
Evaluating the robustness of DQN and QR-DQN under domain randomization
Analyzing the effects of domain variation on value-based methods

Youri Zwetsloot1

Supervisor(s): Frans A. Oliehoek1, Mustafa Mert Çelikok1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 21, 2025

Name of the student: Youri Zwetsloot
Final project course: CSE3000 Research Project
Thesis committee: Frans A. Oliehoek, Mustafa Mert Çelikok, Annibale Panichella

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Domain randomization (or DR) is a widely used
technique in reinforcement learning to improve ro-
bustness and enable sim-to-real transfer. While
prior work has focused extensively on DR in com-
bination with algorithms such as PPO and SAC,
its effects on value-based methods like DQN and
QR-DQN remain underexplored. This paper in-
vestigates how varying degrees and types of DR
affect the robustness and generalization capabili-
ties of agents trained with DQN and QR-DQN. We
identify clear differences in how DQN and QR-
DQN respond to domain randomization, suggest-
ing that naive application may hinder performance,
whereas well-targeted distributions can enhance ro-
bustness and generalization. These findings under-
score the importance of tailored DR strategies for
different algorithms and contribute to a deeper un-
derstanding of DR’s role in DQN-based methods.

1 Introduction
Due to the complexity, costs, and potential risks of training
agents in real-life environments, engineers have often been
forced to use simulations instead. It is exceedingly rare for
agents trained in these simulations to perform nearly as well
in the real-life environments in which they are eventually de-
ployed. This problem is known as the sim-to-reality gap and
is one of the most common problems in reinforcement learn-
ing (or RL). To combat this problem, engineers now com-
monly use domain randomization: varying domain properties
during training. By randomly varying the environment prop-
erties that are expected to vary in real-life environments as
well, the agent typically performs better in the latter. This
technique is also commonly used to ensure robustness: the
algorithm or agent property expressing how the agent perfor-
mance is affected when environment properties are (slightly)
altered.

Domain randomization (or DR) is a critical area in (deep)
reinforcement learning, particularly for sim-to-real transfer.
Much of the literature focuses on how to design effective DR
strategies, often independent of the specific learning algo-
rithm. Poorly designed DR can hinder rather than help robust-
ness or generalizability [10]. To address this, techniques such
as Active Domain Randomization aim to reduce the amount
of required variation and data by identifying impactful prop-
erty ranges [10]. Research has also explored how to tune DR
parameters using sparse data from real world environments
[17]. Zhao et al. [20] provide a good overview of sim-to-real
transfer studies with an explicit focus on learning algorithms,
highlighting PPO and SAC as the dominant choices in earlier
DR work. SAC derives its popularity from its use in problems
with constrained real-world data collection, such as robotics
tasks [4] [1].

Despite the attention on PPO and SAC, the impact of DR
on agents trained with RL methods DQN and QR-DQN re-
mains underexplored. DQN, originally introduced by Mnih
et al. in 2013 [11], and QR-DQN [6], a distributional variant,

are still frequently used but are often superseded in favor of
more recently developed methods. It is important to note that
applying domain randomization techniques to a specific RL
learning method like SAC may not generalize to other learn-
ing methods, such as DQN or QR-DQN. Bayram [3] evalu-
ated DQN’s robustness with domain randomization but was
limited by computational constraints and did not provide a
definitive analysis of DR’s effect on performance. Bassani
et al. [2] employed DQN and DDPG but focused on do-
main adaptation rather than domain randomization. The for-
mer involves aligning the environment property distribution
with the target domain, while the latter focuses on introduc-
ing controlled variability in the source domain. As a result,
the specific effects of domain randomization on the robust-
ness of DQN and QR-DQN remain insufficiently explored.

In our work, we will be guided by the main research ques-
tion: how does domain randomization affect the robustness of
DQN and QR-DQN? This question can be subdivided into 3
(sub)questions:

• RQ1: How does the robustness of DQN compare to that
of QR-DQN under varying degrees of DR?

• RQ2: How is the robustness of DQN (and QR-DQN)
affected by different types of DR?

• RQ3: How well do DQN and QR-DQN, trained with
domain randomization, generalize to unseen environ-
ments?

RQ3 deals specifically with the problem of sim-to-real trans-
fer.

This work evaluates the effects of domain randomization
on the performance and robustness of agents trained with
DQN and QR-DQN. It provides the first focused compari-
son of these algorithms under varying degrees and types of
domain randomization (as far as we can tell), demonstrating
clear differences in their sensitivity to variation in environ-
ment properties. The study further explores how different
approaches to DR influence agent behavior, suggesting that
naive application of domain randomization may have limited
or even negative effects, while more targeted approaches (par-
ticularly those emphasizing challenging conditions) can en-
hance both robustness and generalization. It also highlights
how QR-DQN responds differently to DR compared to DQN.
These findings offer insight into the broader class of DQN-
based methods such as (Double DQN [16] and Dueling DQN
[18]) and underscore the importance of careful domain ran-
domization design.

We will proceed by giving an overview of the background
required for our research in Section 2, before moving on to
our methodology in Section 3. In Section 4, we will give an
overview of the results of our experimentation, followed by a
discussion of our results in Section 5. In Section 6 we present
our conclusions and suggest possible future research topics.
We will wrap up with a brief reflection on the ethical aspects
of our research and the reproducibility of our methodology.

2 Background
2.1 Reinforcement learning
Reinforcement learning is a type of machine learning in
which an agent learns by interacting with an environment,
receiving rewards (or penalties) based on the actions it takes
[14].

Single-agent reinforcement learning is typically modeled
using a Markov decision process (or MDP). An MDP is a tu-
ple < S,A, T,R > containing a set of states S, set of actions
A, transition function T and reward function R. At any point
in time, the agent is in one of the states in the state space
(the set of possible states) of the environment. By selecting
an action from the action space (the set of possible actions),
the agent initiates a transition. This results in a new state and
yields a corresponding reward or penalty. This process repre-
sents a single interaction step. The objective in reinforcement
learning is to learn a strategy that maximizes the total accu-
mulated reward over time, also known as the return. This
strategy is typically referred to as a policy π(s) that maps a
state s to an action [14].

