatten out even more.
Figure 10 shows the same situation as Fig. 9, but for different
planet radii.

7. Double reflections

When both the planet and its moon have high albedo, light rays
could bounce off one planet and then off its companion, before
being reflected towards the observer. These secondary reflections
also contribute to the monthly modulation in the light curve. We
now show that the effect of double reflection in the Fourier spec-
trum could become comparable to eclipses at higher inclinations
α when eclipses are rare.

Consider the stellar light that is first reflected off the planet
then off the moon. If we take unit albedos a1 = a2 = 1, the
lowest-order contribution in s1/r to the net signal is:

s2
1

πR2

(∫ ∫

%
d2 ŝ(R̂ • ŝ)(ŝ • r̂)

)
s2

2

πr2

(∫ ∫

%
d2 ŝ(r̂ • ŝ)(ŝ • ô)

)
.
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Fig. 9. Signals and spectra for α = (s1 + s2)/r = 3s1/2r. This is
the maximum value where (partial) eclipses always occur (case II);
they appear strongest around ωtk = π. The side bands in the spec-
trum are broadened due to the diminishing strength of the eclipses
around other times. Top and bottom: ô = i and ô = j, with the same
axes as in Fig. 3. Bottom figure: strongest eclipses (observed at quar-
ter phase) are weaker compared to those (observed at full phase) in the
top figure.
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Fig. 10. Signals and spectra for s1/s2 = 3 and α = (s1 + s2)/r = 4s1/3r.
This is again the maximum value where partial eclipses always occur.
All other parameters are kept the same as Fig. 8. The eclipse contribu-
tions to the signals are weaker by roughly a factor of 4/9 compared to
Fig. 9.

The spherical lunes on the unit sphere are the same for both
planet and moon. We find a factor of 4/3 for the z integrals, and
obtain

(4s1s2

3πRr

)2
2π∫

0

dθ c(θ − ϑ − π)c(θ − ϕ)

2π∫

0

dθ c(θ − ϕ − π)c(θ − φo).

We now express both these integrals in terms of the single-planet
phase curve h. When we add the contribution for light that is first
scattered off the moon and then off the plane, we obtain the net
double-reflection

fS =

( s1s2

4Rr

)2[
h(ϑ − ϕ)h(ϕ − φo) + h(ϑ − ϕ − π)h(ϕ − φo + π)

]
.

Table 3. Asymptotic power-law behavior of the Fourier tails.

Effect Lambertian Ocean glint

Direct reflection n−4 n−2

Full eclipses −(n + m)−4 −(n + m)−2

Partial eclipses −(n + m)−7/2 −(n + m)−3/2

Double reflection n−4(n + m)−4 n−2(n + m)−2

Notes. The first column is for a homogeneous Lambertian system; the
second is for the glint from a circumventing ocean (Visser & van de Bult
2015). The magnitude for the eclipsed glint is proportional to the cord
length of the shadow disk (of the planet) on the equator (of the moon).
Since this length behaves as a square root, k = 3/2 (see Appendix B).
These results are for edge-on observation; the order of magnitude is
suppressed.

For the Fourier coefficients, we can now use

1
(2π)2

2π∫

0

dϑ

2π∫

0

dϕ e−inϑ−imϕh(ϑ−ϕ)h(ϕ−φo) = e−i(n+m)φo hnhn+m.

Hence

f m
Sn

=

( s1s2

4Rr

)2
2e−i(n+m)φo hnhn+m, m even, (28)

and f m
Sn

= 0 if m is odd. If one compares the first two side bands
at m = 2 and m = 4, this pattern is characterized by f 4

0 , f 4
2 , f 4

4 ,
being a copy of f 2

2 , f 2
4 , f 2

6 but smaller. Similarly, the harmonic
m = 6 from the monthly revolutions have the same relative sizes
but again smaller. The amplitudes are all positive for φo = 0.
The values are pretty low: even for unit albedo the dominant side
peak f 2

−1 is a factor 3(πs1/12r)2 weaker than the main peak in the
direct reflection.

8. Conclusions

Because planets have very well-defined orbital periods, the
Fourier transform of the phase light curve of an exoplanet sys-
tem will consist of sharp peaks (but broadened by the intensity
spectrum of the host star). Each planet contributes an equidis-
tant set and the individual sets do not fall on top of each
other because the periods of different planets are generally
incommensurable. This allows the astronomer to separate con-
tributions from different planets.

