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Abstract

As the world’s population keeps increasing and the rate of urbanizations increases, The rate at which
high­rise structures are being built is skyrocketing. In the Netherlands, this is no different. It is expected
that the amount of high­rise structures taller than 70 meters will more than double in the coming 20
years. As these structures become taller andmore slender, they also becomemore susceptible to wind­
induced excitations. Where once the design of a structure was predominantly governed by the Ultimate
Limit State (ULS) design criteria, for tall structures, the Serviceability Limit State (SLS) design criteria
becomes as, if not more, important. Therefore, the accurate prediction of the dynamic characteristics
are becoming increasingly important. One of these dynamic characteristics is the natural frequency,
also called the eigen frequency, of the structure.

The natural frequency is a parameter which is largely influenced by the mass and the stiffness of the
structure. One would think that after the completion of structure, that the magnitudes of parameters
can be determined with a high level of certainty, and that the natural frequency can be calculated
accurately, but this is not the case. When comparing the measured natural frequencies of several
high­rise structures in the Netherlands, to their natural frequencies determined in the design phases, an
underestimation of between 20% to 50%was seen. Although the likelihood that these underestimations
will lead to structural failure are small, it does lead to larger design forces and higher peak accelerations,
which are used in determining occupant comfort in the structures. The aim of this research is to find
the reasons for the discrepancies between the measured and the calculated natural frequencies.

A literature study was performed to determine what the most common methods of determining the nat­
ural frequency are during the design phase. There are three main methods which are used throughout
different stages of the design phase to approximate the natural frequencies. At the start of the design
phase, when structural parameters have not yet been determined, the natural frequency is approxi­
mated using empirical formulae. These formulae mostly only depend on 1 or 2 spatial parameters.
As the design progresses and the structural parameters are specified, dynamic beam theory can be
used to determine the natural frequency. These calculations take the stiffness of the super­ and sub­
structure, and the mass of the structure, into account. As the design nears completion, the structure is
modelled in a FE software package. The natural frequency can then be calculated by the software to
give a final impression of the natural frequency.

The main parameters influencing the natural frequency of a system are the stiffness and the mass. This
is no different for high­rise structures, but how do these parameters affect the natural frequency, and
which of these parameters has the greatest effect on the natural frequency? A sensitivity study, looking
at 5 existing high­rise structures in the Netherlands, was performed. Each structure was represented
by 5 different beam models. One structural parameter was added to each subsequent beam model as
to be able to quantify the influence of the added parameter. Lower and upper bounds were determined
for each structural parameter. By varying these parameters and calculating the natural frequencies,
the effect this variation has on the natural frequency can be determined. It was found that there are
3 parameters which have significant influence on the natural frequencies, namely, the superstructure
stiffness, the superstructure density and the rotational stiffness of the foundation. For all cases with
a flexible foundation, the measured natural frequencies could not be reached, even after determining
the natural frequencies using the extreme parameter combination, the natural frequencies were still
underestimated. The analyses were done for both uniform beam models and multibeam models. The
general trend was that the multibeam model produced higher frequencies. This is due to more of the
overall stiffness and mass of the structure being situated in the bottom sections of the structure. Using a
multibeam can lead to an increase in natural frequency of up to 15%. Although the natural frequencies
were increased, they were still nowhere near the measured natural frequencies.

The underestimation of the natural frequencies using the beams models, led to the question if there
are other factors which are not yet taken into account when determining the natural frequencies. In
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the calculation of the stiffness of the new Erasmus Medical Centre (NEMC), it was assumed that the
beams, columns, non­structural elements and the low­rise structure have a negligible influence on the
stiffness of the structure. The underestimation in the natural frequencies, led to the conclusion that the
stiffness of the structure is underestimated. A complete model of the NEMC was modelled using the
SCIA Engineer software. All the structural systems were added to themodel. Modal analyses, including
different combinations of structural systems and parameter magnitudes, were performed. It was found
that for the NEMC the assumption that the beams and columns have a negligible contribution to the
natural frequency, was correct. The main contributors to the stiffness of the superstructure were the
outer tube and the central cores. The partition walls were added to the model using low stiffness wall
elements, by added the walls, the natural frequency was increased by 8.5%. Assumptions were made
to include the influence of the low­rise structure. The determined natural frequency was increased past
the measured natural frequency, however, this result might not be realistic.

The final conclusion of the thesis is that the stiffness of the superstructure is underestimated. This
leads to the conclusion that there are certain elements which provide the structure with extra stiffness,
which is not yet taken into account. At the end of the thesis several recommendations are made as to
determine where this extra stiffness comes form.
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1
Introduction

1.1. Introduction
For almost 4000 years, the Great Pyramid of Giza held the title of the tallest structure in the world, until it
was overtaken by Old St. Paul’s Cathedral at the start of the 13𝑡ℎ century. Since then, this title has been
passed down from churches, to towers, to radio masts and now to the famous Burj Khalifa. Builders
and engineer throughout the ages have kept themselves busy with trying to exceed new heights and
claim this prestigious title. In the Netherlands, this was no different, as just before the end of the 14𝑡ℎ
century the Domtoren in Utrecht was finished, with a height of 112 meters. In 1898 the first high­rise
building in Europe, was built in Rotterdam. This being only 13 years after the world’s first high­rise
building in Chicago. Since the completion of the Witte Huis, more than 220 buildings higher than 70
meters have been built in the Netherlands, with the highest building being the Zalmhaventoren at 215
meters tall. It is predicted that the number of high­rise buildings above 70 meters will rise to 450 by
2040 [36].

Figure 1.1: Some of the tallest structures in the world throughout history [Google images]

As the race to the sky continues and the height and slenderness of structures keeps increasing, the dy­
namic properties become increasingly important. As these structures become higher, and their designs
more complex, it becomes increasingly difficult to predict these dynamic properties. As these tall build­
ings are more susceptible to wind excitations, the design criteria shifts from a predominant Ultimate
Limit State (ULS) governed design, to a combined ULS and SLS (Serviceability Limit State) governed
design. Instead of solely focusing on the structural integrity of the structure, maximum allowable de­
flection and occupant comfort must now also be taken into account. One of the important parameters

1



2 1. Introduction

Table 1.1: Weak­axis frequencies of five tall buildings in the Netherlands.

Bronkhorst, O. (2020). ‘Long­term vibration and wind load monitoring on a high­rise building’ [Conference
presentation].ISMA­USD 2020.

Method NEMC (121m) Montevideo (140) New Orleans (155) JuBi (153) Oval (98)
Measured 0.53 𝐻𝑧 0.41 𝐻𝑧 0.28 𝐻𝑧 0.46 𝐻𝑧 0.40 𝐻𝑧

NEN 6702 (Design) 0.27 𝐻𝑧 0.19 𝐻𝑧 0.19 𝐻𝑧 0.27 𝐻𝑧 0.33 𝐻𝑧
NEN­EN 1991­1­4 0.38 𝐻𝑧 0.33 𝐻𝑧 0.30 𝐻𝑧 0.30 𝐻𝑧 0.46 𝐻𝑧

used in the dynamic designs of these tall buildings, is the natural frequency. The natural frequency
provides insight into the dynamic behaviour of the structure and is often used in the determination of
base forces and peak acceleration during the design. Engineers and academics have dedicated large
efforts to finding accurate methods of predicting the natural frequency. Due to the complex designs
of tall buildings today, simplifying assumptions of structural properties are often made when during
the design phase, which often leads to discrepancies between the predicted and measured natural
frequencies.

1.2. Problem Statement
In the next 20 years, it is estimated that more than 200 high­rise buildings of over 70 meters will be built
in the Netherlands. As these structures become taller and more slender, the importance of the dynamic
properties keep increasing. During the design phase of a high­rise structure, the natural frequency is
used to give a first indication of the moments and shear forces at the base of the structure, used to
approximate the damping in the structure and used to determine the occupant comfort level. These
are just a few properties which are influenced by the natural frequency. It is thus easy to see why being
able to accurately predict the natural frequency is important. In table 1.1 the first natural frequency of
five high­rise structures in the Netherlands can be seen. The table shows the measured frequencies,
the frequencies used during the design phase using NEN 6702 and the frequencies determined by the
current European standards. When comparing the measured frequencies with the design frequencies,
it can be seen that an underestimation of up to 50% is not uncommon. The table also shows that even
though the frequencies determined using the current European standards, are closer to the measured
frequencies, there is still a significant amount of error.
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1.3. Research Objective and Approach 3

Although wind­induced vibrations in tall buildings seldom result in structural failure, the inaccurate ap­
proximation of the natural frequencies can have other consequences. In figure 1.2 the base moment
and base shear, calculated using the methods described in NEN­EN 1991­1­4, for the five high­rise
buildings can be seen for a varying natural frequency. It can be seen that the underestimation of the
natural frequencies can lead to an increased base moment and base shear, which can lead to over
designing the structure, which in turn leads to an uneconomical structure. Inaccurate prediction of the
natural frequency, can also have a negative effect on the comfort experienced by the occupants of the
structure.

1.3. Research Objective and Approach
The literature provides many different methods for the determination of the natural frequency of tall
buildings. These methods range from elaborate finite element models, to using beam theory, to using
empirical formulae. Each method having their own advantages and disadvantages. Often, simplifying
assumptions are made during the determination of the frequencies, which often lead to discrepancies
between the calculated and measured frequencies. As shown in table 1.1 these discrepancies also
occur during the designing of high­rise buildings in the Netherlands. It is, however, not always clear
what the exact cause of these differences in frequencies is caused by. This leads to the objective of
this thesis:

To determine the reasons for the underestimation of the natural frequency of high­rise
structures in the Netherlands.

To be able to complete the research objective, four main research questions are investigated. These
questions will provide insight and narrow done the search to the cause of the underestimation of the
natural frequency in high­rise structures in the Netherlands. Certain chapters in the thesis will be
dedicated to answering specific questions.

1. What are the most common methods of determining the natural frequency during the design
phase of a high­rise structure?

To be able to answer this question, a look will be taken at the literature. Firstly, the literature study will
provide basic insight into what the natural frequency is. The study will shed light on some of the main
parameters that influence the natural frequency by describing the motion of a single degree of freedom
system. Hereafter, common methods of determining the natural frequency during the design phase of
a tall building will be researched.

2. What are the main factors influencing the natural frequency of a high­rise structure during the
design phase?

3. What is the influence of these factors on the natural frequency?

Question 2 and 3 will be answered by means of a sensitivity study regarding five analytic beammodels.
A series of calculations will be done to determine which of the parameters included in the different beam
models have the most influence on the natural frequencies of the beam. Different beam theories will
be used, as to determine if different theories result in different natural frequencies. A lower and upper
bound of each of the beam model’s parameters will be determined. By calculating the frequency using
different parameters values, the effect of the parameter uncertainty has of the natural frequency can
be observed.
To be able to determine if the factors influencing the frequency behave the same for all structures,
five existing high­rise structures in the Netherlands will be looked at. Each structure will have different
parameter ranges, as no structural design is the same. This way, it can be determined if different
parameter combinations react differently when parameters varying from their lower bound to their upper
bounds.

4. Are there other factors that influence the natural frequency which are not taken into account?

Question 4 will be answered bymeans of a second sensitivity study. In this study, a full model of the new
Erasmus Medical Centre will be created in SCIA Engineer. The model will be as complete as possible
in regard to the structural specifications given in the design documentation. The focus will mainly be
on structural systems which are usually neglected or simplified in the beam models, like beams, floors,
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columns and large pile foundations. Certain parameter values and structural system in the model will
either be included of excluded from subsequent modal analyses. In this way, the effect in the change in
parameter values or the exclusion of certain structural systems have on the frequencies of the structure
can be quantified. internal and external non­structural systems will also be looked at, to see how these
systems might affect the frequency.

1.4. Thesis Layout
The body of this thesis is divided into 6 main chapters. Chapter 2 presents a literature study regarding
the background of the natural frequency and how it is determined during the design phase. The focus
of this study is to provide insight on what the natural frequency of a system is. Hereafter, the different
methods on how the natural frequency is determined is looked at. The background of the well known
empirical formula adopted by the current European Standards is explained. The calculation of the
natural frequency using beam models of FEM software is also discussed. Different beam models and
theories throughout literature are given. Parameters which influence the frequencies in the different
beam models and FEM software is also looked at.
Chapter 3 presents the first sensitivity study. This sensitivity study focuses on the use of beam theory to
determine the natural frequency of high­rise buildings. First, a description of the five high­rise buildings
used as case studies are describes. In this section, different properties and structural systems are
introduced. The measurement setup done by TNO and the measured frequencies of the structure is
given. Hereafter, the five different analytic models used in the sensitivity study are described. For
each subsequent model, a structural parameter is added to the system. In this way, the influence
of this parameter can be quantified. Then the lower and upper bounds for each parameter of the
different buildings are determined. Lastly, the results of the different sensitivity calculations are given
and discussed.
Chapter 4 discusses the second sensitivity study. In this chapter, structural systems which are usually
neglected in the beam models are focused on. This is done by creating a complete model of the new
Erasmus Medical centre, according to the specifications given in the design documentation. The first
section in this chapter discusses the FEM model which was made during the design of the structure,
and the editions added to the model for the purpose of this study. Hereafter, the sensitivity of the
frequency due to different structural and non­structural systems is examined.
Chapters 5 and 6 conclude the work covered in this thesis and provides recommendations for further
research, to gain more understanding into the complex topic that is the natural frequency of high­rise
structures.
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Literature Study

2.1. Introduction
As buildings become taller and more flexible, the need for lightweight and innovative solutions to com­
plex designs to be able to reach the new heights increases. As the materials and the structural system
of these tall buildings change, so does the structure’s response to dynamic wind loads. For this reason,
to be able to accurately determine the structural response, it is important to first be able to accurately
determine the structural parameters playing a role in this response. In older practice it was thought that
the parametric uncertainty was due to the variability in the wind environment, meteorological data and
wind­structure interaction and that structural properties were deterministic, but according to Kareem
[39] the uncertainty in the structural properties of tall buildings also play a large role in their dynamic re­
sponse. Structural properties which are obtained using the dimensions of the structure, like the height
or area of the structure, are usually quite easy to determine accurately. However, for properties such
as the building mass, stiffness of the superstructure and influence of the soil­foundation interaction a
lot of uncertainty can arise. These uncertainties are mainly caused by variation in the properties of the
used materials due to inconsistencies during fabrications, or variations in the mathematical idealization
of these properties [39].

One of the dynamic properties heavily influenced by the structural properties is the natural frequency.
During the design phase of a building, the natural frequency is an important parameter as it is used to
determine the peak acceleration and peak displacement at SLS, and the dynamic factor in ULS. In table
2.1 the natural frequency calculated during the design phase, and the measured natural frequencies
of 5 high­rise buildings in the Netherlands are shown. It can be seen that in all cases there is an
underestimation of the natural frequencies. Two of the main causes of the inaccurate estimation of
these frequencies is due to an inaccurate estimation of the structural parameters and not having a full
understanding of how the interconnected structural mechanisms influence the natural frequency [39].

Table 2.1: Calculated natural frequencies in the design phase and the measured natural frequency [9]

Building Calculated Frequency [Hz] Measured Frequency [Hz]
New Erasmus MC 0.27 0.53

Montevideo 0.19 0.41
New Orleans 0.19 0.29

JuBi 0.27 0.46
Oval 0.28 0.40

There are several methods how to predict the natural frequency of a structure. These methods range
from empirical estimators to detailed FEM simulations. Often early in the design phase of a structure,
empirical formulae are used to get a first impression of the value of the natural frequency. As the
design progresses and values of the structural parameters are defined, beam theory can be used to

5
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calculate the natural frequencies. This is discussed further in chapter 3 and Appendices A and B.
As the final design of the structure nears completion, the structure is modelled using FEM software.
The FEM software can then also be used to determine the natural frequency of the system. The
following sections provide insight of the different methods used when predicting the natural frequency
of a structure. In section 2.2.1 past and current methods of determining the natural frequency according
to Dutch standards are discussed. Section 2.2.2 gives background on the empirical formula used in
NEN­EN 1991­1­4, and also provides insight into other empirical frequency predictors. Section 2.2.4
discusses the use of FEM software to obtain the natural frequency and how different aspects of the
model influence the natural frequency.

2.2. Determining the natural frequency of high­rise structures
The natural frequency, also referred to as the eigen frequency, is the frequency at which an object
(or system) oscillates in the absence of a repeated external force. Knowing the natural frequency
of a system is important, because when a system is excited at the same frequency as the natural
frequency, resonance can occur if sufficient damping is not present. The natural frequency is also one
of the parameters needed to predict the dynamic response of a system, and errors in its determination
can lead to errors in the prediction and assessment of the dynamic behaviour of a system.

Each natural frequency has a certain mode of vibration. According to Ellis [19] for most buildings the
fundamental modes which mainly determine the dynamic behaviour are the two lowest translational
modes and the first one torsional mode. These modes contribute more than 90% of the overall motion
caused by wind. The higher modes are disregarded [19].

There are several methods how to predict the natural frequency of a structure. For simple systems,
the natural frequency can be determined exactly. For instance, in the case of a lumped mass attached
to a spring, forming a single degree of freedom system, the natural frequency can be determined with
equation 2.1. Where 𝜔𝑛 is the natural frequency, 𝑘 is the spring stiffness and 𝑚 is the lumped mass.
As the systems under consideration get more complex, the difficulty of accurately predicting the natural
frequency increases.

𝜔𝑛 = √
𝑘
𝑚 (2.1)

Two of the most renowned theories to model a structure are the Euler­Bernoulli beam theory and the
Timoshenko beam theory, founded in 1744 and 1921 respectively [16]. The former model is an accu­
rate predictor of the bending behaviour of a beam, but does not account for transverse deformations,
whereas the latter model introduces a uniform shear distribution along the beam’s cross­section. A
drawback of both theories is that they do not take effects such as localised boundary conditions, in­
and out of plane deformations, warping and torsional­bending coupling into account [16].

2.2.1. Design codes
2.2.1.1 NEN 6702

Even though high­rise building are complex systems existing of many parts, it is reasonable to represent
a high­rise building with a beam element. Often an Euler­Bernoulli beam is used, as high­rise buildings
are relatively flexible for their height. During the design phase of a structure, it is necessary to predict
the natural frequency of the structure. The NEN 6702 also adopts a vertical beam model [51], which
is supported at one end and free at the other end as shown in figure 2.1, to determine the natural
frequency. The formula for the natural frequency used in NEN 6702 is given in equation 2.2.

𝑓𝑒 = √
𝑎
𝛿 → 𝑓𝑒 =

√0.384
𝛿 (2.2)

With 𝑓𝑒 being the first eigen frequency of the beam,
𝛿 being the maximum displacement at the top of the beam due to the vertical load of the structure
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applied as a horizontal load against the structure, and
𝑎 being the acceleration of the beam. For a cantilever beam as shown in figure 2.1, the acceleration is
taken ass 0.384 𝑚

𝑠2 .

This formula can be derived using the three well known equation shown below. From the theory of the
dynamics of an Euler­Bernoulli beam, discussed in appendix B, the following equation is obtained by
rearranging equation B.26. For a cantilever beam with a fixed support, it is known that for the first eigen
frequency (𝛽𝐿)2 = 1.8751.

𝜔2𝑒 =
(1.8751)2𝐸𝐼

𝑚𝐿2 (2.3)

with 𝜔𝑒 being the first eigen angular frequency of the beam,
EI being the stiffness of the beam, and
m being the mass of the beam.
L being the length of the beam.

The second formula is the well known equation for the maximum deflection of a cantilever beam loaded
by a uniform distributed load. Considering a horizontal beam, where the only acting load is the own
weight of the beam, then 𝑞 = 𝑚𝑔. With 𝑔 being the gravitational acceleration of 9.81 𝑚

𝑠2 .

𝛿 = 𝑞𝐿4
8𝐸𝐼 =

𝑚(9.81)𝐿4
8𝐸𝐼 (2.4)

q being the distributed load.

By rearranging equation 2.4, combining it with equation 2.3 and converting the angular frequency to
frequency in Hertz, the formula in equation 2.2 is obtained.

𝑓𝑒 = √
9.81(1.8751)4
4𝜋2 × 8𝛿 = √0.384𝛿 (2.5)

Figure 2.1: Beam adopted by NEN 6702 to determine the natural frequency [51]

2.2.1.2 NEN­EN 1991­1­4

Upon the publication of the NEN­EN 1991­1­4, the method of determining the natural frequency for a
high­rise building was replaced. The current empirical formula used to determine the natural frequency
was found by Ellis [19]. The formula was determined by plotting the lowest natural frequency measured
for the buildings, against the height of the respective buildings of 163 rectangular shaped buildings. The
plot is shown in figure 2.2.
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Figure 2.2: Translational natural frequency plotted against building height for 163 rectangular buildings [19]

The best fit line has a correlation of 0.8828 to the data and is easy to use, as it only depends on the
height of the building. Equation 2.6 shows the best fit empirical formula, it can also be seen in figure
2.2. This is the equation NEN­EN 1991­1­4 has adopted for determining the first translational natural
frequency for structure with a height larger than 50m. In the same study, empirical formulae for the
natural frequency in the second translational and torsional direction, as shown in equation 2.7

𝑓𝑛,1 =
46
𝐻 (2.6)

𝑓𝑛,2 =
58
𝐻

𝑓𝑛,3 =
72
𝐻

(2.7)

With,
𝑓𝑛,1 the first translational natural frequency,
𝑓𝑛,2 the second translational natural frequency,
𝑓𝑛,3 the torsional natural frequency respectively, and
𝐻 being the height of the building.

2.2.2. Emperical formlae
Ellis [19] set out to find the best simple predictor for the natural frequency. Using data gathered by the
U.S. Department of Commerce, Naito et al. and his own, Ellis plotted the lowest translational frequency
measured for the buildings, against the height of the respective buildings of 163 rectangular shaped
buildings. This is shown in figure 2.2. In equations 2.6 and 2.7 Ellis opted for the empirical formulae
which had a high correlation to the measured data, but which were also simple to use. The fact is that
in the same study, Ellis found curves with a higher correlation to the data than the formulae adopted by
NEN­EN 1991­1­4, with the highest correlation being 0.8918. The other empirical formulae obtained
by Ellis and their correlation to the measured data is shown in table 2.2. In the table, it can be seen
that the empirical formula with the highest correlation is

𝑓𝑛,1 = 42.22𝐷0.2𝐻−1.2. (2.8)
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In figure 2.3 the equations 2.6 and 2.8 are plotted for buildings with a height between 50m and 200m.
Equation 2.8, represented in the dashed lines, is plotted for 4 different building lengths (D). In the figure
can be seen that the frequencies determined by equation 2.8 predict a lower frequency than equation
2.6.
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Figure 2.3: Best fit line for the empirical formula used by NEN­EN 1991­1­4 and the formula with the highest correlation for
different building lengths, plotted for buildings with a height between 50m and 200m.

Table 2.2: Correlation of measured and predicted lowest fundamental translation frequency for 163 rectangular buildings [19]

.

Predictor frequency proportional to Correlation coefficient r Best fit formula
𝐻−1.5 0.8835 220.60𝐻−1.5
𝐻−1.4 0.8851 162.60𝐻−1.4
𝐻−1.3 0.8859 119.27𝐻−1.3
𝐻−1.2 0.8860 87.10𝐻−1.2
𝐻−1.1 0.8850 63.32𝐻−1.1
𝐻−1 0.8828 45.84𝐻−1
𝐻−0.9 0.8793 33.05𝐻−0.9
𝐻−0.8 0.8743 23.72𝐻−0.8
𝐻−0.7 0.8676 16.95𝐻−0.7
𝐻−0.6 0.8591 12.05𝐻−0.6
𝐵𝐻−1 0.5530 2.17𝐵𝐻−1
𝐵0.5𝐻−1 0.7565 10.33𝐵0.5𝐻−1
𝐵0.3𝐻−1 0.8217 18.90𝐵0.3𝐻−1
𝐵0.1𝐻−1 0.8680 34.21𝐵0.1𝐻−1
𝐷0.3𝐻−1 0.8846 15.35𝐷0.3𝐻−1
𝐷0.2𝐻−1 0.8874 22.17𝐷0.2𝐻−1
𝐷0.1𝐻−1 0.8869 31.92𝐷0.1𝐻−1
𝐷0.2𝐻−1.2 0.8918 42.22𝐷0.2𝐻−1.2

𝐻 = height; 𝐷 = length; 𝐵 = width; All dimensions in meters.

