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Summary

This thesis explores the application of dynamic light scattering optical coherence
tomography (DLS-OCT) for in-line particle sizing and flow measurements in particle
suspensions. DLS-OCT is capable of measuring the depth-resolved particle diffu-
sion coefficient, which can then be converted into particle size. This capability is
particularly advantageous for in-line particle sizing scenarios, where the suspension
is under flow, and the depth-resolved particle diffusion coefficient can be separated
from the flow contribution. However, there are several other challenges associated
with DLS-OCT, such as measuring: at high particle concentrations, in fast and slow
flows, in multiple scattering media, and quantifying the measurement uncertainty.
These challenges are addressed in this thesis.

In concentrated suspensions, the relationship between particle size and the dif-
fusion coefficient is not well described by the simple Stokes-Einstein equation and
the diffusion becomes dependent on multiple factors. Accurate determination of
particle size necessitates diffusion coefficient measurements across a wide range
of wavenumbers and the application of sophisticated rheological models. In Chap-
ter 2, we address this issue with a broadband DLS-OCT system covering the wave-
length range of 350–1000 nm. By inverting hard-sphere rheological models, we
successfully measured the particle size and polydispersity in very dense nanoparti-
cle suspensions. Furthermore, we demonstrated the applicability to particle sizing in
suspensions that are not suitable for standard DLS-OCT measurements and showed
how measurements of different diffusion modes can assess the number-based par-
ticle size polydispersity in concentrated suspensions.

DLS-OCT measurement of high flow speeds and small particle sizes in fast-
flowing suspensions is problematic due to detector sampling limitations, as the
rapid decay of the autocorrelation function prevents the extraction of flow speed
and particle size information. To address this, in Chapter 3, we showed the incor-
poration of beam scanning—a standard feature in many OCT systems—to extend
the capabilities of DLS-OCT flow imaging beyond its current limitations and improve
particle sizing in flowing suspensions. This approach allowed us to demonstrate a
two-fold improvement in the flow velocity dynamic measurement range and more
accurate particle size measurement deeper within the flow channel, away from the
edges. These advancements are beneficial for in-line pharmaceutical and process
industry particle sizing applications, where diffusion and mixing near the edges are
slower, leading to overestimation of particle size.

Particle Brownian motion imposes limitations on the minimum flow speeds mea-
surable in particle suspensions using DLS-OCT. In Chapter 4, we address this chal-
lenge by introducing the concept of number fluctuations to DLS-OCT. This innova-
tion enabled the successful measurement of sub-diffusion flow speeds and particle
concentrations in dilute particle suspensions, both in 1D and 2D. By extending the

ix
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capability of DLS-OCT, this development also facilitates the measurement of the
beam shape within the particle suspension, a task traditionally requiring complex
calibration in conventional OCT systems.

In Chapter 5, we demonstrate the application of number-fluctuation DLS-OCT for
measuring simultaneous 2D flow profiles in organ-on-chip (OoC) devices, overcom-
ing limitations of conventional Doppler OCT and DLS-OCT in low-flow environments.
A numerical method was employed to equalize axial and transverse OCT resolutions,
eliminating the dependence on Doppler angles in the autocorrelation function and
enabling accurate measurement of absolute flow velocities. Additionally, we imple-
mented particle image velocimetry (PIV) on the OCT data to complement number-
fluctuation measurements with precise in-plane velocity vector maps. This chapter
underscores the effectiveness of number-fluctuation DLS-OCT in biomedical imag-
ing, particularly for measuring extremely small flow speeds and addressing flow
direction variability within OoC devices.

The lack of readily available theoretical models for estimating the uncertainty in
DLS-OCT measurements of diffusion and flow is a challenge addressed in Chapter 6.
We conducted a detailed assessment of precision and bias in DLS-OCT measure-
ments, revealing that errors in autocorrelation coefficients are strongly correlated
over time, which complicates accurate quantification of uncertainty in particle size
and flow speed measurements. To address this challenge, we introduced a novel
method of mixing different autocorrelation functions at the same time delay. This
approach effectively eliminates error correlations and enables us to achieve preci-
sion levels approaching the Cramer-Rao lower bound. This advancement allows for
reliable quantification of particle size and flow speed uncertainties using DLS-OCT,
which is crucial for applications in the process industry where maximizing precision
is essential.

Multiple scattering in DLS-OCT complicates accurate particle sizing as the models
assume single backscattering. In Chapter 7, we propose a simple method to simu-
late multiple scattering effects on particles undergoing Brownian motion. Through
simulations and experimental measurements, we demonstrated that the autocorre-
lation functions exhibit double-exponential decay in the multiple scattering regime.
We employed a double-exponential autocorrelation fit model for all depths, signif-
icantly enhancing both the depth range of reliable particle sizing using the single-
scattering model. In addition, we can perform particle sizing in the diffusing-wave
spectroscopy (DWS) limit of the decorrelation rate.

The final Chapter 8 summarizes the key contributions of this thesis to particle
sizing and flow measurements using DLS-OCT. It also discusses potential future
research directions aimed at improving the accuracy and expanding the applicability
of DLS-OCT across various sectors of the process industry.



Samenvatting

Dit proefschrift beschrijft het onderzoek naar de toepassing van dynamische licht-
verstrooiing optische coherentie tomografie (DLS-OCT) voor het bepalen van de
deeltjesgrootte en stroomsnelheid in stromende deeltjesoplossingen. DLS-OCT
meet de diepte-afhankelijke deeltjesdiffusiecoëfficiënt, die vervolgens kan worden
omgezet in deeltjesgrootte. Deze mogelijkheid is bijzonder voordelig voor het in een
stroming bepalen van de deeltjesgrootte, waarbij de oplossing in beweging is en
de diepte-afhankelijke deeltjesdiffusiecoëfficiënt van de stromingsbijdrage kan wor-
den gescheiden. Echter, er zijn verschillende uitdagingen verbonden aan DLS-OCT,
zoals metingen bij hoge deeltjesconcentraties, in snelle en langzame stromingen,
in meervoudig verstrooiendemedia, en het kwantificeren van de meetonzekerheid,
die in dit proefschift worden geaddresseerd.

In geconcentreerde oplossingen wordt de relatie tussen deeltjesgrootte en de
diffusiecoëfficiënt niet goed beschreven door de eenvoudige Stokes-Einstein verge-
lijking en wordt de diffusiecoëfficient afhankelijk van meerdere factoren. Nauwkeu-
rige bepaling van de deeltjesgrootte vereist diffusiecoëfficiëntmetingen over een
breed scala aan golfgetallen en de toepassing van geavanceerde reologische mo-
dellen. In Hoofdstuk 2 behandelen we dit probleem door het gebruik van een
breedband DLS-OCT systeem dat het golflengtebereik van 350–1000 nm bestrijkt.
Door harde-bollen reologische modellen te inverteren, hebben we met succes de
deeltjesgrootte en polydispersiteit gemeten in zeer dichte nanodeeltjesoplossingen.
Bovendien toonden we de toepasbaarheid voor deeltjesgroottebepaling in oplossin-
gen die niet geschikt zijn voor standaard DLS-OCT metingen en lieten we zien hoe
metingen van verschillende diffusiekanalen de op aantal gebaseerde deeltjesgroot-
tepolydispersiteit in geconcentreerde oplossingen kunnen bepalen.

DLS-OCT meting van hoge stroomsnelheden en kleine deeltjesgroottes in snel-
stromende oplossingen is problematisch vanwege beperkingen van de detectorbe-
monstering, aangezien het snelle verval van de autocorrelatiefunctie de extractie
van stroomsnelheid en deeltjesgrootte-informatie verhindert. Om dit aan te pak-
ken, hebben we in Hoofdstuk 3 laten zien dat de opname van bundelscannen—
een standaardfunctie in veel OCT-systemen—de mogelijkheden van DLS-OCT stro-
mingsbeeldvorming uitbreidt en de huidige beperkingen bij deeltjesgroottebepaling
in stromende oplossingen wegneemt. Deze aanpak stelde ons in staat het dynami-
sche meetbereik van de stroomsnelheidmeting te verdubbelen en nauwkeurigere
deeltjesgroottemetingen uit te voeren dieper in het stroomkanaal weg van de ran-
den. Deze verbeteringen zijn gunstig voor farmaceutische en procesindustrie deel-
tjesgroottebepaling in stromende vloeistoffen, waar diffusie en vloeistofmenging
nabij de randen trager zijn, wat kan leiden tot een overschatting van de deeltjes-
grootte.
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xii Samenvatting

De Brownse beweging van deeltjes legt beperkingen op aan de minimale stroom-
snelheden meetbaar in deeltjesoplossingen met behulp van DLS-OCT. In Hoofd-
stuk 4 hebben we deze uitdaging aangepakt door het concept van getalfluctuaties
in DLS-OCT te introduceren. Deze innovatie maakte succesvolle meting mogelijk
van subdiffusie stroomsnelheden en deeltjesconcentraties in verdunde oplossingen,
zowel in 1D als 2D. Deze techniek faciliteert ook de meting van de bundelvorm bin-
nen de deeltjesoplossing, een taak die traditioneel complexe kalibratie vereist in
OCT-systemen.

In Hoofdstuk 5 demonstreren we de toepassing van getalfluctuatie DLS-OCT
voor het meten van gelijktijdige 2D stromingsprofielen in organ-on-chip (OoC) ap-
paraten, waarmee de beperkingen van conventionele Doppler OCT en DLS-OCT in
omgevingen met lage stroomsnelheid worden weggenomen. Hierbij gebruikten we
een numerieke methode om de axiale en transversale OCT resoluties gelijk te ma-
ken, waardoor de afhankelijkheid van de stromingsbepaling op de Dopplerhoek in
de autocorrelatiefunctie werd geëlimineerd en nauwkeurige meting van absolute
stroomsnelheden mogelijk werd. Bovendien implementeerden we deeltjesbeeld-
snelheidsmeting (PIV) op OCT-beelden om de absolute snelheid zoals verkregen
door getalfluctuatiemetingen aan te vullen met nauwkeurige in het vlak snelheids-
vectorafbeeldingen. Dit hoofdstuk onderstreept de effectiviteit van getalfluctuatie
DLS-OCT in biomedische beeldvorming, met name voor het meten van extreem
lage stroomsnelheden en variabiliteit in stroomrichting binnen OoC-apparaten aan
te pakken.

Het gebrek aan eenvoudige theoretische modellen voor het schatten van de on-
zekerheid in DLS-OCT metingen van diffusie en stroom is een uitdaging die wordt
aangepakt in Hoofdstuk 6. We voerden een gedetailleerde analyse uit van precisie
en bias in DLS-OCT metingen, waarbij we ontdekten dat fouten in de autocorre-
latiecoëfficiënt sterk gecorreleerd zijn in de tijd, wat een nauwkeurige kwantifice-
ring van onzekerheid in deeltjesgrootte- en stroomsnelheidsmetingen bemoeilijkt.
Om dit op te lossen introduceerden we een nieuwe methode voor het mengen van
verschillende autocorrelatiefuncties op dezelfde tijdsvertraging. Deze aanpak elimi-
neert effectief foutencorrelaties en stelt ons in staat om precisieniveaus te bereiken
die de Cramer-Rao ondergrens benaderen. Deze vooruitgang maakt betrouwbare
kwantificering van deeltjesgrootte- en stroomsnelheids-onzekerheden mogelijk met
behulp van DLS-OCT, wat cruciaal is voor toepassingen in de procesindustrie waar
het maximaliseren van precisie essentieel is.

Meervoudige verstrooiing in DLS-OCT bemoeilijkt nauwkeurige deeltjesgrootte-
bepaling omdat de modellen uitgaan van enkelvoudige terugverstrooiing. In Hoofd-
stuk 7 stellen we een eenvoudige methode voor om de effecten van meervoudige
verstrooiing in DLS-OCT voor deeltjes die Brownse beweging ondergaan te simule-
ren. Simulaties en experimentele metingen tonen aan dat de autocorrelatiefuncties
dubbel-exponentieel verval vertonen in het meervoudige verstrooiingsregime. Bij
het gebruik een dubbel-exponentiële autocorrelatiefitmodel voor alle dieptes kon-
den we het dieptebereik van betrouwbare deeltjesgroottebepaling met het enkel-
voudige verstrooiingsmodel aanzienlijk vergroten. Ook kunnen we deeltjesgrootte-
bepaling uitvoeren in de diffusieve golf spectroscopie (DWS) limiet van de decorre-
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latiesnelheid.
Het laatste hoofdstuk 8 vat de belangrijkste bijdragen van dit proefschrift sa-

men met betrekking tot deeltjesgroottebepaling en stromingsmetingen met behulp
van DLS-OCT. Het bespreekt ook mogelijke toekomstige onderzoeksrichtingen die
gericht zijn op het verbeteren van de nauwkeurigheid en het uitbreiden van de
toepasbaarheid van DLS-OCT in verschillende sectoren van de procesindustrie.
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1.1. Process industry and quality control
The process industry, which involves the manufacture and processing of substances
through various physical, chemical, or biological methods, is an important sector of
the global economy. The process industry includes the chemical, pharmaceutical,
oil and gas, and food and beverage manufacturing sectors. Each of these sectors
makes goods that are essential to modern life and economic welfare. The pharma-
ceutical process industry is vital for public health as it develops and mass produces
drugs, vaccines, and other healthcare products. The food and beverage process
industry ensures the mass production of safe, nutritious, and affordable food to
feed the world’s population. In the oil and gas sector, the process industry fuels
the global economy by providing high-quality energy carriers for transportation,
heating, electricity, and industrial activities.

Quality control is of paramount importance to ensure the safety, consistency,
and efficacy of manufactured products. It is also essential for optimizing processes
and their efficiency to minimize waste and enhance product effectiveness. Quality
control can be performed in two ways: in-line and offline. In-line quality control
involves continuous monitoring and inspection of products during manufacturing,
enabling immediate adjustments to the process. In contrast, offline quality control
is conducted on batches of material taken from the production line or on the finished
products after manufacturing, where the finished products undergo assessment to
ensure they meet predefined standards. In-line quality control offers the advantage
of real-time process adjustments, enhancing responsiveness and efficiency. How-
ever, offline quality control allows for a broader range of tests to be conducted on
the product. Yet, in cases of nonconformity, the entire product batch may need to
be discarded, generating high costs and necessitating a new start to the process.

1.2. Particle suspensions
Particles are integral components in the process industry used in a variety of forms
such as suspensions, emulsions, powders, dusts, sprays, and foam. Particle sus-
pensions refer to systems in which solid particles are dispersed in a liquid medium.
These solid particles are typically insoluble and remain suspended throughout the
fluid due to their Brownian and bulk motion. Nanoparticle suspensions, containing
particles ranging in size from approximately 1–1000 nm, have garnered significant
interest across many sectors of the process industry due to their distinct and advan-
tageous properties [1, 2]. Nanoparticles are used in pharmaceuticals, healthcare
products, food and beverages, mining processes, coatings, agricultural products,
cement production, and protein engineering.

This growing interest in nanoparticle suspensions has opened up new possibil-
ities for working with ultra-small-scale structures. Nanoparticles can be tailored
to access sub-cellular structures and proteins, making them particularly useful in
the medical, biological, chemical, and pharmaceutical industries. Key applications
include fluorescent biological labels, drug and gene delivery systems, vaccine devel-
opment, tissue engineering, phagokinetic studies, and pathogen detection [3]. In
the pharmaceutical industry, nanoparticle suspensions are highly valued for their
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Figure 1.1: Commonly used nanoparticles in the pharmaceutical industry [4].

large surface area and small size, which make them excellent drug delivery sys-
tems [2]. They offer benefits such as improved drug solubility, extended drug
release, and reduced degradation. Typical nanoparticles encountered in the phar-
maceutical and medical industries are displayed in Fig. 1.1, where NPs denote
nanoparticles. Nanoparticle albumin-bound (NAB) technology enhances drug de-
livery by binding therapeutic agents to albumin nanoparticles, thereby improving
efficacy and safety. Functionalized quantum dots, dendrimers, polymeric micelles,
and nonliposomal vesicles similarly enhance drug delivery by improving solubility,
stability, and enabling precise targeting to specific cells. This enhances treatment
efficacy and minimizes side effects.

1.2.1. Soft matter rheology
Soft matter comprises materials with properties between those of conventional
solids and liquids, encompassing systems like particle suspensions. Soft matter
rheology is the study of the flow and deformation of materials under applied forces.
Since particle suspensions consist of solid particles dispersed in a liquid medium,
their rheological behavior can be complex due to interactions between the particles
and between the particles and the surrounding fluid. Key rheological parameters of
particle suspensions include viscosity, particle size, particle polydispersity, particle
concentration, interactions between the particles, as well as factors such as particle
aggregation and sedimentation, flow, diffusion, and shear rate [5]. Understanding
and controlling these rheological parameters is crucial for ensuring the quality and
performance of nanoparticle suspensions. In pharmaceutical applications, nanopar-
ticle size is critical as it directly influences the mobility of the particles and affects
the efficiency of drug delivery systems. Moreover, for pharmaceuticals, particle size
is strictly regulated and material costs are high [1, 6]. Therefore, accurate quantifi-
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cation of particle sizes during manufacturing is an integral part of process control.
Usually, particle size is determined offline with a small batch of material that can
be measured over an extended period.

1.3. In-line nanoparticle sizing
In-line particle sizing is particularly significant for medical and pharmaceutical ap-
plications since they deal with flowing colloidal particle suspensions in the manu-
facturing process. Nanoparticle suspensions are often subjected to flow, mixing, or
agitation during typical pharmaceutical processes, and in-line or in-process particle
sizing is the direct and non-invasive measurement of particle size within the original
particle environment. In-line particle sizing can be used for quality control and de-
termination of rheological parameters during manufacturing. In-line particle sizing
enables direct control of production processes within a constant feedback loop, sig-
nificantly impacting product quality and cost. As the complexity of the suspension
increases and the particle sizes decrease (e.g., through the use of nanoparticles,
proteins), more advanced measurement methods are required.

For in-line particle sizing, suspension flow speed and concentration determine
the measurement time and signal strength, respectively. They play a vital role in
particle sizing accuracy, necessitating their quantification and effect on the mea-
surement process [5]. At higher flow speeds, the accuracy of particle size measure-
ment becomes lower as the measurement time decreases. At lower concentrations
or in diluted particle suspensions, the amount of signal decreases, which also neg-
atively affects the particle size measurement. On the other hand, the Brownian
motion of particles sets the lower limit on the flow velocities that can be measured.
Therefore, increasing the flow dynamic range, as well as the concentrations at which
particle size can be measured, is crucial for in-line sizing applications. Additionally,
the flow speed is directly related to the shear rate of the suspension [5], offering
insights into additional rheological properties such as fluid-wall interactions, in-line
refresh rate, and non-Newtonian behavior.

1.4. Particle sizing methods
In the broadest sense, particle sizing technologies can be divided into two do-
mains: optical and non-optical methods. Here we focus on the most important
techniques, emphasizing measurement methodologies rather than specific proto-
types or devices. Not all methods are suitable for measuring moving particles and
flow speeds, let alone for performing in-line sizing. For the optical techniques, dy-
namic light scattering optical coherence tomography (DLS-OCT), which is derived
from dynamic light scattering (DLS), is the main focus of this thesis and is discussed
in a separate chapter along with optical coherence tomography (OCT).

1.4.1. Non-optical methods
Non-optical methods encompass techniques for particle sizing that do not primarily
rely on visible light scattering for analysis. In this context, electron microscopy and
ultrasound are considered non-optical techniques.
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The Coulter Principle, developed by Wallace H. Coulter in the 1940s, is a method
for counting and sizing particles in electrolytes. As a particle passes through a small
orifice, a volume of electrolyte solution is displaced causing a change in resistance,
which results in the generation of a voltage pulse. The frequency of these pulses
corresponds to the number of particles that traverse the opening, while the pulse
amplitude is proportional to the particle’s cross-section. Ensuring single-particle
traversal is crucial to avoid pulse coincidence [7], necessitating low particle con-
centration (on the order of 0.1%) [8], and careful orifice diameter selection to
maintain parallel entry angles. Although capable of swiftly measuring diameters
from 0.2 to 1600 microns [9], in-line applications are limited due to reliance on
aperture diameter and electrolyte solution.

Sedimentation size analysis quantifies particle sizes by measuring their settling
rates in a liquid medium [10]. Two main methods, incremental and cumulative,
are utilized. Incremental methods track changes in suspension concentration or
density at known depths over time, while cumulative methods determine the rate
at which particles settle out of suspension to derive size distribution. Gravitational
sedimentation, which relies on steady-state particle velocity determined by gravi-
tational, buoyant, and drag forces, is applicable to particles sized from 0.3 to 200
microns [10], albeit with longer measurement times for smaller particles. For parti-
cles with diameters below 0.3 microns, where Brownian motion is strong, centrifugal
sedimentation is necessary, covering a size range from 0.02 to 10 microns. How-
ever, this method requires diluted samples and a high density contrast between
the medium and particles, with the Reynolds number limit for sedimentation be-
ing approximately 0.25 and the suspension concentration ideally below 0.2% [10].
Measurement times vary from minutes to hours depending on particle sizes and
concentration. While the original gravitational sedimentation technique is straight-
forward, incorporating centrifugal sedimentation increases complexity [8]. Despite
advancements, practical limitations often confine sedimentation measurements to
offline settings.

Ultrasound can also be used for particle sizing. Ultrasonic attenuation measure-
ment utilizes the frequency dependence of ultrasonic velocity and/or attenuation
coefficient in colloidal dispersions to obtain information about particle concentra-
tion and size distribution [11]. This technique provides sizing for particles with
diameters ranging from 0.01 to 3000 microns at concentrations of 0.5-70%, with
measurement times of 1-10 minutes [10]. Ultrasonic methods allow for in-line mea-
surements, but the technique needs further development, especially for particle siz-
ing in more concentrated emulsions. Additionally, data analysis and interpretation
require knowledge of the thermophysical properties of particles and the medium,
which may not always be readily available and can be challenging to obtain [11].
In addition to particle sizing, ultrasound techniques can be employed for flow mea-
surements. The frequency of the ultrasound wave scattered from moving particles
is Doppler shifted, directly related to the suspension flow speed. However, since
particle sizing and flow determination require different data, simultaneous mea-
surements are not feasible.
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Figure 1.2: Transmission electron microscopy image of 50 nm radius silica particles.

Electron microscopy
Scanning or transmission electron microscopy (SEM or TEM) is used to measure
particle sizes with resolutions of 15-20 nm for SEM and 0.3-0.5 nm for TEM [7].
However, these electron microscopy techniques necessitate thorough sample isola-
tion, preparation, and subsequent image analysis, resulting in relatively long mea-
surement times, typically about 1-60 minutes [10]. The particle number per image
should be controlled to avoid particle overlap, as samples that are too concentrated
may decrease the accuracy of particle sizing and localization. Electron microscopy
methods are primarily suited for offline measurements. An example of a TEM image
of 50 nm radius silica particles is given in Fig. 1.2.

1.4.2. Optical methods
The optical methods for particle sizing, whether with or without the presence of
flow, encompass techniques that involve illuminating particles with visible light and
collecting the scattered or transmitted light. These methods comprise both direct
and indirect observation techniques. In direct observation methods, particles are
directly imaged using a microscope. Indirect measurement methods rely on deter-
mining particle size through their static or dynamic scattering properties.

Optical microscopy & spectroscopy
Optical microscopy, such as widefield and confocal techniques, is one of the most
common methods for visualizing small objects. Particle sizing using a microscope
is usually done offline and involves sample separation, preparation, and image
analysis after observing the objects. From a temporal perspective, measurements
take some time, typically dozens of minutes. Direct particle observation techniques
are diffraction-limited by the light wavelength, restricting measurements to objects
larger than 0.3-0.5 microns. In-line sizing is not feasible since the measurements
are performed offline after drying the particles. In such cases, the particle concen-
tration must be low enough to allow separation between single particles.



1.4. Particle sizing methods

1

7

Particles can be sized indirectly by measuring their mean-square displacement
(MSD) using fluorescence microscopy [12]. This involves labeling particles with
fluorophores, exciting them with a laser source, and capturing subsequent images
at high temporal resolution. The particle MSD is determined from a sequence of
these images. A subsequent fit of the MSD versus time is then related to the
particle diffusion coefficient and size. While fluorescence microscopy allows in-line
measurements, its applications are limited due to the necessity of fluorescent labels
and restrictions on low concentration and flow speed.

Optical spectroscopic techniques, such as diffuse reflectance or transmission
spectroscopy, can be used for particle sizing. These methods rely on measuring
the scattering and/or absorption coefficients of particle suspensions as a function
of wavelength to obtain information about the particle size distribution. In-line mea-
surements are theoretically possible [13], but they require significant prior sample
information and theoretical treatment.

Static light scattering
Static light scattering (SLS), also known as laser diffraction, relies on illuminating a
particle suspension with light and collecting and analyzing time-averaged scattered
light intensity. The light scattering from particles can be described by Rayleigh
and/or Mie Scattering [14, 15]. When particles in a suspension are illuminated by a
light source, they scatter light in all directions. The intensity of the scattered light
depends on factors such as particle size, shape, refractive index, light wavelength,
and polarization. Additionally, the scattered light intensity may vary with the scat-
tering angle 𝜃, which is the angle between the illumination beam and the direction
of the scattered light collection. These parameters are often combined into a sin-
gle quantity 𝑞, known as the scattering wavenumber, representing the difference
between the illuminating and scattering wavevectors. Mie theory can be used to
analyze scattering phenomena for various particle sizes and 𝑞 values.

In a typical SLS measurement setup, as shown in Fig. 1.3, a particle suspen-
sion is illuminated using a laser beam, and the time-averaged scattered intensity
is collected at different scattering angles 𝜃. This can be achieved by moving the
detector (which prolongs measurements) or by using multiple detectors at different

Sample

Lens

Laser
𝜃 Incident

𝒒 = 𝒌𝒊 − 𝒌𝒔

|𝒒| =
4𝜋𝑛

𝜆଴
sin 𝜃/2

Incident, 𝒌𝒊

𝒒

𝜃

Figure 1.3: Typical measurement setup for static and dynamic light scattering experiments.
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angles with respect to the source and illumination volume. Incident, scattered, and
scattering wavevectors are denoted by ki, ks, and q, respectively. When fitted with
Mie theory, the distribution of scattered light intensity as a function of scattering
angle can be utilized to determine particle size [16]. The weight concentration of
particles in suspension is crucial for SLS, influencing both scattered light intensity
and particle diameter. The effective particle sizing range is typically from 100 to
1000 nm [10, 17]. The SLS measurement time can vary; it may take minutes if
the detector needs to be moved for different scattering angles or seconds if mul-
tiple detectors are used at different angles. However, this adds to the cost and
complexity of the setup.

In-line measurements are possible with a multi-angle SLS detection scheme, but
they are constrained by signal fluctuations caused by particle flow speed. The stan-
dard SLS measurement assumes single scattering, but in reality, especially at high
particle concentrations (turbid media), multiple scattering can occur, compromis-
ing measurement accuracy as multiple scattering is not included in the scattering
model. Multiple scattering effects can be removed to some extend using two simul-
taneous light scattering experiments performed at the same scattering vector on
the same sample volume. This approach, known as cross-correlation or modulated
3D SLS, eliminates multiple scattering effects via cross-correlation of the scattering
signals from the two beams [18]. However, this method is more expensive and
complex compared to standard SLS.

Dynamic light scattering
Dynamic Light Scattering (DLS), also known as photon correlation spectroscopy, is
a method that uses a similar setup as in SLS, see Fig. 1.3. Similar to SLS, it is
also used for sizing particles in emulsions and suspensions. However, instead of
examining time-averaged intensities as a function of angle, DLS records scattered
light intensity fluctuations as a function of time at a fixed scattering angle 𝜃. These
intensity variations arise from the homodyne interference of the fields scattered
off the particles in Brownian motion, which, in turn, depends on the particle size.
As the particles move, the path length of the scattered light reaching the detector
constantly changes. This causes constructive or destructive interference in the
detected scattered intensity. The dynamics of these intensity fluctuations depend
on the diffusional motion of the particles, which can be related to the particle size
(hydrodynamic radius). The diffusional motion of the particles in the suspension is
governed by the Stokes-Einstein equation

𝐷0 =
𝑘𝐵𝑇
6𝜋𝜂0𝑎

, (1.1)

where 𝐷0 represents the particle diffusion coefficient, 𝑘𝐵 is Boltzmann’s constant, 𝑇
is the temperature in Kelvin, 𝜂0 is dynamic viscosity, and 𝑎 is a particle hydrodynamic
radius. Therefore, by determining the diffusion constant and knowing the solution
temperature and viscosity, the particle size can be determined.

The detector in DLS detects the intensity of scattered field fluctuations, and
subsequently, the autocorrelation of the intensity signal, 𝑔2(𝜏), is calculated. This
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autocorrelation function measures the resemblance of the signal with itself as a
function of the time delay. The decay of the autocorrelation function indicates
how quickly this resemblance diminishes and can be fitted to analytical models
to determine particle size. For larger particles with a relatively low diffusion rate,
the detected intensity autocorrelation decays more slowly. Conversely, for smaller
particles, the intensity fluctuations are much more rapid, leading to a faster signal
correlation [19].

In heterodyne DLS, where the scattered field is mixed with a local oscillator,
the fluctuations of the scattered field can be measured directly. For non-interacting
monodisperse spherical particles undergoing Brownian motion, the normalized scat-
tered light electric field autocovariance, 𝑔1(𝜏), is given by Eq. (1.2) according
to [20, 21]:

𝑔1(𝜏) =
⟨𝐸(𝑡)𝐸∗(𝑡 + 𝜏)⟩𝑡

⟨𝐼(𝑡)⟩𝑡
= 𝑒−𝐷0𝑞2𝜏 , (1.2)

where 𝐸(𝑡) is the scattered complex field as a function of time, 𝐼(𝑡) = 𝐸(𝑡)𝐸∗(𝑡)
is the scattered intensity, 𝜏 is the autocorrelation lag time, and 𝑞 is the scattering
wavenumber, defined as [20]

𝑞 = 4𝜋𝑛
𝜆0

sin (𝜃/2) . (1.3)

Here, 𝑛 is the suspension refractive index, and 𝜆0 is the incident laser wavelength
in vacuum.

In the classical detection scheme, DLS relies on homodyne detection of scattered
light intensity, i.e., the scattered light from different particles are mixed together and
detected. Therefore, the normalized autocovariance of the detected light intensity
is 𝑔2(𝜏). Using the Siegert relation [20], the normalized intensity autocovariance,
which represents the autocorrelation of the intensity signal after mean subtraction,
is given by

𝑔2(𝜏) =
⟨ (𝐼(𝑡) − ⟨𝐼(𝑡)⟩𝑡) (𝐼(𝑡 + 𝜏) − ⟨𝐼(𝑡)⟩𝑡) ⟩𝑡

⟨𝐼(𝑡)⟩2𝑡
= 𝛽|𝑔1(𝜏)|

2 = 𝛽𝑒−2𝐷0𝑞2𝜏 , (1.4)

where 𝛽 is a factor that takes into account the reduction of contrast. The rela-
tion Eq. (1.4) is valid for monodisperse particles. Figure 1.4(a,b) shows simulated
intensity fluctuations and the corresponding normalized second-order autocovari-
ance function for non-interacting, sufficiently diluted particles with a radius of 100
nm. The decay rate of 𝑔2(𝜏) is a pure single exponential. For a suspension con-
taining non-interacting polydisperse particles (i.e., particles of different sizes), the
autocorrelation function is the sum of correlation functions for the different parti-
cle sizes [19]. Generally, DLS is accurate and reliable for measuring monodisperse
particles or a single mean particle radius. To determine particle dimensions using
DLS measurements, knowledge of the viscosity and temperature of the suspension
is necessary. Additionally, the DLS setup is quite sensitive to specular reflections,
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Figure 1.4: DLS simulations using 100 nm radius particles. (a) Intensity fluctuations as a function of
time. (b) Normalized second-order autocovariance function along with the fit using Eq. (1.4).

as the scattered signal intensity from particles is usually low, especially for smaller
particles.

DLS can measure particle sizes ranging from a few nanometers to 1000 nanome-
ters [10, 17]. Smaller particles do not scatter light sufficiently, while larger particles
may tend to settle out from the suspension and exhibit no measurable diffusional
motion. The optical limitations for DLS are less severe than for the SLS technique,
but there is an additional requirement that the sample properties remain stationary
on the timescale of a measurement, typically ranging from 0.1 to 5 minutes [10].
For accurate capture of diffusive dynamics with DLS, the detector must possess
both high sensitivity and a high acquisition rate. DLS particle sizing is also limited
to low particle concentration samples [19]. With increasing particle concentrations,
hydrodynamic and direct particle interactions become important, and the simple
diffusional model is no longer sufficient to describe the physics. Moreover, in such
cases, DLS also suffers frommultiple scattering, which is not included in the underly-
ing models that rely on the assumption of a single scattered light. Two-color [22, 23]
or cross-correlation [24] DLS have been developed to overcome the limit imposed
by multiple scattering. However, these require a more complex setup with at least
two scattering arms. Very low sample concentrations, on the other hand, lead to
fluctuations in particle count within the measurement volume for which Eq. (1.4)
does not hold. Typical particle volume fractions studied in DLS are in the range of
0.001-0.01%. To measure very high volume fractions, diffusing-wave spectroscopy
(DWS) is employed, representing an extreme case of DLS that assumes a very
dense and opaque medium.

Similar to SLS, real-time measurements are possible with DLS. DLS models have
been extended [25] to compensate for the bulk particle motion, which, when un-
compensated for, leads to the underestimation of the particle size. However, this
compensation is effective only when the suspension flow speed is uniform across
the entire scattering volume. This imposes further limitations on DLS, as the flow
profile in typical in-line applications is not uniform.
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Diffusing-wave spectroscopy
Diffusing-wave spectroscopy (DWS) extends DLS to highly multiple scattering me-
dia. Both techniques involve detecting varying scattered light intensity and correlat-
ing it with particles’ diffusive motion. While DLS assumes a single scattering signal,
DWS takes a completely different approach. In DWS, light is supposed to undergo
a large number of scattering events from particles in the suspension. In this limit,
the direction of scattered light is entirely randomized, and dynamics are treated
with statistical approximations [26]. DWS employs two approximations. The first is
that it describes light propagation through the suspension in the extreme multiple
scattering limit, where each photon is scattered multiple times and the photon’s
path can be described as a random walk. The simplest description of light propaga-
tion is through the diffusion approximation [26], which neglects interference effects
and assumes that light diffuses as it travels through the medium. The second ap-
proximation is that individual light scattering instances are approximated through a
contribution of an average scattering event, with the path length determining the
number of average scattering events.

From an experimental perspective, DWS also measures the autocorrelation func-
tion and relates it to particle sizes. Since DWS is an extreme case of DLS with a very
concentrated and turbid sample, its setup is similar to DLS. However, the collected
light intensity is lower, hence requiring more powerful light sources for accurate
particle sizing. In the case of transmission DWS, it is crucial to ensure no unscat-
tered light passes through the sample. This requires a large sample thickness and
high particle concentration, which, in turn, increases light absorption and neces-
sitates higher optical power compared to DLS. In DWS, scattered light intensity
from large path lengths (more multiple scattering) decorrelates faster than from
smaller path lengths, offering a method to differentiate between single scattering
and multiple scattering contributions. In backscattering DWS, it is important not to
measure contributions to the autocorrelation function from single scattering events,
which have longer characteristic decay times. Since DWS deals with multiple scat-
tered light, which decorrelates faster, there are more requirements on the detection
electronics. Additionally, multiply scattered light loses its polarization and produces
an autocorrelation function of lesser magnitude.

In practice, DLS is a more powerful and quantitative tool for measuring particle
size because it has fewer technical limitations. DWS requires more prior information
and its accuracy is rather limited. Unlike DLS, DWS cannot characterize polydisperse
suspensions [27]. However, when multiple scattering dominates and DLS cannot be
relied upon, DWS can still provide information about particle size. Simple diffusion
models for DWS also do not account for particle-particle interactions. While these
interactions can be considered by modifying underlying models, due to the higher
particle concentrations of the sample, accounting for hydrodynamic interactions is
more critical for DWS performance than for DLS. The typical particle size range for
DWS is 100–3000 nm, with concentrations of at least 10–20% [28].

Photon density wave spectroscopy
Photon Density Wave (PDW) spectroscopy is a novel optical method suitable for
particle sizing. In PDW, the light from a laser diode is intensity-modulated in the
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MHz-GHz frequency range and guided into a sample using a fiber [29]. The light
coming out of the fiber acts as a point source. Due to the intensity modulation, a
photon density wave is created, representing a variation in the number of photons
per unit volume as a function of time [29]. The PDW wave propagates spherically
from the fiber tip, creating a coherent density wave in the medium. At some distance
from the light source fiber, the detection fiber is located, collecting and guiding part
of the light to the detector. The amplitude and phase of the detected signal are
then analyzed. This analysis provides information on the absorption and reduced
scattering coefficients of the suspension. The reduced scattering coefficient can be
further converted into the particle size using Mie and/or other scattering theories.
The PDW technique is most effective when applied to highly turbid and concentrated
samples for the PDW wave to fully develop. Particle size measurements in the
range 50-200 nm [30, 31] have been reported in industrial settings. The temporal
resolution of the measurements is typically a few minutes.

Differential dynamic microscopy
Differential dynamic microscopy (DDM) is an alternative to DLS that can be used
to measure particle sizes indirectly. Instead of detecting the total scattered power,
DDM relies on obtaining consecutive 2D brightfield images as a function of time.
A differential signal 𝑑(r, 𝑡, 𝜏) is generated by subtracting two images acquired at
different times, the first one at time 𝑡 and the second one at 𝑡 + 𝜏 [32, 33], with

𝑑 (r, 𝑡, 𝜏) = 𝐼 (r, 𝑡 + 𝜏) − 𝐼 (r, 𝑡) . (1.5)

Here, 𝐼(r, 𝑡) represents the image intensity distribution, which is a function of both
time and lateral position. Squaring the Fourier transform of the differential 𝑑(r, 𝑡, 𝜏)
and measuring the time average gives the so-called image structure function,

𝐹𝑑 (q, 𝜏) = ⟨|𝑑 (q, 𝑡, 𝜏) |
2⟩
𝑡
, (1.6)

where q is a wave vector in the Fourier domain and where ⟨⟩𝑡 indicates averaging
over 𝑡.

The variation of the image intensity distribution with the time delay between the
images is related to the translational and Brownian motion of the imaged particles.
For spherical particles in Brownian motion, the image structure function takes the
form [34]

𝐹𝑑 (q, 𝜏) = 𝐴 (q) [1 − 𝑒−𝐷0𝑞
2𝜏] + 𝐵 (q) , (1.7)

where 𝑞 = |q| is the azimuthally isotropic scattering vector magnitude, which is
the Fourier pair of the radial position in the intensity image. Therefore, DDM allows
access to 𝑞-dependent diffusive dynamics by distinguishing between various spatial
frequencies in the intensity image.

In contrast to standard DLS, DDM involves more complicated optics due to the
2D image acquisition scheme and operation in a transmission configuration. As
the characteristic correlation decay increases with decreasing particle size, a fast
imaging system is required for sizing small particles. Using DDM, researchers have
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reported measurements of particles ranging in size from a few nanometers to a few
microns [34, 35]. It is crucial to note that sample thickness, particle concentration,
and speed must be high enough to enable tracking of particle motion in consecu-
tively acquired images, as well as the transmission of sufficient light without multiple
scattering. Similar to SLS and DLS, DDM can be extended by incorporating multiple
cameras in a cross-differential mode [36]. This allows researchers to decrease the
lag time between acquired images and investigate faster particle dynamics.

When applying DDM to a flowing sample, flow effects quickly dominate over
diffusive dynamics, leading to an underestimation of particle size. Flow-DDM has
been developed [37] to address these limitations. However, this improvement only
works for spatially uniform flows, as it is based on an average particle drift velocity.
In typical in-line sizing applications, where flow speed varies as a function of space,
this further constrains the effective particle sizing depth range and, consequently,
the sample thickness. Therefore, implementing DDM for in-line particle sizing is
likely more challenging due to limited sample thickness, spatial variation in flow
velocity, and the use of a complex optical system.

Doppler-based techniques
In Doppler-based methods, the Doppler effect is utilized to measure the velocity
and/or size of particles. In phase Doppler anemometry (PDA) [10], a laser beam is
split into two parallel beams that are then focused on a point within a measurement
zone, forming stationary interference fringes of alternating high and low intensity.
When a particle passes through these fringes, it scatters light. The intensity of
the scattered light has high-frequency oscillations known as Doppler burst signals.
The frequency of these oscillations (Doppler frequency) is proportional to the parti-
cle’s velocity. Particle size is determined by measuring the phase shift between the
Doppler burst signals received by multiple detectors, with the phase shift directly
related to the particle diameter. This method allows simultaneous and precise mea-
surement of both the size and velocity of particles in a flow. The typical particle
size range is from 0.5 μm to several millimeters[10]. The measurement volume is
small, confined to the area where the laser beams overlap. The setup of PDA is
complex and costly.

Laser Doppler anemometry (LDA), also known as laser Doppler velocimetry
(LDV), is insensitive to particle size and can only measure the velocity or concen-
tration of a suspension [8]). It operates based on the Doppler effect, detecting
the frequency shift of laser light scattered by moving particles. By analyzing this
frequency shift and its frequency broadening, LDA provides information about sus-
pension concentration and flow velocity. While it can be applied in-line, it is not
suitable for particle sizing.

1.5. Optical coherence tomography
Optical coherence tomography (OCT), also known as low-coherence interferometry
(LCI), utilizes a low-coherence light source in a Michelson interferometer configu-
ration to measure path-length-resolved sample reflectivity profiles with micrometer
resolution and lengths of up to a few millimeters [38]. In OCT, light from a low
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Figure 1.5: Schematic representation of a spectral-domain OCT setup.

temporal-coherence broad-bandwidth source is split via a beam splitter. One part
of the beam is directed towards the sample, and the second portion is directed
towards the reference mirror. Scattered light from the sample (sample beam) and
a reflection from the reference mirror (reference beam) are recombined via the
beam splitter onto a detector. The measured interference signal is a function of the
sample and reference electric field amplitudes. The interference between the two
beams arises only when the path-length difference between them is less than the
light coherence length. The axial resolution of OCT is inversely proportional to the
spectral bandwidth of the light source, with broader bandwidths providing better
resolution.

OCT measurements can be realized in two different ways: time-domain and
Fourier-domain OCT. In time-domain OCT, light interference is detected using a
single photodiode, and path-length-resolved information about sample scattering
is obtained by scanning the position of the reference mirror. Interference will be
produced only at specific reference mirror positions (within the accuracy of the light
coherence length). The magnitude of the interference burst is related to the sam-
ple reflectivity. Thus, by varying the reference mirror position in accordance with
the sample depth, the sample reflectivity profile can be obtained. Initial implemen-
tations were with time-domain OCT, but it is currently being superseded by more
advanced Fourier-domain OCT.

In Fourier-domain OCT, the position of the reference mirror is fixed. However,
path-length-dependent information is encoded within the spectrum of the interfer-
ence pattern. The schematic of a Fourier-domain OCT setup is given in Fig. 1.5.
The OCT signal, or path-length-dependent reflectivity/scattering amplitude, is cal-
culated by an inverse Fourier transformation of the interference spectrum [38].
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Fourier-domain OCT can be achieved using two approaches: swept-source and
spectral-domain OCT. In the swept-source method, the incident light is a laser with
a tunable frequency. The incident light frequency is scanned as a function of time,
and the interference signal is detected using a single photodiode. This produces
a frequency-dependent interference signal, which is then Fourier-transformed to
obtain the path-length resolved OCT signal. In spectral-domain OCT, a broadband
light source is used. However, in this case, the interference spectrum is spec-
trally resolved in space using an interferometer. This provides a frequency-domain
interference signal, which is then transformed to the optical path-length domain.
Compared to time-domain OCT, Fourier-domain OCT provides several advantages:
higher signal-to-noise ratio, lower measurement time, and a fixed reference mirror
[38]. Fourier-domain OCT does not require moving the mirrors to obtain axial sam-
ple scans. However, the beams can be tilted to perform lateral 2D path-resolved
scans of the sample as well. The Fourier transform of the interference spectrum,
which is the OCT signal, is a complex-valued signal and can be expressed as a
combination of the signal amplitude and phase [39].

Optical coherence tomography can be used to determine various properties of a
particle suspension through both static and dynamic measurements. In static mea-
surements, sample properties are derived from the depth-resolved OCT intensity
profile, while in dynamic measurements, the time-dependent OCT signal is used to
probe particle motion and relate it to their properties. The advantage of dynamic
measurements over static measurements is that they require less a priori sample in-
formation or calibration. OCT has been utilized for measuring the complex refractive
index [40], particle concentration [41], attenuation coefficient [42–44], scattering
anisotropy [45], flow speed [46, 47], particle size and polydispersity [5, 48] of
colloidal suspensions.

1.5.1. Doppler OCT
Doppler OCT enables the determination of spatially-resolved flow speed within par-
ticle suspensions [49]. The Doppler frequency shift observed in the Fourier-domain
spectral OCT signal corresponds to a phase change in the spatial OCT signal. This
phase change is directly proportional to the flow velocity component along the op-
tical axis of the beam. An advantage of Doppler OCT is its capability to provide
spatially resolved flow speed measurements across the entire OCT imaging depth.

Doppler OCT is considered the gold standard for flow measurements in particle
suspensions and finds widespread use in in-line medical and clinical applications.
However, it is important to note that while Doppler OCT excels in flow measurement,
the average Doppler phase shift is insensitive to particle size [20, 21]. Consequently,
similar to Laser Doppler Anemometry (LDA), Doppler OCT isn’t suitable for particle
sizing applications. Due to its origin in the Doppler frequency shift, lateral flows
cannot be measured with Doppler OCT. The minimum flow that Doppler OCT can
measure is limited by particle diffusion as this adds a random phase to the phase
from the axial motion. The maximum flow speed that can be measured is limited
by phase wrapping and fringe washout [49].
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1.5.2. Dynamic light scattering OCT
Fourier-domain OCT can be employed in conjunction with DLS for particle sizing and
flow measurement, denoted as DLS-OCT. Initially, DLS-OCT was used for quantita-
tive diffusion imaging and particle sizing [48], where particles down to 46 nm in size
and with weight concentrations of up to 10% were measured. Later, DLS-OCT was
employed to measure flow speeds of particle suspensions [46, 47, 50, 51]. Since
the correlation functions of flow and diffusion multiply, particle size and flow speed
measurements affect each other. This is particularly interesting for in-line parti-
cle sizing during process control [5]. There is a significant bias in measuring the
particle size of flowing suspensions when the flow decorrelation is not accounted
for [50, 52]. Similarly, it is difficult to accurately estimate small flow velocities with
DLS-OCT due to particle diffusion. This is more problematic with smaller particles,
due to faster Brownian motion, which results in similar order-of-magnitude decorre-
lation rates for diffusion and flow. In addition, diffusion measurements for flowing
particles with large bulk velocity are sampling-limited due to fast flow decay rates.

The combination of OCT and DLS offers several advantages. First, it improves
the signal-to-noise ratio using heterodyne detection through the mixing of the sam-
ple field with a reference beam, whereas conventional DLS relies on homodyne de-
tection. Second, the autocorrelation decay rate for the field is halved compared to
the homodyne case [20, 21]. Third, Fourier-domain OCT provides depth-resolved
information, enabling simultaneous DLS-type measurements for multiple depths
within a suspension. This allows for the characterization of flow profiles and parti-
cle sizes as a function of depth [53], which standard DLS techniques cannot achieve.
Fourth, DLS-OCT provides complex depth-resolved fields, while conventional DLS
only yields intensity information. This also allows the use of phase-resolved Doppler
measurements [49]. Fifth, coherence gating rejects multiply scattered light with a
path-length difference larger than the light coherence length, enabling measure-
ments in concentrated and highly scattering media.

Typical depth-resolved DLS-OCT diffusion and flow speed measurements are
shown in Fig. 1.6(a) and (b). Here, diffusion coefficient or flow speed profiles
are obtained simultaneously as a function of depth (OPL). Note that diffusion and
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flow measurements were performed on different samples in cuvettes with different
thicknesses, and hence, they have different depth ranges. Typical measurement
times are in the order of a few seconds, making DLS-OCT suitable for in-line sizing
applications. Even though coherence gating in DLS-OCT does not remove multiple
scattering, it enables the determination of the single-scattering regime from the
depth-resolved data. This is visible from the apparent increase in the estimated
diffusion coefficient with depth in Fig 1.6(a). With standard DLS, it is impossible to
determine with certainty whether single or multiple scattering is observed, leading
to the restriction of its use to dilute suspensions. By utilizing DLS-OCT, this limitation
is overcome.

Despite the fact that DLS-OCT can measure particle size in dense suspensions,
this does not alter the fundamental limit of the applicability of the Stokes-Einstein
equation (1.1) to dilute particle suspensions. For increasing particle concentra-
tions, the diffusion coefficient of hard-sphere particles becomes dependent on the
scattering wavenumber 𝑞, particle volume fraction 𝑓𝑣, and the time over which the
motion is probed [54]. Therefore, DLS-OCT particle sizing in such high concentra-
tion samples requires inversion of the hard-sphere diffusion models [54–56] and
measurements in spectral-domain using the OCT system with a relatively large 𝑞-
range. Such DLS-OCT measurements have not yet been realized.

In contrast to Doppler OCT [57–60], there is very little information about the
sensitivity and precision of DLS-OCT measurements of particle diffusion and flow.
These aspects are crucial for ensuring reliable measurements, particularly in medical
and pharmaceutical applications. While the effects of noise and bias in OCT on the
measured autocorrelation function have been reported [61], their influence on the
underlying parameters remains unclear. Therefore, to gain a better understanding
of the fundamental limits of particle sizing and flow measurement, it is important
to quantify the precision and bias of DLS-OCT.

1.6. Thesis outline
In this thesis we address the challenges associated with particle sizing and flow
measurements using dynamic light scattering optical coherence tomography.

In chapter 2, we address the issue of particle interactions for particle sizing in
concentrated nanoparticle suspensions. For this purpose, we developed a broad-
band DLS-OCT system covering the wavelength range of 350–1000 nm. We in-
verted hard-sphere rheological models and successfully measured particle size and
polydispersity in nanoparticle suspensions with a particle concentration of 50 wt.%.
Furthermore, we demonstrated the applicability of in-line particle sizing in suspen-
sions that are not suitable for standard DLS-OCT measurements.

In chapter 3, we developed a scanning DLS-OCT system for measuring high
flow speeds and improving particle sizing under flow conditions. We demonstrated
a two-fold improvement in the flow velocity dynamic range when scanning the OCT
beam along the flow. We also showed that we can measure the particle size of
flowing suspensions more accurately deeper within the flow channel, further away
from the edges. This can be beneficial in typical pharmaceutical applications where
diffusion and mixing near the edges are slower, leading to overestimation of particle
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size.
In chapter 4, we incorporate number fluctuations into DLS-OCT to measure

extremely low flow speeds and particle concentrations in diluted nanoparticle sus-
pensions. We demonstrated the ability to measure flow velocities below the par-
ticle diffusion and Doppler OCT limits by incorporating number fluctuations into
the second-order autocorrelation function. Furthermore, the inclusion of number
fluctuations in the DLS-OCT analysis can improve the accuracy of in-line particle
sizing in dilute suspensions. Number fluctuations can also be implemented in more
concentrated particle suspensions, for instance, using an OCT system with higher
resolution.

In chapter 5, we demonstrate the application of number-fluctuation DLS-OCT
for simultaneous 2D flow measurements below the diffusion and Doppler OCT lim-
its on an organ-on-chip (OoC) device. In addition to number fluctuations, we
implemented particle image velocimetry (PIV) on the OCT data and successfully
measured the distribution of the complete in-plane velocity vectors. This chapter
further showcases the usability of number-fluctuation DLS-OCT for measuring ex-
tremely small flow speeds in biomedical imaging and its advantages over Doppler
OCT.

In chapter 6, we assess the precision and bias in DLS-OCT measurements of
diffusion and flow. We show that errors in autocorrelation coefficients are strongly
correlated, thereby hindering the ability to quantify the uncertainty in particle siz-
ing. To overcome this issue, we mix different autocorrelation functions at the same
time delay. Once the error correlations are removed, the precision in particle dif-
fusion and flow speed matches the Cramer-Rao lower bound. This enables precise
uncertainty quantification in particle sizing and flow speed measurements using
DLS-OCT.

In Chapter 7, we address the problem of multiple scattering in DLS-OCT. We
propose a simple method to perform multiple scattering simulations for particles
undergoing Brownian motion and demonstrate that the autocorrelation functions
in the multiple scattering regime exhibit double-exponential decay, corresponding
to different numbers of scattering events. Experimental measurements corrobo-
rate these findings. Employing a double-exponential fit model improves both the
depth range of single-scattering particle sizing and the accuracy of DWS particle
size estimation.

Chapter 8 summarizes this thesis, discusses its contributions to particle sizing
and flow measurements using DLS-OCT, and provides an outlook for future work.