Here, we study the reflection signal from a planet with a
moon. The signal is double-periodic of the form given in Eq. (1)
with the basis frequencies ω and Ω. These frequencies now cor-
respond to the annual (barycenter) motion and the lunar (relative)
motion. We consider homogeneous companions, with unit (or
zero) albedo for near edge-on observation and a small inclina-
tion α of the lunar plane. We show that if the radii s1, s2 are
small compared to the planet separation r, the Fourier series has
a unique form. According to Eqs. (23), (24), (26) and (28), now
including albedo-factors a1 and a2, this form is:

fD(t) =
s2

1a1 + s2
2a2

4R2

∑

n

einωte−inφo hn,

fE(t) =
v

2πr

∑

nm

ei(nω+mΩ)te−i(n+m)φo
[
a1gn+m + (−1)ma2ḡn+m

]
,

fS(t) =

( s1s2

4Rr

)2
a1a2

∑

nm

ei(nω+mΩ)te−i(n+m)φo
[
1 + (−1)m

]
hnhn+m.
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The coefficients hn are for the phase light curve h of a single
homogeneous Lambertian planet, given by Eq. (27).

Because two companions have the same orbital phase ϑ, the
direct reflection fD cannot reveal a planet binary. The peaks that
show the binary are found at multiples of Ω in the weaker terms
fE and fS. These Fourier series have typical features. Small but
repeated identical side bands arise from the eclipses on the planet
binary. They do not diminish in strength for |m| � r/s1. The
coefficients f 0

En
for eclipses are found from Eq. (8) in terms of the

function g defined in Eq. (5). Partial eclipses give the characteris-
tic power-law n−7/2 tail, coming from the contact points. If many
peaks can be resolved, this asymptotic behavior may be useful.
The double reflection between companions also gives side bands
that are identical in shape, but instead decay in strength with the
m-value.

When the two planets are so close that s1 . r, our ana-
lytic approach breaks down. The three effects obtain comparable
signal strength and the decomposition of Eq. (3) becomes prob-
lematic. It is no longer possible to attribute the m side bands to
one effect.

References
Barr, A. 2016, Astron. Rev., 12, 24
Belikov, R., Bendek, E., Thomas, S., Males, J., & Lozi, J. 2015, Proc. SPIE,

9605, 960517
Boccaletti, A., Baudoz, P., Baudrand, J., Reess, J., & Rouan, D. 2004, Adv. Space

Res., 36, 1099

Borucki, W. J., Koch, D., Jenkins, J., et al. 2009, Science, 325, 709
Cabrera, J., & Schneider, J. 2007a, A&A, 464, 1133
Cabrera, J., & Schneider, J. 2007b, ASP Conf. Ser., 366, 242
Cash, W. 2006, Nature, 442, 51
Cowan, N., & Agol, E. 2008, ApJ, 678, L129
Cowan, N., Fuentes, P., & Haggard, H. 2013, MNRAS, 434, 2465
Douglas, E., Carlton, A., Cahoy, K. L., et al. 2018, Proc. SPIE, 10705, 1070526
Fujii, Y., & Kawahara, H. 2012, ApJ, 755, 101
Gillon, M., Triaud, A., Demory, B.-O., et al. 2017, Nature, 542, 456
Heller, R., Hippke, M., Placek, B., Angerhausen, D., & Agol, E. 2016, A&A,

591, A67
Kane, S. R., & Gelino, D. M. 2013, ApJ, 762, 129
Kipping, D. 2011, MNRAS, 416, 689
Krist, J., Beichman, C., Trauger, J., et al. 2007, Proc. SPIE, 6693, 6693OH1
Lewis, K., Ochiai, H., Nagasawa, M., & Ida, S. 2015, ApJ, 805, 27
Link, F. 1969, Eclipse Phenomena in Astronomy, 1st edn. (Berlin: Springer-

Verlag)
Lovis, C., Ségransan, D., Mayor, M., et al. 2011, A&A, 528, A112
Mawet, D., Serabyn, E., Liewer, K., et al. 2010, ApJ, 709, 53
Morse, J., Bendek, E., Cabrol, N., et al. 2018, ArXiv e-prints

[arXiv:1803.04872]
Namouni, F. 2010, ApJ, 719, L145
Ochiai, H., Nagasawa, M., & Ida, S. 2014, ApJ, 790, 92
Ogihara, M., & Ida, S. 2012, AJ, 753, 60
Olver, F., Lozier, D., Boisvert, R., & Clark, C. 2010, NIST Handbook of