In Q-learning, one of the most widely used reinforcement
learning algorithms [8], the Q-function Qπ(s, a) represents
the expected total return of taking action a in state s, and then
following a policy π thereafter. The Q-function is defined as:

Qπ(s, a) = Eπ

[
H−1∑
k=0

γkrk+1

∣∣∣∣∣ s0 = s, a0 = a

]
(1)

Here, H represents the horizon, or the number of steps in the
MDP. The discount factor γ ∈ [0, 1] controls how an agent
values rewards over time. Low values for γ result in the agent
prioritizing short-term rewards, whereas high values result in
an agent maximizing long-term rewards [8].

The Q-function assigns a numerical value to each possible
action in each possible state, reflecting the long-term bene-
fit of that action. The mapping from state to expected total
reward, when following policy π, is called the value func-
tion Vπ(s). In Q-learning the value function corresponds to
Vπ(s) = max

a
(Qπ(s, a)). The objective of Q-learning is

to learn or approximate the Q-function (and corresponding
value function) [14].

This paper focuses on value-based methods, which learn a
state-action value function to guide policy decisions, in con-
trast to policy-gradient methods that learn a policy directly.

2.2 DQN
Traditional reinforcement learning techniques rely on linear
function approximation. Due to the complexity and high-
dimensionality of some state representations (such as raw
pixel observations), linear approximations of value functions
no longer suffice. To resolve this issue, Mnih et al. [11] in-
troduced the use of (deep) neural networks to create nonlin-
ear approximations of the Q-function. This approach is now
known as DQN or Deep Q-Networks.

DQN introduced two key mechanisms to improve stability
and efficiency. Firstly, experience replay, which stores past
transitions in a buffer to learn more efficiently from a limited

number of samples, and randomly selects from it to break the
correlation between successive samples. Secondly, two net-
works are used: an online network and a target network. The
parameters of the target network are periodically updated by
copying the weights of the online network (whose weights are
updated every step). This reduces oscillations during learning
[8].

Additionally, DQN typically utilizes an epsilon-greedy
policy to select actions during training. With probability ϵ,
the agent chooses a random action (exploration), and with
probability 1 - ϵ, it selects the action that maximizes its cur-
rent Q-function estimates (exploitation). Over time, ϵ is grad-
ually reduced to allow the policy to become more determin-
istic as it gains confidence in its Q-value estimates. The
epsilon-greedy policy is a simple and effective way to bal-
ance exploration and exploitation in DQN and many other
value-based methods [8].

2.3 QR-DQN
Building on DQN, newer methods have addressed some of
its limitations and/or further improved performance and ro-
bustness. Knowing just the expected return for a particular
action (such as in DQN) may be misleading, as two actions
could have the same expected return but differ greatly in vari-
ance or risk. Instead of predicting just the expected return,
QR-DQN estimates a full distribution of possible returns by
learning several quantiles of that distribution. The more quan-
tiles we use, the better QR-DQN can estimate the return dis-
tribution. This distributional approach captures uncertainty
more effectively and can lead to more robust policies. These
differences suggest that QR-DQN may respond differently to
domain randomization than DQN, motivating a comparative
study [6].

2.4 Robustness and the sim-to-reality gap
Robustness is an algorithm or agent property that reflects how
well a trained model can deal with (slight) changes in an envi-
ronment. Improving the robustness of reinforcement learning
methods has been an active area of research since the incep-
tion of RL.

The simulation-reality gap is a problem closely related to
robustness. Due to the costs, dangers, and relative difficulty
of training algorithms in the real world, researchers are often
forced to use simulations instead. Models trained in such sim-
ulations typically fail to achieve the same performance level
in real-world environments. This begs the question: How can
we get a policy that works well in a simulated environment to
work well in a real-life environment?

2.5 Domain randomization
Domain randomization is the most widely adopted approach
to close the simulation-reality gap (or to achieve Sim-to-Real
Transfer) [20]. Instead of training agents in environments
with a single fixed set of properties (or environment configu-
ration), training takes place in environments whose properties
are randomly varied [5]. By training an agent in this way, it
learns to handle a large set of distinct environments, some
of which may resemble the target environment. Domain ran-

Figure 1: Visual representation of domain randomiza-
tion. The calibrated sim represents the default environment.
Adapted from [19].

domization can improve robustness and aid in Sim-to-Real
transfer, but is not guaranteed to [20] [10].

Implementing domain randomization can be a difficult
problem. The most simple (and naive) approach typically in-
volves drawing property values from a uniform distribution
bounded using knowledge of the target domain. However,
using uniform distributions has drawbacks. It likely involves
training models in unrealistic environments that lack any re-
semblance to a real-world scenario, leading to unnecessary
resource usage [19]. In addition, training on overly broad ran-
domization distributions can lead to infeasible solutions [19].
This is because excessive variation creates too many distinct
environments, some of which may be unsolvable or irrele-
vant. As a result, the model struggles to extract consistent
patterns, making it difficult to learn effective policies.

Other techniques exist: for example, Muratore et al. [12]
propose an algorithm that uses (limited) data from the real-
world target domain to construct a more realistic distribution
to draw from during training.

Mehta et al. [10] show that training models more in dif-
ficult environments can lead to improved generalization: the
model learns to handle edge cases and subsequently performs
well under simpler conditions. Constraining the random-
ization distribution to emphasize such challenging scenarios
may enhance overall robustness. This is a technique that we
will employ in our training of DQN and QR-DQN.