References
[1] A. K. Kulshreshtha, O. N. Singh, and G. M. Wall, Pharmaceutical Suspensions:

From Formulation Development to Manufacturing (Springer, 2010).

[2] S. Jacob, A. B. Nair, and J. Shah, Emerging role of nanosuspensions in drug
delivery systems, Biomaterials Research 24, 1 (2020).

[3] O. Salata, Applications of nanoparticles in biology and medicine, Journal of
Nanobiotechnology 2, 1 (2004).



References

1

19

[4] R. Besseling, A new innovative pat tool for inline particle sizing of concentrated,
flowing nanosuspensions, InProcess-LSP (2018).

[5] R. Besseling, M. Damen, J. Wijgergans, M. Hermes, G. Wynia, and A. Gerich,
New unique PAT method and instrument for real-time inline size characteriza-
tion of concentrated, flowing nanosuspensions, European Journal of Pharma-
ceutiral Sciences 133, 2005 (2019).

[6] B. Y. Shekunov, P. Chattopadhyay, H. H. Y. Tong, and A. H. L. Chow, Particle
size analysis in pharmaceutics: principles, methods and applications, Pharma-
ceutical Research 24, 203–227 (2007).

[7] T. Allen, Particle Size Measurement (Springer, 1981).

[8] W. Boyes, Instrumentation Reference Book (Butterworth-Heinemann, 2010).

[9] B. Coulter, Coulter principle short cource, (2014).

[10] H. G. Merkus, Particle Size Measurements (Springer, 2009).

[11] D. J. McClements, Ultrasonic measurements in particle size analysis, Encyclo-
pedia of Analytical Chemistry (2006).

[12] N. Ruthardt, D. C. Lamb, and C. Bräuchle, Single-particle tracking as a quanti-
tative microscopy-based approach to unravel cell entry mechanisms of viruses
and pharmaceutical nanoparticles, Molecular Therapy 19, 1199 (2011).

[13] O. H. A. Abildgaard, J. R. Frisvad, V. Falster, A. Parker, N. J. Christensen, A. B.
Dahl, and R. Larsen, Noninvasive particle sizing using camera-based diffuse
reflectance spectroscopy, Applied Optics 55, 3840 (2016).

[14] R. B. Miles, W. R. Lempert, and J. N. Forkey, Laser rayleigh scattering, Meas.
Sci. Technol. 12, R33 (2001).

[15] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small
Particles (John Wiley & Sons, 1983).

[16] I. Kolokolnikov, E. Nepomnyashchaya, and E. Velichko, Static light scattering
for determination of physical parameters of macro- and nanoparticles, Journal
of Physics 1410, 012168 (2019).

[17] L. Ogendal, Light Scattering: A brief introduction, Tech. Rep. (University of
Copenhagen, 2019).

[18] I. D. Block and F. Scheffold, Modulated 3D cross-correlation light scattering:
improving turbid sample characterization, Review of Scientific Instruments 81,
123107 (2010).

[19] J. Stetefeld, S. A. McKenna, and T. R. Patel, Dynamic light scattering: a
practical guide and applications in biomedical sciences, Biophys Rev 8, 409
(2016).

https://www.inprocess-lsp.com/download-scientific-publication
https://www.inprocess-lsp.com/download-scientific-publication


1

20 References

[20] C. S. Johnson and D. A. Gabriel, Laser Light Scattering (Dover Publications,
1994).

[21] B. J. Berne and R. Pecora, Dynamic Light Scattering (Dover Publications,
2000).

[22] P. N. Segrè and P. N. Pusey, Scaling of the dynamic scattering function of
concentrated colloidal suspensions, Physical Review Letters 77, 771 (1996).

[23] P. N. Segrè and P. N. Pusey, Dynamics and scaling in hard-sphere colloidal
suspensions, Physica A 235, 9 (1997).

[24] F. Westermeier, B. Fischer, W. Roseker, G. Grübel, G. Nägele, and M. Heinen,
Structure and short-time dynamics in concentrated suspensions of charged
colloids, The Journal of Chemical Physics 137, 114504 (2012).

[25] A. B. Leung, K. I. Suh, and R. R. Ansari, Particle-size and velocity measure-
ments in flowing conditions using dynamic light scattering, Applied Optics 45,
2186 (2006).

[26] W. Brown, Dynamic Light Scattering (Oxford University Press, 1993).

[27] D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, Diffusing-wave spec-
troscopy: dynamic light scattering in the multiple scattering limit, Journal De
Physique 51, 2101 (1990).

[28] F. Scheffold, Particle sizing with diffusing wave spectroscopy, Journal of Dis-
persion Science and Technology 23, 591 (2002).

[29] Fiber-optical Particle Sizing by Photon Density Wave Spectroscopy (Spie,
2014).

[30] L. Bressel, R.Hass, and O.Reich, Particle sizing in highly turbid dispersions
by photon density wave spectroscopy, Journal of Quantitative Spectroscopy &
Radiative Transfer 126, 122 (2013).

[31] R. Hass, M. Münzberg, L. Bressel, and O. Reich, Industrial applications of
photon density wave spectroscopy for in-line particle sizing, Applied Optics
52, 1423 (2013).

[32] R. Cerbino and V. Trappe, Differential dynamic microscopy: Probingwave vec-
tor dependent dynamics with a microscope, Physical Review Letters 100,
188102 (2008).

[33] R. Cerbino and P. Cicuta, Perspective: Differential dynamic microscopy extracts
multi-scale activity in complex fluids and biological systems, The Journal of
Chemical Physics 147, 110901 (2017).

[34] D. Germain, M. Leocmach, and T. Gibaud, Differential dynamic microscopy
to characterize Brownian motion and bacteria mobility, American Journal of
Physics 84, 202 (2015).



References

1

21

[35] C. Guidolin, C. Heim, N. B. P. Adams, P. Baaske, V. Rondelli, R. Cerbino,
and F. Giavazzi, Protein sizing with differential dynamic microscopy, Macro-
molecules 56, 8290 (2023).

[36] M. Arkoa and A. Petelin, Cross-differential dynamic microscopy, Soft Matter
15, 2791 (2019).

[37] J. A. Richards, V. A. Martinez, and J. Arlt, Particle sizing for flowing colloidal
suspensions using flow-differential dynamic microscopy, Soft Matter 17, 3945
(2021).

[38] W. Drexler and J. G. Fujimoto, Dynamic Light Scattering (Springer, 2008).

[39] J. Kalkman, Fourier-domain optical coherence tomography signal analysis and
numerical modeling, International Journal of Optics 2017, 1 (2017).

[40] P. N. A. Speets and J. Kalkman, Experiment and theory of the complex refrac-
tive index of dense colloidal media, Applied Optics 41, 214 (2024).

[41] K. Cheishvili and J. Kalkman, Sub-diffusion flow velocimetry with number fluc-
tuation optical coherence tomography, Optics Express 31, 3755 (2023).

[42] B. Ghafaryasl, K. A. Vermeer, J. Kalkman, T. Callewaert, J. F. de Boer, and L. J.
van Vliet, Analysis of attenuation coefficient estimation in Fourier-domain OCT
of semi-infinite media, Biomedical Optics Express 11, 6093 (2020).

[43] B. Ghafaryasl, K. A. Vermeer, J. Kalkman, T. Callewaert, J. F. de Boer, and
L. J. van Vliiet, Attenuation coefficient estimation in Fourier-domain OCT of
multi-layered phantoms, Biomedical Optics Express 12, 2744 (2021).

[44] P. N. A. Speets and J. Kalkman, Measuring optical properties of clear and
turbid media with broadband spectral interferometry, Applied Optics 62, 4349
(2023).

[45] V. M. Kodach, D. J. Faber, J. van Marle, T. G. van Leeuwen, and J. Kalkman,
Determination of the scattering anisotropy with optical coherence tomography,
Optics Express 19, 6131 (2011).

[46] V. J. Srinivasan, H. Radhakrishnan, E. H. Lo, E. T. Mandeville, J. Y. Jiang,
S. Barry, and A. E. Cable, OCT methods for capillary velocimetry, Biomedical
Optics Express 3, 612 (2012).

[47] J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, Dynamic light scattering
optical coherence tomography, Optics Express 20, 22262 (2012).

[48] J. Kalkman, R. Sprik, and T. G. van Leeuwen, Path-length-resolved diffusive
particle dynamics in spectral-domain optical coherence tomography, Physical
Review Letters 105, 198302 (2010).

[49] E. Koch, J. Walther, and M. Cuevas, Limits of Fourier domain Doppler-OCT at
high velocities, Sensors and Actuators A 156, 8 (2009).



1

22 References

[50] N. Weiss, T. G. van Leeuwen, and J. Kalkman, Localized measurement of
longitudinal and transverse flow velocities in colloidal suspensions using optical
coherence tomography, Physical Review E 88, 042312 (2013).

[51] B. K. Huang and M. A. Choma, Resolving directional ambiguity in dynamic light
scattering-based transverse motion velocimetry in optical coherence tomog-
raphy, Optics Letters 39, 521 (2014).

[52] N. Weiss, T. G. van Leeuwen, and J. Kalkman, Simultaneous and localized
measurement of diffusion and flow using optical coherence tomography, Op-
tics Express 23, 3448 (2015).

[53] A. Wax, C. Yang, R. Dasari, and M. S. Feld, Path-length-resolved dynamic light
scattering: modeling the transition from single to diffusive scattering, Applied
Optics 40, 4222–4227 (2001).

[54] C. W. J. Beenakker and P. Mazur, Self-diffusion of spheres in a concentrated
suspension, Physica A 120, 388 (1983).

[55] U. Genz and R. Klein, Collective diffusion of charger spheres in the presence
of hydrodynamic interaction, Physica A 171, 26 (1991).

[56] C. W. J. Beenakker and P. Mazur, Diffusion of spheres in a concentrated sus-
pension ii, Physica A 126, 349 (1984).

[57] S. Yazdanfar, C. Yang, M. V. Sarunic, and J. A. Izatt, Frequency estimation pre-
cision in Doppler optical coherence tomography using the Cramer-Rao lower
bound, Optics Express 13, 410 (2005).

[58] H. C. Hendargo, R. P. McNabb, A. Dhalla, N. Shepherd, and J. A. Izatt, Doppler
velocity detection limitations in spectrometer-based versus swept-source op-
tical coherence tomography, Biomedical Optics Express 2, 2175 (2011).

[59] C. S. Kim, W. Qi, J. Zhang, Y. J. Kwon, and Z. Chen, Imaging and quan-
tifying Brownian motion of micro- and nanoparticles using phase-resolved
Doppler variance optical coherence tomography, Journal of Biomedical Optics
18, 030504 (2013).

[60] M. G. O. Gräfe, M. Gondre, and J. F. de Boer, Precision analysis and optimiza-
tion in phase decorrelation OCT velocimetry, Biomedical Optics Express 10,
1297–1314 (2019).

[61] N. Uribe-Patarroyo, A. L. Post, S. Ruiz-Lopera, D. J. Faber, and B. E. Bouma,
Noise and bias in optical coherence tomography intensity signal decorrelation,
OSA Continuum 3, 709 (2020).



2
Wavenumber-dependent
dynamic light scattering

optical coherence
tomography measurements of

collective and self-diffusion

We demonstrate wavenumber-dependent DLS-OCT measurements of collec-
tive and self-diffusion coefficients in concentrated silica suspensions across
a broad 𝑞-range, utilizing a custom home-built OCT system. Depending on
the sample polydispersity, either the collective or self-diffusion is measured.
The measured collective-diffusion coefficient shows excellent agreement with
hard-sphere theory and serves as an effective tool for accurately determin-
ing particle sizes. We employ the decoupling approximation for simultane-
ously measuring collective and self-diffusion coefficients, even in sufficiently
monodisperse suspensions, using a high-speed Thorlabs OCT system. This
enables particle size and volume fraction determination without the neces-
sity of wavenumber-dependent measurements. We derive a relationship be-
tween the particle number-based polydispersity index and the ratio of self
and collective mode amplitudes in the autocorrelation function and utilize
it to measure the particle number-based polydispersity index. Notably, the
polydispersity determined in this manner demonstrates improved sensitiv-

This chapter has been published as: Konstantine Cheishvili, Rut Besseling, Michiel Hermes, and
Jeroen Kalkman, Wavenumber-dependent dynamic light scattering optical coherence tomography mea-
surements of collective and self-diffusion, Optics Express 32(11), 19963-19983 (2024).
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ity to smaller particle sizes compared to the standard intensity-based DLS
cumulant analysis performed on dilute samples.

2.1. Introduction
Colloidal dispersions are widely used in chemical, pharmaceutical, and food indus-
tries, as well as in the domains of biology and medicine. Dynamic light scattering
(DLS) is one of the most popular experimental techniques for studying colloidal sys-
tems [1–3]. It is a relatively simple and versatile technique that relies on the mea-
surement of fluctuations in scattered light to obtain information about the diffusive
motion of colloidal particles, predominantly used to obtain colloidal size characteris-
tics. However, conventional DLS is limited to samples that are not in flow and have
a low concentration of scatterers that have little multiple scattering. Dynamic light
scattering optical coherence tomography (DLS-OCT) incorporates coherence gating
to obtain a depth-resolved particle diffusion coefficient [4]. In DLS-OCT coherence
gating suppresses multiple scattering and allows to study diffusive dynamics in more
concentrated samples [5–7] and under flow [8–10].

In low-concentration particle suspensions, particle interactions are negligible,
and the diffusion coefficient is inversely proportional to the particle hydrodynamic
radius via the Stokes-Einstein relation. However, there is generally no such sim-
ple relation for concentrated samples. Concentrated particle suspension dynamics
has been an active area of research for many years [11] and rheological models
have been developed for highly concentrated charge-stabilized hard-sphere par-
ticle suspensions. These models describe particle diffusion through collective and
self-diffusion mechanisms over short and long time scales [12–15]. Collective diffu-
sion describes the relaxation of concentration gradients over specific length scales
and thus depends on the scattering wavenumber 𝑞, while self-diffusion describes
the mean squared displacement (MSD) of individual colloid particles. Conventional
DLS has been utilized to measure the collective and/or self-diffusion coefficient
of concentrated hard-sphere particle suspensions using an index-matching proce-
dure [16–18]. This is a non-trivial process that requires extensive sample prepa-
ration to minimize multiple scattering and make self-diffusion measurable. Two-
color [11, 14] or cross correlation [19] DLS has been employed to measure the
collective diffusion coefficient over a large 𝑞-range in concentrated samples. While
these methods effectively suppress multiple scattering, they require a more com-
plex setup with at least two different scattering arms or wavelengths and involves
laborious subsequent measurement of different incident and/or scattering vectors
to obtain wavenumber-dependent dynamics.

In this work, we employ DLS-OCT to measure the 𝑞-dependent particle diffusion
in dense suspensions in the spectral domain. DLS-OCT is generally used for con-
ducting spatially resolved coherence-gated measurements of diffusion and flow by
Fourier transformation over all wavenumbers. Nonetheless, when operated in the
spectral domain, it can provide heterodyne correlation measurements at the differ-
ent wavelengths of the OCT bandwidth and thus can be employed to simultaneously
measure wavenumber-dependent diffusion over the entire bandwidth. This is akin
to conducting parallel DLS measurements at different wavelengths or scattering an-
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gles. However, the limited spectral width of typical OCT systems makes the 𝑞-range
relatively small. In this study, we employ a custom-built broad bandwidth DLS-OCT
system to measure wavenumber-dependent dynamics in a single measurement over
a large 𝑞-range. From the scattering wavenumber dependency of the decorrelation,
we measured the long- and short-time collective and self-diffusion coefficients in
concentrated silica suspensions in a straightforward manner and correlated them
with particle size and polydispersity.

2.2. Theory
2.2.1. Particle diffusion
In dilute particle suspensions with a particle volume fraction 𝑓𝑣 → 0, direct and
hydrodynamic interactions between the particles are negligible [20]. The diffusion
coefficient for non-interacting particles undergoing Brownian motion is given by the
Stokes-Einstein equation

𝐷0 =
𝑘𝐵𝑇
6𝜋𝜂0𝑎

, (2.1)

where 𝑘𝐵 is the Boltzmann constant, 𝑇 is the absolute temperature, 𝜂0 is the sus-
pension dynamic viscosity, and 𝑎 is the particle hydrodynamic radius. For charge-
stabilized particle suspensions with a sufficient salt concentration, the hydrodynamic
radius is the particle radius [16].

In concentrated suspensions, particle motion is affected by the presence of
surrounding particles. For these suspensions we differentiate between short-time
(𝑡 ≪ 𝜏0) and long-time (𝑡 ≫ 𝜏0) diffusive regimes, as well as between collec-
tive and self-diffusion. Here, 𝑡 is the time over which the motion is probed (lag
time in DLS-OCT correlation functions), while 𝜏0 is the interaction time defined as
𝜏0 = 𝑎2/𝐷0 [20, 21]. In the short-time regime, particle motion is primarily influ-
enced by solvent-mediated hydrodynamic interactions between the particles. In the
long-time regime, excluded volume interactions and direct electrostatic interactions
additionally affect the diffusion (in different ways for collective and self-diffusion
and at different time scales). Self-diffusion pertains to the mean squared displace-
ment of individual colloid particles, while collective diffusion involves the relaxation
of concentration gradients across specific length scales. Dynamic light scattering
(DLS) on a monodisperse particle suspension measures the collective diffusion co-
efficient for a particular length scale related to the wavelength and angle of the
experiment [20].

In the dilute limit, there is no difference between the two different time scales
or collective and self-diffusion. However, due to the interactions described above in
concentrated systems, both collective and self-diffusion coefficients become func-
tions of the particle volume fraction due to both hydrodynamic and direct inter-
actions, and a function of time, represented by the transition from short to long-
time dynamics [21–24]. Furthermore, the collective diffusion coefficient becomes a
function of the scattering wavenumber, 𝑞 = 4𝜋𝑛 sin (𝜃/2)/𝜆0, where 𝜆0 is the illu-
minating light wavelength, 𝑛 is the suspension refractive index, and 𝜃 is the angle
between the illumination and scattering directions. The wavenumber dependence
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of collective diffusion reflects the fact that, due to particle interactions, the diffusion
of a density fluctuation in the suspension can strongly depend on the length scale
of that fluctuation.

Self-diffusion
Self-diffusion describes how an individual particle diffuses in the presence of other
Brownian particles. Therefore, it can only be detected when individual particles
are optically distinguishable, either due to the polydispersity of particle scattering
properties in the suspension, or by index-matching the majority of particles within
the solvent, leaving only a small fraction of optically contrasting particles of interest
that determine the scattered light fluctuations. Index matching ensures that the
light-scattering particles do not interact with each other but do interact with other
non light-scattering particles. Since self-diffusion depends solely on the motion of a
single particle, the self-diffusion coefficient, 𝐷𝑠(𝑡), depends only on time and volume
fraction and not on the scattering wavenumber. It equals the collective diffusion
coefficient in the limit of infinite 𝑞[25]. The self-diffusion coefficient is proportional
to the slope of the particle mean-squared displacement curve[20] and, for hard
spheres, is given by [15, 20, 26]

𝐷𝑠(𝑡) = 𝐷𝑠𝑠 − (𝐷𝑠𝑠 − 𝐷𝑙𝑠)
2𝜎
√𝜋
[ 𝑡𝜏𝑀

]
1/2

as 𝑡 → 0+ , (2.2)

and

𝐷𝑠(𝑡) = 𝐷𝑙𝑠 + (𝐷𝑠𝑠 − 𝐷𝑙𝑠)
𝜎
2√𝜋

[𝜏𝑀𝑡 ]
3/2

as 𝑡 → ∞, (2.3)

where 𝐷𝑙𝑠 is the long-time self-diffusion coefficient, 𝐷𝑠𝑠 is the short-time self-diffusion
coefficient, 𝜏𝑀 is the relaxation time of the velocity autocorrelation function [27],
and 𝜎 is the width of the relaxation rate spectrum [26]. For dilute particle suspen-
sions, 𝐷𝑠(𝑡) = 𝐷0, the characteristic time for structural rearrangements 𝜏𝑀 = 𝜏0,
and 𝜎 = √2 [20, 26]. For more concentrated suspensions such analytical relations
for 𝜏𝑀 and 𝜎 are not available. Based on simulations Cichocki and Hinsen [26, 27]
suggested that 𝜏𝑀 ≲ 𝜏0 and 𝜎 ≳ √2.

It has been reported that the time-dependent part in Eqs. (2.2) and (2.3) has
a small relative amplitude, making it problematic to observe in typical light scat-
tering experiments and even in simulations [20, 22, 26, 27]. Therefore, we sim-
plify the time-dependent self-diffusion coefficient into a constant short-time self-
diffusion [21–24]

𝐷𝑠(𝑡 ≪ 𝜏0) ≈ 𝐷𝑠(𝑡 → 0) = 𝐷𝑠𝑠 , (2.4)

and a constant long-time self-diffusion

𝐷𝑠(𝑡 ≫ 𝜏0) ≈ 𝐷𝑠(𝑡 → ∞) = 𝐷𝑙𝑠 , (2.5)

for times shorter or longer with respect to 𝜏0, respectively. For hard-sphere particle
suspensions, 𝐷𝑠𝑠 can be computed numerically using Eq. (7.2) derived by Beenakker
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Figure 2.1: Diffusion coefficients and structure factors for hard-sphere particles. (a) Self-diffusion co-
efficients 𝐷𝑙𝑠 and 𝐷𝑠𝑠 as a function of volume fraction. (b) Structure factor 𝑆(𝑞), where the dashed line
corresponds to 𝑓𝑣 = 0. (c) Short- and (d) long-time collective diffusion coefficients.

and Mazur [12, 28], while 𝐷𝑙𝑠 can be calculated analytically using [16]

𝐷𝑙𝑠 = 𝐷0
(1 − 𝑓𝑣)

3

1 + 1.5𝑓𝑣 + 2𝑓2𝑣 + 3𝑓3𝑣
. (2.6)

Both 𝐷𝑠𝑠 and 𝐷𝑙𝑠 are plotted in Fig. 2.1(a) as a function of 𝑓𝑣. They decrease with
increasing 𝑓𝑣, but 𝐷𝑠𝑠 is consistently larger than 𝐷𝑙𝑠. It has been further suggested
that 𝐷𝑙𝑠 can be determined more accurately using [16, 29–32]

𝐷𝑙𝑠 = 𝐷0
𝜂0
𝜂 , (2.7)

where 𝜂 is the measured low-shear viscosity of a concentrated particle suspension.

Collective diffusion
Collective diffusion describes a simultaneous motion of many Brownian particles
due to concentration gradients in a suspension [20]. The term ”collective” refers
to the coherent displacement of particles from a region of high concentration to
region of low concentration [33]. In addition to dependence on 𝑡 and 𝑓𝑣, the collec-
tive diffusion coefficient 𝐷𝑐(𝑞, 𝑡) also depends on the scattering wavenumber 𝑞. It
has been demonstrated that the time dependency in 𝐷𝑐(𝑞, 𝑡) solely arises from the
mean-square displacement of individual particles [11, 14, 34], establishing its rela-
tion to self-diffusion. Assuming uniform time-dependency across all wavenumbers,



2

28
2. Wavenumber-dependent dynamic light scattering optical coherence

tomography measurements of collective and self-diffusion

the collective diffusion coefficient can be factorized into the product of wavenumber
and time-dependent factors [11, 14, 35], resulting in

𝐷𝑐(𝑞, 𝑡) = 𝐷𝑠𝑐 (𝑞)
𝐷𝑠(𝑡)
𝐷𝑠𝑠

, (2.8)

where 𝐷𝑠𝑐 (𝑞) is the short-time collective diffusion coefficient given by [13]

𝐷𝑠𝑐 (𝑞) = 𝐷0
𝐻(𝑞)
𝑆(𝑞) , (2.9)

with 𝐻(𝑞) the hydrodynamic mobility function, and 𝑆(𝑞) the static structure factor.
For hard-sphere particles, 𝐻(𝑞) can be obtained from the Beenakker-Mazur or so
the called 𝛿𝑌 theory [12, 13, 28], and 𝑆(𝑞) can be determined using the Percus-
Yevick approximation [36–38]. For dilute suspensions, i.e. for suspension for which
𝑓𝑣 → 0, 𝑆(𝑞) = 𝐻(𝑞) = 1 and 𝐷𝑐(𝑞, 𝑡) = 𝐷0. Figure 2.1(b,c) shows theoretical
curves for 𝑆(𝑞) and 𝐷𝑠𝑐 (𝑞), respectively, for hard-sphere particles as a function of the
dimensionless wavenumber 𝑞𝑎 and 𝑓𝑣. At low 𝑞𝑎 values, 𝑆(𝑞) is small, reflecting the
suppression of long wavelength density fluctuations in concentrated suspensions,
while at large 𝑞𝑎, it approaches unity. The short-time collective diffusion is highest
at low 𝑞𝑎 and converges to 𝐷𝑠𝑠 at large 𝑞𝑎.

Since the time-dependency in collective diffusion arises from self-diffusion, we
can use the same approximation as in Eq. (2.4, 2.5) and simplify 𝐷𝑐(𝑞, 𝑡) for shorter
times into

𝐷𝑐(𝑞, 𝑡 ≪ 𝜏0) ≈ 𝐷𝑐(𝑞, 𝑡 → 0) = 𝐷𝑠𝑐 (𝑞) = 𝐷0
𝐻(𝑞)
𝑆(𝑞) , (2.10)

and for longer times into

𝐷𝑐(𝑞, 𝑡 ≫ 𝜏0) ≈ 𝐷𝑐(𝑞, 𝑡 → ∞) = 𝐷𝑙𝑐(𝑞) = 𝐷0
𝐻(𝑞)
𝑆(𝑞)

𝐷𝑙𝑠
𝐷𝑠𝑠
. (2.11)

The long-time collective diffusion coefficient 𝐷𝑙𝑐(𝑞) is given in Fig. 2.1(d) as a func-
tion of 𝑞𝑎 and 𝑓𝑣. The long-time collective diffusion coefficient is consistently smaller
than its short-time counterpart due to the direct electrosteric interactions that ham-
per particle movement; these interactions are not yet operative at short times [21].

Dynamic light scattering optical coherence tomography (DLS-OCT) can be used
to measure the wavenumber-dependent collective diffusion coefficient of a parti-
cle suspensions by analyzing temporal fluctuations in the scattered light intensity
for different wavenumbers detected by the OCT spectrometer. When the refer-
ence power is much larger than the sample power (at least an order of magnitude
larger), DLS-OCT measures the collective diffusion coefficient using a heterodyne
detection scheme [20]. When the optical properties of the particles are identical
and the particles are monodisperse, all intensity fluctuations arise from microscopic
density changes. The normalized autocovariance of 𝑞-dependent spectral intensity
fluctuations, which is the heterodyne correlation function, is given by

𝑔1(𝑞, 𝜏) =
𝑆𝑐(𝑞, 𝜏)
𝑆(𝑞) = 1

1 + 1
SNR(𝑞)

𝑒−𝐷𝑐(𝑞)𝑞2𝜏 = 𝐴(𝑞)𝑒−𝐷𝑐(𝑞)𝑞2𝜏 , (2.12)
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where SNR(𝑞) is the signal-to-noise ratio as defined in [39], 𝜏 is the lag time, 𝐴(𝑞)
is the autocovariance amplitude containing the effect of a diminishing SNR, 𝑆(𝑞, 𝜏)
is the collective dynamic structure factor [20], and 𝐷𝑐(𝑞) is the short- or long-time
collective diffusion coefficient. Here we have neglected the time dependence of
the collective diffusion coefficient based on Sec. 2.2.1. Whether 𝐷𝑠𝑐 (𝑞) or 𝐷𝑙𝑐(𝑞)
is measured depends on the DLS-OCT acquisition time and particle size (through
𝜏0). Equation (2.12) is also known as the first-order autocorrelation function and
decorrelates with a decay rate of 𝐷𝑐(𝑞)𝑞2 in contrast to the scattered intensity
correlation function obtained from spatially resolved OCT intensity measurements,
which decays at twice this rate [5, 10]. Note that the collective diffusion rate is
𝑞-dependent in contrast to the self-diffusion which is 𝑞-independent.

2.2.2. Particle polydispersity
In the previous section, single-size monodisperse particles were assumed. How-
ever, particle polydispersity significantly affects the DLS-OCT correlation measure-
ments. We distinguish between size polydispersity, particularly relevant for dilute
samples, and optical polydispersity, which holds broader significance and becomes
more relevant when measuring particle diffusion in concentrated suspensions.

Particle size polydispersity
When particle sizes in a suspension are not identical, the sample is polydisperse in
size. For large size polydispersities single exponential fits using Eq. (2.12) underes-
timate the decay rate[40]. In dilute suspensions, size polydispersity affects 𝑔1(𝑞, 𝑡)
by introducing additional higher-order correlation terms (in time) in the exponent in
Eq. (2.12), where the magnitude of these terms is related to the degree of polydis-
persity [20]. For dilute particle suspensions, size polydispersity can be accounted
for in the correlation function using cumulant or Laplace analysis [40]. In the cu-
mulant analysis, instead of using 𝐷0 in the exponent of Eq. (2.12), the temporal
evolution of the exponent is expanded as a polynomial as proposed in[40],

𝑔1(𝑞, 𝜏) = 𝐴(𝑞)𝑒−𝐷0𝑞
2𝜏+𝜇22 𝜏

2−𝜇33! 𝜏
3+𝜇44! 𝜏

4−… , (2.13)

where 𝜇𝑗 corresponds to the 𝑗th order in the cumulant analysis. Including the
second order in 𝜏 in the expansion, the intensity-averaged polydispersity index is
then defined as [2, 40]

PDI𝐼 =
𝜇2

(𝐷0𝑞2)
2 =

𝜎2𝐼
⟨𝑎⟩2𝐼

, (2.14)

where ⟨𝑎⟩𝐼 and 𝜎𝐼 represent the mean and standard deviation (width) of intensity-
averaged particle radius distribution, respectively. The second equality hols true
only for Gaussian-distributed particle sizes [41]. For perfectly monodisperse parti-
cles, PDI𝐼 = 0.

When measuring diffusion of particles small compared to the wavelength of
DLS-OCT, the Rayleigh scattered intensity is proportional to the squared volume of
the particle [42]. In this case, the first-order autocorrelation function measures
quantities averaged over the squared volume of the particle, and PDI𝐼 = PDI𝑣2 .
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Theoretically, the measured polydispersity index may vary as a function of 𝑞 due
to the scattering anisotropy in DLS-OCT. However, for small particles with isotropic
scattering properties this effect can be neglected [43].

Optical polydispersity
Optical polydispersity refers to the variation of optical properties of the particle
scattering amplitude and includes the size polydispersity [20]. Even if all particles
are identical and statistically equivalent, their scattering amplitudes can vary due
to non-uniform illumination intensity and light scattering directions caused by a
nonzero system numerical aperture (NA). Variations in particle size, shape, and re-
fractive index significantly increase the optical polydispersity. In an optically perfect
monodisperse system, intensity fluctuations arise solely from microscopic density
changes. However, optical polydispersity gives rise to variations in the scattering
intensity that are not related to microscopic density changes. For example, when
two optically distinct particles interchange their positions, the scattered intensity
changes but the microscopic density remains unchanged [20]. This intensity fluc-
tuation is solely related to self-diffusion. The autocovariance of these intensity
fluctuations is related to the self-diffusion of these particles instead of the collective
diffusion. As a result, for optically polydisperse systems, an additional self-diffusion
term appears in 𝑔1(𝑞, 𝑡). For particles with a narrow size distribution, 𝑔1(𝑞, 𝑡) can
be approximated using the decoupling approximation [20, 23, 44, 45]

𝑔1(𝑞, 𝜏) = 𝐴𝑐(𝑞)𝑒−𝐷𝑐(𝑞)𝑞2𝜏⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
collective term

+𝐴𝑠(𝑞)𝑒−𝐷𝑠𝑞2𝜏⎵⎵⎵⎵⎵⎵⎵⎵⎵
self-term

, (2.15)

where 𝐷𝑐(𝑞) and 𝐷𝑠 are the short- or long-time collective and self-diffusion coeffi-
cients. Higher-order terms in the exponents, similar to Eq. (2.13), due to the size
polydispersity are neglected. The mode amplitudes 𝐴𝑐(𝑞) and 𝐴𝑠(𝑞) are the relative
weights of the collective and self-diffusion terms and given by [20]

𝐴𝑐(𝑞) =
⟨𝐵(𝑞)⟩2𝑁

(⟨𝐵2(𝑞)⟩𝑁 − ⟨𝐵(𝑞)⟩
2
𝑁 + ⟨𝐵(𝑞)⟩

2
𝑁𝑆(𝑞)) (1 +

1
SNR(𝑞))

, (2.16)

and

𝐴𝑠(𝑞) =
⟨𝐵2(𝑞)⟩𝑁 − ⟨𝐵(𝑞)⟩

2
𝑁

(⟨𝐵2(𝑞)⟩𝑁 − ⟨𝐵(𝑞)⟩
2
𝑁 + ⟨𝐵(𝑞)⟩

2
𝑁𝑆(𝑞)) (1 +

1
SNR(𝑞))

, (2.17)

where 𝐵(𝑞) is the particle scattering amplitude and ⟨..⟩𝑁 denotes number-averaged
quantities. The collective term of Eq. (2.15) is often called ”coherent” due to a scat-
tering contribution from coherent particle motions, while the self term is referred to
as ”incoherent” due to the unrelated scattering from individual particles [19, 35, 46].
The self and collective modes in Eq. (2.15) become evident only at high particle con-
centrations when the collective and self-diffusion coefficients are different. In dilute
particle suspensions there is always only one mode because 𝐷𝑐(𝑞) = 𝐷𝑠 = 𝐷0, and
Eq. (2.15) simplifies into Eq. (2.12).
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In suspensions where particles are made from the same material, we assume
that the variation in refractive index between particles can be neglected [47]. In
typical low-NA OCT systems, the beam intensity and scattering angle variations
among the particles are also negligible. In this case, the optical polydispersity arises
solely from the size polydispersity. If we further assume that particles are much
smaller than the wavelength (𝑎 ≪ 𝜆) such that the scattering process is described
by Rayleigh scattering [42, 48], we find that 𝐵(𝑞) ∝ 𝑎3 [49]. For particles with a
number-based Gaussian size distribution, the ratio of the self and collective mode
amplitudes is given by

𝐴𝑠(𝑞)
𝐴𝑐(𝑞)

=
⟨𝐵2(𝑞)⟩𝑁 − ⟨𝐵(𝑞)⟩

2
𝑁

⟨𝐵(𝑞)⟩2𝑁
= 15 ⋅ PDI3𝑁 + 36 ⋅ PDI2𝑁 + 9 ⋅ PDI𝑁

9 ⋅ PDI2𝑁 + 6 ⋅ PDI𝑁 + 1
, (2.18)

where PDI𝑁 is the particle number-based polydispersity index defined as

PDI𝑁 =
𝜎2𝑁
⟨𝑎⟩2𝑁

, (2.19)

with ⟨𝑎⟩𝑁 and 𝜎𝑁 being the mean and the standard deviation (width) of the number-
averaged particle radius distribution. The ratio of the self and collective mode ampli-
tudes contains information about the sample’s number polydispersity. As expected,
the self mode vanishes for a perfectly monodisperse particle suspension (PDI𝑁 = 0),
resulting in the simplification of Eq. (2.15) into Eq. (2.12).

Figure 2.2(a) shows simulated volume-based and intensity-based polydisper-
sity indices (PDI𝑣 and PDI𝐼, respectively) for particles characterized by a Gaussian
number-based size distribution with a number polydispersity index PDI𝑁. For the
considered PDI𝑁 values, both volume-based and intensity-based distributions ex-
hibit a Gaussian shape. Up to PDI𝑁 = 0.02, all three polydispersity indices are
similar. PDI𝑣 and PDI𝐼 remain close even up to PDI𝑁 = 0.04, but they start to
deviate for larger PDI𝑁 values.

In Figure 2.2(b), it is illustrated that the quantity ⟨𝑎⟩𝑣
⟨𝑎⟩𝑁

, the ratio of volume- to
number-averaged particle radii, is nearly proportional to PDI𝑁, serving as a good
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indicator for the number-based polydispersity index. For a number-based Gaussian
size distribution, the relationship is given by

⟨𝑎⟩𝑣
⟨𝑎⟩𝑁

= 3 ⋅ PDI2𝑁 + 6 ⋅ PDI𝑁 + 1
3 ⋅ PDI𝑁 + 1

. (2.20)

Furthermore, in Fig. 2.2(b), we can observe how the ratio of the self and collective
modes increases with higher PDI𝑁. At PDI𝑁 = 0.14, which corresponds to a PDI𝐼 of
approximately 0.04 for a Gaussian number distribution, the self and collective terms
become equal. Consequently, for samples with much larger PDI𝐼, we anticipate 𝐴𝑠
from Eq. (2.15) to be significantly larger than 𝐴𝑐.

2.3. Methods
2.3.1. OCT systems
Dynamic light scattering experiments were performed using two OCT systems. A
custom-built relatively slow ultra-broadband OCT system and a fast relatively nar-
rowband Thorlabs GANYMEDE II HR series spectral domain OCT. The latter, based
on a stable superluminescent diode, has been described in detail in our previ-
ous work [10, 39]. Both OCT systems have a backscattering configuration with
NA = 0.05 and were operated in M-scan mode where subsequent A-scans were
acquired at a fixed sample position. All measurements were performed at room
temperature. Table 2.1 summarizes important parameters for both OCT systems.
Figure 2.3(a) shows the layout of our custom setup. Maximum imaging depths for
custom and Thorlabs OCT setups were 0.27 and 1.87 mm, respectively.

The custom spectral-domain OCT setup was built using a supercontinuum laser
from NKT Photonics with an emission spectrum from visible to mid-infrared range.

Setup 𝑘0 range [µm−1] FWHM𝜆 [nm] FWHM𝑧 [µm] Rate [kHz]
Custom 6.49 − 15.64 217 0.6 4.5
Thorlabs 6.23 − 7.82 112 3.1 36.0

Table 2.1: System parameters for the custom-built and Thorlabs OCT setup.
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and Thorlabs OCT system.
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Data was acquired with a high-speed spectrometer (Ocean FX, Ocean Optics) cov-
ering a wavelength range of 350−1000 nm. The optics was designed for the same
wavelength range, utilizing achromatic lenses (AC254-050-AB-ML, 𝑓 = 50 mm,
Thorlabs), a plate beamsplitter (BSW26R, Thorlabs), a beamsplitter compensator
(BCP42R, Thorlabs), and silver mirrors (PF10-03-P01, Thorlabs). Backscattered
sample and reference beams were coupled into a multi-mode fiber connected to
the spectrometer. Since the coherence length and NA are very low, the optical
variation in 𝑞 due to a varying scattering angle is much smaller than the variation
in 𝑞 due to spectral sampling in 𝑘0. Therefore, it can be assumed that the scat-
tering angle is 180∘ and the scattering wavenumber 𝑞 in the correlation analysis is
𝑞 = 2𝑛𝑘0.

Reference spectra of both OCT systems are shown in Fig. 2.3(b). The custom-
built setup has a lower temporal sampling rate but much larger wavelength range
than the Thorlabs OCT system. The custom-built setup has a higher noise level
due to several reasons. First, the supercontinuum source has a higher noise floor
and worse sensitivity roll-off characteristics [50] compared to the superluminescent
diode used in the Thorlabs system. Second, the custom setup uses a multimode
fiber to deliver the interfered light to the spectrometer whereas the Thorlabs system
is solely based on single-mode fibers. The interference between different fiber
modes increases the noise level. It was not possible to use the single-mode fiber
with our custom setup due to the single-mode fiber’s limited spectral transmission
bandwidth.

2.3.2. Particle suspensions
Four concentrated and NaCl charge-stabilized aqueous silica suspensions were pro-
cured. The manufacturer-provided silica mass fraction in each sample was 50 wt.%.
All relevant manufacturer-provided sample properties are summarized in Table 2.2.
Particle surface (Zeta) potential measurements were not provided; they were ob-
tained separately, along with transmission electron microscope (TEM) images. The
obtained TEM images are shown in Fig. 2.9 in Appendix 2.7. The measured Zeta
potentials are strongly negative, indicating that the suspensions are very stable
against coalescence [51].

For Kostrosöl samples manufactured and supplied by Chemiewerk Bad Köstritz
GmbH (CWK), the particle size distribution (PSD) properties were determined by
the manufacturer using a CPS Disc Centrifuge (CPS Instruments, USA), and they
are provided in Appendix 2.7. Both volume and number-averaged distributions are

Sample ⟨𝑎⟩𝑣 [nm] PDI𝑣
⟨𝑎⟩𝑣
⟨𝑎⟩𝑁

Zeta [mV] 𝜂 [cP]
Kostrosöl 8050 38.2 0.027 1.645 −43.3 ± 2.4 5.9
Kostrosöl 9550 37.5 0.033 1.033 −36.7 ± 2.8 6.0
Kostrosöl 10050 49.7 0.018 1.195 −45.1 ± 0.8 4.7
Levasil CS50-28 - - - −51.7 ± 0.7 -

Table 2.2: Manufacturer provided and measured sample properties.
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depicted. The volume-based PSDs for all samples exhibit a single peak around
the mean particle size, resembling normal or log-normal size distributions. In the
case of Kostrosöl 9550, the number-based PSD is similar. However, in Kostrosöl
8050 and 10050, additional peaks in the number-based PSDs are observed due to
the presence of a large number of smaller particles. While these smaller particles
scatter almost no light and are negligible in the volume-averaged scheme, they are
significant in the number-based PSD.

Levasil CS50-28, manufactured by Nouryon and supplied by Inprocess-LSP, was
provided to us as a more polydisperse sample with a particle radius range of 5-75
nm. However, detailed information about the particle properties is not available.
DLS measurements from literature report an average particle radius of 55 nm [52].
However, it’s important to note that this value may vary from batch to batch.

In Table 2.2, ⟨𝑎⟩𝑣 is the mean radius, and PDI𝑣 denotes the polydispersity in-
dex of the volume-based particle radius distribution measured by the manufacturer.
Since the exact shapes of the distributions in Appendix 2.7 are unavailable to us,
the volume-based polydispersity index was approximated by dividing the square
of the full width at half maximum (FWHM𝑣) by the square of the mean radius.
The quantity ⟨𝑎⟩𝑣

⟨𝑎⟩𝑁
, as provided by the manufacturer and shown in Fig. 2.10 in Ap-

pendix 2.7, represents the ratio of volume-averaged to number-averaged particle
radius. As illustrated in Fig. 2.2(b), this ratio is directly related to the number-based
polydispersity in Eq. (2.19).

The particle volume fraction 𝑓𝑣 is necessary for calculating the theoretical collec-
tive and self-diffusion coefficients. Even though our particles are charge-stabilized,
we did not know the exact thickness of the electric double layer around them, which
can significantly affect 𝑓𝑣 [16]. For that reason we diluted our original suspensions
with a small amount of highly concentrated LiCl solution (mixing ratio 110:1). This
did not affect the silica weight content when rounded to the nearest integer but
resulted in approximately 14 mM LiCl concentration in the suspensions. At this salt
concentration the thickness of the electrical double layer can be neglected and the
particles can be treated as hard-spheres [16, 53]. To determine 𝑓𝑣 we have used
the simplest approach based on the particle mass and density [54] with

𝑓𝑣 = [1 +
𝜌𝑠
𝜌𝑤
(𝑤−1𝑠 − 1)]

−1
, (2.21)

where 𝑤𝑠 is the manufacturer stated silica mass fraction in the suspension, 𝜌𝑠 ≈ 2.0
g/mL and 𝜌𝑤 = 1.0 g/mL are the silica particle and water densities [55], respectively.
Based on Eq. (2.21) and 𝑤𝑠 = 0.5, and for all provided samples the maximum
volume fraction is 𝑓𝑣 ≈ 0.33.

The mean sample refractive index 𝑛 was calculated by finding the refractive
indices of water and silica separately and then mixing them using the Lorentz-
Lorenz formula [56, 57]. The refractive index of water as a function of wavelength
and temperature was calculated using [58], and the refractive index of silica at the
room temperature as a function of wavelength was estimated using [59]. Since all
suspensions have the same 𝑓𝑣, we assume that their refractive indices are identical.
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2.3.3. Diffusion measurements in dilute suspensions
Dilute suspensions were prepared using the demineralized water with a silica weight
content of 1 wt.% corresponding to 𝑓𝑣 ≈ 0.005. This is sufficiently low to neglect
particle interactions and multiple scattering. The LiCl concentration was maintained
at the same level as in dense suspensions. In dilute suspensions 𝐷0 is constant and
does not depend on 𝑞. Therefore, all DLS-OCT measurements were performed in
the depth-domain using the Ganymede OCT system. The dilute suspensions were
used to determine 𝐷0 and PDI𝐼 for all samples. In order to convert 𝐷0 to the particle
hydrodynamic radius, the viscosity of the dilute aqueous solution, 𝜂0, was calculated
using Eq. (21) from [60].

Every OCT acquisition consisted of 20 subsequent M-scans, each containing
32768 temporal sampling points. The measured interference spectrum was first
resampled to a linearly-sampled wavenumber domain and then apodized using a
Gaussian filter. After apodization, the measured FWHM𝑧 was 4.67 µm, exceeding
the unapodized FWHM𝑧 value in Table 2.1. From the complex OCT data the average
of 20 first-order normalized autocorrelation functions was calculated at every depth.
The depth-resolved 𝑔1(𝑧, 𝜏) was noise-corrected [61, 62] and averaged over the
depth range with SNR > 10 inside the sample. The resultant average 𝑔1(𝜏) was
fitted using Eq. (2.13) with 𝐴 = 1/(1+SNR−1), 𝐷𝑐 = 𝐷0, and 𝜇𝑗 as free parameters.
The second- or fourth-order nonlinear fits were performed depending on the sample
polydispersity [40] for the range of 𝜏 for which 𝑔1(𝜏) > 0.01. The intensity-averaged
particle size and PDI𝐼 were subsequently calculated using Eq. (2.1) and Eq. (2.14).

2.3.4. Diffusion measurements in concentrated suspensions
Wavenumber-domain DLS-OCT measurements were performed either with the cus-
tom or Thorlabs OCT system. Due to temporal sampling and sensitivity limitations,
only the samples with the largest particles, Kostrosöl 10050 and Levasil CS50-28,
could be measured using the custom setup. The small particles, Kostrosöl 8050
and 9550, were measured using the Thorlabs system. Two additional suspensions
were made by mixing both samples in each pair with 1:1 mixing ratio. In total 20
measurements were performed with 8192 and 32768 temporal sampling points for
the custom and Thorlabs systems, respectively.

Wavenumber-dependent DLS-OCT data processing steps are shown in Fig. 2.4.
Similar to the dilute case, we initially obtain the complex OCT signal from the spec-
tral interference. Then we compute the average depth-resolved 𝑔1(𝑧, 𝜏) and de-
termine its decay rate as a function of depth. We identify the depth region with a
constant diffusion coefficient and without the effects of multiple scattering or sen-
sitivity roll-off [63]. We apodize the complex OCT signal in this region using the
Tukey window function and transform it back to the wavenumber-domain via the
forward Fourier transformation. As a result we obtain a fully real-valued spectral
interference signal. Subsequently, the average temporal autocovariances are com-
puted and fitted for every 𝑘0 to determine the wavenumber-dependent diffusion
coefficient.

In concentrated suspensions, particle size polydispersity can affect both the
collective [20, 24] and self-diffusion [64, 65] coefficients. For purely exponential
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Figure 2.4: Overview of the processing steps in DLS-OCT for obtaining the wavenumber-dependent
diffusion coefficient in a single acquisition. The data are from the custom-built setup where we measured
the collective diffusion coefficient in the Kostrosöl 10050 sample, containing 100 nm particles at 𝑓𝑣 =
0.33.

decays Eq. (2.12) is used to fit with autocovariance amplitude and the diffusion
coefficient as fit parameters. For 𝑔1(𝑞, 𝜏) with a non-exponential behaviour we use
Eq. (2.15) to fit with 𝐴𝑐, 𝐴𝑠, 𝐷𝑐, and 𝐷𝑠 as fit parameters.

2.4. Results
Table 2.3 presents the results obtained from dilute particle suspensions using the
Thorlabs OCT system. Diffusion coefficients were obtained by fitting Eq. (2.13),
and particle radii were determined using the Stokes-Einstein relation. The errors
in radii were calculated by propagating the assumed temperature uncertainty of
half a degree and incorporating statistical errors. Polydispersity indices were then
calculated using Eq. (2.14). Interaction times, calculated using 𝜏0 = ⟨𝑎⟩2𝐼 /𝐷0, are
also given. In general, the intensity-averaged particle sizes and PDI𝐼 align well with
the volume-averaged values provided by the manufacturer in Table 2.2. The mea-
sured PDI𝐼 values for Kostrosöl samples are comparable in magnitude and slightly
lower than the corresponding PDI𝑣 from the manufacturer. This observation is con-
sistent with our expectations for relatively monodisperse samples, as indicated in

Sample ⟨𝑎⟩𝐼 [nm] PDI𝐼 𝜏0 [ms]
Kostrosöl 8050 38.9 ± 1.1 0.022 ± 0.002 0.26
Kostrosöl 9550 37.4 ± 1.1 0.022 ± 0.002 0.23

8050 & 9550 1:1 mix 38.6 ± 1.2 0.023 ± 0.002 0.26
Kostrosöl 10050 48.6 ± 1.5 0.018 ± 0.002 0.51
Levasil CS50-28 51.7 ± 1.6 0.162 ± 0.003 0.62

CS50-28 & 10050 1:1 mix 49.9 ± 1.6 0.101 ± 0.004 0.56

Table 2.3: Measured parameters for dilute particle suspensions using the Thorlabs OCT system.
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Fig. 2.2. In contrast to Kostrosöl samples, Levasil CS50-28 and its mixtures exhibit
significantly higher levels of polydispersity.

2.4.1. Kostrosöl 10050 and Levasil CS50-28 measurements
Autocorrelation functions for dilute (depth-domain, Thorlabs OCT) Levasil CS50-28,
Kostrosöl 10050, and their mixture are shown in Fig. 2.5(a). As expected from
Eq. (2.13), the autocorrelation function of dilute samples deviates from the single
exponential trend with increasing size polydispersity. Autocorrelation functions for
concentrated (𝑞-domain, custom OCT) Levasil CS50-28, Kostrosöl 10050, and their
mixture are shown in Fig. 2.5(b). The concentrated suspensions do not exhibit a
double exponential decay; instead, we observe only a single term from Eq. (2.15).
We attribute this to a combination of factors, such as low sensitivity and low acqui-
sition rate of the custom setup, very high or very low sample polydispersity, used
𝑞𝑎 range, and differences in decay rates between the collective and self-terms at
longer time scales. Hence, a single exponential function was employed to fit the
wavenumber-dependent diffusion coefficient 𝐷(𝑞).

The concentrated samples are analyzed in the 𝑞-domain with the custom setup
which operates with an acquisition time Δ𝑡 = 222ms. This implies that we are in the
long-time diffusion regime, with 𝜏 ≫ 𝜏0 for all particles. The obtained wavenumber-
dependent diffusion coefficients for concentrated suspensions with 𝑓𝑣 ≈ 0.33 are
given in Fig. 2.6. For comparison, the theoretical 𝐷𝑙𝑠 and 𝐷𝑙𝑐(𝑞) from Sec. 2.2.1
and 2.2.1 are also shown. These were calculated with hard-sphere models pre-
sented in Sec. 2.2 and a volume fraction of 0.33 and the particle radii from Table 2.3.
For Kostrosöl 10050, 𝐷𝑙𝑠 was estimated based on the provided sample viscosity and
using Eq. (2.7). The viscosity for Levasil CS50-28 was not known, so 𝐷𝑙𝑠 was cal-
culated using Eq. (2.6). The obtained diffusion coefficients were normalized using
𝐷0 values of the diluted suspensions, corresponding to the radii in Table 2.3. The
measured 𝐷(𝑞)/𝐷0 for Kostrosöl 10050 is wavenumber-dependent and agrees re-
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Figure 2.5: Autocorrelation function of Levasil CS50-28, Kostrosöl 10050, and their mixture. (a) Depth-
averaged 𝑔1(𝜏) obtained at the center wavenumber 𝑞𝑐 = 18.8 µm−1 in dilute suspensions using the
Thorlabs OCT, fitted with Eq. (2.13). (b) Wavenumber-dependent 𝑔1(𝑞, 𝜏) measured in concentrated
samples for 𝑞 = 22.7 µm−1 using the custom OCT system, fitted with Eq. (2.12). Black solid lines
represent the fits.
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Figure 2.6: Measured 𝑞-dependent diffusion coefficient for Levasil CS50-28 (polydisperse), Kostrosöl
10050 (monodisperse), and their mixture at 𝑓𝑣 = 0.33.

markably well with the long-time collective diffusion coefficient. For Levasil CS50-28
the obtained 𝐷(𝑞)/𝐷0 is constant and matches well to the long-time self-diffusion
coefficient. For the mixed sample 𝐷(𝑞) is also constant (marginally 𝑞-dependent)
and lies in between 𝐷𝑙𝑠 and 𝐷𝑙𝑐(𝑞). At the edges of the spectrum the obtained dif-
fusion coefficient fluctuates, which is caused by a reduction in the signal-to-noise
ratio at these wavenumbers.