Throughout the years, there have been numerous studies with regard to finding an accurate natural
frequency predictor. Equation 2.1 shows that for a basic mass­spring system, the natural frequency
depends on the mass of the system and the stiffness of the spring. This raises the question whether
predicting the frequency using only the height of the structure might be too simple. literature provides
several factors which influence the natural frequency of a building, a few are the configuration of the sta­
bility system of the structure, the mass density and distribution over the building height, the distribution
of stiffness of the building, material properties and foundation parameters [61]. There are also studies
showing that non­structural elements, such as partition walls and masonry in the structure, influence



10 2. Literature Study

the natural frequency of a building [44, 42, 57]. One can see why it is difficult determining an empirical
formula which takes into account all the different influencing factors. For this reason, the buildings used
to determine an empirical formula are often clustered into groups with some of the same attributes. In
table 2.3 empirical formulae to determine the natural frequency of high­rise buildings with a height of
at least 50m, can be found. In the table the study of origin, formula and the range in which the formula
can be applied is seen. Figure 2.4 shows the different empirical formula plotted against height. The
buildings heights range from 50m to 200m. For formulae dependent of the number of storeys (𝑁) and
the width (𝐷) of the building, a range of 12 to 50 storeys and 30m is used respectively.

Table 2.3: Empirical formulae used to estimate the fundamental frequencies of high­rise buildings

Study Formula Application
NRCC [15] 20𝐻−0.75 ”Bases on measured periods of buildings”
Gilles [22] 52.6𝐻−1 ”Regression analysis to test goodness of fit of different equa­

tions of the mean­value curve”
Hong [28] 34𝐻−0.804 ”Predicts median fundamental vibration period of RC moment

resisting frame (MRF) building with given height”
ICBO [30] 20𝐷0.5𝐻−1 ”According to 1970 edition of Uniform Building Code”
ICBO [31] 13.7𝐻−0.75 ”Evaluates fundamental vibration period of RC MRF building”
Goel [23] 19.7𝐻−0.92 ”Obtains measured periods of RC MRF buildings n California

using unconstrained regression analysis”
Goel [23] 18.9𝐻−0.9 ”For RC structures”
Goel [23] 21.5𝐻−0.9 ”Based on lower bound of data; proposed for RC frames”
CEN [20] 13.3𝐻−0.75 ”According to the European seismic design regulations; only

for RC structures”
Hatzigeorgiou [25] 13.7𝐻−0.745 ”Considers influence of infill and concrete shear walls, soil

flexibility, and building height ”
ASCE [2] 13.8𝐻−0.8 ”General buildings”
Crowley [17] 11.1𝐷0.5𝐻−1 ”Vibration of RC moment resisting frames with rigid infills”
BIS [13] 10𝑁−1 ”Earthquake­resistant design of structures”
Michel [49] 76.9𝐻−1 ”RC and masonry buildings”
Pan [52] 10.8𝑁−0.8183 ”RC and masonry buildings”
Velani [59] 111.1𝐻−1.1 ”RC buildings above 20 floors (>60m)”
𝐻 = height; 𝐷 = length; 𝑁 = Number of storeys.
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Figure 2.4: Empirical formulae given in table 2.3 plotted vs height ranging from 50m to 200m. Formulae dependent on N or D,
a range of 12 to 50 storeys and a width of 30m is used.



2.2. Determining the natural frequency of high­rise structures 11

2.2.3. Beam Theory
As high­rise structures become higher and more slender, they are often relatively flexible owing to their
height. For this reason, it is generally accepted to use Euler­Bernoulli and Timoshenko beam theory
to represent these tall structures. High­rise structures are represented by cantilever beams, where the
top is free and the base of the beam has a set of boundary conditions. The boundary conditions are
commonly either fixed, to represent a structure build on bedrock. Or, the boundary conditions can be
represented by a series of springs to represent the soil­structure interaction.

In the 1750s mathematicians Euler and Lagrange described dynamic beam theory for a bending beam
with a uniform stiffness and density [16]. Using this beam theory, the dynamic behaviour of beams
could be predicted. This theory is still used today to predict the dynamic behaviour of beams. Applying
this theory to a cantilever beam which represents a tall building, the dynamic behaviour of this building
can be approximated. Properties like the eigen frequencies, mode shapes and free and forced vibration
behaviour can be predicted. The first three translational mode shapes of a cantilever Euler­Bernoulli
beam can be seen in figure 2.5. These are the shapes the beam will assume when excited by the first
three translational eigen frequencies.

Figure 2.5: First three translational modes of a cantilever Euler­Bernoulli beam.

When using dynamic beam theory to predict the dynamic behaviour, one of the main assumptions is
that the beam is seen as a continuous system. This means that there are an infinite number of degrees
of freedom. This also means that the system has an infinite number of eigen frequencies. The equation
of motion of an Euler­Bernoulli beam is shown in equation 2.9. When the differential equation os solved
for a cantilever beam with a fixed base, the natural frequency can be determined with equation 2.10.
Where 𝑛 is the number of the wanted eigen frequency and 𝛽𝑛 is a value which corresponds to each
individual eigen frequency. In equation 2.10 is can be seen, just like for the SDoF system, that the
eigen frequencies of a beam increase as the stiffness of the beam increases, and decreases when
the mass of the beam increases. The change in frequency due to an increased stiffness or mass is
graphically represented in figure 2.6.

𝜌𝐴𝑑
2𝑣
𝑑𝑡2 +

𝑑2
𝑑𝑥2 (𝐸𝐼

𝑑2𝑣
𝑑𝑥2 ) = 𝑞 (2.9)

𝜔𝑛 = 𝛽𝑛√
𝐸𝐼
𝜌𝐴 (2.10)
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Figure 2.6: General change in frequency due to an increase in stiffness of mass parameters

Since the dynamic beam theory was proposed, many researches have been inspired to build on this
theory, or to introduce theories of their own. One of the assumptions often made when simplifying
a high­rise structure with a cantilever beam, is that the parameters do not vary in the height of the
structure. In some cases, this can have a significant influence on the frequencies. Many studies have
researched the effect of changes in the stiffness and density in the longitudinal direction have on the
frequency. Jang and Bert [33, 32] proposed a method for the free vibration of a stepped Euler­Bernoulli
beam. The beam had a single step, and the neutral axis of the two stepped sections were collinear.
Ju et al. [38] presented a differential equation which exceeded the restriction of Jang and Bert, and
solved the free vibration for beams with multiple steps with non­collinear neutral axes. Jategaonkar
and Chehil [37] investigated the problem of calculating the natural frequency of a beam with a varying
inertia, area and mass. Studies have also been done on bending­shear and bending­torsional coupled
beams [18] [7]. These are only a few studies that touch on the topic of the free vibration of beams.

As high­rise structures are often not constant in stiffness and mass over their height, it is easy to
question if a beam with uniform parameters is an accurate simplification? Or what if the beam acts
more like a shear beam, rather than a bending beam? With the wide variety of structural types and
complex designs of tall buildings today, modern buildings are often difficult to simplify accurately. In the
work of Bartolini [5], he describes a Differential Degree of Cantilever Action (dDCA) shown in equation
2.11. The dDCA calculates how the actual mode shape of an existing building, differs from an idealized
bending beam. If the dDCA calculates a value of 1, the structure is an ideal bending beam. Whereas,
if the dDCA calculates a value of 0, the beam is an ideal shear beam. Values between 0 and 1 will thus
show if the structure is dominated by cantilever action, or by shear action. This method is currently
being used to reclassify high­rise structures in America [5].

𝑑 = 1 − 1
𝑁Σ

𝑁
𝑖=1
Δ𝐶𝑖(ℎ𝑖)
𝑇𝑖(ℎ𝑖)

(2.11)

Where 𝑁 is the amount of steps where measurements were taken,
ℎ𝑖 is the height where the 𝑖𝑡ℎ measurement was taken,
Δ𝐶𝑖(ℎ𝑖) is the difference between the measured data and the ideal bending beam, and
𝑇𝑖(ℎ𝑖) is the difference between the measured data and the ideal shear beam.

2.2.4. Finite Element Method Software
As the design phase progresses and the structural systems are more defined, models of the structure
are often created in FEM software. One of themany advantages of using FEM software is that structural
systems, such as beams, floors, outriggers, etc., as well as non­structural systems, can easily be
taken into account when performing dynamic analyses. Although these FEM software packages can
determine the natural frequency quite accurately, simplifications in the creation of the models are still
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Figure 2.7: Differential Degree of Cantilever Action.
[5]

made to save time and computation power. These simplifications often lead to discrepancies when
comparing the FEM determined results to the measured data [42]. Table 2.4 shows a few studies where
measured frequencies were compared to the frequencies determined by FEM software. The table
shows the type of structure, what was included in the FEM model and the comparison in frequencies.
It can be seen that in most studies, there is a significant difference between the measured frequencies
and the frequencies determined by the FEM software.

Certain structural and non­structural systems are commonly assumed to be negligible when calculating
the frequencies, but this is often found not to be accurate. This has been the topic of many studies.
Kim et al. [44] studied three towers in Korea. All three towers had a similar structural system, which
consisted of a perimeter beam­column frame and concrete cores is the centre of the structure. The
initial FEM models only included these structural systems. The underestimation of the first natural
frequency for the initial FE models was between 70% and 85%. Hereafter, several changes were made
to the models which influence the frequencies. Beam­end­offset 1 was introduced to the models and
increased the natural frequencies by 1%­6%. Floor slabs were modelled, instead of rigid diaphragms
2, this further increased the translational frequencies by 3%­11%, and the torsional frequencies by
16%­23%. After plain concrete and concrete brick walls were added to the model, the first translational
frequency was increased by 5%­12%. According to Kim [44], the Korean Building Code states that to
assure the quality of concrete, the compressive strength of concrete used during construction must, on
average, be 21% higher than stated in the design. By introducing this increase to the FE model, the
frequencies were raised further by 7%­12%. After introducing all these changes, the highest error in
FEM determined frequency was only 4%.

Su et al. [57] did a similar study of three high­rise structures in China. In the study, only the major
structural elements of the structural were added to the FE model. Floors were again modelled by
rigid diaphragms, as in the previous study. For the three models, the initial frequencies calculated
by the FEM software, were underestimated by more than 100%. The first structure was a 15­storey
reinforced concrete (RC) building. The lateral stability system consisted of RC moment resisting (MR)
frames attached to a concrete core in the centre of the structure, and 4 shear walls at the edges of
the structure. According to Su [57], the Hong Kong construction regulations state that the concrete
strength used during construction must be 5𝑀𝑃𝑎 higher than specified in the design. The increase in
the concrete strength lead to an increase in frequency of between 15%­16%. The addition of concrete
1”In conventional analysis of frame, beams and columns are modelled in such a way that they are connected at dimensionless
nodal points. However, in reality a joint has finite dimensions and generally acts as a rigid body, so it is believed that that FE
models considering beam­end­offset at the joints can more accurately represent the actual behaviour.” [44]

2Rigid diaphragms are kinematic constraints imposed on the lateral displacements of the floor nodes, so these nodes can only
displace as a rigid body. [44]
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Table 2.4: Measured frequency compared to FEM determined frequency

Researcher Material & Height Mode of Natural frequency [Hz] Difference Components included
type of structure [m] vibration Measured FEM % in FEM model

J.M.W. Browinjohn, et al. [12] RC core and concrete 280 1st 0.191 0.194 1.6 Bare frame,
filled tube columns 2nd 0.199 0.215 8.0 wall opening and core

3rd 0.566 0.605 6.9 thin wall in the core
M. Miwa, et al. [50] Steel frame 63 1st 0.76 0.76 0.0 Bare frame and

2nd 0.87 0.86 ­1.1 composite beams
3rd 1.15 1.11 ­3.5

Y. Tamura, et al. [58] Steel frame 108 1st 0.57 0.57 0.0 Bare frame
2nd 2.18 2.15 ­1.4
3rd 4.58 4.48 ­2.2

Q.S. Li, et al. [45] RC frame and 200 1st 0.368 0.3 ­18.5 Not specified
core walls 2nd 1.395 1.109 ­20.5

3rd 2.979 2.451 ­17.7
E. Ho, et al. [27] RC shear wall 218 1st 0.31 0.18 ­41.9 Bare frame

2nd 0.31 0.18 ­41.9
3rd 0.53 0.16 ­69.8

s. Campbell, et al. [14] RC shear wall 206 1st 0.36 0.18 ­50.0 Bare frame
2nd 0.37 0.19 ­48.6
3rd 0.58 0.15 ­74.1

RC frame and 51 1st 1.67 0.82 ­50.9 Bare frame
core walls 2nd 1.75 0.63 ­64.0

3rd 2.38 1.03 ­56.7
R.K.L. Su, et al. [57] RC frame and 53 1st 1.79 0.53 ­70.4 Bare frame

core walls 2nd 1.72 0.66 ­61.6
3rd 2.63 0.62 ­76.4

RC shear wall 113 1st 0.78 0.38 ­51.3 Bare frame
2nd 0.72 0.36 ­50.0
3rd 0.65 0.38 ­41.5

J.Y. Kim, et al. [43] RC frame and 148 1st 0.35 0.23 ­34.3 Bare frame
core walls 2nd 0.38 0.28 ­26.3

3rd 0.74 0.46 ­37.8
Q.S li, et al. [46] Steel and RC 420 1st 0.147 0.162 10.2 Not specified

2nd 0.381 0.446 17.1
3rd 0.576 0.664 15.3

brick walls to the model, added 74%­140% to the frequencies. All secondary beams, which were not
taken into account in the bare frame model, had less than 2% effect on the frequencies. Lastly, floor
slabs were added to the model, instead of the rigid diaphragm assumption. This lead to an increase
of around 12%. After the model was updated, the difference between the FE software determined
frequencies and the measured frequencies were minimized to between ­6% to 3%.

For the other two structures, similar results were obtained. With final differences between determined
and measured frequencies of ­1.7% to 5.5%.

Several similar studies can be found in literature. This shows that even though FE software is able to
predict frequencies quite accurately, the engineer should be wary in the assumptions which are made.
the wrong assumptions could often lead to an over simplification of the model, which could provide
inaccurate results.



3
Sensitivity Study I: Analytic Models of 5

Existing High­Rise Structures in the
Netherlands

3.1. Introduction
As the literature discussed in the previous chapter shows, there are several factors which influence the
accurate determination of the natural frequencies. The aim of chapter 3 is to gain a better understanding
of how certain properties of a structure affect its natural frequency. As stated by Kareem [39] the
uncertainty in the determination of structural properties of tall buildings play a large role in their dynamic
response. For this reason, a closer look will be taken at the building parameters with high uncertainty
and what this uncertainty does to the natural frequency. The 5 high­rise buildings discussed in chapter
2 (the New Erasmus Medical Center, The Montevideo tower, the New Orleans tower, the JuBi tower
and the Oval tower), will be used as case studies to show the sensitivity of the natural frequency.

As it is quite difficult to quantify an exact amount of uncertainty for the different structural parameters,
this will be done in the form of determining a lower and upper bound for each parameter influencing
the natural frequencies of the structures. These are the parameters related to the mass and stiffness
of the superstructure and the foundation, and bounds will be determined for the superstructure’s bend­
ing stiffness and density and the foundation’s rotational and translational stiffness and the mass of the
foundation. Spatial parameters such as the surface area and height of the structure are assumed to
be deterministic and will be calculated exactly. As the structures are not uniform over their height, the
mass and stiffness parameters of the superstructure are calculated for each section where there is a
significant change in these parameters. FEM results determined during the design phase of the re­
spective structures, and the calculated sectional parameters are used to determine a bending stiffness
for the structure which is uniform throughout the height of the structure.

Once the parameter ranges are determined, the influence of these ranges on the natural frequencies
can be determined. This is done by calculating the natural frequency using 5 different analytical beam
models as stated below. Each of these models will provide insight on how the addition or exclusion of
certain structural parameters influence the natural frequency. Two different beam theories are used,
Euler­Bernoulli and Timoshenko, so that the most suitable theory for the given buildings can be found.
Two different analytic approaches are used. First, a one beam model is used with uniform parameters
throughout the height of the beam, second, a multibeam model is used with the calculated sectional
properties.

1. Case 1: Cantilever Euler­Bernoulli beam with fixed support

2. Case 2: Cantilever Euler­Bernoulli beam with rotational spring support

3. Case 3: Cantilever Euler­Bernoulli beam with rotational and translational spring support

15
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4. Case 4: Cantilever Euler­Bernoulli beam with rotational and translational spring support including
foundation mass

5. Case 5: Cantilever Timoshenko beam with rotational and translational spring support including
foundation mass

In this chapter, section 3.2 provides background of the 5 high­rise buildings used in this sensitivity study.
Important aspects of the design of each structure are discussed, and the measured natural frequency
of each structure is given. Section 3.4 describes the 5 different analytical models used in the study,
and the relevance of the different models. Section 3.5 describes how the lower and upper bounds of
the sectional and uniform structural parameters are determined, and gives reference to the appendices
where the calculations can be found. Section 3.6 describes the methodology used to obtain the results,
and section 3.8 will conclude the findings of the study.

3.2. Building Descriptions and Measurements
To determine the influence the different structural parameters have on the natural frequency, five dif­
ferent existing buildings are looked at. These buildings are the New Erasmus Medical Center, the
Montevideo tower, the New Orleans tower, the JuBi tower and the Oval tower. TNO has gathered
data regarding the natural frequencies of each of these buildings. The following section describes the
key structural aspects of the five structures, the setup of the measurement apparatus and the natural
frequencies measured by TNO.

3.2.1. The New Erasmus Medical Center
The newErasmusMedical Center (NEMC) is a hospital building in the center of Rotterdam. The building
is 121m tall, consists of 31 floors and has a constant rectangular shape throughout the entire height of
the building as shown in figure 3.1. The load carrying system of the structure exists of a concrete tube
and three central concrete cores, which are marked in red in figure 3.1a. The lower part of the concrete
tube, up to level 4 marked by ’1’ in figure 3.1b, is made in situ, whereas the rest of the structure (marked
by ’2’) exists out of layered prefabricated concrete elements. The lateral stability of the structure is
provided by the concrete tube and core of the structure. The structure rests on a 2m thick concrete
foundation slab supported by 352 piles. Between the ground floor and the foundation slab, there is a
crawl space of about 1.5m. Connected to the lower part of the tower is a low­rise building of 14 storeys
high. Between the two structures, movement joints are placed, and it is thus assumed that the low­rise
structure does not provide stiffness to the high­rise structure.

On the top floor of the tower, 6 accelerometers were placed as shown in figure 3.1a [54]. In figure 3.1a
can be seen that accelerometers 1, 3 and 5 are placed facing the direction of the strong­axis as to
measure the accelerations in the y­direction, in the same figure can be seen that accelerometers 2, 4
and 6 are placed facing the weak­axis as to measure the accelerations in the x­direction. With the data
gathered by TNO, the first three eigenfrequencies were determined and are shown in table 3.1. These
are the measured frequencies in the weak (x), strong (y) and the torsional (𝜙) direction.

Direction Frequency [Hz]
x 0.53
y 0.68
𝜙 1.28

Table 3.1: Eigenfrequency in the x, y and torsion direction of the new Erasmus Medical Center
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(a) Plan view of NEMC top floor (b) Front view of NEMC

Figure 3.1: Plan and front view of the NEMC showing the lateral stability system, concrete core and the placement of the
measuring apparatus

3.2.2. The Montevideo Tower
The Montevideo tower is a residential building situated in the centre of Rotterdam. The tower has 43
floors above ground and is 140m tall (close to 150m when including the 8m high letter ’M’ on the roof).
The structure has a rectangular shape throughout the height of the building. The lateral stability system
of the tower is split into 3 parts: the top part, stretching from the 28𝑡ℎ floor to the 42𝑛𝑑 floor, exists of
a steel frame system shown in green in figure 3.2. On the outer side of the steel frame, the beams
and columns are connected by diagonally placed steel beams stretching from floors 28 to 35 and from
floor 35 to floor 42. The middle of the structure, from the 2𝑛𝑑 floor to the 28𝑡ℎ floor, exists of a concrete
structure of load bearing walls given by the red lines in figure 3.2. Lastly, the bottom part of the structure,
from the ground floor to the 2𝑛𝑑 floor, exists of a concrete core and steel braces. Beneath the ground
floor there is a parking garage stretching 2 levels down. The floor of level ­2 is a concrete foundation
slab of 2m thick which rests on 238 prefabricated concrete piles. Connected to the lower part of the
tower is a building of 8 storeys high. Between the two structures, movement joints are placed, and it is
thus assumed that the low­rise structure does not provide stiffness to the high­rise structure.

Figure 3.2: The lateral stability system of the three parts of the Montevideo tower

In the Montevideo tower, 6 accelerometers were placed on the 27𝑡ℎ floor and 5 accelerometers were
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placed on the 42𝑛𝑑. Accelerometers 1, 3 and 5 (27𝑡ℎ floor) and 7, 8 and 10 (42𝑛𝑑 floor) are placed facing
the direction of the strong­axis as to measure the accelerations in the y­direction [54]. Accelerometers
2, 4 and 6 (27𝑡ℎ floor) and 9 and 11 (42𝑛𝑑 floor) are placed facing the weak­axis as to measure the
accelerations in the x­direction [54]. The setup of the accelerometers can be seen in figure 3.3. With
the data gathered by TNO, the first three measured eigenfrequencies were determined and are shown
in table 3.2.

Direction Frequency [Hz]
x 0.41
y 0.49
𝜙 1.06

Table 3.2: Eigenfrequency in the x, y and torsion direction of the Montevideo tower

Figure 3.3: Accelerometer setup of the Montevideo tower. [54]

3.2.3. The New Orleans Tower
The New Orleans tower is a residential tower located next to the Montevideo tower. The building has
44 storeys above ground, a 2­storey parking area below ground and is 155m tall. From level 2 and
upwards, the stability of the structure is given by the concrete core shown in red in figure 3.4a, the
concrete walls acting as outriggers spreading from the central core shown in blue, and the outer walls
shown in green. The walls marked in blue act like outriggers as they transfer the loads in the structure
to the columns of the lower levels, also marked in blue in figure 3.4b, which in turn transfers the load
to the foundation. Beneath the parking area, the structure rests on a 2.5m thick concrete foundation
slab, which transfers the loads to the 323 concrete piles found below the foundation slab.

On the 34𝑡ℎ floor of the New Orleans tower, 4 accelerometers were placed. Accelerometers 1 and
3 are placed facing the direction of the strong­axis as to measure the accelerations in the y­direction
and accelerometers 2 and 4 are placed facing the weak­axis as to measure the accelerations in the
x­direction [56]. The setup of the accelerometers is shown in figure 3.4a. With the data gathered by
TNO, the first three measured eigenfrequencies were determined and are shown in table 3.3.

Direction Frequency [Hz]
x 0.28
y 0.29
𝜙 0.67

Table 3.3: Eigenfrequency in the x, y and torsion direction of the New Orleans tower.
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(a) stability system above level 1 (b) Stability system levels 0 and 1

Figure 3.4: Lateral stability system of the New Orleans tower and the placement of the measuring apparatus

3.2.4. The JuBi Tower
The JuBi towers are office buildings situated in the centre of the Hague. Both towers have 38 storeys
and are 146m high. Connecting the two towers there is a low­rise building of 10 storeys high. Movement
joints are present between the low­rise building and the towers and for this reason the low­rise building
is neglected in the analysis. The highlighted tower in figure 3.5a will be considered further in this
report. The stability of the structure is provided by a tube­in­tube system. The outer tube exists out of
prefabricated concrete elements and the inner tube are a set of concrete cores, as respectively shown
in red and blue in figure 3.5b. Beneath the ground level of the building is a 2­storey parking area which
rests on a concrete foundation slab varying in thickness between 1.2m and 800mm. The foundation
slab is supported by 529 concrete piles.

(a) Considered JuBI tower (b) Stability system of the JuBi tower

Figure 3.5: The considered JuBi tower and it’s stability system.

In the JuBi tower, accelerometers were placed on the 9𝑡ℎ, 22𝑛𝑑 and 37𝑡ℎ floor and can be seen in
figure 3.6. Accelerometers 2, 4 and 6 were placed in the direction of the strong­axis as to measure the
acceleration of the y­axis and accelerometers 1, 3, 5, 7 and 8 were placed facing the direction of the
weak­axis as to measure the acceleration in the x­axis.With the data gathered by TNO, the first three
measured eigenfrequencies were determined and are shown in table 3.4.
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Direction Frequency [Hz]
x 0.46
y 0.55
𝜙 1.00

Table 3.4: Eigenfrequency in the x, y and torsion direction of the JuBi tower.