3 Methodology
3.1 Environment
As explained in Section 2, reinforcement learning agents
learn by interacting with their environment. OpenAI devel-
oped an API for single agent reinforcement learning environ-
ments in Python, called Gym (which has since been forked
and is now known as Gymnasium) [15]. This framework
allows developers to create environments of their choosing
which, by adhering to the Gym API, provide easy training
access for agents. By making an RL method implementation
compatible with the Gym framework, it can be trained in any
of the Gym-compatible environments.

The highway-env library provides a set of Gymnasium-
compatible environments in the domain of autonomous driv-
ing [9]. Each of these environments represents a (common)
autonomous driving task, among them: driving on a highway,

merging on a highway, crossing a roundabout, and parking in
a specific parking spot. For our purposes, we have made use
of the first: the ‘Highway’ task. Figure 2 shows a still of the
environment of this task.

The Highway environment simulates a multilane road for
our agent to drive on. Our agent’s (represented by the green
‘car’ in figure 2) objective is to get as high an overall reward
as possible. Rewards are given for driving in the rightmost
lane, changing lanes, and driving at high speed. In addition,
it receives a penalty for colliding with other cars. In each en-
vironment step, the agent can choose its next action: slowing
down, speeding up, changing lanes, or doing nothing.

The sequence of steps before the environment ends is
called an episode. Episode length is determined by two
things: environment duration and collisions. The duration
environment property controls how many actions (corre-
sponding to a single step each) an agent can take before the
environment ends. Furthermore, an episode can be cut short
if our agent collides with another car.

It is important to note that collisions can result in a (much)
lower overall reward by curtailing the number of actions an
agent can perform. However, driving recklessly (meaning: at
high speed) prior to a collision can occasionally make up for
an early crash. This balancing act was featured in some of
our agent’s behavior.

The Highway environment is highly customizable. Some
of the properties that we can change are the lane count, vehi-
cle count, vehicle density, and vehicle behavior. We can also
customize the rewards the agent receives based on its actions.
However, we will not engage in any reward shaping, instead
relying on highway-env’s defaults because our focus is on
evaluating robustness, regardless of reward settings. Lastly,
we can also change the duration of an environment, which
will become important for our model evaluation.

As a final comment, the Highway environment includes
multiple different observation types. These represent the way
in which information about the state of the environment is ob-
served at each step by the ego vehicle (the vehicle controlled
by the agent). The model uses these observations to learn
from. The KinematicObservation is a nested array con-
taining the velocities and relative distances (to the ego vehi-
cle) of the ego vehicle and all other vehicles. Another obser-
vation type, the GrayscaleObservation, is a nested array
that represents a grayscale image of the scene. During some
preliminary tests, we found that changing observation types
had a negligible impact on performance, so we used the de-
fault: KinematicObservation.

3.2 Domain randomized Highway environment
For the purposes of evaluating domain randomized DQN and
QR-DQN, we will look specifically at four Highway environ-
ment properties:

1. lane count

2. vehicle count

3. vehicle density

4. vehicle politeness

Vehicle density is a property that controls how vehicles are
clustered around the ego vehicle. Vehicle politeness, mean-
while, is an individual vehicle’s property (not an environ-
ment property) that controls whether it is triggered to change
lanes when a car behind it is driving at a higher velocity. Its
value can range between 0 and 1, with 1 leading to maxi-
mum willingness to change lanes for a speeding vehicle, ver-
sus minimum willingness when the value is set to 0. The
lane-changing behavior is informed by the MOBIL model put
forward by Kesting et al. [7].

We chose these four properties during some preliminary
evaluation and testing. These were picked because their in-
clusion in domain randomization seemed to affect perfor-
mance.

To properly evaluate the effect of domain randomization
on the robustness of both DQN and QR-DQN (and answer
the research questions we posed in Section 1), we focus on 3
different DR implementations. Specifically:

1. Single property (6 - 9 vehicles per lane): this imple-
mentation (or configuration) corresponds to a naive ap-
proach to DR: simply take a range of possible values and
draw values from it uniformly. Importantly, all other
properties are kept to their default values, not random-
ized. Recall that the default value for vehicle count per
lane is 7.

2. Single property (8 or 9 vehicles per lane): using these
values corresponds to training models in ‘hard’ environ-
ments, in the hope that they learn to generalize to easier
environments. As discussed in Section 2.5, training on
difficult ranges can lead to an agent learning to handle
edge cases and being able to generalize well to easier
conditions. Again, all other environment properties are
set to their default values.

3. Multiple properties: in this configuration we apply do-
main randomization to the four properties mentioned
above. In fact, we randomize according to the values in
Table 1. The ‘Default’ column shows the default values
in the Highway environment we used.

We chose these three training configurations in accordance
with our research goals and questions. Comparing configura-
tions (1) and (2) allows us to say something about the effects
of naive domain randomization versus a more sophisticated
approach which focuses on hard environments (as described
in Section 2.5), which corresponds to our 2nd research ques-
tion. In addition, comparing these configurations with con-
figuration (3) allows us to say something about the effects of
different degrees of domain randomization (single property
versus multiple properties), which tackles our 1st research
question. The specific values for each of these configurations
were picked during some initial testing and evaluation, keep-
ing these approaches in mind.

Another example of training under difficult conditions is
the case of training on 2 and 3 lanes. The 2 lane case for
the Highway is significantly harder to deal with than environ-
ments with more lanes. The ego vehicle must learn to deal
with slowing down, and not changing lanes. Especially if
there are two vehicles ahead, besides each other, forcing the

ego vehicle to slow down. This scenario is depicted in Figure
3 below. The 1 lane case was deemed ‘unsolvable’, at least
given the training configuration we used, and was excluded
as a result.

To be able to evaluate generalization and robustness (re-
call our 3rd research question), we use extended randomiza-
tion ranges in test environments. In other words, we test our
model (in part) on out-of-distribution data. If we train our
model to handle 2 or 3 lanes, will it also be able to handle 4,
5 or even 6 lanes? Similarly, in the case of vehicle count, we
train using 6 to 9, 7 to 9, and 8 or 9 vehicles per lane, but test
or evaluate for 5 to 10 vehicles per lane.