2.4.2. Kostrosöl 8050 and 9550 measurements
The short-time dynamics of concentrated Kostrosöl 8050 and 9550 samples are
shown in Fig. 2.7(a-i). All measurements were performed using the Thorlabs OCT
system with a much higher acquisition rate and lower noise compared to the custom
setup. In this case, Δ𝑡 = 0.028 ≪ 𝜏0 ms, which implies that we are in the short-
time diffusion regime. The double-exponential behavior in concentrated samples
was clearly visible, which is why we used Eq. (2.15) to fit the collective and self-
diffusion coefficients. Fig. 2.7(a,b,c) show the obtained first-order normalized auto-
covariance functions both for dilute and concentrated suspensions. The correlation
functions are very similar because all samples are quite monodisperse and have sim-
ilar particle sizes and concentrations. For the same reason we see in Fig. 2.7(d,e,f)
that the measured 𝐷𝑐(𝑞) and 𝐷𝑠 from all samples are almost identical. In this
case, 𝐷𝑐(𝑞) matches well with the short-time collective diffusion coefficient from
Eq. (2.9), and 𝐷𝑠 matches the short-time self-diffusion coefficient from Eq. (2.4).
The presence of noise is also evident, highlighting the added value of averaging
over different wavenumbers.

Since the self-term becomes visible at larger lag times, it is theoretically possible
that we measure 𝐷𝑙𝑠 rather than 𝐷𝑠𝑠 . However, the obtained results match well
with the calculated values of 𝐷𝑠𝑠 . The only parameters that differ among these
samples are the mode amplitudes 𝐴𝑐(𝑞) and 𝐴𝑠(𝑞), as shown in Fig. 2.7(g,h,i).
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Figure 2.7: Kostrosöl 9550 (very monodisperse) and 8050 (less monodisperse), and their mixture. (a-c)
Measured and fitted 𝑔1(𝑞 = 18.8 µm−1 , 𝜏). (d-f) Measured and theoretical collective and self-diffusion
coefficients. (g-i) Measured and smoothed collective and self mode amplitudes obtained using Thorlabs
OCT.

Here, the solid curves correspond to wavenumber-smoothed data. We see that
𝐴𝑐(𝑞) is highest for Kostrosöl 9550 and lowest for Kostrosöl 8050, while 𝐴𝑠(𝑞) is
highest for Kostrosöl 8050 and lowest for Kostrosöl 9550. These differences can be
explained by the difference in size polydispersities between these samples. Despite
having nearly identical volume-based and intensity-based polydispersity indices, the
number-based particle size distribution for Kostrosöl 8050 exhibits significantly less
monodispersity, as shown in Fig. 2.10(b), compared to that of Kostrosöl 9550, as
illustrated in Fig. 2.10(d). Hence, the self-diffusion amplitude for Kostrosöl 8050 is
larger. This contrast is highlighted by the provided ⟨𝑎⟩𝑣

⟨𝑎⟩𝑁
data from Table 2.2.

Particle number-based polydispersity indices were calculated from measure-
ments of concentrated samples using the ratio of collective and self-mode am-
plitudes. This approach is valid at all diffusion time scales. For each sample we
calculated 𝐴𝑠(𝑞)

𝐴𝑐(𝑞)
and averaged it over the wavenumber range with SNR > 10. PDI𝑁

values were determined numerically by inverting Eq. (2.18) and the results are
given in Table 2.4. Unlike the intensity-based polydispersity indices measured in
dilute samples, the PDI𝑁 obtained from concentrated suspensions differs between
Kostrosöl samples indicating the variation in number polydispersity. While PDI𝑁 is



2

40
2. Wavenumber-dependent dynamic light scattering optical coherence

tomography measurements of collective and self-diffusion

not directly comparable with the manufacturer-provided ⟨𝑎⟩𝑣
⟨𝑎⟩𝑁

from Appendix 2.7,
we expect them to be almost proportional based on Fig. 2.2(b), which is exactly
what we observe in Table 2.4.

Sample PDI𝑁
⟨𝑎⟩𝑣
⟨𝑎⟩𝑁

Kostrosöl 8050 0.061 ± 0.002 1.645
Kostrosöl 9550 0.029 ± 0.001 1.033

Kostrosöl 8050 & 9550 1:1 mix 0.045 ± 0.001 1.379

Table 2.4: PDI𝑁 obtained from concentrated particle suspensions using Thorlabs OCT, along with the
manufacturer-provided ratio ⟨𝑎⟩𝑣

⟨𝑎⟩𝑁
.

2.5. Discussion
In this work we investigated 𝑞-dependent diffusion coefficients in concentrated (sil-
ica) particle suspensions at short and long times. We measured collective and/or
self-diffusion coefficients in samples with similar particle sizes and varying degrees
of size (and optical) polydispersities. The results were consistent with calculations
based on hard-sphere diffusion theory.

We determined long-time diffusion coefficients in Levasil CS50-28 and Kostrosöl
10050 samples using a custom-built OCT system with a broad wavelength range
and a relatively long sampling time. The average particle size for both samples was
nearly 100 nm, but the polydispersities were different. In monodisperse Kostrosöl
10050 we measured the wavenumber-dependent collective diffusion coefficient
𝐷𝑙𝑐(𝑞). The obtained 𝑔1(𝑞, 𝜏) was pure single exponential and the self-diffusion
term from the decoupling approximation could not be observed. This is primarily
attributed to low size and optical polydispersities of the sample. The sample Lev-
asil CS50-28 exhibited much greater polydispersity; however, in this case, only the
self-diffusion coefficient 𝐷𝑙𝑠 was measured. This suggests that, in this scenario, the
self-diffusion contribution to the correlation function is significantly larger compared
to the collective diffusion. This is precisely what we expect when we analyze the
curves in Fig. 2.2(a,b). Here, we anticipate that the PDI𝑁 values of Levasil CS50-28
and its mixture will be very high, resulting in 𝐴𝑠 ≫ 𝐴𝑐. Therefore, it is unsurpris-
ing that only self-diffusion is measured, which also is in good agreement with the
theoretical estimate. The diffusion coefficient obtained from the mixed sample re-
mained nearly constant with 𝑞 and was notably higher than 𝐷𝑙𝑠. Due to the high
sample polydispersity, it is more likely that we are still measuring self-diffusion, but
𝐷𝑙𝑠 deviates from the value predicted by Eq. (2.6). Therefore, similar to the method
used for Kostrosöl 10050, a viscosity measurement is needed to estimate 𝐷𝑙𝑠 more
accurately using Eq. (2.7). Additionally, there is a possibility that both the collec-
tive and self terms were measured, but they cannot be separated. It has been
suggested that when the amplitudes and the diffusion coefficients of the collective
and self-diffusion modes are comparable, separating these modes becomes prob-
lematic, resulting in the measurement of a mixed diffusion coefficient [17]. Overall,
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the decoupling approximation appears to work remarkably well even for moderately
polydisperse samples.

We employed the fast acquisition Thorlabs OCT system to measure the short-
time diffusive dynamics in Kostrosöl 8050 and 9550. These suspensions were quite
monodisperse with the average particle size of approximately 75 nm. In this case,
the obtained 𝑔1(𝑞, 𝜏) clearly exhibited a double-exponential behavior, enabling us
to measure both the self and collective terms. This is likely attributed to the uti-
lization of a faster and more sensitive OCT system with lower 𝑞 and the use of
smaller particles, resulting in lower 𝑞𝑎 value. First, as illustrated in Fig. 2.1(c,d),
decreasing 𝑞𝑎 increases the difference between 𝐷𝑠𝑐 (𝑞) and 𝐷𝑠𝑠 , making the collec-
tive and self modes more distinguishable. Second, at low 𝑞𝑎 values, self-diffusion
becomes significant even for monodisperse suspensions due to a reduction in the
structure factor [22]. For the Thorlabs system the wavenumber range was lim-
ited due to a narrow spectral bandwidth. Therefore, we could not clearly observe
the wavenumber-dependent variations in the collective diffusion coefficient. Never-
theless, we find it feasible to measure self-diffusion even in monodisperse particle
suspensions due to optical polydispersity. In this study, our primary focus was on
investigating the impact of particle size variations on optical polydispersity. We did
not consider refractive index dispersity, which is always present to some degree,
and further contributes to increasing optical polydispersity [47].

The smallest particle radius that our custom-built DLS-OCT system can reliably
measure in a dilute aqueous suspension at all wavelengths is limited by the acqui-
sition rate of the spectrometer to around 50 nm. Additionally, the signal-to-noise
ratio is constrained by the 212 µs dead time of the spectrometer. Therefore, a
faster spectrometer without dead time will provide increased sensitivity and access
to shorter diffusion times. Furthermore, self-interference inside the multimode fiber
also decreases the experimental SNR, which could potentially be improved by al-
tering the setup to a free-space system.

2.5.1. Particle sizing
Diffusion measurements can be used for in-line particle sizing during process control
[66]. However, in concentrated particle suspensions there is no simple relation
between the diffusion coefficient and the particle size. The self-diffusion coefficient
is wavenumber-independent and depends both on particle size and concentration.
So, without a-priori knowledge of the particle concentration, 𝐷𝑠 cannot be used to
determine the particle size. The collective diffusion coefficient, on the other hand, is
wavenumber-dependent. So, when measured over a sufficient 𝑞-range, 𝐷𝑐(𝑞) can
be used to determine both the particle size and concentration. This is only possible
with large-bandwidth OCT systems covering a wide 𝑞-range, capable of capturing
𝑞-dependent variations in the collective diffusion coefficient.

For our long-time analysis, we inverted Eq. (2.11) and performed a fit for both 𝑎
and 𝑓𝑣 using the measured 𝐷𝑙𝑐(𝑞) in Kostrosöl 10050. The fitted values for particle
size and volume fraction were 𝑎 = 50 ± 2 nm and 𝑓𝑣 = 0.18 ± 0.02, respectively.
The measured and fitted 𝐷𝑙𝑐(𝑞) are shown in Fig. 2.8(a). The obtained particle
radius is remarkably close to the expected value, but the volume fraction deviates
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Figure 2.8: (a) Measured and fitted 𝐷𝑙𝑐(𝑞) for Kostrosöl 10050. (b) Fitted particle size and (c) volume
fraction for Kostrosöl 8050, 9550, and their mixture.

considerably. This deviation is likely caused by an inaccurate estimation of the long-
time self-diffusion coefficient using Eq. (2.6) in the fitting procedure. For Kostrosöl
10050, based on Eq. (2.7) and the measured viscosity, 𝐷𝑙𝑠/𝐷0 = 0.21. In contrast,
according to Eq. (2.6), 𝐷𝑙𝑠/𝐷0 = 0.17. It is evident that Eq. (2.6) slightly underesti-
mates 𝐷𝑙𝑠 for Kostrosöl 10050. Since 𝐷𝑙𝑐(𝑞) ∝ 𝐷𝑙𝑠, using Eq. (2.6) in our fit introduces
a bias into the obtained parameters. However, this bias affects 𝑓𝑣 more because it
is more sensitive to the magnitude of 𝐷𝑙𝑐(𝑞). Conversely, the particle radius is more
sensitive to the slope and shape of the 𝐷𝑙𝑐(𝑞) curve, leading to a more accurate
estimation.

In the short-time analysis, both the collective and self-diffusion coefficients are
obtained from the fit and wavenumber-dependent measurements are not necessary
to simultaneously determine the values of 𝑎 and 𝑓𝑣. In this scenario, we have two
measurements of 𝐷𝑠𝑠 and 𝐷𝑠𝑐 and two unknown parameters, which can be solved
using a nonlinear system of equations. Consequently, we inverted 𝐷𝑠𝑐 (𝑞) and 𝐷𝑠𝑠
from the 𝛿𝑌 theory and utilized our measurements of the samples Kostrosöl 8050,
9550, and their mixture to determine the particle radius and volume fraction in each
sample. In this case, we obtain values for 𝑎 and 𝑓𝑣 at every single 𝑞 without the
need to fit over the large 𝑞-range. This also allows the analysis to be conducted
in the depth-domain. Figure 2.8(b) shows the fitted 𝑎 as a function of 𝑞 along
with the expected particle radius range for these samples. The average particle
sizes over the entire 𝑞-range, along with their corresponding standard deviations,
for Kostrosöl 8050, 9550, and their mixture were 39 ± 9, 41 ± 9, and 39 ± 8 nm,
respectively. The averaged volume fractions obtained for these samples are pre-
sented in Fig. 2.8(c) and correspond to 0.32 ± 0.03, 0.34 ± 0.04, and 0.33 ± 0.04,
respectively. So there is a good agreement with the expected values for 𝑎 and
𝑓𝑣, although the noise in Fig. 2.8(b,c) is also significant. So, even if 𝑞-dependent
measurements are not available, it is possible to obtain the particle size and vol-
ume fraction in concentrated suspensions from fast correlation measurements of
both the collective and self-diffusion coefficients. Regardless of which diffusion co-
efficient is obtained, it is always necessary to determine whether the measurement
corresponds to long- or short-time particle dynamics. This determination is not triv-
ial, as it depends not only on the acquisition speed but also on the to-be-estimated
particle size. Furthermore, accurate estimates of collective and self-diffusion, cru-
cial in determining particle size, depend on known particle interactions. While we
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assumed hard-sphere interactions, in industrial scenarios, these interactions may
remain unknown.

2.5.2. Polydispersity measurement
We observed that the intensity-based polydispersity index, PDI𝐼, measured us-
ing DLS-OCT in dilute particle suspensions, demonstrates less sensitivity towards
smaller particles compared to its number-based counterpart, PDI𝑁. This difference
arises from the influence of particle size on the measured PDI𝐼, which depends on
both the scattering intensities and decay rates of the particles. Smaller particles
scatter less light and exhibit faster decaying autocorrelations, making them more
challenging to detect.

The PDI𝐼 values obtained from the dilute samples Kostrosöl 8050, 9550 and
their mixture using the cumulant analysis were virtually identical even though the
actual number-based polydispersities were knowingly different. In concentrated
suspensions, where both collective and self-diffusion are measured, we used the
ratio of the self over collective mode amplitudes to determine PDI𝑁. Our method
measures PDI𝑁 by observing exchange diffusion, where particles swap positions,
leading to variations in the intensity of scattered light. This method proved to be
much more sensitive to particles of all sizes and can effectively differentiate samples
with very similar PDI𝑣 and PDI𝐼 but different PDI𝑁. The results obtained using this
technique closely matched our expectations based on the manufacturer-provided
number polydispersities. Our approach relies on assuming a normal distribution
for the particle size to establish an analytic relationship between PDI𝑁 and

𝐴𝑠(𝑞)
𝐴𝑐(𝑞)

.
However, our method is not restricted to Gaussian distributions and can be extended
to particle size distributions of any a priori assumed shape, as long as the decoupling
approximation remains valid.

2.6. Conclusion
We demonstrated the application of 𝑞-dependent DLS-OCT to measure both collec-
tive and self-diffusion coefficients in concentrated silica suspensions. Depending on
the sample polydispersity, we successfully measured either long-time collective or
long-time self-diffusion over a broad 𝑞-range using our custom-built OCT system.
The obtained long-time collective diffusion coefficient agreed well with hard-sphere
theory, providing further evidence for the dynamic scaling property [14]. Fitting the
particle size and volume fraction of the suspension to the 𝑞-dependent collective
diffusion coefficient resulted in excellent agreement for particle size but yielded a
less accurate estimate of the volume fraction.

We found the decoupling approximation to be highly effective in describing the
first-order normalized autocovariance functions in both monodisperse and relatively
polydisperse samples. Utilizing a high-speed yet narrow 𝑞-range Thorlabs OCT sys-
tem, we simultaneously measured collective and self-diffusion even in sufficiently
monodisperse samples. Using both terms allowed us to determine particle size
and volume fraction at a single wavenumber. Furthermore, for a normal parti-
cle size distribution, we derived a relationship between the particle number-based
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polydispersity index and the ratio of the self and collective mode amplitudes. This
relationship was employed to determine the size polydispersity of concentrated sus-
pensions. Our method exhibits considerably greater sensitivity to all particle sizes
compared to the standard intensity-based cumulant analysis performed in DLS on
dilute samples.

2.7. Acknowledgments
We would like to thank InProcess-LSP for their support and discussions. We also
thank Chemiewerk Bad Köstritz GmbH for providing us with samples. Special thanks
to Kelly Brouwer from Soft Condensed Matter group at Utrecht University for provid-
ing us with transmission electron microscopy images and Zeta potential measure-
ments. This work was funded by NWO domain Applied and Engineering Sciences
with the project number 17988.

Data availability
Data underlying the results presented in this paper and the relevant analysis rou-
tines are available at [67].

References
[1] C. Holt, T. G. Parker, and D. G. Dalgleish, Measurement of particle sizes by

elastic and quasi-elastic light scattering, Biochimica et Biophysica Acta (BBA)
- Protein Structure 400, 283 (1975).

[2] W. Tscharnuter, Photon correlation spectroscopy in particle sizing, in Encyclo-
pedia of Analytical Chemistry, edited by R. Meyers (John Wiley & Sons Ltd,
Chichester, 2000) p. 5469–5485.

[3] V. A. Martinez, J. H. J. Thijssen, F. Zontone, W. van Megen, and G. Bryant,
Dynamics of hard sphere suspensions using dynamic light scattering and x-ray
photon correlation spectroscopy: Dynamics and scaling of the intermediate
scattering function, The Journal of Chemical Physics 134, 054505 (2011).

[4] A. Wax, C. Yang, R. Dasari, and M. S. Feld, Path-length-resolved dynamic light
scattering: modeling the transition from single to diffusive scattering, Applied
Optics 40, 4222–4227 (2001).

[5] J. Kalkman, R. Sprik, and T. G. van Leeuwen, Path-length-resolved diffusive
particle dynamics in spectral-domain optical coherence tomography, Physical
Review Letters 105, 198302 (2010).

[6] K. K. Bizheva, A. M. Siegel, and D. A. Boas, Path-length-resolved dynamic
light scattering in highly scattering random media: The transition to diffusing
wave spectroscopy, Physical Review E 58, 7664 (1998).



References

2

45

[7] D. A. Boas, K. K. Bizheva, and A. M. Siegel, Using dynamic low-coherence in-
terferometry to image Brownian motion within highly scattering media, Optics
Epxress 23, 319 (1997).

[8] N. Weiss, T. G. van Leeuwen, and J. Kalkman, Localized measurement of
longitudinal and transverse flow velocities in colloidal suspensions using optical
coherence tomography, Physical Review E 88, 042312 (2013).

[9] J. Lee, W. Wu, J. Y. Jiang, B. Zhu, and D. A. Boas, Dynamic light scattering
optical coherence tomography, Optics Express 20, 22262 (2012).

[10] K. Cheishvili and J. Kalkman, Scanning dynamic light scattering optical co-
herence tomography for measurement of high omnidirectional flow velocities,
Optics Express 30, 23382 (2022).

[11] P. N. Segrè and P. N. Pusey, Dynamics and scaling in hard-sphere colloidal
suspensions, Physica A 235, 9 (1997).

[12] C. W. J. Beenakker and P. Mazur, Self-diffusion of spheres in a concentrated
suspension, Physica A 120, 388 (1983).

[13] C. W. J. Beenakker and P. Mazur, Diffusion of spheres in a concentrated sus-
pension ii, Physica A 126, 349 (1984).

[14] P. N. Segrè and P. N. Pusey, Scaling of the dynamic scattering function of
concentrated colloidal suspensions, Physical Review Letters 77, 771 (1996).

[15] B. Cichocki and B. U. Felderhof, Time-dependent self-diffusion coefficient of
interacting Brownian particles, Physical Review A 44, 6551 (1991).

[16] A. van Blaaderen, J. Peetermans, G. Maret, and J. K. G. Dhont, Long-time self-
diffusion of spherical colloidal particles measured with flourescence recovery
after photobleaching, The Journal of Chemical Physics 96, 4591 (1992).

[17] M. M. Kops-Werkhoven and H. M. Fijnaut, Dynamic behavior of silica disper-
sions studied near the optical matching point, The Journal of Chemical Physics
77, 2242–2253 (1982).

[18] M. M. Kops-Werkhoven, C. Pathmamanoharan, and A. Vrij, Concentration
dependence of the self-diffusion coefficient of hard, spherical particles mea-
sured with photon correlation spectroscopy, The Journal of Chemical Physics
77, 5913–5922 (1982).

[19] F. Westermeier, B. Fischer, W. Roseker, G. Grübel, G. Nägele, and M. Heinen,
Structure and short-time dynamics in concentrated suspensions of charged
colloids, The Journal of Chemical Physics 137, 114504 (2012).

[20] J. K. G. Dhont, An Introduction to Dynamics of Colloids (Elsevier Science B.V.,
1996).



2

46 References

[21] A. J. Banchio and G. Nägele, Short-time transport properties in dense sus-
pensions: From neutral to charge stabilized colloidal spheres, The Journal of
Chemical Physics 128, 104903 (2008).

[22] A. J. Banchio, G. Nägele, and J. Bergenholtz, Collective diffusion, self-diffusion
and freezing criteria of colloidal suspensions, The Journal of Chemical Physics
113, 3381–3396 (2000).

[23] P. Baur, G. Nägele, and R. Klein, Nonexponential relaxation of density fluctu-
ations in charge-stabilized colloids, Physical Review E 53, 6224 (1996).

[24] P. N. Segré, O. P. Behrend, and P. N. Pusey, Short-time Brownian motion in
colloidal suspensions: Experiment and simulation, Physical Review E 52, 5070
(1995).

[25] W. van Megen, R. H. Ottewill, S. M. Owens, and P. N. Pusey, Measurement
of the wave-vector dependent diffusion coefficient in concentrated particle
dispersions, The Journal of Chemical Physics 82, 508–515 (1985).

[26] B. Cichocki and K. Hinsen, Dynamic computer simulation of concentrated hard
sphere suspensions, Physica A 187, 133 (1992).

[27] B. Cichocki and K. Hinsen, Dynamic computer simulation of concentrated hard
sphere suspensions, Physica A 166, 473 (1990).

[28] U. Genz and R. Klein, Collective diffusion of charger spheres in the presence
of hydrodynamic interaction, Physica A 171, 26 (1991).

[29] J. Brady, The long-time self-diffusivity in concentrated colloidal dispersions,
Journal of Fluid Mechanics 272, 109 (1994).

[30] P. N. Segré, S. P. Meeker, P. N. Pusey, and W. C. K. Poon, Viscosity and
structural relaxation in suspensions of hard-sphere colloids, Physical Review
Letters 75, 958 (1995).

[31] A. Imhof, A. van Blaaderen, G. Maret, J. Mellema, and J. K. G. Dhont, A
comparison between the long-time self-diffusion and low shear viscosity of
concentrated dispersions of charged colloidal silica spheres, The Journal of
Chemical Physics 100 (1994).

[32] A. J. Banchio, J. Bergenholtz, and G. Nägele, Rheology and dynamics of
colloidal suspensions, Physical Review Letters 82, 1792 (1999).

[33] Scattering Methods for Condensed Matter Research: Towards Novel Applica-
tions at Future Sources, Lecture Notes of the 43rd IFF Spring School 2012,
Vol. 33 (Forschungszentrum Jülich GmbH, 2012).

[34] A. J. C. Ladd, H. Gang, Z. X. Zhu, and D. A. Weitz, Time-dependent collective
diffusion of colloidal particles, Physical Review Letters 74, 318 (1995).



References

2

47

[35] A. J. Banchio, M. Heinen, P. Holmqvist, and G. Nägele, Short- and long-time
diffusion, and dynamic scaling in suspensions of charged colloidal particles,
The Journal of Chemical Physics 148, 134902 (2018).

[36] M. S. Wertheim, Exact solution of the Percus-Yevick integral equation for hard
spheres, Physical Review Letters 10, 321 (1963).

[37] E. Leutheusser, Exact solution of the Percus-Yevick equation for a hard-core
fluid in odd dimensions, Physica A 127, 667 (1984).

[38] D. J. Kinning and E. L. Thomas, Hard-sphere interactions between spherical
domains in diblock copolymers, Macromolecules 17, 1712–1718 (1984).

[39] K. Cheishvili and J. Kalkman, Sub-diffusion flow velocimetry with number fluc-
tuation optical coherence tomography, Optics Express 31, 3755 (2023).

[40] A. G. Mailer, P. S. Clegg, and P. N. Pusey, Particle sizing by dynamic light
scattering: Non-linear cumulant analysis, Journal of Physics Condensed Matter
27 (2015).

[41] K. N. Clayton, J. W. Salameh, and S. T. Wereley, Physical characterization of
nanoparticle size and surface modification using particle scattering diffusom-
etry, Biomicrofluidics 10, 054107 (2016).

[42] R. B. Miles, W. R. Lempert, and J. N. Forkey, Laser rayleigh scattering, Meas.
Sci. Technol. 12, R33 (2001).

[43] P. N. Pusey and W. van Megen, Detection of small polydispersities by photon
correlation spectroscopy, The Journal of Chemical Physics 80, 3513 (1984).

[44] G. Nägele and P. Baur, Long-time dynamics of charged colloidal suspensions:
hydrodynamic interaction effects, Physica A 245, 297 (1997).

[45] W. van Megen and S. M. Underwood, Tracer diffusion in concentrated colloidal
dispersions. iii. mean squared displacements and self-diffusion coefficients,
The Journal of Chemical Physics 91, 552–559 (1989).

[46] P. N. Pusey, Intensity fluctuation spectroscopy of charged Brownian particles:
the coherent scattering function, Journal of Physics A: Mathematical and Gen-
eral 11, 119 (1978).

[47] J. Buitenhuis, J. K. G. Dhont, and H. N. W. Lekkerkerker, Static and dynamic
light scattering by concentrated colloidal suspensions of polydisperse sterically
stabilized boehmite rods, Macromolecules 27, 7267 (1994).

[48] P. N. Pusey, H. M. Fijnaut, and A. Vrij, Mode amplitudes in dynamic light
scattering by concentrated liquid suspensions of polydisperse hard spheres,
The Journal of Chemical Physics 77, 4270 (1982).



2

48 References

[49] A. van Veluwen, H. N. W. Lekkerkerker, C. G. de Kruif, and A. Vrij, Influence
of polydispersity on dynamic light scattering measurements on concentrated
suspensions, The Journal of Chemical Physics 89, 2810 (1988).

[50] M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen,
A. Podoleanu, and O. Bang, Noise of supercontinuum sources in spectral do-
main optical coherence tomography, Journal of the Optical Society of America
B 36, A154 (2019).

[51] A. Barron and W. Algozeeb, Physical Methods in Chemistry and Nano Science
(MiDAS Green Innovations, 2020).

[52] K. Kolmana, O. Nechyporchuka, M. Perssona, K. Holmberga, and R. Bordesa,
Preparation of silica/polyelectrolyte complexes for textile strengthening ap-
plied to painting canvas restoration, Colloids and Surfaces A 532, 420 (2017).

[53] J. Gapinski, A. Patkowski, A. J. Banchio, P. Holmqvist, G. Meier, M. P. Let-
tinga, and G. Nägele, Collective diffusion in charge-stabilized suspensions:
Concentration and salt effects, The Journal of Chemical Physics 126, 104905
(2007).

[54] W. C. K. Poon, E. R. Weeks, and C. P. Royall, On measuring colloidal volume
fractions, Soft Matter 8, 21 (2012).

[55] M. Godin, A. K. Bryan, T. P. Burg, K. Babcock, and S. R. Manalisa, Mea-
suring the mass, density, and size of particles and cells using a suspended
microchannel resonator, Applied Physics Letters 91, 123121 (2007).

[56] W. Heller, Remarks on refractive index of mixture rules, The Journal of Physical
Chemistry 69, 1123–1129 (1965).

[57] P. N. A. Speets and J. Kalkman, Measuring optical properties of clear and
turbid media with broadband spectral interferometry, Applied Optics 62, 4349
(2023).

[58] Water refractive index in dependence on temperature and wavelength: A sim-
ple approximation, Vol. 5068 (2003).

[59] I. H. Malitson, Interspecimen comparison of the refractive index of fused silica,
Journal of the Optical Society of America 55, 1205 (1965).

[60] N. Cheng, Formula for viscosity of glycerol-water mixture, Industrial and En-
gineering Chemistry Research 47, 3285 (2008).

[61] N. Uribe-Patarroyo, A. L. Post, S. Ruiz-Lopera, D. J. Faber, and B. E. Bouma,
Noise and bias in optical coherence tomography intensity signal decorrelation,
OSA Continuum 3, 709 (2020).

[62] K. Cheishvili, B. Rieger, and J. Kalkman, Precision and bias in dynamic light
scattering optical coherence tomography measurements of diffusion and flow,
Biomedical Optics Express 15, 1288 (2024).



References

2

49

[63] J. Kalkman, Fourier-domain optical coherence tomography signal analysis and
numerical modeling, International Journal of Optics 2017, 1 (2017).

[64] W. Schaertl and H. Sillescu, Brownian dynamics simulations of colloidal hard
spheres. effects of sample dimensionality on self-diffusion, Journal of Statisti-
cal Physics 74, 687–703 (1994).

[65] J. Kovář and I. Fortelný, Effect of polydispersity on the viscosity of a suspension
of hard spheres, Rheologica Acta 23, 454 (1984).

[66] R. Besseling, M. Damen, J. Wijgergans, M. Hermes, G. Wynia, and A. Gerich,
New unique PAT method and instrument for real-time inline size characteriza-
tion of concentrated, flowing nanosuspensions, European Journal of Pharma-
ceutiral Sciences 133, 2005 (2019).

[67] K. Cheishvili, Wavenumber-dependent DLS-OCT data and analysis routines,
https://doi.org/10.5281/zenodo.8425185 (2024).

http://dx.doi.org/10.5281/zenodo.8425185
https://doi.org/10.5281/zenodo.8425185


2

50 References

Appendix

Figure 2.9: TEM images of (a) Kostrosöl 10050, (b) Levasil CS50-28, (c) Kostrosöl 9550, and (d) Kostrosöl
8050.

Figure 2.10: Volume (left column) and number-based (right column) PSDs for Kostrosöl (a,b) 8050, (c,d)
9550, and (e,f) 10050, determined by disc centrifuge.
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scattering optical coherence
tomography for measurement
of high omnidirectional flow

velocities

We show scanning dynamic light scattering optical coherence tomography
(OCT) omnidirectional flow measurements. Our method improves the veloc-
ity measurement limit over conventional correlation-based or phase-resolved
Doppler OCT by more than a factor of 2. Our technique is applicable without
a-priori knowledge of the flow geometry as our method works both for non-
zero Doppler angle and non-ideal scan alignment. In addition, the method
improves the particle diffusion coefficient estimation for particles under flow.

This chapter has been published as: Konstantine Cheishvili and Jeroen Kalkman, Scanning dynamic
light scattering optical coherence tomography for measurement of high omnidirectional flow velocities,
Optics Express 30(13), 23382-23397 (2022). The technique described in this chapter, Scanning OCT off-
wall particle sizing, has also been successfully patented by TU Delft under the Patent WO2023146400A1
in 2023.
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3.1. Introduction
Dynamic light scattering optical coherence tomography (DLS-OCT) relies on the
measurement of fluctuations of scattered light and coherence gating to obtain si-
multaneous depth-resolved information about diffusive and translational motion of
particles. This information is extracted from the temporal autocorrelation of the
OCT signal for every voxel in depth. Initially, DLS-OCT was used for particle sizing
[1] where the particle size is determined from the estimated diffusion coefficient
using the Stokes-Einstein relation.

Flow measurements with OCT have been performed using the phase-resolved
Doppler OCT, lateral resonant Doppler OCT [2], and M-scan correlation-based DLS-
OCT [3–5]. The axial velocity of Doppler OCT is limited by phase wrapping. In the
correlation-based measurements, the maximum transverse velocity is limited by the
decorrelation rate, which depends on the spatial resolution of the system [6]. The
axial velocity range is limited by interference fringe washout [7] and the coherence
length of the source. When measuring the diffusion of particles under flow, the
decorrelation in the flow causes uncertainty in the estimated diffusion coefficient
[8], which, in case of high flows, cannot be measured at all.

In this work we apply beam scanning in DLS-OCT to improve the maximummea-
surable velocity limit for omnidirectional flows. We extend the existing theoretical
models [3, 9] for the OCT signal autocorrelation and incorporate the motion of the
beam into it. We show that when scanning the OCT beam in the direction of the
flow, the dynamic velocity range is significantly increased. We demonstrate that
the B-scan correlation-based DLS-OCT method is capable of measuring a far higher
range of velocities than standard Doppler OCT, lateral resonant Doppler OCT [2] or
conventional correlation analysis (M-scan) with stationary beam.

3.2. Theory
3.2.1. Sample geometry
The geometry for OCT flow measurements is shown in Fig. 3.1(a). The propagation
of the optical beam is in the 𝑧 direction. The flow is in a channel oriented at an
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Figure 3.1: Geometry of the flow and the scanning OCT setup. (a) The flow and the OCT beam layout.
(b) The flow vectors in the flow plane (blue) and scan vectors in the scan plane (red). (c) The scan plane
with scan vector and its transverse projection. (d) The flow plane with flow vector and its transverse
projection.
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angle 𝛼 with respect to the 𝑥-𝑦 plane. This angle can, due to refraction of the
light, be different from the orientation of the flow direction at angle 𝜃. In general,
we assume the flow to be laminar with transverse, 𝑣𝑡(𝑧), and axial, 𝑣𝑧(𝑧), velocity
components as a function of depth. Given a total flow 𝑣0(𝑧), the flow components
are expressed as 𝑣𝑡(𝑧) = 𝑣0(𝑧) cos𝜃 and 𝑣𝑧(𝑧) = 𝑣0(𝑧) sin𝜃. The OCT beam is a
Gaussian beam characterized by the waist 𝑤0 in focus, defined as a distance from
the beam center where the field amplitude is 𝑒−1 of its maximum value. The OCT
beam can be scanned in the direction of the flow with speed 𝑣𝑏 in the 𝑥-𝑦 plane.
The 3D scan speed along the flow is 𝑣𝑠, which, in general (𝜃 ≠ 0∘), is larger, than
𝑣𝑏. The more general case of 3D flow measurements with scanning OCT is shown
in Fig. 3.1(b-d). Here 𝜑𝑡 is the angle between projections of the scan and flow
vectors in the transverse plane, and 𝜑𝑧 is the difference between the angles that
the scan and flow vectors make to their corresponding transverse projections.

Quantitative OCT flow measurements have been performed with different tech-
niques. Here we discuss four different techniques, namely

• M-scan Doppler OCT

• B-scan Doppler OCT

• M-scan DLS-OCT

• B-scan DLS-OCT

where the last method is the new method developed by us.

3.2.2. M-scan Doppler OCT
The most used method for measuring the axial flow velocity is phase-resolved
Doppler OCT. Due to the Doppler effect, the frequency of light scattered from a
particle undergoing axial motion is shifted. The Doppler shift in the scattered light
leads to a phase change of the OCT signal, Δ𝜙(𝑧). From the phase change the axial
depth-resolved velocity 𝑣𝑧(𝑧) is determined using [10]

𝑣𝑧(𝑧) =
Δ𝜙(𝑧)
𝑞Δ𝑡 , (3.1)

where Δ𝑡 is the sampling time, and 𝑞 = 2𝑛𝑘0 is the scattering wavenumber for
the backscattering probe configuration with the medium refractive index 𝑛 and the
vacuum wavenumber 𝑘0. The total and axial flow velocities are related with the
expression 𝑣0(𝑧) = 𝑣𝑧(𝑧)/ sin𝜃. The maximum velocity that can be estimated
using Eq. (3.1) is limited by the Nyquist sampling criterion as

𝑣𝑧max =
𝜋
𝑞Δ𝑡 . (3.2)

However, Eq. (3.2) is only true for flows at low transverse velocity [10]. At high
transverse velocities, because of the changing intensity of the illuminating beam on
the moving particles, the phase change does not increase linearly with the velocity
and approaches a constant value. This makes it impossible to determine the velocity
for high lateral flow speeds.
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3.2.3. B-scan Doppler OCT
As Koch et al. highlighted, transverse movements during the detector integration
time as small as 20% of the beam diameter can lead to erroneous velocity mea-
surements [10]. To correct for the deviation from Eq. (3.1) due to the short transit
time of the particle through the beam, Walther and Koch suggested a method of
laterally scanning the beam along the flow and performing the Doppler analysis on
numerically aligned OCT data [2]. Synchronizing the OCT beam movement with
the direction of the flow reduces the effective transverse velocity and its effect on
the phase shift. While this method can be quite effective with uniform flows, its
usability is reduced for flows where the transverse velocity components vary over
depth. In that case, the transverse velocity effects cannot be fully suppressed for
all depths using a single B-scan.

3.2.4. M-scan DLS-OCT
While the Doppler methods only can determine axial flows, correlation-based DLS-
OCT methods can be used to determine both axial and transverse flows. For a Gaus-
sian illuminating beam and Gaussian-shape spectral envelope, the depth-dependent
autocovariance of the OCT complex signal in a backscattering geometry is given by
[3, 4, 8, 9]

𝑔1(𝑧, 𝜏) = 𝐴1(𝑧)𝑒𝑖𝑞𝑣𝑧(𝑧)𝜏𝑒−𝐷𝑞
2𝜏𝑒−

𝑣𝑧(𝑧)2𝜏2
2𝑤2𝑧 𝑒

− 𝑣𝑡(𝑧)
2𝜏2

𝑤20 , (3.3)

where 𝐷 is the diffusion coefficient, 𝑤𝑧 is the coherence function waist (𝑒−1 dis-
tance) in the sample, and 𝜏 is the correlation time lag. For the Gaussian source
spectrum with a wavenumber standard deviation 𝜎𝑘 and the sample refractive index
𝑛 the coherence function waist is given by 𝑤−1𝑧 = √2𝜎𝑘𝑛. The parameter 𝐴1(𝑧) is
the autocovariance amplitude containing the effect of a diminishing signal-to-noise
in depth [11] and takes values between 0 and 1. Note that the decorrelation only
depends on the in-focus beam radius 𝑤0 [8, 12, 13] which makes depth-dependent
analysis relatively straightforward. The decorrelation of the OCT signal magnitude
is a factor two higher [1, 8] than the field decorrelation and can be expressed with
the second-order autocovariance [14, 15]:

𝑔2(𝑧, 𝜏) = |𝑔1(𝑧, 𝜏)|2 = 𝐴2(𝑧)𝑒−2𝐷𝑞
2𝜏𝑒−

𝑣𝑧(𝑧)2𝜏2
𝑤2𝑧 𝑒

− 2𝑣𝑡(𝑧)
2𝜏2

𝑤20 , (3.4)

where 𝐴2(𝑧) is a depth-dependent amplitude factor. Equation (3.4) is valid with
the assumption that the average number of particles in the scattering volume, 𝑁,
is sufficiently large (𝑁 ≳ 100) [12, 14, 16].

In this paper we focus on the second-order autocovariance function, 𝑔2(𝑧, 𝜏),
that does not depend on phase, is easier to implement, and can also be imple-
mented in phase-unstable OCT systems. When the autocovariance function is used
for estimating the flow, the 𝑒−1 decay time of the autocorrelation must be equal or
larger than the temporal sampling time Δ𝑡. From this requirement, the maximum
measurable transverse and axial flow speeds are

𝑣𝑡max =
𝑤0
√2Δ𝑡

, (3.5)
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𝑣𝑧max =
𝑤𝑧
Δ𝑡 , (3.6)

respectively. These equations are derived under the assumption of ideal 𝛿-function
sampling. However, when the measurements are performed while integrating over
a specific detector time, defined by 𝑇 = Δ𝑡/𝐶 (where 𝐶 is the multiplicative constant
larger or equal to 1), the axial motion of a sample during the integration time causes
a significant SNR degradation that limits the axial velocity to

𝑣𝑧max =
𝜋𝐶
𝑞Δ𝑡 . (3.7)

Equations (3.5) and (3.6) limit the maximum measurable transverse and axial ve-
locity components from a correlation perspective: when the effective particle dis-
placements become comparable to the transverse and axial resolutions, the ac-
quired signals become completely decorrelated within a single acquisition time [6].
Equation (3.7) limits the axial velocity due to fringe washout at the detector [7].
For the spectrometer-based OCT systems, the detector integration time is compa-
rable to the sampling time, i.e, 𝐶 ≳ 1. Such systems operate in the visible and
infrared wavelength ranges with 𝑞/𝜋 ≫ 𝑤−1𝑧 , therefore limiting the axial velocity by
the fringe washout through Eq. (3.7), rather than by the axial resolution through
Eq. (3.6).

3.2.5. B-scan DLS-OCT
To circumvent the limit imposed by Eq. (3.5) we propose the implementation of
flow quantification using B-scan correlation-based DLS-OCT. When moving the OCT
beam in any direction with a constant velocity while acquiring the signal, 𝑣𝑡(𝑧) and
𝑣𝑧(𝑧) in Eq. (3.4) must be replaced with the effective transverse Δ𝑣𝑡(𝑧) and axial
Δ𝑣𝑧(𝑧) velocities, given by

Δ𝑣𝑡(𝑧)2 = [𝑣0(𝑧) cos𝜃 − 𝑣𝑠 cos𝜑𝑡 cos (𝜑𝑧 + 𝜃)]
2 + [𝑣𝑠 sin𝜑𝑡 cos (𝜃 + 𝜑𝑧)]

2

= 𝑣0(𝑧)2 cos2 𝜃 − 2𝑣0(𝑧)𝑣𝑠 cos𝜑𝑡 cos𝜃 cos (𝜃 + 𝜑𝑧) + 𝑣2𝑠 cos2 (𝜃 + 𝜑𝑧) ,
(3.8)

Δ𝑣𝑧(𝑧)2 = [(𝑣0(𝑧) sin𝜃 − 𝑣𝑠 sin (𝜃 + 𝜑𝑧)]
2 , (3.9)

where 𝑣𝑠 is the effective scan speed in 3D along the flow, 𝜑𝑡 and 𝜑𝑧 are the angles
defining the scan direction relative to the flow, shown in Fig. 3.1(a-d). When
the effective scan direction is sufficiently aligned with the flow velocity, so that
cos𝜑𝑡 ≈ 1 and 𝜃 + 𝜑𝑧 ≈ 𝜃, Eq. (3.8) and (3.9) are simplified into

Δ𝑣𝑡(𝑧) = (𝑣0(𝑧) − 𝑣𝑠) cos𝜃 = Δ𝑣0(𝑧) cos𝜃 , (3.10)

Δ𝑣𝑧(𝑧) = (𝑣0(𝑧) − 𝑣𝑠) sin𝜃 = Δ𝑣0(𝑧) sin𝜃 , (3.11)

which shows that with an ideal scan alignment, the ratio of the effective transverse
and axial velocity components remains unchanged irrespective of the beam scan
speed 𝑣𝑠. This simplification allows calculation of flow velocities by adding effec-
tive flow and scan speeds. Therefore, an autocovariance model of the OCT signal
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magnitude for the general case of beam scanning incorporating the beam motion
can be written as

𝑔2(𝑧, 𝜏) = 𝐴2(𝑧)𝑒−2𝐷𝑞
2𝜏𝑒−

(𝑣0(𝑧)−𝑣𝑠)2 sin2 𝜃𝜏2
𝑤2𝑧 𝑒

− 2(𝑣0(𝑧)−𝑣𝑠)
2 cos2 𝜃𝜏2

𝑤20 , (3.12)

with the limitation that the axial intensity profiles are the same for all lateral B-scan
acquisitions. For Eq. (3.12), the axial velocity limit is unchanged and limited by
the fringe washout via Eq. (3.7). However, the transverse velocity limit is modi-
fied; Eq. (3.5) is now limited by the relative velocity Δ𝑣𝑡 rather than the absolute
velocity 𝑣𝑡. This implies that for flows uniform along the length of the B-scan, the
maximum measurable flow is limited by the absolute difference between flow and
scan speeds. The application of lateral scanning in correlation analysis can give a
significant improvement because for a typical OCT flow geometry the transverse
flow is much higher than the axial flow and the limitation caused by the transverse
flow, Eq. (3.5), is more restrictive than that for axial flow, Eq. (3.7). For a flow
profile 𝑣𝑡(𝑧) the most optimum scan speed is such that the decorrelation rate is
at its maximum for the highest and lowest flows, i.e., the effective scan speed 𝑣𝑠
is a mid-range flow velocity 𝑣𝑠 cos𝜃 =

max[𝑣𝑡(𝑧)]+min[𝑣𝑡(𝑧)]
2 . This scan speed will

cause maximum and equal decorrelation rates for the maximum and minimum flow
speeds. Hence, with optimal scan speed, the maximum transverse velocity is limited
to

𝑣𝑡max, 𝐵 =
√2𝑤0
Δ𝑡 +min[𝑣𝑡(𝑧)] , (3.13)

or stated differently,
𝑣𝑡max, 𝐵 = 2 ⋅ 𝑣𝑡max,𝑀 +min[𝑣𝑡(𝑧)] , (3.14)

which shows that for measuring flow profiles where a minimum velocity is zero, the
B-scan flow measurement limit is a factor of 2 larger than the conventional M-scan
DLS-OCT flow limit. This equation is valid within the small angle approximation
between scan and flow vectors. However, to obtain the actual flow speeds, the
effective scan speed needs to be added to the velocities determined with correlation
after acquisition. For flows with a non-uniform transverse component, assuming
that the beam can be moved at sufficiently high velocities, the maximum flow that
can be determined with B-scanning is at least twice the flow that can be determined
without. However, this has no effect on the axial velocity limit imposed by the fringe
washout.

3.3. Materials and Methods
3.3.1. OCT system
The experiments were performed using a Thorlabs GANYMEDE II HR series spec-
tral domain OCT System, with a bandwidth centered around 900 nm with an axial
resolution of 𝑙𝑐 = 3 µm in air. The OCT system was operated both in M-scan
and B-scan modes. In M-scan mode, subsequent A-scans were acquired at a fixed
sample position. In B-scan mode, the beam was moved in the transverse plane,
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perpendicular to the illumination direction, while acquiring A-scans. Because of
the telecentric scan arrangement, the scanned beam remains perpendicular to the
transverse plane for all lateral positions. The acquisition rate was set at 36 kHz for
all experiments. The OCT axial resolution and axial decorrelation were determined
using the wavenumber spectrum standard deviation, 𝜎𝑘, of the measured reference
spectrum. The acquired signal spectrum was measured with a spectrometer with
2048 pixels. After acquisition, the measured spectrum was first apodized using
a Gaussian filter and then resampled to a linearly-sampled wavenumber domain.
After the apodization, the measured axial resolution in air and coherence function
waist in sample were 𝑙𝑐 = 3.5 and 𝑤𝑧 = 2.5 µm, respectively.

The OCT system is operated with a scan lens (LSM04-BB, Thorlabs) in a confocal
setup with a focal spot size of 𝑤0 = 6 µm in air, defined as the 𝑒−1 radius of the field
function. The NA of the system was 0.05. The manufacturer-provided waist size
in air was validated by measuring the axial confocal response of a reflector mov-
ing through the beam focus. The measured values were around 𝑤0 = 5 − 6 µm.
However, depending on the angle of incidence, refractive index contrast and Gaus-
sian beam parameters, 𝑤0 varies somewhat because of the passage of the beam
through the interfaces [17]. Therefore, for each experiment, 𝑤0 was calibrated by
performing a B-scan with a known transverse scan speed on a static sample, and
then fitting 𝑤0 from Eq. (3.4) using the correlation analysis. This gave results similar
as for the confocal measurement, but slightly lower (𝑤0 = 4.5 µm). For maximizing
the number of particles within the scattering volume, the region of interest in the
dept range was moved away from the focus by approximately 0.5 mm [12]. Since
for the given OCT setup the coherence length and the NA are very low, it can be
assumed that the scattering angle is 180∘ and the scattering wavenumber 𝑞 in the
correlation analysis is constant at 𝑞 = 2𝑛𝑘0.

3.3.2. Flow system
The flow was generated using a syringe pump with variable discharge rate (Fusion
100, Chemyx) and a 60 mL syringe (BD Plastipak). The flow passes through a quartz
rectangular flow cell with internal dimensions of 0.2 mm thickness and 10 mm width
(type 45-F, Starna Scientific). For each experiment, the flowing sample consisted of
5 mL 20% Intralipid (Fresenius Kabi) solution dissolved in 200 mL water, resulting
in a total particle volume fraction of approximately 0.5%. The refractive index of
the solution was determined by measuring the OCT amplitude signal of the flow
cell filled with the sample and numerically solving the following equation

cos [sin−1 (sin𝛼𝑛 )] = ℎ𝑛
𝐿 , (3.15)

where ℎ is the known flow cell thickness, 𝐿 is the measured peak-to-peak optical
path length difference between the flow cell surfaces, and 𝛼 is the angle between
the cuvette and a plane normal to the optical beam. The obtained refractive index
was 𝑛 = 1.38. As a reference, velocity profiles for the set pump discharge rates
were calculated using the analytical solution for the Poiseuille flow in a rectangular
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channel [18]

𝑣 (𝑦 = 𝑤
2 , 𝑧) =

40 ⋅ 𝑄
3𝜋3ℎ𝑤 (1 − 0.63 ℎ𝑤)

∞

∑
𝑚=1,𝑚 odd

sin (𝑚𝜋𝑧ℎ )
𝑚3 , (3.16)

where the velocity, in mm/s, is given as a function of depth 𝑧 at the flow cell half-
width, 𝑤 is a width of the flow cell and 𝑄 is the pump discharge rate in mL/s. All
flow cell dimensions are in mm. In the analytical solution, the maximum velocities
are observed at the half-width of the cell. Therefore, the OCT beam was positioned
as close as possible to this location. In the transverse plane, the flow and B-scan
directions were aligned as good as possible. In the axial plane, the angle 𝛼 was
fitted to the surface as shown in Fig. 3.2 and numerical alignment was performed
using the voxel-shifting technique.

3.3.3. M-scan OCT flow measurements
In the M-scan mode, depending on the expected flow velocities, the measurement
time series lengths were chosen between 𝑁 = 240 and 𝑁 = 2845 matching the
lengths of the associated B-scan lengths. Each M-scan measurement was repeated
100 times. The beam was stationary during the whole signal acquisition period.

M-Scan Doppler OCT flow measurements
Axial velocities were determined using the depth-dependent and time-averaged
phase changes from 240 − 2845 adjacent A-scans using Eq. (3.1) with

Δ𝜙(𝑧) = ⟨ tan−1 [ Im(𝑎(𝑧, 𝑡) × 𝑎
∗(𝑧, 𝑡 + Δ𝑡))

Re(𝑎(𝑧, 𝑡) × 𝑎∗(𝑡, 𝑡 + Δ𝑡)) ]⟩𝑡
, (3.17)

where 𝑎(𝑧, 𝑡) and 𝑎(𝑧, 𝑡+Δ𝑡) represent the complex OCT data at times 𝑡 and 𝑡+Δ𝑡,
respectively. Total flow velocities were determined by diving the axial velocities with
sin𝜃.

M-scan DLS-OCT flow measurements
The M-scan correlation analysis was performed by fitting the autocovariance func-
tion using only 𝑣0(𝑧) and 𝐴2(𝑧) as free parameters. Prior to fitting, several reference
measurements were performed. First, an M-scan measurement was performed with
only diffusion and no flow. The diffusion coefficient 𝐷 was determined from the fit
of Eq. (3.4) to the autocovariance of the M-scan OCT signal amplitude from the sta-
tionary fluid. This measurement was performed for every time series length from
𝑁 = 240 to 𝑁 = 2845 to account for the statistical bias in 𝐷 caused by the time
series length [11]. The statistically corrected diffusion coefficient was subsequently
used in all following analysis as a fixed parameter. Depending on the time series
length, the measured diffusion coefficients were 1.47 − 3.80 × 10−12 m2/s.

Afterwards, one B-scan measurement was made under no-flow condition. From
the a-priori known set B-scan velocity, the beam waist 𝑤0 was determined using
a fit of Eq. (3.4). Depending on the measurement, the obtained 𝑤0 values were
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4.26 − 4.51 µm. The beam waist was used in all following analysis as a fixed
parameter. In the last calibration step, the Doppler angle 𝜃 was determined by
using 𝑤0, 𝐷 and 𝑣𝑧(𝑧), obtained from the phase-resolved Doppler analysis, in com-
bination with Eq. (3.4), fitting 𝑣𝑡(𝑧), and then finding the depth-averaged angle
𝜃 = ⟨arctan 𝑣𝑧(𝑧)

𝑣𝑡(𝑧)
⟩
𝑧
. This measurement was performed in M-scan mode using a

low discharge rate to avoid phase wrapping. After the calibration, OCT M-scan flow
measurements were performed. The total velocity, 𝑣0(𝑧), was fitted using Eq. (3.4)
on the averaged data, incorporating the calibrated 𝐷, 𝑤0, and 𝜃.

3.3.4. B-scan OCT flow measurements
In B-scan mode, the OCT beam was scanned while acquiring the data. The length
of a time series (the number of acquired A-scans) could not be set at will, but is de-
pendent on the scan speed, the A-scan acquisition rate, and the scan distance. With
the A-scan acquisition rate at 36 kHz and the scan distance fixed to 1 mm to ensure
identical sample uniformity for all measurements, the time series consisted of 240
to 2845 successive A-scans for scan speeds of 12.7 to 150.8 mm/s, respectively.
One M-scan measurement was performed for obtaining the background noise of
the signal amplitude in the depth domain. This amplitude was subtracted from all
measurements before the numerical alignment.