Mathematical Functions (Cambridge: Cambridge University Press)
Pannekoek, A. 1947, Pop. Astron., 55, 422
Shallue, C., & Vanderburg, A. 2018, AJ, 155, 94
Snellen, I., de Mooij, E., & Albrecht, S. 2009, Nature, 459, 543
van Hulst, H. 1980, Multiple Light Scattering: Tables, Formulas, and Applica-

tions, (New York: Academic Press), 1, 2
Vepštas, L. 2008, Numer. Algorithms, 47, 211
Visser, P., & van de Bult, F. 2015, A&A, 579, A21

A18, page 10 of 12

http://linker.aanda.org/10.1051/0004-6361/201936529/1
http://linker.aanda.org/10.1051/0004-6361/201936529/2
http://linker.aanda.org/10.1051/0004-6361/201936529/2
http://linker.aanda.org/10.1051/0004-6361/201936529/3
http://linker.aanda.org/10.1051/0004-6361/201936529/3
http://linker.aanda.org/10.1051/0004-6361/201936529/4
http://linker.aanda.org/10.1051/0004-6361/201936529/5
http://linker.aanda.org/10.1051/0004-6361/201936529/6
http://linker.aanda.org/10.1051/0004-6361/201936529/7
http://linker.aanda.org/10.1051/0004-6361/201936529/8
http://linker.aanda.org/10.1051/0004-6361/201936529/9
http://linker.aanda.org/10.1051/0004-6361/201936529/10
http://linker.aanda.org/10.1051/0004-6361/201936529/11
http://linker.aanda.org/10.1051/0004-6361/201936529/12
http://linker.aanda.org/10.1051/0004-6361/201936529/13
http://linker.aanda.org/10.1051/0004-6361/201936529/13
http://linker.aanda.org/10.1051/0004-6361/201936529/14
http://linker.aanda.org/10.1051/0004-6361/201936529/15
http://linker.aanda.org/10.1051/0004-6361/201936529/16
http://linker.aanda.org/10.1051/0004-6361/201936529/17
http://linker.aanda.org/10.1051/0004-6361/201936529/18
http://linker.aanda.org/10.1051/0004-6361/201936529/19
http://linker.aanda.org/10.1051/0004-6361/201936529/20
https://arxiv.org/abs/1803.04872
http://linker.aanda.org/10.1051/0004-6361/201936529/22
http://linker.aanda.org/10.1051/0004-6361/201936529/23
http://linker.aanda.org/10.1051/0004-6361/201936529/24
http://linker.aanda.org/10.1051/0004-6361/201936529/25
http://linker.aanda.org/10.1051/0004-6361/201936529/25
http://linker.aanda.org/10.1051/0004-6361/201936529/26
http://linker.aanda.org/10.1051/0004-6361/201936529/27
http://linker.aanda.org/10.1051/0004-6361/201936529/28
http://linker.aanda.org/10.1051/0004-6361/201936529/29
http://linker.aanda.org/10.1051/0004-6361/201936529/29
http://linker.aanda.org/10.1051/0004-6361/201936529/30
http://linker.aanda.org/10.1051/0004-6361/201936529/31


P. M. Visser and M. A. Mol: Fourier series for eclipses

Appendix A: Condition for absence of transits

A transit happens if the starlight in the direction of the observer
is blocked by a planet. The disk of the planet overlaps the disk
of the host star in the (projected) plane of observation. Defining
l to be the distance between the centers of the two disks, transits
of planet 1 occur for

l = |ô× R1| < S ± s1, ô • R1 > 0.

The plus sign is for the partial transit (planet disk is partially in
front of the star disk) and the minus sign is for a complete transit
(planet disk is inside the star disk). The component of R1 in the
direction is positive when the planet has to be in between the
observer and the star. An occultation of the planet by the star
occurs for a negative dot product. If we assume that ω and Ω are
incommensurable, the value of l is minimized for

ô • dR
dt

= 0, ô • dr
dt

= 0.

These equations imply ωt = φo + nπ (see Fig. 1). The minimal
value of the displacement is l = |ô • k|R + |ô • ê3|r1 =

R cos θo + r1(cosα cos θo − sinα sin θo sin φo),

with r1 = |R1 − R| = m2r/(m1 + m2) and r2 = r − r1. The
condition for transits never to occur is, for θo /

π
2 and 0 / α:

l = (R + r1)( π2 − θo) − r1α sin φo > S + s1.