The politeness property is perhaps the most interesting in
this regard. The 3rd training configuration used a politeness
value between 0 and 0.5 (see Table 1), which means other
vehicles are typically not inclined to change lanes if the ego
vehicle speeds behind them. Additionally, we include po-
liteness values between 0.5 and 1.0 in the test environments.
These correspond to ‘easier’ environments, but if the vehi-
cle ahead of the ego vehicle is more inclined to get out of
the way, the ego vehicle could take advantage by driving at
higher velocities to receive higher rewards per step.

Default Training Testing
Vehicle Count (per lane) 7 7 - 9 5 - 10
Lane Count 3 2 - 3 2 - 6
Density 1.0 1 - 1.2 0.7 - 1.3
Politeness 0 0 - 0.5 0 - 1.0

Table 1: Values set for 4 properties in the default Highway
environment, training environment and testing environment
respectively. The training and testing environment use do-
main randomization using the values given in the ‘Training’
and ‘Testing’ columns (ranges are inclusive).

3.3 Training
highway-env provides two types of Highway environment.
A default version and a faster variant. The faster variant
(highway-fast-v0) includes fewer vehicles by default (20)
and a duration of only 20 steps (versus 40 in the slower ver-
sion). The ‘Default’ column in Table 1 corresponds to the
default configuration of this faster environment. To speed up
training, we made use of the faster variant.

We use implementations of DQN and QR-DQN from Sta-
ble Baselines 3, a Python library that provides ready-made
implementations of popular RL methods [13]. The QR-
DQN implementation can be found in the corresponding
s3-contrib package.

Because our focus is on evaluating the robustness and gen-
eralizability of DQN and QR-DQN, and comparing the two,
our aim is to use an (almost) identical configuration for both.
As such, both models were trained with a learning rate of
5 × 10−4, a discount factor γ = 0.8, and an ϵ-greedy explo-
ration schedule with final ϵ = 0.05. In addition, 50 quan-
tiles were used for QR-DQN (recall from Section 2, the more
quantiles we use the better the estimation of the return distri-
bution). A complete configuration of DQN and QR-DQN can
be found in Appendix A. These configurations were largely

Figure 2: Still of our simulated highway environment. The
green ‘car’ is operated by our agent.

derived from the defaults used by highway-env and Stable
Baselines 3, with some small adjustments made to improve
training efficiency, and to bring the two configurations in line.

DQN and QR-DQN were both trained in each of the three
training configurations mentioned above. In addition, both
DQN and QR-DQN were trained using a baseline training
configuration which did not use any domain randomization
(using the values corresponding to those in the ‘Default’ col-
umn in Table 1). In total, then, DQN and QR-DQN were
trained using 4 training configurations each, for a total of 8
configurations. Each of these training configurations was car-
ried out using five different seeds, resulting in 40 training runs
overall.

3.4 Evaluation
During testing, we tracked 3 performance metrics: episode
length, episode return (or overall reward), and crash count1.

We should note that the crash count and episode length are
obviously closely related. If a car crashes just a few steps into
the environment, it reduces the overall mean episode length
considerably. This is also why we report the reward/step, in-
stead of the total reward or return. By reporting the episode
return instead, we would effectively be reporting the crash
rate through 3 different metrics.

Models trained with training configurations (1) and (2)
were tested on domain randomized environments for which
the vehicle count per lane was uniformly drawn from the in-
terval [5, 10], all other properties were set to highway-env
defaults (see ‘Defaults’ in Table 1). Models using training
configuration (3) were tested/evaluated on domain random-
ized environments using the property values shown in the
‘Testing’ column in Table 1. Each model was evaluated in
10 differently-seeded environments. We averaged the episode
length and return and summed the number of crashes at the
end.

Since we have trained 5 models per training configuration,
and each of these models is trained on 10 different seeds (see
above) and subsequently averaged, we take these 5 return
means, episode length means, and crash counts and average
them again. In this last step, we also compute the standard
error.

To induce crashes/collisions we extended the duration dur-
ing evaluation/testing to 100 steps (instead of the 30 used dur-
ing training). Given more steps, the ego vehicle is more likely
to crash. The differences between our models become more
obvious as well, allowing for easier comparisons.

1We use the tensorboard package, part of the TensorFlow
framework, for training visualization and logging https://www.
tensorflow.org/tensorboard.

Figure 3: Still of our simulated highway with just 2 lanes.
The car is forced to slow down because it cannot overtake the
car ahead.

4 Results
4.1 Single property (vehicle count)
The results of training and testing/evaluating models in envi-
ronments based on randomizing just the number of vehicles
in the environments are shown in Tables 2 and 3. Specifi-
cally, the tables contain results for 3 different setups. The first
two rows correspond to the training/testing of models trained
without domain randomization. The 3rd and 4th rows contain
the results for the models trained on environments for which
the vehicle count per lane was randomly drawn from between
6 and 9 (inclusively). The last two rows correspond to the
results for models trained on environments for which the ve-
hicle count per lane was randomly drawn from the set {8, 9}.

4.2 Multiple properties
The results of the environments based on the property val-
ues of Table 1 are presented in Table 4 and 5. These results
correspond to varying the values for all four properties.

