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Abstract

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones have gained increasing popularity

with current technological breakthroughs. Recent reports indicate the number of registered drones in

the United States have crossed 850,000 and is expected to increase multi-fold over the coming years.

The widespread applications of drones include agriculture, transportation, mining, media, entertain-

ment, etc. While drones are used for many benevolent purposes, there are also multiple real-life inci-

dents, where drones have caused serious mishaps. Radars with high resolution are increasingly used

for drone detection and classification, thanks to their long-range, all-weather monitoring capabilities.

Several techniques for binary classification of drone vs no drone, drone vs birds, and different models of

drones, have been proposed based on the relevant features extracted from the micro-Doppler signatures

or from tracks’ information. Recently, research focusing on the problem of classifying drone(s) carrying

payloads has garnered considerable attention.

In this thesis, the ability of a fully polarimetric radar and a single polarimetric radar to discriminate

between payloads carried by UAVs is demonstrated. A novel approach has been employed in the feature

extraction algorithm, where features from individual and combined polarimetric channels are extracted

for classification. Decision and ensemble fusions on the respective extracted features proved to enhance

the classification performance. The robustness of the algorithm is validated on two experimental radar

datasets acquired in the scenarios where the UAVs carrying payloads of different weights are hovering,

flying back and forth, and flying along rectangular waypoints. Initial results for the fusion techniques

provide approximately 95%-99% classification accuracy for the polarimetric and statistical features.

Keywords — polarimetry, radar, UAVs, payloads, feature extraction, classification.

v





Contents

Abstract v

List of Figures viii

List of Tables xi

Nomenclature xiv

1 Introduction and Overview 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Goals, Novelties and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Literature review in brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 7
2.1 Type 1: Drone Detection parameters and Binary classification . . . . . . . . . . . . . . . 7

2.2 Type 2: Classification of Drones versus other targets . . . . . . . . . . . . . . . . . . . . 8

2.3 Type 3: Classification of Drones Carrying Payloads . . . . . . . . . . . . . . . . . . . . . 9

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Mathematical Modelling 13
3.1 RCS of simple models of payloads. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 RCS of payloads on DJI drone models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Radius and RCS calculation of metallic spherical payloads. . . . . . . . . . . . . . 18

3.2.2 RCS of drone calculated by approximation of drone geometry . . . . . . . . . . . . 19

3.3 Micro-Doppler signatures of drones carrying payloads . . . . . . . . . . . . . . . . . . . 21

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Experimental Setups and Datasets 25
4.1 Data Collection: NetRAD, University College London . . . . . . . . . . . . . . . . . . . . 25

4.2 Data Collection: PARSAX, Delft University of Technology . . . . . . . . . . . . . . . . . . 26

4.3 Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Range Time Plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Research Methodology 33
5.1 Short-Time Fourier Transform (STFT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1.1 Spectrogram: NetRAD Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.2 Spectrogram: PARSAX Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

vii



viii Contents

5.2 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.2.1 Features based on Singular Value Decomposition . . . . . . . . . . . . . . . . . . 38

5.2.2 Features based on Centroid and Bandwidth . . . . . . . . . . . . . . . . . . . . . 39

5.2.3 Polarimetric Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.1 Types of Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.3.2 Performance Metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3.3 Fusion Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Results and Observations 51
6.1 Fusion Results: Decision Fusion and Feature Fusion . . . . . . . . . . . . . . . . . . . . 51

6.1.1 Decision Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.1.2 Feature Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 UCL: NetRAD Radar Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.1 Drone Flying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2.2 Drone Hovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.3 TU Delft: PARSAX Radar Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.1 Drone Flying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3.2 Drone Maneuvering in Rectangular Waypoints . . . . . . . . . . . . . . . . . . . 63

6.3.3 Drone Flying and Maneuvering in Rectangular Waypoints . . . . . . . . . . . . . . 64

6.3.4 Drone Hovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.5 Polarimetric Features Classification . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Conclusion and Future Work 71
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Radius and RCS calculation of metallic spherical payloads 75

B Range Time Plots and Spectrograms 79
B.1 PARSAX Data: Range Time Plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.2 Time-Frequency Plots: Spectrograms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.2.1 NetRAD Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.2.2 PARSAX Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



List of Figures

1.1 Usage of Unmanned Aerial Vehicles (UAVs) for multiple purposes, inspired from [4] . . . . 2

1.2 Flow chart of Research methodology, with main contribution blocks highlighted in yellow . 3

2.1 Range-Doppler plots for the experimental results from a drone used in spraying of crops

in [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Radar Cross section of common shapes at high frequency [24] . . . . . . . . . . . . . . . . . 14

3.2 Radar Cross Section of perfectly conducting Sphere in different regions: Rayleigh, Mie and

Optical [25] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Radar Cross Section of a perfectly conducting Sphere as a function of wavelength [25] . . . 16

3.4 Analysis of variation in micro-Doppler signatures due to the presence/absence of payloads

[10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Variation in blade velocity for the presence and absence of payloads illustrated via Doppler

spectrogram for drones (a) S900; (b) Joyance JT5L-404 [23] . . . . . . . . . . . . . . . . . . . 22

4.1 Experimental Setup of NetRAD Radar, inspired from [19] . . . . . . . . . . . . . . . . . . . . . 25

4.2 Drone models DJI M200 Quadcopter and DJI M600 Hexacopter used for data collection

using PARSAX radar [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Experimental Setup of PARSAX Radar with drone movement scenarios: (a) Measured dis-

tance between PARSAX radar and open ground; (b) Drone hovering; (c) Drone flying; (d)

Drone moving along rectangular waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4 Model of range profiles from a drone (helicopter) [30] . . . . . . . . . . . . . . . . . . . . . . 28

4.5 RTI Plot for Drone hovering with 500g payload at (a) Node 1; (b) Node 2; (c) Node 3 of

NetRAD Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 RTI Plot for Drone flying with 0g payload at (a) Node 1; (c) Node 2; (e) Node 3 and with

500g payload at (b) Node 1; (d) Node 2; (f) Node 3 of NetRAD Radar . . . . . . . . . . . . . . 30

4.7 RTI Plot at VV, VH, HV and HH channels for Drone M600 Hexacopter Flying with 2.35kg

payload of PARSAX Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.8 RTI Plot at VV, VH, HV and HH channels for Drone M600 Hexacopter in Rectangular Way-

points with 2.35kg payload of PARSAX Radar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1 Flow chart of Research methodology, with main contribution blocks highlighted in yellow

blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Visual Representation of Short-Time Fourier Transform (STFT)[30] . . . . . . . . . . . . . . 34

5.3 (a) A test sinusoidal signal; (b) Fourier Transform of the test signal; (c) Spectrogram with

Hanning window size 32 points; (d)Spectrogram with Hanning window size 128 points, [30] 34

5.4 Spectrogram of Drone hovering (a) no payload; (b) 500g payload at Node 1: NetRAD Data . 36

5.5 Spectrogram of Drone flying with (a) no payload; (b) 500g payload at Node 1: NetRAD Data 36

5.6 Spectrogram Plot for Drone M600 Hexacopter Flying with 2.35kg payload: PARSAX Data . . 37

5.7 Mechanishm of spectrogram split in time for feature extraction . . . . . . . . . . . . . . . . . 38

ix



x List of Figures

5.8 Feature plots from NetRAD N1 data (a) 2D feature plot with Mean and Standard Deviation

of diagonal matrix in SVD; (b) 2D feature plot with Mean of centroid and Mean of band-

width; (c) 1D feature plot with Mean of bandwidth and number of samples . . . . . . . . . . 40

5.9 Supervised learning classification techniques utilised in this thesis: summarising flow chart 43

5.10 Support Vector Machine (SVM) classifier, inspired from [41] . . . . . . . . . . . . . . . . . . . 45

5.11 Flow chart of Research methodology, with main contribution blocks highlighted in yellow

blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1 F1 scores VS Dwell Time of Feature fusion and Decision fusion 1 result of LDA classifier for

Drone hovering with 0g payload: NetRAD data . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 NetRAD data: Classification performance of classifiers as F1 score vs spectrogram split

duration (i.e. dwell time): Drone Flying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 NetRAD data: Spectrogram for Drone flying with 0g when spectrogram window duration

is changed from 0.05s to 0.4s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 NetRAD data: Classification performance of classifiers as F1 score vs spectrogram window

duration: Drone Flying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.5 Effect on spectrogram when noise to vary SNR is added: Drone Flying without payload at

N1- NetRAD radar. Blade flashes are faint at low SNR . . . . . . . . . . . . . . . . . . . . . . 57

6.6 NetRAD data: Classification performance of classifiers as F1 score vs Noise: Drone Flying . 57

6.7 NetRAD data: Classification performance of classifiers as F1 score vs spectrogram split

duration (i.e. dwell time): Drone Hovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.8 NetRAD data: Classification performance of classifiers as F1 score vs spectrogram window

duration: Drone Hovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.9 NetRAD data: Effect on spectrogram when noise to vary SNR is added: Drone Hovering

without payload at N1- Faint blade flashes at low SNR . . . . . . . . . . . . . . . . . . . . . . 60

6.10 NetRAD data: Classification performance of classifiers as F1 score vs Noise: Drone Hover-

ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.11 PARSAX data: Classification performance of classifiers as F1 score vs Parameters (a)Dwell

Time; (b) Spectrogram window duration; (c) Noise: Drones Flying . . . . . . . . . . . . . . . 61

6.12 PARSAX data: Classification performance of classifiers as F1 score vs Parameters (a)Dwell

Time; (b) Spectrogram window duration; (c) Noise: Drones along Rectangular Waypoints . 63

6.13 PARSAX data: Classification performance of classifiers as F1 score vs Parameters (a)Dwell

Time; (b) Spectrogram window duration; (c) Noise: Drones Flying and Maneuvering in

Rectangular Waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.14 PARSAX data: Classification performance of classifiers as F1 score vs Parameters (a)Dwell

Time; (b) Spectrogram window duration; (c) Noise: Drones Hovering . . . . . . . . . . . . . 66

6.15 PARSAX data: Feature samples for the case of Quadcopter M200 hovering for (a) Feature β;

(b) Feature ρ, dwell time = 0.05s. Red (payload); blue (no payload) . . . . . . . . . . . . . . . 67

B.1 PARSAX Data: RTI Plot VV, VH, HV, HH channels for Drone M200 Quadcopter Flying with

1kg payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

B.2 PARSAX Data: RTI Plot of VV, VH, HV, HH channels for Drone M200 Quadcopter Waypoint

with 1kg payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

B.3 NetRAD Data: Spectrogram of Drone hovering at N2 (a) No payload; (b) 500g payload . . . 80

B.4 NetRAD Data: Spectrogram of Drone hovering at N3 (a) No payload; (b) 500g payload . . . 81

B.5 NetRAD Data: Spectrogram of Drone flying at N2 (a) No payload; (b) 500g payload . . . . . 81

B.6 NetRAD Data: Spectrogram of Drone flying at N3 (a) No payload; (b) 500g payload . . . . . 81

B.7 PARSAX Data: Spectrogram Plot at VV, VH, HV, HH channels for Drone M200 Hexacopter

Flying with 1kg payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



List of Figures xi

B.8 PARSAX Data: Spectrogram Plot at VV, VH, HV, HH channels for Drone M200 Quadcopter

in Waypoints with 1kg payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B.9 PARSAX Data: Spectrogram Plot at VV, VH, HV, HH channels for Drone M600 Hexacopter

in Waypoints with 2.35kg payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83





List of Tables

1.1 Number of Unmanned Aerial Vehicles registered in the United States, as of August 3, 2021

[3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Comparison of Feature extraction and Classification techniques as seen in the literature

studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 SNR of payload shapes calculated from Radar equation . . . . . . . . . . . . . . . . . . . . . 15

3.2 Radar Band Designation by IEEE, taken from [27] . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Weight of payload that can be carried by different models of DJI drones [27] . . . . . . . . . 17

3.4 RCS of spherical payloads carried by DJI drones in optical region . . . . . . . . . . . . . . . . 19

3.5 Comparison of RCS of combined values of spherical payloads carried by spherical DJI

drones VS RCS of spherical DJI drones in optical region . . . . . . . . . . . . . . . . . . . . . 20

5.1 Dimensions of spectrogram (Doppler bins x Time bins) at spectrogram window duration

of 0.1s for drone hovering and flying: NetRAD Dataset . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Dimensions of RTI data and spectrogram (Doppler bins x Time bins) for window duration

0.1s for drone flying, maneuvering in waypoints and hovering: PARSAX Data. The varying

dimension of spectrogram is due to the drone temporarily leaving the radar beam. Exper-

iments are recorded for different number of times for each scenario . . . . . . . . . . . . . . 37

5.3 List of polarimetric features extracted, inspired from [8], [37] . . . . . . . . . . . . . . . . . . 41

5.4 Number of feature samples in each class for different scenarios: NetRAD Data . . . . . . . . 42

5.5 Number of feature samples in each class for different scenarios: PARSAX Data . . . . . . . . 42

5.6 Cross-validation (CV) 5-fold mechanism [38] . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.7 Mechanism of Decision Fusion 1 by imposing same classifier (here, LDA classifier) on each

node or channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.8 Mechanism of Decision Fusion 2 by selecting Best classifier from each node or channel . . 47

5.9 Mechanism of Ensemble Fusion where different classifiers are applied on same node; used

for polarimetric features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.1 Decision Fusion 1 of LDA classifier for Drone flying: NetRAD data . . . . . . . . . . . . . . . 52

6.2 Decision Fusion 2 of best classifier for Drone flying: NetRAD data . . . . . . . . . . . . . . . 52

6.3 Features selected from the Nodes 1, 2 and 3 for Drone hovering without payload: NetRAD

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 F1 scores of Feature fusion and Decision Fusion of nodes from NetRAD data for Drone

hovering without payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.5 PARSAX data: Comparison of classification performance (Accuracy percentage) at dwell

time 1s: With and without min-max normlization on the samples after feature extraction . 62

6.6 PARSAX data: Classification performance F1 score (Percentage) for polarimetric features

for Dwell time of 0.05s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xiii



xiv List of Tables

6.7 Optimum F1 score (as percentage) based on Dwell time for all scenarios for independent

nodes/ channels: NetRAD and PARSAX datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.8 Summary of results from parametric analyses of NetRAD PARSAX datasets for the different

drone scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Nomenclature

BW Bandwidth

CFAR Constant False Alarm Rate

CM Confusion Matrix

CNN Convolutional Neural Network

CPI Coherent Processing Interval

CV Cross-Validation

CVD Cadence Velocity Diagram

CW Continuous Wave

DFT Discrete Fourier Transform

DJI Da-Jing Innovations

DT Decision Tree

EM Electromagnetic

FAA Federal Aviation Administration

FMCW Frequency Modulated Continuous Wave

FN False Negative

FP False Positive

GAN Generative Adversarial Network

HERM Helicopter Rotational Motion

HH Horizontal-Horizontal

HV Horizontal-Vertical

IDFT Inverse Discrete Fourier Transform

JEM Jet Engine Modulation

LDA Linear Discriminant Analysis

LDA Quadratic Discriminant Analysis

LOS Line of Sight

xv



xvi Nomenclature

NB Naive Bayes

PCA Principal Component Analysis

PDF Probability Density Function

PRF Pulse Repetition Frequency

RBF Radial Basis Function

RCS Radar Cross Section

RTI Range Time Intensity

SBE Sequential Backward Elimination

SD Standard Deviation

SFS Sequential Forward Selection

SK Spectral Kurtosis

SNR Signal to Noise ratio

STFT Short-Time Fourier Transform

SVD Singular Value Decomposition

SVM Support Vector Machine

TN True Negative

TP True Positive

UAV Unmanned Aerial Vehicle

UCL University College London

USRP Universal Software Radio Peripheral

VH Vertical-Horizontal

VV Vertical-Vertical



Chapter 1

Introduction and Overview

In this chapter, the background and motivation to take up the research on the thesis ’Radar-Based Classi-

fication of Unmanned Aerial Vehicles (UAVs) Carrying Payloads’ is discussed in detail. The salient aspects

of research questions, contributions and novelties are also covered, with a brief insight into the following

chapters.

1.1 Background and Motivation

With recent advancements in technology, the number of Unmanned Aerial Vehicles (UAVs), commonly

referred to as drones, have detonated in ubiquity and is accessible to everyone. The UAVs have grown in-

creasingly important in the operations of many business and government entities, penetrating through

the sectors where some industries were inert or trailing behind. Drones, either commanded by a remote

or via a smartphone app, have the ability to reach even the most inaccessible locations with little to no

people and with the least amount of effort, time, and energy. This is one of the primary reasons for

their widespread adoption, particularly in the four sectors of military, commercial, personal, and future

technologies. The records from Federal Aviation Administration (FAA) indicate the number of registered

drones alone to be approximately 870 thousand in the United States of America (USA), as of August 3,

2021, presented in Table 1.1. The UAVs, which were initially developed for military use, have seen swift

progress and have made their way into consumer appliances. While military drones are still popular,

their use has moved far beyond tactical purposes.

Drones, over the recent years, are used in multiple scenarios, ranging from defence purposes to com-

mercial use, like photography, delivery of goods and medicines, mining etc. The initial commercial

application of UAVs can be dated back to the early 1980s for the purpose of spraying pesticides over rice

fields, where remotely piloted helicopters rendered as a promising route of augmenting manned heli-

copters. In the domain of transportation, drones have become an integral component in e-commerce

and many industries like Amazon and Domino’s have launched the testing phase in the logistics of their

goods. An enhanced customer satisfaction would be established by the ease of shipment of goods to

the client’s doorstep and drones would ensure speedy service to the specific pre-configured location

without involving much human intervention. The good or cargo carried by drone is termed as ‘payload’,

which is the weight borne by the UAV exclusive of what is required for its operation [1].

The categories of drone utilization can be broadly segregated into genuine and malicious activities, as

shown in Figure 1.1. While drones are used in many benevolent applications, there are also multiple

real-life incidents, where drones have caused serious mishaps, ranging from posing as a public nui-

sance during official meetings, football matches, to interfering with aircrafts and helicopters, to drop-

ping grenades and explosives, resulting in catastrophic events [2]. This brings to the constant fear of

1
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drones (carrying illegal components/ goods). The outstanding propensity of a large number of vulner-

abilities by exploiting the easily accessible resources is a major concern and even by enforcing laws, the

authorities have a hard time combating with the illicit use of drones.

Registered Drones

Commercia Use Recreational Use Registered on paper

Certified Remote

Pilots

350,608 515,887 3,499

Total : 869,994
239,562

Table 1.1: Number of Unmanned Aerial Vehicles registered in the United States, as of August 3, 2021 [3]

Figure 1.1: Usage of Unmanned Aerial Vehicles (UAVs) for multiple purposes, inspired from [4]

The first concern that arises is selecting an optimum sensor that can monitor the activities of drones

throughout 24x7. High-resolution radars are specifically designed for drone detection, with their ability

to operate in all weather circumstances and the potential to measure range and velocity simultaneously,

radars are used as ideal sensors for the detection of drones in contrast to other sensors, such as LIDAR

[5].

One of the issues to be tackled is the dependence on Radar Cross Section (RCS), since the structure

of the drone can be too small to be detected by the radar. Extensive studies have successfully provided a

more reliable parameter that negates the need for RCS. These attributes delve into the individual com-

ponents of the drone, such as the rotor blades, fuselage, etc., which can eventually be reflected on the

micro-Doppler signature to closely monitor the drone activities. This can be used as a basis to detect if

the drone is present or not. The next concern after the identification of drones is distinguishing them

from other similar targets. There are multiple targets recognized by the radar, such as birds or other

drones. Based on the driving systems, UAVs can be classified as multi-rotors, hybrid/ fixed-wing and

tilt-wing drones [1]. The micro-Doppler signatures aid in segregating drones from birds using the rota-

tion patterns and velocity of the rotors and wings. For the scenario of differentiating between drones, the

number of blades and velocity play a major role. The micro-Doppler signatures vary distinctly for even

and odd numbers of blades in drones, and this can be used as one of the attributes to classify the drone
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models. Thus, various feature extraction and machine learning algorithms are developed to achieve an

ideal classification performance.

Moving on to the next concern is the scenario when the drone is carrying a payload. As stated already, the

structure of the drone is small, and it would be a challenging task to detect the payload. Multiple tech-

niques have been considered for the detection and classification of drones using radars, however, the

current research that is going on in the field of classification of drones is to identify whether the drone is

carrying payloads and develop algorithms to detect and classify them [6]. The hurdle is to provide suit-

able feature extraction methodologies to generate significant features, which can be used by classifiers

for obtaining optimized performance. Thus, this thesis provides unique feature extraction algorithms

and fusion techniques (after classification) to distinctly classify the weights of classes of payloads that

are carried by different models of drones.

1.2 Research Goals, Novelties and Contributions

The myriad of incidents and possible threats by drones carrying payloads causing catastrophes raise

serious apprehensions about the dire need to monitor them. There have been studies towards the de-

tection of drones, with an emphasis on the integral empirical and physical characteristics of drones

[7]. Following this, [8]-[9] delve into the micro-Doppler aspects and methods for optimally identifying

drones from birds or different types of drones. However, the niche area revolves around the domain of

modelling and classification of the signatures of drones that are carrying payloads and the effective tech-

niques to achieve good classification performance. The number of research in this field is relatively less

and only a handful of open literature is available, this paves a way to develop algorithms for optimum

classification of drones with payloads [10], [11], [12]. A detailed analysis of the different methodologies

will be explained in Chapter 2.

In this thesis, the main objectives that will be covered with an effort to fill some of the research gaps

are listed as follows.

Figure 1.2: Flow chart of Research methodology, with main contribution blocks highlighted in yellow

• The problem of classification of Unmanned Aerial Vehicles (UAVs) that are carrying payloads is ap-

proached by generating polarimetric features from Range-Time plots and statistical features from

micro-Doppler signatures. These features are given as input to the supervised machine learning

classifiers.

• Algorithms using decision fusion for the statistical features and ensemble fusion for the polari-

metric features, and their effects on the classification performances are investigated.

• Initial results are validated based on the two sets of experimental data collected using (a) a single

polarimetric NetRAD radar; (b) a fully polarimetric PARSAX radar, for different models and tra-
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jectories of drones, and the various payload weights. This also helps to infer if the algorithms are

robust and agnostic to the type of radars, the model of drones, and the weights of payloads.

The block diagram in Figure 1.2 illustrates the research pipeline. The major contributions involve

the extraction of two sets of features, namely, the statistical and polarimetric features as input to the

classifiers. The novel approach on enhancing the classification performance is also exhibited through

the decision and ensemble fusion techniques. These unique key strategies are indicated in the yellow

blocks in Figure 1.2

Furthermore, the conference paper, titled ’Classification of Unmanned Aerial Vehicles (UAVs) Carry-

ing Payloads with Polarimetric Radar’ with results arising from this thesis work has been submitted to

the European Microwave Week 2021, Excel London Exhibition and Conference Centre, UK, that is to be

held in February 2022.

1.3 Literature review in brief

The analysis of works of literature relevant to the research can be divided into the following types:

• Type 1: Investigation about the parameters for detection of drones with the help of radar and the

significant parameters identifiable in drones (Jet Engine Modulation (JEM), Helicopter Rotational

Motion (HERM) lines). The preliminary binary classification of drone vs no drone is reviewed.

• Type 2: An expansion to Type 1 deals with a combination of binary and multiclass classification

problems. The targets are birds and different types of drones. The analysis involves generating the

optimum parameters for classification from the micro-Doppler signatures.

