
A Selection Method for
Model-Driven Development Tools

Master’s Thesis

Remco Luitwieler

A Selection Method for
Model-Driven Development Tools

MASTER THESIS

in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Remco Luitwieler
born in Middelburg, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

Logica
George Hintzenweg 89

3086 AX Rotterdam, the Netherlands
www.logica.com

c© 2010 Remco Luitwieler.

A Selection Method for
Model-Driven Development Tools

Author: Remco Luitwieler
Student id: 1159828
Email: R.Luitwieler@student.TUDelft.nl

Abstract

This thesis project helps Logica adopt Model-Driven Development in an efficient way. A Mod-
eling Tool Selection Method is constructed that helps selecting a Model-Driven Development tool at
the start of an embedded system engineering project. This Modeling Tool Selection Method helps
software engineers to decide when to use which Model-Driven Development tool. During a case
study, three Model-Driven Development tools are used to develop software for a charge point for
electric vehicles. The use of the Modeling Tool Selection Method to select a tool for a project is
demonstrated and compared to the results of the case study. With a validation of the Modeling Tool
Selection Method and a validation of the conducted case study, we show that the Modeling Tool
Selection Method is constructed accurately.

Thesis Committee:

Chair: Dr. E. Visser, Faculty EEMCS, TU Delft
University supervisor: Dr. Phil. H.G. Gross, Faculty EEMCS, TU Delft
Committee member: Dr. K. van der Meer, Faculty EEMCS, TU Delft
Company supervisors: Mr. A.J. de Neef, Logica

Ir. E.C. Essenius, Logica
Company mentor: Ir. N.T. Quach, Logica

Preface

First of all, I like to thank all the people from Logica who helped me during my graduation
period. There was always time for questions and some of their work helped the progress
of this research. I would also like to thank Hans-Gerhard Gross, my supervisor at the TU
Delft, for his feedback and the advice he gave during the meetings we had.

Remco Luitwieler
Delft, the Netherlands

June 12, 2010

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables ix

1 Introduction 1

2 Background and Related Work 5
2.1 Model-Driven . 5
2.2 Model . 6
2.3 Tools . 8
2.4 Knowledge Management . 11
2.5 Summary . 11

3 Modeling Tool Selection Method 13
3.1 Meta-Process Model . 13
3.2 Description of the Method . 15
3.3 Business Processes and Products . 16
3.4 Tools . 18
3.5 Matrix . 20
3.6 Validation . 21
3.7 Summary . 22

4 Case Study 25
4.1 Introduction . 25
4.2 Hardware . 26
4.3 Software . 26
4.4 Design . 27

v

CONTENTS

4.5 Results . 28
4.6 Discussion of the Case Study Results . 33
4.7 Threats to Validity . 35
4.8 Summary . 37

5 Summary, Conclusions and Future Work 39
5.1 Summary . 39
5.2 Conclusions . 39
5.3 Future Research . 41

Bibliography 43

A Glossary 47

vi

List of Figures

2.1 Consistent model separations and relationships in MDA [33]. 6
2.2 Methodology of ASD from [11]. 9

3.1 Abstraction levels in process modeling from [39] 13
3.2 The Meta-Process Model . 14
3.3 The process model of the Modeling Tool Selection Method 15
3.4 Overview of input and output during a development run of the MTSM 15
3.5 Decision matrix of the MTSM . 23

4.1 Overview of the hardware . 26
4.2 Sequence from tool to FOX board . 27
4.3 Software Development Kit block diagram from [11] 27
4.4 State Diagram of the Ledring from Rhapsody 29
4.5 State Diagram of the Ledring from Bouml . 30
4.6 State Diagram of the Ledring from ASD . 30
4.7 State diagram of the charge point from Rhapsody 33
4.8 Results of using the matrix . 34

vii

List of Tables

3.1 Mapping of abstraction levels . 14
3.2 Tools and programming languages support . 16
3.3 Approximation of costs . 17
3.4 Rating of the tools . 19

4.1 Different sizes of executables (in bytes) . 30
4.2 Modeling time (in hours) . 31

ix

Chapter 1

Introduction

This Chapter introduces all aspects forming the context and motivations of the thesis project.
We will describe Model-Driven Development, the scope of the thesis, the research ques-
tions, the research approach that was taken, and the contributions of this thesis to science
and Logica. Finally we will describe what the reader can expect throughout the Chapters of
this document.

Model-Driven Development (MDD) is a software engineering approach consisting of
the application of models and model technologies. MDD raises the level of abstraction at
which developers create and evolve software, with the goal of both simplifying and for-
malizing the various activities and tasks that comprise the software life cycle [23]. Since
the use of models is common good in traditional engineering disciplines as civil and me-
chanical engineering [44] many people think that software engineering can also benefit.
With the higher level of abstraction that the models offer, it is easier to understand how
complex systems work when using Model-Driven Development. Introduction of a Model-
Driven Development process forces organizations to transform their software development
process [29] and this thesis includes the evaluation of the impact of using Model-Driven
Development tools in the context of Logica.

Logica is a large IT and management consultancy company that employs 39.000 people
across 36 countries. Logica wants to know how Model-Driven Development can be used
within their company. The use of Model-Driven Development involves some major chal-
lenges that have to be tackled in order to realize it [18]. Logica is interested in a matrix
that classifies Model-Driven Development tools and their usability for software engineering
processes of Logica.

The goal of the thesis project is to help Logica adopt MDD in an efficient way. This
thesis will describe the construction of a selection method and a matrix that decides which
MDD tools best fit a particular type of software engineering project. To validate the con-
structed selection method and the matrix a case study is conducted. The construction of the
case study allows extensive use of the MDD tools that are under selection and checks the
correctness of the selection method and matrix for the MDD tools.

The research questions and their sub questions investigated in this thesis are:

1

1. INTRODUCTION

1. To which extent can Model-Driven Development be used in the context of Logica?

a) What changes are needed in the current development process?

b) How can these tools help in delivering higher quality code for a low price?

c) When to use which tool?

2. How can the selection method be improved with knowledge from future projects?

a) To which extent can we add knowledge gained during projects?

b) How to add tools to the method/matrix?

The research approach used during this thesis project is the construction of a selection
method and a comparison matrix for MDD modeling tools. For evaluation a case study will
be conducted that evaluates the selection method and matrix by using the tools in a practical
environment. The case study will be validated to qualify its quality. The results from this
research will be discussed in the conclusion and can be used by other companies or for
future research. Developing a case study [51] is useful when investigating a contemporary
phenomenon within its real-life context [46]. As described in [16] it is possible to generalize
from a specific case. The specific case that will be looked into during this research is
the development of a charge point for electric vehicles. This charge point or load pole is
equipped with an embedded Linux controller [47] that communicates with peripherals such
as a cardreader and a ledring. The software that runs on the controller will be developed
during this case study using Model-Driven Development tools. These tools are:

• Rhapsody from IBM (v7.5.1)

• Analytical Software Design from Verum (v5.0.0)

• Bouml from Bruno Pagés (v4.19.1)

Logica is interested in these tools since both IBM and Verum are business partners of Logica
and this gives advantages when licenses are needed, and in some cases training of devel-
opers can be arranged for a reduced rate. With ASD a pilot project is already started and
with Rhapsody positive experiences are gained during previous research and pilot projects.
Bouml is added during this thesis project, because it is open source and is frequently up-
dated. Bouml is one of the few open source tools that is capable of design and code gener-
ation in the same tool. Bouml is multi-platform and capable of code generation in a wide
range of programming languages. The development process will be monitored and the tools
will be compared on criteria as ease of use, development time, generated code size and ca-
pabilities of the tools.

This thesis introduces and evaluates Model-Driven Development in the context of a com-
pany. A Modeling Tool Selection Method is constructed that helps selecting a MDD tool
at the start of an embedded system engineering project. The MTSM currently decides over
three tools, but there can be added more tools when a case study is conducted. That case
study allows the researcher to evaluate the tool and adjust his mental model and the MTSM
according to it. Most valuable contribution for Logica is the matrix that quickly decides

2

on the use of the tools. The contribution for science is the introduction of the, during this
thesis constructed, Modeling Tool Selection Method (MTSM) and the reflection of it during
the case study. The validation of the MTSM in Section 4.7 and the validation of the case
study in Section 3.6 show that the MTSM is constructed accurately.

The next Chapter introduces the reader with the concepts of Model-Driven Development,
the tools and the Unified Modeling Language (UML) which is extensively used during this
research and describes the related work that has been done in the field of Model-Driven De-
velopment. Chapter 3 introduces the Modeling Tool Selection Method that helps selecting
a tool to use during a software engineering project. In Chapter 4, a case study is conducted
and the results are translated to the method that was introduced in Chapter 3. In the final
Chapter, a summary is given, the conclusions are drawn, and recommendations for future
research are given.

3

Chapter 2

Background and Related Work

This Chapter describes the background of the thesis and work that is related to this the-
sis project. Concerning the related literature, we made a distinction between Related and
Essential work and Related but Borderline work to clarify the scope of the project.

First, Model-Driven Development and Model-Driven Engineering are described and
then the Model-Driven Architecture, Platform-Independent Models (PIMs) and Platform-
Specific Models (PSMs) are introduced. The description of a model is given and UML-
diagrams are described and discussed. After that, the tools that are being used are introduced
and discussed, and there is a section about knowledge management. In the summary, the
relation of the subjects with the thesis project is described.