Figure 3.6: Accelerometer setup of the JuBi tower [54]

3.2.5. The Oval Tower
The Oval tower is an office building in Amsterdam and gets its name due to its uniform oval shape
throughout the entire height of the building. The building has 24 floors above ground, one level below
ground and is 98m high. The inner concrete core of the building is the main load bearing structure,
and the outer perimeter is closed off by aluminium walls. The stability of the structure is provided by
the concrete core, as well as 8 concrete columns on the outer perimeter of the structure, which are
connected to the central core by outriggers. The stability system is shown in red in figure 3.7a. Below
the core of the structure the foundation plate is 1.5m thick and under the rest of the structure it has a
thickness of 400mm. The foundation plate rest on 185 concrete piles.

The top floor of the Oval tower was provided with 6 accelerometers. Accelerometers 2, 4 and 6 are
placed facing the direction of the strong­axis as to measure the accelerations in the y­direction and
accelerometers 1, 3 and 5 are placed facing the weak­axis as to measure the accelerations in the x­
direction [54]. The setup of the accelerometers is shown in figure 3.7b. With the data gathered by TNO,
the first three measured eigenfrequencies were determined and are shown in table 3.5.

Direction Frequency [Hz]
x 0.40
y 0.57
𝜙 0.82

Table 3.5: Eigen frequency in the x, y and torsion direction of the Oval tower.
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(a) Horizontal stability system

(b) Accelerometer setup [54]

Figure 3.7: The horizontal stability system and the accelerometer setup of the Oval tower.

3.3. Determining the natural frequency using measured data
The setup of the measurement apparatus used to gather acceleration data for the 5 high­rise struc­
tures was discussed in the previous section. Each accelerometer is placed facing one of the principal
directions, as to record the accelerations only in that direction if that vibration mode is activated. Fig­
ure 3.8a shows the setup of the accelerometers in the NEMC. Accelerometer 2, 3 and 4 are set up to
record the accelerations in the strong direction, and accelerometers 1, 5 and 6 are set up to record the
accelerations in the weak direction. Figures 3.8b shows the accelerations for a short time period for
accelerometers 1 and 2.

(a) Accelerometer Setup
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(b) Measured acceleration for accelerometer 1 and 2

Figure 3.8: Accelerometer direction setup and the measured accelerations of sensor 1 and 2 in the NEMC
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3.3.1. Natural frequency in the time domain
A first approximation of the natural frequencies can be made by considering the acceleration­time
signal. First a segment of the recorded accelerations, where a visible vibration is present. These
segments are shown between the black lines in the top two graphs of figure 3.9. When zooming in on
these segments, as shown in the bottom figures of figure 3.9, the oscillations in the accelerations can
be seen. The natural frequency can be calculated by dividing the number of oscillations with the time
in which these oscillations take place.
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Figure 3.9: Acceleration signal of sensor 1 and 2 (top). Segment of each signal (bottom).

Considering the oscillations for the time period between the red lines, for sensor 1, it can be seen that
6 full oscillations are made in between seconds 176.5 and 187.7. The natural frequency is thus

𝑓1 =
6

187.7 − 176.5 = 0.536𝐻𝑧 (3.1)

this corresponds to the first translational frequency given in section 3.2.1. The same can be done for
the accelerations of sensor 2, where there are 9 oscillations between seconds 222.3 and 235.5, which
equates to a frequency of

𝑓1 =
9

235.5 − 222.3 = 0.682𝐻𝑧 (3.2)

and corresponds to the second translational frequency.

3.3.2. Natural frequency in the frequency domain
There are several methods how to extract the natural frequencies from acceleration data. One of
the most used methods is the method proposed by Peter Welch [60]. In this method, the measured
acceleration data is divided into several segments. Each segment partly overlaps with the previous
and following segment, as shown in figure 3.10. The frequency spectrum is then calculated for each
section using the Fast Fourier Transform (FFT) method. The sectional spectra are then averaged to
create a full spectrum for the accelerations signal. The averaging of the spectra results in a smoother
spectrum when compared to taking the FFT of the whole spectrum [6]. The method is explained in
detail in [60] and will not be discussed further.

Figure 3.10: Sectioning of measured accelerations.

This method was performed on the datameasured by the all 6 of the accelerometers in the NEMC, using
the pwelch function in MATLAB R2020a. The acceleration data in inputted into the pwelch function.
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For the NEMC, 20 accelerations data sets of around 10 minutes long, for each sensor were used. The
signal is then split into a user define amount of segments. In the case of the NEMC, 1 segment was
chosen to be the length of 1 data set. So the total acceleration data was split into 20 segments. Each
segment is then windowed by a Hamming window with a length that corresponds to the length of the
segments. The power spectral density (PSD) for each sensor was then calculated. The computed PSD
for accelerometers 1, 5 and 6, and accelerometers 2, 3 and 4, are shown in figure 3.11. From the top
graph, two clear frequency peaks can be seen in the first 1.5 Hz. The frequency peaks are situated at
0.53 and 1.28 Hz, where the former of these two frequencies corresponds to the first translational eigen
frequency of the NEMC. In the bottom graph, again two frequency peaks can be seen in the first 1.5
Hz. The first being at 0.68 Hz, which corresponds to the second translational frequency. The second
peak is also situated at 1.28 Hz. When considering figure 3.12, the power spectral densities of all the
sensors are shown. It can be seen that for all sensors, there is a peak at 1.28 Hz. This means that
both principal directions were excited at this frequency, leading to the conclusion that this is the first
torsional eigen frequency of the NEMC.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency [Hz]

10
-10

10
-5

P
o

w
e

r 
S

p
e

c
tr

a
l 
D

e
n

s
it
y

Resonace peaks in weak direction

sensor 1

sensor 5

sensor 6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Frequency [Hz]

10
-10

10
-5

P
o

w
e

r 
S

p
e

c
tr

a
l 
D

e
n

s
it
y

Resonace peaks in strong direction

sensor 2

sensor 3

sensor 4

Figure 3.11: Power spectral density for frequencies excited in the x­direction (top), and in the y­direction (bottom)
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Figure 3.12: Power spectral density for all sensors

In figure 3.12 is can also be seen that sensor 4, which is placed facing the strong direction, recorded
a vibration when the structure was excited at 0.53 Hz. This leads to the belief that the sensor was not
installed perfectly along the principal strong direction. According to Gomez [54], this can be overcome
by manipulating the acceleration signals by means of rigid body kinematics. This can be performed
due to the assumption that the floors in the structure act as rigid bodies, resulting that the velocity at
any point ( ⃗⃗⃗𝑣𝐵), can be computed with the product of the velocity at a certain point ( ⃗⃗⃗𝑣𝐴) and the angular
velocity times the distance from A to B (⃗⃗Ω⃗ × ⃗⃗𝑟𝐴𝐵 ). This can be seen in equation 3.3. Gomez has applied
this transformation to the acceleration signals of the NEMC, whereafter he used the Half Power Band
Width method (HPBW) to compute the power spectral densities in the principal directions, this can be
seen in figure 3.13.

⃗⃗⃗𝑣𝐵 = ⃗⃗⃗𝑣𝐴 + ⃗⃗Ω⃗ × ⃗⃗𝑟𝐴𝐵 (3.3)
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Figure 3.13: Single mode power spectral densities for the NEMC [54]

Figure 3.14: Single mode power spectral densities for the Montevideo, JuBi and Oval towers. [54]

In the figure, three clear frequency peaks can be seen at 0.53 Hz, 0.68 Hz and 1.28 Hz. These fre­
quencies coincide with the frequencies determined above, validating the frequencies determined using
the Welch method. In figure 3.13, it can be seen that the spectral density for the first translational
mode has no peak at the second translational frequency, and vice versa. This shows that the signals
have successfully been transformed to the principal directions. In a study by Bronkhorst et al. [9],
the same procedure used by Gomez was performed on the acceleration measurements of the New
Orleans tower. The natural frequencies shown in figure 3.15 were obtained.

Figure 3.15: Natural frequencies of the New Orleans tower determined by the HPBW method [9]

3.3.3. Measured Mode Shapes
It was previously mentioned that the natural frequencies, calculated during the design phase, are often
underestimated when compared to the measured frequencies. It was also mentioned in the previous
section, that the frequencies measured by the accelerometers, are sensitive to the placement of the
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accelerometers. Considering this, the question arises if there might not be a frequency smaller than
the first measured natural frequency which might not have been recorded by the accelerometers? One
method to validate that the first and second natural frequencies, are indeed the smallest, is by looking
at the mode of vibration of the structure at these frequencies.

In a study done by Bronkhorst [10], acceleration measurements were recorded of the New Orleans
tower in Rotterdam. To be able to determine the modes shapes of a structure using measurements,
the measurements must be made at several heights in the structure. For the New Orleans tower,
measurements were made on 3 different levels. The positions and heights of the accelerometers are
shown in figure 3.16. To determine the natural frequencies and mode shapes of the structure, the
Frequency Domain Decompostion was used. This technique was proposed by Brincker et al. [8] and
is well­established, and will thus not be discussed further. The validity of the mode shapes were then
check using the Modal Assurance Criterion (MAC) [26]. The MAC checks whether the mode shapes
are orthogonal, by determining a correlation between two mode shapes.

Figure 3.17 shows several natural frequencies of the New Orleans tower. It can be seen that these
are the same frequencies as shown in figure 3.15. The mode shapes for these frequencies were also
determined for several frequencies. Themode shapes corresponding to the first two natural frequencies
can be seen in figure 3.18a and 3.18b. It can be seen that these mode shapes are the same as the
expected first and second translational mode shapes. For this reason, it can be concluded that the
possibility that a natural frequency smaller than the first measured natural frequency, was not recorded
by the measuring apparatus is quite small.

Figure 3.16: Positions and heights of the accelerometers in the New Orleans tower [10].

Figure 3.17: Natural frequencies of the New Orleans tower determined by the FDD [10].
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(a) Mode shape of first natural frequency (b) Mode shape of second natural frequency

3.4. Analytic Model Description
In the following section, the analytic models used for the sensitivity study will be discussed. In figure
3.19a a sketch is shown of a high rise­building supported by a pile foundation. Often in practice, a
beam element, as shown in figure 3.19b, is used to represent a high­rise structure. This is a reasonable
assumption due to the fact that high­rise structures are rather flexible in regard to their height. Due to the
soft soil conditions in the Netherlands, most high­rise structures are situated on a large foundation slab,
which sits atop of a pile group. One might think that the foundation fixes the base of the superstructure
to the ground, but in reality it merely restrains the base from translating and rotating. On account of this,
the foundation is often represented by translational and rotational springs, as shown in figure 3.19b. It
must be noted that the stiffness of the spring does not only represent the stiffness of the foundation,
but takes into account the interaction between the foundation slab, the piles and the soil. The mass
of the foundation block (𝑀𝑓) is introduced to the beam model by adding a lumped mass to the base of
the beam. The height of the beam (𝐿), represents the height of the superstructure above ground. The
bending stiffness and building density of the superstructure are given by 𝐸𝐼 and 𝜌, respectively.

(a) High­rise building on pile foundation (b) Beam model representing a high­rise structure

Figure 3.19: High­rise structure supported by pile foundation and its beam model representation.

It must be noted that the focus of this chapter is on the natural frequency of the structure. For this
reason, all damping mechanisms are neglected in the beam model shown above. The following five
beam models will be discussed in more detail. The beams given in blue represent Euler­Bernoulli
beams, and the beam in orange represents a Timoshenko beam. The beam theory regarding the two
different beams can be found in A. For the Timoshenko beam, 𝐺 represents the shear modulus of the
superstructure.
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Figure 3.20: Five beam models representing a high­rise building for the inclusion of different structural parameters

3.4.1. Case 1: Cantilever Euler­Bernoulli Beam with Fixed Support
The first case which will be looked at is a cantilever Euler­Bernoulli beam with a fixed support, as shown
in figure 3.21. This case will act as a reference case to be able to quantify the influence of different
structural elements added to the proceeding cases. The support of the beam is fixed in all translational
and rotational directions. This is a simplified representation of a foundation supported by a bedrock.
The foundation, and thus the bottom of the structure, has no possibility of rotation or translation. If the
fixed support were to be represented by springs, the stiffness of the springs would be infinitely large.

Figure 3.21: Case 1: Cantilever Beam with Fixed Support

3.4.2. Case 2: Cantilever Euler­Bernoulli Beam with Rotational Spring Support
For structures built on soil where the foundation can not reach the bed rock, movement in the foundation
and the base of the superstructure is possible. For this reason, it is appropriate to add this interaction
to the analytic models when calculating the natural frequency of a building. As previously stated, a
widely accepted method to include the movement of the base of the superstructure is to add rotational
and translational springs to the support of the beam model. This allows the base of the beam to rotate
and translate in the specified directions, with the spring’s stiffness representing the resistance of the
soil­pile­structure interaction.

The second analytic case which is looked at is an Euler­Bernoulli beam with a rotational spring at it’s
support. This means the base of the beam is fixed in all translational directions (i.e. that the translational
spring stiffness is infinitely large), but free to rotate around the axes the rotational spring is applied to.
By comparing the results of case 2 to the reference case (case 1), the influence of the rotational spring
on the natural frequency can be quantified. Case 2 is shown in figure 3.22. This case is often used in
the preliminary design phase to get an initial indication of the behaviour of the structure.
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Figure 3.22: Case 2: Cantilever Beam with Rotational Spring Support

3.4.3. Case 3: Cantilever Euler­Bernoulli Beamwith Rotational and Translational
Spring Support

For the third case, the base of the superstructure is allowed to translate. In this case, the translational
spring stiffness is not infinitely large, but set to a specific value. This value represents the horizontal
resistance of the soil and foundation.

Figure 3.23: Case 3: Cantilever Beam with Rotational and Translational Spring Support

3.4.4. Case 4: Cantilever Euler­Bernoulli Beamwith Rotational and Translational
Spring Support including Foundation Mass

For each of the above­mentioned cases, the density used in the computations originates from the
superstructure above ground level. This means that the mass of sub­zero levels and the foundation
is not taken into account. To be able to quantify the influence the foundation mass has on the natural
frequency of the buildings, a lumped mass is added to the base of the beam model. Included in the
lumped mass is the mass of the foundation slab and, where applicable, the mass and accompanying
loads of the sub­zero levels of the building. It must be noted that the length of the beam still equates
to the height of the building above ground. The beam model for case 4 is shown in figure 3.24.
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Figure 3.24: Case 4: Cantilever Beam with Rotational and Translational Spring Support including Foundation Mass

3.4.5. Case 5: Cantilever Timoshenko Beam with Rotational and Translational
Spring Support including Foundation Mass

The final case that is looked at, is the same as case 4, with the only difference that the beam element
is now a Timoshenko beam. This means that the assumption that the shear deformation is zero, as
explained in Appendix A, does not hold any more. This model will provide insight of how the shear
modulus influences the natural frequency of the beam model. The theory regarding the Timoshenko
beam can be found in Appendix A.2. A graphical representation of the model is shown in figure 3.25.

Figure 3.25: Case 4: Cantilever Timoshenko Beam with Rotational and Translational Spring Support including Foundation Mass

3.5. Structural Parameters
As previously stated, there is a significant amount of uncertainty when it comes to the exact value of
different structural parameters. In this section, an upper and lower bound for all the structural param­
eters where there is uncertainty is determined. These are the building stiffness (𝐸𝐼), building density
(𝜌), rotational and translational spring stiffnesses (𝐾𝑟 and 𝐾𝑡) representing the resistance caused by
the soil and foundation, the foundation mass (𝑀𝑓) and for the Timoshenko case the shear modulus (𝐺).
Parameters based on the geometry of the structure, such as the height of the building (𝐿), the area (𝐴)
and the moment of inertia (𝐽) of the foundation are assumed to be deterministic. The main focus of this
chapter lays on the first and second natural frequency of the different buildings. For this reason, the
directional parameters will be determined in correspondence with the two lowest natural frequencies,
as given in tables 3.1 to 3.5. For simplicity, all the axes have been chosen in such a manner that the
first natural frequency for each building is in the x­direction, and the second natural frequency is in the
y­direction.
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3.5.1. Bending Stiffness
For complex buildings, asmost buildings today are, it is quite difficult to accurately determine the flexural
stiffness of the building. In this section, a range for the bending stiffness will be found. As a cantilever
beam is used to represent the buildings in the proceeding analysis, the stiffness of the beam model
exists out of two part: the Young’s modulus (E­modulus) and the moment of inertia of the structural
configuration of the structure.

During the design phase, it is especially difficult to accurately estimate the stiffness of a structure.
Due to the horizontal loading caused by wind and the vertical loading cause by the self­weight of the
structure, the stability elements of the structure experience bending and axial loads. As a consequence
of these loads, the formation of cracks can occur in the concrete stability elements. Once cracks form
in the concrete, the stiffness of the structure decreases. As the loading continues, the stiffness of
the concrete decreases further, this is illustrated in the moment­axial force­curvature diagram in figure
3.26. In practise, it is customary to keep calculating with themoment of inertia of the uncracked sections
through out the calculations. For this reason, the reduction in stiffness is introduced by reducing the
E­modulus of the stability elements. The magnitude of the reduction of the E­modulus is affected by
the geometry of the structure, the amount of reinforcement in the concrete and the magnitude of the
axial force and bending moment in the structure. In the design phase these factors can not always be
quantified and thus reducing the E­modulus accurately is not easy. This is why an arbitrary E­modulus
is often chosen in the design phase. In an article in Cement, it is said that a good estimation for the
E­modulus of cracked concrete is 10 GPa [29].

Figure 3.26: M­N­𝜅 diagram of reinforced concrete

In the figure can be seen that before the cracking moment (𝑀𝑐𝑟)
has been reached, the bending stiffness of the concrete (𝐸𝑐𝐼𝑢𝑡)

is at it’s maximun and remains constant. When the 𝑀𝑐𝑟 is
reached, there is an instant decrease in the bending stiffness

(𝐸𝑐𝐼𝑐𝑡) whereafter the bending stiffness again remains constant.
After the elastic moment (𝑀𝑒𝑙) has been reached, the bending

stiffness decreases with every increase in moment.

To be conservative, an E­modulus of 7.5 GPa will be used in determining the lower bound of the bending
stiffnesses. This will represent a scenario where cracks have formed in the concrete of the stability
system. In the design documentation of the buildings described in section 3.2 the E­modulus used
ranges from 20 to 38 GPa. Higher E­moduli are often a result of the assumption that the structural
elements of the building are mostly in compression, which makes crack formation less likely. For the
upper bound of the bending stiffnesses, the E­modulus of concrete will be chosen as 38 GPa. During
the determination of the bending stiffnesses, it is assumed that the only reduction in E­modulus occurs
in concrete elements. For all steel members, a constant E­modulus of 210GPa is used, as it is assumed
that the steel does not crack and remains in the elastic deformation zone.

The second part of the bending stiffness of the structures is the moment of inertia. The moment of
inertia is a geometric property describing the distribution of points with regard to an axis. The structural
configuration of the building’s stability system is represented by the moment of inertia. The determina­
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tion of the moment of inertia of the different buildings can be found in Appendix C.1. As the direction
of the lowest natural frequency is chosen in the x­direction, the corresponding moment of inertia will
be around the y­axis, and vice versa. Throughout the height of the structure, the moment of inertia of
the building often changes. The moment of inertia is calculated for each section of the building height
where a significant change in the moment of inertia is present. Only the load bearing system will be
used to calculate the moment of inertia in each case, as it is assumed that the non­structural elements
have a negligible influence on the stiffness.

3.5.1.1 New Erasmus Medical Center

As described in section 3.2 the load bearing system of the NEMC is a concrete tube and three concrete
cores, marked in blue and red respectively in the figure shown below. The calculation of the stiffness
of the NEMC can be found in Appendix C.1.1. Throughout the height of the building, the moment of
inertia of the stability systems is mostly constant. The changes in moment of inertia are small and are
thus considered negligible.

Figure 3.27: Concrete tube (blue) and core (red) of the NEMC

Design Value
In the design phase, it was assumed that shear deformation will be dominant in the structure. The
reason for this is due to the many openings in the concrete tube creating a frame like system. This
is why a rather low E­modulus of 10 GPa was chosen for concrete in the design. For the moment of
inertia only the concrete tube was taken into account as the core only contributes 6% and 7.5% to the
total stiffness in the x and y­direction, respectively. In the design, the cores are seen as a connected
system. The design moment of inertia and bending stiffness in both directions are shown in tables 3.6
and 3.7. It must be noted that the method of calculating the moment of inertia reduction due to the
openings in the tube structure, in the design documentation slightly differs from the method used in the
calculations in Appendix C.1, this is the reason for the difference in the moment of inertia seen in table
3.6,

Lower and upper bound
The total moment of inertia of the structure is taken as the product of all the systems which provide
stiffness to the structure. In the case of the NEMC, this is the outer tube and the three cores. The
moment of inertia for the different systems are shown in table 3.6. As all the stability systems are made
of concrete, the lower and upper bound of the bending stiffness is obtained by the multiplication of the
total moment of inertia with 7.5 GPa and 38 GPa respectively. The lower bound, design value and the
upper bound of the bending stiffness can be found in table 3.7.

Equivalent bending stiffness
For the one beam model, an equivalent uniform bending stiffness is also needed. As previously stated,
the NEMC is taken as uniform throughout the height of the structure. For this reason, the lower and



32 3. Sensitivity Study I: Analytic Models of 5 Existing High­Rise Structures in the Netherlands

upper bound for the equivalent uniform bending stiffness is the same as the lower and upper bound for
the three beam model given in table 3.7.

Table 3.6: Moment of inertia of the stability systems of the NEMC

Outer Tube Left Core Middle Core Right Core Total Design
𝐼𝑦𝑦 1863.67 37.59 34.37 41.67 1977.30 1868
𝐼𝑥𝑥 6614.82 5.64 5.73 9.52 6635.70 6875

Table 3.7: Lower and upper bound of bending stiffness

Lower Bound Design Upper Bound
𝐸𝐼𝑥 1.48 × 1013 1.87 × 1013 7.51 × 1013
𝐸𝐼𝑦 4.98 × 1013 6.88 × 1013 2.52 × 1014

3.5.1.2 Montevideo

The different stability systems and their corresponding positions are given in figure 3.28. The bottom
part, which exists of a concrete core and steel columns, is 8m tall. The middle section is a concrete
core with concrete walls in a roster orientation. This section is 78m tall. Lastly, the top part of the
building exists of a steel structure which is 50m tall. In figure 3.28, the red section represent concrete
elements and the blue sections represent the steel elements. The moment of inertia and bending
stiffness calculations can be found in Appendix C.1.2.

Figure 3.28: Different structural systems of the Montevideo tower

Design Value
During the design phase a model of the Montevideo tower was made in the finite element software
DIANA. The model existed of the three stability systems and the pile foundation. In a static analysis a
load was applied to the structure and a top displacement of 161mm was found. A second calculation
was done in EPW software to calculate the uniform equivalent stiffness of the structure. A beam,
representing the superstructure, and a rotational spring, which represented the pile foundation, were
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modelled in EPW. The rotational spring was given a spring stiffness of 1.42 × 1012 𝑁𝑚𝑟𝑎𝑑 . The same load
as in the DIANA model was applied in EPW and the stiffness of the beam was calibrated until the top
displacement of the beam equated to 161mm. A uniform equivalent stiffness of 2.79 × 1013𝑁𝑚2 was
found. In the design phase an equivalent stiffness around the x­axis (strong­axis) was not determined.

Lower and Upper Bound
As done in the previous case, the E­modulus of concrete used to calculate the lower and upper bound
stiffness is 7.5 and 38 GPa, respectively. The stability system of the Montevideo does, however, not
only exist out of concrete, but also steel. It is assumed that no cracks form in the steel, and thus a
reduction of the E­modulus of the steel is not needed. The E­modulus for steel is 210 GPa for the lower
and upper bounds of the stiffness. The moment of inertia for the different stability sections is shown in
table 3.8. The lower and upper bounds for the different sections can be determined by multiplying the
concrete and steel parts with their respective Young’s moduli. The bending stiffness of levels 0 ­ 1 is
taken as the product of the bending stiffness of the concrete and steel part. The results of the lower
and upper bounds are given in table 3.9.

Equivalent uniform bending stiffness
To find the lower and upper bound for the equivalent uniform bending stiffness, a 1D model was made
using MatrixFrame. The model consists of three beams, each representing one of the three sections
of table 3.9. The lower and upper bounds of the stiffnesses for each section are inputted into the
MatrixFramemodel. After applying a load to the model, a static analysis is done and a top displacement
is calculated. The load and displacement is then used to determine an equivalent uniform stiffness,
using the well­know displacement formula for a cantilever beam with a fixed base. The equivalent
uniform stiffnesses can be seen in table 3.10. The calculations can be found in appendix C.1.2.