• Type 3: This category deals with the prime focus of the thesis, which is the classification of pay-

loads. Various studies have been reviewed which use spectrogram, cepstrogram, etc. for monitor-

ing the activities of drones carrying payloads.

A detailed explanation of the mentioned categories is delineated in Chapter 2.

1.4 Structure of the Thesis

The thesis report is organized in the following way:

• Chapter 1: Introduction about the main objective for carrying out this research, the goals of the

thesis, the novel contributions and the organization of the thesis are covered.

• Chapter 2: The evolution of the state of the art detection and classification of algorithms for

drones, birds, and drones carrying payloads from various works of literature are reviewed.

• Chapter 3: Mathematical modelling about the Radar Cross Section (RCS) of drones and payloads

by the method of approximation are calculated. Analyses on the activities of drones for different

scenarios are assessed from their micro-Doppler signatures.

• Chapter 4: The experimental setups for the two sets of data from NetRAD and PARSAX, the data

pre-processing and its Range Time Intensity plots (RTI) are illustrated.

• Chapter 5: The research methodology and techniques are presented, including Short Time Fourier

Transform (STFT), feature extraction, classification and fusion. Extraction of significant statistical

features from the spectrogram is performed via Singular Value Decomposition (SVD), Centroid

and Bandwidth. The polarimetric features for the data from PARSAX radar are explored. The clas-

sification algorithms and different types of fusion techniques are evaluated.
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• Chapter 6: The results and observations from the fusion techniques and parametric analyses

are examined. The different parameters that are considered are variations in (a) dwell time, (b)

spectrogram window duration, and (c) additional noise to vary Signal to Noise Ratio (SNR).

• Chapter 7: Major conclusions from the thesis, limitations and the open questions for future work

are discussed.

1.5 Conclusion

In this chapter, the following aspects of the thesis have been highlighted:

• The main motivation and background of the thesis are covered. It is evident from the realistic

disastrous incidents why drones are a serious threat, and the need to monitor them.

• The research objectives and the major contributions and novelties, including the conference pa-

per are discussed.

• A brief review of the categories of literature on which the thesis is extended is mentioned, along

with an overview of the upcoming chapters.





Chapter 2

Literature Review

In this chapter, an overview of the lists of literature are reviewed. Radars with high resolution are in-

creasingly used for drone detection and classification, thanks to their long-range, all-weather monitoring

capabilities. Several techniques for binary classification of drone vs no drone, drone vs birds, and different

models of drones have been proposed based on relevant features extracted from the micro-Doppler signa-

tures or from tracks’ information [5].

The collection of the literature papers are broadly categorized into three categories as stated previously

in Chapter 1, based on algorithms used and the type of classification.

• Type 1: Investigation about the parameters for detection of drones with the help of radar, and the

significant parameters in the drones (Jet Engine Modulation (JEM), Helicopter Rotational Motion

(HERM) lines). The preliminary binary classification of drone vs no drone is also reviewed.

• Type 2: An extension to the Type 1 deals with a combination of binary and multiclass classification

problems. The targets are birds and different types of drones. The analysis involves generating the

optimum parameters for classification from the micro-Doppler signatures.

• Type 3: This category deals with the prime focus of the thesis, which is the classification of payloads.

Although the fact that the literature papers in this area are relatively limited, various studies have

been examined which use spectrogram, cepstrogram, etc. for monitoring the activities of drones

carrying payloads.

2.1 Type 1: Drone Detection parameters and Binary classification

The main motivation for drone detection is exemplified in the paper [13], which reviews the prevailing

literary works on the key suitable techniques proposed in the various stages of the identification pro-

cess, i.e., detection of potential drone activities, evaluation of targets and classification of drones. The

major focal point is given to detection using radar sensors and optimum methods for detection of the

presence of drones and its classification (called binary classification, where the classes are drone and

no drone). The study states that the most viable method is to achieve a reliable performance of the

surveilled region and to take control of the benefits of various innovations whilst dealing with their par-

ticular drawbacks via modern monitoring systems consisting of a channel of spatially dispersed sensors.

As much as radar is preferred for the detection of drones, machine learning is used prevalently for the

classification of targets. The article [14] addresses an extensive overview of the existing drone detec-

tion research and classification employing multiple strategies of machine learning. The innovations

broached involves radar, Radio-Frequency (RF), visual and acoustic sensing systems. A significant as-

pect of drones that can be used for the intention of detection and mapping is the RF signal. That being

7
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said, when the drone operates in a moderately or completely automatic environment, RF-based tech-

nologies stall. The broad sense evidence highlights that the classification of drones predicated on ma-

chine learning seems challenging with several other successful direct contributions.

The initial research of drone detection started with the binary scenario to determine if the drone is

present or not. The main objective of [7] is employing a (32 x 8) element L-band receiver array for de-

tection of micro-drones, specifically hexacopters. The Holographic Radar (HR) is used for the creation

of a two-dimensional multi-beam. The feature extraction is based on features related to flight profile,

such as maximum height, acceleration, track, jerk, in order to discriminate the presence of hexacopters

that have been derived from a holographic L-band radar data. These features have been identified over

a series of trial and error methods. Finally, a decision tree was is to evaluate the performance metrics

and the probability of detection of 88% is achieved.

With the evolution of research in the domain of drone detection, extensive studies have been carried

out to represent drone visualization on time-frequency domain plots. The paper [15], deals with the

cepstrum mechanism, which is seen to ascertain the rotation rate, as an alternate method is required

for detection and classification of drones when the PRF (Pulse Repetition Frequency) is inadequate, with

the fact that the targets can be discriminated based on the periodicity. In this study, a new algorithm of

log harmonic summation is proposed which makes use of a long interval of STFT (Short-Time Fourier

Transform) window to estimate the rotation rate of the rotor by determining the Helicopter Rotation

Modulation (HERM) lines’ frequency. It is analyzed that even with a feeble micro-Doppler signature, the

above-mentioned technique still holds good and the reliability of the model based on the predictions is

also found to be closely equivalent to the ground truth.

Similarly, in [16], the study provided a spectral evaluation of Doppler that is employed to the helicopters

and quadcopters. The primary objective is to comprehend the transformation of input of radar and

shape of target between micro-Doppler and (Jet Engine Modulation) JEM/HERM regimes while impos-

ing the Doppler processing. The importance of rapidly changing signature variations and duration of

STFT is demonstrated as the outcome of the research. It is also concluded that the target identification

proficiency can be optimized by taking the above parameters into consideration during evaluation.

2.2 Type 2: Classification of Drones versus other targets

Following drone detection using radar, the review is extended to the detection of drones VS birds, as well

as detection of multiple types of drones. Moreover, the different algorithms using the micro-Doppler sig-

natures are covered.

In the classification of drones and birds, [8] articulates the challenges in distinguishing birds from UAVs,

where a sophisticated long-range defence radar is employed. The core principle of this research is to

assess the polarimetric characteristics since they convey meaningful data about small objects. As an

extension to this study, the polarimetric features are used as a baseline for the classification of payloads

in this thesis research, which is discussed in Chapter 5.

From the paper [17], it is presented about the possibility to retrieve essential features via spectrograms

and cepstrograms for the LSS (‘Low (altitude), Small (RCS) and Slow (speed)’) characteristics to be de-

tected conceptually and instinctively for rotating and moving targets. For this purpose, a CW (Continu-

ous Wave) radar is used. The originally broad literature is narrowed down to discuss features from birds

and micro-drones for classification. It is concluded that the long integration and short integration of

the spectrogram indicated the spectral width, body velocity; and blade flashes, individual rotor signals

respectively. On the other hand, the rotors and periodicity can be observed from the cepstrogram.
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For the classification of the scenario of multiple drones, the study [18] presents a multi drone thin-

wire electromagnetic framework which proficiently emits drone micro-Doppler patterns as an interface

of radar constraints as well as rotor characteristics. It is seen that in long Doppler coherent processing

interval (CPI) parameters, this research discusses radar recognition of multi-propeller drones through

micro-Doppler linear spectral profiles. It fixates on exploring the relationship on the micro-Doppler

spectrogram of the structural architecture and rotation factors, for which it considers blade such as

blade number, blade layout, drone model configuration and rotor orientation. Effective attributes for

drone identification have been formulated relying on the modelled frequency peak amplitudes as well

as positions in the micro-Doppler linear range. For this with the computational quadcopter and hexa-

copter information, their performance is verified employing effective classifier Support Vector Machine

(SVM). The classification performance for the binary class problem is obtained as 99% and 93% for the

scenarios of hovering and manoeuvring at an altitude.

The literature [9] throws light on the background of cognitive radar, where the study explores the capac-

ity of deep learning algorithms for classifying micro-drones employing micro-Doppler spectrograms.

A comparison of the performance of Soft-max and GANomaly, which are the two deep learning algo-

rithms are evaluated for unknown targets. If a micro-Doppler spectrogram from a target class that is not

depicted in the training set is analyzed by a cognitive radar, an abnormal detection algorithm would pro-

vide cognitive radar configuration with a prompt to gather spectrograms of micro-Dopplers from such

an unknown target. It is concluded that, in addition to enhancing the innovation, detailed knowledge of

the principle underlying deep neural networks, possibly facilitated by the association with compressive

sensing and sparse signal portrayals, would accelerate the perception of many sophisticated applica-

tions.

2.3 Type 3: Classification of Drones Carrying Payloads

The most important objective in the domain of drone detection is the case where the drone is carrying

a payload. From [1], it is transparent that it is a burning problem to identify if the drones are carrying

payloads and then classify them. Thus, relating it to the literature [10], it states that the micro-Doppler

pattern provides optimum information regarding the drone if it is carrying a payload or not. The exper-

imental study that is carried out in the X-band clarifies that RCS might not be an optimum parameter,

however, it plays an important role in revealing if the payload is dropped by the drone. This information

is also backed up by the tip velocity and rotor motion.

In the paper [11], with the intent of UAV payload classification, a novel micro-Doppler feature extraction

technique largely dependent on the utilization of ‘spectral kurtosis’ (SK) is proposed, where the mea-

surement is captured using NetRAD. The notion of implementing and using this fourth-order statistical

method for the classification of signals generated from objects distinguished by rotating segments as

drones stems from the underlying attributes and applications of spectral kurtosis in the surveillance

of vibrating and rotating machines. The spectral kurtosis is determined on both the narrowband and

wideband spectrograms accumulated and is then fed to a k-nearest neighbour classifier, before which

Principal Component Analysis (PCA) is performed for reduction of dimensionality. The classification

accuracy of 82%-97% is attained.

The same dataset is used in [19], where the authors have investigated the methods to track and dis-

tinguish the scenarios of the micro-drones flying and hovering with payloads of various weights. For

this purpose, multistatic pulsed radar NetRAD is made use of. The salient statistical features derived by

feature extraction involved the application of Singular Value Decomposition (SVD), Centroid and Band-

width of the micro-Doppler signature. Classification accuracy of 95% and 97% is obtained for the fea-
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tures extracted via Centroid and SVD respectively using three suitable classifiers a) Discriminant analy-

sis, b) Naïve Bayes classifier, c) Random Forest theory.

Expanding the investigation to multiple time-frequency domains, [6], also used the same NetRAD dataset

for the classification of drones carrying payloads. The multistatic pulsed radar NetRAD is used to carry

out the experiment and the operational situations that have been investigated are that of the flying of

drone and of the hovering of drone. The data collected are classified based on deep learning algorithms

and multiple Doppler signatures, that is, CVD (Cadence Velocity Diagram), cepstrogram and spectro-

gram, which are the representation in the multi-time frequency domain were considered. In order to

detect if the drone is hovering or flying, the obtained data is subjected to Hilbert transform, matched

filtering and the spectrogram is obtained when STFT (Short-Time Fourier Transform) is imposed over

the range cells. Similarly, STFT and later applying IDFT (Inverse Discrete Fourier Transform) taking into

account a suitable time window generated cepstrogram. Lastly, Cadence Velocity Diagram also is cre-

ated by performing DFT (Discrete Fourier Transform) over the Doppler frequency. Then for the part of

feature extraction and classification, a convolutional neural network (CNN) is adopted to identify the

key characteristics of the drone with/ without payload. From the analysis of the results, higher total ac-

curacy of 96.6% is obtained for the scenario of drone flying, as compared to the total accuracy of 95.1%

in the case of drone hovering.

Similar research on drone detection and classification using a different dataset, wherein [20], FMCW

(Frequency Modulated Continuous Wave) Radar is used, and the Parrot Bebop 2 quadcopter carried AA

batteries of 23g on each of its arms, thus carrying an overall of 92g, keeping in mind the aerodynamics

of the drone. Similarly, as seen in the above papers, the spectrogram of the quadcopter is attained by

applying Short Time Fourier Transform (STFT). From the 12 features that were retrieved based on the

spectrograms, 3 classifiers, namely, Support Vector Machine (SVM) with Radial Basis Function (RBF) and

Quadratic kernel, and a Diagonal-Quadratic Bayesian classifier were applied for different dwell times. It

is analyzed that the optimum accuracy (even for a shorter dwell time) is achieved in the case of SVM. An

overall classification accuracy yielded 80% to 90%.

(a) Range Doppler plots without liquid spray (b) Range Doppler plots bore is seen at the drone

(c) Range Doppler plots when bore is observed at the
spray below the drone

Figure 2.1: Range-Doppler plots for the experimental results from a drone used in spraying of crops in [12]

An interesting research in [12] assessed upon these conspicuous radar signatures of liquid spraying

drones, equivalent, for instance, to a drone carrying weaponry as seen in Figure 2.1. For the premise of

liquid droplet radar backscatter simulation and for observational data surveillance, a widely accessible
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crop-spraying drone likewise is utilized. Rayleigh approximation is used to model the parameters of the

droplet based on Radar Cross Section (RCS) and Signal to Noise Ratio (SNR). As the model predicted, the

justification for selecting high-frequency radar systems is that these tiny fluid particles are intended to

be very invisible to lower-frequency radar signals. The findings reinforce the existing proposition that

the short wavelength of the millimetre-wave radar is feasible for the identification of fluid material dis-

pensed from a drone which could be used as an interface of range and radar constraints to estimate

tracking via a classic Rayleigh scattering prototype. It is analyzed that 94 GHz radar is able to detect the

spray at approximately 150 metres. The characteristic from the microscopic spherical droplets is antic-

ipated to be relatively tolerant to polarization, while in HH polarization the micro-Doppler from drone

rotors happens to be significantly greater. Also, it is seen that lower frequency radars have higher ranges

of detection and classification, although the relatively microscopic RCS spray might not be observed.

2.4 Conclusion

In this chapter, the state of the art techniques for radar-based detection and classification of UAVs from

the recent literature papers have been discussed. A summary of the methodologies is tabulated in Table

2.1.

• The research methodologies are validated on real experimental data from NetRAD and PARSAX

radars in Chapters 4 and 5, in order to create robust algorithms suitable in realistic situations.

• The first colour in the Table 2.1 represents Type 1 which describes the parameters required to

detect if the drone is present or not.

• Following this, the second colour indicates Type 2, which involves distinguishing drones from

birds and differentiating between drone models.

• Finally, the third colour denotes Type 3, the prime focus of this thesis, which deals with drones

that are carrying payloads.

• The main literature gap is the dearth of research in Type 3. Many studies have concentrated on

the detection of the presence of drones and devised classification algorithms for differentiating

drones from birds and other targets. These researches focus on the micro-Doppler aspects and

the physical attributes of drone (Type 1 and Type 2).

• There are currently only a few investigations (at least in open literature) in the category of drones

carrying payloads. This thesis aims to develop techniques to generate features from the micro-

Doppler signatures of drones with payloads, such that they result in ideal discrimination among

the weights of the payloads. The results are optimized by novel fusion algorithms.
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Paper Radar Scenario Features Classifier Accuracy

[7] Holographic

Radar (L-

Band)

Hexacopter Drone VS

No Drone

Maximum Height, Ac-

celeration, jolt

Decision Tree Detection

of 88%

[21] GAMMA-2

passive radar

system

Parrot AR drone and

Amos X4 drone

Doppler signature NA NA

[22] USRP1 pas-

sive radar

system

Vario XLC Compact

helicopter and Align

M480L quadcopter

Micro-Doppler signa-

ture

NA NA

[8] BirdRad Birds VS Drones (DJI

Phantom 2, 3D Solo)

9 Polarimetric Feaures Nearest Neigh-

bour

100%

[17] CW Radar Drone VS Drone (RC

Helicopter, RC Quad-

copter)

Cepstrogram, Spec-

trogram (symmetry,

periodicity), Spectrum

width

NA NA

[18] PARSAX

FMCW Radar

Drone VS Drone (DJI

Drones)

Spectrogram (blade

parameters

Support Vec-

tor Machine

(SVM)

99% for

hovering

and 93%

for ma-

neuvering

[9] CW Radar Multiple drones

(Robbe Air Trainer

140, Sky Walker)

Denoising Spectro-

gram using adversarial

auto-encoder

Multiple Deep

Neural Net-

works

90%-97%

[12] CW Radar

and FMCW

Radar

DJI S900, Joy-

ance JT5L-404,

heavy/dynamic

payload

Doppler spread

weight, strength,

HERM line spacing,

fluctuation

Neural Net-

work

72% (2-

class and

5-class

prob-

lems)

[10] CW Radar

and FMCW

Radar

Drones carrying 3D

hand and mortar

grenades

Micro-Doppler signa-

ture

NA NA

[11] NetRAD DJI Phantom Vision

2+, carrying 0g to 500g

payload

Spectral Kurtosis and

PCA (for dimensional-

ity reduction)

K-Nearest

Neighbour

82%-97%

[6] NetRAD DJI Phantom Vision

2+, carrying g to 500g

payload

CVD (Cadence Veloc-

ity Diagram), cepstro-

gram and spectrogram

Convolutional

Neural Net-

work

95% for

hovering

and 96%

for flying

Table 2.1: Comparison of Feature extraction and Classification techniques as seen in the literature studies



Chapter 3

Mathematical Modelling

In this chapter, the mathematical modelling of the Radar Cross Section (RCS) is performed. The objective

is to weigh the significance of RCS as a parameter for the detection and classification of drones and the

payloads attached to them. The simplest model of a drone and its payload are considered and the RCS is

calculated based on the method of approximation. The calculations are based on the assumption that the

geometry of the drone and payload are spherical and the composition of the material is a metal (e.g. Alu-

minium). The realistic drone models and their payload dimensions (for a spherical geometry) are taken

for specific types of drones from the DJI website. The RCS of drones and payloads are evaluated for further

analysis, concluding that RCS may not be the best discriminative feature to identify drones carrying pay-

loads.

Finally, the effect of payload on drone and its micro-Doppler information is depicted using a spectrogram.

The scenarios from literature studies [10] and [23] are considered for comprehension. The variations in the

drone activities are observed evidently via the time-frequency plots.

3.1 RCS of simple models of payloads

The Radar Cross Section (RCS) of a drone that is carrying a payload is modelled to analyze their charac-

teristics in the normal scenario, where the drone is static. Later, the specific scenarios where the drone

carrying a payload is flying/hovering are discussed in the further chapters, and a comparison of the vari-

ations based on the different scenarios is delineated.

By analyzing the RCS, it is possible to comprehend a rough estimate if the size of the payload causes

a change in the power, and approximately how big the payload should be to be detected by the radar.

The general formula for the RCS is defined as [24]:

σ= lim
R→∞

4πR2
∣∣∣∣E scat

E i nc

∣∣∣∣2

(3.1)

where E scat and E i nc denote the scattered and incident electric fields at the target.

A relation can be drawn from the Radar Range Equation (RRE), which correlates the Signal to Noise

Ratio (SNR) and the Radar Cross Section (RCS). Since the performance of the radar can be determined

using the SNR, it is expressed as:

SN R = Pt Gt Grλ
2σ

(4π)3R4kToF B
; wher e (3.2)

Pt : Peak transmitted power (W)

13
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Gt : Transmit antenna gain

Gr : Receiver antenna gain

λ: Wavelength of the carrier (m)

σ: Target’s mean Radar Cross Section (m2)

R: Radar to target range (m)

k: Boltzmann’s constant (1.38 X 10−23 J/K )

To : Effective noise temperature at receiver

F : Noise figure

B : Bandwidth at receiver

From the equation 3.2, as RCS is dependent on the shape (and the material) of the target, the SNR

equation is transformed into equation for RCS σ as:

σ= SN R(4π)3R4kToF B

Pt Gt Grλ2 (3.3)

In reality, the payloads that are carried by the drones are of variety of shapes. The shapes that are consid-

ered here for the payloads are flat plate, sphere, triangular trihedral, rectangular trihedral, and dihedral.

The RCS of these basic shapes with dimensions ’a’ and ’b’ are as given in 3.1

Figure 3.1: Radar Cross section of common shapes at high frequency [24]

For the common shapes and for the scenario where the targets are static, the azimuth and elevation

angles are disregarded here, and the Radar Cross Sections of these basic shapes at high frequencies are

formulated as follows.

• The SNR of a flat plate is:

SN R f l at pl ate =
Pt Gt Grλ

2a2b2

(4π)3R4kToF B
= Pt Gt Gr a2b2

16π2R4kToF B
(3.4)

• The SNR of a sphere is:

SN Rspher e =
Pt Gt Grλ

2a2π

(4π)3R4kToF B
= Pt Gt Grλ

2a2

64π2R4kToF B
(3.5)

• The SNR of a triangular trihedral is:

SN Rtr i ang ul ar tr i hedr al =
Pt Gt Grλ

24πa4

(4π)3R4kToF B(3λ)2 = Pt Gt Gr a4

48π2R4kToF B
(3.6)

• The SNR of a rectangular trihedral is:

SN Rr ect ang ul ar tr i hedr al =
Pt Gt Grλ

212πa4

(4π)3R4kToF B(λ)2 = 3Pt Gt Gr a4

16π2R4kToF B
(3.7)
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• The SNR of a dihedral is:

SN Rdi hedr al =
Pt Gt Grλ

28πa2b2

(4π)3R4kToF B(λ)2 = Pt Gt Gr a2b2

8π2R4kToF B
(3.8)

For simplicity, the dimensions ’a’ and ’b’ are approximated to be same and the equations 3.4, 3.5, 3.6,

3.7, 3.8 are evaluated to an approximated SNR as in Table 3.1

Shape of payload SNR Approximated

SNR

Flat plate Pt Gt Gr a2b2

16π2R4kTo F B
Pt Gt Gr a4

16π2R4kTo F B

Sphere Pt Gt Grλ
2a2

64π2R4kTo F B
Pt Gt Grλ

2a2

64π2R4kTo F B

Triangular Trihedral Pt Gt Gr a4

48π2R4kTo F B
Pt Gt Gr a4

48π2R4kTo F B

Rectangular Trihedral 3Pt Gt Gr a4

16π2R4kTo F B
3Pt Gt Gr a4

16π2R4kTo F B

Dihedral Pt Gt Gr a2b2

8π2R4kTo F B
Pt Gt Gr a4

8π2R4kTo F B

Table 3.1: SNR of payload shapes calculated from Radar equation

In the following sections, the shape of the payload and drone are approximated to be in the form of a

sphere for the calculation of RCS for the different DJI drone models. The difference between combined

RCS of drone and payload and RCS of drone alone helps in evaluating the feasibility of considering RCS

as a parameter.

3.2 RCS of payloads on DJI drone models

In a perfectly conducting sphere, the cross-polarization of back-scattered waves are ideally equal to 0,

as the waves dispersed from a perfectly conducting sphere are symmetrical, and hence are co-polarized

with the incident waves [25], [26]. Figure 3.2 depicts the regions, namely, ’Rayleigh’, ’Mie’, and ’Optical’

regions obtained from the back-scattered RCS of a perfectly conducting sphere.