2.1 Model-Driven

Model-Driven Development (MDD) raises the level of abstraction by using models of a
system. Model-Driven Development is described in [7] as a paradigm which promotes the
use of models at different levels of abstraction, and transformation between them, in order
to drive a concrete application implementation. MDD promotes the construction of models
at a high level which can then be transformed to the final implementation platform. The
modeling language in MDD is often the commonly known Unified Modeling Language
[14][32]. The combined use of MDD and UML2.0 is described in [19]. They discuss
UML2.0 as being a first-generation modeling language and evaluate what are the positive
and negative points in the standard. Both UML and MDD are extensively used during this
project and therefore this is related and essential work.

Model-Driven Engineering (MDE) is described by [43] as a technology that combines
domain-specific modeling languages, transformation engines and generators. MDE is seen
as an evolution of the Computer Aided Software Engineering (CASE) tools that were in-
troduced in the 1980s. These tools focus on developing software methods and tools that
enable developers to express their designs in terms of general purpose graphical program-
ming representations, such as state machines, structure diagrams, and data-flow diagrams.
MDE is wider in scope then MDD and MDA [2][31]. The evaluation of MDE by using a
case study in a large industrial context is described in [5]. This paper [5] describes in short

5

2. BACKGROUND AND RELATED WORK

the experiences of using MDE and the use of tools for certain parts of the MDE process and
the lack of tools for the whole MDE process. MDE and the use of it in an industrial context
is related but borderline work.

Model-Driven Architecture (MDA) is a Model-Driven Development approach defined
in 2001 [33] by the Object Management Group (OMG) [32] that defines an information
technology system specification that separates the specification of system functionality from
the specification of the implementation of that functionality on a specific technology plat-
form. This MDA approach and the standards that support it allow the same model specifying
system functionality to be realized on multiple platforms through auxiliary mapping stan-
dards, or through point mappings to specific platforms, and allows different applications to
be integrated by explicitly relating their models, enabling integration and interoperability
and supporting system evolution as platform technologies come and go [33]. The use of
MDA in MDE is described in [31]. In MDA there is made a separation between a Platform-
Independent Model (PIM) and a Platform-Specific Model (PSM). The PIMs provide a for-
mal specification of the structure and function of the system that abstracts away technical
details. How the functionality specified in a PIM is realized, is specified in a platform-
specific way in the PSM, which is derived from the PIM via some transformation [33][31].
Since OMG is the founder of MDA, that provides a framework which integrates the exist-
ing OMG standards, it is no surprise that it is intended that all PIMs and PSMs are being
expressed in the Unified Modeling Language (UML) which is also described by the OMG
[32][31]. Figure 2.1 shows that models of different systems can be structured explicitly into
PIMs and PSMs.

Figure 2.1: Consistent model separations and relationships in MDA [33].

2.2 Model

In [6] we learn that a model is defined as a simplified version of something complex used.
The consensual definition of modeling was given by [41] as:

6

Model

”Modeling, in the broadest sense, is the cost-effective use of something
in place of something else for some cognitive purpose. It allows us to use
something that is simpler, safer or cheaper than reality instead of reality for
some purpose. A model represents reality for the given purpose; the model
is an abstraction of reality in the sense that it cannot represent all aspects of
reality. This allows us to deal with the world in a simplified manner, avoiding
the complexity, danger and irreversibility of reality.”

From [31] and [33] we learn that the Object Management Group describes a model in
its Model Driven Architecture as a representation of a part of the function, structure and/or
behavior of a system.

2.2.1 UML Diagrams

UML offers the use of several types of diagrams to display the system model with. The
diagrams UML2.0 offers:

• Use-Case Diagram: Connects external actors to the descriptions of functionality that
the system offers

• Class Diagram: Shows the static structure of classes in the system

• Object Diagram: Shows the object instances of classes at a certain moment in time (a
snapshot during execution)

• State Machine Diagram: Shows all the possible states that objects of a class can have
during its life-cycle, modeling complex interactive behavior

• Activity Diagram: Shows a sequential flow of actions

• Interaction Diagrams: Diagrams that show interaction between objects during the
execution of the software

• Component Diagram: Shows the physical structure of the code in terms of code com-
ponents

• Deployment Diagram: Shows the physical architecture of the hardware and software
in the system

• Composite Structure Diagram: Shows the participating elements and their relation-
ships in the context of a specifier such as a use, object, collaboration, class or activity

The most important UML diagrams are the Class Diagram to model the structure of a sys-
tem, and the State Diagrams and Activity Diagrams to model the behavior of a system. For
a complete description of the diagrams see [14].
UML distinguishes between two types of state machines:

• Behavioral state machines that describe all the details of a class its life cycle

• Protocol state machines that focus on the transitions of states and the rules governing
the execution order of operations.

7

2. BACKGROUND AND RELATED WORK

Behavioral state machines can become quite complex as they try to model concurrent be-
havior, show nested states and allow for redefinition. This is also the strength of the state
machines because they are able to describe the behavior of the possibly complex system
with these diagrams.

Protocol state machines can provide rules for implementation by interfaces or ports.
These rules provide the guidelines that other systems must comply with in order to work
with the associated class. The protocol state machine helps UML support component-based
development by providing clear interfaces and rules for the communication between differ-
ent objects.

2.3 Tools

During the case study, whose goal is to investigate the use of the tools and validate the
Modeling Tool Selection Method by reflecting the results of the case study, three software
tools are compared that are designed for use in a MDD environment. This section introduces
the tools and their capabilities are discussed.

In [4] modeling tools for model validation are compared and modeling languages are
described and used.

2.3.1 ASD

Analytical Software Design (ASD) is designed by Verum and combines formal methods,
Sequence-Based Specification (SBS), Communicating Sequential Processes (CSP) and Fail-
ure Divergence Refinement (FDR) to design and mathematically verify the correctness and
completeness of complex software systems [9].

Model-Driven Development with ASD is also researched by other large companies as
Sioux [45] and the R&D department of Philips: Philips Applied Technologies [36]. The
results from the research by Philips in cooperation with the vendor of the company is pub-
lished in [10] and seems promising towards the use of ASD. The results that Sioux mea-
sured, are published in a white paper on the website of Verum [49] and are also in favor of
choosing to use ASD above other MDD tools.

The following description of how ASD works is related but borderline. Formal methods
used in developing computer systems are mathematically based techniques for describing
system properties [50]. Formal methods provide the means of proving that a specification
is realizable, proving that a system has been implemented correctly, and proving properties
of a system without necessarily running it to determine its behavior [50].

Sequence-Based Specification is a collection of techniques for implementing rigor-
ous, practical software specification. The central techniques, sequence enumeration and
sequence abstraction, provide a systematic way to explore and discover intended system
behavior in a complete, consistent and traceable correct way [37].

Communicating Sequential Processes [24] is a formal language for describing patterns
of interaction. CSP uses mathematical models and reasoning methods to describe concur-
rent systems whose component processes interact with each other by communication [40].
Concurrent systems are systems where multiple processes can exist at the same time.

8

Tools

Failure-Divergence Refinement is a model-checking tool for state-machines. FDR has
foundations in the theory of concurrency based around CSP [15]. FDR checks whether
properties defined in CSP hold, and is able to check determinism of a state machine.

ASD uses Sequence-Based Specification to specify functional requirements and designs
as total black box functions. Sequence-Based Specification is also used to map every pos-
sible sequence of input stimuli to a response. The ASD Model Generator generates CSP
models automatically from these specifications and designs. These CSP-models can be
analyzed and verified by FDR. ASD also has a code-generator that can generate a signif-
icant amount of program source code in C++, C or other similar languages according to
the former specifications [9]. Size of the code that can be generated differs per project, but
according to experiences from Verum [9] it generates about 70 to 90 percent of the total
amount of programming code for the project.

In Figure 2.2 we see how ASD fits in the design process.

Figure 2.2: Methodology of ASD from [11].

2.3.2 Rhapsody

Rhapsody is a UML based software development tool, designed to support complete model-
based iterative life-cycle [21]. How MDA relates to Rhapsody is described in [13]. Rhap-

9

2. BACKGROUND AND RELATED WORK

sody is designed for real-time and embedded systems engineering, software development
and testing based on UML/SysML. With Rhapsody the programmer gets a clear view of
how the requirements are implemented and is able to generate programming source code
and there is a possibility to test the designed models using a simulation. With this simu-
lation the programmer sees if everything is working as he expected it to work and he can
keep track of the communication in the models. Rhapsody offers the programmer the abil-
ity to design the system by using different UML-models for different parts of the system.
When all the requirements are modeled in the system the programmer can generate code.
The programmer can now change the model or the code, but whatever he chooses, the other
also adapts to the changes. This makes Rhapsody-projects flexible for changes when the
requirements change.

2.3.3 Bouml

Bouml works in a similar way as Rhapsody. UML2.0 models are created and from these
models programming code is generated. Bouml is developed by one developer and is con-
sidered fast and careful with its memory usage compared to Rhapsody and other UML-
modeling tools [8]. Bouml can also reverse engineer code and since it is open source it
is possible to integrate extra functionality called plug-outs. Some useful plug-outs can be
found on the website of Bouml and are easy to integrate with the tool. Bouml does not offer
a simulation like Rhapsody, but there is automatically added debugging code to monitor
the behavior during run-time. Bouml offers simultaneous programming in C++, Java, Php,
Python and IDL.