B-Scan Doppler OCT flow measurements
The obtained signal was numerically aligned as described in Sec. 3.3.4. Afterwards,
axial velocities were determined using the depth-dependent and time-averaged
phase changes from Eq. (3.1). Total flow velocities were determined as in the
M-scan Doppler mode. In the B-scan mode, the Doppler method suffered less
from the effects of transverse velocities when using the depth-domain alignment
compared to the frequency-domain alignment.

B-scan DLS-OCT flow measurements for scanning along an in-plane flow
For B-scan correlation-based flow measurements, the transverse scan direction of
the OCT beamwas aligned to the flow direction as much as possible, with cos𝜑𝑡 ≈ 1
and 𝜃 ≈ 𝜃+𝜑𝑧. In this limiting case the only fitting parameters are 𝑣0(𝑧) and 𝐴2(𝑧).
The scan speed was chosen to be close to the expected mid-range velocity within the
flow profile, calculated analytically from the pump discharge rate, the dimensions
of the flow channel, and Eq. (3.16). The same calibration measurements were used
as in the M-scan mode.

B-scan DLS-OCT flow measurements for scanning along an out-of-plane
flow
The application of B-scan DLS-OCT is most straightforward for a flow perpendicular
to the beam. However, in the more general case of oblique flow, the same path
length in the B-scan corresponds to different physical depths in the flow, and hence,
direct implementation of the correlation analysis is not possible. Therefore, the data
has to be numerically aligned to have identical sample locations on identical depths
for all transverse points of the B-scan.
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Figure 3.2: OCT numerical image alignment. (a) Original depth-resolved B-scan image. (b) B-scan
alignment in the spatial domain. (c) B-scan alignment in the frequency domain.

Numerical alignment is either achieved using a spatial shift of the OCT signal in the
depth domain obtained after the inverse Fourier transformation of the spectrum,
or, equivalently, by using a phase multiplication in the frequency domain before
the inverse Fourier transform. Figure 3.2 shows the numerical alignment process.
In the depth-domain, the spatial shift is accomplished by circularly shifting depth
voxels by an integer number Δ𝑧(𝑡) as a function of time 𝑡 according to

Δ𝑧(𝑡) = nint(
𝑛𝑣𝑏𝑡 tan𝛼

𝛿𝑧 ) , (3.18)

𝐼(𝑧𝑗 , 𝑡) ⟹ 𝐼(𝑧𝑗+Δ𝑧(𝑡), 𝑡) , (3.19)

where 𝑡 is the acquisition time, 𝛼 is a physical flow cell tilt angle, and 𝛿𝑧 is the
voxel size interval [19]. The rounding operation is necessary as the voxels can only
be shifted by an integer number. Depending on the scan direction, the voxels are
shifted upwards or downwards. A fully equivalent result can be obtained in the
frequency domain using

𝐼(𝑘, 𝑡) ⟹ 𝐼(𝑘, 𝑡)𝑒−𝑖2𝑘𝑛𝑣𝑏𝑡 tan𝛼 , (3.20)

𝐼(𝑘, 𝑡) ℱ−1−−−→ 𝐼(𝑧, 𝑡) , (3.21)

After aligning the scan and flow directions, the effective scan speed, 𝑣𝑠, is the
effective speed at which the beam scans along the oblique flow. It is required for
fitting Eq. (3.12) and can be expressed as

𝑣𝑠 =
𝑣𝑏

cos𝛼 . (3.22)

The validity of the autocovariance model in Eq. (3.12) relies on the assumption of
stationarity. This is only truly valid if the intensity fluctuations for any given depth
voxel do not have an explicit dependence on time and that the average intensity
remains constant. At non-zero tilt angles 𝛼 these conditions are not met while
B-scanning, because adjacent pixels correspond to different flow speeds and there-
fore are described by different random processes. The numerical re-alignment is
performed to remedy this effect and make sure that adjacent pixels in time corre-
spond to the same position in the flow channel and therefore have the same flow
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speeds. However, this process introduces a mismatch between the signal levels of
adjacent pixels. First, the aligned pixels in time correspond to different locations
within the axial confocal PSF. Second, due to the sensitivity roll-off the OCT sig-
nal is different for these pixels. Third, depending on the axial velocity distribution,
the signal decay due to the fringe washout effect may also differ. Therefore, be-
fore performing the numerical re-alignment, at each lateral position, the OCT signal
intensity was normalized with the averaged depth-dependent OCT signal at that
location. It was assumed that for the normalization a sufficient number of B-scans
was recorded to extinguish signal fluctuations due to particle motion.

Figure 3.3 shows the processing steps for obtaining velocities. After numerically
aligning the flow measurements, the autocovariance at a depth 𝑧 at the center of a
flow cell, where the velocity is highest was fitted using Eq. (3.12) using 𝐷, 𝑤0, 𝑤𝑧
and 𝜃 as input parameters to obtain the effective velocity, as shown in Fig. 3.3(a).
The B-scan autocovariance decays slower than the M-scan counterpart because
the scan is along the flow. Noise decorrelates in a single time step, therefore,
𝑔2(ℎ/2, 𝜏 = 0) is omitted from the fit. The fitted autocovariance amplitude is slightly
lower for the B-scan measurement. We attribute this to the fact that the transverse
beam motion degrades the OCT signal [20].

Figure 3.3(b) shows the obtained effective velocity for all depths in the flow
channel. As can be seen the parabolic flow profile is mirrored at an effective velocity
close to zero. The jitter velocity 𝑣𝑒 causes the ”dips” in the flow velocity profile
to have a small offset. For B-scan correlation analysis, the fitted velocity is the
difference between the flow and effective scan speeds, or the effective velocity,
Δ𝑣0. The flow velocity 𝑣0(𝑧) was then obtained using

(𝑣0(𝑧) − 𝑣𝑠)2 + 𝑣2𝑒 = Δ𝑣0(𝑧)2 , (3.23)

with 𝑣𝑠 the scan velocity along the flow and 𝑣𝑒 a non-zero fitted velocity when
𝑣𝑠 = 𝑣0(𝑧). Ideally, with a well-calibrated diffusion coefficient and the beam mo-
tion perfectly aligned with the flow, it is expected from the Eq. (3.10-3.12) that
𝑣𝑒 = 0. However, due to small scan misalignments, galvo instability, and jitter
there is additional decorrelation that leads to an offset 𝑣𝑒. Since 𝑣𝑒 is much smaller
than 𝑣𝑠 and 𝑣0(𝑧) it is only observed as 𝑣0(𝑧) ≈ 𝑣𝑠. Therefore, 𝑣𝑒 is obtained as
the average of both minima from Fig. 3.3(b). After finding 𝑣𝑒, 𝑣0(𝑧) is determined
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Figure 3.3: (a) M-scan and B-scan correlation functions at 𝑧 = ℎ/2 with the flow rate 1/15 mL/s and
𝜃 = 0.39∘. (a) Measured autocovariance, 𝑔2(ℎ/2, 𝜏). (b) Measured Δ𝑣0(𝑧) from B-scan. (c) Measured
and reconstructed 𝑣0(𝑧) from both M-scan and B-scan analysis, respectively.
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by solving the quadratic equation (3.23). This equation has two solutions that are
mirror reflections over the line where the effective velocity equals 𝑣𝑠. To find the
correct value the velocity profile is split into two regions. In the region 1 the flow
speed is lower than the effective scan speed, while in the region 2 the flow speed
is higher than the effective scan speed. So, the solution 𝑣0(𝑧) < 𝑣𝑠 is chosen for
the region 1 and the solution 𝑣0(𝑧) > 𝑣𝑠 is chosen for the region 2. Equation (3.23)
can also be solved explicitly, i.e., without any assumptions for 𝑣0(𝑧) or 𝑣𝑒, if two or
more B-scans are performed at different speeds for the same flow velocities.

Figure 3.3(c) shows the obtained full flow profile compared to the flow profile
measured with M-scan DLS-OCT. Clearly, the same flow profile is obtained.

B-scan DLS-OCT flow measurements for arbitrary scan direction and out-
of-plane flow
The most general application of our method is under the condition that the flow is
not in the transverse plane and that the B-scan angle is not exactly aligned with
the transverse flow direction. In this case flow measurements were performed in
the B-scan mode similar to the aligned condition. The scan distance was kept the
same but the measurement averaging was increased from 100 to 200 scans. No
assumptions were made for the angles 𝜑𝑡 and 𝜑𝑧. The scan direction was at an
angle of about 𝜑𝑡 ≈ 10∘ from the flow direction. In this case, only the background
noise and the beam waist calibration measurements were performed. For each flow
speed, B-scans at 5 different scan speeds were acquired. Due to the purposeful
misalignment, flow and scan vectors never fully match and the decorrelation rate
was nonzero for every depth. Since the diffusive term is only important when the
scan and flow velocities coincide (yielding low decorrelation), it was neglected here.
For every acquired B-scan a total decorrelation rate Γ(𝑧) was obtained by fitting

𝑔2(𝑧, 𝜏) = 𝐴2(𝑧)𝑒−Γ(𝑧)𝜏
2

(3.24)

to the depth-resolved OCT signal amplitude, with

Γ(𝑧) = Δ𝑣𝑧(𝑧)2
𝑤2𝑧

+ 2Δ𝑣𝑡(𝑧)
2

𝑤20
, (3.25)

with Δ𝑣𝑡(𝑧) and Δ𝑣𝑧(𝑧) defined in Eq. (3.8-3.9). First, Γ(𝑧) is fitted for all five B-
scan measurements at all depths. Second, an overdetermined system of equations
is constructed with unknowns 𝑣0(𝑧), 𝜃, 𝜑𝑡 and 𝜑𝑧. The total number of equa-
tions equals five times the number of samples in depth. Finally, the system of
equations is solved simultaneously for all depths using a nonlinear least-squares
method, yielding the values for 𝑣0(𝑧), 𝜃, 𝜑𝑡 and 𝜑𝑧.

3.4. Experimental results
3.4.1. Flow measurements under ideal scanning alignment
Three sets of flow measurements were performed for 𝜃 values of 0.39∘, 0.94∘ and
1.58∘. For each angle, the pump discharge rates were varied from 1/30 to 1/3mL/s.
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Figure 3.4 shows velocity profiles obtained with M-scan Doppler OCT, M-scan DLS-
OCT, B-scan Doppler OCT, and B-scan DLS-OCT, where each column corresponds to
the same method. For improved data visibility, only the profiles with less than 20%
relative error between the expected and measured integrated flow profiles, as well
as less than 20% relative mean squared error with respect to the expected velocity
profiles, are shown. Dashed parabolic curves are the theoretical velocities at the
center of the cuvette, while the horizontal lines represents the maximum velocities
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Figure 3.4: Flow profiles measured using different methods (columns) and angles (rows). (a-d)
𝜃 = 0.39∘. (e-h) 𝜃 = 0.94∘. (i-l) 𝜃 = 1.58∘.
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that can be measured by any given method.
Figure 3.4(a,e,i) shows the M-scan Doppler OCT flow measurements. With in-

creasing discharge rate, the phase shift approaches a constant value due to phase
distortion and the profiles become inaccurate, which is consistent with the results
from Koch et al. [10]. At larger angles the Doppler flow becomes less noisy. Since
the flow cell is oriented almost perpendicular to the beam optical axis, the axial ve-
locity is proportional to the Doppler angle (sin𝜃 ≈ 𝜃), while the transverse velocity
is almost unaffected by the angle (cos𝜃 ≈ 1). The M-scan Doppler OCT has the
lowest velocity dynamic range, for the current settings limited to 51 mm/s. Using
simulations based on the models from [10], expected velocities at which the phase
shifts, for the given geometry, deviate from the linear phase increment are above
50 mm/s, which is consistent with our observations.

Figure 3.4(b,f,j) shows the M-scan DLS-OCT flow measurements. Depending on
the Doppler angle, the maximum velocity is 101-127 mm/s. The expected maximum
velocity from Eq. (3.5-3.6) is approximately 115 mm/s, which is consistent with our
observations. The velocity values become more noisy for higher discharge rates. In
this case the velocity limit is dictated by Eq. (3.5-3.6), because the fringe washout
limit has not been reached. The maximum measurable velocity slightly decreases
with increasing 𝜃. This is expected, since the coherence function waist is slightly
smaller than the Gaussian beam waist. Therefore, for the same flow rate, the
decorrelation becomes more rapid with increasing axial velocity. This method has
a higher velocity limit compared to M-scan Doppler OCT. The flow limit for M-scan
DLS-OCT is approximately a factor 2 higher than for M-scan Doppler OCT.

Figure 3.4(c,g,k) shows B-scan Doppler OCT flow measurements. Due to the
reduced transverse velocity components, the velocity dynamic range has increased
to a maximum flow rate of 76-127 mm/s (depending on the Doppler angle). This
is consistent with the theoretical estimate of roughly 100 mm/s (double the M-scan
Doppler flow limit). Deviations of the velocity increase with increasing 𝜃 values,
as the phase shift approaches a constant value at lower discharge rates. Due to
non-uniformity of the flow, transverse components at all depths cannot be simul-
taneously suppressed. This method performs similar to the M-scan DLS-OCT.

Figure 3.4(d,h,l) shows the results obtained using B-scan DLS-OCT. It has by
far the highest velocity dynamic range yielding a maximum flow rate of up to 250
mm/s and a maximum speed that is unaffected by the Doppler angle, as long as the
fringe washout limit is not reached. The theoretical maximum measurable velocity
according to Eq. (3.5-3.6) and (3.13-3.14) is approximately 230 mm/s. This is
consistent with our observation of a flow limit around 250 mm/s.

The measured profiles are in good agreement with analytical predictions, es-
pecially for 𝜃 = 0.94∘. However, since the flow cell is tilted, the refracted beam
travels at an angle to the surface normal and with a small offset from the half-
width. Therefore, for different experiments, deviations from the theoretical profiles
are expected. Slightly increased noise in high flow rates for 𝜃 = 0.94∘ is caused
by an insufficient B-scan speed that isn’t set exactly at the mid-range flow velocity.
Insufficiently fast scanning is not an issue for 𝜃 = 0.39∘ and 𝜃 = 1.58∘, because for
these angles the measured velocities are slightly lower due to probing a different
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Figure 3.5: Measured versus expected flow velocities for all methods for (a) 𝜃 = 0.39∘, (b) 𝜃 = 0.94∘,
and (c) 𝜃 = 1.58∘.

position in the flow.
To compare all flow methods simultaneously all measured velocities at a fixed

angle are plotted against the expected velocities in Fig. 3.5(a-c). The black dashed
curve corresponds to the expected value. For all angles, B-scan DLS-OCT follows the
expected flow up to 250 mm/s. The second best method is B-scan Doppler OCT. This
shows consistent flow measurements up to 76-152 mm/s, depending on the angle.
Its accuracy gets worse for larger Doppler angles. M-scan DLS-OCT measurements
have a dynamic range from zero up to 101-127 mm/s and are less dependent on
the angle. M-scan Doppler OCT measurements level off at a maximum flow rate of
51 mm/s.

With increasing 𝜃, M-scan and B-scan Doppler measurements deviate from the
expectations at lower velocities. For the M-scan DLS-OCT measurements, the fit
error becomes very large after reaching the limiting velocities. It is only the B-scan
DLS-OCT measurements that show a linear behaviour for all considered flow rates.
It worth noting that the B-scan methods have the same sensitivities at the highest
and lowest flow speeds where the apparent velocities (due to scanning) are equal.
Therefore, for these methods, higher errors are expected near the minimum and
maximum flow velocities, which are visible in Fig. 3.5.

3.4.2. Omnidirectional flow measurements
Figure 3.6 shows the applicability of our method to the general situation of flow
under non-zero Doppler angle and non-aligned B-scanning. Flow is measured in
B-scan mode for discharge rates of 1/5 and 1/6 mL/s. The angle between the
transverse projections of scan and flow directions, 𝜑𝑡, was approximately 10∘ and
𝜑𝑧 was unknown. For each flow rate, 5 different scan speeds were used. For the
purpose of comparison with the ideal scanning assumption, 𝜃 was also determined
experimentally and found to be 1.5∘.

Figure 3.6(a) shows the fitted decorrelation parameter, Γ(𝑧), for every scan
speed and flow rate. The variation in the magnitude of Γ(𝑧) for the same flow rate
is due to different scan speeds used. Due to the non-aligned scanning the dips in
the Γ(𝑧) are smoothed out as compared to Fig. 3.3(b). Figure 3.6(b) shows the
flow profile obtained by solving the overdetermined system of equations for Γ(𝑧)
without any assumptions on the angles. Uncertainties in velocity are highest at
the positions of the two minima. At these positions, the system of equations is
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Figure 3.6: B-scan DLS-OCT flow measurements with arbitrary scan and flow directions. (a) Obtained
decorrelation parameter, Γ(𝑧). (b) Flow profiles obtained without any assumption on the angles, aver-
aged over all B-scan rates. (c) Velocity profiles obtained using the small angle assumption with 𝜃 = 1.5∘.

underdetermined because there is a very little variation in fitted decay rates for
different scan speeds. As a result, multiple solutions for 𝑣0(𝑧) could be possible
at these locations leading to slightly wrong values. Outside of these locations the
velocity profile is correctly estimated.

For comparison, flow profiles were also determined from the same data using
cos𝜑𝑡 ≈ 1, 𝜑𝑧+𝜃 ≈ 𝜃 and 𝜃 = 1.5∘. As can be seen from Fig. 3.6(c), the obtained
profiles match well with the ones determined without any assumptions. This sug-
gests that 𝜑𝑡 of around 10∘ degrees is still sufficiently small as to not violate the
small angle approximation. The obtained results show that omnidirectional velocity
profiles unambiguously can be determined without any underlying assumptions on
the geometry if multiple B-scans are performed. The absence of any assumptions
or careful alignment only requires the acquisition multiple B-scans and, hence, a
longer acquisition time.

3.5. Discussion
Our results show that using B-scan DLS-OCT, aided with numerical data alignment,
the transverse flow velocity dynamic range can be significantly increased. Moreover,
our method works for arbitrary flow direction. The advantage of our method is in
situations where the M-scan decorrelation limit is reached, where the Doppler angle
is low, and the fringe washout limit is not reached.

For well-aligned B-scan DLS-OCT flow measurement there are minor deviations
for Doppler angles of 𝜃 = 0.39∘ and 𝜃 = 1.58∘ from the theoretically calculated flow
profiles. This is attributed to the uncertainties in the beam waist calibration, beam
offset from the center and its alignment with the flow, as well as the pump stability.
During the waist calibration measurement the beam moves over a tilted flow cell
by the B-scan distance. This alters the Gaussian beam distribution within the flow
cell during the scan due to the varying sample geometry [17]. Therefore, the fitted
waist, which is assumed to be constant over the scan length, slightly varies over the
length of the scan. This is by far the largest source of error and can be minimized
by decreasing the scan distance and/or lowering the objective NA. Another source
of uncertainty is the pump stability. Lastly, the position of the sample arm beam
can be less than ideal. In our analysis we assumed that the beam is positioned
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at the center of the flow cell in both directions. Deviations in the alignment would
alter the measured flow profiles within the cell. This source of error is more severe
for the B-scan methods where stationarity of the flow and diffusion dynamics along
the scan is assumed.

The obtained velocity results show that the fringe washout axial velocity limit
had not been reached during the experiments. B-scan DLS-OCT can measure higher
flows in any geometry compared to conventional M-scan Doppler-OCT, M-scan DLS-
OCT, and B-scan Doppler OCT. The optimal choice of the scan speed is important
for improving the flow imaging range. The largest gain is made when the effective
scan speed is in between the maximum and minimum flow speeds. In this case,
according to Eq. (3.14), the maximum measurable velocity limit is at least factor 2
times higher. For the most simple analysis, the scan direction must be sufficiently
close to the flow direction. However, it is worth noting that the small angle assump-
tion produces correct results for angles as much as 10∘ , underlining the robustness
of the method. A limitation of the method is that the flow should be uniform over
the scan distance with the assumption of stationarity. Hence, the method is most
appropriate for somewhat larger vessels where the diameter is much larger than
the scan range. On the other hand, the scan range can be chosen arbitrarily small,
while being limited by the inertia of the galvos to obtain a constant speed over small
scan ranges.

Implementation of the more general case of arbitrary scan angle shows that
the fitted decorrelation parameters at certain depths cannot be well determined
from the measurements at different scan speeds. This is caused by the fact that
the system of equations is underdetermined at those locations. This error can be
decreased by increasing the number of scan velocity measurements or by fitting
the velocity and angles at each depth separately [5] (instead of fitting the whole
velocity profile and angles simultaneously). The latter would require a significantly
larger number of B-scans, because in this case the depth-resolved equations need
to be solved independently. It is worth noting that the accuracy of B-scan DLS-OCT
is higher when using the Doppler angle as a fixed parameter. The Doppler angle
multiplies the alignment angles from Eq. (3.8-3.9), increasing the fit error.

Our method for arbitrary scan angles can be applied for determining the trans-
verse and axial velocity components in omnidirectional flows as neither the Doppler
angle nor the 𝜑𝑡 and 𝜑𝑧 angles need to be zero. For finding the individual trans-
verse flow components in the 𝑥- and 𝑦-directions, multiple scans in at least two
linearly independent directions must be performed [5]. Our method accuracy in-
creases with more scans at the expense of measurement time. Even when scan-
ning at an angle with respect to the flow, it can access velocity ranges inaccessible
by conventional techniques. However, it is important to note that the scan compo-
nent perpendicular to the flow direction accelerates the decorrelation and adversely
affects the maximum measurable velocity limits. Therefore, to achieve the high-
est flow measurement gain, scanning along the flow direction is favorable. Any
flow measurement gain is achieved when the decorrelation reduction due to the
scan component along the flow is higher than the above-mentioned decorrelation
penalty.
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The numerical alignment is essential in implementing B-scan DLS-OCT methods
and it minimizes 𝜑𝑧. In principle, the OCT signal needs to be normalized by the con-
focal response and sensitivity roll-off before performing the numerical alignment.
For typical flow geometries with relatively low tilt angles, these functions are slowly
varying at the length scales of voxel shifts and the normalization can be dropped.
However, in the limit of high axial velocities, the fringe washout causes a significant
decrease in the signal level [7].

Another important application of the B-scan correlation analysis is improving the
accuracy in measuring the diffusion coefficient of flowing particles from their decor-
relation. This is of particular importance for in-line particle sizing during process
control [21]. Estimation of the diffusion coefficient under flow using the M-scan
DLS-OCT becomes problematic when the flow decorrelation is at a similar rate as
the diffusion decorrelation or when it entirely dominates the decorrelation [8]. This
is a problem in particular for high flow rates and/or slow diffusion (large particles).
By scanning along the flow, the effective flow decorrelation is minimized and the
diffusion coefficient can be determined more accurately. For fast flowing suspen-
sions in the channel, estimation of the diffusion coefficient is only possible very
close to the channel walls, in a limited number of depth voxels, where the flow ve-
locity is low. However, a close proximity to the walls creates additional unwanted
effects for particles (stickiness, particle-wall interactions) and their behaviour devi-
ates from the free diffusion. When scanning along the flow, these limitations can
be removed. First, the apparent flow velocity can be minimized not near the walls
but well inside the channel. These locations depend on the combination of flow
and effective scan speeds. Second, the number of depth voxels where the flow
decorrelation is minimal can be more than doubled.

Figure 3.7 shows the obtained normalized diffusion coefficients for the particles
in the solution under flow for 𝜃 = 0.39∘ at discharge rates of 1/30 mL/s and 1/15
mL/s. The black curves correspond to static diffusion measurements (no flow),
blue curves correspond to the conventional M-scan diffusion measurements under
flow, and red curves correspond to B-scan diffusion measurements under flow.
The fitted diffusion coefficients are given with 95% confidence intervals indicated
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Figure 3.7: Diffusion estimation under static and flow conditions with or without scanning. (a) Nor-
malized diffusion coefficient for 1/30 mL/s discharge rate. (b) Normalized diffusion coefficient for 1/15
mL/s discharge rate. The areas in the curve represent 95% confidence intervals. The locations where
the effective scan speed equals the flow speed are indicated. (c) Locations in the flow profile where the
relative error of the diffusion coefficient is less than 20%.
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by the area between the two lines. For M-scan diffusion measurement the obtained
diffusion coefficients become less reliable as the flow velocity increases. With the
B-scan measurements, 𝐷 can be estimated accurately inside the channel further
away from its walls indicated by the arrows and with a higher accuracy at more
depth voxels than in the M-scan mode. The advantage of our method is greater
with faster flows and for samples with a larger diffusion coefficient. The measured
diffusion coefficient is most accurate when the B-scan angle is aligned with the
flow direction and the numerical alignment is not required. If the latter cannot be
avoided, the frequency domain alignment is preferred to the spatial alignment.

3.6. Conclusion
We have implemented the B-scan correlation-based DLS-OCT method for measuring
omnidirectional flows. Our method extends the maximum measurable velocity limit
by at least a factor of 2 compared to the standard M-scan DLS-OCT or Doppler OCT
techniques. We have shown that our method can be applied to flow geometries
where a proper scan alignment is not possible. In addition, we have demonstrated
that the suggested method can be used to estimate a diffusion coefficient more
accurately under flow conditions.

Data availability
Data underlying the results presented in this paper and the relevant analysis rou-
tines are available at [22].
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4
Sub-diffusion flow

velocimetry with number
fluctuation optical coherence

tomography

We have implemented number fluctuation dynamic light scattering optical
coherence tomography (OCT) for measuring extremely slow, sub-diffusion
flows of dilute particle suspensions using the second-order autocovariance
function. Our method has a lower minimum measurable velocity than con-
ventional correlation-based OCT or phase-resolved Doppler OCT as the veloc-
ity estimation is not affected by the particle diffusion. Similar to non-dilute
correlation-based OCT our technique works for any Doppler angle. With our
analysis we can quantitatively determine the concentration of particles under
flow. Finally, we demonstrate 2D sub-diffusion flow imaging with a scanning
OCT system at high rate by performing number fluctuation correlation anal-
ysis on subsequent B-scans.

This chapter has been published as: Konstantine Cheishvili and Jeroen Kalkman, Sub-diffusion flow
velocimetry with number fluctuation optical coherence tomography, Optics Express 31(3), 3755-3773
(2023).
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4.1. Introduction
Dynamic light scattering optical coherence tomography (DLS-OCT) relies on the
measurement of fluctuations of scattered light and coherence gating to obtain si-
multaneous depth-resolved information about diffusive and translational motion of
particles. This information is extracted from the temporal autocorrelation of the
OCT signal for every voxel in depth. Initially, DLS-OCT was used for quantitative
diffusion imaging [1] and quantitative flow imaging of non-dilute particle suspen-
sions [2–4].

DLS-OCT has the advantage over the phase resolved Doppler OCT that a flow
can be measured for zero Doppler angle. However, for both methods the velocity
sensitivity is limited by signal-to-noise ratio (SNR) [5] and the Brownian motion of
the flowing particles [2, 6]. In that case the Doppler phase shifts and the scattered
light intensity fluctuations are small, are buried in the noise, or are overwhelmed by
the phase/intensity changes caused by Brownian motion. Hence, it is challenging to
measure sub-diffusion transverse flow rates. However, for very dilute suspensions
particle motion gives rise to additional fluctuations in the scatterred intensity at
longer time scales compared to particle diffusion [7, 8] and enables measurement
of a sub-diffusion flow velocity.

In this work we utilize particle number fluctuations of dilute suspensions in
DLS-OCT to improve the minimum measurable velocity of omnidirectional flows.
We combine and extend the existing theoretical models for the normalized second-
order OCT signal autocovariance and incorporate number fluctuations into them.
We show that when using number fluctuations, the minimum measurable velocity
of DLS-OCT is freed from the constraint imposed by diffusion. Hence, lower flow ve-
locities can be measured compared to conventional non-dilute DLS-OCT or Doppler
OCT.

4.2. Theory
The typical geometry for point scanning OCT flow measurements is visualized in
Fig. 4.1. The propagation of the optical beam is along the 𝑧 direction. The flow is
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Figure 4.1: Geometry of the OCT sample arm and the fluid flow.
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in a channel oriented at an angle 𝛼 with respect to the 𝑥-𝑦 plane. This angle can,
due to refraction of the light, be different from the orientation of the flow direction
at angle 𝜃. In general, we assume the flow to be laminar with transverse, 𝑣𝑡(𝑧), and
axial, 𝑣𝑧(𝑧), velocity components as a function of depth. Given a total flow 𝑣0(𝑧),
the flow components are expressed as 𝑣𝑡(𝑧) = 𝑣0(𝑧) cos𝜃 and 𝑣𝑧(𝑧) = 𝑣0(𝑧) sin𝜃.
The OCT beam is a Gaussian beam characterized by a waist 𝑤0 in focus, and the
local beam waist 𝑤(𝑧) at location 𝑧 along the optical axis. The beam waist is
defined as a distance from the beam center where the beam intensity is 𝑒−2 of its
maximum value. The combination of the Gaussian-shaped lateral intensity and the
axial coherence function gives the OCT point spread function (PSF) in the 𝑧 and
𝑟-directions

𝐼(𝑟, 𝑧) = 𝑒−
4𝑟2
𝑤2(𝑧) 𝑒−

2𝑧2
𝑤2𝑧 , (4.1)

where 𝑟 is the radial distance from the beam center, 𝑧 is the axial position, and 𝑤𝑧 is
the coherence function waist (𝑒−2 intensity distance) in the sample. The additional
factor 2 in the radial PSF function is due to coupling efficiency of the scattered light
in a confocal setup [2, 9]. For the Gaussian source spectrum with a wavenumber
standard deviation 𝜎𝑘 and sample refractive index 𝑛, the coherence function waist
is given by 𝑤−1𝑧 = √2𝜎𝑘𝑛.

In this work we discuss three different techniques for performing quantitative
OCT flow measurements, namely

• Doppler OCT

• Non-dilute DLS-OCT

• Number fluctuation DLS-OCT

where the last method is the new method developed by us.

4.2.1. Doppler OCT
The most commonly used method for measuring the axial flow velocity is phase-
resolved Doppler OCT. The Doppler effect gives a frequency shift to the light scat-
tered from a particle undergoing axial motion. The Doppler frequency shift of the
spectral OCT signal is equivalent to a phase change of the spatial OCT signal, Δ𝜙(𝑧).
From the phase change the axial depth-resolved velocity 𝑣𝑧(𝑧) is determined using
[10]

𝑣𝑧(𝑧) =
2𝜋𝑓𝐷(𝑧)
𝑞 = Δ𝜙(𝑧)

𝑞Δ𝑡 , (4.2)

where 𝑓𝐷 is the Doppler frequency shift of the scattered light, Δ𝑡 is the sampling
time, and 𝑞 = 2𝑛𝑘0 is the scattering wavenumber for the OCT backscattering probe
configuration with the medium refractive index 𝑛 and the vacuum wavenumber
𝑘0. The total and axial flow velocities are related through 𝑣0(𝑧) = 𝑣𝑧(𝑧)/ sin𝜃.
For a shot-noise limited OCT system, the smallest observable change in the phase
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measurement, 𝛿𝜙sens, can be obtained using [5, 11, 12]:

𝛿𝜙sens =
2
𝜋 ∫

𝜋/2

0
tan−1 (√𝐼𝑛𝐼𝑠

sin𝜙rand) 𝑑𝜙rand ≈
2

𝜋√SNR
, (4.3)

where 𝜙rand is the random phase of the shot noise with uniform probability distribu-
tion over the range from 0 to 2𝜋 and SNR = ⟨𝐼𝑠⟩

⟨𝐼𝑛⟩
is the measurement signal-to-noise

ratio with 𝐼𝑠 and 𝐼𝑛 being the OCT signal and noise intensities, respectively. The
minimum axial velocity that for a given signal-to-noise ratio can be estimated is
obtained by replacing Δ𝜙 in Eq. (4.2) with 𝛿𝜙sens from Eq. (4.3), which results in

𝑣𝑧min, SNR =
23/2

𝜋𝑞Δ𝑡√SNR ⋅ 𝑀
, (4.4)

where the additional factor of √2 in the nominator arises because the estimated ve-
locity is proportional to the numerical difference between the measured phase and
a reference phase[5]. The variable 𝑀 in the denominator is the number of statis-
tically independent phase change measurements for calculating the axial velocity.
Averaging increases the flow sensitivity by a factor of √𝑀.

The axial velocity sensitivity of Doppler OCT is further limited by the particle
diffusion[6, 13, 14]. Particle diffusion causes frequency broadening of the Doppler
shifted scattered light resulting in a particle diffusion broadened Lorentzian [15,
16]. For a single wavelength heterodyne system the full width at half maximum
(FWHM) of the particle diffusion broadened Lorentzian is 𝐷𝑞2/𝜋, where 𝐷 is the
particle diffusion coefficient. However, in Fourier domain OCT the Doppler phase
is calculated by multiplying/dividing intensities from different pixels on the camera,
resulting in a twice as big FWHM, i.e., FWHM = 2𝐷𝑞2/𝜋 [1]. Using this FWHM
as a measure of the frequency sensitivity together with Eq. (4.2), we obtain the
minimum measurable axial velocity in the presence of the particle diffusion:

𝑣𝑧min, Diff =
4𝐷𝑞
√𝑀

. (4.5)

Assuming that both noise and diffusion are independent and not correlated, the
overall axial velocity sensitivity can be expressed as

𝑣𝑧min = √𝑣2𝑧min, SNR + 𝑣2𝑧min, Diff , (4.6)

with the total velocity sensitivity given by 𝑣0min = 𝑣𝑧min/ sin𝜃.

4.2.2. Non-dilute DLS-OCT
Non-dilute DLS-OCT is based on light intensity fluctuations and is sensitive to both
axial and transverse flows. For a Gaussian illuminating beam and Gaussian-shaped
spectral envelope, the normalized depth-dependent autocovariance of the OCT
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complex signal in a backscattering geometry, including the effect of SNR, is given
by [2, 3, 17–19]

𝑔1(𝑧, 𝜏) =
1

1 + 1
SNR(𝑧)

𝑒𝑖𝑞𝑣𝑧(𝑧)𝜏𝑒−𝐷𝑞2𝜏𝑒−
𝑣20(𝑧) sin

2 𝜃𝜏2
2𝑤2𝑧 𝑒

− 𝑣
20(𝑧) cos2 𝜃𝜏2

𝑤20 , (4.7)

where 𝜏 is the autocovariance time lag. In Eq. (4.7) the effect of a gradient of the
axial velocity on the autocovariance function is neglected. Note that the transverse
decorrelation in Eq. (4.7) only depends on the in-focus beam radius 𝑤0 [8, 18, 20].
The decay rate of the OCT signal intensity or magnitude is a factor two higher [1, 18]
than the field decorrelation and can be expressed with the normalized second-order
autocovariance [15, 16]

𝑔2(𝑧, 𝜏) = |𝑔1(𝑧, 𝜏)|2 =
1

(1 + 1
SNR(𝑧))

2 𝑒−2𝐷𝑞
2𝜏𝑒−

𝑣20(𝑧) sin
2 𝜃𝜏2

𝑤2𝑧 𝑒
− 2𝑣

20(𝑧) cos2 𝜃𝜏2
𝑤20 , (4.8)

where we have used the Siegert relation (for a normalized second-order autocovari-
ance the Siegert relation does not contain a constant offset). In deriving 𝑔2(𝑧, 𝜏)
we have assumed that the average number of particles in the scattering volume,
𝑁, is sufficiently large (𝑁 ≳ 100) [7, 8, 16]. This ensures that the particle probabil-
ity distribution in the scattering volume and the scattered light fluctuations follow
Gaussian statistics. This requirement is almost always satisfied for typical OCT res-
olutions and particle concentrations. Deviation from the Gaussian approximation
requires extremely dilute samples and/or very small scattering volumes that can be
achieved with extremely high spatial resolution. In this work we focus on the nor-
malized second-order autocovariance function 𝑔2(𝑧, 𝜏) for flow measurements as it
does not depend on phase, is easier to implement, and can also be implemented
in phase-unstable OCT systems.

Diffusion and flow decay functions multiply each other in 𝑔2(𝑧, 𝜏). Therefore,
to accurately determine the flow velocity, the flow decay must dominate over the
diffusion decay. This depends on the dynamic time constants 𝜏𝑣0 and 𝜏𝐷 (e−1 decay
times) of flow and diffusion decorrelations, respectively. Hence, for the flow decay
to dominate we require that 𝜏𝑣0 ≪ 𝜏𝐷 [2], where

𝜏𝐷 = (2𝐷𝑞2)−1 , (4.9)

and

𝜏𝑣0 = (𝑣0√
sin2 𝜃
𝑤2𝑧

+ 2 cos
2 𝜃

𝑤2(𝑧) )

−1

. (4.10)

By combining and inverting Eq. (4.9-4.10) we obtain the relation

𝑣0√
sin2 𝜃
𝑤2𝑧

+ 2 cos
2 𝜃

𝑤20
≫ 2𝐷𝑞2 . (4.11)
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In the limiting case when both decays are equally strong, the minimum measurable
diffusion-limited velocity for the normalized second-order autocovariance function
is

𝑣0min, Diff = 2𝐷𝑞2 [
sin2 𝜃
𝑤2𝑧

+ 2 cos
2 𝜃

𝑤20
]
−1/2

. (4.12)

A finite signal-to-noise ratio further limits the minimum velocity that can be deter-
mined using intensity-based non-dilute DLS-OCT. The SNR-limited smallest observ-
able relative change in the intensity can be obtained using [5]

𝛿𝐼sens
𝐼𝑠

= 2
𝜋√𝑀

∫
𝜋/2

0

𝐼𝑛
𝐼𝑠
cos2 𝜙rand 𝑑𝜙rand =

1
2SNR√𝑀

, (4.13)

where the sensitivity improvement by a factor of √𝑀 comes from recording 𝑀 sta-
tistically independent observations, which we assume has the same effect for both
non-dilute DLS-OCT and Doppler OCT methods.

To estimate the limit imposed by the SNR on the DLS-OCT flow sensitivity the
change of the intensity of light scattered by particles is considered. The amount
of scattered light varies as the particles undergo bulk motion with respect to the
illuminating beam described by Eq. (4.1). The expected relative intensity change in
a single time step due to transverse and axial particle motion can be estimated by
moving the particle within the corresponding PSF by a distance traveled during the
acquisition time Δ𝑡. Calculation of the relative intensity change requires splitting
the analysis in a transverse and axial part and averaging over all possible particle
locations. The expected relative intensity changes are

𝛿𝐼𝑡
𝐼𝑠
=
∫∞−∞ |𝑒

− 4𝑟2
𝑤2(𝑧) − 𝑒−

4(𝑟+𝑣0Δ𝑡 cos𝜃)2
𝑤2(𝑧) | 𝑑𝑟

∫∞−∞ 𝑒
− 4𝑟2
𝑤2(𝑧) 𝑑𝑟

= erf(2𝑣0Δ𝑡 cos𝜃𝑤(𝑧) ) (4.14)

and

𝛿𝐼𝑧
𝐼𝑠
=
∫∞−∞ |𝑒

− 2𝑧
2

𝑤2𝑧 − 𝑒−
2(𝑧+𝑣0Δ𝑡 sin𝜃)2

𝑤2𝑧 | 𝑑𝑧

∫∞−∞ 𝑒
− 2𝑧

2
𝑤2𝑧 𝑑𝑧

= erf(√2𝑣0Δ𝑡 sin𝜃𝑤𝑧
) (4.15)

for transverse and axial particle motions, respectively. Here we have neglected
prefactors of exponential functions as they are identical both for nominator and
denominator and cancel out. Finally, the expected relative intensity change due to
a particle displacement with velocity 𝑣0 after time step Δ𝑡 can be determined by
combining transverse and axial parts into

𝛿𝐼0
𝐼𝑠
= √(𝛿𝐼𝑡𝐼𝑠

)
2
+ (𝛿𝐼𝑧𝐼𝑠

)
2
. (4.16)
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In the autocorrelation analysis, the particle flow limit is determined by the flow for
which the relative intensity change is larger than or equal to, the smallest observable
relative intensity change. Therefore, the SNR-limited minimum measurable velocity
can be determined by solving the equation

𝛿𝐼0
𝐼𝑠
= 𝛿𝐼sens

𝐼𝑠
(4.17)

or equivalently

√erf(
2𝑣0min, SNRΔ𝑡 cos𝜃

𝑤(𝑧) )
2

+ erf(
√2𝑣0min, SNRΔ𝑡 sin𝜃

𝑤𝑧
)
2

= 1
2SNR√𝑀

, (4.18)

and finding the unknown 𝑣0min, SNR . The minimum total velocity limit is then

𝑣0min = √𝑣20min, SNR + 𝑣
2
0min, Diff . (4.19)

Note that this a rough estimate using only a single change in the scattered light
intensity and assuming a factor √𝑀 improvement for 𝑀 observations. In DLS-OCT
the determination of the flow is performed using a fit to the normalized autoco-
variance function requiring a multitude of points that could further affect the actual
velocity sensitivity. In addition, the sampling time Δ𝑡 should be smaller than the
transit time affecting the effective number of points that could be used for the fit.

4.2.3. Number fluctuation DLS-OCT
Chowdhury et al. [7] suggested that in the limit of low number of particles in the
scattering volume, the dilute case with 𝑁 ≪ 100, the DLS-OCT relations for the
normalized second-order autocovariance function do not apply any more as they
are derived for an infinite number of particles, i.e., 𝑔2(𝑧, 𝜏) ≠ |𝑔1(𝑧, 𝜏)|2. For a low
number of particles in the scattering volume, additional correlations appear in the
intensity due to fluctuations in the total number of scaterrers in the detected volume
[21]. In this low particle number limit, the normalized second-order autocovariance
function containing the effect of number fluctuations is given by

𝑔2(𝑧, 𝜏) = |𝑔1(𝑧, 𝜏)|
2

⎵⎵⎵⎵⎵⎵⎵
Gaussian term

+ ⟨𝛿𝑁(0)𝛿𝑁(𝜏)⟩⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
number fluctuation term

, (4.20)

where the first term is known as the Gaussian, non-dilute, or coherent term, while
the second term is known as the non-Gaussian, number fluctuation, dilute, number
density, or incoherent term [7, 8, 15, 16]. Following the derivation of Chowdhury
et al. [7] and Taylor and Sorensen [8], incorporating the effects of SNR [19] and a
light beam with a Gaussian lateral and axial PSF, the total normalized second-order
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autocovariance function 𝑔2(𝑧, 𝜏) can be obtained as

𝑔2(𝑧, 𝜏) =
1

(1 + 1
SNR(𝑧))

2
23/2⟨𝑁⟩

23/2⟨𝑁⟩ + 1[𝑒
−2𝐷𝑞2𝜏𝑒−

𝑣20(𝑧) sin
2 𝜃𝜏2

𝑤2𝑧 𝑒
− 2𝑣

20(𝑧) cos2 𝜃𝜏2
𝑤20

+ 1
23/2⟨𝑁⟩𝑒

− 𝑣
20(𝑧) sin

2 𝜃𝜏2
𝑤2𝑧 𝑒−

2𝑣20(𝑧) cos2 𝜃𝜏2
𝑤2(𝑧)

⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
number fluctuation term

] ,
(4.21)

where ⟨𝑁⟩ is the average number of particles in the scattering volume. In OCT, ⟨𝑁⟩
corresponds to the depth-resolved number of particles per scattering volume and
is a function of axial position 𝑧 through the shape of the probing beam. Equation
(4.21) is based on the same assumptions as Eq. (4.8), except that there is no
restriction on the number of particles. Number fluctuations only affect 𝑔2(𝑧, 𝜏) and
have no influence on 𝑔1(𝑧, 𝜏) [7, 8]. The number fluctuation term in Eq. (4.21) does
not depend on diffusion, i.e., flow and diffusion decorrelations are decoupled. In
general, there are diffusional number fluctuations in 𝑔2(𝑧, 𝜏) [21, 22], however, the
relevant time delays for these fluctuations are much larger than flow decorrelation
times as they depend on the ratio of lateral resolution over diffusional displacement.
With typical spatial resolutions and diffusion coefficients, these diffusive fluctuations
can be neglected in the presence of flow. In contrast to the non-dilute case, the
number fluctuation decay rate depends on the local beam waist, 𝑤(𝑧), and not
the beam waist in focus, 𝑤0. The expected number of particles in the scattering
volume, ⟨𝑁⟩, is a function of the PSF and the particle volume fraction 𝑓𝑣 and is given
by

⟨𝑁⟩ = 3𝑓𝑣𝑉𝑠
4𝜋𝑎3 , (4.22)

where 𝑎 is the particle radius and 𝑉𝑠 is the scattering volume which appears as the
normalization factor in 𝑔2(𝜏, 𝑧). The depth-dependent 𝑉𝑠, found by integrating the
intensity PSF over all space, is [8]:

𝑉𝑠 = 2𝜋∫
∞

0
𝑒−

4𝑟2
𝑤2(𝑧) 𝑟𝑑𝑟∫

∞

−∞
𝑒−

2𝑧2
𝑤2𝑧 𝑑𝑧 ≈ 𝜋3/2𝑤2(𝑧)𝑤𝑧

25/2 , (4.23)

where the factor 2𝜋 in front of the integral originates from rotational symmetry of
the lateral PSF. Since the coherence function waist 𝑤𝑧 is much smaller than length
scales at which the local beam waist varies significantly, 𝑤(𝑧) was assumed to be
constant within the integral over the axial PSF. Combining Eq. (4.22-4.23) we find

⟨𝑁⟩ = 3𝑓𝑣√𝜋𝑤2(𝑧)𝑤𝑧
29/2𝑎3 . (4.24)

Since the OCT signal is discrete in depth, 𝑤(𝑧) is also assumed to be constant within
every voxel.

For sufficiently small ⟨𝑁⟩ and flow decorrelation much smaller than diffusion
decorrelation (𝜏𝑣0 ≫ 𝜏𝐷), as given by Eq. (4.9-4.10), the normalized second-order
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autocovariance function at larger time delays, when the Gaussian term has already
decayed, is completely dominated by the number fluctuations term given by

𝑔2(𝑧, 𝜏 ≫ 𝜏𝐷) ≈
1

(1 + 1
SNR(𝑧))

2
1

23/2⟨𝑁⟩ + 1𝑒
− 𝑣

20(𝑧) sin
2 𝜃𝜏2

𝑤2𝑧 𝑒−
2𝑣20(𝑧) cos2 𝜃𝜏2

𝑤2(𝑧) , (4.25)

Therefore, for slowly flowing dilute samples, 𝑔2(𝑧, 𝜏) decorrelation at larger time
delays is independent of the particle diffusion and depends only on the particle flow
speed. In this regime, the minimum measurable velocity is limited only by SNR. The
minimum measurable velocity can be obtained by neglecting the diffusion and using
only the SNR part from Eq. (4.19) in Sec. 4.2.2.

4.2.4. Flow speed sensitivity analysis
Theoretical velocity sensitivities of Doppler OCT, non-dilute DLS-OCT, and number
fluctuation DLS-OCT for Doppler angles of up to 10∘ are plotted in Fig. 4.2, The
sensitivity is quantified as 𝛿𝑣0 indicating the minimum measurable flow velocity and
plotted versus SNR. The calculated sensitivities are based on the diffusion coefficient
of 9.08 × 10−13 m2/s, which is equivalent to a particle radius of 242 nm (average
of the measurements in Table 4.1). In the calculations the following experimental
values, as given in Sec. 4.3, were used: 𝑀 = 6 × 30999, 𝑤(𝑧), 𝑤0, and Δ𝑡. Non-
dilute and number fluctuation DLS-OCT methods show minimal dependence on 𝜃 as
these methods work for any angle. In contrast, the Doppler OCT sensitivity strongly

10−2 10−1 100 101 102 103

SNR

10−5

10−4

10−3

10−2

10−1

100

101

δ
v

0
[m

m
/
s]

a) θ = 0o

θ = 10o

θ = 0.1o
θ =

0 o
θ =

10 o
θ = 10o

Doppler OCT

Number fluctuation

DLS-OCT

Non-dilute DLS-OCT

Figure 4.2: Velocity sensitivities as a function of SNR and 𝜃 for Doppler OCT, non-dilute DLS-OCT, and
number fluctuation DLS-OCT.
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depends on the Doppler angle with large angles resulting in a large phase shift and
therefore a higher sensitivity (lower 𝛿𝑣0).

According to Eq. (4.4-4.6), the sensitivity of Doppler OCT is limited by SNR and
particle diffusion, with both factors being independent of each other. In Fig. 4.2
we see that the Doppler OCT sensitivity levels off at higher SNR values (SNR > 10)
as the diffusive limit is reached. At this stage it is no longer possible to improve
the velocity sensitivity by increasing the SNR. Equations (4.12,4.17-4.19) show that
non-dilute DLS-OCT is also limited by the same factors, but its diffusion limitation
is much more restrictive. This is clearly visible in Fig. 4.2 where the sensitivity of
this method is almost independent of SNR.

For the number fluctuation DLS-OCT the minimum measurable velocity follows
the same derivation as for DLS-OCT, only there is no dependence on diffusion in
Eq. (4.19). Figure 4.2 shows that its velocity sensitivity is only a function of SNR
and does not level off to a constant value as it does in a diffusion-limited scenario
like Doppler OCT or non-dilute DLS-OCT. For SNRs higher than 10 number fluctua-
tion DLS-OCT has a higher sensitivity than Doppler OCT even at relatively large 𝜃.
The amount of improvement is related to the Doppler angle due to dependence of
Doppler OCT sensitivity on 𝜃.

4.2.5. Number fluctuation particle concentration estimation
Number fluctuations in DLS-OCT also can be used to determine particle concen-
tration in a sample through the dependence of 𝑔2(𝑧, 𝜏) on ⟨𝑁⟩. For time delays
with negligible number fluctuation flow decorrelation, the normalized second-order
autocovariance function can be approximated as

𝑔2(𝑧, 𝜏 ≪ 𝜏𝑣0) ≈
23/2⟨𝑁⟩

23/2⟨𝑁⟩ + 1 |𝑔1(𝑧, 𝜏 ≪ 𝜏𝑣0)|
2 + 1

(1 + 1
SNR(𝑧))

2
1

23/2⟨𝑁⟩ + 1 , (4.26)

where the limiting time delay 𝜏𝑣0 is given by Eq. (4.10). From Eq. (4.26) we can
obtain the particle concentration by solving for ⟨𝑁⟩

⟨𝑁⟩ ≈

1

(1+ 1
SNR(𝑧) )

2 − 𝑔2(𝑧, 𝜏 ≪ 𝜏𝑣0)

23/2 [𝑔2(𝑧, 𝜏 ≪ 𝜏𝑣0) − |𝑔1(𝑧, 𝜏 ≪ 𝜏𝑣0)|
2]
, with (4.27)

1

(1 + 1
SNR(𝑧))

2 = |𝑔1(𝑧, 𝜏 = 0)|2 . (4.28)

Here 𝑔1(𝑧, 𝜏 = 0) is an extrapolation of the fit to the first-order normalized autoco-
variance function at 𝜏 = 0. Note that ⟨𝑁⟩ can be determined for any 𝜏 ≪ 𝜏𝑣0 , but
that for practical applications it is averaged over all relevant times. Alternatively,
⟨𝑁⟩ can also be calculated using

⟨𝑁⟩ = |𝑔1(𝑧, 𝜏 = 0)|2
23/2𝑔2(𝑧, 𝜏 = 0)⟨𝑁⟩

− 2−3/2 , (4.29)
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where 𝑔2(𝑧, 𝜏 = 0)⟨𝑁⟩ is the extrapolation of the fit to the number fluctuation term
(𝜏 ≫ 𝜏𝐷) of the second-order normalized autocovariance function at 𝜏 = 0.

4.3. Materials and Methods
4.3.1. OCT system
The experiments were performed using a Thorlabs GANYMEDE II HR series spectral
domain OCT System, which has been described in detail in our previous work [23].
The acquisition rate was 5.5 kHz. The same datasets and time series were used
both in number fluctuation DLS-OCT and Doppler OCT analyses. The OCT axial
resolution and axial decorrelation were determined using the wavenumber spectrum
standard deviation, 𝜎𝑘, of the measured reference spectrum. The acquired signal
spectrum was measured with a spectrometer with 2048 pixels. After acquisition, the
measured spectrum was first resampled to a linearly-sampled wavenumber domain
and then apodized using a Gaussian filter. After the apodization, the measured
coherence function waist in sample was 𝑤𝑧 = 2.11 µm. We have neglected the
effect of a gradient of the axial velocity on the autocovariance function for two
reasons [24]. First, the Doppler angles in this work are low (𝜃 < 2∘). Second, our
optical resolution is high both in axial and transverse directions. Hence, the flow
velocity within PSF can be assumed to be constant.