• Firstly, the Mie region is also called the resonance region, due to its oscillating nature and the

expression for Radar Cross Section (RCS) for a perfectly conducting sphere in the Mie region is in

the form of a Bessel function and is expressed as:

σ

πa2 = j

ka

∞∑
n=1

(−1)n(2n +1)

[(
ka Jn−1(ka)−n Jn(ka)

kaH 1
n−1(ka)−nH 1

n(ka)

)
− jn(ka)

H 1
n(ka)

]
(3.9)

where the radius of the sphere is ’a’, wavelength is ’λ’, Jn is the Bessel function for a sphere of

kind 1 and order ’n’, H 1
n is the Hankel function of order ’n’, and ’k’ is equivalent to 2π/λ.

• Secondly, in the Rayleigh region, the circumference of the sphere as a function of its wavelength

is much less than 1. The RCS of a sphere in this region is given by σ that is approximately equal to

9πa2; where the radius of the sphere ’a’ is much smaller than the wavelength ’λ’.

• Finally, the optical region (which is taken into account when computing the RCS of the sphere

in this report) is substantially larger in comparison to its wavelength. As a result, the RCS of the

sphere in this region is represented as σ= πa2; where the radius of the sphere ’a’ is much greater

than the wavelength ’λ’.
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Figure 3.2: Radar Cross Section of perfectly conducting Sphere in different regions: Rayleigh, Mie and Optical [25]

The Radar Cross Sections of various shapes of payloads can be seen in 3.1, and their relation with

SNR is summarized in Table 3.1 along with their approximated value of SNR. Further moving on in this

domain, a simple payload in the shape of a sphere is considered. Investigation on variations in RCS of

drone and payload are made, by assuming realistic values as radius for the sphere. Figure 3.3 depicts

the generalized plot for radar cross section of a sphere as a function of frequency. The main objective

of starting to calculate the RCS of the sphere is that there is no aspect angle in this scenario as it is

symmetrical when viewed in all directions. Thus, there is no dependence on the aspect angle in the

case of a sphere, whereas, for other shapes, the aspect angle plays one of the major roles as it depends

in which direction the radar sees the payload. Initially, the feasibility of the detection of drone along

with its payload in the form of a sphere is evaluated and examined, and later the same analogy can be

extended in estimating the RCS of other payload shapes, by also considering its aspect angle.

Figure 3.3: Radar Cross Section of a perfectly conducting Sphere as a function of wavelength [25]

The Table 3.2 provides information on the spectrum of bands in which a radar can operate [27]. This

information can be used to plot the radar cross sections of spherical payloads and drones and use them

as a parameter to verify if they are in the comparable range of their cumulative weights. The difference

in RCS (in dBsm) obtained between the RCS of spherical payloads and drones VS the RCS of drone alone

will provide an idea if the RCS can be used as a viable constraint for the detection of drones carrying

payloads.
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Radar Band Wavelength Frequency

L- Band 15cm to 30 cm 1 to 2 GHz

S- Band 7.5 cm to 15 cm 2 to 4 GHz

C- Band 3.75 cm to 7.5 cm 4 to 8 GHz

X- Band 25 cm to 37.5 cm 8 to 12 GHz

Ku- Band 16.7 mm to 25 mm 12 to 18 GHz

K- Band 11.3 mm to 16.7 mm 18 to 26.5 GHz

Ka- Band 5.0 mm to 11.3 mm 26.5 to 40 GHz

Q- Band 6.0 mm to 9.0 mm 33 to 50 GHz

U- Band 5.0 mm to 7.5 mm 40 to 60 GHz

V- Band 4.0 mm to 6.0 mm 50 to 75 GHz

W- Band 2.7 mm to 4.0 mm 75 to 110 GHz

F- Band 2.1 mm to 3.3 mm 90 to 110 GHz

D- Band 1.8 mm to 2.7 mm 110 to 170 GHz

Table 3.2: Radar Band Designation by IEEE, taken from [27]

From the Da-Jing Innovations of Unmanned Aerial Vehicles (DJI) [19], the specifications of certain

models of drones are taken for further evaluation. One of the main criteria for evaluation is the dimen-

sions of the drone. As the specifications vary from one model of drone to another owing to its widespread

domains of applications, the weight it can hold also keeps fluctuating among the models. As a result, the

weight of the payload (on which the time of flight of the drone largely depends) that each of the selected

drones is designated to carry is taken into account. The choice of selecting these models are based on

the wide range of dimensions, ranging from 80 g by DJI Mavic Mini/ Mini 2 to up to 20 kg carried by

DJI Agras T20, which is dependent also on their purpose of usage. Thus, evaluating such a vast variety of

dimensions will aid in predicting if RCS is a suitable metric for the detection of drones carrying payloads.

One of the crucial concerns that arises is the shape of the payload. As mentioned earlier, spherical pay-

loads are initially used. From the Table 3.3, the realistic mass of the payload can be deduced. However,

having considered the payload to be in the form of a sphere, the radius is to be calculated initially before

evaluating the RCS. Using the mathematical formula for density, mass and volume, the value for radius

is computed. It is to be noted that for some of the values in the table, a range of weights is given for the

payloads, and this depends on the mode of operation and the intent of drone usage. Therefore, all of

the mentioned data are utilized in order to gain a better grasp while computing the radar cross section

of the sphere.

DJI Drone Model Weight of payload it can

carry 1
Dimensions of Drone

(LxWxH)

Diagonal dis-

tance of Drone

General DJI Drone 460 g NA NA

DJI Mavic 1000-1200 g (or) 300-400 g 168 x 184 x 64 mm 213 mm

DJI Mavic 2 1100 g 322 x 242 x 84 mm 354 mm

DJI Mavic Mini/ Mini 2 80 g 245 x 289 x 55 mm 213 mm

DJI Agras T20 15100-20000 g 2509 x 2213 x 732 mm 1883 mm

Table 3.3: Weight of payload that can be carried by different models of DJI drones [27]

1The weights of the payloads have been rounded- off to nearest whole numbers while conversion from lbs to grams. For some

drone models (Mavic and Agras T20), the maximum and minimum ranges of weights of payload are taken.
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3.2.1 Radius and RCS calculation of metallic spherical payloads

The information about the weight of the payload each model of DJI drone is designated to carry is sum-

marized in Table 3.3. However, there is not much knowledge about the shape of the payload or its

dimensions. Therefore, in this section, the dimensions of the payload are assessed and further, their

radar cross sections are evaluated.

To measure the dimensions of the payload, some major assumptions are made:

• The payload is considered to be in the shape of a sphere, and it would lie in the optical region,

where the size of the sphere is much larger in comparison to its wavelength.

• The material with which the payload is composed is Aluminium (density is 2.7 g/ cm3).

• One of the main ideas behind assuming a metallic sphere is that, in the case of a non-metallic

sphere like plastic, the possibility of it being detected by the radar is too less due to its flimsy

nature, and hence a metallic sphere which has a higher probability of being detected by the radar

is taken into consideration.

Thus, to get realistic values of the radius of a sphere, the volume of the sphere is evaluated using the

mathematical formula:

Density = M ass

V olume

Volume = M ass

Densi t y

Volume of sphere = 4

3
πr 3

RCS of sphere at high frequency in the optical region =π∗ r adi us2

(3.10)

The elaborate calculations for the radius of metallic spherical payload that the different drone mod-

els carry and its RCS are deduced in detail in this subsection. The comprehensive estimate of the radius

and respective radar cross section for the payload is deduced for a generalized DJI drone payload, and

for a particular model DJI Mavic carrying 1000g payload. The evaluations of radius and RCS of the other

drone models from Table 3.3 can be found in Appendix A.

• Radius of payload for general DJI drone:

Mass = Density * Volume

V olume = M ass

Densi t y

For a general DJI drone, weight of payload = 460g

Density of Aluminium = 2.7g /cm3

V olume = 460g

2.7g cm−3 = 170.37cm3

Volume of sphere = 4

3
πr 3 = 170.37cm3

Radius of payloadrD J I g ener al = 3.44cm

RCS of sphere at high frequency in the optical region =
π∗ r 2

D J I g ener al = 3.14∗ (3.44)2 = 37.16cm2

(3.11)
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• Radius of payload for DJI Mavic with payload of 1000 g:

Mass = Density * Volume

V olume = M ass

Densi t y

For a DJI Mavic drone, weight of payload = 1000g

Density of Aluminium = 2.7g /cm3

V olume = 1000g

2.7g cm−3 = 370.37cm3

Volume of sphere = 4

3
πr 3 = 370.37cm3

Radius of payloadrD J Imavi c1000 = 4.46cm

RCS of sphere at high frequency in the optical region =
π∗ r 2

D J Imavi c1000 = 3.14∗ (4.46)2 = 62.46cm2

(3.12)

The results radius and radar cross sections of designated payloads of the various DJI models are

reported concisely in Table 3.4.

DJI Drone Model Weight of pay-

load

Radius of

sphere pay-

load in cm

RCS of sphere

in cm2
RCS of sphere

in dBsm

General DJI 460 g 3.44 37.16 -24.30

DJI Mavic 1000 g 4.46 62.46 -22.04

DJI Mavic 1200 g 4.73 70.25 -21.53

DJI Mavic 300 g 2.98 27.88 -25.55

DJI Mavic 400 g 3.28 33.78 -24.71

DJI Mavic 2 1100 g 4.60 66.44 -21.78

DJI Mavic Mini/ Mini 2 80 g 1.92 11.58 -29.36

DJI Agras T20 15100 g 11.01 380.63 -14.19

DJI Agras T20 20000 g 12.09 458.97 -13.38

Table 3.4: RCS of spherical payloads carried by DJI drones in optical region

It can be seen that the radar cross section fluctuates from -13 dBsm to -25 dBsm. Nonetheless, major

conclusions can not be derived with the RCS of payloads alone, hence, in the following section, the RCS

of the drone is evaluated in order to draw further analyses.

3.2.2 RCS of drone calculated by approximation of drone geometry

The radar cross sections of various drone models are investigated. Since the drone is a complex struc-

ture, it makes it complicated to calculate the RCS, since it depends on aspect angle, orientation of the

drone and multiple other factors. However, here again for simplicity, the shape of the drone is assumed

to be spherical, and the radar cross section is evaluated as follows:

• RCS of a spherical shaped drone by approximating DJI Mavic and Mavic Mini/Mini 2 of diagonal

distance 213 mm

RCS of sphere at high frequency in the optical region =

π∗ di ag onal

2

2

= 3.14∗ (0.1065)2 = 0.036m2

In log scale =−14.44dB sm

(3.13)



20 3. Mathematical Modelling

• RCS of a spherical shaped drone by approximating DJI Mavic 2 of diagonal distance 354 mm

RCS of sphere at high frequency in the optical region =

π∗ di ag onal

2

2

= 3.14∗ (0.177)2 = 0.098m2

In log scale =−10.09dB sm

(3.14)

• RCS of a spherical shaped drone by approximating DJI Agras T20 of diagonal distance 1883 mm

RCS of sphere at high frequency in the optical region =

π∗ di ag onal

2

2

= 3.14∗ (0.9415)2 = 2.78m2

In log scale =+4.44dB sm

(3.15)

The values obtained from the RCS of drone and that of payload, it is inferred that they both fall into

a comparable spectrum of outcomes.

The important criteria to notice is if the difference in combined RCS of drone and payload and that

of the drone alone lies in the comparable range. So, for that purpose, the RCS of payloads and drone (in

linear scale) from the previous, calculations are summated and compared with the RCS of drone alone

(after conversion to log scale) and the delta change is identified.

DJI Drone Model Weight of

payload

Combined RCS of

Drone and Payload

in dBsm

RCS of

Drone in

dBsm

Difference

δ(dr one+payload)−dr one

in dBsm

DJI Mavic 1000 g -11.43 -14.44 3.01

DJI Mavic 1200 g -11.31 -14.44 3.13

DJI Mavic 300 g -12.37 -14.44 2.07

DJI Mavic 400 g -12.15 -14.44 2.29

DJI Mavic 2 1100 g -8.07 -10.09 2.02

DJI Mavic Mini/

Mini 2

80 g -13.04 -14.44 1.40

DJI Agras T20 15100 g +5.40 +4.44 0.96

DJI Agras T20 20000 g +5.49 +4.44 1.05

Table 3.5: Comparison of RCS of combined values of spherical payloads carried by spherical DJI drones VS RCS of spherical DJI

drones in optical region

The Table 3.5 leads to question the assumption of considering RCS as one of the parameters for de-

tection of drones carrying payloads. The answer is ’NO’, since it is verified that RCS of drone + RCS of

Payload ≈ RCS of drone alone.

Thereby, from modelling the Radar Cross Section (RCS) of the payloads and that of the drone, and also

by taking into account realistic values into consideration (by approximations), it can be arrived at a con-

clusion that the Radar Cross Section cannot be considered as a reliable parameter for the detection of

Unmanned Aerial Vehicles (UAVs), a.k.a, drones carrying payloads. Some observations can be made

from Tables 3.4 and 3.5.

• The RCS values are for Aluminium spherical payloads for different values of radius. Except for the

payloads in DJI Agras T20 series, every other payload of the DJI models falls in the range from -20

dBsm to -25 dBsm. One of the main reasons is attributed to the fact that Agras T20 is particularly

designed for agricultural use for spraying of pesticides and chemicals in the fields, while, on the

other hand, other DJI drones are used mainly for commercial purposes in the field of transporta-

tion and photography.
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• An analysis could be made that at lower frequency ranges (in Rayleigh or Mie regions), it becomes

difficult for the radar to uniquely distinguish between the different RCS of the payloads. Hence,

one might get an incorrect data on the weight of the payload carried by the drone (if at all the

RCS is being used as a parameter for consideration). This again proves that RCS might not be the

correct hypothesis to be taken into account in the scenarios of detecting drones carrying payloads.

• From Table 3.5, the combined RCS of drone and payload, and that of the drone alone is almost

similar and there is a minimal difference, so there is a probability that the radar will view the two

objects as a single entity.

Therefore, from the mathematical modelling, and as well as from literature, Radar Cross Section is not

the optimum factor for consideration, as it does not help in distinctly identifying drones alone and

drones carrying payloads, since, in most of the scenarios, they are seen as drones alone. It is also to be

noted that the instances that are used here for calculation are realistic values of dimensions (geometry

approximated to spherical). However, this is only for a particular range of drones and their designated

capacity to hold payloads. Hence, other parameters like tip velocity and rotor motion are considered to

analyse if those criteria can be considered for analysis.

3.3 Micro-Doppler signatures of drones carrying payloads

From the works of literature and also by mathematical modelling, it is seen that there is a lacklustre

correlation between the RCS of drone and the RCS of its payload. The payload and the drone considered

in the mathematical modelling were mostly approximated, however, in realistic cases, the targets are

more complex, and other parameters, such as the aspect angle are also considered. Thus, the RCS is not

always reliable to discriminate the presence of payloads due to its fluctuations. Hence, the focus of this

research is based on the investigation of the micro-Doppler signatures of the drones carrying payloads.

(a) Mortar grenade being dropped into water by drone (b) Hand grenade being dropped by drone

Figure 3.4: Analysis of variation in micro-Doppler signatures due to the presence/absence of payloads [10]

The experimental research by [10] consisted of CW (Continuous Wave) and FMCW (Frequency Mod-

ulated Continuous Wave) radars and a camera for capturing. In both the cases in Figures 3.4 (a) and

(b), the drone is carrying a payload, that is being dropped at some point in time. The micro-Doppler

signatures of these scenarios reveal a lot of detailed information about the drone’s activities.

The Figure 3.4 (a), depicts spectrogram from the FMCW radar. The drone is carrying a mortar grenade

which is swinging from the drone’s fuselage. Due to the tumbling effect of the mortar grenade, severe

vibrations are experienced by the fuselage which is reflected on the spectrogram from 5s to 20s. Approx-

imately 25s into the game, the drone drops the mortar grenade, which is seen as a dip in the spectrogram
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with a loss of intensity. The trajectory of the falling payload in mid-air is seen as a blue streak at 27s, and

once it touches the surface of the water body at 30s-32s, the impact on the water is seen as a splash, that

can also be observed from the spectrogram. The continued movement of the drone after releasing the

payload is shown from 35s onwards.

In another similar scenario, the drone carrying a hand grenade is hovering for a few seconds, and at

approximately 9s, the drone speeds up and makes an outbound movement and flies for 10s more, be-

fore releasing the hand grenade at 20s. Though the drop is not as visible in the spectrogram as in the

previous case (due to differences in the weights of the payloads hand and mortar grenades), it is seen as

a short spike in the enlarged Figure in 3.4 (b). Also, it can be observed from the spectrogram that there

is no discernible difference in velocity during the dropping of payload, however, the further motion of

the drone shows variation in velocity.

In the literature [23], two innovative components are covered based on (a) subjecting the drone to lift

hefty payload weights and (b) resembling the rebound mechanism of a firearm that is affixed to the

fuselage of the UAV.

(a) Top: Blade velocity= 120 m/s, Payload= 2.5kg; Bottom:
Blade velocity= 100 m/s, Payload= 0kg for drone S900

(b) Top: Blade velocity= 100 m/s, Payload= 5kg; Bottom: Blade
velocity= 90 m/s, Payload= 0kg for drone Joyance

Figure 3.5: Variation in blade velocity for the presence and absence of payloads illustrated via Doppler spectrogram for drones (a)

S900; (b) Joyance JT5L-404 [23]

In the first case where the drone is subjected to carry larger payloads, two scenarios are examined,

where the payload is coupled to the main body, and in the next scenario, the payload is made to hang

from the main body of the drone. The two drones employed are DJI S900 hexacopter which carried dif-

ferent payloads, and Joyance JT5L-404 drone with a 5 kg payload (similar in [12]). It is observed that the

existence of the 5 kg payload created noticeable variations in the micro-Doppler signature. Moreover,

a substantial dip in frequency is obtained when a heavier payload is discharged. It is visible from the

spectrogram in Figure 3.5 that the tip velocity of the blades reduce once the payload is dropped from

the drone. For the DJI S900 carrying 2.5kg payload, the velocity decreased by 20 m/s from 120 m/s,

whereas for the JT5L-404, the blade velocity is reduced from 100 m/s to 90 m/s once the payload is re-

leased. The faster velocity in the case of a payload is attributed to the fact that the drone has to provide

sufficient lift in order to carry the payload, which is also demonstrated in [10].
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Secondly, for the case of payloads dangling from the drone’s fuselage, the DJI S900 carried up to 2 kg

and the payload is manipulated to sway for a considerable amount for a brief time, which is done by

instructing abrupt start/stop operations to the drone. As a result of the drone’s erratic acceleration, it

led the payload to move in the reverse direction from the drone (related to drag by inertia), thus, the

overall velocity vectors of the drone and the payload are in opposing positions. Drawing a judgement

based on generic circumstances, it is mentioned that this behaviour of drones is less often observed in

comparison to feasible scenarios.

Finally, the recoil effect from a dynamic payload is performed using a DJI Phantom 3, and the rebound

effect is instigated manually. It is inferred that a sudden impulse (equivalent to the firing of a gun) cre-

ated by the payload can be visualized in the high-resolution Doppler signature. The recoil (seen as a

surge) and counter-recoil (to balance the effect) activities can be observed in the Doppler spectrogram

for the fuselage when the impulse is created.

Thus, from these literature reviews, the findings contribute to a better knowledge of the radar signatures

of drones carrying payloads and their behaviours. The spectrogram can be conceived as a foolproof

and reliable method to visualize the micro-Doppler signatures of the drone and its payloads. So, in this

thesis, the spectrogram is used to obtain preliminary results using two experimental datasets, which are

discussed in Chapter 4.

3.4 Conclusion

In this chapter, the modelling of RCS of drones and payloads are evaluated. Then, the literature studies

on micro-Doppler and Doppler signatures are discussed. The significant observations are summarized

as follows:

• The findings in [10] and [23] illustrate a lot of information about the drones, the trajectories fol-

lowed, the impact of payload on their movement and blade velocity.

• The radar cross sections of drones and their payloads are calculated by approximation of their

geometries in the shape of a sphere. After evaluation, it is observed that the RCS of the drone

and payload lie in the same range of values. Moreover, there is a negligible difference in their

corresponding combined and individual RCSs.

• As seen in Table 3.5, the difference in the combined RCS of drone and payload and RCS of drone

alone is of the range 1-3 dBsm. So, it is evident that this parameter cannot be used for drone detec-

tion and classification because such a margin would be too small compared with its fluctuations

in a realistic scenario.

• It is to be noted that the simplistic calculation on RCS is performed to substantiate the theory

from literature papers (e.g., from literature [5]) that RCS is not a reliable parameter for detection

and classification of drones with payloads. A rigorous study of the RCS of drones and payloads

would require precise EM simulations which go beyond the scope of this thesis, hence, this thesis

is focused more on the analysis of experimental micro-Doppler signatures.

• It can be inferred from the few examples in the literature papers [10] and [23] in Section 3.3 that the

micro-Doppler signature is a wiser parameter to be considered for analyzing the drone activities

(with payloads) and their corresponding detection and classification.





Chapter 4

Experimental Setups and Datasets

This chapter discusses the measurement setup and data collection from the two radars: NetRAD (Univer-

sity College London, UCL) and PARSAX (TU Delft). The NetRAD is a coherent pulse radar with horizontal

polarization, consisting of 3 radar nodes 1, 2 and 3. The PARSAX is a fully polarimetric Frequency Mod-

ulated Continuous Wave (FMCW) radar with VV, VH, HV and VV polarimetric channels. The two radars

record the activities of different types of drones carrying payloads of varying weights.

Firstly, the NetRAD obtains the activities of drone DJI Phantom Vision 2+ carrying payloads of 0g, 200g,

300g, 400g and 500g for the scenarios of hovering and flying. Secondly, the PARSAX radar is used for

recording the next set of data. The measurements are procured using DJI M200 quadcopter (with payloads

0kg and 1kg) and DJI M600 hexacopter (with payloads 0kg and 2.35kg) for the scenarios where the drone

is hovering, flying and moving waypoints along a rectangle. The corresponding data pre-processing tech-

niques after data collection are addressed for the two types of radar. Although the two radars are different,

such that NetRAD is pulsed radar and PARSAX is FMCW radar, the data processing starts from the ini-

tial structure of Range Time Intensity plot (RTI). From the RTI plots, the variation in the path followed by

drones for the different scenarios, with and without payloads are examined.

4.1 Data Collection: NetRAD, University College London

Figure 4.1: Experimental Setup of NetRAD Radar, inspired from [19]

The measurement setup, as shown in Figure 4.1 is collected by employing NetRAD radar, in a football

ground at the University College London (UCL). The NetRAD, which is designed at UCL, is a multistatic,

25
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2.4 GHz netted coherent pulse radar with three different but identical nodes in the S-Band. The cri-

teria used to accumulate the measurements are a signal of bandwidth 45 MHz, a linear chirped-pulse

of interval 0.6s, a recording duration of 30s, Pulse Repetition Frequency (PRF) of 5 kHz which ensures

that the complete micro-Doppler signature of the drone/micro-drone is encompassed within the un-

ambiguous Doppler region. For a more favourable characterization of the micro-Doppler signature of

the micro-drones’ rotor blades, the horizontal polarization is adopted. The other parameters taken into

consideration are that the radar functioned at a modest power level, using a transmission power of +23

dBm, horizontally polarized antennas with a gain of 24 dBi and a beamwidth of ∼ 10◦ x 10◦ [19].