2.3.4 Differences between Rhapsody, Bouml and ASD

ASD comparing to Rhapsody (or Bouml) is difficult because Rhapsody is a model-driven
development tool that helps the programmer to create models and to give a higher level
of abstraction about the system that is being designed. ASD helps the programmer check-
ing the requirements in a way that the requirements need to be complete and correct and
ASD also checks the model that is created from these requirements. So, ASD checks the
model whereas Rhapsody does not check the model, but Rhapsody gives the programmer
the ability to design by using different types of models. This way the programmer can get
a clear view of how the system operates and therefore should be able to check the correct
functioning according to the models by hand. Off course this is not as robust as letting
ASD check, but it is more robust then not checking at all. Rhapsody and Bouml are typ-
ical MDA-compliant tools [13] because MDA persists the use of UML-models to develop
a Platform-Independent Model of a Platform-Dependent Application (PDA). ASD is not
MDA-compliant because it does not uses UML models to create a PIM, but since it uses the
Sequence Based Specification to construct a model ASD is MDD-compliant.

2.3.5 Relation with MDD

In Model-Driven Development it holds that models are used as primary artifacts for which
efficient implementations are generated by the application. Rhapsody is a typical MDD

10

Knowledge Management

tool, whereas ASD is a MDD tool, but in a smaller subset of the field. Rhapsody uses
the complete range of UML models, introduced in Section 2.2.1, to describe the behavior
of the system and generate code according to that models and behavior. ASD generates a
model according to the specifications that are entered with respect to the requirements. The
model that ASD generates from the specifications is a Communicating Sequential Processes
model that will be checked for completeness and correctness. To get a global view, ASD
is also able to generate a State Diagram. From the CSP-model it is possible to generate
programming code automatically in ASD. Bouml also uses UML models to describe the
architecture and behavior of a system and generates code according to the specification of
these models.

2.4 Knowledge Management

Knowledge management is an emerging discipline that promises to capitalize on organi-
zations intellectual capital [42]. Software development is a quickly changing, knowledge-
intensive business involving many people working in different phases and activities. In
software development, every person involved constantly makes technical or managerial de-
cisions. Most of the time, team members make decisions based on personal knowledge and
experience or knowledge gained using informal contacts [42]. Knowledge management
is also an issue for companies such as Logica, because the knowledge gained during the
projects is often not documented or reflected. The selection method introduced in the next
Chapter transfers specific knowledge into a selection method, and allows the adaption of
knowledge from future projects in the selection method. By using the selection method the
knowledge is equal for all persons using the selection method. Knowledge management
is related and essential since the introduced method will become part of the knowledge
management of Logica.

2.5 Summary

This Chapter introduced the subjects and researches that are related to this thesis project.
There are several researches that are related to this thesis project and during this Chapter
some interesting researches are shortly described and a reference is given. The researches
are also used to describe several subjects that are related to this thesis project.

We first described MDD, MDE and MDA, these concepts are often used during this
thesis and the distinction should be clear. The description of PIMs and PSMs is important
in the context of this thesis because it is one of the essential concepts of MDA. The generic
concept of MDD is very closely related to the usage of PIMs and PSMs. The PIM shows
the model without all the details and the PSM is the realization of this model for a specific
platform. The models of the PIM are thus not platform specific and this is one of the
advantages of using a Model-Driven approach, because this allows the developer to model
on a higher level of abstraction. We then give the definition of a model since this explains
why we want to use models, because they describe things in a simplified manner. Then the

11

2. BACKGROUND AND RELATED WORK

different UML diagrams are described because we use the UML to model in during the case
study.

The Section about the tools introduces the modeling tools that we are using and some
work that is related to the tools and this thesis project. A description of how the tools work,
and some of the main differences are given. The relation of the tools with MDD and MDA
is also given.

Finally, there is a Section about knowledge management which is also related to this
thesis project because the, in the next Chapter, introduced Modeling Tool Selection Method
holds important knowledge for Logica. And the MTSM is capable of adopting knowledge
which makes it part of the knowledge management of Logica.

12

Chapter 3

Modeling Tool Selection Method

This Chapter describes the selection method that is constructed during this thesis project.
The selection method uses questions to determine the processes and products of a software
engineering project and concludes on the tool that supports the development process and
products best. Also a selection matrix will be introduced that quickly decides over the
use of an MDD tool. The tools were introduced in Chapter 2. In the first Section the
meta-process model is described which supports the creation of the method. The Modeling
Tool Selection Method (MTSM) is described in the second Section. In the third and fourth
Section the actual method is constructed and then the selection matrix is introduced. Finally,
the method will be validated by using results from other companies and cross-checking the
constructed method with developers that have experience with the use of the particular tools.

3.1 Meta-Process Model

The abstraction levels in process modeling are displayed in Figure 3.1 from [39]. There are
three levels in which the Process Meta-Level is the highest level. The Process Meta-Level
describes the generic concepts of the second level, the Process Model. The Process Model
corresponds to the way of working prescribed by the methodology in use in the lowest level,
the Development Runs, which is the actual process that outputs a product. The three levels

Figure 3.1: Abstraction levels in process modeling from [39]

of Figure 3.1 can be mapped to the Meta-Process Model of the Modeling Tool Selection
Method as described in Table 3.1.

13

3. MODELING TOOL SELECTION METHOD

Abstraction level Meta-Process Model of MTSM
3 Process Meta-Level The Meta-Process Model displayed in Figure 3.2
2 Process Model Asking questions about Processes, Products and Tools in

Sections 3.3, 3.4 and Figure 3.3
1 Development Runs Actual use of the MTSM to select a tool, Figure 3.4

Table 3.1: Mapping of abstraction levels

Figure 3.2: The Meta-Process Model

In the Meta-Process Model of Figure 3.2 we see that the Modeling Tool Selection
Method is constructed from the mental model of a Software Engineer. A mental model
is the way a person understands a particular domain of knowledge [20]. The domain of
knowledge in Figure 3.2 is the use of MDD tools in a software engineering project. The
main construction of the MTSM is done during this thesis and in the future changes are al-
lowed to be performed. The created MTSM can be used to select a MDD tool for a project,
or the other way around, as indicated with the double ended arrow in Figure 3.2. From
project to MTSM is the selection of important products and processes when the selection
of a tool has already been made. For instance, when the principal suggests the use of a
particular MDD tool. It is also possible to change the MTSM. Changing the MTSM is done
in the following way:

1. Use MTSM to select a tool or multiple tools

2. Use the tool in a case study or use multiple tools in the same case study

3. Evaluate the results of the case study

4. Adjust mental model according to the findings during evaluation

5. Adjust MTSM to cope with the mental model

We have described how the MTSM can be used at the highest level. The next Section
describes how the MTSM is constructed (2 Process Model) and how the MTSM is used (1
Development Run).

14

Description of the Method

3.2 Description of the Method

The Modeling Tool Selection Method (MTSM) is used to gather information of the develop-
ment process at the start of a software engineering project. The gathered information is used
to determine which MDD tool fits the project best. Not all software engineering projects are
suitable for using a MDD-approach and therefore we will restrict the MTSM to Embedded
Systems that do not require real-time computing during this research. An overview of the
process of the model is displayed in Figure 3.3.

Figure 3.3: The process model of the Modeling Tool Selection Method

Eventually, when the MTSM is actually used, it takes the Business Processes and Prod-
ucts, and the Tools, see Figure 3.4, and asks questions to analyze them. The answers to
these questions are used to select one out of three modeling tools that ensures an effective
process along that particular project or it concludes that the use of one of the three tools is
not appropriate. Eventually the MTSM determines which tool is the best to use.

Figure 3.4: Overview of input and output during a development run of the MTSM

The questions in the Business Processes and Products Section are used to find out how
the developers are going to work, are they developing a prototype or a high availability
system? Are the requirements complicated and possibly incomplete? Is the system a com-

15

3. MODELING TOOL SELECTION METHOD

ponent that uses other components from foreign developers and needs to fit in exactly?
During the case study in Chapter 4 this Modeling Tool Selection Method will be validated
by using a practical case that shows how this method works and shows the advantages and
disadvantages per tool.

3.3 Business Processes and Products

This Section describes the Processes (determining what information is available) and Prod-
ucts (the documents that are available) that are available when choosing the right approach
for developing a project. The Modeling Tool Selection Method uses the following common
activities and for each activity there need to be answered certain questions. It is not manda-
tory to follow these activities during development since these activities are only used to get
a view of what kind of project the software is developed for.

Requirements What quality are the requirements?

Analysis What platform and language are demanded by the customer? What is the budget
of the project?

Design What diagrams will be used? What is the quality of the models?

Implementation How many components are involved?

Testing Are there tests available? Is there a testing environment? What is the importance
of quality?

Maintenance Are future extensions needed?

Defining the quality of requirements is very hard [12]. The MTSM uses sub-questions
to determine the quality of the requirements:

• Distinguish between common natural language, structured natural language and for-
malized language

From [12] we learn that natural language is imprecise and ambiguous. In case of using ASD
the requirements should not be ambiguous and imprecise since the tool forces the developer
to implement the requirements precisely. Rhapsody and Bouml are less strict, but they also
force the developer to think about how the system interacts.

During the analysis of the project the programming languages are considered. Here we
use Table 3.2 to determine the applicability of the tools.

ADA C C++ C# Idl Java Php Python
ASD X X X X
Bouml X X X X X
Rhapsody X X X X

Table 3.2: Tools and programming languages support

Other considerations during analysis are the platform that is developed for and this
raises the following sub-questions:

16

Business Processes and Products

• Can the generated code run on the target platform or is cross-compilation necessary?