Because we are considering two planets, we have the two
conditions for the observer inclination:

θo <
π

2
− S + s1 + r1α sin φo

R − r1
, θo <

π

2
− S + s2 + r2α sin φo

R − r2
.

In this paper, we also assume that due to inclined observa-
tion the planet and moon also never block the direct reflected
light towards the observer. We now derive the required condition
for absence of these types of mutual events. Let l be the distance
between the disk-centers of planet and moon projected onto the
plane of observation (i.e., the celestial plane). It then follows that
l is the length of the component of the distance vector r orthog-
onal to ô. This is l = |r − ô(ô • r)|. Hence, the planet disk is in
front of the moon disk for

l = |ô× r| < s1 + s2, ô • r < 0,

and the moon disk is in front of the planet disk for

l = |ô× r| < s1 + s2, ô • r > 0.

With the plus sign in these expressions replaced by a minus
sign, one obtains the condition for the larger disk completely
overlapping the smaller disk. The lowest value of l occurs for
a difference velocity perpendicular to the observation direction,
or for

ô • dr
dt

= 0.

This implies, using our assumption in Eq. (9) that

sin(Ωt − φo) = (cosα − 1) cos Ωt sin φo,

or

Ωt = φo + arctan
(cosα − 1) sin φo cos φo

cos2 φo + cosα sin2 φo
+ nπ.

For these phases, the minimal displacement is

l = |ô • ê3|r.
The transits do not take place if we demand l > s1 + s2. For small
inclinations α, the condition for observer inclination with respect

to the orbital plane becomes

θo <
π

2
− s1 + s2

r
− α sin φo.

Appendix B: Fourier tails for partial eclipses

It is well known that the Fourier coefficients fn of a peri-
odic function f that is also an analytic function decay with n
faster than any power law. Therefore, the behavior around the
points where a function is not analytic determines the asymp-
totic behavior of the Fourier coefficients. The direct light curve
fD of a planet is only not analytic for ϑ = φ0 when the planet is at
inferior conjunction. Similarly, the periodic function g (describ-
ing fE) is not analytic at l = ±s1 ± s2. This is when an edge of
the shadow band just touches its companion (at a pole). We here
calculate the Fourier tail for fD and fE.

In order to study the behavior as x −→ 0+ of a noninteger
power xk−1 with k > 1, like

√
x, we need the Hurwitz zeta func-

tion ζ(s, x). By isolating the branch point at x = 0, the Hurwitz
function can be written with the series (Vepštas 2008):

ζ(1 − k, x) = xk−1 +

∞∑

n=0

(
n − k

n

)
ζ(1 + n − k)(−x)n.

The analytic part of the Hurwitz function on [0, 1] has series
coefficients determined by the Riemann zeta function ζ(s). This
part is repeated at x = 1

ζ(1 − k, x) =

∞∑

n=0

(
n − k

n

)
ζ(1 + n − k)(−x + 1)n.

For arguments on the x-interval [0, 1] and k > 1, the Fourier
series of the above function is (Olver et al. 2010)

ζ(1 − k, x) =
Γ(k)
(2π)k

(
eiπk/2

∞∑

n=1

e−2πinx

nk + e−iπk/2
∞∑

n=1

e2πinx

nk

)
.

This is Hurwitz’s formula. We note that the branch point deter-
mines the asymptotic behavior of the Fourier coefficients. For
integer k, the Taylor series terminates and becomes the Bernoulli
polynomial: ζ(1 − k, x) = −Bk(x)/k. Although the coefficient
for xk−1 is now 1 − 1

2 , its (k − 1)-th derivative still has a step-
discontinuity of size (k − 1)!. The periodic continuation is then
also given by the above Fourier series.