Config Reward / step Length Crashes
DQN 0.806 ± 0.0129 60.4 ± 9.02 6.2 ± 1.16
QR-DQN 0.782 ± 0.0086 81.1 ± 6.52 2.8 ± 0.73
DQN (6 - 9) 0.770 ± 0.0077 85.3 ± 6.07 3.6 ± 1.33
QR-DQN (6 - 9) 0.772 ± 0.0086 79.9 ± 6.69 3.4 ± 1.17
DQN (8 - 9) 0.756 ± 0.0081 79.1 ± 3.30 3.4 ± 0.51
QR-DQN (8 - 9) 0.736 ± 0.0075 90.1 ± 8.01 1.6 ± 1.12

Table 2: Training performance (single property): per-
formance metrics (mean and standard error) as mea-
sured/evaluated in environments with an equivalent config-
uration to that in which the models were trained. The episode
length is limited to 100 steps. The crash count was com-
piled over 10 runs. The numbers between brackets indicate
the range from which the vehicle count per lane was drawn in
the configuration. The first 2 rows (and configurations) show
results for models trained without domain randomization.

5 Discussion
5.1 Single property (vehicle count)
At first glance, DQN trained in the default environments
achieves the highest reward/step of any training configura-
tion in both the training and testing evaluation contexts. This
comes at the cost of the highest crash rates in both scenar-
ios. The lowest reward/step, meanwhile, is achieved by the
QR-DQN model trained in environments with 8 or 9 vehicles
per lane, shown in the 6th row. This setup achieves the low-
est crash rate by far (and correspondingly the highest episode
lengths).

https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard

Config Reward / step Length Crashes
DQN 0.776 ± 0.0068 74.2 ± 10.6 4.8 ± 1.69
QR-DQN 0.754 ± 0.0068 75.9 ± 7.89 3.8 ± 1.07
DQN (6 - 9) 0.758 ± 0.0066 84.1 ± 8.04 3.4 ± 1.44
QR-DQN (6 - 9) 0.766 ± 0.0068 80.5 ± 5.92 3.4 ± 1.03
DQN (8 - 9) 0.752 ± 0.0097 78.3 ± 4.65 3.0 ± 0.71
QR-DQN (8 - 9) 0.746 ± 0.0129 91.3 ± 3.71 1.6 ± 0.68

Table 3: Testing performance (single property): perfor-
mance metrics (mean and standard error) as evaluated in do-
main randomized test environments (vehicle count per lane
uniformly drawn from interval [5, 10]). See Table 2 for train-
ing results for these configurations.

Config Reward / step Length Crashes
DQN 0.806 ± 0.0129 60.4 ± 9.02 6.2 ± 1.16
QR-DQN 0.782 ± 0.0086 81.1 ± 6.52 2.8 ± 0.73
DQN (DR) 0.794 ± 0.0153 56.5 ± 6.04 5.8 ± 0.92
QR-DQN (DR) 0.760 ± 0.0105 66.3 ± 9.60 4.6 ± 1.03

Table 4: Training performance (multiple properties):
performance metrics (mean and standard error) as mea-
sured/evaluated in environments with an equivalent config-
uration to that in which the models were trained. DR indi-
cates that models were trained on domain randomized envi-
ronments (according to the values in Table 1).

Furthermore, a clear difference between DQN and QR-
DQN can be observed. Models trained using DQN suffer
from a higher mean crash count than QR-DQN (except for
the DR configuration with 6 - 9 vehicles per lane, as shown
in row 3 and 4 in Table 3). This lower crash count does not
come at any large expense in terms of reward/step. These
results should come as no surprise. As stated in Section 2,
QR-DQN attempts to estimate the return distribution, incor-
porating risk into the determination of what action the agent
should take next, plausibly causing fewer collisions.

Perhaps the most interesting results of these experiments,
as alluded to above, are the crash counts achieved by mod-
els trained in domain randomized environments with 8 or 9
vehicles per lane (shown in rows 5 and 6 of Table 3). The
crash count achieved for QR-DQN using this configuration is
the lowest crash count of all training configurations (includ-
ing those achieved by applying DR to multiple properties).
These results are in line with our expectations based on the
idea that the model learns to generalize from difficult condi-
tions to easier ones, as supported by the related work in Sec-
tion 2.5. Training in more difficult environments only forces
the model to learn to deal with these more effectively than if it
is also trained under easier conditions. Recall that the default
value for vehicle count per lane is 7. Including environments
with 6 or 7 vehicles per lane (rows 3 and 4 in Tables 2 and 3)
during training seems to underperform training on only 8 or
9 vehicles instead.

Overall, for the single property case, it seems that domain
randomization reduces the crash count (and increases the cor-
responding episode length), at no or minimal cost to the
mean reward/step; training in more difficult DR environments
yields better results and improved generalization/robustness;

Config Reward / step Length Crashes
DQN 0.756 ± 0.0075 81.8 ± 5.32 3.4 ± 0.98
QR-DQN 0.758 ± 0.0073 86.2 ± 4.96 2.4 ± 0.93
DQN (DR) 0.780 ± 0.0058 75.5 ± 11.9 3.8 ± 1.46
QR-DQN (DR) 0.748 ± 0.0086 88.0 ± 7.39 2.2 ± 0.97

Table 5: Testing performance (multiple properties): per-
formance metrics (mean and standard error) as evaluated in
domain randomized test environments (according to the val-
ues in the ‘Testing’ column from Table 1) See Table 4 for
training results for these configurations.

and QR-DQN outperforms DQN in terms of crash count (and
episode length) at minimal cost to the reward/step.

5.2 Multiple properties
Upon initial examination, two training configurations appear
to show the most contrasting results in Tables 4 and 5. These
mimic similar results in the case of single property domain
randomization.

Firstly, the non-domain randomized DQN configuration
(see 1st row of Table 4), when evaluated under its train-
ing conditions, achieves the highest reward/step. Again, this
comes at a cost: It suffers from the highest crash rate (crash-
ing in roughly 6 out of 10 runs).

Secondly, the QR-DQN configuration trained in a domain
randomized environment achieves the lowest crash rate and
associated high episode length (as seen in the last row of Ta-
ble 5) of all training configurations. As we have explained
above, this should come as no surprise: QR-DQN’s risk-
accounting approach pays off. In addition, it supports our sus-
picion that domain randomization improves robustness (recall
that we are evaluating the models on out-of-distribution data).