The same analysis was done using the Young’s modulus of 16𝐺𝑃𝑎 and 210𝐺𝑃𝑎 for concrete and steel,
respectively. These are the same Young’s moduli which were used to determine the design stiffness.
After applying the same load as used in the design to the MatrixFrame model, a top displacement
and uniform stiffness of 110mm and 3.35 × 1013𝑁𝑚2, in the x­direction, was calculated. This is a
stiffness of 1.2 times greater than the design stiffness and a displacement of 1.46 times smaller than
that calculated by the EPW model. The same was done in the y­direction, and a displacement of
64.8mm was calculated by MatrixFrame, whereas the EPWmodel calculated a displacement of 67mm.

Table 3.8: Moment of inertia of the stability systems of the Montevideo tower

Concrete section Steel section

Level 0 ­ 1 𝐼𝑦𝑦 315.00 134.82
𝐼𝑥𝑥 549.70 153.64

Level 2 ­ 27 𝐼𝑦𝑦 2786.86 ­
𝐼𝑥𝑥 4421.06 ­

Level 28 ­ 42 𝐼𝑦𝑦 ­ 13.95
𝐼𝑥𝑥 ­ 16.67

Table 3.9: Lower and upper bound of bending stiffness

Lower Bound Upper Bound

Level 0 ­ 1 𝐸𝐼𝑥 3.07 × 1013 4.03 × 1013
𝐸𝐼𝑦 3.64 × 1013 5.32 × 1013

Level 2 ­ 27 𝐸𝐼𝑥 2.09 × 1013 1.06 × 1014
𝐸𝐼𝑦 3.32 × 1013 1.68 × 1014

Level 28 ­ 42 𝐸𝐼𝑥 2.93 × 1012 2.93 × 1012
𝐸𝐼𝑦 3.50 × 1012 3.50 × 1012
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Table 3.10: Lower and upper bound of the equivalent uniform bending stiffness

Lower Bound Design Upper Bound
𝐸𝐼𝑥 2.00 × 1013 2.80 × 1013 5.06 × 1013
𝐸𝐼𝑦 2.92 × 1013 − 7.28 × 1013

3.5.1.3 New Orleans

The stability system of the New Orleans tower is split into three parts. The first system ranges from
the ground floor to level 2 and exists concrete core and steel columns, which can be seen respectively
in red and green in figure 3.29a. The second and third stability system both exist of a concrete core
with connected walls and disconnected walls, which are represented by the red and blue lines shown
in figures 3.29b and 3.29c. A distinction is made between the connected and disconnected walls, due
to the disconnected walls only contributing to the stiffness of the structure in one direction.

(a) Bottom stability system (b) Middle stability system (c) Top stability system

Figure 3.29: Stability systems contributing to the bend stiffness of the New Orleans Tower

Design Value
To determine the bending stiffness used in the design phase, the concrete core and connecting walls
(without openings) were modelled in ESA Prima Win FEM­software package using a single beam
model. A 100 kN point load was applied to the top of the beam and a displacement of 5mm was
calculated by the FEM­software. Using a simple deflection formula for a fixed­free cantilever beam, a
uniform bending stiffness of 2.8×1013𝑁𝑚2 over the whole height of the structure was determined. The
stiffness was then reduced by 15%, as this was assumed to be the reduction due to the openings in
the structure, thus a final uniform bending stiffness of 2.43 × 1013𝑁𝑚2 was found. In this calculation,
a total height of 162m was used. This is the height of the sub­zero levels added to the height of the
superstructure.

Lower and Upper Bound
The bending stiffness is determined for the three different sections by multiplying each system con­
tributing to the bending stiffness with their corresponding E­moduli. For the lower and upper bound,
7.5 and 38 GPa is used for the concrete section and for steel the E­modulus is 210 GPa. Per section,
the different systems are then added to each other. The moment of inertia for the different systems
and the bending moment for the different sections are shown in tables 3.11 and 3.12.

Equivalent uniform bending stiffness
To find the lower and upper bound for the equivalent uniform bending stiffness, the same approach is
used as explained in the previous section. The lower and upper bounds for the equivalent stiffnesses
is both direction is shown in table 3.13. The calculations can be found in appendix C.1.3.

The same analysis was done using the design Young’s modulus of 35𝐺𝑃𝑎 for concrete and 210𝐺𝑃𝑎 for
steel. After applying the same load as used in the design to the MatrixFrame model, a top displacement
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and uniform stiffness of 131mm and 2.79 × 1013𝑁𝑚2, in the x­direction, was calculated. This is a
stiffness equating to the stiffness calculated in the design phase before the opening reduction was done.
The top displacement of the MatrixFrame model is also 10mm smaller than that calculated by the ESA
Prime model. The same was done in the y­direction, and a displacement of 56.7mm was calculated
by MatrixFrame, resulting in a stiffness of 7.06 × 1013, whereas the ESA Prime model calculated a
displacement of 116mm, resulting in a stiffness 2.05 times smaller than MatrixFrame.

Table 3.11: Moment of inertia of the stability systems of the New Orleans tower

Steel columns Concrete core Disconnected section Connected section Lift core

Level 0 ­ 2 𝐼𝑦𝑦 24.16 653.63 ­ ­ 25.46
𝐼𝑥𝑥 136.23 416.7 ­ ­ 6.13

Level 3 ­ 10 𝐼𝑦𝑦 ­ ­ ­ 907.82 25.46
𝐼𝑥𝑥 ­ ­ 1149.32 1621.00 6.13

Level 11 ­ 45 𝐼𝑦𝑦 ­ ­ ­ 844.55 25.46
𝐼𝑥𝑥 ­ ­ 751.68 1299.87 6.13

Table 3.12: Lower and upper bound of bending stiffness

Lower Bound Upper Bound

Level 0 ­ 2 𝐸𝐼𝑥 1.02 × 1013 3.09 × 1013
𝐸𝐼𝑦 3.18 × 1013 4.47 × 1013

Level 3 ­ 10 𝐸𝐼𝑥 7.00 × 1012 3.55 × 1013
𝐸𝐼𝑦 2.08 × 1013 1.06 × 1014

Level 11 ­ 45 𝐸𝐼𝑥 6.53 × 1012 3.31 × 1013
𝐸𝐼𝑦 1.54 × 1012 7.82 × 1013

Table 3.13: Lower and upper bound of the equivalent uniform bending stiffness

Lower Bound Design Upper Bound
𝐸𝐼𝑥 7.45 × 1012 2.43 × 1013 3.34 × 1013
𝐸𝐼𝑦 2.04 × 1013 3.06 × 1013 7.17 × 1013

3.5.1.4 JuBi

The stability systems of the JuBi tower all made of concrete. For the first 9 level, stability is provided
by walls, columns and three central cores. Between levels 10 to 27 and 28 to 38, stability is provided
by a tube structure and three central cores. The three central cores only differ slightly for the three
sections. The stability systems for the different sections can be seen in figure 3.30. The calculations
for the moment of inertia and the bending stiffness for the different sections can be found in Appendix
C.1.4.

Design Value
During the design phase, the JuBi tower was also modelled using the ESA Prima win software. The
model consisted of the concrete tube and the three central cores, and the base of the model was
clamped, representing a rigid foundation. After applying a moment of 1.5 × 106𝑘𝑁𝑚 to the top of
the structure, a top displacement of 135.5 mm was calculated by the FEM software. Using the well­
known displacement formula for a fixed­free cantilever beam loaded by a moment, the uniform bending
stiffness over the whole height of the structure of 1.29 × 1014𝑁𝑚2 was determined.

Lower and Upper Bound
For the lower and upper bounds, the bending stiffness was divided into three different sections. All
stability systems contributing to the stiffness of the structure are made of concrete, thus the moment
of inertia of the different systems per section can easily be added to each other. The lower and upper
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bounds of the bending stiffnesses are then determined by multiplying the total moment of inertia of
each section with their corresponding E­moduli. The moment of inertia and the bending stiffnesses for
the different sections can be seen in tables 3.14 and 3.15.

(a) Bottom stability system (b) Middle stability system (c) Top stability system

Figure 3.30: Stability systems contributing to the bend stiffness of the JuBi Tower

Equivalent uniform bending stiffness
For the JuBi tower, the same method as previously stated was used to find the lower and upper bound
for the equivalent uniform bending stiffness. The lower and upper bounds for the equivalent stiffnesses
is both direction is shown in table 3.16. The calculations can be found in appendix C.1.4.

To compare the equivalent stiffnesses and the stiffness of the 3D ESA Prime model, the MatrixFrame
analysis was done using the design Young’s modulus for concrete of 35𝐺𝑃𝑎. The same load used in
the ESA Prime model was applied to the MatrixFrame model and a static analysis was done. This lead
to a top displacement of 40.8mm and 20.4mm in the x­ and y­direction, respectively, which leads to a
stiffness of 1.90×1014 and 3.40×1014. The ESA Prime model, with the same applied UDL load, found
displacements of 94mm and 29mm in the x­ and y­direction.

Table 3.14: Moment of inertia of the stability systems of the JuBi tower

Concrete columns Concrete tube Left core Top core Right core Total

Level 0 ­ 9 𝐼𝑦𝑦 2015.06 4097.47 83.88 250.26 121.17 6567.84
𝐼𝑥𝑥 1203.04 9276.85 496.88 68.28 596.81 11641.84

Level 10 ­ 27 𝐼𝑦𝑦 ­ 3917.20 29.14 250.26 121.17 4317.77
𝐼𝑥𝑥 ­ 6767.62 321.51 68.28 596.81 7754.22

Level 28 ­ 38 𝐼𝑦𝑦 ­ 2907.33 11.67 149.05 49.12 3117.17
𝐼𝑥𝑥 ­ 5658.1 109.00 39.01 150.48 5956.60

Table 3.15: Lower and upper bound of bending stiffness

Lower Bound Upper Bound

Level 0 ­ 9 𝐸𝐼𝑥 4.93 × 1013 2.50 × 1014
𝐸𝐼𝑦 8.73 × 1013 4.42 × 1014

Level 10 ­ 27 𝐸𝐼𝑥 3.24 × 1012 1.64 × 1014
𝐸𝐼𝑦 5.82 × 1013 2.95 × 1014

Level 28 ­ 38 𝐸𝐼𝑥 2.34 × 1013 1.18 × 1014
𝐸𝐼𝑦 4.47 × 1013 2.26 × 1014
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Table 3.16: Lower and upper bound of the equivalent uniform bending stiffness

Lower Bound Design Upper Bound
𝐸𝐼𝑥 4.26 × 1013 1.29 × 1014 2.16 × 1014
𝐸𝐼𝑦 7.61 × 1013 − 3.86 × 1014

3.5.1.5 Oval Tower

The stability system of the Oval tower is split into two sections. The first section stretching from the
ground floor to the 13𝑡ℎ floor, and the second section stretching from the 14𝑡ℎ floor to the 28𝑡ℎ floor.
For both sections, the stiffness is provided by two cores and four columns attached to each core by an
outrigger on the top floor. Between the two sections, there is only a small difference in the configuration
of the cores. The cores and the attached columns can be found in figure 3.31. The calculations of the
moment of inertia for the two sections are given in Appendix C.1.5.

(a) Bottom stability system (b) Top stability system
(c) Concrete columns contributing to

stiffness

Figure 3.31: Stability systems contributing to the bend stiffness of the Oval Tower

Design Value
During the design, the moment of inertia of the right cores were determined for the two section. Using
Technosoft Framework software, only the right core was modelled as two beam elements with a user­
defined moment of inertia of 145.9𝑚4 and 145.3𝑚4 and E­modulus of 33.5×109 𝑁

𝑚2 . Only two columns
were modelled, also by user­defined beam elements, and were attached to the core beam at the top.
A uniform distributed load of 40.33𝑘𝑁𝑚 was applied to the core beams and a displacement of 106.7mm
was calculated. Using this displacement and the well­known formula for the displacement of a fix­free
cantilever beam, a uniform bending stiffness of 4.47×1012𝑁𝑚2 was determined. This bending stiffness
was then taken as the uniform bending stiffness for the whole tower.

Lower and Upper Bound
As all the stability systems are made of concrete, the total moment of inertia is a simple addition of the
different stability systems. For the lower and upper bound of the bending stiffness, the total moment
of inertia is multiplied with their corresponding E­moduli. The total moment of inertia and bending
moments for the different sections can be seen in tables 3.17 and 3.18.

Equivalent uniform bending stiffness
For the Oval tower, no complete 3D model was made during the design phase. For this reason, the
same approach as for the Montevideo, New Orleans and JuBi towers could not be used. It is assumed
that as the tower displaces, most of the bending takes place in the bottom half of the structure. For
this reason, the bending stiffness of the bottom half of the Oval tower is used as the equivalent uniform
bending stiffness. As there is no significant difference in the bending stiffnesses of the bottom half and
the top half of the structure, it is assumed that using the bottom stiffness will not have a large impact on



38 3. Sensitivity Study I: Analytic Models of 5 Existing High­Rise Structures in the Netherlands

the final results. The lower and upper bounds for the equivalent stiffnesses is both direction is shown
in table 3.19. The calculations can be found in appendix C.1.5.

Table 3.17: Moment of inertia of the stability systems of the JuBi tower

Concrete columns Left core Right core Total

Level 0 ­ 13 𝐼𝑦𝑦 18.78 97.11 110.22 246.17
𝐼𝑥𝑥 187.14 142.96 147.60 664.86

Level 14 ­ 28 𝐼𝑦𝑦 20.05 84.86 99.41 221.86
𝐼𝑥𝑥 187.15 138.50 145.56 658.39

Table 3.18: Lower and upper bound of bending stiffness

Lower Bound Upper Bound

Level 0 ­ 13 𝐸𝐼𝑥 1.85 × 1012 9.35 × 1012
𝐸𝐼𝑦 4.99 × 1012 2.53 × 1013

Level 14 ­ 28 𝐸𝐼𝑥 1.66 × 1012 8.43 × 1012
𝐸𝐼𝑦 4.94 × 1012 2.50 × 1013

Table 3.19: Lower and upper bound of the equivalent uniform bending stiffness

Lower Bound Design Upper Bound
𝐸𝐼𝑥 1.85 × 1012 4.47 × 1013 9.35 × 1012
𝐸𝐼𝑦 4.99 × 1012 9.50 × 1012 2.53 × 1013

3.5.2. Building Mass
3.5.2.1 Superstructure Density

It is well­known that when the mass of a system is increased, the natural frequency decreases. For a
simple SDoF system, this can be seen in equation 2.1. For high­rise structures, it is no different. As
the density of the structure is increased, the frequency of the structure decreases. In the case of the
structure being represented by a cantilever Euler­Bernoulli beam with a fixed base, this can be seen in
equation 3.4. When the density of a structure is not distributed evenly over the height, the higher the
increased density is found from the bottom of the structure, the greater influence this density increase
will have on the natural frequency. This is due to more mass taking part in the vibration when the mass
is found at a higher level, than when it is found closer to the bottom.

𝜔 = √𝛽
4𝐸𝐼
𝜌𝐴 (3.4)

To determine the lower and upper bounds for the building density of the 5 structure, the loads contribut­
ing to the mass of the structure is divided into three parts, the structural load, the permanent load and
the variable load. The structural loads consist of all the dead loads originating from all the systems
contributing to the structural integrity of the structure. These are the dead loads of the load bearing
walls, cores, floors etc. The permanent loads are all dead loads which do not contribute to the struc­
tural integrity of the structure. These are the loads of the floor finishings, piping, ceilings etc. Lastly, the
variable loads are all the live loads which originate due to the functionality of the building. The lower
bound of the building density is determined by the summation of all the structural loads. The upper
bound of the building density is the sum of all the structural loads, permanent loads and variable loads.
The equations for the lower and upper bounds are given in equation 3.5. It must be noted that the
variable load is multiplied by a combination factor as used in the European Standards. This is due to
the assumption that not all variable loads are present at the same time.
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𝜌𝑙𝑜𝑤𝑒𝑟 =
Σ𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙

𝑔𝐴𝐿

𝜌𝑢𝑝𝑝𝑒𝑟 =
Σ(𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 + 𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 +Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

𝑔𝐴𝐿

(3.5)

For the multibeam models, the building density is again split into different sections. These sections
coincide with the sections made for the bending stiffnesses. For the single beam model, the density
is determined by dividing the total mass with the volume of the structure. The density in the x­ and y­
direction is taken as constant. The calculation of the lower and upper bounds can be found in Appendix
C.2. To determine the loads for the bounds, a combination of the design documentation and technical
drawings of each building was used. In table C.47a lower and upper bounds for the building densities for
the different building sections can be seen, whereas table C.47b shows the uniform building densities
for the single beam models.

Table 3.20: Sectional building densities

Density [ 𝑘𝑔𝑚3 ]
Building Section Lower Upper
NEMC Level 0­32 358 436

Montevideo
Level 0­1 257 269
Level 2­27 406 503
Level 28­42 362 448

New Orleans
Level 0­2 495 656
Level 3­10 405 502
Level 11­45 405 493

JuBi
Level 0­9 444 542
Level 10­27 433 532
Level 28­38 314 418

Oval Level 0­13 248 314
Level 14­28 250 324

Table 3.21: Uniform building densities

Density [ 𝑘𝑔𝑚3 ]
Building Lower Design Upper
NEMC 358 400 436

Montevideo 382 460 470
New Orleans 410 500 504

JuBi 393 530 504
Oval 249 340 318

The table C.47b shows that the design density of the JuBi and Oval tower falls outside the defined
bounds. In the case of the JuBi tower, this is due to the fact that in the design, the density is calculated
using the area of the top section of the tower and does not take into account the larger areas in the
bottom of the tower. In the case of the Oval tower, the variable load used in the design is not multiplied
by the combination factor, as done for the defined lower and upper bounds.

3.5.2.2 Foundation Mass

For the foundation mass, the same principle was used as for the building density. The only difference
being that the total mass is determined, and not the density, as shown in equation C.3. For the foun­
dation mass, all sub­zero levels are taken into account. As the foundation mass is added to the single
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beam and multibeam models, by adding a lumped mass to the bottom of the beam, the determined
added mass is the same for both models.

𝑀𝑓𝑙𝑜𝑤𝑒𝑟 =
Σ𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙

𝑔

𝑀𝑓𝑢𝑝𝑝𝑒𝑟 =
Σ(𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 + 𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 +Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

𝑔

(3.6)

Table C.58 shows the lower and upper bound for the foundation mass for each building.

Table 3.22: Lower and upper bound of the foundation mass

Foundation Mass [kg]
Lower Bound Upper Bound
5.97E+06 6.03E+06
6.06E+06 6.32E+06
4.98E+06 5.21E+06
8.90E+06 9.54E+06
5.95E+06 6.38E+06

3.5.3. Foundation Stiffness
For structures built on soil where the foundation does not reach the bedrock, the rigid base assumption
is an overestimation of the stiffness of the foundation. When structures are built on soft soils, as is the
case for most structures in the Netherlands, they have the capability to translate and rotate to a certain
extent. The resistance the surrounding soil and foundation structure provides, can be represented by
springs, as done for case 2 to case 5.

3.5.3.1 Rotational Spring Stiffness

Lower Bound
In a study done by Furgo, the rotational spring stiffnesses of the structures were determined using the
D­Pile Group software. During the D­Pile Group analysis, the pile group is modelled with an infinitely
stiff foundation slab. Due to the size of the pile group, the software calculates the rotational stiffness
using the Poulus model. This is a static model which considers two layers of fully elastic soil. The top
layer is along the entire height of the piles, the second layer is located below the tip of the pile. The
stiffness of these soil layers is specified by the user. In the analysis done by Furgo, large shear strains
in the soil were assumed. This leads to a relatively small E­modulus of the soil, which is approximated
by 𝐸 = 2𝐺(1 + 𝜈), with 𝐺 being the shear modulus and 𝜈 the Poisson’s ratio. Figure 3.32 shows the
shear modulus vs shear strain reduction curve for soil. In the figure, it can be seen that the larger
the strain gets, the smaller the shear modulus is. Strains typically associated with wind vibrations are
small strains, for this reason, the large strain assumption made for the D­Pile Group analysis is seen
as conservative.

After the pile group and foundation slab is modelled, and the soil stiffness is specified, a moment is
applied to the foundation. D­Pile Group then determined the rotation of the pile heads. Using the
determined rotation and the applied force, the rotational spring stiffness can then be determined. Table
3.23 shows the input parameters and the results of the D­Pile Group analysis.
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Figure 3.32: Shear modulus vs shear strain reduction curve for soil

Table 3.23: Input parameters and the results of the D­Pile Group analysis for the rotational spring stiffness

Building E surface E below pile Applied Moment Rotation pile head Kr
𝑘𝑁
𝑚2

𝑘𝑁
𝑚2 kNm x direction [rad] y direction [rad] x direction [𝑘𝑁𝑚𝑟𝑎𝑑 ] y direction [𝑘𝑁𝑚𝑟𝑎𝑑 ]

NEMC 3000 60000 1.00E+06 7.57E­03 2.96E­03 1.23E+08 3.38E+08
Montevideo 6000 70000 1.00E+06 6.98E­03 5.98E­03 1.42E+08 1.67E+08
New Orleans 5000 70000 1.00E+06 4.78E­03 5.65E­03 2.10E+08 1.77E+08

JuBi 35000 100000 1.00E+06 1.19E­03 8.12E­04 8.40E+08 1.23E+09
Oval 25000 70000 1.00E+06 1.29E­03 2.88E­03 7.75E+08 3.47E+08

Design Value
For each of the structure, except the Oval tower, the rotational spring stiffness was determined in the
design documentation. For the NEMC the rotational spring stiffness was calculated by multiplying the
moment of inertia of the pile group with the individual vertical spring stiffness of each pile. For the other
three structures, this was done using the FE models which were created during the design. A load was
applied to the FE models and a static analysis was done for two cases, one with a fixed base and a
second with a flexible base. The difference in the displacement of the top of the structure for the two
models, and the applied loads was then used to determine the respective rotational stiffnesses. The
design rotational spring stiffnesses are shown in 3.24.

Table 3.24: Rotational spring stiffness used in design

Design Kr
Building [𝑘𝑁𝑚𝑟𝑎𝑑 ]
NEMC 1.13E+9

Montevideo 1.42E+9
New Orleans 1.88E+9

JuBi 1.04E+10
Oval ­

Upper Bound
For the upper bound of the rotational spring stiffness, each pile under the foundation slab is represented
by a vertical spring. For each building, the vertical spring stiffness was determined in the design phase
by geotechnical institutions. These spring stiffnesses are shown in table 3.25.

Table 3.25: Vertical spring stiffness of an individual pile

NEMC Montevideo New Orleans JuBi Oval
𝐾𝑧 [

𝑘𝑁
𝑚 ] 87000 90000 85000 210000 190000
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The assumption is then made that the foundation slab is infinitely stiff and that it does not deform when
the slab rotates. The slab is then rotated around the pile group’s centre of gravity, as shown in figure
3.33. Due to the shortening and elongation of the springs, a force is exerted on to the foundation slab.
By combining the well­known equations in 3.7, the single rotational spring stiffness of equation 3.8 can
be obtained.

𝐹𝑖 = 𝑘𝑧𝛿𝑖
𝑀𝑖 = 𝐹𝑖𝑎𝑖
𝛿𝑖 = 𝜃𝑎𝑖

𝑘𝑟,𝑖 =
𝑀𝑖
𝜃

where,
𝐹𝑖 is the force of an individual pile,
𝑘𝑧 is the vertical spring stiffness,
𝛿, 𝑖 is the shortening/elongation of the springs,
𝑀, 𝑖 is the moment due to the spring forces,
𝑎, 𝑖 is the lever arm of the different springs,
𝜃 is the angle of rotation of the foundation slab, and
𝑘𝑟,𝑖 is the rotational stiffness of each spring.

(3.7)

𝐾𝑟 = Σ𝑘𝑧,𝑖𝑎2𝑖 (3.8)

Figure 3.33: Foundation with piles represented by vertical springs (left). Rotated foundation slap with vertical force equilibrium
(right)

Following this method, the rotational stiffnesses of the foundations can be determined for each structure
in each direction. The calculations of the rotational stiffnesses can be found in Appendix C.4. The
rotational stiffnesses in both direction are shown in the table below for each structure.

Table 3.26: Rotational Spring stiffnesses for each structure in both directions

Rotational Spring Stiffness [kNm/rad]
Building 𝐾𝑟𝑥 𝐾𝑟𝑦
NEMC 1.75E+9 6.05E+9

Montevideo 1.42E+9 1.75E+9
New Orleans 2.29E+9 2.04E+9

JuBi 1.16E+10 2.16E+10
Oval 4.48E+9 1.49E+9
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3.5.3.2 Translational Spring Stiffness

Lower Bound
In the same study done by Fugro, as mentioned for the lower bound of the rotational stiffness, the
translational spring stiffness was determined. Again the D­Pile Group software, with the same input
parameters, was used. This time, instead of applying a moment to the pile heads, a horizontal force
was applied. The software then calculated the displacements of the pile heads. The displacement and
the applied force is then used to determine the translational spring stiffness. Table 3.27 shows the input
parameters and the results of the D­Pile Group analysis.