• What is needed to cross-compile for the target platform?

If the tool generates code directly for the platform this saves time since cross-compilation
also takes time and raises extra dependencies. Rhapsody uses a run-time framework that
needs to be linked to. So when using Rhapsody on a new target platform (Rhapsody was
not used with this target platform before) a static link to this framework needs to be created.
ASD uses the Boost libraries when using C++ and these need to be installed on the host that
cross-compiles for the target. Bouml has (initially) no specific dependencies and only needs
to be cross-compiled. When Rhapsody is configured correctly it creates a platform specific
makefile and this makes adding files or dependencies easier among ASD and Bouml where
the makefile needs to be changed manually.

The budget of the project is also interesting to consider since the costs of the tools are
displayed in Table 3.3. In the Table the license costs of each tool is given, for ASD the
average cost per Executable Line of Code (ELOC) is also given in the Table. The actual
cost per ELOC depends on the number of times the model is verified. License costs for
Rhapsody and ASD are very expensive compared to Bouml. With ASD every verification
run is billed and this makes the costs hard to predict at the start of a project. With Rhapsody
there are additions possible for integration with other tools from IBM, such as Doors and
Testconductor for additional costs [25]. Only comparing on costs is not fair and therefore
we consider the return on investment of the tools which refers to the costs made during the
usage of the tool and the gain by using the tool. The return on investment is a combination
of the costs and the development time needed when the tools are used. For instance if Bouml
is free, but requires weeks of extra work compared to Rhapsody it is more expensive than
Rhapsody that has a higher initial cost, but saves these extra weeks of work. Another cost
that is important is that of learning the tool. For ASD and Rhapsody training courses at the
vendors are available. For Bouml there are no trainings available. According to estimations
of Software Developers and Software Architects at Logica, the effort of using ASD and
Rhapsody is equal for a particular project, for Bouml there are no estimations made. This
results in higher return on investment when the development team is equal and the project
size is expanding. For smaller projects Bouml has the highest return on investment since
there are no additional costs for using the tool. To make harder statements on the return on
investment, results of future projects should be analyzed.

Tool Estimation of costs
ASD 2,50 euro per Executable Lines of Code [49] and 2500 euro seat/year
Bouml Free
Rhapsody 12000 euro per seat (floating)

Table 3.3: Approximation of costs

The design phase of the project involves the actual use of models that describe the
system. Determining the quality of UML models can be done in different ways according
to [38]. Most important aspects that pertain the quality of UML models are: the proportion
and completeness of UML designs and the design–code correspondence [38]. Important

17

3. MODELING TOOL SELECTION METHOD

here are the differences between the use of models of the tools. Where ASD uses the
models to summarize the formal description, Bouml and Rhapsody use models to describe
the behavior of the system. ASD asks more effort from the developer than the other tools.
The overview can be lost during system design, due to the view that ASD offers. Rhapsody
and Bouml offer more levels of detail, and therefore it is easier to understand the behavior
of the system.

The implementation of the software is important since this phase often connects the
software to other parts of the system. The strictness that ASD asks from the developer dur-
ing the development helps him connect to the other parts, since the interfaces are thoroughly
defined and fit immediately. Rhapsody and Bouml are less strict in defining the components
and certain situations (such as exceptional situations) might not be in the model. This might
not be a problem until the system is implemented and needs to connect with other parts of
the system.

Testing activity is where the software is tested for correct functionality. For Rhapsody
there are test suites that can be used to automatically generate tests. With ASD the system
is guaranteed to be the same as the ASD model, and therefore it is complete and correct
and testing is not necessary. Although testing is not necessary Verum recommends to test
as usual since defects (misinterpretation of requirements) in the model are also guaranteed
to be in the generated code. With Bouml the generated code can be tested by using for
example unit tests. With all three tools the conventional testing phase is kept as is.

The final important activity is the maintenance of the project. When using MDD to
adopt changes, the model changes, but changes in one model could affect other models.
The learning time of the tool and ease of use of the tool are important since the developer
needs to have a good view of how the system works. Changing the model and not only the
code keeps the design the same as the code which is a great advantage of using MDD [38].

3.4 Tools

This Section classifies the tools by following the activities from the previous Section. The
classification was constructed during the extensive research of the tools and uses a scale (-,
0, +) to distinguish between the tools. Where - means a negative score, 0 medium and +
positive. The tools are compared to each other and are not rated as a whole since this is
impossible when looking to only three MDD tools. The classification is the result of using
the tools during the case study and evaluating afterwards to construct a mental model. In the
next Section the classification that resulted from this mental model has been cross-checked
by architects and developers of Logica and other companies to verify them. Classification
will be done on the following criteria:

Usability How easy is the tool to use for developers? (- not easy, 0 medium, + easy)

Understandability Are the models well formatted and easy to understand? (- not easy, 0
medium, + easy)

Correctness Is the generated code working? Is the implementation of UML correct? (-
incorrect, 0 medium, + correct)

18

Tools

ASD Bouml Rhapsody Activity involved
Usability 0 0 + Design and implementation
Understandability - 0 + Design
Correctness + + + Verification/testing
Development time - 0 0 Design and implementation
Code size 0 + 0 Analysis
Executable size 0 + 0 Analysis
Pre-release defects + 0 0 Testing
Maintainability - 0 + Maintenance
Strictness + - - Requirements and Implementation

Table 3.4: Rating of the tools

Development time How long does the process take from modeling to generated code? (-
long, 0 medium, + short)

Code size What is the size of the automatically generated code? (- large, 0 medium, +
small)

Executable size How large is the resulting executable? (- large, 0 medium, + small)

Pre-release defects Is the number of defects before release lower than conventional soft-
ware engineering methods? (- higher, 0 equal, + lower)

Maintainability How easy is it to change models/variables? (- not easy, 0 medium, + easy)

Strictness Does the tool require strict/closed requirements? (- not strict, 0 medium, + strict)

Some of these criteria like usability and maintainability are known from the ISO/IEC 9126
standard that classifies software quality and is described in [26]. In [30] there is a set
of metrics proposed to support the selection of tools for software quality management. The
other criteria are selected on their ability to help forming the mental model and these criteria
can be related to the activities mentioned in the previous Section (Section 3.3). Closely
related are for instance the usability, understandability and maintainability since they give
an idea of the level of knowledge a developer should have for each tool. The ease of use
is important to give flexibility among the development team in such a large company as
Logica.

Table 3.4 gives an indication of the positive and negative points of the tools when com-
pared to each-other. Not all points are equally important and should only be used to give
an indication on the tools. What we can read from the Table is that Rhapsody is the most
mature and broad MDD-tool. We can also see that ASD is very strict in the Requirements
and Design. Bouml is the tool that scores best on code and executable size since it has less
dependencies, described in Section 3.3, in a relatively small project. During the case study
the code and executable size will be discussed more thoroughly. This Table is validated by
a Software Architect of Logica.

19

3. MODELING TOOL SELECTION METHOD

3.5 Matrix

Finally the MTSM leads to a matrix that helps deciding which tool is most useful for
developing a particular software engineering project. Information gathered during the two
phases of the MTSM are combined, see Figure 3.5. We read this matrix from left to right
and check for every activity which tool is recommended. The colors are only used to clarify
the boundaries. The tool that is checked most is selected to use during the project. The user
can prioritize the activities on importance as he likes. We will now describe the columns of
the matrix:

Requirements Here a distinction is made between the type of requirements. When there
are formal requirements given, or there is need for them, the use of ASD is recom-
mended. Rhapsody can be used with any type of requirements given. Bouml can best
be used when the requirements are given in common natural language or structured
natural language.

Budget This refers to the budget available for conducting the project. This is very difficult
since there are more factors involved and this is typically a column that is prioritized
when using the matrix. The choice here depends mainly on the initial costs of the tool
and the development time with the tools that was experienced.

Interfaces Whether the design involves many interfaces with other components is used
because ASD offers the design of interfaces that are easy to connect with other com-
ponents because it is very strict. The other tools allow a wider interpretation and this
can cause extra work when connecting the components.

Design There can be need for a more formal design, then ASD is the tool of choice. In
Rhapsody and Bouml the design is made in UML diagrams and this is easier to model
and easier to understand.

Implementation Here the number of deployment steps is the criterion. Which is the num-
ber of steps we have to take from generated code to executable. With much steps
involved the less dependencies that Bouml needs are a asset. When the framework
of Rhapsody is integrated in the programming environment the use of Rhapsody is
recommended.

Testing When there are legacy tests available for validation (in case of redesign of a sys-
tem) Rhapsody and Bouml are recommended since they have no verification built-in
like ASD. Because of the verification in ASD it is likely that the validation tests are
accepted quicker than with the other tools. The distinction in quality is made on the
fact that verification is done on the models of ASD and it is possible to simulate the
system in Rhapsody to see how it interacts.

Maintenance When changes are needed in the model this is most easy in Rhapsody. More
detailed changes are easier in ASD since this requires only changing the code. The
code of for example the hardware that is used is in Bouml and Rhapsody integrated
in the model and needs to be changed within the tool to keep the model conform. In

20

Validation

ASD the code for the hardware is manually added to the generated code and needs
only be changed there.

Language experience This is the experience of the developers that use the tool with the
programming language they are developing in. In case of Rhapsody low experience
is required since almost everything can be done with the tool. In Bouml there are
much more language specific options that have to be filled in manually and in ASD
there are sometimes changes in the generated code necessary.