However, if we compare the performance of domain ran-
domized QR-DQN (4th row in Table 5), with that of the non-
domain randomized QR-DQN (2nd row in Table 5), the im-
pact of domain randomization becomes less clear. Though
the DR version outperforms the non-DR version slightly in
terms of crash rate (and again, with corresponding episode
length), the reward/step is slightly lower for the DR version.
Overall, DR seems to have a very limited impact, if any im-
pact at all. This is in stark contrast to the effects of domain
randomization in the single property case.

The picture becomes even more complicated when we look
at the results for DR and non-DR DQN. The 1st and 3rd rows
in Table 5 show these results. While the reward/step goes up,
so does the crash count (and accordingly the episode length
goes down).

We can discuss the differences between DQN and QR-
DQN more confidently, if we ignore domain randomization.
In both the training and evaluation/testing context, there are
significant differences between the crash rate: QR-DQN giv-
ing lower crash counts compared to DQN. In addition, the
reward/step seems to be slightly higher for DQN, compared
to QR-DQN. This is most clearly presented in the 1st and 2nd

row of Table 4, and the 3rd and 4th rows of Table 5. These
results align with our observations discussed in the previous
subsection on single property DR.

Lastly, like in the case of the vehicle count DR, it seems
that the domain randomized test environment is significantly
easier than any of the other environments. Non-DR DQN (1st

row in Table 4 and 5) achieves a lower reward/step, but con-
siderably lower crash count (3.4 instead of 6.2) during eval-
uation. The same holds for the other training configurations.
This is easy to explain for the DR models: we specifically
trained on hard distributions to evaluate generalization and
robustness. For the non-DR models, it seems to imply that
the default environment settings of the highway-env High-
way environment (as shown in Table 1) represent a relatively
difficult environment. In fact, we know specifically that the
vehicle density values below 1.0 result in easier conditions for
the ego vehicle (column ‘Testing’ in Table 1), because it re-
sults in fewer vehicles close-by to potentially collide with. In
addition, the default value of 0.0 for vehicle politeness rep-
resents the ‘hardest’ condition for the ego vehicle, as other
vehicles are least inclined to move out of the way, forcing the
ego vehicle to change lanes and potentially collide.

Overall, the results for the case of applying DR over mul-
tiple properties gives similar results to those for the single
property case. Firstly, in both cases, the non-DR DQN con-
figuration achieved the highest performance at the expense of
the highest crash count, with the DR QR-DQN configuration
achieving the lowest crash count. Secondly, in both cases,
QR-DQN got lower crash counts than DQN, regardless of
whether DR was used or not. Third, in both instances, the
environments in which the models were evaluated were com-
paratively ‘easier’ compared to the training environments. In
contrast, the impact of domain randomization was consider-
ably less clear in the case of multiple property DR, compared
to that of the single property case, where domain random-
ization ostensibly reduced crash count and improved robust-
ness.

6 Conclusions and Future Work
6.1 Conclusions
This study investigates how domain randomization (DR) af-
fects the robustness of agents trained using DQN and QR-
DQN. We assess robustness through return, episode length,
and crash rate (or count) in both standard training and domain
randomized testing environments.

We will recall our research question here: How does do-
main randomization affect the robustness of DQN and QR-
DQN? This question consists of 3 subquestions:

1. RQ1: How does the robustness of DQN compare to that
of QR-DQN under varying degrees of DR?

2. RQ2: How is the robustness of DQN (and QR-DQN)
affected by different types of DR?

3. RQ3: How well do DQN and QR-DQN, trained with
domain randomization, generalize to unseen environ-
ments?

To answer RQ1, the differences between the varying de-
grees of DR are quite clear. When DR is implemented as
varying a single environment property (vehicle count per
lane), DR has a clear positive impact on crash count (and

episode length) with minimal to no cost in terms of re-
ward/step, implying improved robustness and generalization.
However, DR implemented as varying four properties in the
environment (lane count, vehicle count, vehicle density, and
vehicle politeness), has a more limited or even adverse impact
on these metrics.

In addition, QR-DQN consistently outperforms DQN in
terms of crash count, both in DR and non-DR settings. How-
ever, DQN typically achieves marginally higher reward/step,
which suggests a trade-off between risk aversion and return.

To answer RQ2, in Section 2.5 we discuss the difficulty
of implementing domain randomization, as shown in related
literature. Not all approaches improve robustness and/or gen-
eralization. In our research, we focused specifically on two
common approaches, or types of DR: (1) a simple approach:
uniformly draw values from a naive range of values and (2)
a more sophisticated approach: draw property values from a
range such that the resulting environments feature more diffi-
cult conditions. Approach (2) relies on the belief that training
in such hard environments leads to better generalization (and
robustness). To compare these approaches, we focus on a
single property (vehicle count per lane, which has a default
value of 7), using a ‘naive’ range of 6 - 9 vehicles per lane
to mimic approach (1), and using 8 or 9 vehicles per lane
for approach (2). Although both approaches show improved
robustness and generalization, approach (2) outperforms ap-
proach (1). Specifically, QR-DQN trained using approach (2)
achieves the lowest crash count and comparable reward/step.

Lastly, to answer RQ3, all models perform better in the
DR test environments than in their respective training envi-
ronments when varying vehicle count only, suggesting that
DR improves robustness and generalization to unseen envi-
ronments and/or conditions. In particular, the domain ran-
domized QR-DQN model achieves the lowest crash rate and
longest episode duration of all in the test environment (with
out-of-distribution data), suggesting a capacity for sim-to-real
transfer. However, as we alluded to above, the impact of DR
in the case of applying DR to four environment properties is
limited, or even adverse.