The NetRAD monostatic transceiver Node 1 is separated from receiver-only bistatic Node 2 and Node 3

by an inter-nodal distance of ∼ 50 metres. Two scenarios of flight motion of the micro-drone quadcopter

DJI Phantom Vision 2+ are collected, namely hovering and flying. As for hovering, the micro-drone lin-

gered at around 60 metres from the baseline, and the bistatic angle for each bistatic node was about 40◦.

In the second scenario, the precise trails of the quadcopter, which in this case was flying, approaching

Node 1 from a distance of around 90-60 metres from the baseline are recorded.

During the experiment, the default camera is discarded in order to equip the micro-drone with various

payloads. The payload comprised of a plastic tray affixed to the quadcopter’s underside that included

the metallic discs, each of 10 grams in weight. Measurements for the distinct payload weights from 200

grams to 500 grams, in steps of 100 grams are obtained using several similar discs, inclusive of the case

where the micro-drone is installed with no payload. A maximum payload weight of 500 grams is taken

based on the micro-drone’s ability, since it is observed that with 500 grams, although the micro-drone

is able to take-off, the flight is slow. It is to be noted that the dataset containing 100 grams payload is

discarded due to inconsistencies in the data during recording. Each of the data is recorded for approx-

imately 30s for each class of payloads for the scenarios when the drone is hovering and flying at Nodes

1, 2 and 3, thus, spanning for a duration of 7-10 minutes. The size of the original data comprised of the

dimension (150000 x 128) in pulses and range bins, which is consistent for all the recordings (Table 5.1).

4.2 Data Collection: PARSAX, Delft University of Technology

The second set of data is collected using PARSAX, which is an S-Band fully polarimetric FMCW Doppler

radar (with channels VV, VH, HV, HH), where both the transceiver and receiver have two extremely inde-

pendent polarimetric RF channels. The radar has a high resolution with a maximum bandwidth of 100

MHz which relates to an equivalent range resolution of 1.5 m. The transmit power for each of the chan-

nels is up to 50 dBm, with the noise floor of the receiver in the range of -93 dBm. The PARSAX radar is

mounted on roof top of the Faculteit Elektrotechniek, Wiskunde and Informatica (EWI) in TU Delft [28].

The bandwidth for measurement is 50 MHz with a Pulse Repetition Frequency (PRF) of 4 kHz (240 µs).

The measurements are performed in an open ground in the Technical University of Delft, Netherlands.

The measured distance between the PARSAX radar and the open ground is approximately 570 m to 575

m, which can be seen from the satellite image in Figure 4.3 (a).

(a) DJI M200 Quadcopter (b) DJI M600 Hexacopter

Figure 4.2: Drone models DJI M200 Quadcopter and DJI M600 Hexacopter used for data collection using PARSAX radar [29]
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Two types of drones are used for this purpose: DJI M200 (Matrices 200) quadcopter and DJI M600

(Matrices 600) hexacopter, in Figure 4.2. The drones are subjected to carry payloads of two different

weights. Depending on the designated payload weight the drone is designed to carry, the DJI M200 was

made to carry 0 kg and 1 kg, whereas the DJI M600 hexacopter carried 0kg and 2.35 kg. It is to be noted

that 0 kg represents when the drone is not carrying any payload. The data are recorded for approximately

30 s, for the scenarios where the drones M200 quadcopter and M600 hexacopter are (a) hovering in the

same place, (b) flying back and forth in a 50 m linear path, and (c) moving waypoints in a rectangle of

dimensions 60 m x 20 m, for both the cases of with and without payload as shown in figure 4.3 (b)-(c).

The data are obtained for multiple recordings of the same scenarios. The entire duration of the recording

lasted between 11 and 15 minutes. The subsequent investigation also considered the combined scenario

of the drone flying back and forth and in rectangular waypoints in the feature extraction level. The

dimensions of the originally recorded data are approximately (114688 x 400), however, for some of the

measurements, the dimensions varied since the drone left the radar beam at times (Table 5.2).

(a) Experimental Setup with real distance between
PARASAX Radar and open ground

(b) Drone hovering in place

(c) Drone flying back and forth in 50 m distance (d) Drone flying in Waypoints in rectangular
dimension of 60m x 20m

Figure 4.3: Experimental Setup of PARSAX Radar with drone movement scenarios: (a) Measured distance between PARSAX radar

and open ground; (b) Drone hovering; (c) Drone flying; (d) Drone moving along rectangular waypoints

4.3 Data Preprocessing

After the data is being collected through the NetRAD measurement setup in Figure 4.1, the unprocessed

samples that were obtained from all the nodes were subjected to signal processing to arrive at visual

plots. In order to map the data as a Range Time Intensity plot (RTI plot), the original data was subjected

to Hilbert Transformation and matched filter was applied over a baseline signal. A constant false alarm
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rate (CFAR) detector was devised and deployed to dynamically interpret the data by first determining

the range cells in which the drone operated and then ascertaining if the drone was hovering or flying [6].

In the case of PARSAX radar from the measurement setup in 4.3, the data from the FMCW radar were

processed to generate range-time maps, which were later used to identify the range-time bins contain-

ing the signature of the drones in the different recordings. The blade flashes from the rotors and the

main body are visible in the Figure 4.4, which represents pictorially the range profile model of a heli-

copter. The range profiles of the experimental data can be seen from the plots in the following sections.

Figure 4.4: Model of range profiles from a drone (helicopter) [30]

4.4 Range Time Plot

(a) Drone hovering with 500g payload at Node 1 (b) Drone hovering with 500g payload at Node 2

(c) Drone hovering with 500g payload at Node 3

Figure 4.5: RTI Plot for Drone hovering with 500g payload at (a) Node 1; (b) Node 2; (c) Node 3 of NetRAD Radar
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In the case of the NetRAD data, the movements of the drone that were recorded are (a) drone hovering

and (b) drone flying, whereas, with the PARSAX data, the extra scenario of waypoints in rectangle was

also captured. The Range-Time Intensity (RTI) plots for the mentioned scenarios are shown in Figures

4.5- 4.8. As the experiment was conducted in an open ground, both at UCL and TU Delft, the Range-

Time plot comprises of range bins where the drone is present, along with other artefacts, such as radar

reflections, and the disturbances on the ground. The RTI plot will help in analyzing the high-level bird’s

eye view of the drones’ motion and maneuvering. However, it provides insufficient information while

capturing the micro-Doppler specifics of drones, such as blade rotation, velocity of blades, vibrations

from the rotor, and other electromagnetic information.

In the scenario of hovering, for both the datasets from NetRAD and PARSAX, the range bins where the

drone is present are spread out within few bins (3 to 4 bins) in Figure 4.5. The reason is that the micro-

drone is in the same position and only rotating its blades, thus there is only potential energy, and no

kinetic energy is observed, given that the main body is stationary. The highlighted regions in Figure 4.5

represent the range bins where the drone carrying 500g payload is present. For the NetRAD radar, Node

1 is in the Line of Sight (LOS) to the drone, and the range bins are expected to have a higher intensity,

whereas phase correction was applied on Nodes 2 and 3 in order to make the rage bins more distinguish-

able. The Nodes 2 and 3 are at about 40◦ angle to the micro-drone. The diversity in intensity among the

nodes is due to the fact that the aspect angle is different and hence each node perceives the drone which

is in flight, differently. However, this criteria does not play a major difference possibly, since all the nodes

are able to view the rotor blades, irrespective of the direct Line of Sight.

It can be noticed that, as the weight of the payload increases, there is a discernible influence, both on the

rotation of the blades as well as in the movement of the micro-drone for both the NetRAD and PARSAX

datasets. Though the velocity change in blade flashes is imperceptible with RTI plots, the variation in

drone trajectory is quite interesting and can be witnessed evidently for the case of drone flying with pay-

loads, as seen in figure 4.6 (a-f)- 4.8. However, this change in trajectory is not noticed visually from the

plot of the drone hovering.

The range bins where the drone is flying is more spread out and wider in comparison to the case where

the drone is hovering. This is because the drone is following the trajectory of back and forth motion,

unlike the case where the drone is floating still in mid-air, with only the blades rotating, hence achieving

both potential energy and kinetic energy of the principal body. Comparing the cases where the drone is

not carrying any payload to the case where the drone is carrying a payload of 500g, there is a noticeable

difference in the flight of the drone when it is carrying a heavier payload in the NetRAD data. From Fig-

ure 4.6 (b), (d), (f), the drone’s trajectory is slightly tilted in contrast to the no payload cases in (a), (c) and

(e) where the RTI block is more or less rectilinear, which is because the drone is only 2.5 times heavier

in weight than the 500g payload which has resulted in the mildly distorted path [29]. By rectilinear RTI

block, it is implied that the to and fro motion of the drone is not affected by the weight of the payload,

which tends to drag the drone, by interrupting the designated trajectory.
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(a) Drone flying without payload at Node 1 (b) Drone flying with 500g at Node 1

(c) Drone flying without payload at Node 2 (d) Drone flying with 500g at Node 2

(e) Drone flying without payload at Node 3 (f) Drone flying with 500g at Node 3

Figure 4.6: RTI Plot for Drone flying with 0g payload at (a) Node 1; (c) Node 2; (e) Node 3 and with 500g payload at (b) Node 1; (d)

Node 2; (f) Node 3 of NetRAD Radar

A similar trend in drone locomotion is observed for the PARSAX measurements for quadcopter M200

and hexacopter M600. The Figures 4.7 and 4.8 depict the RTI plots when the hexacopter M600 is flying

and moving in rectangular waypoints respectively, with a payload of 2.35kg. The empty blocks in the RTI

bins indicate that the drone has left the beam of radar (temporarily), and hence did not appear in those

range-time maps. Here, the HH polarization is in the line of sight to the drones, in contrast to other

polarizations. This variation in polarization is illustrated in the spectrograms in Chapter 5.

Figure 4.7 which illustrates the hexacopter M600 that is flying with 2.35 kg of payload, has much shorter

RTI bins than for the case of hexacopter M600 moving waypoints in a rectangle, as in Figure 4.8. Since

the drone is making multiple turns in rectangular waypoints and covering a wider area, the range bins
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are also broader for this scenario of drone motion. The weights of quadcopter M200 and hexacopter

M600 series are approximately 4kg and 9.3kg and are carrying payloads of weights 1kg and 2.35kg [29].

The payloads are much lesser in weight in proportion to their respective drone weights. Hence, due to

the sturdiness of the drone, they are not drifted in path even after the payload weight, as opposed to the

NetRAD data for drone flying with payload in Figure 4.6 (b), (d), (f).

Figure 4.7: RTI Plot at VV, VH, HV and HH channels for Drone M600 Hexacopter Flying with 2.35kg payload of PARSAX Radar

Figure 4.8: RTI Plot at VV, VH, HV and HH channels for Drone M600 Hexacopter in Rectangular Waypoints with 2.35kg payload of

PARSAX Radar

4.5 Conclusion

In this chapter, the experimental setup of the NetRAD (single polarized) and PARSAX (fully polarized)

radars, including the scenarios of the drone trajectory along with the various classes of payloads are
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discussed. The RTI plots after the corresponding data processing indicate the bins where the drone is

present. The important highlights from the RTI plot are summarized below:

• It is observed that the range bins where the drone is present vary largely based on the scenarios.

The range bins over which the drone signatures span increase in the order hovering, to flying, to

rectangular waypoints scenarios.

• For the hovering scenario in NetRAD and PARSAX datasets, the range bins are linear, irrespective

of the weight carried by the drone since the drone is not moving.

• In the case of flying for NetRAD radar, the range bins are shifted slightly when the drone carries a

heavy payload (500g). The range bins are continuous in NetRAD dataset, as the drone is always in

the beam of the radar.

• For the flying and rectangular waypoints scenarios in PARSAX data, the ranges bins are not con-

tinuous due to the drones leaving temporarily at times the beam of the radar. The quadcopter

M200 and hexacopter M600 are sturdier to withstand the increased payload weight, thereby not

impacting the drones’ trajectories.



Chapter 5

Research Methodology

This chapter delves into the main research methodology on the NetRAD and PARSAX datasets, as repre-

sented in Figure 5.1. The main contributions of the thesis are highlighted in the yellow blocks.

Figure 5.1: Flow chart of Research methodology, with main contribution blocks highlighted in yellow blocks

Firstly, the impact created on the blade rotation by the different payload weights is depicted by the

time-frequency plot- spectrogram. Secondly, significant components of the spectrogram are derived via

feature extraction techniques. Two sets of features are generated in this step: (a) the statistical features,

that are obtained by applying Singular Value Decomposition (SVD), centroid and bandwidth on the spec-

trogram; (b) the polarimetric features, by tapping in information from the RTI plot of the fully polarimetric

channels, which are confined only to PARSAX data, as fully polarimetric information is required. Thirdly,

the samples from the extracted features are passed as input to the selected supervised machine learning

classifiers to evaluate the classification performance for all the scenarios of drone movement from the two

datasets. Finally, two novel fusion techniques, decision fusion and ensemble fusion are employed to en-

hance the performance metrics.

5.1 Short-Time Fourier Transform (STFT)

Short-Time Fourier Transform (STFT) is the application of Fourier Transform (FT) to the overlapped

short-time windows along a signal [30]. The equation 5.1 is the Fourier Transform of the radar signal

s(t) in the time domain. The STFT function which results in a two-dimensional matrix makes use of

a window function w(t), whereas s(t) is a one-dimensional vector. The resultant of the magnitude of

the Short-Time Fourier Transform, |ST F T (t ,ω)| is the spectrogram, which gives the information of the

variation in frequency spectrum with respect to the time axis. It is to be noted that the magnitude of the

spectrogram in some cases is defined as the power, so it is denoted as the square magnitude.

33
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Figure 5.2: Visual Representation of Short-Time Fourier Transform (STFT)[30]

S(ω) =
∫ ∞

−∞
s(t )exp(− j 2ωt )d t (5.1)

ST F T (t ,ω) =
∫

s(t ′)w(t ′− t )exp(− jωt ′)d t ′ (5.2)

The equation 5.3 denotes the representation of STFT in the frequency domain, which implies that STFT

can be retrieved by window moving in time or frequency. One of the observations is that the window size

plays a vital role and is constant across the time-frequency and that a signal which has a lesser duration

than that of the window is blurred. Likewise, the size of the frequency window influences the resolution

in the frequency domain. As a result, there is an inverse proportionality between the window widths in

frequency and time. Thus, an inefficient resolution in frequency is entailed due to good resolution in

the time domain, and vice versa.

ST F T (t ,ω) = 1

2π
exp(− jωt )

∫
S(ω)W (ω−ω′)exp(− jω′t )dω′ (5.3)

Figure 5.3: (a) A test sinusoidal signal; (b) Fourier Transform of the test signal; (c) Spectrogram with Hanning window size 32

points; (d)Spectrogram with Hanning window size 128 points, [30]
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From the Figure 5.3 (c), it is observed that a short window in time has a clear start/stop in time, but

blurs the frequency axis (the spectrogram matrix has many columns and few rows). On the other hand,

a long window in time in 5.3 (d) has a clear start/stop in frequency, but blurs the durations on the time

axis (the spectrogram matrix has many rows and few columns) [30].

Now that the general idea behind STFT and its resultant spectrogram is established, the applications

on the two real datasets from NetRAD and PARSAX are discussed.

5.1.1 Spectrogram: NetRAD Data

After the Constant False Alarm Rate (CFAR) has effectively determined the significant regions, the double-

sided spectrograms are obtained by performing a Short-Time Fourier Transform (STFT) to these spectra

of range cells. The discrete window function is given by w and the discrete frequency is represented by

k. A Hamming window is employed and equation 5.5 (a) is the basis for translation from discrete fre-

quency to Doppler frequency fd . After pre-processing, the sample frequency fs of the radar is identical

to the operable frequency of the radar of 5 kHz and N where N denotes the total count of samples taken

during the shot time frame of the window. Again, equation 5.5 (b) could be used to translate between

Doppler frequency and velocity, where λ is the radar’s operational wavelength. The equation 5.5 (c) can

be performed to quantify the propellers’ angular rotational velocity, in which θ is the angle between the

incoming radar beam and the drone orientation, and r is the size of a single rotor blade.

ST F T [ fd ,n0] =
∞∑

n=−∞
x[n]×w[n −n0]e− j 2πnk/Ns (5.4)

k = Ns fd

fs

v = fdλop

2

wr pm = 30v

πr
cosθ

(5.5)

Payload

Weight

Original Data

(RTI)

Spectrogram

Hovering

Spectrogram

Flying

0 g 150000 x 128 2000 x 5981 2000 x 5981

200 g 150000 x 128 2000 x 5981 2000 x 5981

300 g 150000 x 128 2000 x 5981 2000 x 5981

400 g 150000 x 128 2000 x 5981 2000 x 5981

500 g 150000 x 128 2000 x 5981 2000 x 5981

Table 5.1: Dimensions of spectrogram (Doppler bins x Time bins) at spectrogram window duration of 0.1s for drone hovering and

flying: NetRAD Dataset

The resultant spectrogram is of dimension (2000×5981) (Doppler bins x Time bins). The Table 5.1

represents the dimension of the resultant spectrogram after STFT is applied to the original data for the

NetRAD radar. The dimensions are same for the different classes of payloads since the spectrogram is

continuous for the entire duration. In the scenario for the case of hovering in Figure 5.4, the data used

to formulate each spectrogram spanned for the entire duration of recording for 30s. These spectrograms

evidently illustrate the parallel lines associated with the spinning of the blades of the micro-drones, as

expected from literature studies [31], [32], [33]. The central red line at 0 Hz signifies the main body of

the mini-UAV, whereas the horizontal lines in the positive and the negative Doppler regions reflect the

intensity of blade flashes and its velocity of rotation. Since the drone is hovering in the air, and there is
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no movement, the line is straight, indicating the main body of the drone is essentially immobile. Con-

sidering the two elevated instances where the quadcopter is hovering without any payload and carrying

500 grams of payload, the contrast in the spectrograms can be noticed objectively, with the blade lines

seeming to be smoother and linear in the latter event, as well as the lines approaching higher Doppler

frequencies in the positive and negative directions. The blade rotation speeds are influenced majorly by

the weight of the drone’s payload. The rotor blades are bound to rotate much faster in order to create

sufficient elevation when the drone is carrying a significantly heavier payload.

(a) Drone hovering without payload at Node 1 (b) Drone hovering with 500g at Node 1

Figure 5.4: Spectrogram of Drone hovering (a) no payload; (b) 500g payload at Node 1: NetRAD Data

For the case of drone flying, the blade flashes are particularly evident in a way that they illustrate

visually the variation in rotational velocity from 0g to 500g, and also the motion of the main body is de-

picted well. In the Figure 5.5 (b), since the drone is carrying a 500g payload, the central line denoting

the main body of the drone seems to have more deviations in contrast to the case when the drone is not

carrying any payload. It should be emphasized that the Figures 5.4 and 5.5 (a-b) are the spectrograms

that are outcome as observed by Node 1. Since Node 1 is in the Line of Sight to the drone, the spectro-

grams are sufficiently clear (as also seen in the RTI plots in Figure 4.6). However, in the case of Node 2

and Node 3, phase correction was imposed on their respective RTI plots to generate spectrograms that

have fewer distortions. The study is subjected to different parametric analyses (delineated in Chapter

6), such as (a) Dwell time, (b) Varying spectrogram window duration, and (c) Noise of different SNRs; the

classification performance at each of these parameters are calculated for further inference. The spec-

trograms for the other scenarios of the drone hovering and flying with different payloads can be found

in Appendix B.

(a) Drone flying without payload at Node 1 (b) Drone flying with 500g at Node 1

Figure 5.5: Spectrogram of Drone flying with (a) no payload; (b) 500g payload at Node 1: NetRAD Data
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5.1.2 Spectrogram: PARSAX Data

Drone Model

and Payload

Drone Flying Drone in Waypoints Drone Hovering

Original

Data (RTI)

Spectrogram

Dimension

Original

Data (RTI)

Spectrogram

Dimension

Original

Data (RTI)

Spectrogram

Dimension

M200 - 0kg 114688 x 400 4164 x 256 114688 x 400 4164 x 292
114688 x 400 4164 x 572

M200 - 0kg 114688 x 400 4164 x 262 114688 x 400 4164 x 83

M200 - 1kg 114688 x 400 4164 x 209 114688 x 400 4164 x 158
114688 x 400 4164 x 572

M200 - 1kg 114688 x 400 4164 x 242 105564 x 400 4164 x 208

M600 - 0kg 91168 x 400 4164 x 292 93567 x 400 4164 x 343

105563 x 400 4164 x 526M600 - 0kg
98366 x 400 4164 x 271

114688 x 400 4164 x 284

M600 - 0kg 98366 x 400 4164 x 203

M600 - 2.35kg 114688 x 400 4164 x 345 114688 x 400 4164 x 284
114688 x 400 4164 x 572

M600 - 2.35kg 114688 x 400 4164 x 366 114688 x 400 4164 x 284

Table 5.2: Dimensions of RTI data and spectrogram (Doppler bins x Time bins) for window duration 0.1s for drone flying,

maneuvering in waypoints and hovering: PARSAX Data. The varying dimension of spectrogram is due to the drone temporarily

leaving the radar beam. Experiments are recorded for different number of times for each scenario

A similar procedure is followed for the next set of data collected via PARSAX radar, where after identify-

ing the range bins containing the drones and extracting them, a Short Time Fourier Transform (STFT)

of 0.1s Hamming window and an overlap of 95% between adjacent windows is applied. Unlike the Ne-

tRAD data which has only one polarization, the PARSAX radar has 4 polarimetric channels, as seen from

the spectrograms in Figure 5.6. Since HH polarization is in the Line of Sight to the drone, the blade

flashes are significant in this polarimetric channel, however, they are also fairly predominant in the

cross-polarizations HV and VH also. It is also noted that the extent of blade flashes in Doppler is larger

when the drone is carrying a payload, as expected from literature [10], [11] and [19]. The blade flashes

are not consistent like in the NetRAD radar data (due to the drones leaving the radar beam at times), so

only the contributing portions where the micro-Doppler signatures are present are segmented and used

for further analysis in feature extraction and classification algorithms. An observation is that though the

blade flashes are visible, clear information about the rotor blade velocity cannot be explained from these

time-frequency plots. Similarly, parametric analyses are performed to assess the behaviour at different

instances of the parameters to obtain an optimal value for classification.

Figure 5.6: Spectrogram Plot for Drone M600 Hexacopter Flying with 2.35kg payload: PARSAX Data
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5.2 Feature Extraction

Following the generation of spectrogram from the two datasets, the next algorithm is Feature Extraction.

Machine learning techniques are predominantly used for the extraction of suitable features from micro-

Doppler signatures [34]. Although based on the literature reviews many feature extraction algorithms

have been proposed, the strategy that is covered in this thesis is to extract features from the spectrogram

directly. These features from the spectrogram neither necessitate pre-processing phases, nor do they

demand any evidential cut-off values that are generally required to retrieve periodicity, bandwidth, and

other physical attributes of the drone. The goal is to extract certain important features which eventu-

ally facilitate higher classification performance, both for standalone classifiers and for their fusion [35].

Hence, for the two datasets from NetRAD and PARSAX radars, the features predicated on Singular Value

Decomposition (SVD), Centroid and Bandwidth (BW) are extracted for optimal classification. Moreover,

the same set of features are derived from all of the radar nodes (NetRAD) and polarizations (PARSAX) to

determine if there is a boost in the performance metrics. This is the initial step for obtaining suitable

features to feed as input to the classifiers.