Table 3.27: Input parameters and the results of the D­Pile Group analysis for the rotational spring stiffness

E surface E below pile Applied Force Translation pile head 𝐾𝑡
Building 𝑘𝑁

𝑚2
𝑘𝑁
𝑚2 kN x direction [rad] y direction [rad] x direction [𝑘𝑁𝑚 ] y direction [𝑘𝑁𝑚 ]

NEMC 3000 60000 1000 7.39E­03 8.13E­03 1.35E+05 1.23E+05
Montevideo 6000 70000 1000 9.00E­03 9.28E­03 1.11E+05 1.08E+05
New Orleans 5000 70000 1000 5.33E­03 5.42E­03 1.89E+05 1.85E+05

JuBi 35000 100000 1000 6.27E­04 5.97E­04 1.59E+06 1.68E+06
Oval 25000 70000 1000 1.06E­03 1.16E­03 9.40E+05 8.62E+05

Upper Bound
The upper bound of the translational stiffness is a combination of two methods proposed by Gazetas
[21]. The first part is calculating the translational stiffness provided by a surface foundation on deep
inhomogeneous soil. This represents the resistance of the foundation slab. The translational stiffness
is determined with equation 3.9. Where 𝐺0 is the shear stiffness of the soil at the surface, and 𝛼 and 𝑛
are variables determined by finding the best fit line to the shear stiffness of the soil profile. The method
and calculation is described in detail in Foundation Engineering Handbook [21] and in Appendix C.4.
The translational stiffness is determined for a foundation strip of 1m and then multiplied by the total
width of the foundation.

𝐾𝑡 =
2

2 − 𝜈𝐺0(1 +
2
3𝛼)

𝑛 (3.9)

The second part of the calculation is determining the translational stiffness of a single pile. The transla­
tional stiffness of a pile can be determined with the first part of equation 3.10. where 𝑑 is the diameter
of the pile, �̃�𝑠 is a reference E­modulus of the soil determined using the best fit line of the E­modulus
profile of the soil, and 𝐸𝑝 is the E­modulus of the pile. The method is also discussed in detail in Foun­
dation Engineering Handbook [21] and in Appendix C.4. After the translational stiffness is determined
for a single pile, the stiffness is multiplied by the number of piles in the foundation.

𝐾𝑡 = 0.6𝑑�̃�𝑠(
𝐸𝑝
�̃�𝑠
)0.35 × 𝑛𝑝𝑖𝑙𝑒𝑠 (3.10)

The total translational spring stiffness is then calculated by the product of equations 3.9 and 3.10. The
spring stiffness for each structure is given in table 3.28 and 3.29.

Table 3.28: Translational spring stiffness weak direction

𝐾𝑡𝑥 [
𝑘𝑁
𝑚 ]

Shallow Foundation n piles Total
NEMC 3.12E+06 5.23E+06 8.35E+06
MV 1.53E+06 2.40E+06 3.93E+06
NO 1.60E+06 3.28E+06 4.88E+06
JuBi 5.00E+06 9.99E+06 1.50E+07
Oval 4.63E+06 3.94E+06 8.57E+06
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Table 3.29: Translational spring stiffness strong direction

𝐾𝑡𝑦 [
𝑘𝑁
𝑚 ]

Shallow Foundation n piles Total
NEMC 2.76E+06 5.23E+06 7.98E+06
MV 1.44E+06 2.40E+06 3.84E+06
NO 1.54E+06 3.28E+06 4.82E+06
JuBi 5.20E+06 9.99E+06 1.52E+07
Oval 4.85E+06 3.94E+06 8.79E+06

3.6. Analytic Models
3.6.1. Single Beam Model
A single beammodel is often used to represent high­rise structures. For this model, the parameters are
assumed to be constant over the height of the structure. A single beam model is regularly used during
the design phase to give an initial idea into the behaviour of a structure, either statically or dynamically.
This section discusses the determination of the natural frequency of a single beam model for the 5
buildings. The sensitivity of the model, with regard to a change in stiffness, mass and the addition of
foundation parameters, will be looked at. In addition to the parameter sensitivity, the influence of using
an Euler­Bernoulli or Timoshenko beam is also looked at.

3.6.1.1 Frequencies Using Design Values

Using the method described in Appendix B, the natural frequencies in the weak and strong direction
can be determined for the 5 different beam models. The parameters used in this calculation are the
parameters found in the design documentation. For parameters which were not found in the design
documentation, the average between the upper and lower bound was used. Figure 3.34 is a graphi­
cal representation of the first and second translational frequencies for each building, for the different
cases. Table 3.30 shows the values of the frequencies in table form. The results show that for each
building, the frequency determined by the single beammodel is significantly smaller than the measured
frequencies. Even for case 1, representing a structure with a fixed base, the frequencies are severely
underestimated. It can be seen that when comparing cases 1 to 3, there is a decrease in frequency.
This is an expected result, as the constraints of the base of the beam are relaxed by adding the foun­
dation springs to the model. Looking at the results of case 4, it can be seen that there is no difference
in the determined frequencies. The reason for this is that the mass of the foundation is placed at the
base of the beam. As previously stated, the lower the mass is placed in the beam, the smaller effect it
will have on the frequency, as the participation of the mass is small in the vibration of the beam. When
comparing case 4 and 5, using a Timoshenko beam instead of an Euler­Bernoulli beam, there is only a
small change in frequency. The general behaviour for the change in cases is the same for all buildings,
except for the Oval tower. When looking closed at the frequencies of the Oval tower, it can be seen
that there is a significantly smaller change in frequency when comparing cases 2 and 3, compared to
the other buildings. In addition to this, the Oval tower is the only building where there is a decrease in
frequency when using a Timoshenko beam. This shows that there are parameter combinations which
let the beam behave differently for the different cases.
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Figure 3.34: The first and second translational frequencies for the different beam models.

Table 3.30: The first and second translational frequencies for the different beam models.

Frequencies [Hz]
Buildings Direction Case 1 Case 2 Case 3 Case 4 Case 5 Measured

NEMC 𝑓𝑥 0.281 0.225 0.223 0.223 0.224 0.53
𝑓𝑦 0.534 0.407 0.398 0.398 0.406 0.68

Montevideo 𝑓𝑥 0.256 0.205 0.192 0.192 0.201 0.41
𝑓𝑦 0.346 0.217 0.213 0.213 0.216 0.49

New Orleans 𝑓𝑥 0.176 0.153 0.151 0.151 0.152 0.285
𝑓𝑦 0.199 0.152 0.150 0.150 0.151 0.297

JuBi 𝑓𝑥 0.383 0.330 0.326 0.326 0.330 0.46
𝑓𝑦 0.512 0.411 0.401 0.401 0.410 0.55

Oval 𝑓𝑥 0.209 0.202 0.201 0.201 0.199 0.40
𝑓𝑦 0.304 0.254 0.253 0.253 0.252 0.57

3.6.1.2 Influence of Different Structural Parameters on the Frequency

The previous section has shown that the behaviour of the frequency can differ when using different
parameter combinations. To see how each parameter influences the frequency, the frequencies for the
different cases are calculated using the average between the upper and lower bound. Each parameter
is then individually increased from the lower bound to the upper bound, while the rest of the parameters
stay constant. This way, the effect the varying parameter has on the frequency can be quantified. This
section will only discuss the first translational natural frequency for each building, as the results of the
second translational natural frequency behaves in the same way. Table 3.31 shows the ratios between
the lower and upper bound for the different varying parameters for each building. Figure 3.35 shows
the general trend of the frequency when either a stiffness parameter or mass parameter is increased,
while the other parameters stay constant. It can be seen that the rate of change in frequency decreases
as the mass or stiffness is increased.

Table 3.31: Ratio between lower and upper bound for different parameters (weak axis)

Varying Parameter
𝐸𝐼 𝜌 𝐾𝑟 𝐾𝑡 𝑀𝑓

Increase Factor
NEMC 5.07 1.22 13.27 61.82 1.01

Montevideo 2.52 1.23 9.95 35.36 1.04
New Orleans 4.49 1.23 10.91 25.81 1.05

JuBi 5.07 1.25 13.83 9.42 1.07
Oval 5.07 1.28 5.79 9.12 1.07



46 3. Sensitivity Study I: Analytic Models of 5 Existing High­Rise Structures in the Netherlands

Figure 3.35: General change in frequency due to an increase in stiffness of mass parameters

Figure 3.36 shows the change in frequency as each parameter in the respective cases are varied
from the lower to the upper bounds. For case 1, only the bending stiffness and density is varied,
respectively. Looking at the red line, which is the frequency when all parameters of the respective case
are averaged, it is generally situated around the middle of the frequency band. This means that for this
case, when all parameters are averaged, the rate of change in frequency is high. Table 3.33 shows the
change in frequency for the varying parameters given in percentage. These percentages are related
to the frequency, which is calculated when all parameters are averaged (red line). When comparing
the change in frequency, given in table 3.33, for an increase in building stiffness and mass, it can be
seen that the change is directly related to the stiffness and mass ratios given in table 3.31, the larger
the ratio, the larger the change in frequency.

For case 2, the rotational spring is added to the base of the beam. Figure 3.36 shows the influence of
the addition of the rotational spring. In this case, the influence of the rotational spring can no longer
be related to the ratio between the lower and upper bound as in the previous case. This can best be
seen when comparing the influence of the added rotational spring for the Montevideo and New Orleans
tower. The influence of the added spring is much greater for the Montevideo tower, even though the
parameter ratio is smaller than that of the New Orleans tower. The influence of the rotational spring is
related to the ratio between the building stiffness and the spring stiffness. This ratio can be expressed
as a non­dimensional stiffness (𝜂) in the form shown in equation 3.11 [4]. The equation shows the non­
dimensional stiffness for the rotational and translational spring. Table 3.32 shows the rotational and
translational non­dimensional stiffnesses using the lower and upper bounds for the spring stiffnesses
and the averaged bending stiffness. When comparing the percentage change given in table 3.33 to
the dimensionless stiffnesses, it can be seen that the lower the dimensionless stiffness, the larger the
change in frequency. Figure 3.36 also shows that for most cases, there is a significant reduction in the
influence of the building stiffness. It can be seen that the larger the influence of the spring stiffness, the
larger the reduction in influence of the bending stiffness. As no mass parameter was added to case 2,
the influence of the changing building density equates to that of case 1.

Table 3.32: Lower and Upper non­dimensional stiffnesses (weak axis)

𝜂𝑡 𝜂𝑟
Lower Upper Lower Upper

NEMC 5.32 328.70 0.36 4.71
MV 8.66 306.18 0.57 5.65
NO 37.99 980.59 1.76 19.21
JuBi 40.17 378.50 0.99 13.72
Oval 159.92 1458.60 13.62 78.85
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𝜂𝑟 =
𝐾𝑟𝐿
𝐸𝐼

𝜂𝑡 =
𝐾𝑡𝐿3
𝐸𝐼

(3.11)
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Figure 3.36: Influence of varying parameters on the first translational frequency
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Table 3.33: Change in frequency for varying parameters, given in percentage related to the frequency calculated with the
averaged parameters

Varying in 𝐸𝐼 Varying in 𝜌 Varying in 𝐾𝑟 Varying in 𝐾𝑡 Varying in 𝑀𝑓
Difference [%] Difference [%] Difference [%] Difference [%] Difference [%]

NEMC min max min max min max min max min max
Case 1 ­42.6193 29.2573 ­4.5772 5.3062 ­ ­ ­ ­ ­ ­
Case 2 ­24.9606 8.5831 ­4.5772 5.3062 ­54.4446 18.3944 ­ ­ ­ ­
Case 3 ­24.6123 8.3649 ­4.5772 5.3062 ­54.0900 17.9712 ­23.4008 0.4893 ­ ­
Case 4 ­24.6103 8.3631 ­4.5769 5.3057 ­54.0883 17.9670 ­24.7156 0.4922 ­1.98E­05 1.96E­05
Case 5 ­24.9044 8.6293 ­4.5772 5.3061 ­54.3907 18.3287 ­5.1689 0.0772 ­3.17E­06 3.13E­06

Varying in 𝐸𝐼 Varying in 𝜌 Varying in 𝐾𝑟 Varying in 𝐾𝑡 Varying in 𝑀𝑓
Difference [%] Difference [%] Difference [%] Difference [%] Difference [%]

MV min max min max min max min max min max
Case 1 ­24.6756 19.6923 ­4.7959 5.6022 ­ ­ ­ ­ ­ ­
Case 2 ­13.2092 7.1639 ­4.7959 5.6022 ­47.0100 15.9709 ­ ­ ­ ­
Case 3 ­12.9352 6.9539 ­4.7959 5.6022 ­46.5686 15.5526 ­17.1766 0.5747 ­ ­
Case 4 ­12.9330 6.9519 ­4.7954 5.6016 ­46.5659 15.5478 ­18.0577 0.5787 ­1.16E­04 1.16E­04
Case 5 ­13.1154 7.2764 ­4.7958 5.6021 ­46.9366 15.9003 ­3.6500 0.0977 ­2.00E­05 2.00E­05

Varying in 𝐸𝐼 Varying in 𝜌 Varying in 𝐾𝑟 Varying in 𝐾𝑡 Varying in 𝑀𝑓
Difference [%] Difference [%] Difference [%] Difference [%] Difference [%]

NO min max min max min max min max min max
Case 1 ­39.6284 27.8877 ­4.8659 5.6980 ­ ­ ­ ­ ­ ­
Case 2 ­33.4539 17.8311 ­4.8659 5.6980 ­35.3978 7.0022 ­ ­ ­ ­
Case 3 ­33.2356 17.5478 ­4.8659 5.6980 ­35.1957 6.9296 ­6.8178 0.2753 ­ ­
Case 4 ­33.2351 17.5467 ­4.8658 5.6979 ­35.1952 6.9293 ­6.9495 0.2760 ­2.07E­05 2.07E­05
Case 5 ­33.3738 17.9762 ­4.8658 5.6980 ­35.3287 6.9772 ­2.4658 0.0948 ­7.16E­06 7.16E­06

Varying in 𝐸𝐼 Varying in 𝜌 Varying in 𝐾𝑟 Varying in 𝐾𝑡 Varying in 𝑀𝑓
Difference [%] Difference [%] Difference [%] Difference [%] Difference [%]

JuBi min max min max min max min max min max
Case 1 ­42.6155 29.2556 ­4.1117 7.4031 ­ ­ ­ ­ ­ ­
Case 2 ­34.2111 16.0428 ­4.1117 7.4031 ­45.0549 9.4766 ­ ­ ­ ­
Case 3 ­33.7185 15.4829 ­4.1117 7.4031 ­44.5837 9.2447 ­5.1897 0.5705 ­ ­
Case 4 ­33.7156 15.4776 ­4.1113 7.4022 ­44.5810 9.2424 ­5.3091 0.5743 ­1.88E­04 1.88E­04
Case 5 ­34.1707 16.0305 ­4.1117 7.4031 ­45.0191 9.4577 ­0.4506 0.0469 ­1.58E­05 1.58E­05

Varying in 𝐸𝐼 Varying in 𝜌 Varying in 𝐾𝑟 Varying in 𝐾𝑡 Varying in 𝑀𝑓
Difference [%] Difference [%] Difference [%] Difference [%] Difference [%]

Oval min max min max min max min max min max
Case 1 ­42.5233 29.2147 ­5.5802 6.7031 ­ ­ ­ ­ ­ ­
Case 2 ­40.9162 25.8723 ­5.5802 6.7031 ­8.4513 1.7010 ­ ­ ­ ­
Case 3 ­40.7435 25.5350 ­5.5802 6.7031 ­8.3972 1.6890 ­1.7974 0.1985 ­ ­
Case 4 ­40.7427 25.5323 ­5.5801 6.7029 ­8.3969 1.6889 ­1.8295 0.1995 ­4.75E­05 4.75E­05
Case 5 ­40.6502 26.4483 ­5.5800 6.7027 ­8.3678 1.6824 ­2.7887 0.3056 ­7.24E­05 7.24E­05

For case 3, the translational spring is added to the base of the beam. This case behaves in the same
way as the previous case. Once again, the smaller the non­dimensional translational stiffness, the
larger the influence on the frequency. One notable difference is that for all 5 buildings, the average
frequency (red line) nearly equates to the upper bound frequency of the translational spring stiffness.
This can also be seen in table 3.32, the upper 𝜂𝑡 values are significantly higher than the lower values.
This means that a further increase in the translational spring stiffness, which would represent stiffer
soil, will not have a large effect on the frequency. Another notable difference is that the influence of the
varying bending stiffness and rotational stiffness is nearly unchanged with added degree of freedom.
This would suggest that the translational spring is not as influential when it comes to determining the
frequency. Again, as there is no mass added to this system, the influence of the varying density equates
to that of the case 1 and 2.

For case 4, the foundation mass is added to the base of the beam. Figure 3.36 and table 3.33 show
that this addition has a negligible effect on the frequency. As stated in the previous section, this is due
to the position of the lumped mass being at the bottom of the beam and not taking part in the vibration.
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When comparing the influence of the varying density for case 3 and 4, it can be seen that there is now
a small difference between the two cases, but also a negligible amount.

For case 5, the rotational and translational springs and the foundation mass is added to the base of
a Timoshenko beam. When comparing the averaged frequencies of case 4 and 5, for the respective
buildings, it can be seen that there is no significant difference between the two cases. Figure 3.36
also shows that the difference between the influence of the varying bending stiffness, building density,
rotational stiffness and foundation mass of the two cases is negligible. The only noticeable difference is
the influence of the varying translational stiffness. For the NEMC, Montevideo, New Orleans and JuBi
tower the influence of the lower bound of the translational spring stiffness is significantly less for the
Timoshenko beam than for the Euler­Bernoulli beam, and that in the case of the JuBi tower, the varying
translational stiffness has nearly no effect of the frequency. It is interesting to note that for the Oval
tower, the influence of the lower bound of the translational stiffness has increased for the Timoshenko
beam. Figure 3.37 shows the change in frequency for varying non­dimensional translational spring
stiffness for the Euler­Bernoulli (red) and Timoshenko (blue) beam, for each building. In this figure, the
frequency is normalized to that of a fixed base beam (case 1). In the figure, it can be seen that the for
both the Euler­Bernoulli and Timoshenko beam, the curves flat out rather quickly. This again shows
that further increases in the translational spring stiffnesses will have little effect on the frequencies.
The positioning of each curve with respect to the y­axis can be related to the upper bound of the non­
dimensional rotational stiffness, as this value increases, the normalized frequencies will increase. As
the normalized frequency approaches 1, then the spring stiffnesses are so stiff that they represent a
fixed base case.

Figure 3.37: Normalized change in frequency for varying non­dimensional translational spring stiffness

To be able to determine why the behaviour of the Oval tower differs to that of the other 4 towers, a closer
look is taken at how the frequency is determined using the method explained in appendix B.3. Equation
3.12 shows the boundary conditions of the Timoshenko beam. The boundary conditions are used to
determine the coefficient matrix, from the coefficient matrix the determinant is calculated and equated
to zero. The only unknown in this equation is the angular frequency, which can then be obtained. From
case 4, it was seen that the addition of the foundation mass had nearly no effect on the frequency, so
these terms can be ignored. For all 5 buildings, the magnitude of 𝐾𝑡 and 𝐾𝑟 fall in the same range,
thus it is not likely that these are the variables which influence the behaviour of the Timoshenko beam.
Variable 𝑎 and the first term of 𝑏 are both of a magnitude of 10−8 and is assumed not to be of great
influence. This leaves variable 𝑐, which is the ratio between the shear and bending part of the beam.
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At base (x = 0):
𝐸𝐼(Φ″(0) + 𝑎Φ(0)) − 𝐾𝑟Φ′(0) + 𝐽𝜔2Φ′(0) = 0
𝐺𝑘𝐴((𝑎 + 𝑏 + 𝑐)Φ′(0) − Φ‴(0)) − 𝐾𝑡Φ(0) + 𝑀𝑓𝜔2Φ(0) = 0

At free end (x = L):
Φ″(𝐿) + 𝑎Φ′(0) = 0
𝑑Φ′(𝐿) + Φ‴(𝐿) = 0

with

𝑎 = 𝜔2𝜌
𝐺𝑘

𝑏 = 𝜔2𝜌
𝐸 − 𝑐

𝑐 = 𝐺𝑘𝐴
𝐸𝐼

Φ = 𝐶1 cosh(𝜆1𝑥) + 𝐶2 sinh(𝜆1𝑥) + 𝐶3 cos(𝜆2𝑥) + 𝐶4 sin(𝜆2𝑥)
𝜆1, 𝜆2 and 𝑑 consist of 𝑎, 𝑏 and 𝑐

(3.12)

Figure 3.38: Normalized change in frequency vs varying non­dimensional translational spring stiffness for different 𝐺𝑘𝐴𝐸𝐼 ratios
for the Oval tower

In figure 3.38 the varying dimensionless translational spring stiffness vs the normalized frequency is
plotted for different rations of 𝐺𝑘𝐴𝐸𝐼 . The figure shows that the larger the value of 𝑐, the more susceptible
the frequency of the Timoshenko beam is to small values of 𝜂𝑡. For a 𝑐 value of 1, the Timoshenko
beam acts as an Euler­Bernoulli beam. As the 𝑐 value approaches 0, the influence the translational
spring has on the frequency also approaches 0. Taking another look at figure 3.37, the figure would
suggest that the 𝑐 values for the NEMC, Montevideo, New Orleans and JuBi tower are all smaller than
1, with that of the JuBi tower approaching 0, and that of the Oval tower being greater than 1. When
comparing this with table 3.34,which shows the 𝑐 values of the respective buildings, this indeed seems
to be the case.
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Table 3.34: 𝑐 values

Building 𝐺𝑘𝐴
𝐸𝐼

NEMC 0.16
MV 0.17
NO 0.34
JuBi 0.08
Oval 1.53

3.6.1.3 Frequency of Extreme Parameter Combinations

From figure 3.34 it was seen that when using the design parameters, the calculated frequency was
well below the measured frequencies. In figure 3.36 is can be seen that if the upper bound of the
bending and rotational spring stiffnesses, and the lower bound of the building density is reached, the
frequency can be increased significantly. Figure 3.39 shows the frequency range of the first and second
translational frequencies. In the calculation of the lower bound of the frequency range, the lower bound
of the stiffness parameters and the upper bound of the mass parameters are used, and vice versa
for the upper bound of the frequency range. In the figure it can be seen that for the first translational
frequency, even when using the upper bound parameter combination, the frequencies still do not reach
the measured frequencies. For the second translational frequency, the measured frequencies are only
reached for the NEMC and the JuBi tower, and even then it is only reached by the upper bound of the
frequency range.
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Figure 3.39: Frequency of extreme parameter combinations

The upper and lower bounds of the frequency ranges, shown in figure 3.39, do however give a false
impression of the facts, as in reality the probability that the extreme parameter combinations occur
is assumed to be rather small. For this reason, it would be more useful during the design phase to
determine the frequency range for the 90%probability interval, rather than the extreme frequency range.
There is little available literature shedding light on possible probability distributions of the structural
parameters used in the beam models. For this reason, a Gaussian distribution will be used for each
parameter. The mean of the Gaussian distribution will be the design value, and the standard deviation
will be 0.5𝑚𝑒𝑎𝑛

1.64 . The probability distribution will be restrained to the bound defined for the lower and
upper bound of each parameter. The probability distribution will then be manipulated in such a way that
the cumulative distribution between the bounds equates to 1. Figure 3.40 shows these steps for the E
modulus of the Oval tower as an example. In the top plot of the figure, the original and manipulated
probability distribution is seen. The middle plot shows the cumulative density, where it can be seen
that the cumulative probability of the original probability density does not reach 1 when the upper limit
is reached. After the original probability distribution is manipulated, the cumulative probability equates
to 1 at the upper limit. The bottom plot of the figure shows 10000 random samples taken between the
limits of the manipulated probability distribution.
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Figure 3.40: Probability density and cumulative density for the E modulus of the Oval tower.

As shown in the previous section, the translational stiffness, foundation mass and the use of the Tim­
oshenko beam, only has a minimal effect on the frequency, thus the 90% probability interval will be
calculated for case 2. For each parameter (𝐸𝐼, 𝜌 and 𝐾𝑟), of each respective building, a new probability
distribution is determined. The individual parameter probability and cumulative densities can be found
in Appendix D.3. Random parameters combinations are then chosen according to each building’s re­
spective parameter probability distributions, these parameter combinations are then used to determine
a frequency range. The 90% probability interval can then be determined from this frequency range and
is show in table 3.36 for the respective buildings.