The OCT system is operated with a scan lens (LSM04-BB, Thorlabs) in a confocal
setup with a manufacturer provided focal spot size of 𝑤0 = 6 µm in air which was
validated by axial confocal response measurements, defined as the 𝑒−2 radius of
the intensity function. The measured values were around 𝑤0 = 5 − 6 µm. The NA
of the system was 0.05. Depending on the angle of incidence, refractive index con-
trast and Gaussian beam parameters, 𝑤0 and 𝑤(𝑧) vary somewhat because of the
passage of the beam through the interfaces [25]. Therefore, for each experiment,
𝑤(𝑧) was calibrated using the procedure described in Sec. 4.3.4. For minimizing the
number of particles within the scattering volume, ⟨𝑁⟩, the beam waist was placed
at the center of the flow channel in depth [8]. Since for the given OCT setup the
coherence length and the NA are very low, it can be assumed that the scattering an-
gle is 180∘ and the scattering wavenumber 𝑞 in the correlation analysis is constant
at 𝑞 = 2𝑛𝑘0.

Determination of the particle number density ⟨𝑁⟩ using Eq. (4.27- 4.29) requires
a-priori knowledge or an estimate of the system SNR. In this work we estimated the
SNR at every depth using a fit to the measured 𝑔1(𝑧, 𝜏), as described in Sec. 4.3.4.
If required, the depth-resolved SNR can be measured a-priori according to the
procedure described in [6]. We used this approach to verify the obtained SNR
values in the particle suspension that were around 3 − 30.

4.3.2. Flow system
The flow was generated using a syringe pump with variable discharge rate (Fusion
100, Chemyx, Inc.) and a 1 mL syringe (BD Plastipak). The flow passes through
a quartz rectangular flow cell with internal dimensions of 0.5 mm thickness and 10
mm width (type 45-F, Starna Scientific). Every experiment was performed using a
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0.005% volume fraction of dilute suspension of monodisperse polystyrene particles
in water. The particles were supplied by InProcess-LSP with an expected radius of
257 nm. Since the particle solution was extremely dilute, the refractive index and
viscosity of the sample as a function of wavelength were assumed to be identical
to water at room temperature and calculated using equations from [26, 27]. The
sample temperature was assumed to be 21∘C, corresponding to a water refractive
index of 𝑛 = 1.33. As a reference, velocity profiles for the set pump discharge rates
were calculated using the analytical solution for the Poiseuille flow in a rectangular
channel [28]

𝑣(𝑦, 𝑧) = 𝑄
75𝜋3ℎ𝑤(1 − 0.63 ℎ𝑤 )

∞

∑
𝑚=1,𝑚 odd

sin (𝑚𝜋𝑧ℎ )
𝑚3 [1 −

cosh (𝑚𝜋 𝑦ℎ)
cosh (𝑚𝜋 𝑤

2ℎ)
] , (4.30)

𝑣(𝑦 = 0, 𝑧) ≈ 𝑄
75𝜋3ℎ𝑤 (1 − 0.63 ℎ𝑤)

∞

∑
𝑚=1,𝑚 odd

sin (𝑚𝜋𝑧ℎ )
𝑚3 , (4.31)

where the velocity, in mm/s, is given as a function of depth 𝑧 and lateral position
𝑦, 𝑤 is the width of the flow cell in mm, ℎ is the flow cell thickness in mm (ℎ < 𝑤)
and 𝑄 is the pump discharge rate in µL/s. In the analytical solution, the maximum
velocities are observed at the half-width of the cell at 𝑦 = 0. Therefore, in 1D
measurements, the OCT beam focal plane was positioned as close as possible to this
location to ensure a maximum decorrelation. We performed 1D flow measurements
for discharges in the range of 0 − 3.33 µL/s at three different Doppler angles. The
corresponding expected flow velocities in the channel were in between 0−1 mm/s.
For 2D measurements only one Doppler angle was considered.

4.3.3. Doppler OCT flow measurements
Doppler OCT analysis was performed as follows: First, OCT spectra were acquired
with a time series length of 31000, resulting in an acquisition time of 5−6 seconds
and a sampling time of Δ𝑡 = 5500−1 s. This measurement was repeated 6 times,
resulting in 𝑀 = 6 × 30999 phase/intensity changes. For each time series a DC
component was calculated by averaging all spectra. Second, the interference spec-
tra were computed by subtracting the DC component from the acquired spectra.
Third, a complex depth-resolved OCT signal was obtained using the inverse Fourier
transformation of the interference spectra. Finally, axial velocities were determined
with Eq. (4.2) using a phase estimation through

Δ𝜙(𝑧) = ⟨ tan−1 [ Im(𝑎(𝑧, 𝑡) × 𝑎
∗(𝑧, 𝑡 + Δ𝑡))

Re(𝑎(𝑧, 𝑡) × 𝑎∗(𝑡, 𝑡 + Δ𝑡)) ]⟩𝑡
, (4.32)

where 𝑎(𝑧, 𝑡) and 𝑎(𝑧, 𝑡 + Δ𝑡) represent the complex OCT data at times 𝑡 and 𝑡 +
Δ𝑡, respectively. The ⟨.⟩𝑡 denotes the time averaging. All phase measurements
were used in the analysis. Total flow velocities were determined by dividing the
axial velocities with sin𝜃. The Doppler angle calibration procedure is described in
Sec. 4.3.4.
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4.3.4. Number fluctuation DLS-OCT flow measurements
In number fluctuation DLS-OCT the first three processing steps were the same as in
the Doppler OCT analysis from Sec. 4.3.3. However, instead of determining the OCT
phase, the magnitude of a complex OCT signal was calculated. Normalized temporal
fluctuations of the scattered signal magnitude from dilute and non-dilute samples
are shown in Fig. 4.3(a). The non-dilute OCT signal shows relatively small deviations
from the mean. In contrast, the number-fluctuation OCT signal shows much larger
signal variations, with a clear spike-like behavior due to particles moving in and out
of the focal area. With the non-dilute sample, complex field fluctuations due to
the Brownian motion of the particles follows Gaussian statistics. Hence, the field
magnitude fluctuations have a Rayleigh distribution as shown in Fig. 4.3(b). In the
dilute regime the OCT signal magnitude is directly proportional to the number of
particles where the number of particles in the scattering volume follows the Poisson
distribution [7, 8]. Therefore, it is expected that the magnitude fluctuations due to
number fluctuations are also Poisson distributed, as shown in Fig. 4.3(b).

After determining field magnitude fluctuations for each acquisition, a normal-
ized second-order autocovariance of the mean-subtracted signal magnitude was
calculated at every depth. The autocovariance functions were averaged for all 6
acquisitions. Finally, Eq. (4.33) was fitted to the averaged autocovariance functions
with

𝑔2(𝑧, 𝜏 > 𝜏𝑁) = 𝐴(𝑧)𝑒
− 𝑣

20(𝑧) sin
2 𝜃𝜏2

𝑤2𝑧 𝑒−
2𝑣20(𝑧) cos2 𝜃𝜏2

𝑤2(𝑧) , (4.33)
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Figure 4.3: (a-b) Time trace and distribution of the OCT signal magnitude from non-dilute (0.5%) and
dilute (0.005%) samples at 𝑄 = 1 µL/s and 𝜃 = 0.34∘. (c) Measured and fitted 𝑔2(𝑧, 𝜏) for non-dilute
and dilute samples at different flow rates and 𝜃 = 0.34∘. (d) Measured and fitted beam waist at different
Doppler angles.
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where the choice of free parameters depended on whether calibration or flow mea-
surements were performed. In our fitting procedure only the number fluctuation
term was fitted. To ensure that the diffusive term in the measured autocovariance
had decayed sufficiently, only 𝑔2(𝑧, 𝜏 > 𝜏𝑁) was considered, where 𝜏𝑁 was the
time delay with 𝑔2(𝑧, 𝜏 > 𝜏𝑁) > 10 ⋅ |𝑔1(𝑧, 𝜏 > 𝜏𝑁)|2. Examples of the measured
and fitted second-order autocovariance functions from the dilute sample at differ-
ent discharge rates are shown in Fig. 4.3(c). For comparison, a diffusion-dominated
𝑔2(𝑧, 𝜏) from the same, but more concentrated, sample is also shown. In non-dilute
DLS-OCT 𝑔2(𝑧, 𝜏) decays exponentially (linearly on a logarithmic scale) at low flow
speeds. In number fluctuation DLS-OCT the decay is much slower and quadratic on
a logarithmic scale, where the effect of a particle diffusion is visible for the Gaussian
term at very small time delays with 𝜏 < 𝜏𝑁. As Fig. 4.3(c) shows, the fit models
match very well with the number fluctuation term of the normalized autocovariance
functions at different flow rates.

To perform quantitative number fluctuation measurements, the beam waist 𝑤(𝑧)
and the Doppler angle 𝜃 were determined in a two-step procedure. During the first
step, a beam waist calibration was performed, as described in [23]. The beam was
moved with a-priori known velocity over a stationary sample while the spectra were
acquired. The local beam waist 𝑤(𝑧) was determined using a fit of Eq. (4.33) to
the measured 𝑔2(𝑧, 𝜏 > 𝜏𝑁) with 𝐴(𝑧) and 𝑤(𝑧) being the free parameters. The
obtained beam profiles for different Doppler angles are shown in Fig. 4.3(d). Here

the beam shapes were fitted using 𝑤(𝑧) = 𝑤0√1 + ((𝑧 − 𝑧0)/𝑧𝑅)
2, with 𝑤0, 𝑧0, and

𝑧𝑅 being the free parameters. The fitted beam waist values are given in table 4.1.
In the second step, the Doppler angle was determined. For this purpose any flow

measurement with a sufficient Doppler signal could be used. Here 𝑣𝑧(𝑧) was deter-
mined using the phase-resolved Doppler analysis from Sec. 4.3.3. Then Eq. (4.33)
was fitted to the measured 𝑔2(𝑧, 𝜏 > 𝜏𝑁), incorporating the known 𝑤(𝑧) and 𝑣𝑧(𝑧)
while using 𝐴(𝑧) and 𝑣𝑡(𝑧) as free parameters. The depth-averaged angle was
then determined using 𝜃 = ⟨arctan (𝑣𝑧(𝑧)/𝑣𝑡(𝑧))⟩𝑧. The obtained Doppler angles
are given in table 4.1. After these two calibration steps, flow measurements could
be performed for the given geometry at any discharge rate. For each flow rate
Eq. (4.33) was fitted to the measured 𝑔2(𝑧, 𝜏 > 𝜏𝑁) using 𝐴(𝑧) and 𝑣0(𝑧) as the
only fit parameters.

The number of particles in the scattering volume was obtained without any a-
priori calibration or SNR measurements. Particle number density under flow was
determined at the discharge rates of 1/12 and 1/6 µL/s using Eq. (4.29), incor-

Mode 𝜃 [∘] 𝑎 [nm] 𝑤0 [µm]
1D 0.34 ± 0.01 233 ± 8 7.45 ± 0.03
1D 1.00 ± 0.05 247 ± 11 7.39 ± 0.03
1D 1.74 ± 0.02 246 ± 11 7.37 ± 0.05
2D 1.84 ± 0.08 NA 7.79 ± 0.07

Table 4.1: Measured Doppler angle, particle radius, and beam waist for the four experimental conditions.
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porating the fitted and extrapolated values 𝑔2(𝑧, 𝜏 = 0)⟨𝑁⟩ and 𝑔1(𝑧, 𝜏 = 0). The
number fluctuation term of 𝑔2(𝑧, 𝜏) was fitted using Eq. (4.33), and 𝑔1(𝑧, 𝜏) was
fitted using Eq. (4.34)

|𝑔1(𝑧, 𝜏)| =
1

1 + 1
SNR(𝑧)

𝑒−𝐷𝑞2𝜏 , (4.34)

with SNR(𝑧) and 𝐷 being the free parameters. Here we have neglected the contri-
bution from the flow decorrelation, because 𝑔1(𝑧, 𝜏) is diffusion-dominated at these
flow rates and independent of number fluctuations. As a reference, the particle
diffusion coefficient 𝐷 was determined from the fit of Eq. (4.34) to the measured
𝑔1(𝑧, 𝜏) from the stationary fluid at all Doppler angles. The diffusion coefficient is
irrelevant for flow or number density measurements with the number fluctuation
term of 𝑔2(𝑧, 𝜏). However, it is required for determining the particle size which is
used for calculating the theoretical ⟨𝑁⟩ from a known particles’ volume fraction.
Particle radii determined using the Stokes-Einstein relation are given in table 4.1
and match the particle radius of 257 nm from the provider reasonable well.

2D flow measurements with number fluctuation DLS-OCT were performed by
lateral scanning of the OCT beam along the flow cell, perpendicular to the flow
direction. Even though the channel width was 10 mm, only 2 mm was imaged
due to sampling limitations and the presence of aberrations. For resolving the
transverse flow profile the scanning location was chosen near the flow cell edge.
For 2D measurements 2000 consecutive B-scans were acquired with 100 lateral
points in each scan, resulting in the total acquisition time of 44 s. Data processing
steps were the same as before. However, instead of correlating the field magnitude
fluctuations at a single position, the temporal autocovariance at each location in
the B-scan was performed. This reduced the effective sampling rate from 5.5 kHz
to approximately 45 Hz at each location in the 2D measurement. This sampling
rate was still sufficiently fast to determine the flow from the number fluctuation
autocovariance and enabled the implementation of number fluctuation flow imaging
in conventional B-scan mode.

4.4. Experimental results
Three sets of 1D measurements were performed at the center of the flow cell for 𝜃
values of 0.34∘, 1.00∘ and 1.74∘. For each angle, the pump discharge rate was varied
from 1/12 to 10/3 µL/s. Figure 4.4 shows velocity profiles obtained with number
fluctuation DLS-OCT (top row) and phase-resolved Doppler OCT (bottom row). The
parabolic curves represent the expected velocity profiles according to Eq. (4.31),
the flow channel dimensions and the discharge rate. To quantitatively compare both
methods, all measured velocities at a fixed angle are plotted against the expected
velocities in Fig. 4.5, where the black curves corresponds to the expected values.

Figures 4.4(a,d) and 4.5(a) show number fluctuation DLS-OCT and Doppler OCT
flow measurements for 𝜃 = 0.34∘. The Doppler OCT sensitivity is very low, making
it impossible to accurately measure flow velocities for these low axial speeds. This
is clearly indicated by the spread of measurements in Fig. 4.5(a). The number
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fluctuation DLS-OCT method, on the other hand, can accurately determine flow
velocities for all considered flow speeds.

Figures 4.4(b,e) and 4.5(b) show the same measurements for 𝜃 = 1.00∘. In this
case, the Doppler OCT sensitivity is higher but still insufficient to fully resolve the
flow for the different discharge rates. The spread of measurements in Fig. 4.5(b)
is therefore also lower compared to Fig. 4.5(a). The accuracy of the number fluctu-
ation DLS-OCT method is unchanged. This is indicated by accurate reconstruction
of flow profiles in Fig. 4.4(b) and low spread of measurements in Fig. 4.5(b).

Figures 4.4(c,f) and 4.5(c) show the flow measurements for 𝜃 = 1.74∘. In this
case the sensitivity of Doppler OCT is much better due to the larger axial flow
component. Performance is comparable to number fluctuation DLS-OCT for higher
discharge rates, but very low velocities are still poorly resolved. For low flow veloci-
ties, number fluctuation DLS-OCT technique has a superior performance compared
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to Doppler OCT and also can work for zero Doppler angle.
The sensitivity of Doppler OCT strongly depends on the Doppler angle, and the

minimum measurable velocity decreases with increasing 𝜃. For number fluctuation
DLS-OCT, the sensitivity is independent of the Doppler angle, which is in agreement
with our expectations from Sec. 4.2.1 and 4.2.3. Number fluctuation DLS-OCT can
accurately determine flow velocities for all considered flow speeds whereas the flow
profiles cannot be accurately measured using non-dilute DLS-OCT, as the profile
velocities are well below the limit set by diffusion, which is approximately 3.3 mm/s
for our experimental setup and used Doppler angles.

In figure 4.6 we compare the measured accuracy with the expected velocity
sensitivities according to the theory outlined in Sec. 4.2.1-4.2.3. The maximum ve-
locity (at the center of the profile) was calculated for each discharge rate according
to Eq. (4.31) and plotted on the 𝑥-axis. For each discharge, the velocity uncertainty
was estimated by calculating the velocity profile standard deviation with respect to
the best fit parabolic curve. For direct comparisons with the theoretical minimum
measurable velocities, an SNR range of 3–30 was used as determined from the
measurement data. Fig. 4.6(a) shows that for Doppler OCT, the obtained abso-
lute axial velocity sensitivity is independent of Doppler angle and maximum profile
velocity (discharge rate), and the minimum measurable axial velocities are slightly
higher than expected. Invariance of the axial velocity sensitivity with respect to
the discharge rate is expected, since it is independent of the Doppler phase shift
magnitude. In Fig. 4.6(b) we see that the velocity sensitivity for number fluctuation
DLS-OCT is independent of 𝜃 but changes with increasing maximum profile veloc-
ity. At low flow rates, corresponding to long decorrelation times, the measured
sensitivities have the same order of magnitude as the theoretical ones for inten-
sity fluctuations. However, the deviation increases at higher velocities when the
number of relevant fit points becomes lower and fit errors increase. Figure 4.6(c)
shows the estimation of the total velocity. Clearly, number fluctuation DLS-OCT is
more accurate for low flow rates as would be expected from the calculated flow
sensitivity advantage for constant SNR as shown in Fig. 4.2. In addition, the flow
estimate does not depend on Doppler angle. This makes it easier to quantify the
total flow, which is the relevant parameter.
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expected total velocity sensitivities for number fluctuation DLS-OCT, and (c) measured total velocity
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The number of particles in the scattering volume, ⟨𝑁⟩, was obtained using
Eq. (4.29) for the lowest two discharge rates, 1/12 and 1/6 µL/s, respectively.
The expected number of particles was calculated using Eq. (4.24) incorporating the
particle radius from Table 4.1 and other optical/sample properties. Figure 4.7 shows
that the obtained number of particles in the focal area, ⟨𝑁⟩, matches well with the
expected distribution at positions close to beam waist. Deviations increase towards
the flow cell edges where the SNR is lower and the local beam waist is larger. There
is no explicit dependence on the Doppler angle and the average number of particles
within the scattering volume is much lower than 1. As expected, ⟨𝑁⟩ is minimum
near the beam waist and is higher away from focus. Almost identical results are
obtained when measuring SNR a-priori or when Eq. (4.27-4.28) are used. The mea-
sured number of particles per scattering volume can easily be converted to volume
fraction using the particle size and scattering volume. Values of ⟨𝑁⟩ from the cen-
tral portions of Fig. 4.7 with a higher SNR correspond to particle volume fractions
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Figure 4.7: Depth-resolved number of particles in the scattering volume for (a) 𝜃 = 0.34∘, (b) 𝜃 = 1.00∘,
and (c) 𝜃 = 1.74∘.
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Figure 4.8: Measured (a) and expected (b) 2D velocity profiles for 𝑄 = 1/12 µL/s. Measured (c) and
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0.004 − 0.007%. This is in good agreement with the expected volume fraction of
0.005%.

2D flow measurements were performed at the flow cell edge for 𝜃 = 1.84∘
and the pump discharge rates of 1/12 and 1/6 µL/s. Figure 4.8 shows transverse
and axial velocity profiles obtained using number fluctuation DLS-OCT (left column)
and expected flow profiles according to Eq. (4.30) (right column). The obtained
velocity distributions are in good agreement with the expected values and both the
transverse and the axial flow profiles are clearly visible. The transverse flow profile
is uniform except very close to the flow cell edge at distances less than 0.4 mm,
whereas the axial velocity profile has a much larger degree of variation. Due to the
limitations imposed by particle diffusion, flow profiles for such low flow velocities
can be obtained neither by Doppler OCT nor by non-dilute DLS-OCT.

4.5. Discussion
Our results show that number fluctuation DLS-OCT can significantly improve the
velocity sensitivity compared to current Doppler OCT flow measurements. While
phase-resolved Doppler OCT and non-dilute DLS-OCT are ultimately limited by par-
ticle diffusion, our method allows sub-diffusion flow velocity measurements with
a sensitivity only limited by the SNR. Moreover, our method works for arbitrary
Doppler angle and has a clear advantage in situations where the number density
of scattering particles in the sample is very low while sufficient light is scattered.
The advantage of number fluctuation DLS-OCT decreases with increasing Doppler
angles. As Fig. 4.2 shows, Doppler OCT can be more sensitive at high 𝜃 values.
The exact crossover point depends on system parameters and resolution. How-
ever, sufficiently increasing the Doppler angle is difficult due to several reasons:
First, with larger 𝜃, beam refraction effects and a sensitivity loss in depth become
more pronounced. Second, higher flow speeds can cause phase wrapping and dis-
tortion [10], leading to incorrect phase estimation. Third, in certain applications 𝜃
may be limited to small angles due to geometric constraints, for example in medical
and ophthalmic imagining. Therefore, it is preferable to use low Doppler angles at
which our method has a superior performance than Doppler OCT. The low angle also
allows to neglect gradient effects on the normalized autocovariance function [24].

In very dilute samples the number of scattering particles is very low. However,
due to bulk flow, scatterers always move from one OCT voxel to another, which has
a temporal averaging effect over the whole acquisition period. So, even though the
average number of scatterers per voxel is around 0.1− 0.2, there is still a sufficient
scattered signal from each voxel for capturing number fluctuations. In fact, with
our OCT system we could measure even more dilute samples. Yet, going to lower
concentrations reduces SNR and makes OCT flow measurements more difficult. To
estimate phase changes accurately with Doppler OCT at low flow speeds and low
𝜃, we averaged over long acquisition times. Relatively large time traces are also
needed to reduce the statistical bias [19] of 𝑔2(𝑧, 𝜏) in number fluctuation DLS-
OCT when dealing with slow flows. In this work, the measurement time series
length was chosen based on an accurate flow estimation for the lowest considered
discharge rate. However, the time series length could in principle be reduced for



4

92
4. Sub-diffusion flow velocimetry with number fluctuation optical

coherence tomography

faster flows allowing for faster 1D and 2D imaging. We have also noticed that
acquiring several time traces for averaging was more critical for Doppler OCT than
for number fluctuation DLS-OCT.

The flow profiles obtained for Doppler and number fluctuation DLS-OCT meth-
ods match well with the expected flow velocities. Uncertainties in the flow can be
attributed to the beam waist calibration, beam offset from the center of the flow
channel and the pump stability [23], which have an effect especially at very low
discharge rates. As Fig. 4.6 shows, the sensitivity of Doppler OCT for varying ve-
locity is constant, implying that systematic errors are minimal and do not increase
with increasing flow rates. Small deviations from the expected sensitivity range
could be caused by a fact that the system is not shot-noise limited or the phase
stability is less than ideal. In contrast to our derived model, the velocity uncer-
tainties in number fluctuation DLS-OCT increase as a function of flow (discharge)
rate, indicating that the method accuracy drops for larger velocities. The theoret-
ical framework for SNR-based sensitivity analysis of number fluctuation DLS-OCT
given in Sec. 4.2.3 is based on the minimum measurable relative intensity change
when particles move during a single time step and assuming a factor √𝑀 over 𝑀
measurements. It does not take into account additional factors introduced when
computing the normalized autocovariance of intensity fluctuations, such as the sta-
tistical or the fit model bias due to a limited number of time series points. As the
flow speed increases, the autocovariance decay becomes more rapid and there are
fewer sampling points available for fitting. In addition, with increasing flow ve-
locity the difference in decay rates between the Gaussian and number fluctuation
terms in 𝑔2(𝑧, 𝜏) decreases, making extraction of the number fluctuation term more
difficult. Our theoretical model gives an estimation of the order of magnitude of
the minimum measurable velocity. It can be further extended by including the
above-mentioned factors for more accurate flow measurement sensitivity analysis.
For best performance, number fluctuation DLS-OCT should be implemented in the
diffusion-dominated regime for very low flow rates with

𝑣0√
sin2 𝜃
𝑤2𝑧

+ 2 cos
2 𝜃

𝑤20
≪ 2𝐷𝑞2 . (4.35)

In contrast, for faster flows where

𝑣0√
sin2 𝜃
𝑤2𝑧

+ 2 cos
2 𝜃

𝑤20
≫ 2𝐷𝑞2 , (4.36)

non-dilute DLS-OCT or even scanning DLS-OCT [23] are more suitable methods.
With intermediate flow regimes where

𝑣0√
sin2 𝜃
𝑤2𝑧

+ 2 cos
2 𝜃

𝑤20
∼ 2𝐷𝑞2 , (4.37)

both techniques can be combined for improved accuracy.
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Number fluctuation DLS-OCT can be utilized for simultaneous 2D velocimetry
of sub-diffusion flows using scanning OCT systems. This is impossible for Doppler
OCT or non-dilute DLS-OCT due to particle diffusion and sampling limitations. Even
though the sampling frequency of adjacent B-scans is significantly reduced com-
pared to single point measurements, it is still sufficient for resolving sub-diffusion
flows since the number fluctuation decorrelation is very slow. This shows the fea-
sibility of this technique for volumetric flow imaging even with limited acquisition
rates. In contrast, it is impossible to measure 2D flow profiles with so low sampling
speed at any flow velocity using Doppler OCT or non-dilute DLS-OCT. In this case
the low-speed flows are dominated by diffusion, and much higher sampling rates
are required for measuring faster flows.

Reliability of number fluctuation DLS-OCT increases with the increasing relative
weight of the number fluctuation term in Eq. (4.21). The relative weight of this term
can be increased by decreasing the particle density in the sample and/or increasing
the particle radius. For a fixed particle volume fraction, increasing particle size leads
to fewer particles in the scattering volume, ⟨𝑁⟩, but increases scattered light power
(higher SNR) per particle due to the scaling of the Mie/Rayleigh scattered intensity
(𝐼𝑠 ∼ 𝑎6). The latter effect is more dominant, resulting in higher total scattered
power and a larger contribution of the number fluctuation term to the normalized
autocovariance function. However, a larger particle size leads to slower diffusive
decorrelation. As a result the Gaussian and number fluctuation terms can have
similar decorrelation ranges for the same flow speed.

Applications of number fluctuation DLS-OCT are not limited to extremely dilute
samples. Our method can also be used to measure low-speed flows of typical phar-
maceutical, biological or rheological suspensions that are imaged with OCT. Here
we foresee two possible implementations: First, a non-dilute sample can be seeded
with a small number of relatively large and highly scattering particles, ensuring low
⟨𝑁⟩ but sufficient measurement SNR. In this way the number fluctuation term can
be measured without changing the OCT system. The second option is to improve
the number fluctuation term contrast optically by increasing the numerical aper-
ture (NA) and reducing the scattering volume. In this case the original, unseeded
sample can be used but a higher resolution OCT system is required. Note that an
increase in optical resolution comes at the expense of a decrease in the effective
axial working range.

Number fluctuation DLS-OCT can be used to determine the average number
of scatterers in the scattering volume, ⟨𝑁⟩, which is directly related to the particle
concentration. This can be performed without any a-priori measurements. In this
case a high axial resolution is preferable for maximizing ⟨𝑁⟩−1 and therefore the
importance of the number fluctuation term. We expect that for a digitized OCT
signal, Eq. (4.24) is only valid if the coherence waist and the axial pixel pitch are
small compared to the length scales at which the local beam waist varies signifi-
cantly. When using Eq. (4.27) for estimating ⟨𝑁⟩, the flow decay in the measured
𝑔1(𝑧, 𝜏) and 𝑔2(𝑧, 𝜏) must be negligible (𝜏 ≪ 𝜏𝑣0). Equation (4.29), on the other
hand, is independent of the flow decay time and therefore easier to implement for
determining ⟨𝑁⟩, but requires additional extrapolation of the data.
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4.6. Conclusion
We have implemented number fluctuation DLS-OCT for measuring sub-diffusion,
low-speed flows in dilute particle suspensions using the second-order autocovari-
ance function. Our method extends the minimum measurable velocity limit com-
pared to the standard non-dilute DLS-OCT or Doppler OCT techniques and com-
pletely removes the limitation on the minimum measurable flow due to diffusive
motion of the particles. We have shown that our method is independent of the
Doppler angle, is applicable to 2D flow velocimetry in a scanning OCT setup, and
can be used to determine particle concentration in flowing dilute suspensions.

Data availability
Data underlying the results presented in this paper and the relevant analysis rou-
tines are available at [29].
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5
Multi-modal optical

coherence tomography
flowmetry of organ-on-chip

devices

Organ-on-chip (OoC) systems are microfluidic devices for maintaining live tis-
sue under physiologically relevant (flow) conditions. Imaging of structure and
flow is important for the characterization of OoC device design and visualiz-
ing tissue/fluid interaction. Here, we present 3D tissue and flow imaging
in an OoC device with multi-modal optical coherence tomography (OCT) us-
ing a combination of OCT structural imaging and flow imaging with Doppler
OCT, number fluctuation dynamic light scattering OCT, and particle image
velocimetry OCT. We demonstrate the feasibility of combined imaging of OoC
tissue culture morphology and high flow velocities. We also measure low ve-
locities in the OoC tissue well, showing good agreement with computational
fluid dynamics simulations. Our results open up the way for studying the
effect of flow on living tissue in OoC devices.

This chapter has been submitted for publication as: Devrim Tugberk†, Konstantine Cheishvili†, Peter
Speets, William Quirós-Solano, Anish Ballal, Nikolas Gaio, and Jeroen Kalkman, Multi-modal optical
coherence tomography flowmetry of organ-on-chip devices.
†These authors contributed equally to this work.
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5.1. Introduction
Organ-on-chip (OoC) systems are microfluidic devices that biomimic the in vivo mi-
cro environment with embedded living tissues for personalizing medicine [1] and
improving drug development trajectories [2]. These systems need to be biocompat-
ible, mechanically stable, and with flow commensurable to the physiological micro
environment.

Structural information of OoC geometry is important for the optimal design of the
flow cell. Also, structural information about the tissue morphology is important to
study its development over time. For example, measuring the tissue formation rate,
morphology, and its reaction to drugs are important parameters in OoC research.
This information is often obtained through imaging.

In addition to structural information, flow information is important for two as-
pects of the OoC. First, characterizing the OoC flow speed distribution is needed to
guide the design of the OoC device to make it operate under the right physiological
conditions. For example, the tissue well has to have a sufficiently high refresh rate
to supply the tissue with enough nutrients. Also, the flow rates need to be physi-
ological realistic such that drug distribution and cell interactions are similar to that
in humans, something that is of key importance for drug testing and development.
Second, with the implementation of biological tissue it is crucial to visualize flow-
tissue interaction, for example, for quantifying realistic dynamic flows or measuring
the shear rate at the tissue-fluid interface and its impact on the development of
epithelial cells.

Therefore, 3D monitoring of all components of the OoC device, such as cells,
tissue, fluid flow, and microfluidic geometry, is of paramount importance for ob-
taining information on OoC functioning. However, there are few technologies that
combine the wanted combination of 3D structural imaging (sample geometry and
tissue morphology) with functional imaging (fluid flow and tissue perfusion).

Structural imaging has been performed with techniques such as brightfield mi-
croscopy, quantitative phase imaging, and fluorescence microscopy [3] that mainly
collect 2D structural information. A number of 3D imaging techniques have been
applied such as confocal fluorescence microscopy, selective plane illumination mi-
croscopy. However, fluorescence microscopy requires tissue labeling whereas se-
lective plane illumination microscopy needs access to the sample from all directions,
something that is cumbersome for the planar geometry of OoC devices.

Flow imaging has been done with brightfield microscopy combined with spatio-
temporal image correlation spectroscopy and has shown good flow results in 2D [4]
and was implemented in 3D with selective plane illumination microscopy [5]. How-
ever its implementation is rather cumbersome given the planar geometry of OoC
devices. Quantitative flow imaging has been performed with particle image ve-
locimetry (PIV), which is based on tracking fluorescent beads in a flow. Using
imaging from multiple directions the 3D velocity can be obtained [6]. However,
PIV needs complicated equipment, a darkened measurement environment, and
can only be performed in optically clear media. Moreover, it does not provide the
corresponding structural information.

Optical coherence tomography (OCT) is very well suited for the combined 3D
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structural and flow imaging of OoC devices. OCT is fast, label-free, and images non-
invasively using a large working distance. OCT has been widely applied to image
microfluidic systems since it is ideally suited with its imaging depth of up to 2 mm
and axial resolution of a few micrometers. For OoC devices, OCT has been used
for studying the lumen development in airways-on-chip [7], thrombus formation in
vessel-on-chip [8], biofilm growth [9], and bacterial colonization [10]. OCT also
has been applied to image in vitro organoid development over time [11, 12]. The
high temporal resolution of OCT gives the ability of label-free high-contrast tissue
imaging using speckle variance [8]. Moreover, OCT is a versatile imaging tool that
can be used to measure tissue properties such as biological activity [11], cellular
reorganisation [12] and tissue mechanics [13].

For OCT flow imaging, Doppler OCT is the most common approach due to its
ease of implementation and sensitivity for high flow speeds. However, Doppler OCT
can only measure the axial flow component and the smallest measured flow speed
is limited by the random signal from the Brownian motion [14]. Particle image ve-
locimetry OCT (PIV-OCT) has been used for measuring both axial and transverse
flow components in subsequent B-scans [15, 16]. Although OCT-PIV can measure
extremely small flows that are in arbitrary directions, it has lower spatial resolution,
is computationally intensive, and requires cumbersome fine tuning of correlation
windows to the target flow velocity components. Dynamic light scattering OCT
(DLS-OCT) can measure both axial and lateral flow components [17] but, similar
to Doppler OCT, cannot measure small flow speeds as the Brownian motion causes
random signal fluctuations. This problem has been addressed with number fluctu-
ation DLS-OCT [18] where the signal fluctuations are caused by individual particles
moving in and out of the focus, and the number fluctuation part of the correlation
function is not dependent on particle diffusion. Consequently, number fluctuation
DLS-OCT allows for the measurement of extremely low total flow speeds down to
around 50 µm/s. The different flow speeds, spatial resolution, and requirement for
assessing the flow direction necessitate the combined efforts of various OCT flow
measurement techniques.

In this work we demonstrate the versatility of OCT in measuring with multiple
OCT operation modes the OoC geometry, tissue structure, and different flow speeds
and directions. We do this by performing conventional OCT structural imaging
and flow measurements with Doppler OCT, number fluctuation DLS-OCT, and PIV-
OCT. The flow speed and velocity and speed in the OoC device well shows good
agreement with computational fluid-dynamic simulations.

5.2. Methods
5.2.1. OCT structural imaging
The experiments for this research were conducted using a Thorlabs GANYMEDE II
HR series spectral-domain OCT system [14]. The system bandwidth is centred at
900 nm and has an axial resolution of 3 µm in air. The OCT system is operated with
an NA = 0.05 scan lens (LSM04-BB, Thorlabs). The beam waist 𝑤0 = 6µm in air,
defined as the e−1 radius of the Gaussian field profile. The OCT system was used
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for structural imaging in B-scan mode.
For flow measurements, the OCT system was used in Doppler mode for high

flow velocities, such as in the OoC supply channels, and in number fluctuation DLS-
OCT mode for low flow velocities in the OoC well. For number-fluctuations and PIV
we used 5.5 kHz A-scan rate, for Doppler mode imaging we used 36 kHz A-scan
rate.

5.2.2. OCT flow measurements
The flow geometry was arranged so that the OCT beam was perpendicular to the
microfluidic channel surface. Two-dimensional flow measurements were carried
out by laterally scanning the OCT beam (B-scan) along the width or length of the
microfluidic channel. The scan length was configured to be 3.1 mm, encompassing
200 lateral pixels, while the number of axial pixels was 1024. A sequence of 2000
consecutive B-scans was obtained with a sampling time step of Δ𝑡 = 40 ms. The
pixel sizes in the lateral and axial directions, denoted as Δ𝑥 and Δ𝑧, were 15.6 and
1.8 µm, respectively. Here, 𝑧 corresponds to the optical depth and not the physical
depth.

DLS-OCT total velocity measurements
The total flow velocity was determined using number-fluctuation DLS-OCT [18, 19].
The second-order normalized autocovariance function was computed from the OCT
signal intensity time series as a function of lateral, 𝑥, and axial position, 𝑧. Due to a
relatively large sampling time, diffusive decay could not be detected, and only the
number-fluctuation term was obtained. The number-fluctuation intensity autoco-
variance function is

𝑔2(𝑥, 𝑧, 𝜏) =
(𝜅(𝑥, 𝑧) − 1) 𝑒−

𝑣0(𝑥,𝑧)2 sin2 𝜃(𝑥,𝑧)𝜏2
𝑤2𝑧 𝑒−

2𝑣0(𝑥,𝑧)2 cos2 𝜃(𝑥,𝑧)𝜏2
𝑤𝑟(𝑧)2

(𝜅(𝑥, 𝑧) − 2 + (1 + 1
SNR(𝑥,𝑧))

2
)(23/2𝑁(𝑥, 𝑧) + 1)

, (5.1)

where 𝑣0(𝑥, 𝑧) is the total velocity, SNR(𝑥, 𝑧) is the signal-to-noise ratio, 𝑁(𝑥, 𝑧)
is the average number of particles within the scattering volume, 𝑤𝑟(𝑧) is the lo-
cal Gaussian beam waist, 𝑤𝑧 is the coherence function waist, 𝜃(𝑥, 𝑧) denotes the
Doppler angle (90∘−𝜃 is the angle between the velocity vector and the optical axis),
and 𝜅(𝑥, 𝑧) is the kurtosis of the noise-subtracted complex field distribution [19]. As
seen in Eq. (5.1), a fit of the autocovariance function could not distinguish between
variations in velocity 𝑣0 and variations in angle 𝜃. To eliminate the dependence of
the autocorrelation function on the Doppler angle 𝜃, the Gaussian spectral apodiza-
tion window width, 𝜎𝑘, was varied to equalize the lateral and axial flow decay rates
at every axial voxel, such that √2𝑤𝑧 = 𝑤𝑟(𝑧). Consequently, the measured intensity
autocorrelation functions were fitted using

𝑔2(𝑥, 𝑧, 𝜏) = 𝐴(𝑥, 𝑧)𝑒
−𝑣0(𝑥,𝑧)2𝜏2(

sin2 𝜃
𝑤𝑧(𝑧)2

+ 2 cos
2 𝜃

𝑤𝑟(𝑧)2
)
= 𝐴(𝑥, 𝑧)𝑒−

2𝑣0(𝑥,𝑧)2𝜏2
𝑤𝑟(𝑧)2 , (5.2)
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Figure 5.1: Measured and fitted Gaussian beam width as a function of depth, along with the matched
coherence length and spectral apodization window.

where 𝐴(𝑥, 𝑧) is the amplitude factor for the intensity autocorrelation function incor-
porating all the pre-terms in Eq. (5.1). In this case, the fit parameters are 𝐴(𝑥, 𝑧)
and 𝑣0(𝑥, 𝑧).

For every axial voxel, a spectral apodization window width 𝜎𝑘(𝑧) was imple-
mented such that (𝜎𝑘(𝑧)𝑛𝑘)

−1 = √2𝑤𝑧(𝑧) = 𝑤𝑟(𝑧). The refractive index 𝑛𝑘 = 1.33
of water was used since the aqueous particle suspension was very dilute. The effect
of dispersion on the coherence length was neglected. The Gaussian beam shape,
𝑤𝑟(𝑧), was calibrated by scanning the beam over the stationary particle suspen-
sion, following the procedures described in Refs. [18, 19]. The local beam waist,
the matched coherence waist, and the spectral apodization window width are shown
in Fig. 5.1. The beam shape 𝑤𝑟(𝑧) was fitted using 𝑤𝑟(𝑧) = 𝑤0√1 + (𝑧 − 𝑧0)2/𝑧2𝑅.
The measured beam shape from Fig. 5.1 is a good match with the Gaussian fit.

PIV-OCT directional velocity measurements
In-plane velocity vectors were determined by implementing PIV-OCT. Laterally and
axially resolved OCT B-scan intensity images were divided into smaller windows,
𝐼(𝜖, 𝜂, 𝑡), each containing 4 lateral and 32 axial pixels covering a square area of
62 µm×44 µm. For each window, the time-dependent normalized unbiased 2D
cross-covariance matrix was computed for every image pair using

𝜌(𝑚, 𝑛, 𝑡) =
⟨(𝐼(𝜖, 𝜂, 𝑡) − 𝐼𝜖,𝜂(𝑡)) (𝐼(𝜖 + 𝑚, 𝜂 + 𝑛, 𝑡 + 𝑁Δ𝑡) − 𝐼𝜖,𝜂(𝑡 + 𝑁Δ𝑡))⟩

𝜖,𝜂
𝜎𝜖,𝜂(𝑡)𝜎𝜖,𝜂(𝑡 + 𝑁Δ𝑡) (4 − |𝑚|) (32 − |𝑛|)

,
(5.3)

where 𝜖, 𝜂 are lateral and axial pixel numbers within the window reference frame,
𝜎𝜖,𝜂 is the standard deviation over a window, 𝑚 and 𝑛 represent the relative pixel
shifts in the corresponding directions, and 𝑁 is the number of B-scans by which
two frames are temporally separated. The obtained correlation coefficients were
temporally averaged, resulting in the mean 2D cross-correlation coefficient 𝜌𝑡(𝑚, 𝑛).
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For each window, the lateral velocity 𝑣𝑥 was computed by finding the lateral
index of the maximum of 𝜌𝑡(𝑚, 𝑛), denoted as 𝑚max, while the axial velocity was
determined by the axial index of the maximum, denoted as 𝑛max. The lateral and
axial velocities were then determined using

𝑣𝑥 =
𝑚maxΔ𝑥
𝑁Δ𝑡 and 𝑣𝑧 =

𝑛maxΔ𝑧
𝑛𝑘𝑁Δ𝑡

. (5.4)

In our analysis, we used 𝑁 = 5 for calculating 𝑣𝑧 and 𝑁 = 20 for calculating 𝑣𝑥,
except at the channel center, where we used 𝑁 = 15 for calculating both velocity
components. The minimum sampling time between two images is 202 ms when
𝑁 = 5. This is significantly larger than the time required for acquiring the intensity
image of one window, which is approximately 0.7 ms. Therefore, particle motion
within this time window was neglected.

5.2.3. Doppler OCT measurements
Doppler OCT measurements were performed on the main device channels where
the flow was high. The pump discharge rate was set to 25 µl/min for all conditions.
We measured the flow with Doppler-OCT in the main flow channel using Intralipid
as tracer particles in two different OoCs. Doppler-OCT flow measurements were
implemented using the phase-resolved method as described in [14].

5.2.4. Organ-on-chip samples
Flow measurements were performed on inCHIPit™ OoC devices (inCHIPit™–1C,
BIOND Solutions B.V., Delft, the Netherlands). The inCHIPit™ OoC device consists
of a single poly(dimethylsiloxane) (PDMS) microfluidic channel, with a porous mem-
brane on the ceiling of the channel that leads to a static culture well, see Fig. 5.2.
The flow going in and out of the system, via the inlet and outlet respectively, is
the driving force of fluid movement inside the system and the porous membrane
geometry creates an active perfusion flow (inside the static culture well).

PDMS is a soft polymer used in the inCHIPit™ device due to its bio-compatibility,
gas permeability, optical transparency, chemical inertness, low-costs, and elastic-
ity [20]. The hydrophobic surface of PDMS, originating from the presence of the
organic methyl groups, caused clogging of the membrane pores. Therefore we in-
creased the hydrophilicity of PDMS via plasma surface modification [21]. We treated
the surface with an oxygen plasma (0.22 mBar) for 3 minutes (Atto, Diener, Ger-
many). The exposure to the oxygen plasma replaces the methyl groups on the
PDMS with hydroxyl groups to create polar silanol groups, making the surface hy-
drophilic. This can decrease the water contact angle of PDMS by 30° or more,
depending on the treatment time, significantly improving cell adhesion onto the
surface, and increasing the ease of fluid, and its constituents, passing through the
porous PDMS membrane. The increased PDMS hydrophilicity in combination with
appropriate cell-adhesive coating and the aforementioned standalone benefits of
PDMS create a microenvironment that allows the culturing of cells. The hydrophilic
effects induced via plasma treatment are temporary and wear off depending on fac-
tors such as the PDMS chemistry and OoC storage method. The hydrophilic hydroxyl
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Figure 5.2: (a) Computer rendered images of the inCHIPit™-1C displaying the cross-section of the
microfluidic channel, porous membrane, the static culture well, and the direction of flow from the inlet,
through the microfluidic channel pores, creating a perfusion area, and back out from the outlet. (b)
Cross-sectional view of the of the inCHIPit™-1C, the flow directions, dimensions, and OCT observation
window.

groups are highly reactive and can react with molecules found in air, reverting back
into a hydrophobic state in 1-2 days for our PDMS.

5.2.5. Computational fluid dynamics simulations
Numerical computational fluid dynamics (CFD) simulations were performed using
the finite element method software COMSOL Multiphysics®v5.6 to model the flow
behaviour of the inCHIPit™ OoC device from BIOND Solutions B.V. The developed
model computationally solved the Navier-Stokes equations neglecting the inertial
term. This is valid since the Stokes flow problem is considered to be under steady-
state pressure-driven conditions and is expected to remain under steady-state for
the envisioned applications of the device. The OoC device geometry comprises five
main parts: inlet, outlet, microchannel, porous membrane and well. The dimen-
sions of these parts are set according to the measured dimensions of the inCHIPit™
device and are shown in Table 5.1. Figure 5.3(a) shows an example of the simu-
lated flow geometry. The corresponding boundary conditions along with the mate-
rial properties were set. Water was employed as the fluid of interest with a viscosity
value 10-3 Pa⋅s at 20 ∘C. A boundary condition of laminar flow was set at the inlet
for the different flow rates of interest. At the outlet an open boundary with null
normal stress was used. The walls of the well, channels, and porous membrane
were set assuming a no slip condition for the fluid velocity.

The geometry was meshed with 6012570 elements with an average element
quality of 0.6854 for different element types (tetrahedral, triangular). An image of
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Figure 5.3: (left) Geometry of the inCHIPit™ in COMSOL Multiphysics and the corresponding boundary
conditions set for the computation of the velocity field under steady-state conditions. (right) Meshed
geometry of the inCHIPit™ in COMSOL Multiphysics.

Table 5.1: Parts and dimensions of the computationally modeled inCHIPit™ device.

Part Feature Dimension [µm]
Inlet and Outlet Diameter 600

Height 630
Microchannel Length 7200

Width 370
Height 100

Porous Membrane Thickness 6
Pore diameter 4

Well Length 3000
Width 3000
Height 525

the meshed geometry is shown in Fig. 5.3(b). The computation was carried out in a
server with two cores Intel(R) Xeon(R) CPU E-54667 v3 @ 2.00GHz and 32 GB RAM
memory, for an average computation time of 3 hours for most of the simulations.
All components of the flow speed were calculated and used for comparison to the
measurements.

5.3. Results
5.3.1. Flow in a single channel OoC system
To show the versatility of combined OCT morphology and flow measurements we
first studied cell morphology and flow inside the OoC device. Human umbilical vein
endothelial cells (HUVECs) were cultured in the microfluidic channel and arising
retinal pigment epithelial cells (ARPE19) were cultured in the static culture well.
Upon reaching a stable and matured adhesion to the PDMS, all cell cultures were
fixated with paraformaldehyde.

Fig. 5.4(a,b) shows the OCT structural and flow speed images of the open chan-
nel. The open channel has no pores nor cells and shows some minor elastic channel



5.3. Results

5

105

Figure 5.4: Cross-sectional B-scan intensity in dB scale perpendicular through the flow channel for the
channel (a) with no pores and (c) with the presence of epithelial cells protruding from the culture well
into the channel through the porous membrane. (b,d) Corresponding Doppler OCT flow measurements
of the lumen.

deformation. In this case the flow is laminar and the flow speed is calculated based
on the Doppler angle of the OoC flow channel. Figure 5.4(c,d) shows the struc-
tural and flow OCT image of the channel constricted by the growing tissue. In
the constricted channel the epithelial cells grow inside the culture well and clogged
the porous membrane. The cells essentially allowed the OoC to act as a channel
with no pores. Even though the contrast between the original channel and the cell
monolayer is low, the flow channel can still be observed in the structural image.
The flow image in Fig. 5.4(d) clearly shows the constriction of the channel as the
channel lumen becomes smaller and the flow speed increases (measurement at
constant discharge rate). Note that in the case of lumen restrictions, the flow does
not necessarily need to be in the direction of the flow channel, and the absolute
flow speeds may be slightly off.

Although the Doppler OCT method is easy to implement and can measure the
flow in the channels without much problems, measuring the flow speed in the OoC
well was close to impossible under realistic flow conditions. Hence, we implemented
number fluctuation DLS-OCT and PIV-OCT to measure the flow also in these spaces
with the same OCT system.

5.3.2. Flow in the OoC well
Figures 5.5 and 5.6 show a comparison of the CFD simulations to the combined
number-fluctuation DLS-OCT and PIV-OCT measurements inside the OoC culture
well. The flow profile along the symmetry plane along the microchannel from the in-
let to the outlet is shown in Fig. 5.5(a) for the OCT measurements and in Fig. 5.5(b)
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Figure 5.5: (a) Total velocity distribution along the channel length derived from number fluctuation
DLS-OCT with superimposed in-plane velocity vectors measured using PIV-OCT. (b) Corresponding CFD
simulations.

Figure 5.6: (a,b,c) Total velocity distribution along the channel width derived from number fluctuations,
accompanied by in-plane velocity vectors measured using particle tracking. (d,e,f) Corresponding CFD
simulations.

for the CFD simulations. The presented measurements are only sensitive to the low
flow speeds in the well; the higher flow speeds in the microchannel can be quantified
separately with Doppler OCT (similar to the data in Fig. 5.4). The flow enters the
channel from the right where most of the flow enters the well through the porous
membrane. In the well, the flow spreads out and the flow speed decreases. Near
the outlet the flow speed again increases as the fluid goes out from the well into
the channel. Overall there is a good qualitative agreement between the simulations
and the measurements showing similar flow directions as well as flow distributions.
There is less absolute quantitative agreement, with the simulated flow speeds being
approximately 50% lower than the measured flow speeds.
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The flow profile perpendicular to the line from the inlet to the outlet in Fig. 5.6
shows the flow entering the well at the inlet and exiting the well from the outlet.
In the middle of the well, the 𝑧-component of the flow is almost completely absent,
which is what one would expect for this plane. Again there is a good qualitative
agreement between the simulations and the measurements showing similar flow
directions as well as flow distributions, but less absolute quantitative agreement,
with the simulated flow speeds being approximately 50% lower than the measured
flow speeds. Note that the measurements in the center clearly show the bulging
out of the porous membrane from the channel into the well caused by the fluid
pressure acting on the flexible PDMS porous membrane.

5.4. Discussion
We demonstrated structural and functional measurements in an OoC system using
multiple OCT imaging modes such as OCT, Doppler-OCT, PIV-OCT and DLS-OCT
flow.

Our demonstration of in vitro OoC Doppler-OCT flow measurements, as shown
in Fig. 5.4, opens up a way to study the effect of relatively high flows on in vivo
tissue growth and development (we performed these measurements on dead tissue
due to lab restrictions). The flow stimulates the cells residing on the cell-adhesive
coated substrate with flow-induced shear stress whereas the pores provide a 3D
microenvironment where the cells can sense the architecture and attach accord-
ingly. In addition to the flow being an excellent flow/tissue contrast mechanism,
the greatest value for such OCT measurements is in the quantification of blood flow
and shear rates. For example, OCT flow measurements in the (micro) vasculature
of vessel-on-chip or tumor-on-chip may be used to measure the shear rate in vivo.
Shear rate is a biologically relevant stimulus for vessel modification sensed by the
epithelial cells lining the vessel wall, which is important in the study of atheroscle-
rosis, effects of high blood pressure, and vascular remodeling.

We successfully demonstrated the challenging task to measure the flow speed
and velocity at the low flows speeds that are present in the OoC well. Comparison
with CFD calculations, as shown in Fig. 5.5(a) and 5.6(a,b,c), gave good qualitative
agreement, however, quantitatively, the measured velocities are approximately 1.5
times greater than those in the simulations. We attribute this disagreement to a flow
geometry that is not identical to the rectangular designed shape as we observed
that due to the pressure of the pump the elastic PDMS membrane deformed, as
can be seen in the elevation in the middle of the flow channel in Fig. 5.6(b,e).
The bulging of the channel is mainly due to the lack of mechanical support at the
center of the channel and the low pressure inside the culture well (relative to the
microchannel) due to the partially sealing lid that isolates the culture well from the
environment. The lid allows air to escape from the culture well which creates a
small ’air leak’ in the system that causes the channel bulges into the culture well
due to the relatively low pressure and consequently this leads to more fluid traveling
through the culture well and hence a higher velocity. Another consequence of the
bulging channel is a variability in the pore sizes of the porous membrane along the
channel. These variations are difficult to model, thereby emphasizing the need for
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in-situ flow measurements for flow performance calibration of OoC devices.
In Fig. 5.5(a) and 5.6(a,b,c), we utilized from the same data both number-

fluctuation DLS-OCT, to measure the total flow speed, and PIV-OCT for directional
velocities. The magnitude of the total velocity obtained with PIV-OCT matches well
to the values obtained with number-fluctuation measurements. Although, PIV-OCT
offers the advantage of capturing in-plane 2D velocity vectors it has some draw-
backs over DLS-OCT. First, the spatial resolution of PIV-OCT flow imaging is signifi-
cantly reduced due to the required spatial windowing which is especially prominent
when the flow is highly confined such as in the well inlet and outlet regions. Sec-
ond, PIV-OCT requires careful tuning of the temporal separation between windows
(𝑁Δ𝑡), the temporal window size, and the lateral window size to be able to measure
a particular flow speed and direction. Third, the computational overhead is large
due to the need for 2D cross-correlation analysis. Number-fluctuation DLS-OCT is a
more robust method, requires no parameter optimization, and is readily applicable
to the original resolution of the data obtained. However, it is sensitive only to the
total velocity and cannot capture individual velocity components. The combination
of PIV-OCT and number fluctuation DLS-OCT can be used to get good low resolu-
tion quantitative assessment of the flow direction with number fluctuation DLS-OCT
supplementing this with high resolution total flow speed data.