5.2.1 Features based on Singular Value Decomposition

The first feature extraction method is via Singular Value Decomposition (SVD). The dimensionality of the

feature space can be minimized by this technique since the method involves retaining just the singular

vectors corresponding to the greatest singular terms. The specific vectors in SVD are correlated to the

physical attributes (blade velocity, periodicity, etc.) of the micro-drone. The spectrograms are subjected

to SVD for generating relevant features. When SVD method is performed on a set, the existing matrix

is decomposed into a reduced dimension space defined only by the critical elements of the previous

original matrix. The Singular Value Decomposition can be mathematically represented as in equation

5.7, for a matrix X , where a ≥ b, the singular terms in X are contained as diagonal elements of D (in

the descending order), and the left and right singular vectors are present in the U matrix and V matrix

respectively [19]. The dimensions of D matrix are (a x b), (a x a) corresponds to U matrix, where for V

matrix it is (b x b). Thus, U and V are called the orthogonal matrix and D is real and is known as the

diagonal matrix. By computing SVD, the eigenvalues and eigenvectors of XXT and XT X are derived. V

matrix comprises of columns of eigenvectors of XT X, while the columns in U consist of eigenvectors of

AAT [19].

X ∈ Y axb (5.6)

X =
r∑

i=1
Ui Di V T

i (5.7)

Figure 5.7: Mechanishm of spectrogram split in time for feature extraction
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The spectrograms, which are approximately of 30s duration, are segregated into smaller segments

in time and in order to capture more suitable features in each block and applying SVD on each of the

blocks, rather than applying SVD on the entire spectrogram. Figure 5.7 illustrates how the spectrogram

is split in time as 1s. Similarly, the duration of the segments for the parametric analysis is 0.5s, 1s, 1.5s

and 2s. The varying duration would help in assessing from the classification accuracy whether a longer

or a shorter spectrogram split is ideal. The same algorithm of SVD is applied on both the datasets from

NetRAD and PARSAX radars. The idea behind feature extraction by SVD is based on the assumption that

significant details are dispersed throughout several vectors in the entire matrices U and V , rather than

being tightly focused only in a few singular vectors. However, the extracted features from the orthogonal

matrices did not indicate notable differences for different payloads. On the other hand, the diagonal

matrix contained appropriate features for achieving successful discrimination across the classes. In the

case of NetRAD data, the algorithm is performed on each node for the varying dwell time and for all the

payload weights when the drone is hovering and flying. For the PARSAX data, the same strategy is per-

formed on all the polarizations for the scenarios where the drone is hovering, flying and maneuvering in

rectangular waypoints. Therefore, the statistical features extracted based on SVD from both the datasets

are:

• Moment Ordinal 1: Mean of the diagonal matrix

• Moment Ordinal 2: Standard Deviation (SD) of the diagonal matrix

• Moment Ordinal 3: Skewness of the diagonal matrix

• Moment Ordinal 4: Kurtosis of the diagonal matrix

5.2.2 Features based on Centroid and Bandwidth

The next set of features are based on Centroid and Bandwidth. The computation of the micro-Doppler

signature’s centre of mass results in centroid. The calculation of bandwidth of the signature around the

centre of gravity is the Doppler bandwidth. The formula for centroid and bandwidth are in equations

5.8 and 5.9 respectively, where the terms denote the mth bin Doppler frequency f(m) in the centroid

equation, mth Doppler bin and nth time bin of the spectrogram matrix D(m,n) in the BW equation [19].

f c(n) =
∑

m f (m)D(m,n)∑
i S(m,n)

(5.8)

BWc (n) =
√∑

m( f (m)− fc (n))2D(m,n)∑
m D(m,n)

(5.9)

In the experiments involving analysis of human gait, the centroid and BW based features proved to be

very efficient with an accuracy of 98% [36]. This gives the motivation to implement these algorithms

for the case of rotating and moving targets like the UAVs. Similarly, just like SVD, the spectrograms are

split into smaller segments of varying dwell time for the application of centroid and BW algorithms. The

procedure is performed individually on the datasets from NetRAD (Nodes 1,2,3) for drone hovering and

flying with payloads 0g to 500g; and from PARSAX (VV, VH, HV, HH polarizations) for the scenarios of

drones M200 and M600 hovering, flying, and rectangular waypoint with various payloads. The study

also extended to the combined scenario of the drones flying and moving in rectangular waypoints, as

this closely resembles the real-life scenario of a drone’s trajectory. On the whole, eight features that are

extracted are also statistical moments as follows:

• Moment Ordinal 1: Mean of the Centroid

• Moment Ordinal 2: Standard Deviation (SD) of the Centroid

• Moment Ordinal 3: Skewness of the Centroid
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• Moment Ordinal 4: Kurtosis of the Centroid

• Moment Ordinal 1: Mean of the Bandwidth

• Moment Ordinal 2: Standard Deviation (SD) of the Bandwidth

• Moment Ordinal 3: Skewness of the Bandwidth

• Moment Ordinal 4: Kurtosis of the Bandwidth

Thus, totally, 12 features are derived based on SVD, Centroid and BW. The Figures 5.8 (a) and (b) rep-

resent the distribution of the samples after feature extraction among the five classes of payloads for the

drone hovering, taken from the NetRAD radar (Node 1). The samples belonging to their corresponding

classes are split well for the features based on centroid and BW, in comparison to that by SVD. However,

there are still other features to be considered and complete knowledge about the performance cannot

be gauged from just visual depiction of plots. An interesting observation is that, from theory and from

the spectrogram plots, it is observed that in principle, with an increase in the payload weight, the veloc-

ity of blade rotation also increases to provide enough lift [10]. However, the distribution of samples in

the Figure 5.8 (c) seems slightly distorted than that expected from literature. The main reason is that the

sample set of the features is limited, and there are possibly other features (such as the empirical physical

attributes) that still remain unexplored and can be used for future research. Since the statistical features

that were extracted are still able to bring out the essence of the theory, these features are used for further

analysis in this research.

(a) 2D feature plot with Mean and Standard Deviation of SVD (b) 2D feature plot with Mean of centroid and Mean of
bandwidth

(c) 1D feature plot with Mean of bandwidth and number of
samples

Figure 5.8: Feature plots from NetRAD N1 data (a) 2D feature plot with Mean and Standard Deviation of diagonal matrix in SVD;

(b) 2D feature plot with Mean of centroid and Mean of bandwidth; (c) 1D feature plot with Mean of bandwidth and number of

samples
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5.2.3 Polarimetric Features

Parameter Relation to S Explanation

δ 2〈|Shv |2〉/〈|Shh |2〉 Linear depolariza-

tion ratio

γ 〈|Sv v |2〉/〈|Shh |2〉 Differential polar-

ization ratio

ρ 〈ShhS∗
v v 〉

√
〈|Shh |2〉/〈|Sv v |2〉 Co-polarized corre-

lation coefficient

β 〈ShhS∗
hv 〉

√
〈|Shh |2〉/〈|Shv |2〉 Cross-polarized cor-

relation coefficient

ε 〈Shv S∗
v v 〉

√
〈|Shv |2〉/〈|Sv v |2〉 Cross-polarized cor-

relation coefficient

Table 5.3: List of polarimetric features extracted, inspired from [8], [37]

The polarimetric features are the special set of features used exclusively for the fully polarimetric

PARSAX radar dataset (since NetRAD has only a single polarimetric channel). In [8] polarimetric features

contribute positively in improving accuracy for drone vs birds classification. The polarimetric features

are especially relevant in the case when the modulations from RCS are non-periodic, such as the case of

birds and UAVs whose rotor blades are too fragile to have a substantial meaningful micro-Doppler sig-

nature. Multiple scattering techniques, each with its own polarimetric characteristic, may influence the

overall scattered field despite the electrical and visually small dimensions of the birds (or drones). The

polarimetric features can be retrieved either in the time-frequency domain (e.g., from spectrograms)

or in the time domain, and the latter is discussed in this section with an idea to analyze if meaningful

features can be derived with a very short dwell time, shorter than the possible spectrogram window in

aiding the classification performance constructively. The advantage of this approach would be over-

coming the necessity to generate spectrograms for feature extraction, since the features are generated

directly from the RTI plots.

S =
[
|Shh |e jφhh |Shv |e jφhv

|Svh |e jφvh |Sv v |e jφv v

]
(5.10)

The polarimetric features in Table 5.3 are known as polarimetric inter-correlation parameters, which

are applied on the range bins where the drone is present from the range-time plots. From the analysis of

the scattering matrix S, it is possible to decipher if relevant information can be derived from the micro-

drones (with/without payloads) for classification. The operator 〈∗〉 represents the spatial or temporal

ensemble averaging considering the uniformity of random medium [37]. The bins where the drone is

present in the range-time plot are split in this case into smaller segments of varying dwell time of 0.05s,

0.10s, 0.25s, 0.50s and 1s and the polarimetric features are extracted. In this scenario, an ensemble of

the classifiers is employed to enhance the classification performance, since the features from all polari-

metric channels are combined as a single block.

5.3 Classification

Classification is an important supervised machine learning (ML) technique which contains all the data

samples to be labelled in the training and testing sets. The count of the number of classes is equal to

the number of various labels used for tagging the dataset. From the works of literature, for determin-

ing the presence of a drone, the binary classification is used, where the two classes are ’drone’ VS ’no

drone’ [7]. Similarly, binary classification is used for discriminating between birds VS drones and two

types of drones, wherein the former, the two classes are birds and drones and in the latter, the classes

being drone model A and drone model B [8], [18]. While binary classification is more often than not,
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simplistic, the extended version of it, that is, multiclass classification is very realistic and provides more

information about the nature of the targets. [19] discusses the multiclass problems and the classifiers

used.

The NetRAD dataset consists of 5 classes, each of the classes being the weight of the payloads 0g, 200g,

300g, 400g and 500g that are carried by the drone. Since the spectrogram is consistent throughout, the

number of samples via feature extraction is also the same for the spectrogram split durations, which can

be seen in Table 5.4.

PARSAX data is likewise classified as a multiclass problem. Instead of relying on two sets of binary classes

(quadcopter M200 carrying payload or no payload; hexacopter M600 carrying payload or no payload),

the experiment focused on a more practical multiclass problem by blending the two binary sets. Overall,

there are four classes predicated on the type of drone and the payload weight it carries, as depicted in

Table 5.5. The number of samples is distributed unevenly among the classes, as only contributing parts

were taken from the spectrogram. Thus, the number of samples varies for different scenarios and also

for different classes in the same scenario.

As seen in Tables 5.4 and 5.5 the number of samples decreases proportionally when the dwell time

is increased, whereas the number of samples is constant when the spectrogram window duration is var-

ied and when noise to vary the SNR is added to the spectrogram, for both NetRAD and PARSAX datasets.

The classification by obtaining the number of samples from each class is performed on the scenarios

of drone (a) hovering (b) flying for the nodes 1, 2 and 3 of NetRAD data, whereas for PARSAX data, the

scenarios were the drones M200 and M600 (a) hovering, (b) flying, (c) maneuvering in rectangular way-

points, (d) combined scenario of flying and rectangular waypoints; for all the polarizations HH, HV, VH

and VV.

Number of Samples

Class Hovering Flying

Dwell Time 0.75s 1s 2s 0.5s 0.75s 1s 1.5s 2s

0g 40 30 15 60 40 30 20 15

200g 40 30 15 60 40 30 20 15

300g 40 30 15 60 40 30 20 15

400g 40 30 15 60 40 30 20 15

500g 40 30 15 60 40 30 20 15

Total 200 150 75 300 200 150 100 75

Table 5.4: Number of feature samples in each class for different scenarios: NetRAD Data

Number of Samples

Class Hovering Flying Rectangle Waypoints Flying+Waypoints

Dwell Time 0.5s 1s 1.5s 0.5s 1s 1.5s 0.5s 1s 1.5s 0.5s 1s 1.5s

M200/ 0kg 55 27 18 52 27 17 40 19 13 92 46 30

M200/ 1kg 55 27 18 48 24 15 39 20 13 87 44 28

M600/ 0kg 50 25 16 57 28 19 83 42 28 140 70 47

M600/ 2.35kg 55 27 18 77 38 25 58 30 20 135 68 45

Total 215 106 70 234 117 76 220 111 74 454 228 150

Table 5.5: Number of feature samples in each class for different scenarios: PARSAX Data

The 12 features have a total number of samples that are split into Training set’ and the ’Testing set’.
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In the training phase, out of the total number of observations, a certain percentage of samples are given

to the supervised classifiers. In this research, for both the datasets, the samples after feature extraction

are split into 80% training data and 20% test data. The test data (which is unseen by the classifier) is fed

to the trained classifier to make predictions, typically with a form of an estimate of its confidence. The

workflow of the classification process is summarized in Figure 5.9

Figure 5.9: Supervised learning classification techniques utilised in this thesis: summarising flow chart

A 5-fold Cross-Validation (CV) is used for assessing the effectiveness of the model, which helps in

mitigating overfitting of the data. The cross-validation step is crucial in order to avoid getting a biased

result. The CV is broadly divided into three types, they are:

• One-time split: This involves the random splitting of the total observations into training and test-

ing sets. This technique is not always suitable, since the result is more often than not, biased.

• K-fold cross-validation (CV): In this technique, the entire training set is divided into multiple folds,

the classifier is trained on the parts, leaving one part behind for validation in each iteration. Usu-

ally, 5-fold cross-validation is used. The procedure continues till the end of the iteration and the

average performance is assessed. This strategy is often suitable, since the outcome is unbiased,

and the overfitting of data is curbed. The 5-fold cross-validation mechanism is pictorially repre-

sented in Figure 5.6.

• Leave-out validation: In this method, one part of the data is left out on the basis of specific criteria,

such as training some models of drones, and testing on different models of drones; or training

on data collected in one location, and testing with data collected by the same radar in another

location.

All data

Training Data Test Data

Fold 1 Fold 2 Fold 3 Fold 3 Fold 5

Split 1 Fold 1 Fold 2 Fold 3 Fold 3 Fold 5

Split 2 Fold 1 Fold 2 Fold 3 Fold 3 Fold 5

Split 3 Fold 1 Fold 2 Fold 3 Fold 3 Fold 5

Split 4 Fold 1 Fold 2 Fold 3 Fold 3 Fold 5

Split 5 Fold 1 Fold 2 Fold 3 Fold 3 Fold 5

Finding parameters

Final Evaluation Test Data

Table 5.6: Cross-validation (CV) 5-fold mechanism [38]
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5.3.1 Types of Classifiers

Based on the computational complexity with the dataset and the classification performance, four clas-

sifiers, Linear Discriminant Analysis (LDA), Gaussian Naive Bayes (NB), Decision Tree (DT), and Linear

Support Vector Machine (SVM) are chosen. However, some classifiers work well with some features, and

other classifiers depend on other features, it is usually complex to gauge which classifier performs better

in a general machine learning scenario.

Discriminant Analysis

The first classifier used for classification on the datasets is Discriminant Analysis (DA), which is partic-

ularly useful when the number of classes is 2 or more than 2, so DA is one of the ideal classifiers for

both binary and multiclass classification problems. The two types of Discriminant Analysis are Linear

Discriminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA). Both these classifiers differ

by the boundary of separation among their classes. The former employs a linear separation (a straight

line), while on the other hand, the latter makes use of non-linear separation, such as hyperbola, ellipse,

etc. [39]. This technique is built on the hypothesis that each class’s data are expressed by a multivariate

Gaussian distribution.

P(x|k) =
1√

2π|∑k |
exp

(
−1

2
(x −µk )T

−1∑
k

(x −µk )

)
(5.11)

ŷ = argmin
y=1,2,...,K

P̂ (k|x)C (y |k) (5.12)

In this method, at the classifier’s training phase, the constraints of the Gaussian distribution are com-

puted. The constraints are the mean and co-variance, as denoted by µk and
∑

k in the equation of Prob-

ability Density Function (PDF). With the objective of reducing the estimated cost of classification C as

much as possible, the sample space is partitioned into various parts, with each anticipated classification

posterior probability being associated to C. Following this, the Linear Discriminant Analysis is consid-

ered for further analysis on classification performance [19].

Naive Bayes

The next type of classifier employed is the Naive Bayes classifier. Similar to the case of DA classifiers,

the Naive Bayes classifier is based on the premise that there is uniform Gaussian distribution of samples

of the constituent features of each class, such that the simplified equation comprises the main com-

ponents, that is, the mean and variance of the features. In this approach, Bayes rule is made use of to

represent the posterior probabilities. The posterior probability of a sample corresponding to every class

for any unseen test data is computed in this algorithm. From equation 5.15, as per the posterior proba-

bility of the highest posterior probability, the testing set is then classified [40]. The Gaussian Naive Bayes

is used as the classifier for the PARSAX and NetRAD datasets.

p(Ck |x) = p(Ck )p(x|Ck )

p(x)
(5.13)

p(x|Ck ) =
n∏

i=1
P (xi |Ck ) (5.14)

p(x|Ck ) = argmin
kε1,2,...,K

P (Ck )
n∏

i=1
P (xi |Ck ) (5.15)

x: input samples

k: class

p(x): probability of samples
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p(Ck ): probability of classes

p(Ck |x): probability of class k provided samples x

p(x|Ck ): probability of sample x provided class k

Decision Tree

The third classifier used in this research is the Decision Tree (DT). The root node, internal node, leaf

node and branch are the integral components that constitute the Decision Tree (DT). The uppermost

part of the decision tree is the root node, which comprises of no arriving links, on the other hand, the

leaf node that has no departing links reflects the decision tree’s desired end result. The evaluation criteria

or decision rules on a feature are indicated by the internal node, and the test result is conveyed by the

branch. The count of leaves utilized to distinguish among the classes determines the classification of

the DT algorithm. The main types of DT are based on the number of splits are Fine DT, Medium DT

and Coarse DT, where the number of divisions can go from 4 up to 20-100 for Coarse DT and Fine DT

respectively [39]. The extended version of this is Random Forest, which is also a supervised machine

learning algorithm that uses a sequence of decision trees to classify between distinct initial datasets.

Moving forward, the fine decision tree is utilized for classification.

Support Vector Machine

The final classifier used is the Support Vector Machine (SVM). SVM operates on the notion of structural

risk minimization theory, where it creates an ideal hyperplane considering a collection of positive and

negative values. Based on the largest margin that optimally partitions the data point, the SVM chooses

the best decision boundary, such that it attains minimal classification error [41].

Figure 5.10: Support Vector Machine (SVM) classifier, inspired from [41]

aT m +b =±1 (5.16)

The support vectors (as seen in Figure 5.10) are the training samples that are closer to the hyperplane

and represented by equation 5.16, where a, and m (perpendicular to the decision boundary) are vectors

and b is the bias. The three models of kernels of SVM are, Linear, Polynomial and Gaussian.

• Linear SVM kernel:

Y (mi ,m j ) = mT
i m j (5.17)

• Polynomial SVM kernel:

Y (mi ,m j ) = (1+mT
i m j )k (5.18)

dot product is generated by the two vectors mi and m j are depicted in a space of order k.
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• Gaussian SVM kernel:

Y (mi ,m j ) = exp
(−‖xi −x j ‖

)2

2σ2 (5.19)

where the difference provides the distance between two data points in Euclidean space. The vari-

ance, which governs the classifier performance, can be used to alter the width of the Gaussian

kernel. For classification of extracted features for the NetRAD and PARSAX datasets, Linear SVM

will be used.

5.3.2 Performance Metrics

After the classification process, it is essential to analyze the performance metrics. The confusion matrix

is an efficient tool to assess the efficacy of the model, since it provides information to observe where the

ambiguity lies between the classes and the corresponding misclassification. From the confusion, some

vital performance metrics can be derived. The components in the confusion matrix are: True Positive

(TP), False Negative (FN), True Negative (TN) and False Positive (FP) [42]:

True Positive (TP): The samples are positive and are also classified as positive.

True Negative (TN): The samples are negative and are also classified as negative.

False Positive (FP): The samples are negative, but are classified as positive.

False Negative (FN): The samples are positive, but are classified as negative.

The performance metrics evaluated from the components of the confusion matrix are:

• Accuracy: Accuracy provides the overall performance of the model. It is the ratio of the correctly

predicted observations to the total number of observations.

Accur ac y = T P +T N

T P +T N +F P +F N
(5.20)

• Precision: It is the ratio of the predicted positive outcomes to the total positive outcomes. The

Precision reduces if the number of false positives increases, which is not desirable, since the ideal

Precision value is 1, which is true when there are no false positives.

Pr eci si on = T P

T P +F P
(5.21)

• Recall: Recall, which is also called the sensitivity, is the ratio is predicted positive outcomes to

the sum of true positive and false negative. To achieve a high Recall value, the number of false

negatives should decrease.

Recal l = T P

T P +F N
(5.22)

• F1 score: This metric gives a more accurate measure of the classifier performance, especially in

the case when the samples are unevenly distributed. F1 score is the harmonic mean of Precision

and Recall. The ideal F1 score is 1.

F 1scor e = 2× (Pr eci si on ×Recal l )

(Pr eci si on +Recal l )
(5.23)

For the NetRAD data, the classes have an equal number of observations, that is the samples are

distributed evenly. So macro-average F1 score (with equal weights) is used, which is the mean

of the F1 scores. However, in the case of PARSAX data, the samples are unequally spread across

the classes. Thus, a weighted F1 score in terms of attaining an accurate performance metric is

employed.

Thus, the four supervised classifiers that will be used are: (a) Linear Discriminant Analysis (LDA), (b)

Gaussian Naive Bayes (NB), (c) Fine Decision Tree (DT), and (d) Linear Support Vector Machine (SVM).
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5.3.3 Fusion Techniques

In an attempt to boost the classification performance, different approaches for combining the data from

the 3 nodes (in the NetRAD dataset), and 4 polarimetric channels (in the PARSAX dataset) are investi-

gated. The three types of fusions that are explored are: (a) Decision fusion, (b) Feature fusion, and (c)

Ensemble fusion.

Decision Fusion

Decision fusion is a technique which takes place after the classification phase, wherein the many classi-

fiers’ judgements are assimilated and incorporated into a single outcome [43] [44]. The decision fusion

combines the three radar nodes 1, 2, 3 independently as if they were separate simultaneous measure-

ments. Likewise, for the PARSAX data, the four polarimetric channels are fused separately with the as-

sumption of being different simultaneous measurements. Two types of decision fusion are proposed. In

this report, the two types of decision fusions will be termed as Fusion 1 and Fusion 2.

Class A a b c Class A r s t Class A ar bs ct

True Class B d e f x True Class B u v w = True Class B du ev fw

Class Class C g h i Class Class C x y z Class Class C gx hy iz

Class A Class B Class C Class A Class B Class C Class A Class B Class C

Predicted Class Predicted Class Predicted Class

’Node P’ LDA Classifier

Confusion Matrix

’Node Q’ LDA Classifier

Confusion Matrix

Resultant

Confusion Matrix

Table 5.7: Mechanism of Decision Fusion 1 by imposing same classifier (here, LDA classifier) on each node or channel

• Fusion 1- same classifier, different node: In the first type, a specific model of classifier (from LDA,

NB, DT and linear SVM) is imposed on all the nodes or polarization channels. Then, the final per-

formance metric is calculated by elementwise multiplication of the confusion matrices of indi-

vidual nodes (NetRAD) or polarimetric channels (PARSAX). The Figure 5.7 shows the generalized

(3 x 3) confusion matrix with classes A, B, C and radar nodes P and Q. An LDA classifier (as an

example) is imposed on all the two nodes/ channels, thus, the confusion matrix of LDA classifier

from Node P is multiplied to the LDA classifier of Node Q, and the product is the resultant con-

fusion matrix, on which the performance metrics are calculated. The same strategy is followed for

the other classifiers as well. The objective here is to increase the density of the diagonal matrix

(indicated in green), so that the classification performance also increases.