A recent article in Cement magazine [11] shows the dates the measured frequencies were determined
and the dates the buildings were finished. This can be seen in table 3.35. In the table can be seen
that for the NEMC, the measurements were done 2 years before construction was finished. Due to
still being in the construction phase, it is assumed that only the structural loads are present. For this
reason, the mean for the building density for the NEMC is taken as the lower bound.

Table 3.35: Date of the end of construction period and when measurements took place [11]

Building End of Construction Measurement
New Erasmus MC 2013 2011

Montevideo 2005 2009
New Orleans 2010 2011 ­ now

JuBi 2012 2016
Oval 2001 2002

Table 3.36: 90% probability interval for the first translational frequency

90% Probability Interval
f [Hz]

NEMC 0.149 ­ 0.334
Montevideo 0.123 ­ 0.248
New Orleans 0.095 ­ 0.174

JuBi 0.195 ­ 0.382
Oval 0.156 ­ 0.302
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3.6.2. Multiple Beam Model
The general trend of high­rise structures is that as the height of the structure progresses, the stiffness
and the density of the structure decreases. Table 3.37 shows the averaged uniform and sectional
building stiffnesses and densities for the different buildings in the weak direction. In the table can be
seen that for the Montevideo, New Orleans, Jubi and Oval towers, the stiffness of the top section is the
smallest stiffness. For these 3 buildings, it can also be seen that the most of the mass sits in the lower
half of the structure, only for the Oval tower, this does not apply. The NEMC is assumed to be constant
in mass and stiffness over the height of the structure. Due to the use of a Timoshenko beam not having
a significant influence on the frequency and large computational time needed for the calculations, the
Timoshenko beam is left out of the multibeam calculations.

Table 3.37: Single­ and multibeam bending stiffness and density comparison in the weak direction

Single­beam Multi­beam Single­beam Multi­beam
Level 𝐸𝐼[𝑁𝑚2] 𝐸𝐼[𝑁𝑚2] 𝜌[ 𝑘𝑔𝑚3 ] 𝜌[ 𝑘𝑔𝑚3 ]

NEMC 0­32 4.50E+13 4.50E+13 397 397
MV 0­1 3.53E+13 3.55E+13 426 263

2­27 ­ 6.34E+13 ­ 454
28­42 ­ 2.93E+12 ­ 405

NO 0­2 1.85E+13 2.05E+13 457 576
3­10 ­ 2.12E+13 ­ 454
11­46 ­ 1.98E+13 ­ 449

JuBi 0­9 1.24E+14 1.49E+14 448 493
10­22 ­ 9.82E+13 ­ 482
23­38 ­ 7.09E+13 ­ 366

Oval 0­14 5.60E+12 5.60E+12 284 281
15­24 ­ 5.05E+12 ­ 287

As previously stated, a change in stiffness in the lower sections and a change in density in the upper
sections of a structure will have the greatest effect on the frequency. Figure 3.41 shows the comparison
of the first and second natural frequencies between the single­ and multibeam models. As expected,
there is a noticeable increase in frequency for the Montevideo, New Orleans and Jubi towers, with an
increase in frequency for the JuBi tower as high as 15.2% for case 1, and ±12.5% for cases 2, 3 and
4. This is due to the reduction in density in the upper part of the beam models, and an increase in
stiffness in the lower part of the beam models. Due to the density increase of the upper part of the
beam for the Oval tower, and the uniform stiffness being equal or greater than the sectional stiffnesses
of the multibeam model, there is a slight decrease in frequency. As there is no change in properties
for the NEMC, the frequency also stays constant for the different beam models. The frequencies and
percentile differences in frequency for the first and second translational frequencies can be found in
tables 3.38 and 3.39.
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Figure 3.41: Single­ and multibeam frequency comparison using the averaged parameters



54 3. Sensitivity Study I: Analytic Models of 5 Existing High­Rise Structures in the Netherlands

Table 3.38: Comparison of the first translational frequencies for the single­ and multibeam models

NEMC Montevideo New Orleans JuBi Oval
Single
Beam

Multi­
beam %

Single
Beam

Multi­
beam %

Single
Beam

Multi­
beam %

Single
Beam

Multi­
beam %

Single
Beam

Multi­
beam %

Case 1 0.434 0.434 0 0.301 0.342 11.792 0.168 0.179 6.166 0.387 0.457 15.208 0.255 0.251 ­1.488
Case 2 0.268 0.268 0 0.198 0.210 5.612 0.143 0.150 4.647 0.311 0.361 13.722 0.245 0.241 ­1.454
Case 3 0.266 0.266 0 0.196 0.207 5.466 0.142 0.149 4.573 0.307 0.355 13.521 0.244 0.240 ­1.444
Case 4 0.265 0.265 0 0.196 0.207 5.465 0.142 0.149 4.596 0.307 0.355 13.518 0.244 0.240 ­1.444

Table 3.39: Comparison of the second translational frequencies for the single­ and multibeam models

NEMC Montevideo New Orleans JuBi Oval
Single
Beam

Multi­
beam %

Single
Beam

Multi­
beam %

Single
Beam

Multi­
beam %

Single
Beam

Multi­
beam %

Single
Beam

Multi­
beam %

Case 1 0.794 0.794 0 0.362 0.404 10.250 0.269 0.277 2.755 0.517 0.601 13.888 0.420 0.414 ­1.378
Case 2 0.493 0.493 0 0.227 0.238 4.680 0.185 0.188 1.693 0.418 0.477 12.401 0.324 0.320 ­1.250
Case 3 0.477 0.477 0 0.223 0.234 4.518 0.183 0.186 1.663 0.409 0.464 12.030 0.321 0.317 ­1.236
Case 4 0.476 0.476 0 0.223 0.234 4.516 0.183 0.186 1.663 0.408 0.464 12.022 0.321 0.317 ­1.236

The influence of the different structural parameters on the frequency and the extreme parameter com­
binations were also calculated for the multibeam models. The results of the multibeam models mimic
that of the single beam models, with the only difference being slightly higher frequencies due to reason
previously discussed. The results of the multibeam models can be found in Appendix D

3.7. Calibration of multibeam model
In figure 3.41 it was seen that, even though the multibeam model produces higher frequencies than the
uniform beam model, the frequencies are still underestimated. It has been shown that the underesti­
mation in frequency is most likely the cause of an underestimated superstructure stiffness. This begs
the question if the stiffness can be calibrated realistically to fit the measured natural frequencies. Fig­
ure 3.42a) shows the change in frequencies as the E­modulus of concrete increases. In the analysis,
the sectional densities are taken as the average between the lower and upper bounds, and the upper
bounds for the foundation springs are used. The E­modulus for steel is still 210 GPa.

According to Gutierrez [24], the E­modulus of high strength concrete is between 40 GPa and 50 GPa.
The black x in the graphs show the value of the E­modulus calibrated to fit the measured natural
frequency, this can also be seen numerically in table 3.40. It can be seen that in most cases, the
calibrated E­moduli are unrealistically high. The dash in the table means that the stiffness of the beam
could not be calibrated to fit the measured data. It can be seen that for most cases, the extra stiffness
needed in the two directions, differ quite significantly. This leads to the belief that the needed stiffness if
most probably not provided by an inaccurate approximation of a material property, but rather originates
from a source not yet taken into account.

Table 3.40: Calibrated E­modulus

Direction
Weak Strong Weak (DynaPile)

E­modulus [GPa]
NEMC ­ 53.5 58

Montevideo ­ ­ 195
New Orleans 155 135 83

JuBI 49 34.5 ­
Oval 66.5 245 69.5

In an article by Bronkhorst [9], the foundations of the 5 structures we modelled in the Dynapile soft­
ware, which makes use of the pile plan of the structure and the soil properties. Table 3.41 shows
the single spring stiffnesses determined by Dynapile and the upper bounds determined in this thesis.
Figure 3.42b) shows the change in frequency, for the weak axis, for the upper bound stiffnesses and
the dynapile computed stiffnesses. For the NEMC, Montevideo and New Orleans tower, the dynapile
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stiffnesses are higher than that of the upper bound, and in the case of the JuBi and Oval tower they are
lower. These changes in stiffness significantly impact the frequencies. Literature and software provide
many different methods of calculating the spring stiffnesses of foundations. The fact that the frequen­
cies determined using different methods of calculating the spring stiffnesses, shows that approximating
the foundation stiffness accurately is as important as accurately approximating the superstructure stiff­
ness.

Table 3.41: Upper bound and Dynapile foundation spring stiffnesses

Spring stiffnesses
Upper Bound DynaPile
Kr Kt Kr Kt

1.75E+12 8.35E+09 5.94E+12 4.50E+09
1.42E+12 3.93E+09 4.45E+12 3.50E+09
2.29E+12 4.88E+09 5.33E+12 3.65E+09
1.16E+13 1.50E+10 3.80E+12 7.20E+09
4.49E+12 8.57E+09 3.46E+12 3.46E+09
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Figure 3.42: a) Weak and strong axis frequencies for increasing E­modulus. b) Frequencies for increasing E­modulus using
different foundation spring stiffnesses.
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3.8. Conclusions
The purpose of this chapter was to investigate factors influencing the natural frequencies of five existing
structures in the Netherlands, by means of a sensitivity study. The frequencies were determined for
5 different beam models, each model providing insight to the influence a certain structural parameter
has on the natural frequency. By making a conservative and extreme assumptions when calculating
the different structural parameters, a lower and upper bound for each parameter was determined. This
showed that there is a significant amount of uncertainty when it comes to determining structural param­
eters, which in the past were mostly taken as deterministic. These bounds were then used to quantify
the influence each parameter has on the frequency.

First, the natural frequencies were determined for each beam model using the structural parameters
given in the design documentation for each individual structure. From this calculation, it was immedi­
ately evident that the frequencies were underestimated when using the beam models. Even for case 1,
representing a structure with a fixed base, the frequencies are underestimated. This lets one believe
that the either stiffness of the structure is underestimated, or that the density of the structure is overes­
timated.
When comparing the results of the 5 different cases, it is evident that the density and the bending
stiffness of the superstructure, and rotational stiffness of the substructure are the parameters which
influence the natural frequency the most. As there was only a small decrease in frequency for case
3 and 4, when compared to case 2, it can be assumed that the translational stiffness and foundation
mass don’t play a significant role when determining the natural frequency of a structure.
After comparing the results of case 4 and 5, it was shown that the Timoshenko beam only differs slightly
from the Euler­Bernoulli beam. Interestingly, the behaviour of the frequency of the Timoshenko beam
is not the same for the different structures. For the NEMC, Montevideo, New Orleans and JuBi towers
there is a slight increase in frequency, and for the Oval tower there is a slight decrease. The fact that
the behaviour of the Timoshenko beam, and the fact that the magnitude of the change in frequency
for the different cases, is not the same for each structure, shows that different parameter combinations
lead to the frequency behaving differently for each structure.

To be able to quantify the influence each parameter has on the frequency, each individual parameter
was varied from it’s lower bound to it’s upper bound while the other parameters in the system were kept
constant. In this way, it could be seen how much the varying parameter influences the frequency.
The results obtained when respectively varying the bending stiffness and density of the superstructure
are as expected. As the stiffness is increased, the frequency increases, and as the density increases,
the frequency decreases. However, when comparing the influence the varying stiffness of case 1 and
case 2 has on the frequency, a difference can be seen. This shows that the addition of the rotational
spring, affects the influence of the bending stiffness has on the frequency.
After varying the rotational spring stiffness, it was seen that the influence the rotational spring stiffness
has on the frequency largely relies on the ratio between the rotational spring stiffness and the building
stiffness. This ratio can be express in a dimensionless stiffness. The smaller this non­dimensional
rotation stiffness is, the larger the influence of the rotational spring and the smaller the influence of the
bending stiffness, has on the frequency.
For the translational stiffness, there is no significant difference between the upper bound and the aver­
aged frequencies. Only when the translational spring stiffness is very small, does this parameter have
a noticeable influence on the frequency.
For the Timoshenko beam, the influence of the bending stiffness, density and rotational spring stiffness
is similar to that of the Euler­Bernoulli beam. However, for the translational spring stiffness, it can be
seen that the Timoshenko beam is a lot less susceptible to the translational spring stiffnesses when
compared to that of the Euler­Bernoulli beam. For the structures where the Timoshenko beam pro­
vided increased frequencies, the influence of lower bound of the translational spring stiffness is less
significant than in the cases of the Oval tower, where a decreased frequency was determined. It was
found that the ratio between 𝐺𝜅𝐴

𝐸𝐼 is what determines if the Timoshenko beam frequency increases or
decreases in regard to the frequencies of the Euler­Bernoulli beam. If the ratio is greater than 1 the
frequency decreases. if the frequency is smaller than 1 the frequency increases and When the ratio
equates to 1, the Timoshenko beam and Euler­Bernoulli beam provide the same frequency.

For the multibeam models, new sectional parameters were determined. The section boundaries were
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chosen at points over the height of the structures, where significant changes in stiffness occurred.
When comparing the results of the single beam model with the multibeam model, it can be seen that, in
most cases, the multibeam model provides and increased frequencies which is closer to the measured
frequencies. This is due to the lower sections of the multibeam models having an increased stiffness,
compared to the uniform stiffness of the single beam model. A second contributing factor to the in­
creased frequencies is that a larger part of the mass of the structure is situated in the lower sections of
the model, this results in less mass taking part in the vibration, which leads to higher frequencies. Even
though the there is an increase in frequency, the frequencies are still significantly underestimated for
most cases, when comparing them with the measured frequencies.





4
Sensitivity Study II: Finite Element Model

of the new Erasmus Medical Centre

4.1. Introduction
The results given in chapter 3 show that the uncertainty of certain structural parameters can have a
large effect on the natural frequency of the structure. Even after using the parameter combination
which lead to the highest possible natural frequency, in most cases there is still an underestimation of
the frequency compared to the measured data. As discussed in the literature of section 2.2.4, there are
several structural and non­structural elements which provide extra stiffness to the structure, which are
not taken into account in the stiffness calculation of the beams models. By adding the extra stiffness
to the system, the natural frequency of the structure should increase. The following chapter provides
insight into the influence different structural elements have on the natural frequency. This is done by
creating a complete model of the new Erasmus Medical Centre and performing a modal analysis on
the 3D model to determine the natural frequency. The FEM software used for the modal analysis is
SCIA Engineer.

The chapter is structured in the following way. Section 4.2 described the original FEM Model modelled
during the design phase of the structure and the alterations made to the original model. Section 4.3
gives the results of the different modal analyses done, quantifying the influence different structural
systems have on the natural frequency of the structure. Lastly, section 4.4 discusses and provides
concluding remarks on the results found in section 4.3.

4.2. The FEM Model
4.2.1. Original Model
During the design of the NEMC a model of the building was made in SCIA Engineer. Figure 4.2 shows
the original model, where 4.1a shows the complete model, 4.1b shows an open view of the model and
4.1c shows the foundation plate and pile layout. The outer tube of the model exists of 640 2D wall
elements. From the ground floor to level 4 the wall element are rigidly connected both horizontally and
vertically to each other, due to these walls being cast in­situ in reality. Above level 4, stacked prefab
concrete elements are used. The stacked elements are connected with DEMU fixing anchors and a
connected horizontal joint. At the sides of the prefab elements, no joints are present. In the model, the
2D wall elements are rigidly connected to the wall elements above and below. To represent the absence
of the joints between the horizontally placed wall elements, a gap of 20mm is modelled. The thickness
of the wall elements range from 500mm to 320mm as specified in the design. The floors are modelled
with 220mm thick 2D plate elements and are rigidly connected to the walls. The foundation slab is also
modelled with a 2D plate elements and has a thickness of 2m. Connected to the foundation plate are
352 spring supports representing the piles under the foundation slab. In the design calculation, the 3
cores only comprised of 7% of the total moment of inertia of the structure, it was assumed to have little
effect on the stiffness and was thus left out of the initial model.

59
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(a) Complete original model (b) Open original model (c) Foundation with pile layout

Figure 4.1: Original SCIA model showing outside view, inside view and pile layout

4.2.2. Complete Model
In the previous chapter, it was shown that there is an underestimation of the natural frequency when
using the beammodel. It is thought that this is due to an underestimation in the stiffness of the structure.
For the complete model, the stability systems ignored in the initial model are added. These are the
three main concrete cores and columns which stretch from the foundation to the roof, and the beams
as shown in figures 4.2a, 4.2b and 4.2c. Figure 4.2d shows a connected view of the modelled systems.

The cores are each modelled with 2D wall elements with dimensions corresponding to the design
specifications. Each wall element is connected with the adjacent element with a spring. The spring
stiffness can be changed as to represent different interface conditions between the elements. The
columns are modelled with 1D bar elements with properties corresponding to the design. Each bar
element is connected rigidly at the top and bottom to the floors above and below. The beams are also
modelled with 1D bar elements and are rigidly connected to the floors.

(a) Three concrete cores (b) Columns (c) Beams
(d) Connected cores,
columns and beams

Figure 4.2: Added Stiffness systems



4.3. Modal Analyses 61

Table 4.1: SCIA Engineer model load summary

Load Description kN
Self weight All modelled elements 358145

Extra outer tube 69399
Stairs and lifts 11228

Permanent Floors, stairs and lifts 22141
Variable Floors, stairs and lifts 64937

Foundation 506

𝑘𝑔
𝑚3

Density Superstructure + foundation 493.76
Superstructure 436.74

The loads added to the model were determined in the same way as the upper bound of the density in
the previous chapter. A summary of the loads is given in table 4.1. As the prefab walls are modelled
with 2D elements of a constant thickness, the total weight of the wall elements is less than in reality.
The extra weight, as determined from the design specifications of the prefab elements, is added to the
wall element with line loads. This can be seen in figure 4.4a. As the stairs and lift are not included in
the model, these are also added as line loads on the respective floors where they are found, as shown
in figure 4.4b. The permanent and variable loads of the stairs and lifts are added in the same way,
whereas the permanent and variable loads for the floors are added as surface loads over the floors, as
is the variable load of the foundation.

(a) Outer tube loads

(b) Loads due to stairs and lifts

Figure 4.3: Loads added to SCIA model

4.3. Modal Analyses
To be able to quantify the influence of the different structural systems, each system contributing to
the stiffness is created in its own layer, which can be turned on and off for each analysis. When a
system is excluded from an analysis, the weight of the system is added to the structure in the form
of an added mass. In this way, the total mass of the structure stays constant and the influence of
the stiffness system can be determined. The different stiffness systems are the outer tube, floors,
cores, foundation, beams and columns. Each pile of the foundation is modelled as a spring support.
By changing the stiffness of the springs, the influence of soil­structure interaction can be seen, where
infinitely stiff springs represent a fixed base of the superstructure, and specified spring stiffnesses
represent the stiffness provided by the piles and soil. Each intersection between the walls, floors and
cores are also modelled by springs to represent the type of connection between these elements, where
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an infinitely stiff spring represents a rigid connection and a spring stiffness of zero represents hinged
connections. By changing the stiffness of these spring connections in the FEM model, the influence
of the connections can be quantified. Lastly, the Young’s modulus of the different structural systems
can also be changed to see what effect this has on the natural frequency. In all the analyses done, the
outer tube, foundation and floors are present, whereas the cores, beams and columns are excluded in
certain analyses.

Reference Case
The first modal analysis is performed for the model with a fixed base. This is achieved by prohibiting
the springs in the foundation to translate or rotate in any direction. For the first case, all additional
systems in the providing stiffness (cores, columns and beams) are present. The elasticity moduli for all
concrete elements are 20𝐺𝑃𝑎 and the spring stiffness of the hinges are set to 1017 (maximum in SCIA
Engineer) to represent a fixed connection. A summary of the properties and systems included in the
model is shown in table 4.2. For the first analysis, the standard SCIA mesh size was taken, which is
on average 1m for 2D elements and 1 intermediate point on 1D elements.

Table 4.2: Properties and systems included in first modal analysis

E [Gpa] Included Foundation Hinges
Tube Floors Core Foundation Cores Columns Beams Kx Ky Kz Rx Ry Rz 𝜙𝑥
20 20 20 20 yes yes yes clamped clamped clamped clamped clamped clamped 1.00E+17

After performing the modal analysis, the eigen frequencies were obtained. The frequency calculated by
SCIA was 0.322 Hz and 0.532 Hz for the first and second translational frequencies. When comparing
this to the measured frequencies of 0.53 and 0.68 for the first and second translational frequencies,
it can be seen that even for the fixed base case, there is still an underestimation of the frequencies.
Just as for the beam models, the difference between the first translational frequency and the measured
frequency is greater than that of the second translational frequency. SCIA Engineer does not have the
feature to check the mode shapes of the different frequencies, however SCIA does provide the global
deformation when the structure is excited at a chosen frequency. The deformation of the structure at
0.322 Hz and 0.532 Hz are shown in figure 4.4. Is can be seen that the global deformations for the two
frequencies mimic the well­known first mode shape in each direction.

(a) Excited at 0.322 Hz (b) Excited at 0.532 Hz

Figure 4.4: Mode shape represented by global displacement excited at chosen frequency

Mesh size and run time
Before changing the parameters of the model of excluding stiffness systems from the model, the in­
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fluence the mesh size has on the frequency calculation is checked. Two more modal analyses are
performed with the same model as mentioned above, the only difference is the mesh size. Table 4.3
shows the influence the change in mesh size has on the frequency and run time. The difference in
calculated frequencies for run 2 and 3 are both related to run 1. It can be seen that there is a slight
change in frequency when comparing runs 1 and 2, and that there is a negligible difference between
runs 2 and 3. However, when looking at the run times of the respective analyses, it can be seen that
the time increases exponentially as the mesh size decreases. As the difference in frequency is minimal
for a smaller mesh size, but the run time increases significantly, the mesh size of run 1 was chosen for
all future runs.

Table 4.3: Influence of mesh size on frequency and run time

Mesh Size
1D Elements 2D Elements Frequency Difference Run Time

Run Intermediate points m First Second % % Minutes
1 1 1 0.32210 0.53191 ­ ­ 94
2 5 0.5 0.32476 0.53089 0.82614 ­0.1933 172
3 10 0.25 0.32479 0.53085 0.83454 ­0.2008 512

Elasticity modulus
For run 4 and 5, all structural systems are still included in the analysis. All spring supports of the
foundation are still clamped, as to represent a fixed base. For run 4 and 5 the elasticity modulus for
all concrete elements are changes to 38𝐺𝑃𝑎 and 7.5𝐺𝑃𝑎, respectively. This can be compared to the
beam model for case 1 where the bending stiffness varies. To be able to compare the SCIA results with
the beam model, the frequencies for the beam model were recalculated using an E­modulus of 20𝐺𝑃𝑎
and a density of 436 𝑘𝑔𝑚3 as to match the parameters used in the SCIA model. The upper and lower
bounds of the bending stiffness are the same as given in chapter 3. The frequencies for run 4 and 5,
and the recalculated beam model frequencies, are shown in table 4.4. In the table can be seen that for
run 4, the first translational frequency is still underestimated compared to the measured frequency of
0.53 Hz. However, the second translational frequency does surpass the measured frequency of 0.68
Hz.

When comparing the results of the SCIA model and the beam model, it can be seen that the beam
model gives significantly higher frequencies. However, both models behave similarly when the E­
moduli are changed. Comparing run 4 to run 1 for both models, there is an increase in frequency of
37,4% and 36.9% for the first and second frequency, for the SCIA model, and an increase of 37.8% in
both directions for the beam model. When run 5 is compared to run 1, there is a reduction of ±38% for
both models, in both direction.

Table 4.4: Parameter change and frequencies for runs 4 and 5 (left). Recalculated beam model frequencies for case 1 using
matched parameters and varying stiffness (right).

Beam model
E [GPa] Frequency [Hz] Frequency [Hz]

Runs Tube Floors Core Foundation First Second First Second
1 20 20 20 20 0.322 0.532 0.388 0.710
4 38 38 38 38 0.443 0.728 0.534 0.979
5 7.5 7.5 7.5 7.5 0.198 0.329 0.237 0.435

Foundation
In runs 6 to 16, the spring properties of the foundation is changed. Table 4.5 shows which parameters of
the springs are change, their influence on the frequency and comparisons made between runs. In the
table, 𝐾𝑥, 𝐾𝑦 and 𝐾𝑍 represent the translational restraints and 𝑅𝑥, 𝑅𝑦 and 𝑅𝑧 represent the rotational
restraints of the springs. The stiffness of 𝐾𝑥 and 𝐾𝑦 is the translational stiffness of a single pile as
determined in section 3.5.3. The stiffness of 𝐾𝑧 is the stiffness determined by Deltares, as used in the
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design documentation. Ar the rotational restraints are set to free, the rotational resistance is determined
using the translational spring stiffnesses.