We now consider a periodic function f (θ), with period 2π
and with nonanalytic behavior around one point, as in

f (θ) =

{
(θ − a)k−1A + · · · , θ −→ a+,
(a − θ)l−1B + · · · , θ −→ a−,

with k > 1, l > 1. By comparing with the Hurwitz function, we
find that f (θ) has Fourier coefficients with tails

fn =
e−ina

2π
×



AΓ(k)
e−iπk/2

nk + BΓ(l)
eiπl/2

nl + · · ·, n −→ ∞,

AΓ(k)
eiπk/2

(−n)k + BΓ(l)
e−iπl/2

(−n)l + · · ·, n −→ −∞.
(B.1)

For integer k = l and B = (−1)k−1A the expression vanishes,
because then the function is analytic and Eq. (B.1) does not
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apply. For integer k = l ≥ 2 and B = (−1)kA, the correspondence
becomes

f (θ) = (θ − a)k−2|θ − a|A + · · · , fn = 2A
(k − 1)!e−ina

2π(in)k + · · · .
(B.2)

We illustrate the method with the direct phase curve (Eq. (23)).
It is everywhere three times differentiable, except at θ = 0. Near
θ = 0, it behaves as h(θ) ≈ 8|θ|3/9π, so that its third deriva-
tive jumps. Equation (B.2) then provides the asymptote hn ≈
16/3π2n4. The value given by Eq. (27) is twice as large. However
h(θ) − 4(cos θ)/3 actually has periodicity π, not 2π. By taking
into account that almost all the coefficients are even, one finds
the correct asymptote.

For the eclipses, we shall need the asymptotes for the peri-
odic function Υ(αr sinϑ). We consider the case II of planets that
always eclipse but the eclipses can be partial: s1 − s2 < αr <
s1 + s2. The function Υ is everywhere three times differentiable,
except at l = ±(s1 − s2) where the third derivative becomes infi-
nite. This occurs when the shadow of the planet touches a pole of
the moon at the eclipse maximum, which happens for four val-
ues of ϑ. Let the orbital phase ϑ1 be defined by one solution of
αr sinϑ1 = s1 − s2. According to Eq. (24), the peaks are deter-
mined by the Fourier transform of g(ϑ) = − fD(ϑ/ω)Υ(αr sinϑ).
This function is nonanalytic where either of the functions fD or
Υ is not analytic. Although fD is nonanalytic with k = 4, the
effect in Υ has power k = 7/2 which is dominant (for large n).
We therefore approximate

f 0
En

=
−v
2πr

(
fD(ϑ1

ω
) + fD(−ϑ1

ω
) + fD(π+ ϑ1

ω
) + fD(π− ϑ1

ω
)
)
Υn, (B.3)

with Υn the Fourier coefficients of Υ considered as periodic
function of ϑ. For the lunar eclipses, the magnitude is given by
Eq. (14). Approaching the contact point l = s2 − s1 from above,
it behaves as

Υ(l) =
4
√

2s1

5vs2
2

(l − s2 + s1)5/2 + · · ·, l −→ (s2 − s1)+.

The dots now also contain the analytic part. The function has
no fractional powers in the expansion for l −→ (s2 − s1)−. Of
course, Υ is an even function of l. Substituting l = αr sinϑ, we
now evaluate the coefficients in the tail:

f 0
En

=
−3
√

2s1

2π3/2rs2
2

( s1 − s2

tanϑ1

)5/2 cos
(
|n|ϑ1 + π

4

)

|n|7/2
×

(
fD

(
ϑ1
ω

)
+ fD

(−ϑ1
ω

)
+ fD

(
π + ϑ1

ω

)
+ fD

(
π − ϑ1

ω

))
, (B.4)

and n even. The magnitude Ῡ for planetary eclipses also jumps at
l = ± (s1 − s2). The jump discontinuity has the same expression,
except with s1 and s2 interchanged. An interesting case occurs for
planets of equal size and albedo. If s2 −→ s1, then ϑ1 −→ 0. For
unit albedo, the combined spectrum for both planets eclipsing
each other every halve month becomes, for both n and m even:

f m
En

= − 3α5/2
√

r3s1

8π3/2R2|n + m|7/2
(
h(φo) + h(π − φo)

)
.

In the final case III without monthly eclipses: s1 + s2 < αr.
The orbital phase ϑ2 above which eclipses do not occur is found
from αr sinϑ2 = s1 + s2. The effect of the contact point at ϑ1 is
still present, but the extra contact point at ϑ2 will introduce extra
terms in the expression for the tail. We have

Υ(l) =
4
√

2s1

5vs2
2

(s1 + s2 − l)5/2 + · · ·, l −→ (s1 + s2)−,

and Υ(l) = 0 for l ≥ s1 + s2. The term that needs to be added to
Eq. (B.4) has the same form. It can be obtained from Eq. (B.4)
by the replacements ϑ1 −→ ϑ2 and s2 −→ −s2. The power-law
behavior of the Fourier tails for the different types of eclipses I,
II, and III is given in Table 3.
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