Class A a b c Class A r s t Class A ar bs ct

True Class B d e f x True Class B u v w = True Class B du ev fw

Class Class C g h i Class Class C x y z Class Class C gx hy iz

Class A Class B Class C Class A Class B Class C Class A Class B Class C

Predicted Class Predicted Class Predicted Class

’Node P’ Best Classifier

Confusion Matrix

’Node Q’ Best Classifier

Confusion Matrix

Resultant

Confusion Matrix

Table 5.8: Mechanism of Decision Fusion 2 by selecting Best classifier from each node or channel

• Fusion 2- different classifier, different node: In the second type of decision fusion, the best classi-

fier from each of the nodes or polarizations is selected, and the resulting confusion matrices are

fused to get the performance metrics. The best classifier may or may not always be the same at

each node, and is bound to vary for different scenarios (hovering, flying, rectangular waypoints)

and parameters (dwell time, window duration of spectrogram). To provide an example, the Fig-

ure 5.8 is again a generic (3 x 3) confusion matrix consisting of A, B and C as classes and P and

Q as radar nodes. Unlike decision Fusion 1, a particular classifier is not applied on the nodes,

whereas, the classifier which performed best at that particular node is chosen. So in this case,
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the best classifiers from Node P and Node Q are taken and multiplied elementwise to obtain the

resultant confusion matrix, and the accuracy, F1 score, and other performance metrics are evalu-

ated. The advantage of this fusion is since only the best classifier is chosen, the possibility to have

the null value in the diagonal of the confusion matrix is minimal, and hence, results eventually in

enhanced classification performance.

Feature Fusion

In this fusion, the significant and most contributing features are selected for application of the fusion

technique. The first step in feature fusion is Feature Selection (FS). Feature selection is the method of

finding and choosing the most relevant feature(s) from a set of extracted features (obtained through fea-

ture extraction). The objective in feature selection is to find an optimal subset that consists of a fewer

number of features that improve the performance of classification. This can be achieved by eliminating

the correlated redundant feature and selecting the features that are relevant, discriminative and easier

to extract.

The filter and the wrapper are the two major techniques to choose the optimum subset from the main

set of data. T-test, Battacharya and Euclidean distances, as well as other information metrics. are used

to determine the significance of features based on the scores in the Filter method. The wrapper tech-

nique undertakes a brute force approach in order to identify which collection of parameters (features)

delivers the ideal classification result. Unlike the filter method which is unperturbed by the choice of

classifier, the wrapper method on the other hand selects the optimal combination of features based on

the classifier. Due to lesser computational complexity, Sequential Forward Selection (SFS) and Sequen-

tial Backward Elimination (SBE) are employed. In SFS, the features are inserted progressively to the

initial blank set, when the performance seems to diminish, no more features are added to the set. The

SBE works inverse to SFS, where the initial set contains all the features. The features are progressively

removed until the accuracy begins to diminish [45].

The Sequential Forward Selection (SFS) algorithm is implemented in this thesis since it is a simpler

and straightforward technique. In this feature selection process, out of the total set of features, more

important features are selected from each of the nodes or polarimetric channels, after which the sam-

ples from the union of these features are merged. In feature fusion, the features that are generated from

feature selection are combined. The coalition of selected features from the complete collection of fea-

tures are given as input to the supervised classifiers. The classifiers process these samples and provide

the classification metrics.

Ensemble Fusion

A w1 w2 w3 A x1 x2 x3 A y1 y2 y3 A z1 z2 z3

True B w4 w5 w6 x True B x4 x5 x6 x True B y4 y5 y6 x True B z4 z5 z6

Class C w7 w8 w9 Class C x7 x8 x9 Class C y7 y8 y9 Class C z7 z8 z9

A B C A B C A B C A B C

Predicted Class Predicted Class Predicted Class Predicted Class

’Node P’ LDA

Confusion

Matrix

’Node P’ NB

Confusion

Matrix

’Node P’ DT

Confusion

Matrix

’Node P’ SVM

Confusion

Matrix

Table 5.9: Mechanism of Ensemble Fusion where different classifiers are applied on same node; used for polarimetric features

The ensemble fusion is different from decision fusion in the way that this method operates on one node

by fusing the confusion matrices of all the classifiers applied to the data of that node. The technique
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of ensemble fusion (which is basically same node, different classifiers) is particularly ideal for the po-

larimetric features, where an ensemble of classifiers is used to enhance the classification performance.

Since the features from all polarimetric channels are combined as a single block as seen in Table 5.3, the

possibility to apply Fusion 1 and Fusion 2 is ruled out. The ensemble fusion involves all the classifiers

to come into play, as shown in 5.9. Similarly here, a (3x3) confusion matrix with A, B and C classes are

considered for Node P with LDA, NB, DT and SVM classifiers. By fusing through an ensemble of clas-

sifiers, the confusion matrices of the independent classifiers (LDA, NB, Decision Tree, Linear SVM) are

multiplied elementwise. The classification metrics of the resultant product are assessed to analyze the

improvement in the accuracy.

5.4 Conclusion

In this chapter, the main research methodology from Figure 5.11 is covered. The algorithms involve

generating spectrogram, extracting suitable features, followed by supervised classification and increas-

ing the performance using fusion. The yellow-coloured blocks indicate the novel techniques developed

in the research methodology for this thesis’ objectives in the research methodology. Some of the high-

lights are:

Figure 5.11: Flow chart of Research methodology, with main contribution blocks highlighted in yellow blocks

• The spectrogram clearly indicates the finer micro-Doppler specifics of the blade rotations. The

blade flashes become straighter for the increase in payload weight. The spectrogram is continu-

ous for NetRAD data, whereas the PARSAX data has intermittent spectrogram due to the drones

deviating from the radar beam.

• The two sets of features are: Statistical and Polarimetric. After feature extraction, the samples are

equally distributed for the NetRAD data, on the other hand, for the PARSAX data, unequal sample

distribution per class is obtained due to discontinuity in the spectrogram.

• Multiclass classification problem is opted for both the datasets. The 5 classes in the NetRAD data

are 0g, 200g, 300g,400g and 500g. The PARSAX data has 4 classes, Quadcopter M200/0kg, Quad-

copter M200/1kg, Hexacopter M600/0kg and Hexacopter M600/2.35kg.

• The four supervised classifiers: LDA, Gaussian NB, Decision Tree and Linear SVM are considered

based on the classification accuracy and the computational complexity.

• For enhancing the classification performance, feature fusion and decision fusion techniques are

used for the statistical features. In the case of polarimetric features, an ensemble of classifiers is

employed since the features from all polarimetric channels are tied together as a single block.





Chapter 6

Results and Observations

In this chapter, the two types of fusion on statistical features, namely, the feature and decision fusions are

analyzed initially to assess which technique outperforms the other. Thereafter, the results of classification

performances for the two sets of data, from NetRAD and PARSAX are investigated, and observations are

made on the parametric analysis for the different scenarios. The parameters of interest are (a) Varying

dwell time, (b) Varying window duration of the spectrograms, (c) Adding noise to vary the SNR of the spec-

trograms.

As mentioned previously, the drones follow multiple trajectories, referred to as ’scenarios’. For the NetRAD

dataset, the scenarios are (a) drone hovering and (b) drone flying. On the other hand, the scenarios for the

PARSAX dataset are (a) drones hovering, (b) drones flying, (c) drones moving in rectangular waypoints,

and (d) combined scenario of drones flying and moving in waypoints. The classification performance

of the individual nodes or polarimetric channels is evaluated for the different parameters. The fusion

techniques on the statistical and polarimetric features are also incorporated to observe the change in per-

formance in comparison to the independent nodes or channels.

The factors on which the observations depend are the datasets, the scenario considered, and how the clas-

sifiers perform. So, the results vary from one scenario to another, and may not always be constant even for

the same scenarios of two different datasets.

6.1 Fusion Results: Decision Fusion and Feature Fusion

The results of the decision fusion (Fusion 1 and Fusion 2) and feature fusion are discussed, and a com-

parison is made on the better fusion between the two techniques. The decision Fusion 1 involves as-

signing the same specific classifier on all the nodes or channels; whereas decision Fusion 2 selects the

best classifier from each node or channel for analysis. The feature fusion operates at the feature phase,

on the contrary, the decision fusion is applied after the classification phase.

6.1.1 Decision Fusion

The Table 6.1 represents the confusion matrices for the Fusion 1 technique. The NetRAD dataset for the

scenario of drone flying is taken, and the LDA classifier is assigned for all the nodes 1, 2 and 3. Here, the

LDA classifier is taken as an example to illustrate the mechanism of Fusion 1 technique, and the same

procedure is followed for other classifiers also. The product of these confusion matrices is represented

as resultant confusion matrix, which has most of the samples concentrated in its diagonal. The aim is to

increase the density of the diagonal matrix, such that it is sufficiently populated to show improvement

in accuracy. In this way, the possibility for the other cells of the matrix to nullify (as seen in Tables 6.1

51
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and 6.2) also increases. On the contrary, in case if the diagonal matrix of one of the nodes contains huge

misclassification, this will result in the classification performance to reduce upon fusion. In this case of

drone flying, the Fusion 1 has benefitted in achieving the target of increased classification accuracy.

0g 4 0 1 0 1 0g 6 0 0 0 0 0g 4 1 0 1 0

True 200g 3 1 0 0 2 True 200g 3 2 1 0 0 True 200g 3 2 0 0 1

Class 300g 0 1 3 2 0 x Class 300g 0 2 1 0 3 x Class 300g 1 0 4 0 1

400g 1 1 1 2 1 400g 0 2 2 1 1 400g 1 0 0 2 3

500g 0 0 4 0 2 500g 0 1 1 1 3 500g 0 0 1 2 3

0g 200g 300g 400g 500g 0g 200g 300g 400g 500g 0g 200g 300g 400g 500g

Predicted Class Predicted Class Predicted Class

LDA Node 1 LDA Node 2 LDA Node 3

0g 96 0 0 0 0

True 200g 27 4 0 0 0

Class 300g 0 0 12 0 0

400g 0 0 0 4 3

500g 0 0 4 0 18

0g 200g 300g 400g 500g

Predicted Class

Resultant Confusion Matrix

Table 6.1: Decision Fusion 1 of LDA classifier for Drone flying: NetRAD data

In the second type of decision Fusion 2, the best classifier from each of the nodes is selected, and

the resulting confusion matrices are fused to get the performance metrics. The Table 6.2 is again for the

case of NetRAD data for drone flying. But this time, out of the four classifiers, the one that resulted in

the highest accuracy is chosen from every node. In this case, for Node 1, the LDA classifier performed

well, whereas, for Nodes 2 and 3, the SVM classifier secured the maximum results. Their corresponding

confusion matrices are multiplied for the evaluation of accuracy. It is evident that the diagonal of the

resultant matrix is richly populated, making most of the other cells to be 0, leading to lesser misclassifi-

cation. Thus, the classification performance is improved.

0g 4 0 1 0 1 0g 6 0 0 0 0 0g 4 2 0 0 0

True 200g 3 1 0 0 2 True 200g 1 4 1 0 0 True 200g 0 6 0 0 1

Class 300g 0 1 3 2 0 x Class 300g 0 3 2 0 1 x Class 300g 1 0 4 0 1

400g 1 1 1 2 1 400g 0 1 2 2 1 400g 1 1 0 2 2

500g 0 0 4 0 2 500g 0 1 2 1 2 500g 0 0 2 1 3

0g 200g 300g 400g 500g 0g 200g 300g 400g 500g 0g 200g 300g 400g 500g

Predicted Class Predicted Class Predicted Class

LDA Node 1 SVM Node 2 SVM Node 3

0g 96 0 0 0 0

True 200g 0 24 0 0 0

Class 300g 0 0 24 0 0

400g 0 1 0 8 2

500g 0 0 16 0 12

0g 200g 300g 400g 500g

Predicted Class

Resultant Confusion Matrix

Table 6.2: Decision Fusion 2 of best classifier for Drone flying: NetRAD data
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6.1.2 Feature Fusion

Node 1 Node 2 Node 3

Mean of the diagonal matrix Mean of the diagonal matrix Mean of the diagonal matrix

SD of the diagonal matrix Kurtosis of the diagonal matrix SD of the diagonal matrix

Kurtosis of the diagonal matrix Mean of the centroid Kurtosis of the diagonal matrix

Mean of the centroid Mean of bandwidth
Mean of the centroid

SD of the centroid

Table 6.3: Features selected from the Nodes 1, 2 and 3 for Drone hovering without payload: NetRAD data

As a part of feature selection, the Sequential Forward Selection (SFS) algorithm is implemented initially

on the NetRAD dataset for the scenario of drone hovering. The Table 6.3 represents the collection of

suitable features individually from Nodes 1, 2 and 3. The combined set contains 6 out of the total 12

features. The union of these selected features are used for further evaluation by feature fusion. The clas-

sifiers are trained on the 80% training set with 5-fold CV and tested on the 20% of samples to calculate

the classification performance in Table 6.4. A comparison is made on the feature and decision fusions

to evaluate which technique is more suitable and performs optimally on the datasets.

Dwell Time 1s

Classifier Node 1 Node 2 Node 3 Feature Fusion Decision Fusion

LDA 0.93 0.93 0.97 0.57 1.00

Naive bayes 0.83 0.75 0.89 0.58 1.00

Decision Tree 0.86 0.71 0.87 0.78 1.00

Linear SVM 0.97 0.93 0.93 0.64 1.00

Table 6.4: F1 scores of Feature fusion and Decision Fusion of nodes from NetRAD data for Drone hovering without payload

Figure 6.1: F1 scores VS Dwell Time of Feature fusion and Decision fusion 1 result of LDA classifier for Drone hovering with 0g

payload: NetRAD data

The Table 6.4 gives information about the F1 score of independent nodes, and their fusion via fea-

ture and decision (here, Fusion 1) fusions. It is transparent that feature fusion does not contribute to the

improvement in performance, but rather counteracts the accuracy by providing accuracies lesser than

the individual nodes for all the classifiers. In an ideal case, the accuracy would increase with an increase

in the number of features, and after the cut-off value is reached, the classification starts to depreciate

due to an overload of features. In this scenario of drones with payloads, the poor performance is be-

lieved to be related to differences in the micro-Doppler signatures for different nodes. Consequently,
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the samples from feature extraction also vary as the data from each radar node is different due to the

difference in aspect angle. Thus, when the union of these approximately disjoint features are provided

to the classifiers, the performance is disrupted due to their inability to distinguish the classes.

The Figure 6.1 (F1 score VS dwell time for LDA classifier) graphically represents the loss of performance

metric (F1 score) when features are combined, which indicates that feature fusion is not an ideal tech-

nique in this situation. However, decision fusion presents a significant enhancement in performance.

The decision fusion takes place after the classification phase, so there is no indulgence with the spectro-

gram or the aspect angles in this type of fusion.

Therefore, as feature fusion has a negative effect on the performance for these kinds of datasets (where

aspect angles are involved), moving forward, only the two types of decision fusions will be evaluated for

the parametric analyses of the NetRAD and PARSAX datasets.

6.2 UCL: NetRAD Radar Results

Firstly, the data from NetRAD radar is considered. The performance metrics of the individual nodes of

the NetRAD radar are calculated for the three said parameters (varying dwell time, varying spectrogram

window duration, and adding noise to vary the SNR of the spectrogram) at each instance, and inferences

are obtained for analyses. In the case of NetRAD data, There are 5 classes of payloads (0g, 200g, 300g,

400g and 500g), each of them with an equal number of samples. So mathematically, for a classifier to

have a good performance, it should have an accuracy of at least 20% (since the probability of randomly

selecting 1 out of 5 is 0.2) even though for practical usage, a much higher accuracy is required. Based on

the classification performance, some observations are drawn for the various parameters for the scenar-

ios of (a) drone flying and (b) drone hovering.

6.2.1 Drone Flying

The first scenario is drone flying back and forth and the performance of independent nodes and their

fusion results are discussed for all the parameters.

Varying Dwell Time

In the scenario for drone flying, the dwell time is varied from 0.5s, 0.75s, 1s, 1.5s and 2s, in order to de-

duce a pattern in the accuracy for the different duration of spectrogram splits. From the plots of the four

classifiers, it can be seen that a smaller value of spectrogram split duration is favoured in the classifiers.

By micro-analyzing it at every instance, the classification performance is high at 0.5s in all the classi-

fiers, then takes a dip at 0.75s and 1s, and again goes on to increase slightly. However, in principle, a

shorter dwell time is desirable, since it also highlights the radar’s ability to detect and distinguish among

the targets at a faster time. Also, with the increase in dwell time, the number of samples reduces (Table

5.4). As a result, the classifiers have fewer data points (samples) to learn from, thus resulting in poorer

classification. For the dwell time of 0.5s, the classification performance is of the range approximately

38% to 53% for the individual Nodes 1, 2 and 3. It can be inferred that the classifier is able to classify up

to 2 or 3 classes.

So, in order to improve the classification performance, the 2 types of fusion (as discussed before) are

performed. The Fusion 1 has the particular classifier assigned at each node, whereas in Fusion 2, the

best classifier is different at different dwell times. Both the decision fusions have resulted in enhanced

results, and in comparison, the Fusion 2 (black line - best classifier at each node) has performed better

than Fusion 1 (pink line - fixed classifier at each node). The classification performance has increased
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up to 89% to 96% at 0.5s, implying that the classifier is able to distinguish 4 out of 5 classes successfully

upon fusion.

(a) Linear Discriminant Analysis Classifier (b) Gaussian Naive Bayes Classifier

(c) Fine Decision Tree Classifier (d) Linear Support Vector Machine Classifier

Figure 6.2: NetRAD data: Classification performance of classifiers as F1 score vs spectrogram split duration (i.e. dwell time):

Drone Flying

Varying Spectrogram Window Duration

The next parameter is varying the spectrogram window duration. The trade-off exists in time and fre-

quency domains for variations in durations of the spectrogram window as discussed in Figure 5.3 of

Chapter 5. In Figure 6.3, the dimensions have changed from (1000x12480) to (8000x1481) in (Doppler

x Time) for the spectrogram window durations from 0.05 to 0.4s respectively. The frequency is blurred

in (a), where as in (b), the time axis is blurred, corresponding to worse Doppler resolution in the former

(Figure 6.3a) and worse time resolution in the latter (Figure 6.3b).

(a) Spectrogram for Drone flying with 0g when spectrogram
window duration is 0.05s

(b) Spectrogram for Drone flying with 0g when spectrogram
window duration is 0.4s

Figure 6.3: NetRAD data: Spectrogram for Drone flying with 0g when spectrogram window duration is changed from 0.05s to 0.4s
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For varying the spectrogram window duration from 0.05s, 0.1s, 0.25s and 0.4s, the individual Nodes

1, 2 and 3 have a performance of F1 score in the range of 36% to 56%. So again, the classifier is able

to classify atmost 3 classes at the individual nodes. So, again by the two types of decision fusions, the

performance has increased considerable well, reaching a value of up to 91%, thus resulting in the hike

in the classifier’s ability to distinguish 4 or approximately 5 classes. The enhancement in classification

performance by the two fusions has proved to be beneficial. The Fusion 1, though has a performance

little lesser than Fusion 2, however, it has shown an increased accuracy at most instances. On the other

hand, as seen in Figure 6.4, Fusion 2 has largely outperformed Fusion 1.

To ascertain the ideal window duration, from the plots, it is visible that most classifiers perform bet-

ter for the window sizes of 0.05s and 0.1s. So, out of the two, a shorter duration of spectrogram window

is favourable for the drone flying. For the spectrogram window durations from 0.25s and 0.4s, the per-

formance goes down. The resolution in time diminishes with an increase in window duration, so the

important components in the features are possibly lost, which can be the reason for the decline in accu-

racy at longer spectrogram window durations.

(a) Linear Discriminant Analysis Classifier (b) Gaussian Naive Bayes Classifier

(c) Fine Decision Tree Classifier (d) Linear Support Vector Machine Classifier

Figure 6.4: NetRAD data: Classification performance of classifiers as F1 score vs spectrogram window duration: Drone Flying

Adding Noise to Vary SNR

The third parameter is adding noise of varying SNRs. After the RTI plots are generated, noise to generate

an equivalent SNR of 2dB, 5dB, 8dB, 10dB, 15dB, 25dB are added to the RTI plots, before calculating the

STFT. Figure 6.5 depicts the variation in the blade flashes and main body of the drone for the SNR of

2dB, 10dB and 25dB.

It is seen that the central red line at 0 Hz, which is the main body of the drone, is visible distinctly

regardless of the variation in noise. Since the primary part of the drone is sturdier than the rotor blades,

the addition of noise did not majorly affect its presence in the spectrogram. On the other hand, the rotor
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blades are comparatively flimsy and hence, are covered in noise at lower SNRs. It is observed that Node

2 is upbeat at 2dB SNR when the drone is not carrying any payload, however with an increase in payload

weights, the spectrogram is distorted.

(a) SNR 2 dB (b) SNR 10 dB (c) SNR 25 dB

Figure 6.5: Effect on spectrogram when noise to vary SNR is added: Drone Flying without payload at N1- NetRAD radar. Blade

flashes are faint at low SNR

(a) Linear Discriminant Analysis Classifier (b) Gaussian Naive Bayes Classifier

(c) Fine Decision Tree Classifier (d) Linear Support Vector Machine Classifier

Figure 6.6: NetRAD data: Classification performance of classifiers as F1 score vs Noise: Drone Flying

The Figure 6.6 represents the plots for SNR versus F1 score for the independent Nodes 1, 2 and 3,

along with the Fusion 1 and Fusion 2 results at varying SNRs. It is evident, from theory and from the

plots that at lower SNR, the spectrograms consist of a lot of disturbances and artefacts. Since the spec-

trograms are not decipherable, and the important elements are overlapped by noise, the classification

accuracy is poor. As the SNR increases, the significant components in the spectrogram become dis-

tinguishable, thus leading to improved classification. All the four supervised classifiers show a similar

trend in classification performance, where an increase in F1 score is directly proportional to an increase

in SNR. However, it is hard to ascertain a particular SNR as the ideal value at which maximum classifi-

cation is obtained, since it depends on the base SNR during data collection. However, it can be inferred

that the feature extraction technique is robust to additional noise, as it is able to distinguish the classes
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more or less accurately. The Node N1 has a higher F1 score as far as individual nodes are considered.

Furthermore, the two fusion techniques have resulted in overall enhanced classification performance,

with Fusion 2 performing better than Fusion 1 in most instances of SNR.

6.2.2 Drone Hovering

The drone hovering is likewise subjected to three parametric analyses and subsequent fusion tech-

niques. The Fusion 1 is where a particular classifier is assigned to each node, and the classification

performance is evaluated from the resultant confusion matrix, after multiplying the individual confu-

sion matrices. The Fusion 2 is selecting the best classifier at each node and again multiplying the CMs

to get one final CM, whose performance metrics are calculated.