Learning curve Using ASD without knowledge of the tool is very hard. Bouml requires
more knowledge of programming, but it is quite easy to model and generate code from
the model. Rhapsody is most easy to model in and generate code from compared to
the others.

We now created the Modeling Tool Selection Method according to our mental model.
The next Section introduces results from other researches to check the MTSM and in the
next Chapter a case study will be conducted to cross check the MTSM with a practical
application of the tools.

3.6 Validation

This Section offers results from researches of other companies to show similarities with
the MTSM. Also the MTSM is reviewed by Software Architects and Software Designers at
Logica. In the presentation of [17] that discusses the use of ASD during a period of two
years the main conclusions are:

+ Used because of the guaranteed correct interfaces

+ Smooth integration

+ Less effort in testing and problem solving

+ Using ASD enforces the overthinking of every possible scenario

- Design and implementation require greater effort than traditional design

- Tools are not mature (gets better every release)

- High conceptual knowledge required of designer

- High ASD knowledge required

- Adding one function requires lots of model files to be changed

These findings agree with the MTSM for the ASD part. In the search for a Free/Libre
Open Source Software (FLOSS) tool for Analysis and Design the authors of [1] consider
Bouml, and they conclude that Bouml is good on functionality, usability and maintainability
among seven other open source tools. Again, these [1] results agree with the findings before,
although they used version 2.30.2 (July 2007), and this study uses version 4.19.1 (March
2010) of the software. At Saab Aerosystems they selected Rhapsody among four others as
a UML/SysML-tool because it has a wide market penetration and is standards-based [3].

21

3. MODELING TOOL SELECTION METHOD

Their decision was also based on best practices and benchmarks of other state-of-the-art
software engineering support tools and methods.

The previously mentioned researches from other businesses agree with the MTSM and
show therefore that the MTSM displays a mental model that is shared by other researchers.
The next Chapter describes the conducted case study and this will validate the MTSM by
reflecting the results from the case study.

3.7 Summary

This Chapter introduced the Modeling Tool Selection Method, a method that decides which
MDD tool fits a software engineering project best. First, the Meta-Process Model is intro-
duced that describes where the MTSM is situated and how it can be used. The Meta-Process
Model also describes how the MTSM can adopt knowledge from future case studies. Then
a description of the method is given and the important business processes and products are
discussed. We describe what is important and we reflect this on the three MDD tools. So the
method is introduced and applied on the tools immediately. Then there is a Section about
the tools, which gives a better view of the tools on a higher level. To allow accessible use
of the method there is constructed a matrix that quickly decides on the use of a MDD tool,
a description of the columns of the matrix and a usage description is given. Finally, the
method is validated by using other researches and it was reviewed by Software Architects
and Software Designers of Logica.

22

Summary

Figure 3.5: Decision matrix of the MTSM

23

Chapter 4

Case Study

This Chapter describes the case study that is conducted during this thesis project. This
case study describes a software engineering project that was performed at Logica. The
objective of this case study is the evaluation of the Modeling Tool Selection Method from
Chapter 3. The case study uses a project that was performed at Logica. During this project
a prototype of a charge point for electric vehicles was developed. A basic implementation
of this software is also constructed with the three tools, using a Model-Driven Development
approach, and the findings are evaluated.

The DESMET methodology described in [27] is used to determine which evaluation
methodology can be used to evaluate a method or tool within a particular organization [28].
We used the DESMET methodology to determine which evaluation method can be used to
evaluate the tools. We evaluate the tools because we construct the mental model from this
evaluation, and the MTSM from the mental model, see Figure 3.2.

First, the charge point project is described, then the hardware is introduced and the Sec-
tion about software describes the software that runs on the board and how the programming
code is made ready for the board. After this context of the case study, the design of the case
study is described. The design is followed by the results, the implementation of the software
and the relation with the Modeling Tool Selection Method from Chapter 3. The results are
reflected on the MTSM and finally the considerations that formed the basis of the MTSM
are validated.

4.1 Introduction

The goal of the charge point project at Logica was creating a prototype of a charge point
for electric vehicles. During this project the question arose whether the use of MDD tools
would have been useful, and this thesis project is the result of that question. During the
original assignment Logica developed a prototype. The hardware for the charge point was
delivered by the principal and the task of Logica was the interconnection of the hardware, by
means of software development. The developed software was written in the C programming
language. Since the assignment was the development of a prototype, the requirements were
given in common natural language and were incomplete. The development methodology

25

4. CASE STUDY

used was evolutionary prototyping [48] to keep the costs low and add additional require-
ments while developing. Eventually this project lead to a working charge point. During this
project the requirements and design became clear, and we are using these findings during
the case study.

The charge point project is also used during this case study to investigate the advantages
and disadvantages of ASD, Bouml and Rhapsody. Difference with the first project is that we
are no longer developing a prototype and therefore the charge point software is developed
with the three tools using a iterative development methodology [48]. We do not use evolu-
tionary prototyping since the requirements are clearer than during the development of the
prototype. Also this allows us to develop the components of the system separately which
enables us to monitor small pieces of the system.

4.2 Hardware

The hardware that is used for the charge point:

• Embedded Linux board (FOX Board LX832 [47])

• NFC Reader (MiFare Easy 5513 [22])

• Ledring

• GPRS Module

• Door lock

• Resistance meter

• Power meter

The diagram in Figure 4.1 gives a graphical representation of the hardware used and how it
is connected.

Figure 4.1: Overview of the hardware

4.3 Software

The operating system that runs on the board is Linux with kernel 2.6.19 and uses an Axis
ETRAX 100LX CRIS CPU. For this CPU an Axis SDK for Linux is available that can be

26

Design

used to cross-compile the source code for the FOX Board. A graphical representation of
how the SDK is used to create an image from the source code with the cross-compiler can
be seen in Figure 4.2. How the SDK looks like is shown in Figure 4.3.

Figure 4.2: Sequence from tool to FOX board

Figure 4.3: Software Development Kit block diagram from [11]

4.4 Design

The previous Sections described the context of the case study, this Section first describes
why we use a case study and than it describes the goals for this case study.

As mentioned before, we used the DESMET methodology [27] to select a evaluation
method. The DESMET methodology identifies nine methods of evaluation and a set of con-
ditions that favor each evaluation method. We want to investigate the appropriateness of the
method/tools, and we want to measure effects of using the method/tools. The method/tools
we mention here, is the MDD development methodology and the tools are ASD, Bouml,
and Rhapsody. The DESMET methodology concludes that a case study can be used to eval-
uate our method/tools, and it makes a separation between qualitative and quantitative case
studies. This separation is not exactly applicable to our research and a combination is also
possible, we therefore speak, of a case study.

The goal of this case study is to investigate the use of the tools and validate the MTSM
by reflecting the results of the case study. We do this in almost the same way as described
in Section 3.1 on how to change the MTSM.

1. Select multiple tools

2. Use multiple tools in the same case study

3. Evaluate the results of the case study

27

4. CASE STUDY

4. Construct mental model according to the findings during evaluation

5. Check MTSM to cope with the mental model

During this case study we aim to answer the following questions:

• What are the important business processes and products during this case study?

• Are the tools compatible with the used development process?

• To which extent can the MTSM be used as intended in Figure 3.2?

• Which tool fits this project best according to the results? And which tool fits this
project best according to the MTSM?

The case study will be divided in the activities that were introduced in Section 3.3 so the
results can be compared with the MTSM. The experiences gained with each tool will be
discussed and the main focus will be on quality and costs. Quality of the software and costs
of developing the software are main issues for Logica and other commercial businesses as
well. Logica wants to deliver high quality software for a reasonable price to its customers.

The charge point application will be designed and implemented with ASD, Bouml and
Rhapsody and tested on a real charge point that is available at Logica for testing purposes.
The use of ASD is investigated in a pilot project at Logica which we were members of, and
monitored closely. This allowed us to use the results during this case study.

4.5 Results

During this case study the software is modeled using the tools in an iterative development
process. Because of this iterative process, the results can be divided in a implementation
that only involves the board and the ledring and displays a sequence of three colors and a
implementation of an complete working charge point application. The ledring application
is constructed because the model is relatively easy and this way the cross-compilation and
execution on the board can be tested with the different tools as source code generators.
The results discussed in this Section will be linked to the activities used by the MTSM of
Chapter 3.

4.5.1 The Ledring application

The ledring application as described here is only used to investigate the deployment of the
models on the board and to measure code and executable size. The models of the ledring are
not representative for the models of the ledring in the next Section of the complete charge
point implementation.

Requirements For the Ledring application the following requirement in common natu-
ral language was constructed:

• Generate a green-blue-red sequence that shows every color 2 seconds.

Analysis Since the prototype was written in C, the choice for programming language
C++ was made according to Table 3.2 and because C++ is an object-oriented language

28

Results

which fits this project, with multiple components, best. Fragments of the C code can be
reused in C++ since most C code can be compiled in C++ without rewriting it. Such a
fragment is for example the initialization of the card reader in the next Section.

Design Since the requirements are very short and not complicated the application was
easy to design in all three tools. In Figure 4.4 we see a model of the ledring. The design in
Figure 4.4 is extracted from Rhapsody. The state diagram in Bouml is displayed in Figure
4.5 and we see here that the state transitions are triggered by events. In Bouml the program-
ming code that delays the programming (for 2 seconds) is in the states. The state diagram of
ASD is displayed in Figure 4.6 and we see that there are responses, the ILedRing.NullRet
is such a response. These responses are fired to the process that initiates the transition. This
way the initiator knows whether a transition request is received (a synchronous return). In
ASD this is used for verification of the model. In Bouml and Rhapsody the programming
code to alter the coloring of the ledring is in the model. In ASD it is not possible to add for-
eign code directly in the model and this is added, during implementation, in the generated
code.