Stable and consistent flow measurements of an OoC with pores turned out to
be a big challenge due to scattering particles clogging the pores of the system. The
flow through the system was rapidly fluctuating due to the clogging of pores and
the consequential build-up of pressure that resulted in some pores becoming un-
clogged and clogged again. After various experimental trials, it was deduced that
the highly hydrophobic nature of the PDMS caused the clogging. We could visibly
observe that the highly hydrophobic surface of PDMS essentially created such a
high repelling force to the particles that the 4 µm pores of the system were not
accessible for the particle suspension. Even particles of 200 nm in diameter would
not pass through the pores, either creating clogs or simply rolling over the pores.
The clogging of the pores created unstable flow environments within the OoC and
reproducible OCT measurements were impossible due to the sporadic nature of the
clogging. This problem was overcome with surface plasma treatment of the entire
OoC, which is a standard treatment procedure for OoCs to improve cell adhesion
on PDMS.

In conclusion, we demonstrated versatile multi-mode OCT structural and flow
imaging in an OoC device. Doppler-OCT, PIV-OCT, and number fluctuation DLS-OCT
supplement each other and are applicable to image the flow and velocity in different
speed regimes that are in different parts of the OoC device.
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Data availability
The data underlying the results presented in this paper, along with the relevant
number-fluctuation DLS-OCT analysis routines, are available at [22].
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6
Precision and bias in

dynamic light scattering
optical coherence

tomography measurements of
diffusion and flow

We quantify the precision and bias of dynamic light scattering optical coher-
ence tomography (DLS-OCT) measurements of the diffusion coefficient and
flow speed for first and second-order normalized autocovariance functions.
For both diffusion and flow the measurement precision and accuracy are
severely limited by correlations between the errors in the normalized autoco-
variance function. We demonstrate a method of mixing statistically indepen-
dent normalized autocovariance functions at every time delay for removing
these correlations. The mixing method reduces the uncertainty in the ob-
tained parameters by a factor of two but has no effect on the standard error
of the mean. We find that the precision in DLS-OCT is identical for different
averaging techniques, but that the lowest bias is obtained by averaging the
measured correlation functions before fitting the model parameters. With our
correlation mixing method it is possible to quantify the precision in DLS-OCT
and verify whether the Cramer-Rao bound is reached.

This chapter has been published as: Konstantine Cheishvili, Bernd Rieger, and Jeroen Kalkman,
Precision and bias in dynamic light scattering optical coherence tomography measurements of diffusion
and flow, Biomedical Optics Express 15(2), 1288-1310 (2024).
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6.1. Introduction
Dynamic light scattering optical coherence tomography (DLS-OCT) relies on the
measurement of fluctuations of scattered light and coherence gating to obtain si-
multaneous depth-resolved information about diffusive and translational motion of
particles. Initially, DLS-OCT was used for measuring diffusion coefficients [1] and
flow speeds of particle suspensions [2–5]. Later, several improvements have been
suggested for increasing the DLS-OCT flow velocity dynamic range [6, 7].

DLS-OCT has the advantage over phase-resolved Doppler OCT that a flow can
be measured for zero Doppler angle. It can also be used for particle sizing where
the particle size is determined from the estimated diffusion coefficient using the
Stokes-Einstein relation. The combined flow and diffusion estimation is particu-
larly interesting for in-line particle sizing during process control [8]. Sensitivity and
precision of phase-resolved Doppler OCT has been widely studied and reported in
literature [9–12]. However, there is very little information available about the pre-
cision and bias of DLS-OCT diffusion and flow measurements. These are crucial for
reliable measurements, especially in medical and pharmaceutical applications. Ef-
fects of noise and bias in OCT on the measured autocorrelation function have been
reported [13], but their influence on the underlying parameters remains unclear.

In this work we perform simulations, measurements, and a theoretical analy-
sis to quantify the precision and bias of diffusion and flow measurements using
DLS-OCT. In our analysis, we consider both the first and second-order normalized
autocovariance functions, 𝑔1(𝑧, 𝜏) and 𝑔2(𝑧, 𝜏), diffusive particle motion, and, for
both dilute and non-dilute suspensions, translational particle motion. We derive
analytical expressions for the highest attainable precision using the Cramer-Rao
bound and compare them with the obtained results. We also assess the bias for
different averaging techniques.

6.2. Theory
The geometry for OCT diffusion and flow measurements is described in [6, 7].
The propagation of the optical beam is described by a Gaussian beam along the
𝑧-direction. We assume that the scattering process is stationary.

6.2.1. Correlation functions for particle diffusion
For a non-flowing particle suspension, the normalized depth-dependent autocovari-
ance of the OCT complex-valued signal in a backscattering geometry, including the
effect of SNR, is given by [3, 4, 13–15]

𝑔1(𝑧, 𝜏) =
⟨𝐸(𝑧, 𝑡)𝐸∗(𝑧, 𝑡 + 𝜏)⟩𝑡

⟨𝐼(𝑧, 𝑡)⟩𝑡
= 𝑒−𝐷𝑞2𝜏

1 + 1
SNR(𝑧)

= 𝐴1(𝑧) 𝑒−𝐷𝑞
2𝜏 , (6.1)

where 𝐸(𝑧, 𝑡) is the depth and time-dependent complex-valued OCT signal, 𝐼(𝑧, 𝑡)
is the OCT signal intensity, 𝜏 is the autocovariance time lag, 𝐴1(𝑧) is the auto-
covariance amplitude containing the effect of a diminishing signal-to-noise with
depth [13], SNR(𝑧) is the depth-dependent experimental signal-to-noise ratio[7,
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13], 𝐷 is the particle diffusion coefficient given by Stokes–Einstein equation, and
𝑞 = 2𝑛𝑘0 is the scattering wavenumber for the OCT backscattering probe configu-
ration with the incident light wavenumber in vacuum 𝑘0 and the medium refractive
index 𝑛. Equation (6.1) for 𝑔1(𝑧, 𝜏) is also known as the first-order autocorrelation
function where ⟨𝐸(𝑧, 𝑡)⟩𝑡 = ⟨𝐸

∗(𝑧, 𝑡)⟩𝑡 = 0. The signal-to-noise correction describes
the non-zero time lag autocorrelation. At 𝜏 = 0, the normalized correlation coeffi-
cient is unity.

The autocorrelation function of the mean-subtracted OCT signal intensity, also
known as the Pearson correlation or autocovariance, decays twice as fast than
𝑔1(𝑧, 𝜏) [1, 15] and can be expressed with the normalized second-order autocovari-
ance using the Siegert relation [16, 17]

𝑔2(𝑧, 𝜏) =
⟨(𝐼(𝑧, 𝑡) − ⟨𝐼(𝑧, 𝑡)⟩𝑡) (𝐼(𝑧, 𝑡 + 𝜏) − ⟨𝐼(𝑧, 𝑡)⟩𝑡)⟩

𝑡

⟨𝐼(𝑧, 𝑡)⟩2𝑡
≈

|𝑔1(𝑧, 𝜏)|
2 = 𝑒−2𝐷𝑞2𝜏

(1 + 1
SNR(𝑧))

2 = 𝐴2(𝑧) 𝑒−2𝐷𝑞
2𝜏 ,

(6.2)

where 𝐴2(𝑧) is a depth-dependent amplitude factor for the intensity autocorrela-
tion function. For a mean-subtracted intensity autocovariance, the Siegert relation
states that 𝑔2(𝑧, 𝜏) is the square of |𝑔1(𝑧, 𝜏)|. In Eq.(6.2) we have assumed that
the average number of particles in the scattering volume, 𝑁𝑠, is sufficiently large
(𝑁𝑠 ≫ 1) [16–19]. This ensures that the particle probability distribution in the
scattering volume and the scattered light fluctuations follow Gaussian statistics.
For a non-flowing particle suspension this requirement is almost always satisfied
whenever the backscattered OCT signal intensity from every voxel is high [7].

6.2.2. Correlation functions for particle flow
For diffusing and flowing particle suspensions the first-order normalized autocovari-
ance function magnitude is

|𝑔1(𝑧, 𝜏)| = 𝐴1(𝑧) 𝑒−𝐷𝑞
2𝜏𝑒−

𝑣2(𝑧) sin2 𝜃𝜏2
2𝑤2𝑧 𝑒

− 𝑣
2(𝑧) cos2 𝜃𝜏2

𝑤20 , (6.3)

where 𝑣(𝑧) is the depth-dependent total flow speed, 𝜃 is the Doppler angle, 𝑤𝑧 is
the coherence function waist, 𝑤0 is the Gaussian beam waist in focus, and 𝐴1(𝑧) is
the same SNR correction factor as given in Eq. (6.1). We take the absolute value to
get rid of the phase component in 𝑔1(𝑧, 𝜏) originating from the particle translational
motion along the optical axis[2–4].

For flow measurements we focus on the second-order normalized autocovari-
ance function, 𝑔2(𝑧, 𝜏), that does not depend on the phase, is easier to imple-
ment, and can also be implemented in phase-unstable OCT systems. Here, we
differentiate between very dilute and non-dilute sample regimes. For the flowing
non-dilute particle suspensions, where the number of particles in the scattering
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volume, 𝑁𝑠, is much greater than one, 𝑔2(𝑧, 𝜏) is again obtained using the Siegert
relation [3, 4, 6, 14, 15]

𝑔2(𝑧, 𝜏) ≈ |𝑔1(𝑧, 𝜏)|
2 = 𝐴2(𝑧)𝑒−2𝐷𝑞

2𝜏 𝑒−
𝑣2(𝑧) sin2 𝜃𝜏2

𝑤2𝑧 𝑒
− 2𝑣

2(𝑧) cos2 𝜃𝜏2
𝑤20 , (6.4)

where 𝐴2(𝑧) is the same SNR correction factor as given in Eq. (6.2). Here, we have
neglected the effect of a gradient of the axial velocity on the autocovariance func-
tion [20]. In the non-dilute regime the scattering process is strictly Gaussian [7].

In dilute suspensions, the expected number of particles in the scattering volume
can be significantly lower than 1. Therefore, for stationary particles certain depth
voxels would give zero signal. However, due to the translational particle motion,
the scattering signal is obtained from every voxel during the acquisition time. When
the number of particles in the scattering volume is very low, the scattering process
becomes non-Gaussian, and the Siegert relationship does not apply anymore [18,
21, 22]. In the dilute case with 𝑁 ≲ 1, the second-order normalized autocovariance
is [7, 13, 19]

𝑔2(𝑧, 𝜏) =
𝐴3(𝑧)23/2𝑁𝑠(𝑧)
23/2𝑁𝑠(𝑧) + 1

[𝑒−2𝐷𝑞2𝜏𝑒−
𝑣2(𝑧) sin2 𝜃𝜏2

𝑤2𝑧 𝑒
− 2𝑣

2(𝑧) cos2 𝜃𝜏2
𝑤20 +

1
23/2𝑁𝑠(𝑧)

𝑒−
𝑣2(𝑧) sin2 𝜃𝜏2

𝑤2𝑧 𝑒−
2𝑣2(𝑧) cos2 𝜃𝜏2

𝑤2(𝑧) ] ,
(6.5)

in which 𝑔1(𝑧, 𝜏) can be incorporated as follows

𝑔2(𝑧, 𝜏) =
𝐴3(𝑧)23/2𝑁𝑠(𝑧)
23/2𝑁𝑠(𝑧) + 1

[ |𝑔1(𝑧, 𝜏)|
2

𝐴21(𝑧)
+ 1
23/2𝑁𝑠(𝑧)

𝑒−
𝑣2(𝑧) sin2 𝜃𝜏2

𝑤2𝑧 𝑒−
2𝑣2(𝑧) cos2 𝜃𝜏2

𝑤2(𝑧) ] .

(6.6)
Here, 𝐴3(𝑧) is given by

𝐴3(𝑧) =
𝜅(𝑧) − 1

𝜅(𝑧) − 2 + (1 + 1
SNR(𝑧))

2 , (6.7)

where 𝑤(𝑧) is the radius of the local beam waist, 𝑁𝑠(𝑧) is the average depth-
dependent number of particles in the scattering volume [7, 19], and 𝜅(𝑧) is the
kurtosis of the noise-subtracted complex field distribution. The kurtosis can also
be expressed as a ratio of the average squared noise-subtracted intensity to the
squared mean noise-subtracted intensity. It can be obtained using the measured
OCT signal intensity 𝐼(𝑧, 𝑡) and the signal-to-noise ratio,

𝜅(𝑧) = 2 + (1 + 1
SNR(𝑧))

2
(
⟨𝐼2(𝑧, 𝑡)⟩𝑡
⟨𝐼(𝑧, 𝑡)⟩2𝑡

− 2) , (6.8)

which simplifies to 𝜅(𝑧) = 2 for the Gaussian scattering process with 𝐴2(𝑧) =
𝐴3(𝑧) = (1 +

1
SNR(𝑧))

−2
. The kurtosis can be depth-dependent for the non-Gaussian
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process due to different signal intensities and particle flow speeds at different
depths. In our previous study [7] we assumed 𝜅(𝑧) = 2, even though the scat-
tering process was non-Gaussian. This made our analysis simpler considering that
𝜅(𝑧) minimally affects 𝐴3(𝑧) when the signal-to-noise ratio is sufficient. Here equa-
tions (6.5-6.8) use no assumptions on the scattering process, 𝜅(𝑧), and do not
impose any restrictions on the number of particles.

6.2.3. Precision of diffusion and flow estimation
Precision is defined as the spread of the measurement around the mean and can
be quantified by the square root of the measurement variance. For DLS-OCT the
precision is governed by random errors, i.e., unpredictable changes in the measured
intensity. Since the particle diffusion coefficient and the flow speed are determined
by fitting the models from Sec. 6.2.1 and Sec. 6.2.2 to the measured 𝑔1(𝑧, 𝜏) and
𝑔2(𝑧, 𝜏), the precision of the fit parameters is determined by the random errors
of the normalized autocovariance function at different time delays. The maximum
obtainable precision in the fit parameters is determined by the Cramer-Rao lower
bound (CRLB). It is computed by inverting the Fisher information matrix [23]. For
calculating the Cramer-Rao lower bound the probability distribution functions of
𝑔1(𝑧, 𝜏) and 𝑔2(𝑧, 𝜏) must be known. The correlation coefficients from a long time
series data are approximately normally distributed [24–26]. Typical diffusion or
flow measurements contain at least thousands of temporal sampling points, which
is more than enough to assume that 𝑔1(𝑧, 𝜏) and 𝑔2(𝑧, 𝜏) are normally distributed
at every time delay. In general, errors (residuals) at different time delays can be
correlated. Calculating the CRLB becomes challenging because we don’t know the
error correlations and their impact on the model bias. To address this, we assume
uncorrelated residuals. In this case, for 𝑀 observations 𝑔(𝑧, 𝜏1), 𝑔(𝑧, 𝜏2), …𝑔(𝑧, 𝜏𝑀)
with 𝑁 model (fit) parameters 𝑝1, 𝑝2, … 𝑝𝑁, the Fisher matrix 𝐹 is an 𝑁×𝑁 symmetric
matrix given by

𝐹𝑖𝑗 =
𝑀

∑
𝑚=1

1
𝜎2(𝑧, 𝜏𝑚)

𝜕𝑔(𝑧, 𝜏𝑚)
𝜕𝑝𝑖

𝜕𝑔(𝑧, 𝜏𝑚)
𝜕𝑝𝑗

, (6.9)

where 𝜏𝑚 is the discretized 𝜏 for index 𝑚. The observations depend on the model
parameters and have a variance 𝜎2(𝑧, 𝜏𝑚). In our analysis the observations are
𝑔1(𝑧, 𝜏𝑚) or 𝑔2(𝑧, 𝜏𝑚) and the summation is performed over all considered time
delays.

The covariance matrix of the model parameters is obtained by inverting the
Fisher information matrix. Consequently, the variances of our model parameters,
𝜎2𝑝𝑗 , are represented by the diagonal entries of the covariance matrix. This rela-
tionship is described by the equation

𝜎2𝑝𝑗 = (𝐹−1)𝑗𝑗 . (6.10)

Precision of estimating the diffusion coefficient
For a non-flowing particle suspension the diffusion coefficient is determined by fit-
ting Eq. (6.1) to the real part of 𝑔1(𝑧, 𝜏𝑚), with 𝐴1(𝑧) and 𝐷 being the fit (model)
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parameters. The lowest attainable variance CRLB in the fitted diffusion coefficient,
assuming uncorrelated noise in the Fisher information matrix, is given by

𝜎2CRLB, 𝐷ℜ(𝑔1)(𝑧) =
∑𝑀𝑚=1

𝑒−2𝐷𝑞2𝜏𝑚
𝜎2ℜ(𝑔1)(𝑧,𝜏𝑚)

∑𝑀𝑚=1
𝐴21(𝑧)𝑞4𝜏2𝑚𝑒−2𝐷𝑞

2𝜏𝑚

𝜎2ℜ(𝑔1)(𝑧,𝜏𝑚)
∑𝑀𝑚=1

𝑒−2𝐷𝑞2𝜏𝑚
𝜎2ℜ(𝑔1)(𝑧,𝜏𝑚)

−

(∑𝑀𝑚=1
𝐴1(𝑧)𝑞2𝜏𝑚𝑒−2𝐷𝑞

2𝜏𝑚

𝜎2ℜ(𝑔1)(𝑧,𝜏𝑚)
)
2

, (6.11)

where 𝜎2ℜ(𝑔1)(𝑧, 𝜏𝑚) represents the variance of the real part of 𝑔1(𝑧, 𝜏𝑚), which is
half of the variance of the complex 𝑔1(𝑧, 𝜏𝑚). It can be obtained with simulations
or measurements and can also be derived analytically using

𝜎2ℜ(𝑔1)(𝑧, 𝜏𝑚) =
1
2 (

⟨𝐼(𝑧, 𝑡)𝐼(𝑧, 𝑡 + 𝜏𝑚)⟩𝑡
⟨𝐼(𝑧, 𝑡)⟩2𝑡

−
⟨𝐸(𝑧, 𝑡)𝐸∗(𝑧, 𝑡 + 𝜏𝑚)⟩

2
𝑡

⟨𝐼(𝑧, 𝑡)⟩2𝑡
)

⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
variance in the real part of 𝑔1(𝑧, 𝜏𝑚)

×

1
𝑀 (1 − ℜ(𝑔1(𝑧, 𝜏𝑚))

2)
2

⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
unexplained variance

(1 + 2 ∑
𝜏𝑚>0

ℜ(𝑔1(𝑧, 𝜏𝑚))
2)

⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
long-lag correction

=

1
2𝑀(1 + 2 ∑

𝜏𝑚>0
ℜ(𝑔1(𝑧, 𝜏𝑚))

2) (1 − ℜ(𝑔1(𝑧, 𝜏𝑚))
2)
2
,

(6.12)

where 𝑀 is the total number of temporal sampling points (time series length). The
first term represents the variance in the real part of the field autocorrelation and is
equal to one half, the second term is a correction for the explained variance in the
Pearson correlation coefficient [24–28], and the third term is a long-lag correction
for the effect of the correlation magnitude on the variance [29]. As expected,
𝜎2ℜ(𝑔1)(𝑧, 𝜏𝑚) = 0 when ℜ(𝑔1(𝑧, 𝜏𝑚)) = 1. Even though 𝑔1(𝑧, 𝜏𝑚) is complex in
nature, we only consider its real part when fitting the diffusion coefficient. According
to Eq. (6.1), in non-flowing suspensions, the imaginary part ℑ(𝑔1(𝑧, 𝜏𝑚)) is pure
noise and contains no information about the particle diffusion. Therefore, in phase-
stable systems it is always beneficial to use the real part ℜ(𝑔1(𝑧, 𝜏𝑚)) instead of
the absolute value |𝑔1(𝑧, 𝜏𝑚)|.

A similar analysis can be performed with 𝑔2(𝑧, 𝜏𝑚). In this case we use Eq. (6.2)
for fitting with model parameters 𝐷 and 𝐴2(𝑧). The Cramer-Rao lower bound on
the variance of the diffusion coefficient, when using the second-order normalized
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autocovariance function, is

𝜎2CRLB, 𝐷𝑔2 (𝑧) =
∑𝑀𝑚=1

𝑒−4𝐷𝑞2𝜏𝑚
𝜎2𝑔2 (𝑧,𝜏𝑚)

∑𝑀𝑚=1
4𝐴22(𝑧)𝑞4𝜏2𝑚𝑒−4𝐷𝑞

2𝜏𝑚

𝜎2𝑔2 (𝑧,𝜏𝑚)
∑𝑀𝑚=1

𝑒−4𝐷𝑞2𝜏𝑚
𝜎2𝑔2 (𝑧,𝜏𝑚)

−

(∑𝑀𝑚=1
2𝐴2(𝑧)𝑞2𝜏𝑚𝑒−4𝐷𝑞

2𝜏𝑚

𝜎2𝑔2 (𝑧,𝜏𝑚)
)
2

, (6.13)

with 𝜎2𝑔2(𝑧, 𝜏𝑚) being the variance of 𝑔2(𝑧, 𝜏𝑚) given by

𝜎2𝑔2(𝑧, 𝜏𝑚) =
(1 − 𝑔22(𝑧, 𝜏𝑚))

2

𝑀
⎛
⎜⎜

⎝

⟨(𝐼(𝑧, 𝑡) − ⟨𝐼(𝑧, 𝑡)⟩𝑡)
2
(𝐼(𝑧, 𝑡 + 𝜏𝑚) − ⟨𝐼(𝑧, 𝑡)⟩𝑡)

2
⟩
𝑡

⟨𝐼(𝑧, 𝑡)⟩4𝑡

−
⟨(𝐼(𝑧, 𝑡) − ⟨𝐼(𝑧, 𝑡)⟩𝑡) (𝐼(𝑧, 𝑡 + 𝜏𝑚) − ⟨𝐼(𝑧, 𝑡)⟩𝑡)⟩

2

𝑡

⟨𝐼(𝑧, 𝑡)⟩4𝑡

⎞
⎟
⎟

⎠

(1 + 2 ∑
𝜏𝑚>0

𝑔2(𝑧, 𝜏𝑚)2) =

1 + 4𝑔2(𝑧, 𝜏𝑚) + 3𝑔2(𝑧, 𝜏𝑚)2
𝑀 (1 + 2 ∑

𝜏𝑚>0
𝑔22(𝑧, 𝜏𝑚)) (1 − 𝑔2(𝑧, 𝜏𝑚)2)

2 .

(6.14)
Here the higher order (3rd and 4th) intensity autocorrelation functions were calcu-
lated using theory derived by Lemieux et al. [30]. This analysis is limited to the
Gaussian scattering process. Equation (6.14) incorporates the Siegert relation and
relies on the fact that the diffusive 𝑔1(𝑧, 𝜏𝑚) is real-valued.

Precision of velocity estimation
The velocity of a non-dilute flowing particle suspension can be obtained by fitting
Eq. (6.4) at every depth 𝑧 to the measured 𝑔2(𝑧, 𝜏𝑚). In this case 𝑣(𝑧) and 𝐴2(𝑧)
are the model parameters, while 𝐷, 𝑤0, 𝑤𝑧, and 𝜃 are assumed to be exactly known
a-priori (calibrated). The minimum achievable variance of the flow speed 𝑣 is given
by

𝜎2CRLB, 𝑣𝑔2 (𝑧) =
∑𝑀𝑚=1

𝑒−2𝑣2(𝑧)𝐵𝜏2𝑚−4𝐷𝑞2𝜏𝑚
𝜎2𝑔2 (𝑧,𝜏𝑚)

∑𝑀𝑚=1
4𝐴22(𝑧)𝑣2(𝑧)𝐵2𝜏4𝑚𝑒−2𝑣

2(𝑧)𝐵𝜏2𝑚−4𝐷𝑞2𝜏𝑚

𝜎2𝑔2 (𝑧,𝜏𝑚)
∑𝑀𝑚=1

𝑒−2𝑣2(𝑧)𝐵𝜏2𝑚−4𝐷𝑞2𝜏𝑚
𝜎2𝑔2 (𝑧,𝜏𝑚)

−

(∑𝑀𝑚=1
2𝐴2(𝑧)𝑣(𝑧)𝐵𝜏2𝑚𝑒−2𝑣

2(𝑧)𝐵𝜏2𝑚−4𝐷𝑞2𝜏𝑚

𝜎2𝑔2 (𝑧,𝜏𝑚)
)
2

,

(6.15)
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with 𝐵 = 2 cos2 𝜃
𝑤20

+ sin2 𝜃
𝑤2𝑧

, (6.16)

where 𝜎2𝑔2(𝑧, 𝜏𝑚) can also be computed analytically similar to Eq. (6.14) using [30].
However, in this case phase terms of 𝑔1(𝑧, 𝜏𝑚) need to be taken into account.

For a dilute suspension the velocity can be determined by fitting Eq. (6.5) to the
measured 𝑔2(𝑧, 𝜏𝑚). In this case 𝑣(𝑧) and 𝐴3(𝑧) are the model parameters, while
𝐷, 𝑤0, 𝑤(𝑧), 𝑤𝑧, 𝑁𝑠(𝑧) and 𝜃 are assumed to be known in advance. The minimum
achievable variance of the flow speed is given by

𝜎2CRLBdilute , 𝑣𝑔2 (𝑧) =
∑𝑀𝑚=1

1
𝜎2𝑔2 (𝑧,𝜏𝑚)

(𝜕𝑔2(𝑧,𝜏𝑚)𝜕𝐴3(𝑧)
)
2

∑𝑀𝑚=1
1

𝜎2𝑔2 (𝑧,𝜏𝑚)
(𝜕𝑔2(𝑧,𝜏𝑚)𝜕𝐴3(𝑧)

)
2
∑𝑀𝑚=1

1
𝜎2𝑔2 (𝑧,𝜏𝑚)

(𝜕𝑔2(𝑧,𝜏𝑚)𝜕𝑣(𝑧) )
2
−

(∑𝑀𝑚=1
1

𝜎2𝑔2 (𝑧,𝜏𝑚)
𝜕𝑔2(𝑧,𝜏𝑚)
𝜕𝐴3(𝑧)

𝜕𝑔2(𝑧,𝜏𝑚)
𝜕𝑣(𝑧) )

2

,

(6.17)
with

𝜕𝑔2(𝑧, 𝜏𝑚)
𝜕𝐴3(𝑧)

= 23/2𝑁𝑠(𝑧)
23/2𝑁𝑠(𝑧) + 1

(𝑒−𝑣2(𝑧)𝐵𝜏2𝑚−2𝐷𝑞2𝜏𝑚 + 𝑒
−𝑣2(𝑧)𝐶(𝑧)𝜏2𝑚

23/2𝑁𝑠(𝑧)
) , (6.18)

𝜕𝑔2(𝑧, 𝜏𝑚)
𝜕𝑣(𝑧) = −2𝐴3(𝑧)𝑣(𝑧)𝜏

2
𝑚23/2𝑁𝑠(𝑧)

23/2𝑁𝑠(𝑧) + 1
(𝐵𝑒−𝑣2(𝑧)𝐵𝜏2𝑚−2𝐷𝑞2𝜏𝑚 + 𝐶𝑒

−𝑣2(𝑧)𝐶(𝑧)𝜏2𝑚

23/2𝑁𝑠(𝑧)
) ,

(6.19)

and 𝐶(𝑧) = 2 cos2 𝜃
𝑤(𝑧)2 + sin2 𝜃

𝑤2𝑧
, (6.20)

where 𝜎2𝑔2(𝑧, 𝜏𝑚) can no more be calculated using an equation similar to Eq. (6.14)
using [30] due to a non-Gaussian scattering process.

For comparison, the minimum achievable variance of the flow speed when using
|𝑔1(𝑧, 𝜏𝑚)| from Eq. (6.3) is independent of the particle concentration and given by

𝜎2CRLB ,𝑣|𝑔1|(𝑧) =
∑𝑀𝑚=1

𝑒−𝑣2(𝑧)𝐵𝜏2𝑚−2𝐷𝑞2𝜏𝑚
𝜎2|𝑔1|(𝑧,𝜏𝑚)

∑𝑀𝑚=1
𝐴21(𝑧)𝑣2(𝑧)𝐵2𝜏4𝑚𝑒−𝑣

2(𝑧)𝐵𝜏2𝑚−2𝐷𝑞2𝜏𝑚

𝜎2|𝑔1|(𝑧,𝜏𝑚)
∑𝑀𝑚=1

𝑒−𝑣2(𝑧)𝐵𝜏2𝑚−2𝐷𝑞2𝜏𝑚
𝜎2|𝑔1|(𝑧,𝜏𝑚)

−

(∑𝑀𝑚=1
𝐴1(𝑧)𝑣(𝑧)𝐵𝜏2𝑚𝑒−𝑣

2(𝑧)𝐵𝜏2𝑚−2𝐷𝑞2𝜏𝑚

𝜎2|𝑔1|(𝑧,𝜏𝑚)
)
2

.

(6.21)

6.2.4. Bias of diffusion and flow estimation
Bias in DLS-OCT is determined by systematic errors in the correlation function and
is a measure of the accuracy of the method. The bias is not random but leads to
a consistent over or under estimation of the fit parameter. The systematic errors
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arise when the model parameters in DLS-OCT are determined by fitting the models
from Sec. 6.2 to the measured 𝑔1(𝑧, 𝜏𝑚) and 𝑔2(𝑧, 𝜏𝑚). These error sources are:

• Estimation bias in 𝑔2(𝑧, 𝜏𝑚) due to subtraction of the sample mean instead
of the true mean from the OCT signal intensity. This introduces an almost
constant offset to the normalized autocovariance function given by [31]

𝑔2biased(𝑧, 𝜏𝑚) = 𝑔2true(𝑧, 𝜏𝑚) − (Π𝑀,𝑚 +
𝑚

𝑀 −𝑚 (Π𝑀,0 − Π𝑀,𝑚)) , (6.22)

with

Π𝑀,𝑚 =
1

𝑀(𝑀 − 2𝑚)

𝑀

∑
𝑖=1

𝑀−𝑚

∑
𝑗=𝑚+1

𝑔2true(𝑧, 𝜏|𝑖−𝑗|) , (6.23)

where 𝑔2biased(𝑧, 𝜏𝑚) and 𝑔2true(𝑧, 𝜏𝑚) are biased and unbiased correlation co-
efficients, respectively. Calculation of the bias requires a-priori knowledge of
a true correlation coefficient, which is not possible in practice. The estima-
tion bias term in Eq. (6.22) is independent of the correlation coefficient and
depends only on the correlation decay rate, SNR, and 𝑀. It can be reduced
by increasing the intensity time series length with respect to the character-
istic decay time of 𝑔2(𝑧, 𝜏𝑚). As reported in literature [13], the estimation
bias (also referred to as the statistical bias) also affects the amplitude and
decay rate of 𝑔2(𝑧, 𝜏𝑚) and even contains a random component which is not
included in Eq. (6.22). This randomness can be reduced by averaging multiple
𝑔2(𝑧, 𝜏𝑚). Theoretically both 𝑔1(𝑧, 𝜏𝑚) and 𝑔2(𝑧, 𝜏𝑚) suffer from the additional
estimation bias when subtracting a DC term from the OCT interference spec-
tra before inverse Fourier transformation, if the DC term is estimated from the
interference time series itself. In our analysis this effect is neglected.

• Sampling distribution bias in 𝑔1(𝑧, 𝜏𝑚) and 𝑔2(𝑧, 𝜏𝑚) is caused by the slight
skewness of the correlation coefficient distribution [28] leading to a bias of
the sample mean with respect to the true value. This bias depends on the
correlation coefficient and decreases with increasing time series length as
the distribution better approaches a normal distribution. A simple correction
factor for this bias is given by [25, 26, 28]

𝑔biased(𝑧, 𝜏𝑚) = 𝑔true(𝑧, 𝜏𝑚) (1 −
1 − 𝑔2true(𝑧, 𝜏𝑚)

2𝑀 ) , (6.24)

which is negligible for long acquisitions. For example, the sampling distribu-
tion bias for our diffusion measurements in Sec. 6.5.1 is of the order of 0.01%
of the correlation coefficient and can be disregarded without any corrections.

• Curve fitting bias in 𝑔1(𝑧, 𝜏𝑚) and 𝑔2(𝑧, 𝜏𝑚) is caused by the use of incorrect
fit models. For example, the exponential fit curves from Sec. 6.2 cannot be
negative at any time delay, whereas measured 𝑔1(𝑧, 𝜏𝑚) and 𝑔2(𝑧, 𝜏𝑚) can be,
due to their probability distributions. So, fits to 𝑔1(𝑧, 𝜏𝑚) and 𝑔2(𝑧, 𝜏𝑚) with
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asymmetric noise will be slightly biased, which can happen if random errors
are correlated along 𝜏𝑚. This bias can be lowered by increasing the time series
length and reducing the variance of 𝑔1(𝑧, 𝜏𝑚) and 𝑔2(𝑧, 𝜏𝑚). Additional fit bias
arises if a wrong model is used in the analysis, i.e., a non-dilute model for very
dilute suspensions, static fit models for flowing samples, etc. Furthermore,
the models are based on assumptions that may be invalid. For example, we
assume that the mean scattering wavenumber 𝑞 is exactly known and that
the scattering process is stationary. The polydispersity in particle size and
refractive index can also add to the bias. Estimation bias also adds to the fit
bias since it introduces a constant offset that cannot be incorporated in the
models.

The bias for a sufficiently large 𝑀 is predominantly represented by estimation and
curve fitting errors. Since it affects the normalized autocovariance functions and
not directly the model parameters, its influence on the fitted diffusion coefficient
and the flow speed cannot be evaluated analytically. Predicting the bias is also
impossible experimentally due to a lack of a-priori knowledge and is only feasible
using simulations. In addition, systematic errors make our estimators from Sec. 6.2
biased which affect the random errors and prevents us from reaching the maximum
precision of our model parameters.

6.3. OCT signal simulations for flow and diffusion
In simulations we generate a complex OCT signal scattered from an ensemble of
particles with random (diffusion) and directional (flow) motion. The signal intensity
and the normalized autocovariance functions are subsequently calculated. This is
repeated 𝑁𝑏 times which allows us to compute the autocorrelation variances at
every time delay.

6.3.1. Simulation of diffusion
Noiseless time-dependent complex field scattered from 𝑁𝑝 diffusing particles is sim-
ulated using

𝐸0(𝑡) =
𝑁𝑝

∑
𝑗=1
𝑒−2𝑖𝑘0𝑛𝑧𝑗(𝑡) , (6.25)

where 𝑧𝑗(𝑡) is the 𝑗th particle axial position at time 𝑡 due to the Brownian motion
generated using normally distributed steps with 𝜎 = √2𝐷Δ𝑡. The initial particle po-
sitions 𝑧𝑗(0) are uniformly distributed in space. In Eq. (6.25) we have neglected the
effect of the PSF on the scattered field fluctuations [3], considered motion solely in
the depth direction, and assumed that all particles have an identical scattering cross
section. The effects of Brownian motion in the lateral direction can be disregarded
since they occur on a timescale much longer than that assessed with DLS-OCT.



6.3. OCT signal simulations for flow and diffusion

6

121

Inclusion of the noise in the scattered field then leads to [32, 33]

𝐸(𝑧, 𝑡) = 𝐸0(𝑡) + 𝑒𝑖𝜑(𝑡)
√⟨|𝐸0(𝑡)|

2⟩
𝑡

SNR(𝑧) , (6.26)

where 𝜑(𝑡) is a time-dependent random phase angle uniformly distributed between
0 to 2𝜋. Note that this is only a good approximation when SNR ≫ 1 because we
assume that field magnitude fluctuations are negligible and the noise originates
purely from the random phase angle.

6.3.2. Simulation of flow
The scattered field from suspensions flowing perpendicular to the beam optical axis
is simulated by replacing 𝐸0(𝑡) in Eq. (6.26) with

𝐸0(𝑧, 𝑡) =
𝑁𝑝

∑
𝑗=1
𝑒−2𝑖𝑘0𝑛𝑧𝑗(𝑡)𝑒

−2(𝑥𝑗+𝑣(𝑧)𝑡)2

𝑤2(𝑧) 𝑒
−𝑖𝑘0(𝑥𝑗+𝑣(𝑧)𝑡)2

𝑅2(𝑧) , (6.27)

where 𝑣(𝑧) is the depth-dependent transverse bulk velocity, 𝑤(𝑧) is the local beam
waist, 𝑅(𝑧) the radius of curvature of the Gaussian beam, and 𝑥𝑗 is the uniformly
distributed initial random transverse position of 𝑗th particle. The additional factor
2 in the radial PSF function is due to coupling efficiency of the scattered light in a
confocal setup [2, 3, 34].

As we solely model the transverse flow, leading to identical decorrelation re-
gardless of its direction within the transverse plane, we consider only one lateral
dimension, denoted as 𝑥. This allows us to reduce the computational complexity
and the number of required particles to be modeled. The particles are simulated
with random, uniformly distributed 𝑥-positions between −𝐿(𝑧) and +𝐿(𝑧) given by

𝐿(𝑧) =
𝑁𝑝√𝜋𝑤0
4𝑁𝑠(𝑧)

, (6.28)

where 𝑁𝑠(𝑧) is the number of particles in the scattering volume and 𝑁𝑝 is the total
number of simulated particles. Equation (6.28) guarantees that the number of
particles in the scattering volume is always 𝑁𝑠(𝑧) and does not depend on 𝑁𝑝. The
scattering volume (length) for 1D flow simulations is an integral of the intensity
PSF over all space [7, 19] and equals to √𝜋𝑤0/2. Since we confine our modeling
to the 𝑥-dimension spanning from −𝐿(𝑧) to +𝐿(𝑧), as the particles move with the
bulk velocity 𝑣(𝑧) and exit the simulated space, they are reintroduced based on the
periodic boundary conditions.

Simulations using Eq. (6.27) are valid for arbitrary particle concentrations. For
non-dilute particle suspensions with 𝑁𝑠 ≫ 1, the normalized flow autocovariance
functions from Sec. 6.2.2 depend only on the beam waist in focus and are indepen-
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dent of 𝑤(𝑧) and 𝑅(𝑧). In this case Eq. (6.27) simplifies into

𝐸0(𝑧, 𝑡) =
𝑁𝑝

∑
𝑗=1
𝑒−2𝑖𝑘0𝑛𝑧𝑗(𝑡)𝑒

−2(𝑥𝑗+𝑣(𝑧)𝑡)2

𝑤20 , (6.29)

with 𝑤0 being the beam waist in focus. Therefore, the simulations of non-dilute
flowing suspensions do not require a-priori knowledge of any other beam shape
parameter except 𝑤0. Even though the models in this section are given for the
transverse flow, they can be readily extended to incorporate the flow component
along the beam optical axis.

6.4. Materials and Methods
6.4.1. OCT system
The experiments were performed using a Thorlabs GANYMEDE II HR series spectral
domain OCT system, which has been described in detail in our previous works [6, 7].
The acquisition rate was 5.5 kHz for diffusion and dilute flow measurements (low-
speed), and 36 kHz for non-dilute flow measurements (high-speed). The acquired
signal spectrum was measured with a spectrometer with 2048 pixels. The maximum
imaging depth in air is 1.87 µm. After acquisition, the measured spectrum was first
resampled to a linearly-sampled wavenumber domain and then apodized using a
Gaussian filter. After the apodization, the measured coherence function waist in
sample was 𝑤𝑧 = 2.11 µm. We have neglected the effect of a gradient of the axial
velocity on the autocovariance function for two reasons [20]. First, the Doppler
angle in this work is essentially zero (𝜃 ≈ 0). Second, our optical resolution is high
both in axial and transverse directions compared to the flow channel dimensions.
Hence, the flow velocity within PSF can be assumed to be constant.

The OCT system is operated with a scan lens (LSM04-BB, Thorlabs) in a confocal
setup with a manufacturer provided focal spot size of 𝑤0 = 6 µm in air which
was validated by axial confocal response measurements [6, 7]. The system has
NA = 0.05. Depending on the angle of incidence, refractive index contrast and
Gaussian beam parameters, 𝑤0 and 𝑤(𝑧) vary somewhat because of the passage
of the beam through the various interfaces [35]. Therefore, for flow measurements
𝑤(𝑧) and 𝑤0 were calibrated using the procedures described in [6, 7]. Since for
the given OCT setup the coherence length is small and the NA is very low, it can
be assumed that the scattering angle is 180∘ and the scattering wavenumber 𝑞 in
the correlation analysis is constant at 𝑞 = 2𝑛𝑘0.

6.4.2. Averaging strategies
We acquire 𝑁𝑏 separate OCT interference time traces, 𝑆(𝑘0, 𝑡𝑚), each having a
length of 𝑀, to compute 𝑁𝑏 normalized autocovariance functions. Measurements
conducted under identical conditions can be averaged. The processing and aver-
aging steps of DLS-OCT are illustrated in Fig. 6.1. Nonlinear curve fitting is utilized,
truncating the autocorrelation functions when they reach zero and are fully decor-
related. From 𝑁𝑏 measurements, three distinct approaches are used to derive the
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average model parameters:

• This first approach (method 1), represented by the orange arrow, involves
fitting our models to each 𝑔1(𝑧, 𝜏𝑚) and 𝑔2(𝑧, 𝜏𝑚) and subsequently averaging
the resulting 𝑁𝑏 parameters. We denote this method as 𝐷 and 𝑣 for diffusion
and flow measurements, respectively, and it is also referred to as the standard
method by us.

• The second approach (method 2), indicated by the red arrow, is to average 𝑁𝑏
normalized autocovariance functions and perform the curve fitting procedure
on the averaged data. This approach is denoted as 𝐷𝑔 and 𝑣𝑔 for diffusion
and flow measurements, respectively.

• The third approach (method 3), denoted by the blue arrow, is a mixing method
developed by us. It begins by creating an 𝑁𝑏 ×𝑀 matrix containing 𝑁𝑏 statis-
tically independent autocorrelation functions along each row. Subsequently,
the 𝑗th column is circularly shifted by an integer number 𝑗−1, with the shifting
being performed in the same direction for every column. This process gener-
ates a resultant 2D matrix where each row represents a mixed autocorrelation
function containing only one correlation coefficient from any single time trace.
Finally, our models are fitted to the 𝑁𝑏 mixed autocorrelation functions, and
the obtained parameters are averaged. This method is denoted as mixed 𝐷
and mixed 𝑣 for diffusion and flow measurements, respectively. The mixing
method is illustrated in Fig. 6.2 using simple autocorrelation functions with
𝑁𝑏 = 𝑀 = 3. The superscript indicates the statistically independent measure-
ments.

For a single time trace measurement the precision is given by the standard deviation
(𝜎𝐷 and 𝜎𝑣), but when averaging multiple measurements the precision is given by
the standard error of the mean (𝜎average 𝐷 and 𝜎average 𝑣). Averaging 𝑁𝑏 uncorrelated
measurements lowers the variance by a factor of 𝑁𝑏. For positively correlated
measurements, the decrease is slower.

When averaging the fitted model parameters, 𝜎2𝐷 and 𝜎2𝑣 are reduced upon av-
eraging, whereas when averaging the autocorrelation functions, 𝜎2𝑔1 and 𝜎2𝑔2 are

S(k0, tm) E(z, tm)
Standard
g1(z, τm)

I(z, tm)
Standard
g2(z, τm)

g1(z, τm)
g2(z, τm)

Mixed
g1(z, τm)
g2(z, τm)

Nb times
D, v

Nb times
mixed
D, v

Dg, vg

D, v
σD, σv

Mixed
D, v
σD, σv

Method 2
σaverage D

σaverage v

Method 3
σaverage D

σaverage v

Method 1
σaverage D

σaverage v

Repeated
Nb times

Figure 6.1: Data processing steps for obtaining 𝐷 and 𝑣 from OCT data with different averaging tech-
niques.
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setup the coherence length is small and the NA is very low, it can be assumed that the scattering291

angle is 180◦ and the scattering wavenumber 𝑞 in the correlation analysis is constant at 𝑞 = 2𝑛𝑘0.292

4.2. Averaging strategies293

We acquire 𝑁𝑏 separate OCT interference time traces, 𝑆(𝑘0, 𝑡𝑚), each having a length of 𝑀 , to294

compute 𝑁𝑏 normalized autocovariance functions. Measurements conducted under identical295

conditions can be averaged. The processing and averaging steps of DLS-OCT are illustrated in296

Fig. 1. Non-linear curve fitting is utilized, truncating the autocorrelation functions when they297

reach zero and are fully decorrelated. From 𝑁𝑏 measurements, three distinct approaches are used298

to derive the average model parameters:299

• This first approach (method 1), represented by the orange arrow, involves fitting our models300

to each 𝑔1 (𝑧, 𝜏𝑚) and 𝑔2 (𝑧, 𝜏𝑚) and subsequently averaging the resulting 𝑁𝑏 parameters.301

We denote this method as 𝐷 and 𝑣 for diffusion and flow measurements, respectively, and302

it is also referred to as the standard method by us.303

• The second approach (method 2), indicated by the red arrow, is to average 𝑁𝑏 normalized304

autocovariance functions and perform the curve fitting procedure on the averaged data.305

This approach is denoted as 𝐷𝑔 and 𝑣𝑔 for diffusion and flow measurements, respectively.306

• The third approach (method 3), denoted by the blue arrow, is a mixing method developed307

by us. It begins by creating an 𝑁𝑏 × 𝑀 matrix containing 𝑁𝑏 statistically independent308

autocorrelation functions along each row. Subsequently, the 𝑗 th column is circularly shifted309

by an integer number 𝑗 − 1, with the shifting being performed in the same direction for310

every column. This process generates a resultant 2D matrix where each row represents a311

mixed autocorrelation function containing only one correlation coefficient from any single312

time trace. Finally, our models are fitted to the 𝑁𝑏 mixed autocorrelation functions, and313

the obtained parameters are averaged. This method is denoted as mixed 𝐷 and mixed 𝑣 for314

diffusion and flow measurements, respectively. The mixing method is illustrated below315

using simple autocorrelation functions with 𝑁𝑏 = 𝑀 = 3. The superscript indicates the316

statistically independent measurements.317

318
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For a single time trace measurement the precision is given by the standard deviation (𝜎𝐷 and 𝜎𝑣),319

but when averaging multiple measurements the precision is given by the standard error of the320

mean (𝜎average 𝐷 and 𝜎average 𝑣). Averaging 𝑁𝑏 uncorrelated measurements lowers the variance321

by a factor of 𝑁𝑏. For positively correlated measurements, the decrease is slower.322

When averaging the fitted model parameters, 𝜎2
𝐷

and 𝜎2
𝑣 are reduced upon averaging, whereas323

when averaging the autocorrelation functions, 𝜎2
𝑔1 and 𝜎2

𝑔2 are scaled at all time delays and the324

noise is reduced. As Eq. (11,13,15,17) show, multiplying 𝜎2
𝑔1 or 𝜎2

𝑔2 by a constant 𝑁−1
𝑏

at every325

𝜏𝑚 results in the identical scaling of 𝜎2
𝐷

and 𝜎2
𝑣 . This holds true for both uncorrelated and326

correlated random variables. As the averaging sequence does not influence the noise correlation,327

for unbiased or even slightly biased estimators identical overall precision is expected for the first328

Figure 6.2: Schematic overview of the calculation of standard and mixed autocorrelation functions.

scaled at all time delays and the noise is reduced. As Eq. (6.11, 6.13, 6.15, 6.17)
show, multiplying 𝜎2𝑔1 or 𝜎2𝑔2 by a constant 𝑁−1𝑏 at every 𝜏𝑚 results in the identical
scaling of 𝜎2𝐷 and 𝜎2𝑣 . This holds true for both uncorrelated and correlated random
variables. As the averaging sequence does not influence the noise correlation, for
unbiased or even slightly biased estimators identical overall precision is expected
for the first and second approaches. In the third approach, if the autocorrelation
noise at different time delays is correlated, we anticipate that the mixing process
will eliminate the correlation in the noise.

Bias cannot be improved by averaging. However, one of the sources of the bias
is the estimation bias which, according to Sec. 6.2.4, exhibits some random nature.
Hence, mixing or averaging the correlation functions can reduce this variability.
Therefore, we study the bias for all three averaging schemes. The bias is generally
very small compared to the measurement uncertainty, and due to a lack of a-priori
information it can only be quantified using simulations.

6.4.3. Diffusion measurements
For diffusion measurements the acquisition rate was 5.5 kHz which is the high-
est sensitivity setting of our OCT system. All measurements are performed using
monodisperse 50 nm radius silica particles with a volume fraction 𝑓𝑣 ≈ 1%, provided
by CWK (Chemiewerk Bad Köstritz GmbH, Germany). In total 1100 depth-resolved
measurements were performed with a time series length of 4096 points covering
𝑇 = 0.74 s. From this data 1100 correlation functions 𝑔1(𝑧, 𝜏𝑚) and 𝑔2(𝑧, 𝜏𝑚) were
calculated at every depth. For diffusion analysis only the real part of 𝑔1(𝑧, 𝜏𝑚)
was used. Since the OCT sensitivity decreases in depth [36], a usable depth-range
of 0.92 mm was chosen where the fitted diffusion coefficients were constant and
where the single scattering regime holds. The reference diffusion coefficient was
calculated by fitting Eq. (3.3) to the mean ℜ(𝑔1(𝑧, 𝜏𝑚)) and averaging the resulting
diffusion coefficients over the chosen depth range, resulting in 𝐷0 = 4.02 ± 0.02
µm2/s which corresponded to a mean particle radius of 53 nm. The SNR at ev-
ery depth was calculated based on Eq. (3.3) using the fitted 𝐴1(𝑧). Simulations
were performed using the same parameters as input. In total 10000 simulations
were performed for each SNR. Simulated variances were used for calculating the
Cramer-Rao lower bounds using Eq. (6.11) and Eq. (6.13). Precision as a func-
tion of SNR for both diffusion measurements and simulations was determined by
computing the standard deviation and the standard error of the mean in the fit-
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ted diffusion coefficient both when using ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚). The bias for
different averaging schemes was assessed using simulations.

6.4.4. Flow measurements
The flow was generated using a syringe pump with a variable discharge rate (Fusion
100, Chemyx, Inc.). The flow geometry was aligned so that 𝜃 ≈ 0∘. This minimized
the velocity gradient effect on the correlation [20] and simplified the beam waist
calibration. Other than that, the effect of a nonzero Doppler angle on DLS-OCT is
minimal because of similar optical resolutions in axial and transverse directions.

Non-dilute flow measurements
For non-dilute flow measurements we used 20 mL syringe (Terumo Europe NV) and
OCT acquisition rate of 36 kHz. Diluted Intralipid solutions were used as a sample
with a particle volume fraction 𝑓𝑣 ≈ 0.6%. The flow passes through a quartz rectan-
gular flow cell with internal dimensions of 0.2 mm depth and 10 mm width (type 45-
F, Starna Scientific). M-scan 1D measurements were performed at the center width
of the flow cell as a function of depth with discharge rates of 1.5 and 2 mL/min. The
beam focus was moved away from the center depth of the sample to increase the
number of particles in the scattering volume and reduce the effect of number fluctu-
ations [18, 19]. The particle diffusion coefficient and the beam waist in focus were
calibrated using a 𝑔2(𝑧, 𝜏𝑚) based on lateral scanning over the static sample [6] and
were found to be 𝐷 = 1.40 ± 0.09 µm2/s and 𝑤0 = 8.08 ± 0.31 µm, respectively.
The flow speed was determined by fitting Eq. (6.3,6.4) to the measured or simu-
lated first and second-order autocovariance functions. The depth-dependent SNR
was calculated from the fitted autocovariance magnitude. In total 1000 measure-
ments and 10000 simulations were performed with a time series length of 4096.
The average depth-dependent flow velocities and SNR values from measurements
were used as the input for simulations. Simulated variances were used for calculat-
ing the Cramer-Rao lower bounds both for |𝑔1(𝑧, 𝜏𝑚)| and 𝑔2(𝑧, 𝜏𝑚). The bias for
different averaging schemes was also determined using simulations.