Varying Dwell Time

The first parametric analysis is the change in how the spectrogram is split (that is, the dwell time) into

smaller segments. The initial dwell time is set as 1s and subsequently modified to study the trend in

classification performance over the varying dwell time. For the case of drone hovering, the dwell times

of 0.5s, 1s, and 2s were considered. Since in the real-life situation for the scenario where the drone

is hovering alone is quite uncommon, only a few dwell times were taken into account. In the Figure

6.7, the classification performances of the four classifiers (LDA, NB, DT, Linear SVM) are seen, along

with the decision fusion results. From the plots, it is shown that Nodes 1 and 3 have higher classification

performance, as a result of how the features were extracted and how well the classifier is able to segregate

the samples.

(a) Linear Discriminant Analysis Classifier (b) Gaussian Naive Bayes Classifier

(c) Fine Decision Tree Classifier (d) Linear Support Vector Machine Classifier

Figure 6.7: NetRAD data: Classification performance of classifiers as F1 score vs spectrogram split duration (i.e. dwell time):

Drone Hovering

Though each of the classifiers depict a variety of interpretations at each instance of dwell time, on

the whole from the majority of classifiers, the ideal dwell time is preferred as 0.75s, thus a comparatively
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shorter dwell time is desirable. Also, theoretically, as the dwell time is increased, the number of sam-

ples in each of the classes reduces proportionally as the dataset has a limited size (Table 5.4). Thus, the

number of training samples decreases, making it difficult for the classifier to get well trained, and hence

resulting in poorer classification.

Moreover, a shorter dwell time is profitable, since the radar is able to detect the target and classify it. An

F1 score of approximately 94% to 97% is achieved at Nodes 1 and 3 for the dwell time of 0.75s, whereas

for Node 2, it is about 89%. The variation in the F1 score is due to the difference in aspect angle. The

other reason is how the samples were spread across in the confusion matrix. For Nodes 1 and 3, the

samples were concentrated in the main diagonal matrix, whereas for Node 2, the samples are dispersed.

However, the two types of decision fusions proved optimal, since an ideal classification of 100% is at-

tained at each instance of dwell time. Thus, an improvement in the results is witnessed via fusion, even

though the individual nodes had previously fairly good accuracy.

Varying Spectrogram Window Duration

(a) Linear Discriminant Analysis Classifier (b) Gaussian Naive Bayes Classifier

(c) Fine Decision Tree Classifier (d) Linear Support Vector Machine Classifier

Figure 6.8: NetRAD data: Classification performance of classifiers as F1 score vs spectrogram window duration: Drone Hovering

The second parameter is the variation in spectrogram window durations in the range 0.05s, 0.1s, 0.25s

and 0.4s. From the output of the classifiers in most of the cases, since it fluctuates for different win-

dow durations, it is complicated to come to a conclusion which window duration gives the optimum

accuracy. At each instance of spectrogram window duration, the performance oscillates from 75% to

approximately 95% in most cases, it can be gauged 0.05s shows good accuracy. The classifier in the sce-

nario of drone hovering is already able to distinguish well among classes. For the classifiers Gaussian NB

and Linear SVM, the performance drops with an increase in spectrogram window duration, so it can be

deduced approximately that a shorter window duration is preferred. It is to be noted that the number of

feature samples for classification remains the same, since the way the spectrogram is split is 1s duration

throughout this analysis. For the decision fusions, the outcomes were perfect 100% F1 score.
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Adding Noise to Vary SNR

The final parameter is the addition of noise. The noise of SNRs 2dB, 5dB, 8dB, 10dB, 15dB, and 25dB

are added to the spectrograms to assess the classification performance. From Figure 6.9, shows the

scenario of drone hovering without payload at Node 1. The spectrograms cannot be interpreted at SNR

2 dB and becomes more decipherable at SNR 25 dB. The Figure 6.10 illustrates the plots between SNR

and F1 scores for different classifiers. It can be seen that in terms of individual nodes, Node 1 has better

performance in most cases. The variation in F1 scores of the independent nodes is due to differences

in their aspect angles. The samples after feature extraction contain more noise components at lowers

SNRs, which resulted in the performance to depreciate. However, the feature extraction via SVD, cen-

troid and BW is ascertained to be beneficial, since the minimum classification obtained is 60% (at 2dB

for DT classifier in 6.10 (c)), which implies that the classifier is able to discriminate up to 3 classes even

in the presence of noise. Additionally, the Fusion 1 and Fusion 2 techniques have surpassed the perfor-

mance of individual classifiers, by reaching an ideal F1 score of almost 100%.

(a) SNR 2 dB (b) SNR 10 dB (c) SNR 25 dB

Figure 6.9: NetRAD data: Effect on spectrogram when noise to vary SNR is added: Drone Hovering without payload at N1- Faint

blade flashes at low SNR

(a) Linear Discriminant Analysis Classifier (b) Gaussian Naive Bayes Classifier

(c) Fine Decision Tree Classifier (d) Linear Support Vector Machine Classifier

Figure 6.10: NetRAD data: Classification performance of classifiers as F1 score vs Noise: Drone Hovering
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6.3 TU Delft: PARSAX Radar Results

Similarly, just as in the case of NetRAD data, the performance metrics of the individual polarizations

of PARSAX dataset are computed here. The same set of parameters are taken, that is, dwell time, spec-

trogram window duration and noise. The spectrogram is split for durations 0.5s, 1s and 1.5s; the spec-

trogram window is varied from 0.05s, 0.1s and 0.25s duration; and finally, additional noise is added for

SNRs 2 dB, 5 dB, 8 dB, 10 dB, 15 dB and 25 dB, until a pattern in classification performance is attained

for the parameters.

The four classes are the M200 quadcopter carrying 0kg and 1kg, and M600 hexacopter carrying 0kg

and 2.35kg. Since the spectrogram is not continuous and there are multiple measurements for the same

scenario, the number of samples is different for each of the classes. In this case, the minimum clas-

sification performance for a classifier is at least 25% (since there are 4 classes and selection 1 out of 4

is 0.25). Although this cannot be the exact assumption since the samples are distributed unevenly, it

helps in gaining a broader overview of the classification performance. It is observed that the HH polar-

ization produced the highest classification accuracy in all parametric analyses, and also in most of the

individual instances of each analysis, as far as separate polarizations are considered. The classification

performances of the 4 scenarios from the PARSAX dataset are discussed.

6.3.1 Drone Flying

The first scenario is the drones flying and their corresponding parametric analyses are illustrated in

Figure 6.11. The two types of decision fusion, that is, Fusion 1 and Fusion 2 are indicated by the black

and cyan coloured lines.

(a) F1 score VS Dwell time- Linear Discriminant
Analysis Classifier

(b) F1 score VS Spectrogram Window Duration- Linear
Discriminant Analysis Classifier

(c) F1 score VS SNR- Gaussian Naive Bayes Classifier

Figure 6.11: PARSAX data: Classification performance of classifiers as F1 score vs Parameters (a)Dwell Time; (b) Spectrogram

window duration; (c) Noise: Drones Flying
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Type No Normalization Min-Max Normalization

Classifier HH HV VH VV HH HV VH VV

LDA 82.6 65.2 65.2 60.9 73.6 47.8 52.2 52.2

Naive Bayes 82.6 73.9 73.9 56.5 60.9 60.9 43.5 34.8

Decision Tree 82.6 87.0 78.3 78.3 34.9 47.8 47.8 56.5

Linear SVM 87.0 69.6 69.6 65.2 69.6 52.2 43.5 47.8

Table 6.5: PARSAX data: Comparison of classification performance (Accuracy percentage) at dwell time 1s: With and without

min-max normlization on the samples after feature extraction

For the case of drones flying, the results for the Linear Discriminant Classifier (LDA) are represented

in Figure 6.11 (a)-(b) for the change in dwell time and spectrogram window duration respectively, and

Figure 6.11(c) exhibits a Gaussian NB classifier for the parameter of additional noise. A similar trend in

variation is observed for the other classifiers, and hence these plots are presented as their depictions.

The Table 6.5 shows the accuracy as a percentage of classification when no normalization or standard-

ization is applied and when Min-Max normalization is applied to the samples derived after feature ex-

traction. By normalizing the samples in the range [0,1], the classifier did not perform well in many cases,

so for further analyses, only the non-normalized values are used for classification purposes.

• Dwell Time: Firstly, from the classification performance in this scenario, the ideal dwell time is

1 to 1.5s since a better accuracy value is achieved. For the case of VV polarization alone, the per-

formance degrades with an increase in accuracy, whereas for the other polarizations VH, HV and

HH, 1s - 1.5s spectrogram split duration produced a better accuracy. The HH polarization has an

accuracy of almost 100% at 1.5s, which indicates that an increase in dwell time beyond this value

would substantially cause a minimal difference in performance. However, the classifier’s perfor-

mance is expected to deteriorate past a specific spectrogram split duration, since theoretically as

well, when the dwell time is increased, the number of samples in each of the classes reduces pro-

portionally as the dataset has a limited size. Thus, as mentioned previously, a shorter dwell time

is more often preferred. The Fusion 1 and Fusion 2 (black and cyan lines respectively) have a pos-

itive effect on the performance, attaining a maximum of 100% overall for all the instances of dwell

time. It is observed that the Fusion 1 resulted in a reduced performance at 1.5s, even lesser than

the individual polarizations HH, HV and VH. This is because, as seen, the VV performance has an

approximately 60% F1 score, the LDA classifier has misclassified the quadcopter M200 0kg class,

thus leading to the dominant diagonal matrix to be scattered, and hence the lower accuracy. Due

to this misclassification of a particular class, the fusion of all the polarizations lowered the overall

performance. So, in this case, fusion can also impair accuracy.

• Spectrogram Window Duration: Secondly, in the analysis of varying the spectrogram window du-

ration, the observations were made for 0.05s, 0.1s and 0.25s. By sliding the window through these

values, it is observed that the classification performance has diminished. Classification accuracy

of about 95% is attained for HH polarization at spectrogram window of 0.05s. The VV and VH po-

larizations are relatively low in performance at 0.25s due to incorrect predictions, thus the Fusion

1 is not able to produce an enhanced value at that instance. However, in other instances, there is

considerable improvement in the accuracy. The depreciating performance is due to worsening of

resolution in time, thus, when window duration is extended, and critical components in feature

extraction may get distributed across multiple spectrogram window duration. The Fusion 2 is not

concentrated to LDA classifier alone, since it designates the best classifier at each polarization, the

results obtained are mostly very optimum in all the scenarios.

• Noise: Thirdly, analyzing the impact of noise, the analogy can be interpreted as the lower the SNR,

weaker the classification performance. In an ideal situation, the classification performs well when
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the SNR is increased, and the plot is practically almost linear up to a point and saturates before

becoming relatively stable for F1 score VS SNR. A similar pattern is witnessed in this case. The ac-

curacy is lower at SNRs from 2dB to 10dB, and elevates from there, reaching consistency at 25dB.

It is observed that the LDA classifier is able to perform well even at lower SNRs in comparison to

other classifiers, so LDA is considered for Fusion 2 in most cases. The Gaussian NB classifier is

shown in Figure 6.11 (c), since the trend in the variation is captured well for analysis. At lower

SNRs, there are heavy distortions in the spectrogram, causing the significant components to over-

lap with the artefacts. As a result, there are a lot of misclassifications, negatively impacting the

classification performance. For the Fusion 1, an F1 score of 92% to 96% is observed, which is

approximately an increase by 20% in comparison to the individual polarizations.

6.3.2 Drone Maneuvering in Rectangular Waypoints

In the scenario of drone moving as waypoints in a rectangle, the results of the parametric analyses are

shown in Figure 6.12. The decision Fusion 1 and 2 are represented in black and yellow lines respectively

in the plots.

(a) F1 score VS Dwell time- Linear Discriminant
Analysis Classifier

(b) F1 score VS Spectrogram Window Duration- Linear
Discriminant Analysis Classifier

(c) F1 score VS SNR- Gaussian Naive Bayes Classifier

Figure 6.12: PARSAX data: Classification performance of classifiers as F1 score vs Parameters (a)Dwell Time; (b) Spectrogram

window duration; (c) Noise: Drones along Rectangular Waypoints

• Dwell Time: In the first parametric analysis, the spectrogram split duration, that is, dwell time,

is altered from 0.5s, 1 s and 1.5s, and it is demonstrated that the dwell times 0.5s and 1.5s have

satisfactory classification outputs. As expected, the Line of Sight monostatic node HH has the

maximum accuracy when individual polarization are considered. The cross-polarization VH has

minimum F1 score of 38% at 1s dwell time, owing to the inability of the LDA classifier to accurately

differentiate the M200 1kg class correctly (analyzed from confusion matrix). As a result of the non-

optimal classification, the Fusion 1 exhibits no progress in performance. On the other hand, the

Fusion 2 has an optimum performance of approximately 98% to 100% in each instance of dwell
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time. Between the two dwell times 0.5s and 1.5s, the shorter dwell time is better suited in the

scenario of drones (and other targets), because it indicates that the radar is able to capture the

drones’ activities in a shorter time, so 0.5s is preferred.

• Spectrogram Window Duration: The second parametric analysis is the variation in the duration

of spectrogram window. As in the case of drone flying for the PARSAX dataset, a diminishing trend

in performance is noticed with the increase in duration of the spectrogram window for the drone

flying in rectangular waypoints. The Fusion 1 shows minimal improvement in accuracy at 0.25s,

whereas, at other instances of spectrogram windows, the Fusion 1 is not beneficial. However,

the Fusion 2 exhibited much improvement, from 99% to 92% at the corresponding spectrogram

window duration 0.05s and 0.25s. The reduction in F1 score at 0.1s duration of the window is

due to misclassification of the quadcopter M200 1kg class by the LDA classifier. Thus, due to the

orientation of samples in the confusion matrix, the augmentation of performance via Fusion 1 is

not advantageous.

• Noise: The final parameter is the addition of noise. At lower SNRs, the classification performance

deteriorates owing to the misclassification of some of the classes. So the samples are scattered

throughout the confusion matrix, thus the diagonal matrix becomes weak due to lesser concen-

tration of samples. However, it is seen the with the increase in SNR, due to lesser distortions, the

classifier is able to segregate the samples according to their labels up to an extent. The pattern

of gradual increase in performance is depicted by Gaussian NB classifier. Nevertheless, the Fu-

sion 1 is able to show improvement at 25dB. Due to many inaccurate predictions at other lower

SNRs, the decision Fusion 1 did not perform to its maximum potential. Here, (and also in other

classifiers), the VH polarization has higher accuracy than the other polarizations, unlike the other

parametric analyses, where HH has a greater result in terms of individual polarizations. Fusion 2,

as in other cases attained 100% F1 score at 25dB. It can be inferred that the performance in the

waypoint scenario is likely to increase for some SNR values before achieving the cut-off value. The

LDA classifier works well with data with noise, in being able to classify when the SNR is less.

6.3.3 Drone Flying and Maneuvering in Rectangular Waypoints

This scenario is the extended case which involves the combination of drone flying and moving way-

points in a rectangle. This is a more realistic scenario and the parametric analyses from Figure 6.13 are

examined.

• Dwell Time: The HH polarization has the highest classification performance with 84% at 0.5s,

reaching up to 88% at 1s dwell times. The HH polarization, along with the other polarizations

unanimously resulted in lesser classification performance with the increase in dwell time. Thus,

the inference is that a shorter dwell time is desired in this scenario. The number of samples is in-

creased due to the combined set of information from the standalone scenarios of drone flying and

rectangular waypoint movements. The classifiers were fed with a sufficient number of data points

to enable them to discriminate among the classes, and hence surpassing the independent per-

formances of flying and waypoints. By fusing the outputs from individual polarimetric channels,

a significant improvement in performance up to 99% is achieved for both the decision fusions

Fusion 1 and Fusion 2.

• Spectrogram Window Duration: As the spectrogram window duration is increased, the resolution

in time becomes worse, and significant components in feature extraction may become spread out

across windows. Though the number of samples in the dataset remains the same, the classifier

gives a lesser accuracy for the increase in the spectrogram window duration. The HH polarization

yielded a significant increase in each instance of window duration. So, in this scenario, the ideal

window size is obtained to be 0.1s. Again, with fusion, an optimum F1 score of approximately
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100% is established at 0.1s, which is a 12% increase that the independent HH polarization. Also,

an overall accuracy increase is found at each instance of varying spectrogram window duration

for both Fusions 1 and 2.

• Noise: The HH polarization again has a better performance when compared to other classifiers.

It is observed that the VH polarimetric channel performs particularly well when noise is present,

such that the performance is better than HV and VV polarizations, which is in contrast to other

parametric analyses where VH usually performs poorly. The decision fusion of LDA classifier

for each polarimetric channel outperforms the individual channel’s accuracy. As the SNR is de-

creased, the classification performance also worsens as expected, falling by around 20% below

the ideal state of high SNR. Fusion 2 attained an F1 score of 100% with an increase in SNR.

(a) F1 score VS Dwell time- Linear Discriminant
Analysis Classifier

(b) F1 score VS Spectrogram Window Duration- Linear
Discriminant Analysis Classifier

(c) F1 score VS SNR- Linear Discriminant Analysis
Classifier

Figure 6.13: PARSAX data: Classification performance of classifiers as F1 score vs Parameters (a)Dwell Time; (b) Spectrogram

window duration; (c) Noise: Drones Flying and Maneuvering in Rectangular Waypoints

6.3.4 Drone Hovering

This is the straightforward case when the drone is not making any movement, but is just hovering in

mid-air and the variations in the parameters are illustrated in Figure 6.14.

• Dwell Time: The spectrogram is split into shorter time segments of durations 0.5s, 1s and 1.5s.

The HH polarimetric channel, as observed in other scenarios shows higher accuracy than the rest

of the channels in terms of performance based on individual polarimetric channels. Since the

target does not follow any trajectory, the samples were classified easily by the LDA classifier. The

optimum dwell time is 1s, since all the polarimetric channels have good performance. The HH

polarization has approximately 95% to 100% accuracies in all the dwell times. Employing Fusion

1 and Fusion 2 enhanced the classification performance overall, reaching 100% accuracy.
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• Spectrogram Window Duration: The shorter spectrogram window duration of 0.05s produced a

better performance. Unlike in other scenarios where the longer spectrogram window resulted in

much lesser accuracy, the 0.25s spectrogram window achieved from approximately 70% to 95% for

HV and HH polarizations respectively, indicating lesser misclassifications even with diminishing

time resolution. The Fusion 1 and Fusion 2 attained 100% accuracy in all the spectrogram window

durations, due to lesser incorrect predictions by the classifiers as a result of simplistic samples.

• Noise: The similar trend of increase in classification performance with an increase in SNR is

observed, and is shown by the LDA classifier here. An instant rise in accuracy is observed from

2dB to 8dB, but again reduces at 10dB and gradually increases up to 25dB. Since the SNR at which

the original dataset is recorded is unknown, it is not possible to determine the cut-off accuracy

beyond which the increase in SNR will not affect the classification performance. The Fusions 1

and 2 showed an overall improvement, with Fusion 2 performing better than Fusion 1.

(a) F1 score VS Dwell time- Linear Discriminant
Analysis Classifier

(b) F1 score VS Spectrogram Window Duration- Linear
Discriminant Analysis Classifier

(c) F1 score VS SNR- Gaussian Naive Bayes Classifier

Figure 6.14: PARSAX data: Classification performance of classifiers as F1 score vs Parameters (a)Dwell Time; (b) Spectrogram

window duration; (c) Noise: Drones Hovering

6.3.5 Polarimetric Features Classification

In the previous sections, the results from the statistical features (mean, standard deviation, skewness

and kurtosis) that are derived via the application of SVD, centroid and bandwidth on the spectrogram

are discussed, along with their inferences on the parametric analyses (dwell time, spectrogram window,

noise).

In this case, the polarimetric channels (VV, VH, HV, HH) are combined together into a single polari-

metric block. The dwell time, intended as the duration of the segment of data used for polarimetric

feature extraction, is varied from 0.05s, 0.10s, 0.25s, 0.5s and 1.0s. It is observed that for a shorter dwell
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time, the classifier performs efficiently. A shorter dwell time is often desirable as it proves the efficiency

of the classifier’s ability to distinguish between classes in the shortest time possible.

Classifier Hovering Flying Rectangular Way-

points

Flying+Rectangular

Waypoints

LDA 86.5 52.8 57.4 48.4

Naive Bayes 79.1 45.3 34.2 42.0

Fine Decision Tree 89.6 66.0 76.1 67.2

Linear SVM 87.7 61.2 60.0 50.9

Ensemble Fusion 99.9 90.5 95.9 75.8

Table 6.6: PARSAX data: Classification performance F1 score (Percentage) for polarimetric features for Dwell time of 0.05s

From the Table 6.6, it is observed that that the performance of the independent classifiers for all

the scenarios except hovering is around 35% to 65%, but the ensemble of classifiers resulted in a signifi-

cant improvement. However, though the standalone cases of flying and rectangular waypoints achieved

90.5% and 95.9% F1 score respectively, the combined scenario produced only 75.8% upon fusion. This

is contrasting to the scenario of flying + waypoints via spectrogram where a higher accuracy is obtained.

This is because, firstly, in this case, the spectrogram is split into much smaller segments of duration 0.05s

(which is 20 times lesser than the 1s split in spectrogram), thus resulting in a much greater number of

samples after feature extraction. Although a larger number of samples is favourable for the classifiers

to train efficiently, in this situation, the classifier is confused due to incoherent samples from different

drone trajectories. The overload of irrelevant information to the classifier resulted in the lesser classifi-

cation performance. Secondly, the samples in the confusion matrix from the product of the ensemble

fusion are distributed haphazardly, and not concentrated in the main diagonal, which again results in

distorted performance. However, these polarimetric features that were employed to differentiate be-

tween birds and UAVs [8], have performed well in this research of differentiating different scenarios of

drones with payloads.

(a) Feature β (b) Feature ρ

Figure 6.15: PARSAX data: Feature samples for the case of Quadcopter M200 hovering for (a) Feature β; (b) Feature ρ, dwell time =

0.05s. Red (payload); blue (no payload)

The classifiers with the polarimetric features are able to attain a classification performance equiva-

lent to that obtained in different scenarios by time-frequency domain (spectrograms). The performance

in polarimetric features is achieved even without the application Short-Time Fourier Transform, which

is one step lesser computationally in the signal processing chain. Moreover, at a shorter dwell time of

0.05s, an improved accuracy is obtained for the classification based on polarimetric features, whereas

for features extracted from spectrograms of independent polarimetric channels, the ideal dwell time is

0.5s-1s, which is comparatively longer.
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In [10] and [19], it is shown how the presence of a payload would be visible in the faster rotation rate

of the UAVs blades in the spectrograms, and this would be exploited for classification. Similar separa-

tion for the payload vs no-payload classes can be seen in Figure 6.15 for two examples of polarimetric

features related to the hovering quadcopter. Unlike the easier kinematic interpretation of blade velocity

in spectrograms, the electromagnetic interpretation of this separation seen in the polarimetric feature

domain is still under investigation.

6.4 Conclusion

In this chapter, comprehensive discussions on fusion techniques and parametric results obtained from

the analysis of the two experimental datasets, NetRAD and PARSAX, are covered. The key take-aways

from this chapter are:

• The feature fusion had a negative impact on the classification performance as a result of combin-

ing diverse data. However, the decision fusion enhanced the overall classification performance.

So the feature fusion technique is overruled.

• The parameters considered for analysis were varying (a) dwell time, (b) spectrogram window du-

ration and (c) noise. The Table 6.7 shows the values of dwell time providing the optimal results,

i.e. the highest F1 score (at individual node and by fusion) obtained by changing the dwell time.

The summary of the outcomes from the two datasets (NetRAD and PARSAX) is tabulated in Table

6.8.