Figure 4.4: State Diagram of the Ledring from Rhapsody

Implementation With all three tools there is automatically generated programming
code. The generated code for ASD needs to be manually edited to actually turn the leds
in the right color. Bouml and Rhapsody allow the code to be added in the editor and gen-
erate code that is complete. The code is then for all three tools compiled and linked with
the cross-compiler for the FOX Board. The executable size is determined using different
options/configurations. The code is statically linked and/or the unneeded code was stripped
by using a special command that removes the debugging information. The resulting sizes
of the executables are displayed in Table 4.1. In the Table we see that the executable gen-
erated with Bouml is the smallest, while showing the exact same behavior to the outside
world. Static and stripped is the option that is used during this case study and the size of the
executable of ASD and Rhapsody is almost similar using that option.

29

4. CASE STUDY

Figure 4.5: State Diagram of the Ledring from
Bouml

Figure 4.6: State Diagram of
the Ledring from ASD

Table 4.1: Different sizes of executables (in bytes)

Tool No options Static Stripped Static and Stripped
ASD 215460 7311084 113048 775036
Bouml 144306 5710907 7040 558820
Rhapsody 1841285 8808747 108280 753652

Testing All implementations showed the same behavior when ran on the FOX board.
Rhapsody offers a simulation that shows the state sequences, this way we can check the
behavior of the model before it is compiled and deployed on the board. ASD offers the
possibility to check the model for deadlocks and live-locks before generating code. Bouml
can output debugging information that shows the flow through the model while running on
the board.

Maintenance Changing the sequence of the colors is easy with all three tools, but most
easy is ASD in case of this Ledring application, because in ASD only the generated code
needs to be changed while in the others the model has to be changed. When the model needs
to be changed in ASD this is more work than in Bouml and Rhapsody because than we have
to check the model again, and manually add the foreign code in the generated code. Bouml
and Rhapsody generate the code according to the changed model and no manual editing is
necessary.

30

Results

4.5.2 Complete Chargepoint

The complete charge point involves the interconnection of all the hardware from Figure 4.1.
Requirements The requirements for the charge point project are given in common nat-

ural language, e.g. when a user wants to charge its car it stops nearby a charge point and
swipes his NFC-card along the card reader and when he is authenticated the door opens and
the ledring is green (red when authentication fails). He connects the plug of the power cord
and closes the door, the charge point starts charging and the ledring becomes blue. When
the user swipes his card again, the charging stops and the door opens. The user disconnects
his power cord and closes the door again.

The quality of this requirement is poor since it is given in common natural language and
can be interpreted in different ways and is not closed [12]. For instance the behavior of the
ledring is partly described and the case where the door is supposed to open, but it does not
open, is not described.

Analysis For this case study, as in the previous Section mentioned the C++ program-
ming language is used. The programming environment for the tools is Microsoft Windows
XP. The generated C++ source files are copied to a Virtual Machine that runs Linux and
compiles the sources for the FOX board. From the VM the files will be copied to the FOX
board.

Design The design in ASD takes a bottom-up approach by designing the components
first. The design in Rhapsody and Bouml first describes the class view and then adds more
detail by using state diagrams to design the behavior in the components. In Table 4.2 we see
the time it took for developing the parts by a novice developer with all three tools. The time
displayed by charge point is the time needed for connecting the parts together. In Figure 4.7
we see the state diagram from the charge point modeled in Rhapsody.

Table 4.2: Modeling time (in hours)

Tool/Component ASD Bouml Rhapsody
Chargepoint 8 24 16
Cardreader 24 20 16
Ledring 30 16 10
Door 20 10 10

The state diagram from Figure 4.7 shows how the system works on the highest level.
Init initializes the card reader and waits for the card reader to generate an evNFCDetected,
in the state nfc detected the NFC sequence that was read is authorized. When the event
evAuthorized is fired the system will transfer to the authorized state in which the door is
opened, it then waits for the door to close before it transfers to the charging state. Then the
system is again waiting for a evNFCDetected and when a NFC sequence is read, it checks
whether the user is the user that is currently charging. If it is indeed the same user, the door
is opened again and the system waits for the door being closed, before it transfers to the init
state again. We also see in the state diagram that there are states not authorized, door error
and sign off refused. As the names do suspect, the system only transfers to these states
when: the user is not authorized to use the charge point, the door did not open or the user

31

4. CASE STUDY

that tries to end the charging process is not the same as the one who initiated the charging
process.

The chargepoint is easy to realize in ASD since the parts that are connected (cardreader,
ledring, door) were carefully designed before. The other components were partly reused so
the modeling time is not from scratch, but the starting point was the same for all three tools.
In Bouml and Rhapsody the components are designed faster since the flow is not verified
like in ASD and need less rework/rethinking of the design. With Bouml a certain level of
knowledge about C++ is necessary because connecting the parts requires knowledge about
pointers and inheritance.

Implementation The automatic generation of code is the best and easy to use in Rhap-
sody since it is possible to compile and execute in the tool. The overhead of copying to
the Virtual Machine (VM) and compiling for the board and copying to the board, before
running on the board is then not necessary and that saves time. Also with ASD there were
troubles when compiling in the VM. Some parts of the generated code needed to be edited
before it successfully compiled. The framework offered by Rhapsody (described in Section
3.3 allows that the process of generating code and running it on the board goes very easy
compared to ASD and Bouml.

Testing In ASD every component is verified for correctness and completeness. In Rhap-
sody and Bouml this is not verified and deadlocks and live-locks can occur. In Rhapsody
it is possible to simulate the system. Rhapsody allows the designer to step through the dia-
grams and see what happens. It is also possible to fire triggers and this way the designer can
test what happens when for instance the door is opened when the system is not expecting
it to open and so on. In Bouml there is no form of verification included and verification
should be done separately.

Maintenance The way the cardreader reads a card was changed during the case study.
At first the program just had to open the reader and read the buffer and check for a card-ID.
During a later iteration the program had to initiate a read on the cardreader before opening
it. This change was in the foreign code that was added to the models and therefore the
models did not change. Such detailed changes are easy to process in ASD, because in ASD
only the manually added code on the Linux VM from Figure 4.2 needs to be changed. In
Bouml and Rhapsody the code that is in the models needs to be changed and this requires
more effort.

Another change that was made during the case study was the possibility to check if the
card is on a white-list that is locally stored on the board. This changes the models and was
therefore more interesting than only a detailed change in the foreign code. Changing the
model in ASD took more time then changing the model in Bouml and Rhapsody. In ASD
the model that changes needs to be verified, and the component (chargepoint) that uses the
model of the, in this case, cardreader also needs to be changed and verified again. So adding
changes requires changes in related components, the verification of all these changes is time
consuming. In this particular case there was another issue with ASD, since storing values
from a foreign component in ASD, can not be done in the model (the tool does not support
that), and needed to be solved by manually changing the generated code.

32

Discussion of the Case Study Results

Figure 4.7: State diagram of the charge point from Rhapsody

4.6 Discussion of the Case Study Results

This Section reflects the findings from the case study with the MTSM. First we use the
MTSM to select a tool for the charge point project that was used during the case study and
then we check which tool was the best option for this project according to the results of the
conducted case study. The result of this case study can be described as the experiences by

33

4. CASE STUDY

actually using the tools in a project environment, the actual formation of the mental model.
We use the matrix from Figure 3.5 to select a tool for the charge point project. The charge
point project that was also used during the case study. The goal of this project is delivering
software that interconnects the hardware of the charge point.

We use the matrix and discuss the project per column of the matrix:

Requirements The requirements were given in common natural language, so we put a
check-mark by Bouml and Rhapsody.

Budget For this project the budget is low, because it is not clear whether the principals
charge point will be commonly used in the future. Therefore we check Bouml and
Rhapsody.

Interfaces There are not many interfaces and the software designed does not need to be
fitted with other parts so we check Rhapsody and Bouml

Design No particular design is needed, we check all three tools.

Implementation The number of steps is considered high, see Figure 4.2, but we think
we need to implement changes and need to compile multiple times, so we choose
Rhapsody because of its framework.

Testing There are no tests available so we choose ASD. Since we consider this important
we check ASD twice.

Maintenance The charge point for electric vehicles is new software and hardware and the
expectation is that the software evolves over time, so we choose Rhapsody.

Language experience The experience of the developers is low and therefore Rhapsody is
checked.

Learning curve The developers have no experience with the tools so Rhapsody is checked.

We can conclude from the matrix that according to the MTSM Rhapsody is the tool that is
recommended to be used, see Figure 4.8. One reason to choose another tool could be the
programming language that needs to be used, whether the language is supported by the tool
can be found in Table 3.2.

Figure 4.8: Results of using the matrix

According to the findings during the case study the recommendation of tool to use for
this project would be Rhapsody. This agrees with the MTSM for this particular project.
Below we describe some of the experiences of the performers of the case study:

• Rhapsody is easy to use and the deployment is fast

34

Threats to Validity

• Rhapsody simulation is easy to use and the models are clear

• The verification of ASD is the strongest point

• Use of ASD is not easy and the way of formal designing requires a special type of
developer

• Bouml is fast and code generation is clean

The next Section describes the threats to validity of this case study.