The table shows that the as 𝐾𝑥 and 𝐾𝑦 are relaxed, there is a decrease in the frequency in the cor­
responding directions. It can also be seen that the decrease in the second translational frequency is
greater than that of the first, this is due to the fact that the difference between the stiffness of the sub­
structure and superstructure is larger. This is the same behaviour as seen in the beam models. When
considering run 9, it can be seen that when the vertical spring stiffness is relaxed, there is a noticeable
decrease in frequency in both translational frequencies. Even though the springs are still restrained
from rotating, the vertical displacement and deformation of the foundations results in a small amount
of rotation. Just as in the beam models, it can be seen that the rotation of the foundation has a larger
influence on the frequencies than the translation. It must be notes that the subscript of the rotational
stiffnesses denotes the axis around which the rotation takes place, this is why the contradicting direc­
tion is influenced. When comparing the influence the rotation of the foundation has on the frequency,
it is seen that the influence on the first translational frequency is greater. This is due to the fact that the
foundation behaves stiffer when rotation around the strong axis. This is the result of the lever arm to the
outer spring being much larger than in the weak direction. This results in a larger rotational resistance.
The total decrease in frequency from run 1 and run 14 is 20% and 18% is the first and second natural
frequencies. This is less than the 25.1% and 25.8% decrease in frequency for case 4 of the beam
model, still the beam model gives significantly higher frequencies with 0.29 Hz and 0.53 Hz 1 for the
first two natural frequencies.

Table 4.5: Change in foundation properties with corresponding frequencies

Foundation Frequency [Hz] difference %
Runs 𝐾𝑥 𝐾𝑦 𝐾𝑧 𝑅𝑥 𝑅𝑦 𝑅𝑧 First Second First Second between runs
1 clamped clamped clamped clamped clamped clamped 0.322 0.532 ­ ­ ­
6 1.56E+07 clamped clamped clamped clamped clamped 0.322 0.516 0.00 ­3.06 6/1
7 clamped 1.56E+07 clamped clamped clamped clamped 0.318 0.532 ­1.16 0.00 7/1
8 1.56E+07 1.56E+07 clamped clamped clamped clamped 0.318 0.516 ­1.18 ­3.06 8/1
9 clamped clamped 8.70E+07 clamped clamped clamped 0.305 0.489 ­5.43 ­8.04 9/1
10 1.56E+07 1.56E+07 8.70E+07 clamped clamped clamped 0.301 0.476 ­6.47 ­10.58 10/1
11 1.56E+07 1.56E+07 8.70E+07 free clamped clamped 0.258 0.475 ­14.21 ­0.08 11/10
12 1.56E+07 1.56E+07 8.70E+07 clamped free clamped 0.301 0.436 ­0.21 ­8.32 12/10
13 1.56E+07 1.56E+07 8.70E+07 clamped clamped free 0.301 0.476 0.00 0.00 13/10
14 1.56E+07 1.56E+07 8.70E+07 free free free 0.258 0.436 ­19.97 ­18.09 14/1
15 1.56E+07 1.56E+07 group effect free free free 0.264 0.443 2.25 1.64 15/14
16 group effect group effect group effect free free free 0.264 0.443 ­18.13 ­16.63 16/1

It is difficult to simulate the group effect which takes place between the piles for such a large pile group,
as there is little available literature found on this topic. It is well known that when a structure is excited
by wind load, the outer piles of the foundation experience more of the force than the inner piles. A
Geotechnical expert at Fugro has found that the axial forces in the piles can roughly be divided into
three groups, this can be seen in figure 4.5. If the axial force in the middle pile group is 𝐹𝑧, then the
outer pile group experiences 1.2𝐹𝑧 and the inner pile group 0.8𝐹𝑧. Applying the same factors to the
spring stiffnesses of the SCIA model, the stiffnesses changes to those shown in table 4.6. The change
in stiffness leads to a slightly higher frequency in both directions. This is due to the larger stiffness in
the outer pile zone, leading to a larger rotational resistance.

Table 4.6: Change in vertical (left) and horizontal (right) spring stiffness due to group effect

Group effect 𝐾𝑧 [
𝑘𝑁
𝑚 ] 𝐾𝑧 [

𝑘𝑁
𝑚 ] Group effect 𝐾𝑥&𝑦 [

𝑘𝑁
𝑚 ] 𝐾𝑥&𝑦 [

𝑘𝑁
𝑚 ]

Outer piles 8.7E+4×1.2 1.04E+05 Outer piles 1.56E+4×1.2 1.87E+04
Middle piles 8.7E+4 8.70E+04 Middle piles 1.56E+4 1.56E+04
Centre piles 8.7E+4×0.8 6.96E+04 Centre piles 1.56E+4×0.8 1.25E+04

1These frequencies were calculated using the upper bounds of the translational and rotational foundation stiffnesses, as these
stiffnesses resemble the stiffnesses used in the SCIA model.
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Figure 4.5: Three axial force zones in foundation piles

Change in E­modulus with flexible foundation
In the previous chapter, it was seen that when the flexible base (case 4) was introduced to the beam
model, the change in frequency due to a change in the superstructure stiffness was significantly reduces
when comparing it to the fixed base model. For the beammodel, the reduction in frequency when using
an E­modulus of 7.5𝐺𝑃𝑎 for concrete is ±28%, in both directions. When using an E­modulus of 38𝐺𝑃𝑎,
the increase in frequency was ±16%. Both cases are compared to the frequencies calculated using an
E­modulus of 20𝐺𝑃𝑎. Table 4.7 shows the change in frequency due to a change in E­modulus for the
SCIA model with flexible foundation. It can be seen that the change in frequency is higher for the SCIA
model compared to the beam model.

It was seen that when comparing the influence of the varying superstructure stiffness for the fixed base
model, that the SCIA model and beam model behaved the same. This suggests that the difference
in results lays in the foundation. In section 3.6.1.2 it was shown that the smaller the ratio between
the substructure and superstructure stiffness (𝐾𝑟𝐿𝐸𝐼 ), the greater a change in superstructure stiffness
influences the frequency. As the SCIA model shows greater differences in frequency, it would suggest
that the substructure stiffness is smaller than that of the beam model, even after the group effect is
applied. This is probably due to the deformation of the foundation slab, which is not taken into account
when determining the single spring stiffness of the beam model.

Table 4.7: Change in frequency due to a change in E­modulus for SCIA model with flexible foundation.

E [GPa] Frequency [Hz] difference %
Runs Tube Floors Core Foundation First Second First Second
16 20 20 20 20 0.264 0.443 ­ ­
17 38 38 38 38 0.320 0.540 21.42 21.73
18 7.5 7.5 7.5 7.5 0.181 0.305 ­31.25 ­31.19

Change in connection spring stiffness
In all the previous analyses, the spring connections between the 2D elements were models as rigid
connections. In reality, this is an overestimation of the stiffness of the connection, as there is most likely
some deformation in the connected area. To see if the connections between the 2D elements affect the
frequency of the structure, the axial rotational stiffness in the springs are set to zero. This represents
a hinged connection between the 2D elements. After the modal analysis was performed, a negligible
reduction of 1% and 0.8% was seen in the first and second translational frequencies. However, the
eigen frequencies of the individual 2D elements were affected significantly more by the change in the
spring stiffness. Due to the relaxation of the boundary conditions of the individual 2D elements, they
are more prone to vibration modes associated with plates.

Influence of stiffness systems
In the calculation for the bending stiffness of the superstructure done in the previous chapter, only the
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outer tube and the three cores were taken into account. The stiffness of the floors and the addition of
the columns and beams were assumed were not included in the calculation. To be able to quantify the
influence each of the stiffness systems have on the frequency, each system was created in a separate
layer in SCIA. These layers can be turned on or off during, as to be included or excluded during an
analysis. The change in frequency can then be linked to the excluded stiffness system. Fo run 20
the beams were excluded from the model and a reduction of 0.23% and 1.66% was seen in the first
and second frequency. It was expected that the beams would have a larger influence on the second
translation frequency, as all beams are placed in the longitudinal direction of the structure. Table 4.8
shows which systems are excluded and the change in frequency.

If the columns were included in the bending moment calculations in the previous chapter, at most, the
columns would only be 0.003% op the total bending stiffness. This validates the assumption that the
columns can be ignored ion the bending stiffness calculation. For run 21, the columns were excluded
from the analysis. Surprisingly, the reduction in frequency is 0.41% and 0.94% for the first and second
frequency. Even though this is still a negligible decrease in frequency, it is significantly more than the
contribution to the bending stiffness of the superstructure.

Apart from the tube, the cores contribute the most to the bending stiffness of the superstructure. In the
calculation of the bending stiffness of the beammodels, it was assumed that the cores work as separate
stiffness systems, and that the floor does not transfer loads between cores and from the cores to the
outer tube. With this assumption, the cores comprised of 6% of the total inertia in the weak direction,
and 0.3% in the strong direction. After excluding the cores from the analysis, the first translational
frequency was reduced by 4.5%. The second translational frequency was reduced with 4.25%. This
would mean that the afore mentioned assumption is wrong, as the reduction in frequency is much larger
than the assumed reduction in stiffness due to the exclusion of the cores. This would suggest that the
floors do transfer load between systems. Interestingly, when comparing the reduction of the frequency
caused by the columns and by the cores, the columns have a fairly large influence as the inertia of the
columns is very small compared to that of the cores.

The floors can not be excluded from the model, as the walls will start to behave as 4 connected plates
and not as a beam. To see how the floors affect the frequency, the E­modulus of the floors are changed.
Even though the floors provide the structure with the integrity to behave as a beam, the change in
stiffness does not greatly affect the frequency. In the table below, the change in frequency can be seen
due to the change in floor stiffness. When comparing the reduction in frequency due to the exclusion
of the beams and the change in frequency due to the change in floor stiffness, it can be seen that
the beams have quite a large influence compared to the floor stiffness. One would not expect this, as
the change in stiffness is thought to be significantly larger when the stiffness of the floors is reduced
compared to when the beams are excluded.

Table 4.8: Change in frequency due to the exclusion of stiffness systems

E [GPa] Included Frequency [Hz] difference % between runs
Runs Tube Floors Core Foundation Tube Foundation Floors Cores Columns Beams First Second First Second
16 20 20 20 20 yes yes yes yes yes yes 0.2637 0.4435 ­ ­ ­
20 20 20 20 20 yes yes yes yes yes no 0.2631 0.4361 ­0.23 ­1.66 20/16
21 20 20 20 20 yes yes yes yes no yes 0.2626 0.4393 ­0.41 ­0.94 21//16
22 20 20 20 20 yes yes yes no yes yes 0.2519 0.4246 ­4.47 ­4.25 22/16
23 20 20 20 20 yes yes yes no no no 0.2510 0.4222 ­4.82 ­4.79 23/16
24 20 7.5 20 20 yes yes yes no no no 0.2480 0.4174 ­1.18 ­1.15 24/23
25 20 38 20 20 yes yes yes no no no 0.2527 0.4248 0.69 0.62 25/23

Reduced building density and the inclusion of non­structural walls and movement joints
Even after the addition of all the stiffness systems to the SCIA model, the frequencies are still under­
estimated. Two possible partial reasons for this is that the stiffness is still underestimated and that the
density of the structure is overestimated. As mentioned before, a recent article in Cement Magazine
[11] stated that, for the NEMC, the frequency of the structure was done 2 years before the construction
of the structure was finished. Assuming that the construction of all the stability systems were complete
at the time the measurements were done, and that none of the finishing aspects were done, then the
mass can be reduced significantly. Excluding all added mass representing the finishing and variable
loads, the density of the superstructure decreases from 436.7 𝑘𝑔

𝑚3 to 354
𝑘𝑔
𝑚3 . Due to this 19% decrease
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of mass, the frequency increases by 10.7% in both direction in comparison to run 16. The first and sec­
ond translational frequencies are 0.292 Hz and 0.491 Hz. Even after such a reduction in mass, the
calculated frequencies are still underestimated. This leads to the belief that extra stiffness is provided
to the structure, which is not taken into account in the current model.

On the west side of the NEMC, a low­rise building is connected to the NEMC. The low­rise structure
is connected to the high­rise structure with movement joints. These movement joint make it possible
for both structure to move independently of each other, and it was assumed that these joints provide
no added stiffness to the high­rise structure. For the next analysis, it is assumed that the movement
joints do not work and that the low­rise structure adds stiffness to the high­rise structure. At all locations
where movement joints are found, a support is modelled. The support is free to rotate, but is restrained
from translating horizontally. This is an overestimation of the possible stiffness movements joints could
add to the system, as deformations will always be present in the connections or low­rise structure. after
adding the supports, SCIA calculated a first and second translational frequency of 0.638 Hz and 0.981
Hz, respectively.

Another system which was assumed to provide no stiffness to the structure, are the partition walls.
These are plasterboard walls which are installed after the floors are set. These walls are assumed to
carry none of the load and are made of a panel with a relatively low stiffness. In literature mentioned in
section 2, it was shown that these non­structural element can, in some cases, increase the structure’s
natural frequencies significantly. Using an architectural drawing, the basic layout of the NEMC was
found. This was used to create the wall system, as shown in figure 4.6. In one study [53] it was found
that the E­modulus of such plasterboard walls range between 2.1𝐺𝑃𝑎 and 4.1𝐺𝑃𝑎, an E­modulus of
2.5𝐺𝑃𝑎 was thus chosen for the modelled partitioning walls. The partitioning walls are connected to
the floors and outer tube with hinged connection. To be able to quantify the amount of stiffness the
walls add, the walls are massless, as the added mass will decrease the determined frequencies. After
the walls were added, there was an increase of 8.5% and 6.9% in the first and second translational
frequencies, the calculated frequencies are 0.317Hz and 0.525Hz.

(a) Floor layout of NEMC (b) Modelled partitioning walls in SCIA

Figure 4.6: Floor plan and added partitioning walls to the SCIA model

4.4. Conclusion
The purpose of this chapter was to investigate the influence different structural systems have on the
natural frequency using the finite element software SCIA Engineer. This was done by creating a model
of the new Erasmus Medical Centre, consisting of all the structural systems specified in the design.
The individual stiffness systems were all created in their own layer. These layers could be turned on
or off for each analysis. In this way, it is possible to quantify the influence the turned off layer has on
the frequency, by comparing the change in frequency between two analyses.
The first modal analysis was done for the model with a fixed base and includes all stiffness systems.
This can be compared with case 1 of the beam models. The first two eigen frequencies calculated by
SCIA Engineer were 0.32 Hz and 0.53 Hz. From this result, it can already be seen that the lacking
frequency needed to reach the measured frequencies do not come from the stiffness systems which
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were ignored in the beam models. This leads to the conclusion that the structure gains stiffness from
a source which is still not taken into account.
For the model where a flexible foundation is assumed and where group effect is taken into account,
the determined frequencies were 0.26 Hz and 0.44 Hz for the first and second frequencies. When
comparing the results of the fixed base and flexible base SCIA models to the beams model results, the
beam model provides higher frequencies, even though the columns, beams and floors are not taken
into account when determining the bending stiffness.
In further analyses it was shown that the cores, contribute to ±4.5% of the frequency, whereas the
contribution of the columns and beams are negligible for the NEMC model.

The results of the complete NEMC model, which includes all the stiffness systems, still underestimated
the frequencies. This shows that either the stiffness is underestimated, the density is overestimated,
or both. It was later found that the measurements done on the NEMC took place 2 years before the
completion of the structure. After the assumption was made that all structural systems were in place at
the time of the measurements and that the mass of the finishings and variable loads could be ignored,
the frequency was calculated to be 0.29 Hz and 0.49 Hz for the first and second eigen frequency.
Next systems were added to the model which were initially assumed not to provide the structure with
stiffness. One of these systems is the partitioning walls. After the walls were added, the frequency was
increased with 8.5% and 6.9% is the first and second frequency, respectively. It must be noted that due
to the fact that the layout for the partitioning walls are the same for all levels, the load in the partition
walls transfers straight to the partition walls below and that no loads are transferred through the floors.
In reality, the layout of the partition walls is most likely not constant for each level, this would result in
a lesser increase in frequency.
Lastly, the assumption was made that the movement joints between the high­rise and low­rise structure
are defective. At the location of eachmovement joint, a hinge support was placed to restrict the structure
from translating horizontally. This essentially shortens the height of the structure, which increases the
overall stiffness. This resulted in frequencies of 0.64 Hz and 0.98 Hz. It must however be noted that
the assumption of defective movement joints being represented by hinged supports, is an unrealistic
overestimation of the stiffness the low­rise structure could add to the high­rise structure.



5
Conclusion

The aim of this research was to determine the reason for the underestimation of the natural frequency
for high­rise structures during the design phase. Commonly used methods to determine the natu­
ral frequency are by using empirical formulae based on measured data, calculating the frequencies
using beam theory and creating elaborate models and using FEM software to determine the natural
frequency. Each method having their own advantages and disadvantages. Often, over simplified as­
sumptions have to be made when using these methods, with the result that there is often an error in the
determination of the frequencies. According to an article on Gebiedsontwikkeling, by the year 2040, the
predicted number of high­rise structures above 70 meters in the Netherlands will grow from the current
220 buildings to 450 buildings [36]. This shows the increasing need to be able to accurately predict the
natural frequency during the design of these structures. Figure 5.1 shows that the underestimation of
the natural frequency of 50%, which is not uncommon, can lead to an overestimation of the design base
moment and base shear of between 20% to 30%. This could lead to the over designing of structures,
which is uneconomical. The natural frequency is also often used in the determination of the damping
and comfort of high­rise structures, which can have further influence on the design.
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Figure 5.1: Normalized base moment and base shear for varying frequencies

To gain more understanding in factors influencing the natural frequency, five high­rise structures in the
Netherlands were used as case studies. For all these structures, TNO have measured the natural
frequencies. In Chapter 3, five different beam models were looked at, each model having the purpose
of quantifying the influence of a certain parameter on the frequency of the model. From the param­
eters included in the five models, there were three parameters which had a significant influence on
the frequency. These were the superstructure bending stiffness and density, and the rotational spring
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stiffness of the foundation. For the models where the rotational spring was present, it was found that
the influence the bending stiffness and the rotational stiffness had on the frequency, depended on the
ratio between these two stiffnesses. The translational spring and foundation mass were found to have
a negligible effect on the frequency. The influence different beam theories have on the natural fre­
quencies of the five cases was also studies. The overall conclusion is that there is little difference in
the results between the two beam theories. In four of the five cases, the Timoshenko beam provided
slightly higher frequencies when compared to the Euler­Bernoulli beam. Only in the case of the Oval
tower were lower frequencies computed. It was found that the ratio between 𝐺𝜅𝐴

𝐸𝐼 was the factor which
influences if the Timoshenko beam frequency increases or decreases from that of the Euler­Bernoulli
beam. Even though the Timoshenko beam incorporates an extra parameter into the frequency calcu­
lation, when weighing the effort and computational time needed for the Timoshenko beam model, with
the relative ease of the Euler beam, the slight difference in results is not worth it.
Often during the design phase of a high­rise structure, the parameters of the beam model are simpli­
fied to be uniform over the height of the beam. This is often an over simplification, as the stiffness and
density of structures often decrease over their height. The analyses done in Chapter 3 were done for
the simplified uniform beam and for a multibeam model. This proved to have a significant influence on
the frequency, increasing the frequency as much as 15% in the case of the JuBi tower.
When comparing the results of the different beammodels to themeasured frequencies for the respected
buildings, it was seen that for nearly all cases, the frequencies determined by the beam models were
severely underestimated. Even in the case of a fixed base, the frequencies were underestimated. This
leads to the conclusion that either the bending stiffness is underestimated or the density is overesti­
mated. However, after the frequencies determined using the lower bound of the densities were still
underestimated, it can be concluded the underestimation of the frequencies is due to the underesti­
mation of the bending stiffness of the structures. This leads to the assumption that there are stiffness
systems which are not yet taken into account in the bending stiffness calculations.

To be able to take into account all the stiffness systems in the structure, a complete model was created
of the new Erasmus medical centre in SCIA Engineer as done in Chapter 4. Stiffness systems such
as the columns, floors and beams, which were assumed negligible in Chapter 3, were added to the
SCIA model. Each system was created in its own layer, these layers could be turned on or off in the
modal analyses. In this way, the influence the specific systems have on the natural frequency could be
quantified.
From the analyses done, it was concluded that the assumption that the beams and columns could be
neglected in the stiffness calculation, was accurate. The influence these systems had on the first eigen
frequency was less than 0.5%. It must be noted that the beams and columns should not be neglected
for each case. Literature shows that when dealing with a frame like structure, that the beams and
columns significantly influence the frequency of those structures.
To determine how the floors influence the frequencies, the E­modulus of the floors were changed from
20𝐺𝑃𝑎 to 7.5𝐺𝑃𝑎 and 38𝐺𝑃𝑎, respectively. It was found that these changes in E­modulus did not have a
great effect on the frequencies, thus proving the floors can also be ignored in the stiffness calculations.
The floors are however very important in the frequency calculation of the SCIA model. The floors effect
the global behaviour of the structure. If the floors are omitted from the analyses, the global behaviour
of the walls will be plate like, instead of the cantilever behaviour which is reached when the floors are
present.
The addition of the cores and flexible foundation has the expected results. As the cores only comprise
of 6% of the total bending stiffness, the influence on the frequency is just 4.5%. The addition of the
flexible foundation results in a decrease in the frequency of around 20%, this is in the same range as
that for the beam model.

Even with all the stiffness systemswhich were neglected in Chapter 3 added to themodel, the frequency
was still underestimated. This led to the belief that there might be sources of stiffness which provide
the structure with extra stiffness. One such system could be the partition walls found in the building. A
floor layout was assumed and the partition walls were added to the model. These were modelled as
massless as to see how they affect the stiffness of the structure. The partition walls were modelled with
plate element with an E­modulus of 2.5𝐺𝑃𝐴 as to represent gypsum walls. These plate elements were
fixed to the walls and floors with hinged connections. The addition of these partition walls resulted in
an increase in frequency of 8.5%. Even with the further increase, the measured frequencies were still
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not reached.
Lastly, the assumption that the low­rise structure does not affect the high­rise structure was relaxed.
Between the two structure, movement joints are placed. These joints were assumed not word work,
thus making it possible for the high­rise structure to transfer loads to the low­rise structure. This was
done by modelling supports at the locations of each movement joint. This finally led to frequencies
which surpass the measured frequencies. It must however be noted that the assumption of defective
movement joints being represented by hinged supports, is an unrealistic overestimation of the stiffness
the low­rise structure could add to the high­rise structure. The effect defective movement joints might
have on the high­rise building will have to be researched in more detail.

This thesis shed light on factors effecting the natural frequency of high­rise structures. by varying the
magnitudes of various structural parameters, the influence these parameters have on the natural fre­
quency were quantified. It was found that the three parameters which have the greatest effect on the
natural frequency are the bending stiffness, density and rotational spring stiffness. Due to the underes­
timation of the computed natural frequencies, it was concluded that the in the calculations, the stiffness
of the superstructure is underestimated and that there might be internal and external systems providing
the structure with extra stiffness. Further research will have to be done to exactly pinpoint where this
extra stiffness comes from. When comparing the different methods of determining the natural frequen­
cies, in most cases, the empirical formula adopted by the NEN­EN 1991­1­4 provides frequencies the
closest to the measured frequencies. The following chapter will provide recommendation for future
research to further our understanding on the topics discussed in the thesis.





6
Recommendations

6.1. Measurements of dynamic properties
As the amount of high­rise structures is planned to be doubled in the next 20 years [36], it creates
a good opportunity to use these structures to gain a better understanding of the dynamic properties
of high­rise structures. By measuring the dynamic properties of these structures, the true behaviour
of these structures can be seen. These measurements can be used to categorize different structural
systems, determine empirical formulae specific to the Netherlands and determine the effectiveness of
approximating a structure with different beams, just to name a few uses.

Empirical formula
The current method of determining the natural frequency adopted by the NEN­EN1991­4­1, is an empir­
ical formula based on data of high­rise structures built in America and Japan. These are often structures
built on foundations close to bedrock, resulting in the boundary conditions of the foundation being rel­
atively stiff. This is often not the case in the Netherlands. With the existing high­rise structures, and
all the planned high­rise structures, in the Netherlands, there are enough structures to form a suffi­
cient data pool to create an empirical formula for the natural frequencies specific to structures in the
Netherlands. The acceleration measurements are only needed at one height in the structure, as this
is enough to determine the natural frequencies. As more measurements are made and added to the
data pool used to determine the empirical formula, the more accurate the frequency approximation will
be. If enough data is available, structures can be categorized according to their structural systems,
and frequency equations can be made for the different structural systems.