Dilute flow measurements
Dilute flow measurements were performed with the second-order normalized au-
tocovariance function using the number fluctuations analysis. The OCT acquisition
rate was 5.5 kHz and a 5 mL syringe (BD Plastipak) was used. Experiments were
performed using a monodisperse suspension of polystyrene particles with volume
fraction 𝑓𝑣 ≈ 0.006% and expected particle radius of 230 − 250 nm, provided by
InProcess-LSP. The flow passes through a quartz rectangular flow cell with inter-
nal dimensions of 0.5 mm depth and 10 mm width (type 45-F, Starna Scientific).
M-scan 1D measurements were performed at the center width of the flow cell as a
function of depth at discharge rates of 0.15 and 0.225 mL/min. In contrast to our
previous work, where only the number fluctuation term was used [7], here we use
the full model from Eq. (6.5).

The particle diffusion coefficient was determined (calibrated) in the stationary
suspension using ℜ(𝑔1(𝑧, 𝜏𝑚)) and Eq. (3.3). The obtained diffusion coefficient of
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Figure 6.3: Obtained (a) beam shape 𝑤(𝑧) and (b) particle volume fraction 𝑓𝑣 as a function of depth.

𝐷0 = 1.00 ± 0.03 µm2/s corresponded to an average particle radius of 220 nm.
The beam shape calibration procedure was identical to that in [7], but the analysis
was slightly different because of using the full autocorrelation model. The SNR at
every depth was calculated by fitting Eq. (6.3) to the measured |𝑔1(𝑧, 𝜏𝑚)|. The
kurtosis was determined using Eq. (6.8). Then 𝐴3(𝑧) was found based on Eq. (6.7)
using the known SNR and kurtosis. Finally, Eq. (6.6) was fitted to the measured
𝑔2(𝑧, 𝜏𝑚) with 𝑁𝑠(𝑧) and 𝑤(𝑧) being the fit parameters and using 𝐴3(𝑧), SNR, and
the measured |𝑔1(𝑧, 𝜏𝑚)|. The obtained beam shape 𝑤(𝑧) was fitted using 𝑤(𝑧) =
𝑤0√1 + (𝑧 − 𝑧0)2/𝑧2𝑅, with 𝑤0, 𝑧0, and 𝑧𝑅 being the free parameters equaling 6.45±
0.02 µm, 187 ± 3 µm and 293 ± 3 µm, respectively. The particle volume fraction
𝑓𝑣 was computed using 𝑤(𝑧), 𝐷0, 𝑤𝑧 and 𝑁𝑠(𝑧) according to [7]. It is given in
Fig. 6.3(a,b) along with the obtained 𝑤(𝑧).

The obtained 𝑤𝑧(𝑧) and 𝑁𝑠(𝑧) were used in subsequent number fluctuation
flow measurements. In total, 750 measurements were performed each with a time
series length of 8192. The flow speed was determined by fitting Eq. (6.5) to the
measured second-order autocovariance function with 𝐴3(𝑧) and 𝑣(𝑧) being the free
parameters. Simulations for the dilute regime were not performed due to the ad-
verse effects of boundary conditions and long computational times. Therefore,
the measured variances were used for calculating the Cramer-Rao bounds. Even
though number fluctuations are only present in 𝑔2(𝑧, 𝜏𝑚), for comparison the CRLB
for |𝑔1(𝑧, 𝜏𝑚)| was also determined.

6.5. Results
6.5.1. DLS-OCT diffusion measurement
Depth dependent diffusion measurements were performed on a static particle sus-
pension. Examples of measured ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚) for SNR = 100 are
shown in Fig. 6.4(a). Observe here that the autocorrelation functions do not os-
cillate around the mean, but, instead, consistently remain above or below it for
some time. From 𝑁𝑏 measured normalized autocovariance curves (signal ACF), the
normalized autocovariances of errors (error ACF) in the measured and simulated
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ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚) were calculated using

𝜌𝑒(𝑧, 𝜏𝑒) =
⟨(𝑔(𝑧, 𝜏𝑚) − 𝑔(𝑧, 𝜏𝑚))(𝑔(𝑧, 𝜏𝑚 + 𝜏𝑒) − 𝑔(𝑧, 𝜏𝑚 + 𝜏𝑒))⟩𝜏𝑚

𝜎2𝑒 (𝑧)
, (6.30)

where 𝑔(𝑧, 𝜏𝑚) is the measured normalized autocovariance function, 𝑔(𝑧, 𝜏𝑚) is its
average from 𝑁𝑏 measurements, and 𝜎2𝑒 (𝑧) is the variance of 𝑔(𝑧, 𝜏𝑚) − 𝑔(𝑧, 𝜏𝑚)
along the 𝜏𝑚 axis.

Figure 6.4(c,d) illustrates that in standard autocorrelation functions, errors at
different time delays exhibit strong correlation. This means that the magnitude
and direction of errors in ℜ(𝑔1(𝑧, 𝜏𝑚)) or 𝑔2(𝑧, 𝜏𝑚) at small 𝜏𝑚 significantly affect
the errors at larger 𝜏𝑚, which can be observed from the fact that any single autocor-
relation function is consistently above or below the mean autocorrelation function.
As described in Sec. 6.4.2, we implement a novel way of reducing these correlations
or even completely eliminating them by mixing different autocorrelation functions
at every 𝜏𝑚. The number of independent autocorrelation functions used for mixing
is denoted by 𝑁mix. To fully get rid of the correlations 𝑁mix must be greater or equal
to the number of sampling points it takes for ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚) to go to
zero. For 𝑔2(𝑧, 𝜏𝑚) it takes fewer realizations to eliminate correlations because it
decays twice as fast.

Figure 6.4(b-d) show that for a single fully mixed ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚)
with sufficiently large 𝑁mix the errors at different 𝜏𝑚 are completely uncorrelated.
As a result, the measured mixed autocorrelation data oscillate approximately around
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the mean as a function of 𝜏𝑚. With standard (unmixed) measurements, as shown
in Fig. 6.4(a), error ACF is nonzero and every measured ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚)
deviates from the mean autocorrelation function. Figure 6.4(c,d) show that once
the autocorrelation functions are sufficiently mixed (e.g. 𝑁mix = 32), error ACF
becomes a delta function. At intermediate mixing ratios (𝑁mix = 4) error ACF
becomes periodic as the correlations reappear at later time points.

Precision in diffusion estimation
Next, we look at the diffusion estimation precision from a single autocorrelation
measurement. To estimate the precision, the autocorrelation variance at every time
delay needs to be known. Figure 6.5(a,b) show measured, simulated, and analytical
variances from Eq. (6.12,6.14) for the diffusive ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚) at differ-
ent SNR values. All three match relatively well with each other. The variances are
higher for larger SNR values, but, in this case the correlation coefficients are also
larger. Even though the variances of ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚) are comparable at
larger time delays, 𝜎2𝑔2(𝑧, 𝜏𝑚) is significantly larger at small 𝜏𝑚. The different shape
of 𝜎2𝑔2(𝑧, 𝜏𝑚) and its sharp increase at small 𝜏𝑚 is due to the mean subtraction from
the intensity time series.

Figure 6.6(a,b) show measured and simulated standard deviations in the fitted
diffusion coefficient from a single correlation function, as well as the Cramer-Rao
lower bound calculated with Eq. (6.11) and (6.13), where the 𝑧-dependence is con-
verted to SNR. The results are based on 10000 simulations and 1100 measurements.
Here 𝐷0 was calculated from the measured ℜ(𝑔1(𝑧, 𝜏𝑚)) as described in Sec. 6.4.3
and subsequently used as input for simulations. The obtained 𝜎𝐷 strongly depends
on whether the errors in our normalized autocovariance functions are correlated.
The obtained 𝜎𝐷 from the standard measurements is several factors larger than the
Cramer-Rao lower bound. After mixing the resulting 𝜎𝐷 matches very well with the
Cramer-Rao bound and we achieve the most precise determination of the diffusion
coefficient possible. The measured and simulated 𝜎𝐷 overlap each other except
for 𝑔2(𝑧, 𝜏𝑚) at very low SNR values. Here the simulations underestimates the er-
ror. The lowest spread in the fitted 𝐷, given by 𝜎𝐷, is obtained when mixing the
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normalized autocovariance functions for removing the error correlations. However,
this requires many measurements, as shown in Fig. 6.6(a,b), and is therefore less
relevant for practical applications with few measurements. Typically, the number
of DLS-OCT measurements is on the order of 5-10.

Figure 6.7(a,b) show the standard deviation (spread) in the diffusion coefficient
obtained from fitting a single correlation function as a function of the number of
measurements 𝑁𝑏. For conventional DLS-OCT measurements without mixing, 𝜎𝐷
is constant as expected for independent measurements. When employing auto-
correlation mixing we see that 𝜎𝐷 decreases with increasing 𝑁𝑏 until reaching the
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CRLB and after which it remains constant with 𝑁𝑏. For 𝑔2(𝑧, 𝜏𝑚) it takes fewer
measurements for 𝜎𝐷 to reach the CRLB.

In DLS-OCT measurements are averaged to improve the precision. In this case
the measurement precision is given by the standard error of the mean, 𝜎average 𝐷.
Figure 6.7(c) shows simulated and measured standard error of the mean diffusion
coefficient, 𝜎average 𝐷, as a function of 𝑁𝑏 for different averaging techniques. The
standard error of the mean is identical for all three averaging methods, even though
𝜎𝐷 itself is different depending on error correlations. The decrease is proportional
to 𝑁𝑏−1/2. Figure 6.7(d) shows how 𝜎average 𝐷 is related to 𝜎𝐷 for the three different
averaging techniques. For the standard analysis we see that 𝜎average 𝐷 =

𝜎𝐷
√𝑁𝑏

for

both averaging methods. However, when mixing the normalized autocovariance
functions, we notice that 𝜎average 𝐷 >

𝜎𝐷
√𝑁𝑏

as the fitted diffusion coefficients now

become statistically interdependent. Here 𝜎average 𝐷 initially decreases very slowly
with 𝑁𝑏 and then starts to reduce faster above a certain 𝑁𝑏. This coincides with
the 𝑁𝑏 at which the CRLB is reached in Fig. 6.7(a,b). In Fig. 6.7(d) there is a small
discrepancy between measurements and simulations at large 𝑁𝑏 which caused by
the lack of sufficient number of averaged measurements.

Bias in diffusion estimation
The bias in the average diffusion coefficient is determined by comparing the aver-
aged 𝐷 to a ground truth. We average 1100 and 10000 values of 𝐷 in measure-
ments and simulations, respectively. With this large set of averages we can assume
that the random errors are negligible and only the systematic errors remain. Fig-
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Figure 6.8: Diffusion coefficients as a function of SNR and averaging scheme determined using (a,b)
measurements and (c,d) simulations.
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ure 6.8(a,b) shows the measured diffusion coefficients as a function of SNR for
both ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚) with different averaging schemes. Figure 6.8(c,d)
show the same results but obtained using simulations. In this case the input 𝐷0 is
also displayed. Both in measurements and simulations we can observe that mixing
different correlation functions slightly reduces the bias. However, the lowest bias is
obtained for 𝐷𝑔̄ when averaging the correlation functions. This is more evident for
𝑔2(𝑧, 𝜏𝑚). The differences for the three techniques are minimal for ℜ(𝑔1(𝑧, 𝜏𝑚)).
Overall, the bias is much smaller and less affected by SNR when using ℜ(𝑔1(𝑧, 𝜏𝑚))
compared to 𝑔2(𝑧, 𝜏𝑚).

Trends from both measurements and simulations in Figures 6.8(a,b) and 6.8(c,d)
are similar, however for the measurements we lack a-priori knowledge of the ground
truth 𝐷0. Therefore, it is not possible to compare the bias directly between mea-
surements and simulations. This can be rectified on a relative basis by not com-
paring the absolute deviation from 𝐷0, but the relative bias with respect to the
most accurate method (correlation averaging). Figure 6.9(a,b) displays the rela-
tive bias when averaging the fitted diffusion coefficients with respect to averaging
ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚) first and then fitting the diffusion coefficient. The ob-
tained measurements and simulations are in perfect agreement except for 𝑔2(𝑧, 𝜏𝑚)
at very low SNR values. This emphasizes the reliability of our simulations and that
they can be used for determining the absolute bias.

The bias of the mean diffusion coefficient from Fig. 6.8(c,d) is determined
by averaging over a large number of simulations. Figure 6.10(a,b) show simu-
lated systematic errors as a function of the number of averaged measurements
𝑁𝑏 for ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚). For ℜ(𝑔1(𝑧, 𝜏𝑚))the bias is very low and al-
most independent of 𝑁𝑏, as expected. The bias is more significant for 𝑔2(𝑧, 𝜏𝑚).
Figure 6.10(b) shows the estimation bias due to mean subtraction modeled us-
ing Eq. (6.22). This is the main source of bias for 𝑔2(𝑧, 𝜏𝑚) which is absent in
ℜ(𝑔1(𝑧, 𝜏𝑚)). The estimation bias also contains a random component which aver-
ages out with increasing number of measurements. As a result, the bias in 𝑔2(𝑧, 𝜏)
initially decreases with 𝑁𝑏 until reaching the minimum and then remains constant.
Overall, the bias is minimal when averaging the autocorrelation functions. The
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second best technique is mixing the autocorrelation functions before the curve fit-
ting and averaging the fitted diffusion coefficients. The worst approach is to the
fit model parameters to the standard autocorrelation functions and then average
them.

6.5.2. Non-dilute DLS-OCT flow measurement
Precision analysis of flow was performed for DLS-OCT |𝑔1(𝑧, 𝜏𝑚)| and 𝑔2(𝑧, 𝜏𝑚)
measurements of a laminar transverse flow corrected for diffusion. Figure 6.11(a,b)
show measured and simulated variances at different flow speeds in the channel,
good agreement between the two is observed. The variances are higher with lower
flow speeds, but do not depend much on the SNR. The highest SNR value in the
channel was above 100, and the lowest was 6. This is sufficiently high to neglect the
SNR dependence of 𝜎𝑣 for plotting purposes and display it only as a function of the
flow speed. Velocity profiles, shown in Fig. 6.12(a), were obtained by averaging the
measured correlation functions and were subsequently used as ground-truth input
for simulations.

Figure 6.12(c,d) show measured and simulated standard deviation in the fitted
flow speed as a function of velocity. Results are obtained using both the standard
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method with correlated errors and the mixing technique with uncorrelated errors
are given. Similar to diffusion, mixing decreases the spread in the obtained velocity.
For comparison, the Cramer-Rao lower bounds for 𝑔2(𝑧, 𝜏𝑚) and |𝑔1(𝑧, 𝜏)|, calcu-
lated using Eq. (6.15) and (6.21), are also displayed. The theoretical Cramer-Rao
bound for |𝑔1(𝑧, 𝜏)| is lower than for 𝑔2(𝑧, 𝜏𝑚). For both methods there is a good
agreement between measurements and simulations. The obtained 𝜎𝑣 from mea-
surements and simulations is significantly improved when mixing removes the error
correlations and matches well with the Cramer-Rao bound, especially for 𝑔2(𝑧, 𝜏𝑚).
In general, the standard deviation in the flow speed decreases with lower velocities.
However, it does not decrease to zero and has a certain minimum value. Below
the threshold velocity 𝜎𝑣 starts to increase because of diffusion. This is only clearly
visible when the errors are not correlated.

Figure 6.12(b) displays the simulated bias for different averaging schemes both
for |𝑔1(𝑧, 𝜏)| and 𝑔2(𝑧, 𝜏𝑚). The bias was calculated with respect to the simulation
input which included both depth-dependent velocity and SNR profiles. The sim-
ulated bias is lowest when averaging the complex 𝑔1(𝑧, 𝜏𝑚), taking the absolute
value and then fitting 𝑣(𝑧). This is denoted by the black curve. The second lowest
bias is obtained when averaging 𝑔2(𝑧, 𝜏𝑚) and then fitting 𝑣(𝑧) or when mixing
𝑔2(𝑧, 𝜏𝑚), fitting and averaging 𝑣(𝑧). In this case the errors are identical and given
by the red curve. This approach is only marginally less accurate than the former
method. The third best method relies on using the standard 𝑔2(𝑧, 𝜏𝑚), fitting and
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then averaging 𝑣(𝑧). This approach is less accurate than the second best method
only at low flow speeds. The largest bias is obtained when using |𝑔1(𝑧, 𝜏)| to fit
𝑣(𝑧) and then average the obtained velocities. In this case the sample population
is significantly skewed and the mixing method has virtually no effect.

6.5.3. Dilute DLS-OCT flow measurement
Similar to non-dilute, we analyse precision of dilute DLS-OCT flow measurements
where the effect of diffusion is absent in 𝑔2(𝑧, 𝜏𝑚). Also for this case we ob-
tained the variance of the correlation function for different flow speeds. The results
look similar to the non-dilute case, except there is no overshoot at small 𝜏𝑚. Fig-
ure 6.13(a,b) show dilute flow measurements using the second-order normalized
autocovariance function incorporating the number fluctuations. Velocity profiles are
shown in Fig. 6.13(a) which were again obtained by averaging the measured corre-
lation functions. The lowest SNR value in the channel was again around 6, and the
highest was above 100. In Fig. 6.13 we have again neglected the SNR dependence
for the same reasons as mentioned in Sec. 6.5.2 and plot 𝜎𝑣 only as a function of
the velocity.

Figure 6.13(b) shows the measured standard deviation in the fitted flow speed
as a function of velocity. Results using both the standard 𝑔2(𝑧, 𝜏𝑚) with correlated
errors and the mixed 𝑔2(𝑧, 𝜏𝑚) with uncorrelated errors are given. Measurements
using |𝑔1(𝑧, 𝜏𝑚)| are not shown because they are too noisy and have a significantly
larger 𝜎𝑣. For comparison, the Cramer-Rao lower bounds for 𝑔2(𝑧, 𝜏𝑚), calculated
with Eq. (6.17), and |𝑔1(𝑧, 𝜏𝑚)|, calculated with Eq. (6.21), are also displayed. Here
we used the measured variances of 𝜎2𝑔2(𝑧, 𝜏𝑚) and 𝜎2|𝑔1|(𝑧, 𝜏𝑚) for calculating the
Cramer-Rao lower bounds. The Cramer-Rao bound for 𝑔2(𝑧, 𝜏𝑚) is considerable
lower than for |𝑔1(𝑧, 𝜏𝑚)| and agrees very well with our measurements. When
using 𝑔2(𝑧, 𝜏𝑚) the velocity standard deviation decreases, with decreasing veloc-
ity, to zero. However, this is not the case with |𝑔1(𝑧, 𝜏𝑚)|. As the Cramer-Rao
lower bound shows, 𝜎𝑣 increases dramatically at lower flower speeds when using
|𝑔1(𝑧, 𝜏𝑚)|. This happens because |𝑔1(𝑧, 𝜏𝑚)| in Eq. (6.3) is ultimately limited by
particle diffusion and is independent of number fluctuations. The second-order

0.0 0.1 0.2 0.3 0.4 0.5
Depth [mm]

0.00

0.25

0.50

0.75

1.00

1.25

V
e
lo

ci
ty

[m
m

/
s]

a)

Q = 0.225 mL/s
Q = 0.150 mL/s

0.25 0.50 0.75 1.00
Velocity [mm/s]

0.00

0.05

0.10

0.15

σ
v

[m
m

/
s]

Measured

Measured, mixedCRLBg2

CRLB|g1|

b)

Figure 6.13: Dilute flow measurements. (a) Measured flow profiles using 𝑔2(𝑧, 𝜏𝑚). (b) Measured 𝜎𝑣
using 𝑔2(𝑧, 𝜏𝑚) and the corresponding CRLB.



6.6. Discussion

6

135

normalized autocovariance function in Eq. (6.5), on the other hand, contains the
number fluctuation term that is independent 𝐷. This increases the velocity precision
for this method at extremely low flow speeds. For number fluctuation DLS-OCT no
bias analysis is performed because of boundary condition limitations and increasing
computational complexity of our simulations.

6.6. Discussion
In this work we review autocorrelation averaging and mixing techniques for reduc-
ing random and systematic errors. In the absence of an analytical model for error
correlations, only using the mixing method suggested by us, it is possible to quan-
tify the precision in DLS-OCT and verify whether the CRLB is reached. In diffusion
measurements using the average real part of 𝑔1(𝑧, 𝜏𝑚) results in the highest accu-
racy and precision. In flow measurements it is more reliable and convenient to use
the average 𝑔2(𝑧, 𝜏𝑚) because it is not affected by the sampling distribution bias,
does not depend on phase and can be implemented in phase-unstable systems. It
is important to note that mixing and/or averaging of the autocorrelation functions
can only be performed using the autocorrelation functions with the same SNR (and
identical optical or sample properties). For single scattering diffusion measurements
where 𝐷 is constant as a function of depth (SNR), we can also average the mea-
surements with different signal-to-noise ratios. In this case the measured 𝑔1(𝑧, 𝜏𝑚)
and 𝑔2(𝑧, 𝜏𝑚) first have to be noise-corrected [13] before any further processing.

6.6.1. DLS-OCT diffusion estimation
Random error correlations in ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚) are the main reason for
𝜎𝐷 not reaching the theoretical Cramer-Rao bound. Once these correlations are re-
moved by mixing, the standard deviation in the fitted diffusion coefficient is reduced
significantly and reaches the CRLB. The improvement is bigger for larger SNR val-
ues since ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚) are lower in the presence of more noise and
hence the random errors are less correlated. The improvement with mixing is less
for 𝑔2(𝑧, 𝜏𝑚) because it decays faster and therefore correlations play less of a role
in the precision. We can conclude that faster decorrelations and smaller autocovari-
ance magnitudes, i.e., more noisy measurements, are less affected by mixing. We
have not derived analytical expressions for 𝜌𝑒, but our observations suggest that
it depends on the autocorrelation decay rate and also experiences a delta function
noise decorrelation at 𝜏𝑚 = 0.

Even though the improvement in 𝜎𝐷 due to mixing is significant, practical ap-
plications of the mixing technique for increasing the measurement precision are
limited. In order to reduce some of the error correlations we need at least two
measurements. Mixing just 2 measurements already provides us with a significant
improvement in 𝜎𝐷. However, the precision of the average diffusion coefficient
when using multiple measurements is given by the standard error of the mean,
𝜎average 𝐷, which is identical for all averaging techniques with or without mixing the
correlation functions. So, even though 𝜎𝐷 is significantly lower when mixing the
autocorrelation functions, it does not decrease as fast with averaging because the
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mixed autocorrelation functions are not statistically independent anymore. As a re-
sult, the fitted diffusion coefficients are also interdependent and 𝜎average 𝐷 ≠

𝜎𝐷
√𝑁𝑏

.

When ℜ(𝑔1(𝑧, 𝜏𝑚)) or 𝑔2(𝑧, 𝜏𝑚) are not mixed, 𝜎average 𝐷 is proportional to 𝑁−1/2𝑏
because every fitted 𝐷 is independent. With mixing we basically move the error
correlations from ℜ(𝑔1(𝑧, 𝜏𝑚)) and 𝑔2(𝑧, 𝜏𝑚) to the fitted 𝐷. Therefore, the ac-
tual measurement precision is identical for all averaging methods and cannot be
improved any further.

We noticed that systematic errors are much larger when using 𝑔2(𝑧, 𝜏𝑚) com-
pared to ℜ(𝑔1(𝑧, 𝜏𝑚)) and are dominated by the estimation bias. Averaging 𝑁𝑏
measurements slightly reduces the bias in 𝑔2(𝑧, 𝜏𝑚) but only to a certain limit, be-
yond which the errors remain constant. This is probably caused by variability and
randomness in the estimation bias which averages out and diminishes with increas-
ing 𝑁𝑏. We have mentioned that in phase-stable systems it is always preferable to
utilize ℜ(𝑔1(𝑧, 𝜏𝑚)) instead of |𝑔1(𝑧, 𝜏)|. Using |𝑔1(𝑧, 𝜏)| adversely affects the bias
because the autocorrelation coefficients are always positive. This leads to a higher
sampling distribution bias which is otherwise negligible. Overall, random errors are
larger than systematic errors unless we average thousands of measurements.

There is an asymptotic dependence of precision and bias on SNR. Therefore,
the benefits of using extremely high signal-to-noise ratios are rather limited. As
Fig. 6.6(b) and Fig. 6.9(b) show, there is a mismatch between simulations and
measurements at very low SNR when using 𝑔2(𝑧, 𝜏𝑚). This is caused by the specific
noise model used in our simulations [33] that is based on the assumption that the
signal intensity is much larger than the noise intensity. However, this assumption
is not valid at low SNR values. As a result, this noise model overestimates 𝐴2(𝑧) at
low SNR values, leading to the lower 𝜎𝐷.

6.6.2. DLS-OCT flow estimation
Both in dilute and non-dilute flow measurements, the standard deviation (spread)
in the fitted velocity is significantly reduced when the error correlations are re-
moved. In non-dilute flows, 𝜎𝑣 decreases with decreasing velocity and then starts
to increase at very low flow speeds. A minimum in the error occurs because the
diffusive limit is reached. At this stage, any further reduction in the velocity does
not affect autocorrelation functions or their variances. According to Eq. (6.15), the
velocity is explicitly included in the denominator of 𝜎2CRLB, 𝑣. As a result, 𝜎𝑣 starts
to increase when the diffusive limit is reached. This behaviour is overshadowed by
error correlations and is only visible when employing correlation function mixing.

For non-dilute flow the Cramer-Rao bound for 𝑔2(𝑧, 𝜏) is slightly lower than the
simulated 𝜎𝑣 at larger velocities, which itself is marginally lower than the measured
𝜎𝑣. The difference between simulations and the Cramer-Rao bound is probably be-
cause of the Siegert approximation. In this case, the approximate number of parti-
cles in the scattering volume is around 49 both in simulations and measurements.
This could be sufficiently low to violate the large number of particle assumption and
have a small effect on 𝑔2(𝑧, 𝜏𝑚). Furthermore, the offset between measurements
and simulations can be caused by galvo or pump instabilities. The Cramer-Rao
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bound of |𝑔1(𝑧, 𝜏)| shows that on paper it is possible to achieve higher precision
in non-dilute flow measurements when using 𝑔1(𝑧, 𝜏) instead of 𝑔2(𝑧, 𝜏). However,
in practice this is more problematic. The mismatch among measurements, simula-
tions and the Cramer-Rao bound at all velocities is considerably larger for |𝑔1(𝑧, 𝜏)|
compared to 𝑔2(𝑧, 𝜏). This is largely caused by the bias of the sampling distribution
and the limited phase stability.

Theoretically, the lowest bias in non-dilute flow measurements can also be
achieved when using |𝑔1(𝑧, 𝜏)| by averaging the complex autocorrelation functions
first, then taking the absolute value, and then fitting 𝑣(𝑧). However, getting rid
of the sampling distribution bias when taking the absolute value requires sufficient
averaging of the complex 𝑔1(𝑧, 𝜏𝑚). In our work we averaged 1000 autocorre-
lation functions which in real-time flow measurements is impossible. Insufficient
averaging will result in oscillations with |𝑔1(𝑧, 𝜏𝑚)| > 0. In this work we have not
investigated the dependence of the sampling distribution bias on the number of
measurements. However, it is clear that with fewer measurements it is preferred
to use 𝑔2(𝑧, 𝜏) as it does not suffer from the population skewness.

Similar to diffusion, random velocity errors in flow measurements are also gener-
ally larger than systematic errors. However, at very low speeds both errors become
comparable. Despite some advantages of |𝑔1(𝑧, 𝜏𝑚)|, for practical reasons it is more
convenient to use 𝑔2(𝑧, 𝜏𝑚) in non-dilute flows. In dilute low-speed flows it is always
preferable to use 𝑔2(𝑧, 𝜏𝑚) because it is not limited by the particle diffusion.

6.7. Conclusion
We have investigated precision and bias of diffusion coefficient and flow speed
measurements using DLS-OCT based on the first and second-order normalized au-
tocovariance functions. We found that errors in the autocovariance functions are
strongly correlated. This significantly reduces the precision and bias of fit param-
eters and prevents us from reaching the Cramer-Rao lower bound. We demon-
strated that mixing different autocovariance functions at every time delay before
the curve fitting procedure reduces the standard deviation in the fitted parameters
and reaches the Cramer-Rao lower bound. This proves the validity of our DLS-OCT
models. When using the mixing technique the correlations are transferred to the
fitted parameters and the standard error of the mean remains unchanged. We con-
clude that the precision in DLS-OCT is identical for all averaging techniques and
ultimately limited by correlations between the random variables. The bias is lowest
when averaging the measured normalized autocovariance functions before fitting
the model parameters.

Data availability
Data underlying the results presented in this paper and the relevant analysis rou-
tines are available at [37].
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7
Measuring particle diffusion
in multiple scattering media

using dynamic light
scattering optical coherence

tomography

In this study we conducted dynamic light scattering optical coherence tomog-
raphy (DLS-OCT) simulations and measurements to investigate multiple scat-
tering in Intralipid 20% and 10 wt.% polystyrene suspension. Our analysis of
autocorrelation functions revealed significant deviations from single exponen-
tial decay at intermediate path lengths and scattering events. By employing
a double exponential fit model, we enhanced the accuracy of diffusing wave
spectroscopy (DWS) estimate and expanded the path-length range suitable
for reliable determination of single scattering diffusion coefficient. Addition-
ally, we utilized OCT intensity attenuation to derive concentration-dependent
scattering coefficients. Intralipid exhibited behavior consistent with single
scattering models up to a depth of 0.5 mm, yielding a well-matched attenu-
ation coefficient. In contrast, the polystyrene suspension, characterized by
stronger multiple-scattering effects, posed challenges in accurately determin-
ing its attenuation coefficient.
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7.1. Introduction
Dynamic light scattering optical coherence tomography (DLS-OCT) relies on the
autocorrelation of fluctuations in the scattered light signal and coherence gating
to obtain depth-resolved information about the diffusive and directional motion of
particles. Without particle flow and in the single scattering limit, the decay rate of
the exponentially decaying autocorrelation function is proportional to the particle
diffusion coefficient. Coherence gating suppresses multiple scattering and allows for
the study of diffusive dynamics at large depths and in concentrated samples [1–3]
within the single-scattering regime, where light is scattered once before detection.

Coherence gating in DLS-OCT does not fully suppress multiple scattering, but
more importantly, its possibility for path-length-resolved diffusion estimation en-
ables the determination of the single and multiple scattering regimes from the
depth-resolved data. Bizheva et al. [2] showed that at small path lengths, single
scattering dominates, resulting in a constant autocorrelation decay rate with depth,
while at large path lengths, light is fully diffuse and scatters multiple times before
detection. In this multiple-scattering regime, the autocorrelation decay rate is de-
scribed by diffusive wave spectroscopy (DWS) theory [4, 5] and increases linearly
with path length.

However, there is a transition region at intermediate path lengths, where light
has scattered more than once but is not yet diffuse. In this region, neither single
scattering nor multiple scattering DWS theory accurately describes the autocorrela-
tion decay rate. In this work, we employ a combined single and multiple scattering
model to improve diffusion estimation for an intermediate number of scattering
events. We perform both simulations and measurements in dense particle suspen-
sions to show that the autocorrelation function in this transitional regime is not
purely single exponential. The use of a double exponential fit model improves the
DWS estimate and extends the path-length range where the single-scattering ap-
proach can be used. We also performed OCT intensity attenuation measurements
to determine scattering coefficient, which provides additional insight into the scat-
tering anisotropy of the sample.

7.2. Theory
The geometry for OCT diffusion and attenuation coefficient measurements is de-
scribed in [6, 7], see Figs. 3.1 and 4.1. The optical beam is described by a Gaussian
beam along the 𝑧-direction. The path length travelled by light in the sample is given
by 𝑠, where 𝑠 = 2𝑧 in the single scattering limit where 𝑧 denotes the physical depth
of the sample from the interface. We assume that the diffusion process is station-
ary.

7.2.1. DLS-OCT in the multiple scattering regime
For a particle suspension, the path-length dependent first-order temporal autocor-
relation of the backscattered OCT complex-valued signal due to particle diffusion is
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given by [8–12]

𝑔1(𝑠, 𝜏) =
⟨𝐸(𝑠, 𝑡)𝐸∗(𝑠, 𝑡 + 𝜏)⟩𝑡

⟨𝐼(𝑠, 𝑡)⟩𝑡
= 𝐴(𝑠)𝑒−Ω(𝑠)𝜏 , (7.1)

where 𝐸(𝑠, 𝑡) is the path-length and time-dependent complex-valued OCT signal,
𝐼(𝑠, 𝑡) is the OCT signal intensity, 𝜏 is the autocovariance time lag, 𝐴(𝑠) is the
autocovariance amplitude containing the effect of depth-dependent signal-to-noise
ratio [12] (see definition in Eq. 6.1), and Ω(𝑠) is the autocorrelation decay rate.
Within the single scattering approximation, the autocorrelation decay rate does not
depend on the path length and is given by

Ω(𝑠) = 𝐷𝑞2 , (7.2)

where 𝐷 is the particle diffusion coefficient, and 𝑞 = 2𝑛𝑘0 represents the scattering
wavenumber for the OCT backscattering probe configuration with the incident light
wavenumber in vacuum 𝑘0 and the medium refractive index 𝑛. The autocorrelation
of a mean-subtracted OCT intensity within the Siegert approximation is then given
by [13, 14]

𝑔2(𝑠, 𝜏) = 𝐴(𝑠)2𝑒−2Ω(𝑠)𝜏 . (7.3)

In an optically dense medium where light undergoes multiple scattering events
before detection, Eq. (7.2) is no longer valid. For fully diffuse incident light, the
decay rate of the autocorrelation is given by [2, 4, 5]

Ω(𝑠) = 2𝑛2𝑘20𝐷
𝑠
𝑙∗ , (7.4)

where 𝑙∗ denotes the photon transport mean free path. The photon transport mean
free path 𝑙∗ is related to the photon mean free path 𝑙 through [5]

𝑙∗ = 𝑙
⟨1 − cos𝜃⟩ =

𝑙
1 − 𝑔 , (7.5)

where 𝜃 represents the scattering angle, 𝑔 = ⟨cos𝜃⟩ is the scattering anisotropy,
and ⟨...⟩ denotes an ensemble average over many scattering events. The inverse of
the photon mean free path is called the scattering coefficient, denoted as 𝜇𝑠 = 𝑙−1.
Similarly, the inverse of the photon transport mean free path is known as the re-
duced scattering coefficient, 𝜇∗𝑠 = 𝑙∗−1. In Eq. (7.4) and (7.5), all quantities pertain
to single-particle properties (independent scattering) and do not include dependent
scattering effects [4, 5, 15]. Standard DLS measurements are not path-length re-
solved and require integration of Eq. (7.4) over all path lengths to determine the
scattering rate. However, in DLS-OCT, the signal is obtained as a function of path
length, which enables the use of Eq. (7.4) to describe the path-length dependent
decorrelation rate.

In DLS-OCT, both single-scattered and multiple-scattered contributions are de-
tected where the relative contribution of each depends on various optical and sam-
ple parameters [16]. The autocorrelation decay rate of single-scattered light is
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constant as a function of path length, whereas for multiple-scattered light, it in-
creases with path length as described in Eq. (7.4). Carminati et al. [17] suggested
splitting the temporal autocorrelation function 𝑔1(𝑧, 𝜏) into single and multiple scat-
tering terms,

𝑔1(𝑠, 𝜏) = 𝐴𝑠(𝑠)𝑒−𝐷𝑞2𝜏⎵⎵⎵⎵⎵⎵⎵⎵⎵
single scattering

+ ∑
𝑚>1

𝐴𝑚(𝑠)𝑒−2𝑚𝑛
2𝑘20𝐷

𝑙
𝑙∗ 𝜏

⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
multiple scattering

, (7.6)

where 𝑚 is the number of scattering events. The average number of scattering
events is related to the path length through ⟨𝑚⟩ = 𝑠

𝑙 . Even though for a given
path length ⟨𝑚⟩ takes on a single value, this restriction does not apply to the in-
teger 𝑚, leading to an infinite number of exponentials in Eq. (7.6). Hence, using
Eq. (7.6) with infinitely many exponentials as a fit model is problematic. From our
experience, a double exponential model is sufficient to fit any DLS-OCT first-order
autocorrelation function [18]. Adding a third or higher-order exponential cannot
capture any further details of the autocorrelation function and merely increases the
fit uncertainty. A more advanced method would be to use Laplace analysis, sim-
ilar as has been used in determining particle size polydispersity [19]. Hence, we
introduce a double exponential fit model

𝑔1(𝑠, 𝜏) = 𝐴1(𝑠)𝑒−Ω1(𝑠)𝜏⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
slower mode

+𝐴2(𝑠)𝑒−Ω2(𝑠)𝜏⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
faster mode

, (7.7)

where Ω1 and Ω2 are the decay rates for single scattering and higher-order scat-
tering processes, respectively, and 𝐴1 and 𝐴2 are the corresponding exponential
amplitudes. We expect Eq. (7.7) to describe 𝑔1(𝑠, 𝜏) from samples transitioning to
multiple scattering better than Eq. (7.1). Similarly, the simplified second-order nor-
malized autocovariance function, containing only two exponential decays, can be
expressed as follows:

𝑔2(𝑠, 𝜏) = 𝐵1(𝑠)𝑒−2Ω1(𝑠)𝜏⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
slower mode

+𝐵2(𝑠)𝑒−2Ω2(𝑠)𝜏⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
faster mode

, (7.8)

where 𝐵1 and 𝐵2 denote the exponential amplitudes.

7.2.2. Intensity attenuation
The decorrelation rate Ω in the multiple scattering limit depends on the photon mean
free path 𝑙, which is the inverse of 𝜇𝑠, the independent scattering coefficient that
determines OCT signal attenuation in depth. However, 𝜇𝑠 can only be used to model
signal attenuation in a concentration-independent scattering regime. To estimate
OCT intensity attenuation in samples with high particle concentration, dependent-
scattering effects due to interactions between scatterers must be considered. In
concentrated particle suspensions, the attenuation can be very strong and is the
most dominant factor in the intensity reduction of the single scattered light in the
sample. For dependent scattering in concentrated suspensions, the OCT intensity
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inside the sample is given by [20–26]

𝐼(𝑧) = 𝐼0 ⋅ 𝑒−2𝜇
dep
𝑠 𝑧⎵⎵⎵⎵⎵⎵

attenuation
× (sin

(𝛿𝑘 ⋅ 𝑧 ⋅ 𝑛) ⋅ 𝑒−2𝑧2𝑛2𝜎2𝑟
𝑧 ⋅ 𝑛 )

2

⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
roll-off

× (1 + (𝑧 − 𝑧0𝛼 ⋅ 𝑧𝑅
)
2
)
−1

⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
confocal

, (7.9)

where 𝜇dep𝑠 is the concentration-dependent scattering coefficient, which accounts
for wavefield interactions from light scattered from different particles in the medium,
including interference effects and spatial correlations in particle positions that mod-
ify the scattering behavior compared to the independent scattering regime. The
spectral width of the pixel is denoted by 𝛿𝑘, while 𝜎𝑟 represents the spectral reso-
lution in terms of the standard deviation of the Gaussian lineshape [24]. In addition,
𝑧0 is the focus position, 𝑧𝑅 = 𝑛𝑘0𝑤20/2 is the Rayleigh length, and 𝛼 is a scaling
factor of the Rayleigh length [25, 27]. The intensity roll-off factor arises from 𝑘-
domain integration and the finite spectral resolution [24], and the confocal factor
describes the depth-dependent light collection efficiency of the focused Gaussian
beam [25].

The exponent of the attenuation term in Eq. (7.9) should contain 𝜇dep𝑠 + 𝜇𝑎,
where 𝜇𝑎 is the sample absorption coefficient. However, for samples used in this
work 𝜇dep𝑠 ≫ 𝜇𝑎, allowing us to neglect the effect of absorption. Therefore, for
spherical scattering particles, the total attenuation coefficient equals the dependent
scattering coefficient 𝜇dep𝑠 and is given by

𝜇dep𝑠 = 3𝑓𝑣
2𝑎3 ∫

𝜋

0
𝜎𝑠(𝜃)𝑆(𝑓𝑣 , 𝜃) sin𝜃 𝑑𝜃 , (7.10)

where 𝑓𝑣 is the particle volume fraction, 𝑎 is the particle radius, 𝜎𝑠(𝜃) is the dif-
ferential scattering cross-section, which can be determined using Mie theory, and
𝑆(𝑓𝑣 , 𝜃) is the structure factor, which for hard spheres can be calculated using the
Percus-Yevick approximation [28–30].

7.3. Simulations
To model the effect of multiple scattering we developed a basic 1D simulation model
that generates a time-dependent complex OCT signal scattered from an ensemble
of particles exhibiting random diffusive motion along the direction of light propaga-
tion. Subsequently, we calculate the OCT signal along with the first- and second-
order normalized autocovariance functions. To reduce the autocorrelation variance,
this process is repeated 𝑁𝑏 times. The resulting autocorrelation functions are then
averaged before being fitted with our models from Sec. 7.2.1 to obtain the autocor-
relation decay rate. In our simulations, we used a time series length of 32768, a
particle radius of 150 nm (corresponding to the average particle radius in Intralipid),
an acquisition rate of 36 kHz, and 𝑁𝑏 = 300.

In contrast to the dilute particle suspension simulation detailed in Chapter 6, a
noiseless time-dependent complex field scattered from diffusing particles is simu-
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Figure 7.1: Schematics of multiple scattering DLS-OCT simulations with 𝑁𝑝 = 6, 𝑁𝑙 = 2, and 𝑚 = 3.

lated by summing the complex field over all path lengths, instead of particle posi-
tions, using

𝐸0(𝑡) =
𝑁𝑙
∑
𝑗=1
𝑒𝑖𝑘0𝑛𝑠𝑗(𝑡) , (7.11)

where the summation is performed over 𝑁𝑙 randomly generated photons. Figure 7.1
shows a schematic representation of our simulations. We simulate 𝑁𝑝 Brownian
particles that are randomly distributed in depth at locations 𝑧1…𝑁𝑝𝑗 .

The path of each photon from Eq. (7.11) is generated by scattering 𝑚 times
from 𝑚 randomly selected particles. Here, we show this for 2 photons, 6 Brownian
particles, denoted by blue circles, and 3 scattering events. Particles that scatter
light are denoted by the symbol ”s”. The black arrow represents the illuminating
light with wavenumber 𝑘inc, and the red vector 𝑘sca represents the detected light
scattered from the last (third) particle. For photon 1, there is no back-and-forth
scattering, which is quite unprobable in the case of a large number of scattering
events. Photon 2, on the other hand, represents a more realistic scenario, where
light scatters back and forth before being detected. As a result, the photon accu-
mulates more phase that leads to an increase in the speed of the fluctuation, which
is exactly what affects the decay rate in the multiple scattering regime.

For each photon, we generate the total traveled path length 𝑠𝑗. Subsequently,
the particle positions are moved due to Brownian motion, which is generated using
normally distributed discrete steps with 𝜎 = √2𝐷Δ𝑡, where Δ𝑡 is the inverse of
the acquisition rate. By repeating this process for every time step and calculating
the total path length, we obtain 𝑠𝑗(𝑡) that represents the time-dependent total
path length traveled. While particles move due to diffusion, the scattering pattern,
i.e. on which particle each photon is scattered, remains unchanged over time to
reduce computational cost. In our simulations, we used 𝑁𝑙 = 100 and 𝑁𝑝 = 100.
We assume isotropic and lossless particle scattering. For each photon, the total
traveled path length is given by:

𝑠𝑗(𝑡) = 𝑧1𝑗 (𝑡) + 𝑧𝑚𝑗 (𝑡) +
𝑚−1

∑
𝑐=2

𝑧𝑐+1𝑗 (𝑡) − 𝑧𝑐𝑗 (𝑡) , (7.12)
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where 𝑧𝑐𝑗 (𝑡) is the axial position of the 𝑐th particle from a total of 𝑚 random scat-
tering particles for the 𝑗th photon. All other assumptions and conditions remain
identical to those laid out in Chapter 6.

Simulations using Eq. (7.11) can be performed for an arbitrary number of scat-
tering events, 𝑚. By directly controlling 𝑚 in these simulations, we can induce
multiple scattering events, which leads to an increase in the mean photon path
length. This influences the autocorrelation functions when there is back-and-forth
scattering between the particles. Consequently, changes in the position of inter-
mediate scatterers affect the total traveled path length. In 1D simulations, this
effect occurs only when 𝑚 > 2. In 2D or 3D simulations, this effect can occur
starting from 𝑚 = 2. Therefore, for 1D simulations, the cases 𝑚 = 2 and 𝑚 = 1
are identical, both corresponding to single scattering with a decay rate Ω = 𝐷𝑞2.
For 𝑚 > 2 scattering events, we expect the decay rate for multiple-scattered light
in our simulations to be Ω = 2𝑚𝑛2𝑘20𝐷⟨1− cos𝜃⟩. In our 1D simulations, we found
that ⟨cos𝜃⟩ = −0.33. This result is due to the nature of 1D simulations, and we
expect ⟨cos𝜃⟩ = 0 for isotropic 2D and 3D simulations.

7.4. Materials and Methods
7.4.1. OCT system
The experiments were performed using a Thorlabs GANYMEDE II HR series spectral
domain OCT system, which has been described in detail in our previous works [6, 7,
18, 31]. The acquisition rate was 5.5 kHz for calibration measurements (low-speed,
higher sensitivity), and 36 kHz for diffusion measurements (high-speed, lower sen-
sitivity). The acquired signal spectrum was measured with a spectrometer with
2048 pixels. The maximum imaging depth in air is 1.87 mm. After acquisition, the
measured spectrum was first resampled to a linearly-sampled wavenumber domain
and then apodized using a Gaussian filter. After the apodization, the measured co-
herence function waist in sample was 𝑤𝑧 = 2.11 µm. The OCT system is operated
with a scan lens (LSM04-BB, Thorlabs) in a confocal setup with a manufacturer-
provided focal spot size of 𝑤0 = 6 µm in air and NA = 0.05. Since for the given
OCT setup the coherence length is small and the NA is very low, it can be assumed
that the scattering angle is 180∘ and the scattering wavenumber 𝑞 in the correlation
analysis is constant at 𝑞 = 2𝑛𝑘0.

7.4.2. Particle suspensions
For our diffusion measurements, we used two samples: Intralipid 20% (Sigma-
Aldrich, product number I141) and a relatively monodisperse 10 wt.% aqueous
polystyrene particle suspension (Applied Microspheres, PIN number 60490-100).
The polystyrene particles have a mean diameter of 488 nm, a size coefficient of vari-
ation of 5%, and a refractive index of 1.59 (at a wavelength of 589 nm). Both sam-
ples were used at their original concentration for the diffusion measurements. For
beam shape calibration measurements, the samples were diluted with water until
the number-fluctuation signal was sufficiently strong. In all measurements, similar
to our previous works [6, 7, 31], particle suspensions were placed in a rectangular
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quartz flow cell with internal dimensions of 1 mm depth and 10 mm width (type
45-F, Starna Scientific). The temperature was 25 degrees Celsius. For dilute calibra-
tion measurements, we used the refractive index of 1.33. For concentrated sample
measurements, we used a refractive index of 1.36 for Intralipid [32] and 1.35 for
the polystyrene suspension, estimated using the Lorentz-Lorenz formula [33, 34].
All concentration dependent scattering coefficients for Intralipid were calculated us-
ing phenomenological equations derived from measurements from Ref. [32]. For
the polystyrene sample, the scattering properties were modelled based on Mie the-
ory [35] and Eq. (7.10), incorporating the structure factor from Chapter 2.

7.4.3. Calibration measurements
DLS-OCT diffusion measurements require no calibration. However, to calculate the
attenuation coefficients from the OCT intensity profile, the intensity profile must be
corrected for the sensitivity roll-off and confocal response [21–23, 36]. Sensitivity
roll-off, shown in Fig. 7.2(a), was calculated using the reflection from the flow cell
edge and fitted with Eqs. 17 and 18 from [24]. This was done by changing the
OCT reference path length, which resulted in different axial positions of the flow
cell reflection with varying signal magnitude levels due to sensitivity roll-off. The
measurements match very well with the fit model used. Numerical dispersion com-
pensation was performed as described in [36–38] to compensate for the dispersion
of the flow cell glass.

Even though we know the manufacturer-provided focal spot size 𝑤0, the ex-
act beam shape depends on the angle of incidence, refractive index contrast, and
Gaussian beam parameters, 𝑤0 and 𝑤(𝑧) vary somewhat due to the passage of the
beam through various interfaces [39]. Additionally, there are conflicting results in
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Figure 7.2: OCT calibration measurements. Measured and fitted (a) complex field magnitude roll-off
and (b) OCT beam shape in diluted samples.

Sample 𝑤0 [µm] 𝑧0 [mm] 𝛼
Polystyrene 7.37 ± 0.05 0.03 ± 0.01 1.52 ± 0.02
Intralipid 6.82 ± 0.04 0.01 ± 0.01 1.86 ± 0.03

Table 7.1: OCT beam shape parameters calibrated using number-fluctuation DLS-OCT.
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the literature about the Rayleigh length pre-factor in the Gaussian beam coupling
equation [22, 25, 27]. Therefore, 𝑤(𝑧) and 𝑤0 were calibrated using the procedures
described in [6, 7, 31] using the number fluctuation dependence on the local beam
waist 𝑤(𝑧) in 𝑔2(𝑧, 𝜏) measured for diluted particle suspensions. For beam shape
calibration measurements, we acquired 300 time series, each with 8192 sampling
points at a 5.5 kHz scan rate. The obtained beam shape 𝑤(𝑧) was fitted using
𝑤(𝑧) = 𝑤0√1 + (𝑧 − 𝑧0)2/(𝛼𝑧𝑅)2, with 𝑧𝑅 = 𝑘0𝑤20𝑛/2 with 𝑤0, 𝑧0, and 𝛼 as fit
parameters. The fitted 𝑤(𝑧) was subsequently used for OCT intensity normaliza-
tion. The measured and fitted beam shapes are displayed in Fig. 7.2(b), and the
obtained Gaussian beam parameters are given in Table 7.1. Note the significant
difference in 𝛼 between the two samples. Since the samples were measured on
different days and have different refractive indices, variations in the flow cell align-
ment, angle, and focus position likely contributed to small differences in 𝑤0, 𝑧0 and
subsequently 𝛼 between the polystyrene and Intralipid samples. For both samples,
focus positions were adjusted to be close to the interface. From our experience,
that position increases the contribution of single-scattered light and most effectively
suppresses multiple scattering.

7.4.4. Diffusion measurements

For the diffusion measurements, the acquisition rate was set to 36 kHz to resolve
the faster-decaying autocorrelation functions due to multiple scattering. For both
samples, 300 time series were acquired. For Intralipid, the time series was 32768
data points long, while for the polystyrene suspension, it was 65536 data points
long. From this data, the average autocorrelation function 𝑔1(𝑠, 𝜏) was calculated
at every depth. In the diffusion analysis, we used only the real part of 𝑔1(𝑠, 𝜏), as
the imaginary part of 𝑔1(𝑠, 𝜏) contains no information about particle diffusion, as
described in Sec. 7. We utilized Eq. (7.1) for the single exponential fit with 𝐴(𝑠)
and Ω(𝑠) as free parameters, and Eq. (7.7) for double exponential fit with 𝐴1(𝑠),
𝐴1(𝑠), Ω1(𝑠), and Ω2(𝑠) as fit parameters. Fits were performed for the range of 𝜏
for which 𝑔1(𝑠, 𝜏) > 0.01.

For both samples, the single scattering diffusion coefficient, 𝐷, was calculated
over the path-length (𝑠) range where the decay rate was constant—beyond the
path length for which the wall-drag effect occurs and up to the path length where
the onset of multiple scattering occurs. The chosen path-length ranges for Intralipid
and polystyrene samples were 38 − 159 µm and 30 − 41 µm, respectively. For the
polystyrene particle suspension, the obtained 𝐷 = 0.99± 0.02 µm2/s corresponded
to a particle size of 493± 6 nm, which agrees well with the manufacturer-provided
particle size of 488 nm. This agreement suggests that the effects of particle inter-
actions on 𝐷 are negligible, likely because the particle volume concentration is not
too high. In contrast, the Intralipid diffusion coefficient was 𝐷 = 0.76±0.01 µm2/s,
which is roughly half of that of dilute Intralipid. This discrepancy is attributed to
the higher particle volume concentration in Intralipid, which affects 𝐷 differently in
monodisperse and polydisperse particle suspensions [18].
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7.4.5. Attenuation measurements
For attenuation measurements, we calculated the average OCT intensity profile as
a function of 𝑧-coordinate for both samples at their original concentration. After
normalizing the intensities for roll-off and confocal sensitivity, we fitted Eq. (7.9),
with 𝐼0 and 𝜇dep𝑠 as free parameters. Since Eq. (7.9) is valid only in the single
scattering regime, we truncated the intensity profiles to the same 𝑧-ranges as in
Sec. 7.4.4 (with 𝑧 = 𝑠/2) to ensure we were in the exponentially decaying range.

7.5. Results
Figures 7.3(a-d) summarize the results obtained from simulations. Figs. 7.3(a,b)
show the simulated 𝑔1(𝜏) and 𝑔2(𝜏) for different numbers of scattering events,
along with double exponential fits using Eqs. (7.7) and (7.8), respectively. The
obtained autocorrelation functions exhibit single exponential behavior for very low
and very large numbers of scattering events. However, for an intermediate num-
ber of scattering events, 𝑔1(𝜏) and 𝑔2(𝜏) are no longer purely exponential. Multi-
exponential behavior is more pronounced in 𝑔1(𝜏).