4.7 Threats to Validity

This Section evaluates the applicability of using a case study to evaluate the MTSM and
the quality of the conducted case study. The evaluation of the quality is done by using four
tests from [53] that are used to validate case study research in social science. These tests
are also applicable for validating case studies in the Software Engineering field as described
in [27][34][52]. The four tests that will be discussed in the subsections of this Section are:
Construct validity, Internal validity, External validity and Reliability. Goal of the case study
is to investigate the use of the tools and validate the MTSM by reflecting the results of the
case study.

During the design in Section 4.4 we used the DESMET methodology to select a evalu-
ation method, an case study. The DESMET methodology is able to evaluate methods and
tools. Often only the evaluation of methods and processes is described, as in [51], and
therefore we used DESMET [27] [28] [35] to select an appropriate evaluation method. Ac-
cording to the DESMET Technical Report, using a case study, as we did, holds a relatively
high risk because it could give a misleading result. We think we covered this by reflecting
the results with Software Architects and Software Engineers at Logica and by using the
results of ASD from the pilot project. This way the evaluation is not based on one person’s
experience of using the tool, as DESMET indicates to be a risk.

4.7.1 Construct Validity

This test is used to check for the right operational measures during the case study. For
the MTSM in this case study this test shows that the used criteria are correct for selecting
tools. The important criteria are divided into the same activities as used in the MTSM and
therefore the case study could be monitored in small controllable parts. We also check
whether we could answer the questions that we aimed to answer during this case study from
the design in Section 4.4:

• What are the important business processes and products during this case study? Dur-
ing the design we stated that quality and costs are most important. Therefore the
activities that are most important, are the design and the implementation. The design
took much effort, because not all requirements were clear, which also influences the
quality. The implementation took much effort, because the generated code needed to
be cross-compiled for the board.

35

4. CASE STUDY

• Are the tools compatible with the used development process? The tools can be used
in an iterative development process.

• To which extent can the MTSM be used as intended in Figure 3.2? From the evalua-
tion of the results of this case study a mental model was formed and this was reflected
with the MTSM correctly. Also the selection of a tool according to the MTSM worked
as intended.

• Which tool fits this project best according to the results? And which tool fits this
project best according to the MTSM? For this project the MTSM concluded on the
same tool as the gained knowledge during the case study concluded on this project.
The case study was conducted in the same way that the actual project would be de-
veloped.

4.7.2 Internal Validity

This test is used to determine causal relationships in the results of the case study. The
relationship between the activities is very important since a longer modeling time could
cause a shorter implementation time which was monitored when using ASD. Another threat
for the internal validity is the following: the monitored time when constructing a model in
the first tool could be higher than in the second and third tool because the idea of how to
construct this model could be reused. To avoid this, one could select a group of equally
experienced users which could then be divided in three and each model in one tool. During
this case study this effect was minimal since the modeling in ASD is very different from
Bouml and Rhapsody. The modeling in Bouml and Rhapsody differs in the sense that the
way transitions work are different and therefore the model needs to be reinvented on the
level of transitions and triggers.

4.7.3 External Validity

Tests whether the results of this case study are generalizable to other case studies. The
results of this case study can be used by other companies or researchers for future research
or for selecting a MDD tool. Although certain parts such as the initial selection of the tools
is initiated by Logica this did not involve the results of the case study or the construction of
the MTSM. When future case studies are performed the results can be used to supplement
the constructed MTSM from Chapter 3.

4.7.4 Reliability

Objective of this test is to find out if a later investigator that follows the same procedures as
described by an earlier investigator arrives at the same findings and conclusions. The results
found during this case study were used to check the MTSM which was checked by software
architects and developers from Logica. This cross-reference shows that the mental model
found during this case study was correct for the construction of the MTSM. Reproduction
of this case study would result in the same findings during the case study when using the
same software versions of the tools.

36

Summary

4.8 Summary

This Chapter introduced the case study, a project that was performed at Logica and was
used to evaluate the MDD tools with. First the charge point project was described and the
hardware and software that this project used. Then the design of the case study was given
and we showed, by using the DESMET methodology, that a case study gives the ability to
evaluate the results. The results of the case study were discussed by using a small appli-
cation for the evaluation of the code generation and implementation on the hardware, and
a complete charge point application for the evaluation of the whole development process.
During the discussion of the case study results we used the MTSM to select a MDD tool
and compared this selection with the results of the conducted case study. Finally the threats
to validity were discussed and we used four tests to evaluate the quality of the conducted
case study. We showed that the case study was thoroughly validated by experts from Logica
and future case studies can refine the MTSM.

37

Chapter 5

Summary, Conclusions and
Future Work

This chapter gives an overview of the project’s contributions. After this overview, we will
reflect on the results and draw some conclusions. Finally, some ideas for future research
will be discussed.

5.1 Summary

The goal of this thesis project was to help Logica adopt Model-Driven Development (MDD)
in an efficient way. Logica is interested in two MDD tools (closed source) and we added
a third tool, which is open source. During this thesis a unique Modeling Tool Selection
Method (MTSM) was constructed that helps Logica to select a MDD tool at the start of
a software engineering project. This MTSM was reviewed by Software Architects and
Software Developers of Logica, and validated with other researches. We designed a case
study to validate the MTSM, and to investigate the use of the tools. The project we used for
our case study was already developed at Logica and was the development of software for a
charge point for electric vehicles. During the case study the main functions of the software
were developed by using all three MDD tools separately. For ASD there was a pilot project,
for the charge point software, at Logica which we participated in and monitored closely
for our case study. The software was also developed with Bouml and Rhapsody during the
case study. The discussion of the results of the case study, in Section 4.6, showed that the
experiences of the developers that developed the software during the case study cope with
the MTSM.

5.2 Conclusions

The Modeling Tool Selection Method (MTSM) introduced in this thesis helps Logica se-
lecting one of their favorite Model-Driven Development (MDD) tools. The MTSM uses the
available information of an upcoming project to select a tool for that project. The MTSM
asks questions about the available information and it classifies the tools on criteria as us-

39

5.

ability, understandability, maintainability and others. Eventually all this information is put
into a matrix that helps in quickly choosing a tool. Using the MTSM saves valuable time
for Logica since the selection of a tool is now guided by this method.

The MTSM can also be used when a tool is already selected for a project. It then gives
the people involved in the project the important processes and products for that particular
tool. Validation of the MTSM is done by comparing results from other companies and
reviews of the method by Software Architects and Software Designers of Logica.

The case study involves a project that was programmed on a conventional way at Logica
and is build with all MDD tools during the case study. The evaluation of this case study and
the mental model that was formed during this extensive research are the root for the MTSM.

The research questions and their sub questions investigated in this thesis are:

1. To which extent can Model-Driven Development be used in the context of Logica?

a) What changes are needed in the current development process?

b) How can these tools help in delivering higher quality code for a low price?

c) When to use which tool?

2. How can the selection method be improved with knowledge from future projects?

a) To which extent can we add knowledge gained during projects?

b) How to add tools to the method/matrix?

The conclusions on the research questions are formed throughout this thesis and here we
describe how the conclusion is formed per research question. The conclusion on research
question 1a is that the development process is not specific per tool or for a MDD approach.
The current development process needs not to be changed or formed in a specific way, see
Section 3.3. At least the development process used during the case study in Chapter 4, it-
erative development, can be used by all three MDD tools. A case study can be considered
to investigate the difference between several development processes and the use with an
MDD tool. The answer to research question 1b can be found in Section 2.1. The use of
MDD offers a higher level of abstraction and the tools force the user to design a model. The
designing of models during the case study resulted in questions that the former designers
gave no thought. So we might conclude that the use of MDD resulted in higher quality of
the design, but whether this was at a lower price is hard to conclude. The development time
of the charge point application with the conventional way of programming could not be
compared to the design and programming time of MDD, since the first programming time
(conventional) was not measured, and parts of the programming code of the conventional
approach were reused in the MDD approach. When to use one of the tools that were re-
searched is asked in research question 1c and is described in the method of Chapter 3. The
method is especially constructed to make this selection at the start of a project. We can now
answer research question 1 that asks to which extent MDD can be used within Logica. We
introduced a method that selects a MDD tool at the start of a project. We narrowed the use
of this method, and thus MDD, to embedded software engineering projects and according
to our results the MTSM selects the right tool for the project.

40

Future Research

The second research question has two sub questions and are more specific for the use of
the MTSM. The answer to research question 2a is that it is not recommended to add knowl-
edge gained during projects. It is better to perform a case study since this results in a more
thorough investigation and better evaluation and validation of the findings. The other sub
question is 2b and is about the addition of a tool to the method. This is possible as described
in Section 3.1 and displayed in Figure 3.2 where a description is given of the addition of a
MDD tool. These sub questions answered the main research question 2 of how the MTSM
can be improved with future knowledge, by adding results from case studies and by adding
more MDD tools.

This research is useful for Logica because it resulted in the MTSM and a matrix that can
be used to select a MDD tool. This helps Logica adopting MDD in a efficient way, since
the best tool for the project is used and this increases the efficiency, the goal of this thesis
project. The introduction of the MTSM is also useful for science since it is a expandable
method that can also be used by other companies or for future research. The introduction of
the Meta-Process model allows the addition of criteria in the future, and the ability to add
other MDD tools. Useful extensions for future research are introduced in the next section.