In conclusion, the findings suggest that QR-DQN may of-
fer greater robustness than DQN, particularly in terms of
crash counts, although DQN tends to achieve slightly higher
rewards per step. Domain randomization appears to improve
robustness when applied selectively. For example, by varying
only the vehicle count. More extensive randomization across
multiple environment properties resulted in limited or even
adverse effects, suggesting the need for a more sophisticated
approach. Furthermore, the results indicate that emphasiz-
ing challenging scenarios could lead to better generalization
compared to a naive uniform approach, in accordance with
earlier work on achieving sim-to-real transfer through domain
randomization. Lastly, the improved performance of some
DR-trained models in unseen environments (particularly QR-
DQN) suggests enhanced sim-to-real transfer in addition to
improved robustness, though further investigation would be
valuable.

6.2 Future work
In Section 2.5 (Domain Randomization), we have tried to em-
phasize the difficulty of using domain randomization effec-
tively. The application of domain randomization to achieve
higher performance, robustness, and sim-to-real transfer is an
active research area. Succeeding typically means finding the
right distributions to randomize on, often manually.

In our research, we have used this manual approach to de-
termine potentially effective distributions to randomize on,
performing some preliminary testing to see the effects on per-
formance and robustness. Any of our results could be im-
proved upon by applying more competent search efforts to
find more effective (or impactful) distributions.

Not just the choice of distribution is relevant in this regard.
The properties of the environments to randomize presented
an additional choice in our investigation. To implement DR
using multiple properties, we decided on the four properties
given in Table 1 because preliminary testing showed that per-
formance was affected after changing their values, but other
properties could have had more of an impact (or even an ad-
verse one). More importantly, to focus on the problem of sim-
to-real transfer, other properties should perhaps have been in-
cluded. If we want to apply our research to the problem of
sim-to-real transfer, we typically have no real choice in pick-
ing properties to vary. We have to look at the real environment
(in the context of autonomous driving: real highway environ-
ments) and deduce which properties to vary based on which
properties actually vary. We believe that a closer look at these
properties and distributions presents an opportunity for future
research.

Lastly, QR-DQN is not the only learning method built on
DQN. Other variations of DQN are in common use today.
Among them, Double DQN [16] and Dueling DQN [18]. The
questions surrounding the impact of domain randomization
on their robustness and the sim-to-reality gap have (as far as
we know) not been addressed yet.

7 Responsible Research
7.1 Ethical concerns
Our research has been conducted with the ethical aspects of
research in mind. Our use of a simulated training environ-
ment and corresponding data precludes most ethical concerns
about the misuse and improper handling of data, whether per-
sonal or dangerous.

Our use of a simulated autonomous driving environment
to evaluate the robustness of DQN and QR-DQN could lead
to irresponsible use of our conclusions. For example, some-
one could apply conclusions from our research to the real-
world domain of autonomous driving, where lives are obvi-
ously at stake. The primitive nature of the highway-env sim-
ulator should hopefully dissuade anyone from generalizing
our results, as does this section.

7.2 Reproducibility
To aid in the reproducibility of our results, we have taken the
utmost care to describe our entire methodology in Section 3,
including any relevant concepts, setup instructions, and other
variables. In addition, we have included the configuration of

the hyperparameters and other relevant configuration param-
eters for DQN and QR-DQN in Appendix A. Lastly, a com-
plete overview of our training and test setup and any remain-
ing code is available on GitHub2. Using the seeds included
in Appendix B and the code mentioned above, anyone should
be able to reproduce our results reliably.

7.3 Use of LLMs
In the preparation of this research paper, a large language
model (ChatGPT) was used to aid in various aspects of the
writing and formatting process. Specifically, ChatGPT was
used to generate well-structured tables for some of the re-
sults. Additionally, the model assisted in generating proper
LaTex code to align figures and insert them accurately within
the document. Furthermore, ChatGPT was a valuable tool in
ensuring adherence to the stylistic norms and conventions of
computer science research, helping to produce a clear, con-
sistent, and polished final manuscript.

A Hyperparameters
A.1 DQN
DQN(

"MlpPolicy",
env,
policy_kwargs=dict(net_arch=[256, 256]),
learning_rate=5e-4,
buffer_size=1_000_000,
learning_starts=1000,
batch_size=64,
gamma=0.8,
train_freq=1,
gradient_steps=1,
target_update_interval=1000,
verbose=1,
seed=seed,
...

)

A.2 QR-DQN
policy_kwargs = dict(

n_quantiles=50, net_arch=[256, 256]
)

QRDQN(
"MlpPolicy",
env,
policy_kwargs=policy_kwargs,
learning_rate=5e-4,
buffer_size=1_000_000,
learning_starts=1000,
batch_size=64,
gamma=0.8,
train_freq=1,
gradient_steps=1,
target_update_interval=1000,
verbose=1,

2https://github.com/yzwetsloot/research-project

seed=seed,
default DQN configuration
exploration_fraction=0.1,
exploration_final_eps=0.05,
...

)

B Seeds
Recall from Section 3 (Methodology) that we trained 5 mod-
els per training configuration. Each of these 5 models was
trained using a different seed. In addition, each of the 5 mod-
els per training configuration was tested on 10 differently-
seeded environments. Below we present all of these seeds.

To speed up learning, we made use of Stable Baselines3’s
[13] SubprocVecEnv. This feature introduces the notion of
vectorized environments across multiple CPU cores. We used
6 cores during training. To enable deterministic learning, we
set 6 seeds, one for each initial environment (one environment
per core). For a better overview of how these seeds were used,
see the GitHub repository3.

• Model seeds during training (5): 1, 11, 21, 31, 41.

• Environment seeds during training (6): 1, 2, 3, 4, 5, 6.

• Environment seeds during testing (10): 1024, 1025,
1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033.

C Training plots
See Figures 4, 5, 6 and 7 below for plots of return (or over-
all reward) over 100K training steps, for different training
configurations. Recall that each training configuration was
trained on 5 different seeds, explaining the 5 distinct plots
per subfigure.