• In the NetRAD dataset, the independent nodes performed well for the hovering scenario, even

without the intervention of the Fusion 1 and Fusion 2 techniques. However, a significant improve-

ment in performance was yielded for Fusion 1 and Fusion 2, compared to the individual nodes for

the drone flying.

• Multiple scenarios of drone movement was considered for the PARSAX data, in order to verify

if the feature extraction technique worked regardless of the trajectories and produced optimal

classification.

• The polarimetric features from the PARSAX data secured optimum performance at a much shorter

dwell time of 0.05s for the features extracted on the RTI plot, hence outperforming the statistical

features.

NetRAD Data

Scenarios Maximum F1 Score (%) Individual Node F1 Score (%) Fusion(Dwell Time)

Drone Flying Approx. 55% at 0.5s for Node 3 89% to 96%

Drone Hovering Approx. 95% at 0.75s for Nodes 1, 3 100%

PARSAX Data

Scenarios Maximum F1 Score (%) Individual channel F1 Score (%) Fusion(Dwell Time)

Drone Flying 100% at 1.5s for HH Approx. 100%

Drone Rectangular Waypoints Approx. 78% at 0.5s for HH 100%

Drone Flying + Rectangular Waypoints Approx. 88% at 1s for HH Approx. 100%

Drone Hovering Approx. 100% at 1s for HH 100%

Table 6.7: Optimum F1 score (as percentage) based on Dwell time for all scenarios for independent nodes/ channels: NetRAD

and PARSAX datasets
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NetRAD Data

Scenarios Dwell Time
Spectrogram

Window
Noise Fusion 1 Fusion 2

Drone

Flying

Maximum

accuracy

at 0.5s

Shorter dwell

time

Maximum

accuracy

at 0.05s

to 0.1s

Shorter

spectrogram

window

duration

Increases

with SNR

Significant

improvement

Significant

improvement

Fusion 2 >

Fusion 1

Drone

Hovering

Maximum

accuracy

at 0.75s and 2s

Comparatively

shorter dwell

time of 0.75s

Maximum

accuracy

at 0.05s

Shorter

spectrogram

window

duration

Increases

with SNR

Fusion 1 and

Fusion 2

resulted in

100%

accuracy

Significant

improvement

Significant

improvement

Fusion 1 =

Fusion 2

PARSAX Data

Scenarios Dwell Time
Spectrogram

Window
Noise Fusion 1 Fusion 2

Drone

Flying

Maximum

accuracy

at 1s to 1.5s

Comparatively

longer dwell

time

Maximum

accuracy

at 0.05s

Shorter

spectrogram

window

duration

Increases

with SNR

LDA works

well at

lower SNR

Minimal

improvement

in Dwell time

and Window

duration

Significant

improvement

for Noise

Significant

improvement

Almost

100%

accuracy

Drone

Rectangular

Waypoints

Maximum

accuracy

at 0.5s and

1.5s

Shorter dwell

time

preferred,

so 0.5s

Maximum

accuracy

at 0.05s

to 0.1s

Shorter

spectrogram

window

duration

Increases

with SNR

LDA works

well at

lower SNR

Minimal

improvement

in Dwell time

and Window

duration

Significant

improvement

for Noise

Significant

improvement

Almost

100%

accuracy
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Drone

Flying +

Rectangular

Waypoints

Maximum

accuracy

at 1s

Shorter dwell

time

Maximum

accuracy

at 0.1s

Shorter

spectrogram

window

duration

Increases

with SNR

Significant

improvement

Significant

improvement

Drone

Hovering

Maximum

accuracy

at 0.5s and

1s

Shorter dwell

time preferred

Maximum

accuracy

at 0.05s

Shorter

spectrogram

window

duration

Increases

with SNR

Significant

improvement

Almost

100%

accuracy

Significant

improvement

Almost

100%

accuracy

Table 6.8: Summary of results from parametric analyses of NetRAD PARSAX datasets for the different drone scenarios



Chapter 7

Conclusion and Future Work

In this thesis, the main concepts of radar signal processing, generation of micro-Doppler signature, extrac-

tion of suitable statistical and polarimetric features, analysis of supervised machine learning classifiers

decision fusion algorithms are examined in detail and formulated the techniques on two sets of experi-

mental data from single polarimetric and fully polarimetric radars.

The entirety of this research is segregated sequentially based on the step-wise research methodology. The

initial proof of concept is carried to highlight the importance of micro-Doppler signature to visualize the

fuselage and rotor blade flashes. The novel approach on statistical and polarimetric feature extraction

algorithms and decision fusion on supervised classification are delineated in-depth in Chapter 5

In this chapter, the final outcomes and highlights have been articulated in the conclusions on the results.

Based on the findings from this thesis and subsequent limitations, potential additional investigations are

suggested for the future fields of view.

7.1 Conclusion

The thesis emphasizes the growing need to monitor operations of drones that are carrying payloads, as

a result of increased reports on drones being one of the major contributors of malicious activities. The

state of the art works of literature is dominated by extensive studies on the detection of the presence of

drone, and distinguishing between drones and birds, and other targets. The niche subject sheds light on

the domain of drones carrying payloads and since there is not much assessment about it at least in the

open literature, this thesis aims to address some of the prevailing literature gaps by providing novel solu-

tions. The approach and contributions, in brief, involve extracting polarimetric and statistical features

from spectrograms, which are given as input to the supervised classifiers. Unique fusion techniques are

proposed to enhance the classification performance, and the algorithms are applied on two sets of real

experimental data.

The objective of the thesis is to tackle the issue of drones that are carrying payloads of different weights

by optimum classification. The initial task is to identify key attributes of drones and payloads, such

that they can be used as relevant parameters for classification. From literature reviews, the Radar Cross

Section (RCS) was considered to be an insignificant parameter, owing to the small difference between

the RCS of the drone and that of the drone and payload combined. This concept was quantitatively

reiterated in the thesis by mathematical modelling based on certain approximations to generate a sim-

plistic model. The geometry of the drone and payload were assumed to be spherical and would lie in

the optical region, and the material of the payload is Aluminium. However, the insignificant difference

of 1-3 dBsm between RCS of drone alone and that of drone and payload combined stabilized the theory

71
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mentioned in literature studies. On the contrary, a visible distinction between the drone and payload

was observed in the Doppler and micro-Doppler signatures, as seen in [10] and [23]. Moreover, the tra-

jectories followed by the drone (with and without payload), impact due to heavier payloads, effect on

the drone due to dynamic payload, and other minute details were observed in the time-frequency plots,

thus establishing an infallible approach to detection and classification of drones carrying payloads. The

rest of the thesis employed spectrograms for further in-depth analysis.

The choice of datasets depended on the types of radar: a single polarimetric NetRAD radar and fully

polarimetric PARSAX radar collected original data of dimensions (15000 x 128) and (114688 x 400) re-

spectively in pulse and range bins. The scenarios were drone DJI Phantom Vision 2+ hovering and flying

for NetRAD data with classes of payloads 0g, 200g, 300g, 400g and 500g; and M200 Quadcopter with 0kg/

1kg and M600 Hexacopter with 0kg/ 2.35 kg for PARSAX data where the scenarios were drones hovering,

flying, and moving in rectangular waypoints. The flattening of the blade flashes in the spectrogram was

evident in the NetRAD data when the drone carried heavier payloads.

For the extraction of suitable features, two independent sets of features were generated. The first one

was statistical features that were derived by direct application of Singular Value Decomposition (SVD),

Centroid and Bandwidth (BW). The next set of features was polarimetric features, specific to PARSAX

data only since it tapped information from all its polarimetric channels. In all, there were 12 statistical

features and 5 polarimetric features. The samples after feature extraction were uniform for NetRAD data,

however; for the PARSAX data, the samples were inconsistent due to the drones temporarily leaving the

radar beam at times during data collection.

Following feature extraction, the data points were fed to the classifier to evaluate the performance met-

rics. The thesis focused on supervised machine learning, so the classifiers (a) Linear Discriminant Anal-

ysis (LDA), (b) Gaussian Naive Bayes (NB), (c) Fine Decision Tree (DT) and (d) Linear Support Vector

Machine (SVM), were selected based on the accuracy and computational time. For both the NetRAD

and PARSAX datasets, a multiclass problem was assigned, to closely relate to realistic drone applica-

tions. The NetRAD data was a 5-class problem, whereas the PARSAX data dealt with a 4-class problem,

where the payloads were the different classes. The classifier was trained using 80% data with 5-fold

cross-validation and tested on 20% of the samples. The macro-F1 score was evaluated to assess the clas-

sification performance (weighted F1 score for PARSAX data due to uneven distribution of samples).

The different novel fusion techniques were aimed at further improving the classification performance.

The three types of fusion were feature fusion, decision fusion and ensemble fusion. The feature fusion

was used after the feature extraction phase, the decision fusion operated after the classification phase,

and the ensemble fusion was specific to the polarimetric features. After calculating the F1 score, it was

observed that feature fusion resulted in a reduced accuracy whereas decision fusion produced better

performance comparative to when only independent nodes were considered. In the NetRAD data for

drone hovering, the independednt nodes produced F1 score in the range 85%-97%. However, the fea-

ture fusion reduces the values to 58%, on the other hand, decision fusion yielded 100% performance.

The depreciating performance using feature fusion was due to combining samples from nodes that per-

ceived the drone and the payload from different aspect angles. On the contrary, the decision fusion was

concentrated only with the outcomes from the nodes or polarimetric channels for subsequent evalua-

tions.

The thesis extended to analyze the impact on classification performance by subjecting the different

scenarios of drones (from both datasets) to various parametric analyses in order to achieve a pattern

of variation in performance. The summary of the observations is tabulated in Table 6.8 of Chapter 6.

The decision Fusion 1 and 2 contributed positively with a prominent increase in accuracy. To recap, Fu-
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sion 1 involves assigning the same classifier to each node or channel, while, on the other hand, Fusion

2 selects the best classifier from each node to evaluate the performance metrics. The parameters and

consolidated observations were:

• Varying dwell time: Shorter dwell time was favourable since it produced an increase in relevant

samples from feature extraction. So, the classifiers attained a higher classification performance.

• Varying spectrogram window duration: Shorter window duration was preferred in most scenarios,

since it resulted in better resolution in time (by compromising on frequency up to an extent).

• Addition of noise to vary SNR: Lower SNR resulted in spectrogram with distortions, hence there

were overlapping significant components in feature extraction. Classification performance im-

proved with an increase in SNR.

Finally, the polarimetric features were derived from the RTI plots for the PARSAX dataset. In this

case, ensemble fusion is applied, by making use of the results from the individual classifiers. It was

found that an equivalent classification performance to that of statistical features was obtained here at a

much shorter dwell time (of 0.05s) than that of the spectrogram. A notable point is that the comparable

performance was attained even without the application of STFT, which means one lesser computational

step in signal processing. The advantage of this approach would be overcoming the necessity to gener-

ate spectrograms for feature extraction. Moreover, the features were successfully able to differentiate

between the payloads, thus making this set of features equally feasible.

Thus, for the statistical features from both datasets, a maximum of 95% to 100% accuracy was achieved

upon decision fusion for the NetRAD and PARSAX datasets (at 0.5s to 1s dwell time). On the other hand,

the polarimetric features attained an accuracy up to 99% by ensemble fusion, at a much shorter dwell

time of 0.05s.

The conference paper, titled ’Classification of Unmanned Aerial Vehicles (UAVs) Carrying Payloads

with Polarimetric Radar’ that has been submitted to the European Microwave Week 2021, summarizes

the results from this thesis.

7.2 Limitations and Future Work

Although this thesis provides robust techniques for the extraction of features and optimum classification

performance, there are few shortcomings. The main focus of the research dealt with the classification of

drones with payloads, and the electromagnetic background and the detection of drones are not covered

in detail. On the basis of the results, some of the directions in which the research can be taken forward

are mentioned below:

• The electromagnetic interpretation of the kinematics of blade velocity needs to be investigated

from the polarimetric features. The spectrogram was able to distinctly identify the variation in

payload weight from the change in rotor velocity. The polarimetric features that are largely based

on the Range Time plot are also able to establish the distinction in weights for different classes

of payloads, as seen in Figure 6.15. However, the theory of making a more representative EM

model of drones and payloads and their corresponding reasoning behind the dispersion of pay-

load classes can be explored further, also by incorporating different weights of payloads and drone

models. Furthermore, additional polarimetric aspects can be probed for extraction.

• Comparison with other time-frequency distributions. In this research, the micro-Doppler signa-

tures were assessed using the spectrogram. Although the spectrogram has yielded remarkable

classification performance, it can be verified if the same set of features are specific only to Short-

Time Fourier Transform (STFT) technique. In this thesis, it is already established that these sets of
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features work well with the two different sets of data from NetRAD and PARSAX. As an extension

to the same set of feature extraction and supervised machine learning algorithms, other time-

frequency plots, such as scalogram from the application of wavelets, Wigner-Ville distribution,

etc. can be examined. A contrast in the classification performance among the time-frequency dis-

tributions can be evaluated. By analyzing their performances, it can also be determined if these

feature extraction techniques are robust irrespective of their time-frequency distributions also.

• Multiple sensors can be employed for the detection and classification of drones carrying payloads.

For example, incorporating a camera with radar to optimize the detection and classification per-

formance. A similar technique on sensor fusion was investigated in [43] for categorizing human

activities. The research can be limited to a smaller arena considering the specification of the sen-

sors. The different fusion techniques (hard and soft fusions) can be evaluated for the same set of

statistical and polarimetric features.

• As a continuation on using multiple sensors, algorithms to evaluate qualitatively the nature and

composition of the payload can be researched, after identifying the presence of payload and its

associated quantitative attributes.

• Different sets of features can be evaluated (e.g. physical features of drones) by performing other

algorithms on the spectrograms or other time-frequency distributions. Additionally, various com-

plex machine learning or deep learning algorithms can be utilized for attaining optimum classifi-

cation, even without the application of fusion techniques.



Appendix A

Radius and RCS calculation of metallic

spherical payloads

In this section, the detailed calculation of the radius and Radar Cross Section (RCS) of the payloads of

different DJI drone models is covered. The specifications of the drones are taken from [29]. The payload

that the drone is carrying is approximated to be spherical in shape for simplicity.

The different models of drones considered for calulation of RCS of their payloads are (a) General DJI drone,

(b) DJI Mavic, (c) DJI Mavic 2, (d) DJI Mavic Mini/ Mini 2, (e) DJI Agras T20. Detailed information can be

found in Table 3.3.

Various models of drones and their allowable payload weights are chosen in order to verify if RCS can

be considered as an optimal parameter for the detection and classification of drones carrying payloads.

The results are summarized in Table 3.4.

The calculations are as follows:

• Radius of payload for DJI Mavic with payload of 1200 g:

Mass = Density * Volume

V olume = M ass

Densi t y

For a DJI Mavic drone, weight of payload = 1200g

Density of Aluminium = 2.7g /cm3

V olume = 1200g

2.7g cm−3 = 444.44cm3

Volume of sphere = 4

3
πr 3 = 444.44cm3

Radius of payloadrD J Imavi c1200 = 4.73cm

RCS of sphere at high frequency in the optical region =
π∗ r 2

D J Imavi c1200 = 3.14∗ (4.73)2 = 70.25cm2

(A.1)
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• Radius of payload for DJI Mavic with payload of 300g:

Mass = Density * Volume

V olume = M ass

Densi t y

For a DJI Mavic drone, weight of payload = 300g

Density of Aluminium = 2.7g /cm3

V olume = 300g

2.7g cm−3 = 111.11cm3

Volume of sphere = 4

3
πr 3 = 111.11cm3

Radius of payloadrD J Imavi c300 = 2.98cm

RCS of sphere at high frequency in the optical region =
π∗ r 2

D J Imavi c300 = 3.14∗ (2.98)2 = 27.88cm2

(A.2)

• Radius of payload for DJI Mavic with payload of 400 g:

Mass = Density * Volume

V olume = M ass

Densi t y

For a DJI Mavic drone, weight of payload = 400g

Density of Aluminium = 2.7g /cm3

V olume = 400g

2.7g cm−3 = 148.15cm3

Volume of sphere = 4

3
πr 3 = 148.15cm3

Radius of payloadrD J Imavi c400 = 3.28cm

RCS of sphere at high frequency in the optical region =
π∗ r 2

D J Imavi c300 = 3.14∗ (3.28)2 = 33.78cm2

(A.3)

• Radius of payload for DJI Mavic 2 :

Mass = Density * Volume

V olume = M ass

Densi t y

For a DJI Mavic 2 drone, weight of payload = 1100g

Density of Aluminium = 2.7g /cm3

V olume = 1100g

2.7g cm−3 = 407.41cm3

Volume of sphere = 4

3
πr 3 = 407.41cm3

Radius of payloadrD J Imavi c2 == 4.60cm

RCS of sphere at high frequency in the optical region =
π∗ r 2

D J Imavi c2 = 3.14∗ (4.60)2 = 66.44cm2

(A.4)



77

• Radius of payload for DJI Mavic Mini/ Mini 2 :

Mass = Density * Volume

V olume = M ass

Densi t y

For a DJI Mavic Mini/ Mini 2 drone, weight of payload = 80g

Density of Aluminium = 2.7g /cm3

V olume = 80g

2.7g cm−3 = 29.63cm3

Volume of sphere = 4

3
πr 3 = 29.63cm3

Radius of payloadrD J Imavi cmi ni = 1.92cm

RCS of sphere at high frequency in the optical region =
π∗ r 2

D J Imavi cmi ni = 3.14∗ (1.92)2 = 11.58cm2

(A.5)

• Radius of payload for DJI Agras T20 with payload of 15100 g:

Mass = Density * Volume

V olume = M ass

Densi t y

For a DJI Agras T20 drone, weight of payload = 15100g

Density of Aluminium = 2.7g /cm3

V olume = 15100g

2.7g cm−3 = 5592.59cm3

Volume of sphere = 4

3
πr 3 = 5592.59cm3

Radius of payloadrD J I ag r as1 = 11.01cm

RCS of sphere at high frequency in the optical region =
π∗ r 2

D J I ag r as1 = 3.14∗ (11.013)2 = 380.63cm2

(A.6)

• Radius of payload for DJI Agras T20 with payload of 20000 g:

Mass = Density * Volume

V olume = M ass

Densi t y

For a DJI Agras T20 drone, weight of payload = 20000g

Density of Aluminium = 2.7g /cm3

V olume = 20000g

2.7g cm−3 = 7407.41cm3

Volume of sphere = 4

3
πr 3 = 7407.41cm3

Radius of payloadrD J I ag r as2 = 12.09cm

RCS of sphere at high frequency in the optical region =
π∗ r 2

D J I ag r as2 = 3.14∗ (12.09)2 = 458.97cm2

(A.7)





Appendix B

Range Time Plots and Spectrograms

In this section, the Range Time plots and spectrogram of some of the scenarios from the NetRAD and

PARSAX data are covered. The detailed explanation on the micro-Doppler signatures can be found in

Chapters 4 and 5. In the RTI plot, the pink block denotes the area of interest where the micro-drone is

present. The PARSAX data contains signatures of the drone to be sporadic since the drone moved away

from the radar beam at some instances, where as the NetRAD data is continuous throughout.

B.1 PARSAX Data: Range Time Plots

This section presents the RTI plots for the M200 Quadcopter for the scenarios of drone flying and mov-

ing along rectangular waypoints. The plots focus mainly on the situations where the drones are carrying

a payload. The other cases of M600 Hexacopter with 2.35 kg payload is discussed previously in the thesis

in Chapter 4.

From the RTI plots of B.1 and B.2, it is visible that the drones in rectangular waypoints are spread

out in larger number of range bins compared to the flying scenario, owing to the fact of the drones fol-

lowing different trajectories. The irregularities in the plots is due to the drones momentarily departing

the radar beam.

1. PARSAX Data: RTI Plot of M200 Quadcopter flying with 1kg payload

Figure B.1: PARSAX Data: RTI Plot VV, VH, HV, HH channels for Drone M200 Quadcopter Flying with 1kg payload
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2. PARSAX Data: RTI Plot of M200 Quadcopter moving in rectangular waypoints with 1kg payload

Figure B.2: PARSAX Data: RTI Plot of VV, VH, HV, HH channels for Drone M200 Quadcopter Waypoint with 1kg payload

B.2 Time-Frequency Plots: Spectrograms

In this section, the time-frequency plots, that is spectrograms of some of the scenarios of drones from

the NetRAD and PARSAX datasets are illustrated.

B.2.1 NetRAD Data

Firstly, the NetRAD dataset is considered. The RTI plots have been discussed in-depth in Chapter 4. The

spectrograms for the scenarios of drone hovering and flying for the cases of 0g and 500g are explained

in Chapter 5.

The spectrograms in this section focus on the Nodes 2 and 3, for the similar scenarios of hovering and

flying without payload and with 500g payload. The choice of these two cases is to demonstrate how the

blade flashes vary for these extreme cases. 1. NetRAD Data: Spectrogram of drone hovering without any

payload and with 500g payload: Node 2

(a) Drone hovering without payload at N2 (b) Drone hovering with 500g at N2

Figure B.3: NetRAD Data: Spectrogram of Drone hovering at N2 (a) No payload; (b) 500g payload
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2. NetRAD Data:Spectrogram of drone hovering without any payload and with 500g payload:Node 3

(a) Drone hovering without payload at N3 (b) Drone hovering with 500g at N3

Figure B.4: NetRAD Data: Spectrogram of Drone hovering at N3 (a) No payload; (b) 500g payload

3. NetRAD Data: Spectrogram of drone flying without any payload and with 500g payload: Node 2

(a) Drone flying without payload at N2 (b) Drone flying with 500g at N2

Figure B.5: NetRAD Data: Spectrogram of Drone flying at N2 (a) No payload; (b) 500g payload

4. NetRAD Data: Spectrogram of drone flying without any payload and with 500g payload: Node 3

(a) Drone flying without payload at N3 (b) Drone flying with 500g at N3

Figure B.6: NetRAD Data: Spectrogram of Drone flying at N3 (a) No payload; (b) 500g payload
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B.2.2 PARSAX Data

Secondly, the PARSAX dataset is used for plotting the spectrograms. As seen already in RTI plots of

Figures B.1 and B.2, the drones temporarily leave the radar beam, hence resulting in discontinuity in

the plots. In order to optimize the process, only the contributing segments where the blade flashes are

present in the spectrogram are taken, and used later for feature extraction. Hence, their dimensions

also vary accordingly based on their spectrograms. The micro-Doppler signatures of M200 Quadcopter

and M600 hexacopter carrying payloads for the scenarios of drones flying and moving along rectangular

waypoints are depicted in this section in the Figures B.7, B.8 and B.9.

1. PARSAX Data: Spectrogram of M200 Quadcopter flying with 1kg payload at all polarimetric channels

Figure B.7: PARSAX Data: Spectrogram Plot at VV, VH, HV, HH channels for Drone M200 Hexacopter Flying with 1kg payload

2. PARSAX Data: Spectrogram of M200 Quadcopter in rectangular waypoints with 1kg payload at all

polarimetric channels

Figure B.8: PARSAX Data: Spectrogram Plot at VV, VH, HV, HH channels for Drone M200 Quadcopter in Waypoints with 1kg

payload
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3. PARSAX Data: Spectrogram of M600 Hexacopter in rectangular waypoints with 2.35kg payload at

all polarimetric channels

Figure B.9: PARSAX Data: Spectrogram Plot at VV, VH, HV, HH channels for Drone M600 Hexacopter in Waypoints with 2.35kg

payload
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