5.3 Future Research

Since the MTSM is only evaluated with one case study useful future work is the evaluation
with multiple cases as already illustrated in Figure 3.2. This probably makes the MTSM
more accurate and gives a broader platform for acceptation of the MTSM. Also the use of
other development processes can be researched within a case study. When conducting more
case studies another useful extension would be a more detailed measurement of the costs.
Whether the costs are made during design or during implementation is interesting since
there can be significant differences in wages of Software Architects and Software Develop-
ers. Another interesting research would be to investigate to which extent it is possible to
measure the quality of the generated code.

Another useful extension is the addition of more MDD tools that Logica might be in-
terested in. This shows the ability to recover the mental model from this study and adds
another tool to the selection method.

As already discussed in Chapter 3 the MTSM is now only capable of use with embedded
systems that are not real-time. Future research could perhaps extend the use of the MTSM
by researching the applicability of the selection method in other types of projects.

41

Bibliography

[1] O. Alfonzo, K. Domı́nguez, L. Rivas, M. Pérez, L. Mendoza, and M. Ortega. Quality
Measurement Model for Analysis and Design Tools based on FLOSS. In Proceedings
of the 19th Australian Conference on Software Engineering, pages 258–268. IEEE
Computer Society, 2008.

[2] D. Ameller. Considering non-functional requirements in model-driven engineering.
Master’s thesis, Universitat Politcnica de Catalunya, june 2009.

[3] H. Andersson, E. Herzog, G. Johansson, and O. Johansson. Experience from intro-
ducing unified modeling language/systems modeling language at Saab Aerosystems.
Systems Engineering, 2009.

[4] E.G. Aydal, M. Utting, and J. Woodcock. A comparison of state-based modelling tools
for model validation. Objects, Components, Models and Patterns, pages 278–296.

[5] P. Baker, S. Loh, and F. Weil. Model-driven engineering in a large industrial context-
Motorola case study. Lecture notes in computer science, 3713:476, 2005.

[6] J. Bézivin. On the unification power of models. Software and Systems Modeling,
4(2):171–188, 2005.

[7] K. Bjerge. Model-driven development for embedded systems. 2008.

[8] Bouml. Bouml, Last accessed 02-02-2010.
http://bouml.free.fr/historic.html.

[9] G.H. Broadfoot. Asd case notes: Costs and benefits of applying formal methods to
industrial control software. Lecture Notes in Computer Science, 3582:548, 2005.

[10] G.H. Broadfoot and G. Kielty. Analytical Software Design Case MagLev Stage Soft-
ware Project for Philips Applied Technologies, 2005.

[11] AXIS Communications. Source development kit (sdk), Last accessed 06-06-2010.
http://www.axis.com/products/dev sdk.

43

BIBLIOGRAPHY

[12] J.C.S. do Prado Leite and J.H. Doorn. Perspectives on Software Requirements. Kluwer
Academic, Boston, Mass., 2004.

[13] B. P. Douglass. Model driven architecture and rhapsody.

[14] H.E. Eriksson, M. Penker, B. Lyons, and D. Fado. UML 2 toolkit. Wiley, 2004.

[15] FDR2. Failures-divergence refinement, Last accessed 23-05-2010.
http://www.fsel.com.

[16] B. Flyvbjerg. Five misunderstandings about case-study research. Qualitative inquiry,
12(2):219, 2006.

[17] Bert Folmer. Philips healthcare interventional x-ray project management, 11-05-2010.
Presentation Philips.

[18] R. France and B. Rumpe. Model-driven development of complex software: A research
roadmap. In 2007 Future of Software Engineering, pages 37–54. IEEE Computer
Society, 2007.

[19] R.B. France, S. Ghosh, T. Dinh-Trong, and A. Solberg. Model-driven development
using uml 2.0: promises and pitfalls. Computer, pages 59–66, 2006.

[20] D. Gentner and A.L. Stevens. Mental models. Lawrence Erlbaum, 1983.

[21] E. Gery, D. Harel, and E. Palachi. Rhapsody: A complete life-cycle model-based
development system. Lecture Notes in Computer Science, pages 1–10, 2002.

[22] ACG Identification Technologies GmbH. Hf mifare easy module, Last accessed 16-
03-2010. http://www.acg.de.

[23] B. Hailpern and P. Tarr. Model-driven development: The good, the bad, and the ugly.
IBM Systems Journal, 45(3):451–461, 2006.

[24] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM,
1985.

[25] IBM. Ibm, Last accessed 10-06-2010. http://www.ibm.com.

[26] H.W. Jung, S.G. Kim, and C.S. Chung. Measuring software product quality: A survey
of ISO/IEC 9126. IEEE software, pages 88–92, 2004.

[27] B. Kitchenham, S. Linkman, and D. Law. DESMET: a methodology for evaluating
software engineering methods and tools. Computing and Control Engineering Jour-
nal, 8(3):120–6, 1997.

[28] Barbara Ann Kitchenham. Evaluating software engineering methods and tool part
1: The evaluation context and evaluation methods. SIGSOFT Softw. Eng. Notes,
21(1):11–14, 1996.

44

[29] X. Larrucea, A.B.G. Dı́ez, and J.X. Mansell. Practical Model Driven Development
process. In Second European Workshop on Model Driven Architecture (MDA) with an
emphasis on Methodologies and Transformations. Citeseer, 2004.

[30] L.E. MENDOZA, M.A. PÉREZ, T. ROJAS, A. GRIMÁN, and L.A. DE LUCA.
Selecting tools for software quality management. Software Quality Professional,
4(4):18–27, 2002.

[31] OMG. Mda guide version 1.0.1. 2003. OMG document number omg/2003-06-01,
available from www.omg.org.

[32] OMG. Object management group, Last accessed 23-05-2010.
http://www.omg.org/.

[33] OMG Architecture Board ORMSC. Model driven architecture. 2001. OMG document
number ormsc/2001-07-01, available from www.omg.org.

[34] D.E. Perry, A.A. Porter, and L.G. Votta. Empirical studies of software engineering: a
roadmap. In Proceedings of the Conference on the Future of Software Engineering,
pages 345–355. ACM, 2000.

[35] Shari Lawrence Pfleeger. Design and analysis in software engineering: the language
of case studies and formal experiments. SIGSOFT Softw. Eng. Notes, 19(4):16–20,
1994.

[36] Philips. Philips applied technologies, Last accessed 07-06-2010.
http://www.apptech.philips.com.

[37] S.J. Prowell and J.H. Poore. Foundations of sequence-based software specification.
IEEE Transactions on Software Engineering, pages 417–429, 2003.

[38] J. Rech and C. Bunse. Model-Driven Software Development: Integrating Quality
Assurance. Information Science Publishing, 2008.

[39] C. Rolland. Modeling the requirements engineering process. In 3rd European-
Japanese Seminar on Information Modeling and Knowledge Bases, Budapest, Hun-
gary. Citeseer, 1993.

[40] A.W. Roscoe, C.A.R. Hoare, and R. Bird. The theory and practice of concurrency.
Citeseer, 1998.

[41] J. Rothenberg. The nature of modeling. Artificial Intelligence, Simulation, and Mod-
eling, pages 75–92, 1989.

[42] I. Rus and M. Lindvall. Knowledge management in software engineering. IEEE
software, pages 26–38, 2002.

[43] D.C. Schmidt. Guest editor’s introduction: Model-driven engineering. IEEE Com-
puter, 39(2):25–31, 2006.

45

BIBLIOGRAPHY

[44] B. Selic. The pragmatics of model-driven development. IEEE software, 20(5):19–25,
2003.

[45] Sioux. Sioux, Last accessed 07-06-2010. http://www.sioux.eu.

[46] D.I.K. Sjoberg, T. Dyba, and M. Jorgensen. The future of empirical methods in soft-
ware engineering research. In International Conference on Software Engineering,
pages 358–378. IEEE Computer Society Washington, DC, USA, 2007.

[47] ACME systems. Fox board, Last accessed 11-05-2010.
http://foxlx.acmesystems.it.

[48] A.B. Tucker. The computer science and engineering handbook. CRC press New York,
1997.

[49] Verum. Tools for building mathematically verified software, Last accessed 10-05-
2010. http://www.verum.com.

[50] J.M. Wing. A specifier’s introduction to formal methods. Computer, 23(9):8–10,
1990.

[51] C. Wohlin, M. Höst, P. Runeson, M.C. Ohlsson, B. Regnell, and A. Wesslén. Experi-
mentation in software engineering: an introduction. Kluwer Academic Pub, 2000.

[52] C. Wohlin, M. Höst, P. Runeson, M.C. Ohlsson, B. Regnell, and A. Wesslén. Experi-
mentation in software engineering: an introduction. Kluwer Academic Pub, 2000.

[53] R. Yin. Case study research: Design and methods. Sage Publications, 2008.

46

Appendix A

Glossary

In this appendix we give an overview of frequently used terms and abbreviations.

ASD: Analytical Software Design

CASE: Computer Aided Software Engineering

ELOC: Executable Lines of Code

FDR: Failure-Divergence Refinement

MDA: Model-Driven Architecture

MDD: Model-Driven Development

MDE: Model-Driven Engineering

MTSM: Modeling Tool Selection Method

OMG: Object Management Group

PDA: Platform-Dependent Application

PIM: Platform-Independent Model

PSM: Platform-Specific Model

SBS: Sequence-Based Specification

UML: Unified Modeling Language

VM: Virtual Machine

47