Figures 7.3(c,d) display the fitted decay rates for 𝑔1(𝜏) and 𝑔2(𝜏) as a function
of the number of scattering events. As mentioned in Sec. 7.3, we can only use
double exponential fit models for 𝑚 > 2. It can be observed that for 3 ≤ 𝑚 ≤
10, Ω2 (the faster mode) from the double exponential model matches better with
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Figure 7.3: Multiple scattering OCT decorrelation simulations. Simulated and fitted (a) 𝑔1(𝜏) and (b)
𝑔2(𝜏) for different numbers of scattering events. Fitted decay rate for (c) 𝑔1(𝜏) and (d) 𝑔2(𝜏) using
single and double exponential fit models.



7.5. Results

7

151

the DWS theory [2] compared to using a single exponential fit. Furthermore, for
3 ≤ 𝑚 ≤ 5, Ω1 (the slower mode) from the double exponential fit matches with the
single scattering 𝐷𝑞2, whereas the single-exponential decay rate already deviates
from it when 𝑚 ≥ 4. For a large number of scattering events, such as 𝑚 > 10, the
decay becomes purely single exponential, and using a double exponential fit model
is less effective than using a single exponential fit.

Figures 7.4(a-d) display the results obtained from DLS-OCT measurements. We
employed Eqs. (7.1) and (7.7) for single and double exponential fits, respectively.
Figures 7.4(a,b) show the measured and fitted autocorrelation functions at differ-
ent path lengths for Intralipid and polystyrene suspensions, respectively. While
both samples exhibit double exponential behavior, it is more pronounced for In-
tralipid. This double exponential behavior is not due to size polydispersity, as it is
not observable in dilute samples. At very low path lengths, similar to simulations
with a low number of scattering events, the autocorrelation is linear on a logarith-
mic scale, which indicates a single exponential decay rate as is the case for the
single-scattering regime. However, as the path-length increases, the double expo-
nential nature becomes more evident. At large path lengths, the autocorrelation
approaches a pure single exponential, akin to a large number of scattering events
in our simulations.

Figures 7.4(c,d) show as solid and dashed lines the estimated single and mul-
tiple scattering diffusive decay rates, respectively. The single scattering rate 𝐷𝑞2
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was determined using the measured single scattering diffusion coefficients from
Sec. 7.4.4. The DWS estimate was calculated using Eq. (7.4), where the inde-
pendent reduced scattering coefficient 𝜇∗𝑠 was forward-modelled as described in
Sec. 7.4.2. Utilizing the double exponential fit model from Eq. (7.7) provides two
advantages. First, the decay rate of the faster decaying exponential aligns better
with the DWS theory compared to the single exponential fit. Second, the 𝑠-range
over which the decay rate of the slower decaying exponential matches the single
scattering estimate is larger. For Intralipid, there is a good agreement of Ω2 with
the DWS theory, and the single scattering 𝑠-range is approximately 3.5 times larger
compared to using a single exponential model. In the case of the polystyrene sus-
pension, higher fit noise is evident for the double exponential model. However,
there is a clear improvement towards the DWS theory, although a small mismatch
between the estimated and measured decay rates remains. For polystyrene an
extension of the single scattering path-length range was not observed.

Figures 7.5(a,b) show the fitted autocorrelation mode amplitudes from Eq. (7.7)
for Intralipid and polystyrene samples, respectively. In this case, 𝐴1 corresponds to
the mode amplitude of the slow decaying single scattering exponential, and 𝐴2 is the
amplitude of the faster decaying multiple scattering exponential. For Intralipid, the
modes are well separated, with 𝐴1 > 𝐴2 for path length values below 0.5 mm. Up
to this path length, the decay rate Ω1 from Fig. 7.4(c) matches the single scattering
𝐷𝑞2. Beyond a path length of 0.5 mm, 𝐴1 becomes smaller than 𝐴2, coinciding with
the deviation of Ω1 from the single scattering theory shown in Fig. 7.4(c). In the
case of the polystyrene suspension, the mode amplitudes are not as well separated.
At very low path length, 𝐴1 > 𝐴2, which also corresponds to a very limited single
scattering path-length range in Fig. 7.4(d). However, above a path length of 0.25
mm, the mode amplitudes are similar and evidently more noisy compared to those
of Intralipid.

Figure 7.5(c) shows the OCT intensity attenuation in depth for both samples
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Figure 7.5: Measurements in the multiple scattering regime. Fitted DLS-OCT autocorrelation mode
amplitudes for (a) Intralipid and (b) polystyrene suspension. (c) Roll-off and confocal-corrected OCT
intensity attenuation in both samples.

Sample OCT fitted 𝜇dep𝑠 [mm−1] Theoretical 𝜇dep𝑠 [mm−1]
Polystyrene 39.7 ± 0.2 61.1
Intralipid 14.4 ± 0.1 15.9

Table 7.2: Fitted and estimated (theoretical) OCT attenuation (scattering) coefficients.
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after corrections for roll-off and confocal sensitivity factors. Fits using single scat-
tering exponential models are also shown. For the Intralipid sample, the intensity
profile remains linear up to a depth range of 0.15 mm, with slight deviations from
this model near the end of this range. In contrast, the polystyrene suspension ex-
hibits much stronger and increasingly nonlinear intensity attenuation, indicating a
greater contribution from multiple scattering. The linear range of the OCT signal
for the polystyrene suspension is significantly shorter. The fitted OCT attenuation
coefficients and corresponding theoretical estimates are given in Table 7.2. For In-
tralipid, the fitted 𝜇dep𝑠 is very close to the estimated value. However, for polystyrene
sample, the deviation between the theoretical and measured 𝜇dep𝑠 is much larger.

7.6. Discussion
In this work, we presented DLS-OCT simulations and measurements in the multiple
scattering regime using Intralipid 20% and concentrated polystyrene suspension.
At specific path lengths, we found that the measured first-order autocorrelation
functions deviate significantly from a single exponential decay, and a double expo-
nential fit model is more appropriate and provides better estimates for both DWS
and single scattering decay rates for Intralipid. However, for the polystyrene sam-
ple, the DWS measurement did not fully match the theoretical model. Additionally,
we obtained dependent scattering coefficients from the intensity attenuation. The
results were consistent with the theoretical estimates for Intralipid but less so for
the polystyrene sample.

As our simulations and measurements showed, single exponential fit models
are applicable to multiple scattering samples primarily at very small and large path
lengths, corresponding to low and high numbers of scattering events. At interme-
diate numbers of scattering events, occurring at moderate path lengths, the auto-
correlation functions clearly exhibit multi-exponential behavior, with 𝑔1(𝜏) showing
a stronger deviation from a pure single exponential compared to 𝑔2(𝜏). In such
cases, using a double exponential fit model is preferable. This approach offers two
main advantages: firstly, the decay rate of the slower exponential better matches
with the single scattering 𝐷𝑞2 and is a valid description over a broader depth range.
Secondly, the decay rate of the faster exponential aligns more closely with diffus-
ing wave spectroscopy (DWS) theory at any path length, including the transition
region. Thus, employing a double exponential model reduces bias and enables
simultaneous determination of the particle diffusion coefficient 𝐷 in the single scat-
tering regime and the reduced independent scattering coefficient 𝜇∗𝑠 through DWS.
Generally, fitting a double exponential model requires more averaging (higher 𝑁𝑏)
to reduce noise in the autocorrelation function and disentangle the different decay
rates. In the multiple scattering regime, the results for both decay rates should
not always be taken at face value, and their accuracy must always be verified by
assessing the fit quality. If the single exponential fit proves inadequate and 𝑔1(𝜏)
or 𝑔2(𝜏) display multi-exponential behavior, using a double exponential model is
always preferred. This approach can significantly reduce premature deviations of
the fitted decay rate from the single scattering theory.
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We conducted multiple scattering measurements on Intralipid 20% and a 10
wt.%, 9.5% volume fraction polystyrene suspension. Despite the lower volume
fraction of the polystyrene suspension, compared to Intralipid, both diffusion and
attenuation measurements indicated that the polystyrene sample exhibited signifi-
cantly higher multiple scattering contributions that are present even at lower path
lengths. However, the polystyrene particles are approximately twice as large and
the refractive index of the polystyrene particles, 𝑛 = 1.59, is also higher than
that of soybean oil, which predominates in Intralipid particles. Therefore, parti-
cle size and refractive index contrast are likely the primary factors contributing to
the polystyrene sample being more in the multiple scattering regime. In addition,
the relatively higher monodispersity of the polystyrene particles compared to the
more polydisperse Intralipid suspension should not be underestimated. It would
also be interesting to investigate whether size polydispersity affects the relation
between single and multiple scattering.

The OCT attenuation coefficient and results from DWS measurements agreed
well with estimates for Intralipid 20% from literature [32]. For the polystyrene
particle suspension, the DWS measurement gave a 𝜇∗𝑠 that is slightly lower than
expected, and the OCT attenuation coefficient 𝜇dep𝑠 was approximately 1.5 times
lower than the modeled value. One of the primary reasons behind this discrepancy
we attribute to the presence of multiple scattering effects in the OCT measure-
ment. Since, the theoretical estimates are primarily based on the single scattering
assumption and do not fully account for multiple scattering contributions. In the
case of Intralipid, the sample remains within the single scattering regime until the
OCT intensity is largely attenuated, thus aligning well with single scattering the-
oretical predictions. However, for the polystyrene suspension, the OCT intensity
decay with depth is significantly non-exponential, limiting the range over which
𝜇dep𝑠 can be accurately determined and increasing uncertainty in the fit parameter.
This challenge can be partially addressed by incorporating multiple scattering at-
tenuation models [40]. However, these models introduce additional fit parameters
and complexity, which can pose challenges during the fitting process. Another con-
tributing factor is the method of estimating 𝜇dep𝑠 : while the Intralipid attenuation
coefficient estimate was derived from an empirical model based on measurements,
for the polystyrene suspension we utilized Mie theory and Eq. (7.9). The estimated
dependent 𝜇dep𝑠 for Intralipid is approximately 2.4 times lower than the independent
𝜇𝑠. However, for the polystyrene suspension, the difference is only a factor of 1.4,
which warrants further investigation. Therefore, refining the estimation method of
𝜇dep𝑠 for the polystyrene particle suspension could help narrow the gap between
measurement and theory. Additionally, when calculating the volume fraction of
polystyrene particles from their weight content, we neglected the thickness of the
electrical double layer and treated the particles as hard spheres. However, we have
not verified this assumption using reference measurements similar to our previous
work [18]. Therefore, an incorrect volume fraction value can also be an important
factor contributing to the mismatch with the theoretical estimates.

One of the advantages of using simultaneous OCT autocorrelation and attenu-
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ation measurements is the ability to obtain the anisotropy factor 𝑔. In DLS-OCT,
employing a double-exponential fit allows us to determine the particle diffusion co-
efficient 𝐷 and the independent reduced scattering coefficient 𝜇∗𝑠. From attenuation
measurements, we can derive 𝜇dep𝑠 . Therefore, if we can relate these two quantities
through 𝑔, similar to how 𝜇𝑠 and 𝜇∗𝑠 are related, we can subsequently calculate 𝑔.

7.7. Conclusion
In this study, we conducted DLS-OCT simulations and measurements to investigate
multiple scattering in Intralipid 20% and polystyrene suspensions. Our analysis of
autocorrelation functions revealed pronounced deviations from single exponential
decay at intermediate path lengths and scattering events. By employing a double
exponential fit model, we enhanced the accuracy of diffusing wave spectroscopy
(DWS) estimates and expanded the path-length range suitable for reliable deter-
mination of single scattering diffusion coefficients. Additionally, we utilized OCT
intensity attenuation to derive scattering coefficients. Intralipid exhibited behav-
ior consistent with single scattering models until significant attenuation, yielding
a well-matched attenuation coefficient. In contrast, the polystyrene suspension,
characterized by stronger multiple scattering effects, posed challenges in accurately
determining its attenuation coefficient. This underlines the importance of refining
methods to account for multiple and dependent scattering contributions in dense
particle suspensions.
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8.1. Summary
Particle sizing and flow measurement using dynamic light scattering optical coher-
ence tomography (DLS-OCT) present numerous challenges, particularly in concen-
trated and/or flowing suspensions. In this work, we address several important
challenges encountered in DLS-OCT:

• Particle interactions in concentrated suspensions introduce dependencies of
the diffusion coefficient on factors such as the duration of the motion being
analyzed, the wavenumber, and the concentration, thereby complicating the
extraction of particle size.

• Multiple scattering in concentrated suspensions imposes limitations on the
accurate estimation of the diffusion coefficient.

• High flow speeds increase uncertainty in particle sizing and limit the depth at
which the diffusion coefficient can be reliably determined.

• Low flow speeds cannot be determined due to particle diffusion limitations.

• Acquisition time limitations impose restrictions on the maximum flow speed
and minimum particle size that can be measured.

• Unavailability of models to estimate precision and bias in diffusion and flow
measurements complicates the quantification of uncertainty in DLS-OCT.

In concentrated suspensions the relationship between particle size and the diffu-
sion coefficient is not adequately described by the simple Stokes-Einstein equation
and becomes dependent on multiple factors. Accurate determination of particle
size thus necessitates diffusion coefficient measurements across a wide range of
wavenumbers and the application of sophisticated rheological models to describe
the complex interactions within the suspension that affect particle transport dy-
namics. To address this challenge, we developed a broadband DLS-OCT system
encompassing wavelengths from 350 to 1000 nm, as described in Chapter 2. By
inverting hard-sphere rheological models, we were able to derive the particle size
from the collective diffusion coefficient measured over an extensive wavenumber
range. Furthermore, we demonstrate how the measurements of different diffu-
sion modes can be used to assess the number-based particle size polydispersity in
concentrated suspensions.

Measurement of higher flow speeds and particle sizing in fast-flowing suspen-
sions using DLS-OCT become problematic due to detector sampling limitations.
When the decay of the autocorrelation function is too rapid, it prevents the ex-
traction of flow speed and particle size information. In Chapter 3 of this work,
we incorporated beam scanning—a standard feature in many OCT systems—to ex-
tend the capabilities of DLS-OCT flow imaging beyond its current limitations. This
approach allowed us to increase the flow dynamic range by a factor of two, signif-
icantly surpassing the limits of Doppler OCT. In addition, beam scanning enabled
more accurate measurement of particle sizes in flowing suspensions, even further
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from the flow cell edge, which is advantageous for applications in the process in-
dustry.

Particle diffusion limitations in DLS-OCT and Doppler OCT make it impossible to
measure low flow speeds in particle suspensions. At these flow velocities, the au-
tocorrelation function is dominated by diffusive decay. In Chapter 4, we introduced
the concept of number fluctuations in the DLS-OCT intensity autocorrelation func-
tion to address this challenge. This development enabled us to measure extremely
low, particle diffusion-limited flow speeds and concentrations in dilute suspensions,
both in 1D and 2D. In addition, number-fluctuation DLS-OCT allows for the mea-
surement of beam shape within the particle suspension, something that requires
an elaborate calibration in conventional OCT.

Chapter 5 demonstrates the implementation of number-fluctuation DLS-OCT, as
discussed in Chapter 4, for measuring 2D flow profiles in organ-on-chip (OoC) de-
vices. Conventional Doppler OCT and DLS-OCT could not be used for flowmetry
due to the lower flow speeds encountered in these chips. Additionally, the flow
direction is unknown and varies within the chip, posing challenges for velocity mea-
surements. To address these issues, we developed a numerical method to equalize
the axial and transverse OCT resolutions at every position and eliminate the depen-
dence on the Doppler angle in the autocorrelation function. This innovation enabled
us to measure absolute velocities in 2D using number fluctuations. Furthermore, we
implemented particle image velocimetry (PIV) on the OCT data and superimposed
our number-fluctuation measurements with in-plane velocity vectors.

Quantification of precision and bias in DLS-OCT is crucial for reliable particle
sizing and flow characterization. Despite the known influence of signal-to-noise
ratio (SNR) on autocorrelation functions, their impact on the quantification of flow
speed, particle size, and diffusion coefficient has not been thoroughly studied. In
Chapter 6 of this work, we conducted a comprehensive investigation of precision
and bias in DLS-OCT measurements of diffusion and flow. We discovered that errors
in autocorrelation functions are strongly temporally correlated, posing challenges
for uncertainty quantification and reaching the fundamental precision limit imposed
by the Cramer-Rao lower bound. To address this issue, we developed an innovative
signal mixing method to eliminate these correlations. Once the error correlations
were removed, the standard deviation in the obtained diffusion coefficient or flow
speed matched the Cramer-Rao lower bound. This achievement enables verification
of whether optimal precision in these parameters has been reached, which is vital
in the process industry.

Multiple scattering in DLS-OCT complicates the particle sizing process, particu-
larly in dense media where the range of single scattering optical path length (OPL)
is severely limited. Conversely, diffusing-wave spectroscopy (DWS) models en-
counter challenges at intermediate optical path lengths and numbers of scattering
events. In Chapter 7 of this work, we conducted an extensive study focusing on
diffusion measurements and simulations in samples exhibiting multiple scattering
effects. Our investigation revealed that autocorrelation functions at intermediate
numbers of scattering events are not purely exponential but are better described by
a double exponential model. The use of a double exponential model improves the
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accuracy of DWS estimates and extends the range of single scattering OPL suitable
for estimating the diffusion coefficient.

8.2. Outlook on particle sizing
Accurate particle sizing in (flowing) suspensions using DLS-OCT is limited by various
factors, as outlined earlier in this chapter. While this work improved in many of these
areas, several possible further advancements remain unexplored, which we discuss
in this section.

8.2.1. Particle sizing in flowing suspensions
Chapter 3 presented scanning DLS-OCT to improve particle sizing and velocity dy-
namic range in flowing suspensions. This technique can be implemented for in-line
particle sizing by optimizing the scan speed during the measurement process. In
addition, some flowing suspensions in the process industry tend to agglomerate
near the flow cell edges, necessitating measurements farther from the edge for
accurate particle sizing. Scanning DLS-OCT can be very useful in such scenarios by
moving the location of least flow decorrelation a distance away from the wall.

Dynamic scan speed optimization
As discussed in Chapter 3, the effect of beam scanning in reducing flow decorre-
lation depends on the scan speed and direction. For laminar flow and alignment
of equal magnitude scan and flow vectors, flow decorrelation is essentially zero.
However, this requires some knowledge of the flow geometry and expected veloci-
ties. For automatic particle sizing using scanning DLS-OCT, it is essential that beam
scan speed optimization happens during the measurement process. The goal is to
equalize flow and scan speeds at a specific depth position to eliminate flow decay
and maximize the accuracy of the obtained diffusion coefficient. The axial position
can be chosen based on the distance from the edge of the flow cell or cuvette. We
implemented an automatic scan speed optimization routine in the NanoFlowSizer, a
DLS-OCT particle sizing device manufactured by InProcess-LSP. The flow geometry
was identical to the one described in Chapter 3. The approach is as follows: First,
we choose the distance from the flow cell edge where we want to improve the parti-
cle sizing estimate by specifying the range of axial voxels for which the optimization
must be performed. Second, we choose a beam scan speed and direction (angle).
Third, we perform 𝑁𝑏 different DLS-OCT measurements, each with an acquisition
time of 𝑁𝑎Δ𝑡, where 𝑁𝑎 is the number of A-lines and Δ𝑡 is the sampling time. In
the fourth step, we calculate the average second-order normalized autocovariance
function over the chosen voxel range and obtain the decay time 𝜏decay at which the
autocorrelation magnitude reaches a lower limit set by us (e.g. 0.1 or 0.01). We
repeat steps 2-4 within the optimization loop until the minimum of 𝜏−1decay is found.
This corresponds to the lowest decay rate at the chosen axial position, where, in
principle, the flow decorrelation is absent and only diffusive decay remains. There-
fore, automatic scan speed optimization in DLS-OCT suppresses flow decay at a
specific axial position and makes particle sizing more reliable.
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Figure 8.1: Comparison of in-line DLS-OCT diffusion measurements with and without beam scan speed
optimization, alongside static measurements. The shaded area corresponds to the position where the
optimization was performed.

We performed our optimization measurements using the integrated cylindrical
flow cell of the NanoFlowSizer, which has a diameter of nearly 2 mm. There-
fore, we expect a typical parabolic Poiseuille velocity profile. Figure 8.1(a-d) shows
DLS-OCT diffusion measurements with and without optimization. The black curve
corresponds to static diffusion measurements under no-flow conditions, the blue
curves correspond to standard measurements under flow without beam scanning,
and the red curves correspond to inflow measurements with the optimized scan
speed. Shaded regions denote the pixel range for which the scan speed optimiza-
tion was performed, and 𝐷0 denotes the average diffusion coefficient from static
measurements. For better comparison, we only fit the exponential of the diffusion
decorrelation to the obtained autocorrelation functions, without any flow correc-
tion. We have not quantified the flow profile, but the suspension velocity farther
from the edge is sufficiently high to affect the fitted diffusion coefficient. As ex-
pected, static diffusion measurements are constant in depth. For standard in flow
measurements, the obtained diffusion coefficient is accurate only close to the edge,
which is where the flow speeds are zero due to the no-slip condition. However, as
we move farther from the edge, the bias in the diffusion coefficient dramatically in-
creases with increasing flow speed. In the case of scanning DLS-OCT, the obtained
diffusion coefficient matches with 𝐷0 at the locations where the optimization was
performed, irrespective of the flow speed. This is clearly visible at larger depths in
Fig. 8.1(c,d).
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Figure 8.2: Optimized scan speed as a function of distance from the flow cell edge.

Figure 8.2 displays the optimized scan speed as a function of position from the
edge where the optimization was performed. The obtained scan speed equals the
flow speed at the optimization position. Since the flow cell is relatively wide, the
flow speed is approximately linear with depth, which explains why the optimized
scan speed increases linearly with the distance from the edge. Besides improving
the diffusion coefficient (particle size) estimate, we also obtain the suspension flow
speed at the optimization location using scanning DLS-OCT. In a typical measure-
ment configuration of the NanoFlowSizer, the lateral scanning direction is aligned
to the flow cell so that the Doppler angle 𝜃 is essentially always zero. Therefore,
during the optimization process, only the scan speed and orientation (forward or
backward) are optimized, not the scan angle. For more complex geometries with
unknown alignment, the scan angle can also be included as an additional optimiza-
tion parameter.

Off-wall particle sizing
As Fig. 8.1(a-d) shows, the standard DLS-OCT approach without beam scanning
already provides a good estimate of the diffusion coefficient for flowing particle
suspensions close to the flow cell edge. Therefore, it may seem that the scanning
implementation is unnecessary. However, this is not entirely true. In the process
industry, it is sometimes desirable to avoid particle sizing near the edges of the
flow cell. This can be due to two reasons: first and foremost, the sample close to
the edge has the lowest flow speed and refreshes the slowest. Therefore, in-line
measurements cannot be performed as quickly, and the sample near the edge may
not represent the actual, up-to-date particle suspension. Second, there might be
cases where, due to the wall-drag effect [1] or particle sticking, the diffusion co-
efficient of particles close to the interface decreases. This effect is less consistent
and may only occur under certain conditions. The extent of this reduction depends
on the particle shape, type, concentration, size, and OCT resolution [1]. There-
fore, a wrongful estimate of the diffusion coefficient near the wall introduces bias
in the particle size. Scanning DLS-OCT effectively mitigates this bias by enabling
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accurate measurements of the diffusion coefficient away from the edge. This ca-
pability ensures more representative and reliable particle sizing in various industrial
applications.

Effect of turbulence on particle sizing
Despite the effectiveness of scanning DLS-OCT in mitigating dominant flow decay,
the presence of turbulent fluctuations and mixing at high suspension flow speeds
poses significant challenges for particle sizing. In turbulent flows, the velocity fluc-
tuates around its mean value, affecting the estimation of the particle diffusion co-
efficient, even when the average flow speed remains constant. The velocity fluc-
tuations caused by turbulence induce additional particle displacement, which tem-
porally resembles random diffusive motion [2, 3]. Consequently, turbulence leads
to an increased mean squared displacement (MSD) and, correspondingly, an ele-
vated effective particle diffusion coefficient [4]. While turbulence does not alter the
flow decay rate due to the consistent average flow speed, it does increase diffusive
decorrelation, resulting in underestimation of particle size.

Since turbulence-induced fluctuations resemble those caused by diffusion, they
cannot be mitigated using scanning DLS-OCT. Further research is needed to cali-
brate their effect on the diffusion coefficient as a function of particle size (or 𝐷0),
Reynolds number, and potentially other parameters such as particle concentration
and size polydispersity. Addressing this issue holds promise for enabling particle
sizing using DLS-OCT in turbulence-limited flows, presenting an intriguing avenue
for future exploration.

8.2.2. Particle sizing using Doppler OCT
Doppler OCT is the gold standard for measuring flow speeds of particle suspensions
and is extensively covered in Chapters 3 and 4. Doppler OCT measures the average
depth-resolved phase change of the OCT signal, which is directly proportional to the
axial velocity of the particle suspension. In a single-scattering regime, the average
phase change is independent of particle concentration and size; it is only affected
by multiple scattering [5]. Therefore, it is thought that Doppler OCT cannot be used
for particle sizing.

Phase changes in Doppler OCT are influenced by particle Brownian motion. As
the particle diffusion coefficient increases (or particle size decreases), the distribu-
tion of phase changes broadens [6, 7]. Consequently, this broadening leads to an
increased uncertainty in the average phase change and in the flow velocity [8–10].
Therefore, the shape of the phase change distribution in Doppler OCT contains
information about particle size and polydispersity. The phase change distribution
from the complex OCT signal can be calculated using Eqs. (3.17) and (4.32).

Figure 8.3(a-c) shows simulated OCT phase change distributions for the opti-
cal parameters of our Thorlabs OCT system using a 36 kHz sampling time. Fig-
ure 8.3(a) displays the phase change distribution for monodisperse particles with
different radii. The phase change distribution spreads out with decreasing particle
size, with more values being wrapped as the particle size decreases (i.e., larger
than 𝜋). Since smaller particles exhibit a larger diffusion coefficient, this leads to
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Figure 8.3: Phase change distribution as a function of particle radius, size polydispersity and SNR.
(a) Monodisperse particles, SNR → ∞. (b) 50 nm particles, SNR → ∞. (c) 50 nm monodispere particles.

bigger phase changes for the given sampling time. Figure 8.3(b) shows phase
change distributions for Gaussian-distributed particle sizes with an average radius
of 50 nm and varying number-based particle size polydispersity indices, as de-
scribed by Eq. (2.19). Increasing particle size polydispersity narrows down the
phase change distribution, which is somewhat contradictory to expectations. Fig-
ure 8.3(c) presents phase change distributions for 50 nm particles at different SNR
values. As the SNR decreases, the distribution spreads out. This is caused by noise,
which has a uniform phase-change distribution

The phase change distribution contains information about the particle radius,
size polydispersity, and the experimental signal-to-noise ratio. However, multiple
parameters can have a similar effects on the distribution, making the determination
of one parameter problematic without the knowledge of the others. In addition, it
is important to quantify the shape of the distribution, its variance, and other key
parameters. This is also challenging, as the distribution tends to change shape
for lower SNR and particle size values. Finally, the propagation of the OCT field
variance to the variance of the phase change distribution is non-trivial, because
Eqs. (3.17) and (4.32) contain ratios of quantities that are centered around zero for
non-flowing samples, for which simple uncertainty propagation techniques fail.

Even though we cannot use the phase change distribution directly, we can still
utilize Eqs. (3.17) and (4.32) to obtain information about the particle size. For the
complex OCT signal 𝑎(𝑡), we can express the ratio of the variances of the imaginary
and real parts of 𝑎(𝑡) × 𝑎∗(𝑡 + 𝜏) using

𝜎2
ℑ(𝑎(𝑡)×𝑎∗(𝑡+𝜏))
𝜎2
ℜ(𝑎(𝑡)×𝑎∗(𝑡+𝜏))

= 1 − 𝐴2𝑒−2𝐷𝑞2

1 + 𝐴2𝑒−2𝐷𝑞2 , (8.1)

where 𝐴 = (1 + 1
SNR
)
−1
is the first-order autocorrelation amplitude, 𝐷 is the par-

ticle diffusion coefficient, 𝑞 is the scattering wavenumber, and 𝜏 is the lag time.
Equation (8.1) can be rearranged in the form of

(1 −
𝜎2
ℑ(𝑎(𝑡)×𝑎∗(𝑡+𝜏))
𝜎2
ℜ(𝑎(𝑡)×𝑎∗(𝑡+𝜏))

)(1 +
𝜎2ℑ(𝑎(𝑡)×𝑎∗(𝑡+𝜏))
𝜎2
ℜ(𝑎(𝑡)×𝑎∗(𝑡+𝜏))

)

−1

= 𝐴2𝑒−2𝐷𝑞2𝜏 = 𝑔2(𝜏) , (8.2)
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Figure 8.4: Simulations for 50 nm radius particles with a time series length of 512 and a scan rate of 36
kHz. (a) Average 𝑔2(𝜏) and (b) variance in 𝑔2(𝜏).

which is none other than the second-order normalized autocovariance, 𝑔2(𝜏), within
the Siegert approximation.

Even though Eq. (8.2) looks identical to 𝑔2(𝜏), it is not calculated using the
autocorrelation of the mean-subtracted OCT intensity but instead is based on the
variances of the complex OCT field. As a result, it does not suffer from the estima-
tion bias from Eq. (6.22) acquired when subtracting the mean from the intensity
time series in Eq. (6.2) estimated from the intensity time series itself. Therefore,
for shorter intensity time series with higher estimation bias, it could be beneficial
to use Eq. (8.2) rather than Eq. (6.2) to calculate 𝑔2(𝜏).

Figure 8.4(a,b) shows simulated second-order autocorrelation functions for 50
nm radius particles, calculated using intensity autocorrelation and complex signal
variance with Eqs. (6.2) and (8.1), respectively. In this case, the number of tempo-
ral sampling points is 512, with an acquisition rate of 36 kHz. Figure 8.4(a) displays
the average 𝑔2(𝜏) calculated using both methods. Averaging was performed over a
large number of realizations to eliminate random errors in 𝑔2(𝜏). A constant offset
due to estimation bias in 𝑔2(𝜏) obtained using intensity autocorrelation is clearly
visible, causing the autocorrelation function to dip below the zero line and become
negative. This bias is absent in 𝑔2(𝜏) calculated using the variance method we
propose. However, as mentioned in Chapter 6, shorter time series lengths can also
influence the decay rate of the autocorrelation function due to contrast bias [11],
which arises from the dependence of speckle contrast on the ensemble size in the
autocorrelation. This effect distorts 𝑔2(𝜏), as observed in Figure 8.4(a). Autocorre-
lation functions calculated using both methods are equally affected by contrast bias
in the decay rate due to shorter time-series lengths. Consequently, Eq. (8.1) is ex-
pected to suffer similarly from contrast bias as Eq. (6.2). Typically, contrast bias is
insignificant for long acquisition times in DLS-OCT, but becomes more pronounced
for very short time series lengths.

As discussed in Chapter 6, random errors in 𝑔2(𝜏) dominate estimation bias for
realistic acquisition times and averaging. The random errors are expressed using
the variance in 𝑔2(𝜏). Figure 8.4(b) shows the variance in 𝑔2(𝜏) for both methods.
The variance is significantly lower for the standard method of calculating 𝑔2(𝜏)
using intensity autocorrelation. Therefore, the advantage of the variance model is
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evident only for very short time series lengths with higher amounts of averaging,
where estimation bias dominates over random errors. Even though such conditions
are less realistic in typical particle sizing applications, Eq. (8.2) could be useful in
high flow speed scenarios where long acquisition times are not required.

8.2.3. Particle sizing in the multiple scattering regime
Chapter 7 of this work focused on DLS-OCT in the multiple scattering regime. In this
case, the autocorrelation decay rate is better described by a sum of several expo-
nentials, where the decay rate of the fastest exponential follows the diffusing-wave
spectroscopy (DWS) theory and can be converted to particle size. The contribution
of this term becomes dominant with increasing optical path length (OPL). However,
at shallow OPL, lower-order scattering modes can dominate and make the esti-
mation of the DWS decay rate problematic, even when using double-exponential
models suggested by us.

Particle sizing using spatially offset DLS-OCT
Recently, Untracht et al. [12] demonstrated the possibility of laterally offsetting OCT
incident and collection fields to increase the contribution of multiple scattered light
at all depths. This approach proved to be effective in enhancing the signal-to-noise
ratio at larger depths. The spatial offset can be varied, which in turn affects the
ratio of multiple to single scattered light. This approach holds significant promise in
the context of particle sizing in the DWS limit. By introducing spatial offset, we can
achieve two objectives: first, we can obtain the DWS decay rate more accurately
even at lower optical path lengths using the double-exponential fit model discussed
in Chapter 7. Second, we may not need to fit the double-exponential model at
larger OPL values due to the overwhelming contribution of multiple scattered light,
thus simplifying and enhancing the reliability of the fitting process. Spatially offset
DLS-OCT can be used to study the transition of the diffusive decay rate from single
to multiple scattering in more detail. However, it can only enhance the contribution
of multiple scattered light and, therefore, cannot improve particle sizing accuracy
in a single scattering regime.

Particle sizing using cross-correlation DLS-OCT
The standard DLS method is limited by multiple scattering and is typically used for
low-concentration samples. However, two-color [13, 14] and cross-correlation [15]
DLS techniques have been employed to overcome this limitation. Two-color DLS
measures particle size by cross-correlating scattered intensity fluctuations at differ-
ent wavelengths. The obtained correlation function is more independent of multiple
scattering and contains only the contribution from single-scattered light. Cross-
correlation DLS is similar but uses scattered light detected at two different angles
with the same scattering wavenumber 𝑞 instead of using two different wavelengths.
These approaches can also be implemented in DLS-OCT. We can select the signals
at different wavenumbers from the OCT spectrum and cross-correlate them to re-
duce the effect of multiple scattering. Choosing the right spectral separation for
two-color DLS-OCT and the optimal scattering angle for maximizing imaging depth
in cross-correlation DLS-OCT are promising topics for further research.
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Particle sizing using spatiotemporal image correlation OCT
In order to determine particle size using DLS-OCT, we obtain depth-resolved first- or
second-order temporal autocorrelation functions. These autocorrelation functions
are fitted using models, resulting in a depth-resolved particle diffusion coefficient.
Spatial information is not used in the fit; that is, the correlation of scattering sig-
nals at different depths is not taken into account. The advantage of this approach
is that the fit parameters can be obtained as a function of depth. However, the
disadvantage is that any spatial correlation present in the signal is disregarded.

In DLS-OCT, the complex field and intensity scattered from the particle suspen-
sion are not only temporally correlated but also spatially correlated. Spatiotemporal
image correlation spectroscopy (STICS) has been used to measure particle motion
from a series of laser scanning microscopy images [16]. STICS can be readily ex-
tended to OCT. The spatial correlation of the OCT signal from moving particles is
directly related to the decay of the temporal autocorrelation functions 𝑔1(𝜏) and
𝑔2(𝜏) caused by flow in the axial direction. The spatial correlation decay rate is
equivalent to the temporal decay rate with a certain axial velocity. In this case,
the spatial lag parameter 𝑑 = 𝑛𝑣𝑧𝜏, where 𝑣𝑧 is the particle axial velocity, 𝜏 is the
lag time, and 𝑛 is the suspension refractive index. The spatial lag parameter 𝑑 is
the optical path length of a single OCT voxel. For purely diffusive particles without
any bulk motion, the two-dimensional spatiotemporal autocorrelation function of
the complex field is given by

𝑔12𝐷(𝑑, 𝜏) =
⟨𝐸(𝑧, 𝑡)𝐸∗(𝑧 + 𝑑, 𝑡 + 𝜏)⟩𝑧,𝑡

⟨𝐼(𝑧, 𝑡)⟩𝑡
= 𝐴𝑒−𝐷𝑞2𝜏𝑒−𝜎2𝑑2𝑒𝑖2𝑘0𝑑 , (8.3)

and of the intensity by

𝑔22𝐷(𝑑, 𝜏) = 𝐴2𝑒−2𝐷𝑞
2𝜏𝑒−2𝜎2𝑑2 , (8.4)

where 𝜎 is the wavenumber standard deviation of the Gaussian source spectrum
defined in Chapter 3, and 𝑘0 is the source center vacuum wavenumber. The vari-
ation of the OCT intensity as a function of depth was neglected in our analysis
because it is much slower than the spatial decay in 𝑔12𝐷 and 𝑔22𝐷 .

Figure 8.5(a,b) shows the magnitudes of the first and second-order 2D spa-
tiotemporal correlation functions measured in intralipid 20% using our Thorlabs
OCT system. Temporal lag corresponds to the lag time of the standard 𝑔1(𝜏) or
𝑔2(𝜏), while spatial lag corresponds to the axial separation in optical path length
units. To calculate the spatiotemporal correlation function, we need to select the
depth (optical path length, OPL) range containing our sample. In our analysis, we
selected the OPL range between 0.05 and 0.87 mm. The first point corresponds
to the edge of the flow cell, and the last point corresponds to the position where
both 𝑔1(𝜏) and 𝑔2(𝜏) obtained using standard DLS-OCT could be reliably fitted. It is
worth noting that the real or imaginary parts of 𝑔12𝐷 contain dips below zero which
are not visible in the figure because we show the absolute values.

Figure 8.6 displays the diffusion coefficient obtained using standard DLS-OCT
and spatiotemporal image correlation OCT. With 2D autocorrelation functions from
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Figure 8.5: 2D spatiotemporal correlation functions, (a) 𝑔12𝐷 and (b) 𝑔22𝐷 , measured in Intralipid 20%.
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Figure 8.6: Diffusion coefficient of 20% Intralipid obtained using standard DLS-OCT and spatiotemporal
image correlation OCT.

Eqs. (8.3) and (8.4), we obtain a single diffusion coefficient. In contrast, standard
DLS-OCT provides diffusion coefficients as a function of optical path length (OPL).
For both 𝑔1(𝜏) and 𝑔2(𝜏), the diffusion coefficient increases with OPL due to multi-
ple scattering effects [17]. At very low OPL values, it decreases due to the wall-drag
effect [1]. Therefore, the measured 𝐷 coincides with 𝐷0 only over a narrow OPL
range, between 0.10-0.19 mm. The diffusion coefficient obtained using spatiotem-
poral image correlation OCT matches this single scattering 𝐷0 value. Overall, we
observe no significant effects of multiple scattering on the results obtained using
2D spatiotemporal correlation functions.

The contribution of multiple scattered light varies with optical path length (OPL),
while signal fluctuations due to single scattering remain consistent. Reduction of
the diffusion coefficient due to the wall-drag effect occurs primarily at low OPL
values. Therefore, when combining data across the entire axial range to obtain
the 2D spatiotemporal correlation function, we expect it to reflect characteristics
that are not specific to individual axial voxels. Consequently, the 2D correlation
function only captures information about free diffusion in a single-scattering regime.
This observation aligns with the findings in Fig. 8.6. It could also be the case
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that single scattered intensity dominates the total intensity, whereas this may not
hold true at all depths for 1D depth-resolved analysis. Furthermore, the difference
between using first- or second-order correlation functions is much smaller compared
to standard DLS-OCT.

Spatiotemporal image correlation OCT holds promise as a technique for particle
sizing. Further research is needed to explore its potential for improving particle
sizing in samples with a high degree of multiple scattering or spatially variable
diffusion coefficients. The advantage of using spatiotemporal correlation functions
lies in their potential resilience to multiple scattering, as they capture fluctuations in
scattered light over a broader range of optical path lengths (OPL). While Eqs. (8.3)
and (8.4) can be extended to account for flow effects, it remains unclear how
varying flow speeds within the chosen OPL range would impact measurements.
In standard DLS-OCT measurements, we assume a constant flow speed across
axial voxels due to the very small pixel size. However, since our 2D correlation
functions encompass the entire OPL range, such assumptions in STICS are valid only
under conditions of spatially uniform flow. In typical pharmaceutical or research
applications, flow speeds can vary significantly with spatial position. Therefore,
the application area of spatiotemporal image correlation OCT under flow conditions
may be limited.

8.2.4. Particle sizing using 𝑞-dependent DLS-OCT
Chapter 2 presented wavenumber-dependent DLS-OCT collective and self-diffusion
measurements conducted using our custom-built backscattering DLS-OCT system,
which operates over a broad wavelength range. These measurements are instru-
mental for estimating particle size in concentrated suspensions. The uncertainty in
the obtained size directly correlates with the setup’s 𝑞-range and acquisition rate.
In addition, particle diffusion in concentrated suspensions can be measured using
a transmission DLS-OCT system.

Improving acquisition rate and 𝑞-range of DLS-OCT
The wavenumber range of a DLS-OCT system hinges on factors like the source spec-
trum bandwidth, the sensitivity of the detector (typically a spectrometer with cam-
era) across different wavelengths, and the scattering angle, as detailed by Eq. (1.3).
In backscattering DLS-OCT, where the scattering angle is set at 180∘, the system
achieves its maximum scattering wavenumber 𝑞 and the maximum wavenumber
range over which measurements can be made with a fixed source spectrum. A
higher 𝑞 implies faster decay rates in autocorrelation functions, which in turn sets a
lower limit on the measurable particle size, constrained by the spectrometer’s sam-
pling time. While extending the sampling rate can enable the detection of smaller
particles using the same scattering wavenumber, increasing the spectrometer’s ac-
quisition rate across a broad wavelength range poses significant challenges. For
instance, obtaining a commercially available spectrometer with a rate faster than
4.5 kHz spanning from 350 to 1000 nm proved unfeasible. Custom design of such
spectrometers is challenging particularly due to the requirement of obtaining high
spectral resolution over a broad bandwidth.
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One strategy to reduce the limitation imposed by the acquisition rate in DLS-
OCT is to reduce the scattering angle 𝜃. By lowering 𝜃, the system can mitigate
sampling limitations in measuring diffusion of smaller particles due to a reduced 𝑞
and slower decay rates of autocorrelation functions. However, this adjustment also
narrows the achievable 𝑞-range. Therefore, finding an optimal scattering angle is
crucial; it must balance maintaining a sufficient wavenumber range for accurate
𝑞-dependent measurements while ensuring that the scattering wavenumber is low
enough to avoid sampling constraints for the specific particle size of interest. Ad-
justing 𝜃 also impacts the scattered intensity, particularly in concentrated suspen-
sions, where scattering anisotropy plays a significant role. Ideally, implementing
a variable-angle DLS-OCT setup could offer flexibility in optimizing these param-
eters, but this approach introduces complexities in system design and alignment.
Another potential strategy involves using multiple scattering arms with different an-
gles, though this approach increases setup complexity and requires synchronized
spectrometers, which can add to overall costs.

Integrating differential dynamic microscopy with transmission OCT
In Chapter 1, we briefly introduced the technique called differential dynamic mi-
croscopy (DDM), which can be used for particle sizing. DDM is a 𝑞-dependent tech-
nique typically operating in the transmission configuration. It utilizes a 2D camera
to capture intensity fluctuations as a function of position, which corresponds to
the Fourier pair of the radial scattering wavenumber. However, depending on the
experimental setup, alternative configurations may also be employed. The light
scattered by particles is detected over a range of scattering angles in the numer-
ical aperture of the objective. The absolute scattering wavenumber, or scattering
vector magnitude in DDM, can be expressed as

𝑞 = √𝑞2𝑧 + 𝑞2𝑟 =
4𝜋𝑛
𝜆0

sin (𝜃/2) , (8.5)

where 𝑞𝑧 is the component of the scattering vector along the optical axis, and 𝑞𝑟 is
the Fourier pair of the radial position in the intensity image. In transmission DDM,
𝑞𝑧 is typically small and close to zero, while 𝜃 ranges from zero degrees to the max-
imum scattering angle within the collection optics, which cannot exceed 90∘. The
application of DDM is limited by factors such as sample thickness, concentration,
and multiple scattering.

We can overcome the limitations of DDM by combining it with OCT, thereby
leveraging the strengths of both techniques to measure the diffusion coefficient of
concentrated particle suspensions over a broad 𝑞-range, resulting from variations
in scattering angles within the objective, while OCT’s coherence gating reduces the
constraints posed by sample thickness, particle concentration, and multiple scat-
tering. DDM-OCT can be implemented in either the transmission or backscattering
configuration to ensure a unique mapping of the radial components of scattering
wavenumbers 𝑞𝑟 to the absolute scattering wavenumber 𝑞. In this case, besides the
influence of the objective, 𝑞𝑧 is further influenced by the OCT spectral resolution.
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In DDM-OCT, resolving the scattered light both spectrally (for OCT) and spa-
tially (for DDM) is essential. This can be achieved using either full-field swept-
source OCT or line-scan spectral-domain OCT. The DDM-OCT wavenumber range
can be increased both optically and spectrally. Optically, the 𝑞-range is increased
by enhancing the objective NA, which allows access to higher and lower scattering
angles for transmission and backscattering configurations, respectively. Spectrally,
the 𝑞-range can be expanded by increasing the source spectral bandwidth, which
directly influences the range of accessible wavenumbers through Eq. (8.5). Based
on Eq. (8.5) and the possible scattering angles, we found that it is easier and more
effective to extend the wavenumber range by increasing the NA for transmission
DDM-OCT, while for the backscattering configuration, it is more efficient to extend
it spectrally. We concluded that DDM-OCT in the backscattering configuration of-
fers no significant improvement over DLS-OCT in enhancing the 𝑞-range. However,
in the transmission configuration, DDM-OCT can be highly advantageous. In this
case, a narrow bandwidth source is sufficient, since the 𝑞-range is mainly deter-
mined by the objective NA. Additionally, in the transmission configuration, scattering
wavenumbers are smaller, which alleviates sampling time and detector speed lim-
itations. Therefore, investigating DDM-OCT in the transmission configuration can
be particularly interesting for particle sizing in concentrated suspensions due to re-
duced sampling limitations, simpler optics from using a relatively narrow bandwidth
source, and access to a large 𝑞-range.

8.3. Outlook on number-fluctuation DLS-OCT
Incorporating number fluctuations into the second-order normalized autocovariance
function opens up additional possibilities beyond standard DLS-OCT. With number-
fluctuation DLS-OCT, we can measure 2D flow fields of particle suspensions below
the particle diffusion limits. This technique also enables the measurement of par-
ticle concentrations in dilute particle suspensions. Further research using number
fluctuations presents more potential avenues for exploration.

8.3.1. Improving 2D flow imaging with faster B-scan rates
Number-fluctuation DLS-OCT can be used to simultaneously measure 2D flow pro-
files of low flow speeds by analyzing subsequent B-scans. Chapters 4 and 5 demon-
strate the implementation and applications of number-fluctuation DLS-OCT for char-
acterizing flow fields below the diffusion limit, which are impossible to measure
using standard DLS-OCT or Doppler OCT techniques. However, even at low flow
velocities, number-fluctuation DLS-OCT is constrained by the limited sampling rate
of B-scans. This increases measurement uncertainty and limits the maximum ve-
locities the technique can accurately measure. For our scanning DLS-OCT system,
where the beam physically moves to acquire B-scans, the 2D acquisition rate is 45
Hz with 100 A-scans per B-scan and 25 Hz with 200 A-scans per B-scan. Increasing
the number of A-scans within a B-scan reduces the scan rate but enhances spatial
resolution.

The OCT B-scan acquisition rate can be significantly improved by implementing
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line-scan spectral-domain DLS-OCT. In such a setup, a light sheet is focused over
a line of interest using cylindrical lenses. The scattered light is detected using a
fast 2D camera, where the light is spectrally dispersed over one dimension of the
camera, while it is spatially imaged using another dimension [18]. In this case,
the B-scan acquisition rate is limited only by the camera frame rate. For advanced
2D cameras, sampling rates can be on the order of several kHz or higher. This
improvement will likely eliminate all sampling limitations for 2D imaging of sub-
diffusion flow speeds. For very fast 2D cameras, one can also implement full-field
swept-source OCT for 3D flow imaging. However, compared to standard scanning
OCT systems, both line-scan and full-field OCT setups incur significantly higher
setup complexity and costs.

8.3.2. Beam shape characterization in scattering media
For quantitative flow speed measurements in dilute particle suspensions, as de-
scribed in Chapters 4, 5, and 6, the beam shape needs to be determined (cali-
brated). Also the beam shape is required for intensity normalization, as shown in
Chapter 7, to determine the sample attenuation coefficient. When operating our
DLS-OCT system in B-scan mode with a carefully chosen scan speed, we can accu-
rately determine the beam shape in the sample as a function of depth using number
fluctuations. In the context of this work, the obtained Gaussian beam shape was
only a calibration parameter and was not studied separately.

However, number-fluctuation DLS-OCT can directly measure the beam shape
𝑤(𝑧) in the scattering medium. This is of particular interest for OCT applications
involving attenuation coefficient estimation, particle sizing, and super-resolution
techniques [19]. In OCT, the beam shape or point-spread function is measured
in air, or in water, against a moving reflector [20], and the results (beam waist
at focus, Rayleigh length) are used to estimate the beam shape in any arbitrary
sample. In most cases the beam shape can be approximated as a Gaussian beam
of which the beam waist is parameterized as

𝑤(𝑧) = 𝑤0√1 +
(𝑧 − 𝑧0)2
𝛼 ⋅ 𝑧2𝑅

, (8.6)

where 𝑤0 is the beam waist at focus, 𝑧0 is the focus position, 𝑧 is the distance from
focus, 𝑧𝑅 =

𝜋𝑤20𝑛
𝜆 is the Rayleigh length, 𝑛 is the suspension refractive index, 𝜆 is

the incident light wavelength in vacuum, and 𝛼 is a scaling factor of the Rayleigh
length. Leeuwen et al. [20] determined that in OCT, 𝛼 = 1 for specular reflections
and 𝛼 = 2 for diffuse reflections. Reflections from particles in the suspension have
been considered as diffuse reflections, for which 𝛼 = 2 has been employed in
attenuation coefficient measurements [20, 21]. However, recently, Buist et al. [22]
claimed that 𝛼 = 1 irrespective of the sample or object used. This contradicts
established practices in OCT and requires further verification.

Number fluctuation DLS-OCT enables the determination of the scaling factor 𝛼
in different samples. In dilute polystyrene and polymer particle suspensions from
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Chapters 6 and 7, respectively, we obtained 𝛼 = 1.5. For dilute Intralipid measure-
ments from Chapter 7, we found 𝛼 = 1.9, which is much closer to 2. Factors such
as focus depth [22], particle size, polydispersity, and possibly concentration effects
are suspected to influence 𝛼. The focus depth was virtually identical in both sam-
ples from Chapter 7, suggesting this was not a significant factor. Our polystyrene
and polymer particles were monodisperse with a radius of around 250 nm, while
Intralipid particles were quite polydisperse with an average radius of about 150 nm.
In all cases, the beam shape was determined in very dilute samples. Therefore, it
is intriguing to explore why 𝛼 varies among these samples. Additionally, studying
the beam shape in more concentrated suspensions using number fluctuations by
seeding them with a low number of large particles could provide further insights.
Further research in this field using number-fluctuation DLS-OCT could overcome
current measurement limitations, clarify the OCT beam shape in scattering media,
and establish the scaling factor for the Rayleigh length.

8.3.3. Effects of particle size polydispersity
Chapters 4 and 6 detail the dependence of 𝑔2(𝜏) on the average number of parti-
cles in the scattering volume, ⟨𝑁⟩. As the number of particles in the scattering vol-
ume decreases, the magnitude of the number-fluctuation term in 𝑔2(𝜏) increases.
Notably, the magnitude and decay rate of the number-fluctuation term are inde-
pendent of the particle size and its polydispersity. However, we suspect that the
magnitude of the number-fluctuation term may actually depend on the particle size
polydispersity. The equations provided in Chapters 4 and 6 that relate the mag-
nitude of the number-fluctuation term to ⟨𝑁⟩ are valid for monodisperse particle
suspensions. Therefore, it would be interesting to investigate whether particle size
polydispersity affects the magnitude of the number-fluctuation term.

Figure 8.7 shows the simulated number-fluctuation term of 𝑔2(𝜏) for monodis-
perse and polydisperse particle suspensions. The simulation parameters include
an OCT scan rate of 5.5 kHz, a time series length of 32768 time steps, a particle
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Figure 8.7: Number-fluctuation part of the normalized second-order autocovariance function simulated
for monodisperse and polydisperse samples.
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velocity of 1.8 mm/s, and ⟨𝑁⟩ = 1. The polydisperse particles have a Gaussian
number-based size distribution with PDI𝑁 = 0.05. As expected, the simulation for
monodisperse particles matches the theoretical predictions from Chapters 4 and 6.
However, the magnitude of the number-fluctuation term of 𝑔2(𝜏) is considerably
larger for the polydisperse particle suspension. It appears that as polydispersity
increases, the effective ⟨𝑁⟩ decreases, resulting in an increased magnitude of the
number-fluctuation term in 𝑔2(𝜏). This could be caused by the fact that with increas-
ing size polydispersity the intensity scattered by larger particles dominates the scat-
tering process. Consequently, the effective number of particles is reduced because
the intensity scattered by smaller particles is essentially undetected. Therefore,
developing new models to account for particle-size polydispersity in the magnitude
of the number-fluctuation term in 𝑔2(𝜏) is an interesting future research direction.
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