References
[1] Oladayo S. Ajani, Sung-ho Hur, and Rammohan

Mallipeddi. Evaluating Domain Randomization in Deep
Reinforcement Learning Locomotion Tasks. Mathemat-
ics, 11(23):4744, January 2023. Number: 23 Publisher:
Multidisciplinary Digital Publishing Institute.

[2] Hansenclever F. Bassani, Renie A. Delgado, Jose Nil-
ton de O. Lima Junior, Heitor R. Medeiros, Pedro H. M.
Braga, and Alain Tapp. Learning to play soccer by re-
inforcement and applying sim-to-real to compete in the
real world, 2020.

[3] Ege Bayram. Evaluating robustness of deep reinforce-
ment learning for autonomous driving: Effects of do-
main randomization on training and robustness, 2023.

[4] Bahador Beigomi and Zheng H. Zhu. Towards real-
world efficiency: Domain randomization in reinforce-
ment learning for pre-capture of free-floating moving
targets by autonomous robots, 2024.

[5] Xiaoyu Chen, Jiachen Hu, Chi Jin, Lihong Li, and Liwei
Wang. Understanding domain randomization for sim-
to-real transfer, 2022.

3https://github.com/yzwetsloot/research-project

[6] Will Dabney, Mark Rowland, Marc G. Bellemare, and
Rémi Munos. Distributional reinforcement learning
with quantile regression, 2017.

[7] Arne Kesting, Martin Treiber, and Dirk Helbing. Gen-
eral lane-changing model mobil for car-following mod-
els. Transportation Research Record, 1999(1):86–94,
2007.

[8] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick
Mannion, Ahmad A. Al Sallab, Senthil Yogamani, and
Patrick Pérez. Deep reinforcement learning for au-
tonomous driving: A survey, 2021.

[9] Edouard Leurent. An environment for autonomous
driving decision-making. https://github.com/eleurent/
highway-env, 2018.

[10] Bhairav Mehta, Manfred Diaz, Florian Golemo,
Christopher J. Pal, and Liam Paull. Active domain ran-
domization, 2019.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforce-
ment learning, 2013.

[12] Fabio Muratore, Christian Eilers, Michael Gienger, and
Jan Peters. Data-efficient domain randomization with
bayesian optimization. IEEE Robotics and Automation
Letters, 6(2):911–918, April 2021.

[13] Antonin Raffin, Ashley Hill, Adam Gleave, Anssi
Kanervisto, Maximilian Ernestus, and Noah Dormann.
Stable-baselines3: Reliable reinforcement learning im-
plementations. Journal of Machine Learning Research,
22(268):1–8, 2021.

[14] Richard S Sutton and Andrew G Barto. Reinforcement
Learning: An Introduction. MIT Press, 2 edition, 2018.

[15] Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U
Balis, Gianluca De Cola, Tristan Deleu, Manuel
Goulão, Andreas Kallinteris, Markus Krimmel, Arjun
KG, et al. Gymnasium: A standard interface for
reinforcement learning environments. arXiv preprint
arXiv:2407.17032, 2024.

[16] Hado van Hasselt, Arthur Guez, and David Silver. Deep
reinforcement learning with double q-learning, 2015.

[17] Quan Vuong, Sharad Vikram, Hao Su, Sicun Gao, and
Henrik I. Christensen. How to pick the domain random-
ization parameters for sim-to-real transfer of reinforce-
ment learning policies?, 2019.

[18] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Has-
selt, Marc Lanctot, and Nando de Freitas. Dueling
network architectures for deep reinforcement learning,
2016.

[19] Lilian Weng. Domain randomization for sim2real trans-
fer. lilianweng.github.io, 2019.

[20] Wenshuai Zhao, Jorge Peña Queralta, and Tomi West-
erlund. Sim-to-real transfer in deep reinforcement
learning for robotics: A survey. arXiv preprint
arXiv:2009.13303, 2020.

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

8

12

16

20

0 20k 40k 60k 80k 100k

(a) DQN

8

12

16

20

0 20k 40k 60k 80k 100k

(b) QR-DQN

Figure 4: Return for (a) DQN and (b) QR-DQN plotted over 100K timesteps, without domain randomization (and using 5
distinct seeds).

8

12

16

20

0 20k 40k 60k 80k 100k

(a) DQN

8

12

16

20

0 20k 40k 60k 80k 100k

(b) QR-DQN

Figure 5: Return plotted for (a) DQN and (b) QR-DQN over 100K timesteps and 5 distinct seeds, trained in domain randomized
environments according to Table 1.

8

12

16

20

0 20k 40k 60k 80k 100k

(a) DQN

8

12

16

20

0 20k 40k 60k 80k 100k

(b) QR-DQN

Figure 6: Return plotted for (a) DQN and (b) QR-DQN over 100K timesteps, and 5 distinct seeds. Models were trained in
environments for which the vehicle count per lane was drawn uniformly from the interval [6, 9].

8

12

16

20

0 20k 40k 60k 80k 100k

(a) DQN

8

12

16

20

0 20k 40k 60k 80k 100k

(b) QR-DQN

Figure 7: Return plotted for (a) DQN and (b) QR-DQN over 100K timesteps, and 5 distinct seeds. Models were trained in
environments for which the vehicle count per lane was drawn uniformly from the interval [8, 9].

	Introduction
	Background
	Reinforcement learning
	DQN
	QR-DQN
	Robustness and the sim-to-reality gap
	Domain randomization

	Methodology
	Environment
	Domain randomized Highway environment
	Training
	Evaluation

	Results
	Single property (vehicle count)
	Multiple properties

	Discussion
	Single property (vehicle count)
	Multiple properties

	Conclusions and Future Work
	Conclusions
	Future work

	Responsible Research
	Ethical concerns
	Reproducibility
	Use of LLMs

	Hyperparameters
	DQN
	QR-DQN

	Seeds
	Training plots