Cataloguing different structural types
Due to the different types of complex high­rise structure designs, high­rise structures can not merely
be classified as rigid frames or tubes, as once was possible. Kijewski­Correa has have catalogued
more than 30 variations of structural systems used today. This shows that it is not possible to anal­
yse high­rise structures with the assumption that they are going to behave the same. To gain a better
understanding of the dynamic behaviour of these different types of high­rise structures, more measure­
ments must be done. To be able to categorize these structures, special attention must be placed on
the mode shapes. This means that measurements must be done on several heights in the structure, to
be able to accurately capture the true mode shapes. The more discontinuous the structure is, the more
measurements must be taken, as the different structural sections will behave differently. The accurate
measurements of mode shapes can also provide insight about the influence of connecting structures.
A method which can be used to catalogue the different structures, is by using the Differential Degree of
Cantilever Action (dDCA) proposed by Bartolini [5], which compares the measured mode shapes with
an ideal cantilever beam. If a correlation between the natural frequencies of structures with the same
dDCA score is found, then these structures can be categorized together. If enough data is available
for different categories, empirical formulae for the frequencies can also be determined for each cate­
gory. By determining the dDCA score of different structural designs, it will also become more clear if a
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bending beam is an accurate representation of these structures in the design phase. Further research
can also be done on how to integrate the dDCA score of a structure with beam theory.

Figure 6.1: Different types of structural systems used in high­rise structures. (Kijewski­Correa, T. (2020. ’Predicting the energy
dissipative potential of tall buildings: Insights from sustained full­scale monitoring’[conference presentation]. EURODYN 2020.

6.2. Influence of the low­rise structure
Structural pounding is a term often used in seismic engineering. Pounding occurs when two or more
adjacent structures, which are in proximity, exert forces on each other due to collision caused by lateral
loading. Many studies have been done studying pounding due to earthquakes [3, 34, 35, 40, 41,
47], but Abdullah et al. [1] stated that structural pounding can also occur due to the out­of­phase
vibrations caused by wind excitation. As the oscillations caused by wind are less violent and in a more
constant direction when compared to seismic excitations, the pounding could less noticeable. The
contact between two adjacent structures is often due to the structures having different heights and
stiffnesses. This leads the structures to vibrate out of phase, which can cause the structures to collide.

Figure 6.2: Top view of the movement joint between the low­ and high­rise structures of the NEMC.

Between the high­rise and low­rise structures of the new Erasmus Medical Centre, movement joints
are present at locations where the structures connect to each other. Figure 6.2 shows one of these
movement joints. In the figure it can be seen that between the low­ and high­rise building a gap, shown
by the green lines, is present. It can also be seen that the floor of the low­rise building is connected to
the high­rise building by two L­angles, shown in red. The figure shows that the angle is fixed to both
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structures in the y­direction (strong), but free to move in the x­direction. His is due to the presence of an
oil film between the angle and the floor of the low­rise structure. This would mean that the movement
joints would provide negligible stiffness to the high­rise structure, but what is this is not the case?

FE Model
A modal analysis is not the only dynamic analysis which can be done in SCIA Engineer. The model can
also be loaded with different types of dynamic loads, as to see how the model behaviours under certain
conditions. The model can thus be excited by a dynamic wind load, and the motion of the structure
can be determined. If the current FE model described in this thesis is excited by a dynamic load, the
model will be able to deflect without any influence of the low­rise structure. The deflections of the nodes
at the locations where the low­rise structure would be modelled must be considered. If these nodes
deflect more than the distance between the two structures, then there is a possibility that the structures
could touch. This would allow the high­rise structure to transfer load to the low­rise structure, resulting
in the low­rise structure providing the high­rise structure with extra stiffness. If the deflections of the
high­rise structure is small, this does not necessary mean that the structures do not touch. Due to
the fact that the two structures have different heights and stiffnesses, the probability of the structures
vibrating out of phase is quite high. Once the structures move out of phase, both structures must be
considered in the dynamic analysis. The low­rise structure, as shown in figure 6.3, must be modelled
next to the high­rise structure. The same dynamic load can now be applied to both structures, and the
deflection of the structures can be determined. The nodes located in the circles, shown in figure 6.3,
are most likely to collide if deflections are large enough. According to a study done by Jankowski [35],
it is often the rotation of structures which lead to the contact between adjacent buildings. If the dynamic
analysis proves that there is contact between the two structures when excited by a dynamic wind load,
then it can be concluded that the possibility is present that the low­rise structure provided the high­rise
structure with extra stiffness.

Figure 6.3: NEMC tower with proposed low­rise model.

If the low­rise structure is modelled, then the movement joints can also be added to the model. These
can be modelled with springs at the specified locations of these joints given in the design documen­
tation. The spring stiffnesses can be changed as to represent different assumptions made for the
effectiveness of these joints. Modal analyses can be done using the two structure model. These re­
sults can then be compared to the single structure model to see how the low­rise building influences
the frequency for different movement joint assumptions.

Measurements
To really understand if any forces are transferred from the high­rise structure to the low­rise structure,
measurements at the movement joints can be taken. According to the design specifications of the
movement joints, between the L­angles and the floor of the low­rise building, an oil film is present. The
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purpose of the film is to let the two structure move freely in the x­direction, without load transfer. If the
oil film is not effective, load will be transferred from one structure to the other through the L­angles.
This load transfer will cause strains to form in the L­angles. These strains can be measured by placing
strain gauges at certain sections of the angles. Section 1, marked in blue, in figure 6.4 is a section that
could experience strains as loads are transferred between the two structures. The strains measured in
these angles can be used to determine the influence of the ill effective movement joint. They can also
provide insight to the magnitude of the spring stiffnesses, if these movement joints were modelled as
springs in a FE model.

Figure 6.4: Proposed measurement apparatus setup.

(a) Strain gauge

(b) Force gauge

Figure 6.5: Structural strain and force gauges

It could occur that themovement joints do work properly, but that load is still transferred. If the structures
deflect out of phase, the motion in opposite directions could cause the structures to touch. This would
mean that the floor of the low­rise structure slides past the movement joint until it reaches the wall of
the high­rise structure. If contact takes place, force is transferred from one structure to the other. To
see if this occurs, a force gauge can be placed between the floor of the low­rise structure and the wall
of the high­rise structure, as shown in red in figure 6.4. Ideally, a thin button gauge as shown in figure
6.5b can be used, as these type of gauges will not significantly decrease the distance between the two
structures.

6.3. Further recommendations
Update of beam models
In Chapter 3 only the translational and rotational springs are taken into account to represent the foun­
dation. The beammodels can be updated as to also take into account the coupling term between these
translational and rotational spring. The beam models also ignore secondary effects, such as the axial
loading in the structure. Further research can be done to quantify the influence of these effects.

E­modulus measurements
In Chapter 3 it can be seen that the E­modulus plays a large role in the stiffness of a structure. Various
sources have reported that the E­modulus used in the design, and the E­modulus is reality, can differ
[44, 42, 57]. By knowing the real value of the E­modulus, a better understanding of the stiffness of the
structure will be obtained. Non­destructive methods, such as the Ultrasonic Pulse Method, can be used
to determine the E­modulus of existing structures. The measured E­moduli can then be compared to
the E­modulus given in the design documentation.

Partition walls
This thesis lightly touches on the effect non­structural elements, such as partition walls, have on the
natural frequency of the NEMC. A floor layout was assumed and used for every floor. As the layout for
each level was the same, the influence the partition walls have, might be overestimated. This is due to



6.3. Further recommendations 77

the walls being able to transfer the load straight to the foundation. If different layouts for different levels
are assumed, the influence these walls will have could be less. It is recommended to obtain the floor
layout of the NEMC and model the partition walls accordingly. In the analyses done in Chapter 4, an
E­modulus of the walls as assumed bases on values found in literature. Furthermore, the connections
between the tube walls, floors and partition walls were modelled as hinges. Laboratory test could be
done on the type of partition walls used in the NEMC, to find the true E­modulus and the stiffness
of the connections. The connections can then be modelled by springs, to better represent the real
connections.
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A
Beam Theory

In this appendix, the basic beam theories used throughout the report is given. The two theories dis­
cussed are the Euler­Bernoulli beam and the Timoshenko beam. The theories given here are based
on [55].

A.1. Euler­Bernoulli Beam
The Euler­Bernoulli (EB) beam theory was first formulated in 1744 by Leonhard Euler and Daniel
Bernoulli. The EB beam is one of the reference models for the analysis of slender homogeneous
structures under bending loading [16]. For the EB beam, the following assumptions are made:

• Shear strains in all directions are zero.

• The displacements of the body are small.

• The longitudinal axis of the beam is straight and symmetric about the y­axis.

The last key assumption of this beam is that when the beam is subjected to loading, the plane cross­
section remains plane and normal to the beam axis. This assumption is only valid due to the assumption
that the shear and torsional deformations are small when comparing them to the deformations caused
by normal stress and bending.

The sign convention shown in figure A.1 throughout this section.
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Figure A.1: Sign convention for Euler­Bernoulli beam

A.1.1. Relationship between deflection and curvature
In figure A.2a a curved 1D element can be seen. It is easy to see that the following equations hold for
the curved element.

𝑑𝑠 = 𝜌𝑑𝜃

𝜅 = 1
𝜌 =

𝑑𝜃
𝑑𝑠

(A.1)

Where 𝜅 is the curvature of the element and 𝜌1 is the radius of curvature. By differentiating the dis­
placement of the element, the slope of the curve is found, which in turn can be related to the angle of
rotation (𝜃) of the element, as shown in equation A.2 and can be seen in figure A.2b. As 𝑑𝑥 is infinites­
imally small, 𝑑𝑠 can be approximated by a straight line, and as we only consider small rotations, the
following can be approximated: 𝑠𝑖𝑛𝜃 ≈ 𝑡𝑎𝑛𝜃 ≈ 𝜃 and 𝑐𝑜𝑠𝜃 ≈ 1. Now taking the first derivative of 𝜃,
then equation A.3 holds. With 𝑣 being the displacement in the y­direction.

𝑑𝑣
𝑑𝑠 = 𝑡𝑎𝑛𝜃 (A.2)

𝑑2𝑣
𝑑𝑥2 = 𝜅 =

1
𝜌 (A.3)

1Note that the 𝜌 representing the radius of curvature in the Euler­Bernoulli beam theory has nothing to do with the 𝜌 used
throughout the rest of this report. In the main body of the report, 𝜌 represents a density.
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(a) Curved 1D element (b) Curved element with small rotation approximation

Figure A.2: Assumption of small rotations

A.1.2. Relationship between curvature and longitudinal strain
The relationship between the curvature of the beam and the longitudinal strain can be found by applying
two coupled moments (𝑀0) on either side of a portion of the beam, as shown in figure A.3. The coupled
moments produce a positive curvature and a negative bending moment in the beam element. As the
beam element bends, the top fibres elongate, causing tension and the bottom fibres shorten, causing
compression. On the neutral axis, there is no elongation or shortening of the fibres, this is shown by
the dashed line in figure A.3. The point 𝑂′ in the figure is where planes 𝑚𝑛 and 𝑝𝑞 of the deformed
beam intersect. The angle between these two planes is given by 𝑑𝜃 and the distance from 𝑂′ to the
neutral axis is 𝜌. As there is no change in length on the neutral axis, the distance between planes 𝑚𝑛
and 𝑝𝑞 (𝑑𝑥) can be related to the radius of curvature ass shown in equation A.4. Due to the shortening
of the bottom fibre of the beam element, the length of segment 𝑒𝑓 is smaller than 𝑑𝑥. At a distance 𝑦
from the natural axis, segment 𝑒𝑓 has a length 𝑑𝑠𝑒𝑓 as shown in equation A.4. The strain of segment
𝑒𝑓 can be found by dividing the difference in length of 𝑑𝑥 and 𝑑𝑠𝑒𝑓 by the original length, as shown in
equation A.5.

𝑑𝑥 = 𝜌𝑑𝜃
𝑑𝑠𝑒𝑓 = (𝜌 − 𝑦)𝑑𝜃

(A.4)

𝜖𝑒𝑓𝑥𝑥 =
𝑑𝑠𝑒𝑓 − 𝑑𝑥

𝑑𝑥 = −𝜅𝑦 (A.5)

Figure A.3: Bending of a beam element
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A.1.3. Relationship between external load, shear force and bending moment
Using an infinitesimal element 𝑑𝑥 as shown in figure A.4, equilibrium of the segment can be used to
find the relationship between external load, shear force and bending moment. Using vertical force
equilibrium, the relationship of the external force 𝑞 and the shear force 𝑉 can be expressed. This is
shown in equation A.6. Similarly, using the moment equilibrium, the relationship between the bending
moment and shear can be expressed and is given in equation A.7. It must be noted that the product of
differentials 𝑑𝑥𝑑𝑉 is taken to be zero, and that this equation only holds if the segment is loaded with a
distributed load.

𝑞𝑑𝑥 + 𝑉 + 𝑑𝑉 − 𝑉 = 0
𝑑𝑉
𝑑𝑥 = −𝑞

(A.6)

−𝑀 − 12𝑑𝑥𝑉 −
1
2𝑑𝑥𝑉 −

1
2𝑑𝑥𝑑𝑉 +𝑀 + 𝑑𝑀 = 0

𝑑𝑀
𝑑𝑥 = 𝑉

(A.7)

Figure A.4: Infinitesimal Euler­Bernoulli beam segment

A.1.4. Relationship between internal bending moment and curvature
Using Hooke’s law, it is possible to relate strains and stresses by introducing the Young’s modulus (𝐸).
Taking the stress in the x­direction as an example, the strain can be related to the stress as shown in
equation A.8. Furthermore, using equation A.5, the stress can also be related to the curvature of the
beam. Figure A.5 a beam element with an internal moment on one end and its corresponding stress
distribution at the other end. Due to the beam element being in equilibrium, the internal moment can
be equated to the internal coupling resulting from the stress distribution, as shown in equation A.9. By
combining equations A.8 and A.9, the internal moment can be related to the curvature of the beam
element, as done in equation A.10.

𝜎𝑥 = 𝐸𝜖𝑥 = −𝜅𝑦 (A.8)

𝑀 = ∫𝑑𝑀 = ∫𝜎𝑥𝑦𝑑𝐴 (A.9)

𝑀 = ∫𝜎𝑥𝑦𝑑𝐴 = −∫𝐸𝜅𝑦2𝑑𝐴 = −𝐸𝐼𝜅 (A.10)
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where
𝐼 = ∫𝑦2𝑑𝐴 (A.11)

is the moment of inertia around the neutral axis. The product of the Youngs’s modulus and moment of
inertia (𝐸𝐼) is known as the bending stiffness of the beam element.

Figure A.5: Equilibrium due to internal moment and its corresponding stress distribution

A.1.5. Differential equation of the transverse deflection
Using equations A.3 and A.10 the differential equation of the deflection is obtained as given in equation
A.12, where 𝑣 is the deflection in the transverse direction. By manipulating equations A.6 and A.7 into
equation A.12, the displacement can be related to the external force as shown in equation A.13, and
when considering a beam which does not vary in 𝐸𝐼, then the fourth order differential equation given in
equation A.14 is obtained.

𝑑2𝑣
𝑑𝑥2 = −

𝑀
𝐸𝐼 (A.12)

𝑑2
𝑑𝑥2 (𝐸𝐼

𝑑2𝑣
𝑑𝑥2 ) = 𝑞 (A.13)

𝐸𝐼𝑑
4𝑣
𝑑𝑥4 = 𝑞 (A.14)

A.2. Timoshenko Beam
The Timoshenko beam theory was proposed by Stepan Prokfyevich Timoshenko in 1922. The Timo­
shenko beam theory is an extension to the Euler­Bernoulli beam. The main difference is where Euler­
Bernoulli assumed that plane sections remain plane and normal to the deformed centreline, Timo­
shenko relaxes this assumption and introduces a first­order transverse shear effect. This is done by
introducing an additional degree of freedom describing the additional rotation of the bending slope.

A.2.1. Governing equations of a shear beam
Before being able to combine bending and shear, the governing equations of a beam in pure shear are
needed. Shear distortion (𝛾) describes the shear deformation caused by a shear force, as shown in
figure A.6. The shear distortion is related to a small displacement (𝑑𝑣) over the width of the infinitesimal
segment, as shown in equation A.15. The constitutive equation of the shear element can again be
formulated by using Hooke’s law, using the shear stress (𝜏) and the shear distortion. The shear stress
can also be related to the shear force (𝑉) and the area the shear force is applied to (𝐴𝑠). These two
relations are shown in equation A.16.

𝛾 ≈ 𝑑𝑣
𝑑𝑥 (A.15)
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𝜏 = 𝐺𝛾

𝜏 = 𝑉
𝐴𝑠

(A.16)

Using the above­mentioned equation, the shear deformation can be related to shear force and shear
stiffness. This is shown in equation A.17, where 𝐺𝐴𝑆 is the shear stiffness of the beam. When con­
sidering moment equilibrium of the infinitesimal shear beam element, as done in the previous section,
the same differential equation as given in A.6 is found. Combining equations A.17 and A.6 the second
order differential equation A.18 is obtained.

𝛾 = 𝑑𝑣
𝑑𝑥 =

𝑉
𝐺𝐴𝑠

(A.17)

− 𝐺𝐴𝑠
𝑑2𝑣
𝑑𝑥2 = 𝑞 (A.18)

Figure A.6: Infinitesimal shear beam segment and deformed state

A.2.2. Kinematic assumptions for the Timoshenko beam
For the Timoshenko beam theory, there are two independent kinematic quantities. The first is the
transverse deflection (𝑣(𝑥)) and the second is the cross­sectional rotation (𝜙(x)), where 𝜙 is the rotation
between the cross­section and the vertical­axis. Consider the point 𝑝, taken a distance 𝑦 from the centre
of the axis, as shown in figure A.7. The displacement field of the point can be described by equation
A.19.

𝑠𝑥(𝑥, 𝑦) = −𝑦𝜙(𝑥)
𝑠𝑦(𝑥, 𝑦) = 𝑣(𝑥)

(A.19)
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Figure A.7: Bending of a Timoshenko beam

By taking the derivatives of the non­zero components of the displacement field, the strain field shown
below is obtained.

𝜖𝑥 =
𝑑𝑠𝑥
𝑑𝑥 = −𝑦𝑑𝜙𝑑𝑥

𝛾𝑥𝑦 =
𝑑𝑠𝑥
𝑑𝑦 +

𝑑𝑠𝑦
𝑑𝑥 = −𝜙 + 𝑑𝑣𝑑𝑥

(A.20)

A.2.3. Relationship between deformations and internal forces
By combining equation A.17 and the second equation of A.20 the shear force can be expressed as
shown in A.21.

𝑉 = 𝐺𝐴𝑆𝛾 = 𝐺𝐴𝑠(
𝑑𝑣
𝑑𝑥 − 𝜙) (A.21)

Using Hooke’s law and substituting in the first equation of A.20, the stress in the beam can be expressed
as shown below.

𝜎𝑠 = 𝐸𝜖𝑥 = −𝐸𝛾
𝑑𝜙
𝑑𝑥 (A.22)

Using the same method as shown in equations A.8, A.9 and A.10, and applying this to the Timoshenko
beam, expression A.23 for the bending moment in the beam can be obtained.

𝑀 = −𝐸𝐼𝑑𝜙𝑑𝑥 (A.23)

A.2.4. Differential equation for transverse deflection
When considering am infinitesimal beam segment of the Timoshenko beam, the equilibrium equations
of the beam are unaffected by the shear deformation, and are thus the same as the equations A.6 and
A.7. The differential equations are obtained by eliminating the shear force and bending moments in
these equations.

Considering vertical equilibrium of the beam segment and substituting in equation A.21, the first differ­
ential equation shown below is found.

− 𝑞 = 𝑑𝑉
𝑑𝑥 =

𝑑
𝑑𝑥 (𝐺𝐴𝑠(

𝑑𝑣
𝑑𝑥 − 𝜙)) = 𝐺𝐴𝑠(

𝑑2𝑣
𝑑𝑥2 −

𝑑𝜙
𝑑𝑥 ) (A.24)
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Doing the same for the moment equilibrium and substituting in equation A.23, the second differential
equation is obtained.

0 = −𝑑𝑀𝑑𝑥 + 𝑉 = −
𝑑
𝑑𝑥 (−𝐸𝐼

𝑑𝜙
𝑑𝑥 ) + 𝐺𝐴𝑠(

𝑑𝑣
𝑑𝑥 − 𝜙) = −𝐸𝐼

𝑑2𝜙
𝑑𝑥2 + 𝐺𝐴𝑠(

𝑑𝑣
𝑑𝑥 − 𝜙) (A.25)
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Dynamics

mention that all damping is left out due to not influencing the frequency

B.1. Single degree of freedom system
The most basic dynamic system which can be looked at is a lumped mass attached to a spring, as
shown in figure B.1. This system is known as a single degree of freedom system, as the lumped mass
can only move in the x­direction. Using Newton’s second law, the equation of motion of the single
degree of freedom system can be written down as shown in equation B.1.

𝑚�̈� + 𝑘𝑥 = 𝐹(𝑡) (B.1)

with:
𝑚 = lumped mass
𝑘 = spring stiffness
𝑥 = displacement in x­direction
�̈� = acceleration in x­direction
𝐹(𝑡) = external horizontal force

Figure B.1: Mass­spring system

As stated in section 2.2 of this report, the natural frequency is the frequency at which a system oscillates
in the absence of an external force. The free vibration of a SDoF system can thus be represented by
equation B.2, which is a well known second order ordinary linear differential equation.

𝑚�̈� + 𝑘𝑥 = 0 (B.2)

89
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Obtaining the general solution of the above­mentioned differential equation is rather simple and is
shown in equation B.3

𝑥(𝑡) = 𝐴𝑐𝑜𝑠(𝜔𝑛𝑡) + 𝐵𝑠𝑖𝑛(𝜔𝑛𝑡) (B.3)

where A and B are unknown constants which can be obtained using the initial conditions and where

𝜔𝑛 = √
𝑘
𝑚 (B.4)

is the natural frequency of the system measured in 𝑟𝑎𝑑
𝑠 . It can be seen in equation B.3 that for any

given set of initial conditions, 𝜔𝑛 is the frequency the system will vibrate against. Often the angular
frequency (𝜔) is converted to ordinary frequency measured in Hz. The conversion is done using the
equation shown below.

𝑓𝑛 =
𝜔𝑛
2𝜋 (B.5)

B.2. Continuous systems
In this section, the free vibration of the Euler­Bernoulli and Timoshenko beam will be discussed for
several boundary conditions. The main focus of the proceeding sections will be on how the natural
frequency of the beams are determined. For the determination of the equation of motion for the contin­
uous beams in this section, the mass and stiffness is taken to be uniform throughout the height of the
beam.

B.2.1. Euler­Bernoulli beam
As the external load applied to the beam is time dependent, the motion of the beam must also be time
dependent. Consider the beam and infinitesimal beam segment shown in figure B.2. This is the same
beam element as in Appendix A.1, with the exception that the external force is now time dependent.
The method of obtaining the kinematic and constitutive relationships stays the same, but as the applied
load changes with time, the kinematic and constitutive relationships are also time dependent and are
given in equations B.6 and B.7.

Figure B.2: Bending beam and infinitesimal beam segment with time dependent external load
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𝜙(𝑥, 𝑡) = −𝑑𝑣(𝑥, 𝑡)𝑑𝑥

𝜅(𝑥, 𝑡) = −𝑑
2𝑣(𝑥, 𝑡)
𝑑𝑥2

𝜖(𝑥, 𝑡) = −𝑦𝑑
2𝑣(𝑥, 𝑡)
𝑑𝑥2

(B.6)

𝑀 = −𝐸𝐼𝑑
2𝑣(𝑥, 𝑡)
𝑑𝑥2 (B.7)

To obtain the equation of motion of the beam, the second law of Newton is used. Newton’s second law
states that force can be equated to the product of mass and acceleration, this is shown in equation B.8.
Where 𝑚 is the mass and 𝑎 is the acceleration of the beam.

Σ𝐹 = 𝑚𝑎 (B.8)

Considering vertical equilibrium of the infinitesimal beam segment in figure B.2 and combining this with
Newton’s second law, the first equation in B.9. After applying the Taylor expansion1 and dividing by Δ𝑥,
the second equation in B.9 is obtained.

𝜌𝐴Δ𝑥𝑑
2𝑣
𝑑𝑡2 = −𝑉(𝑥) + 𝑉(𝑥 + Δ𝑥) + 𝑞1Δ𝑥

𝜌𝐴𝑑
2𝑣
𝑑𝑡2 =

𝑑𝑉
𝑑𝑥 + 𝑞1

(B.9)

Using relationship A.7 and A.12, and combining them with equation B.2, the equation of motion of the
beam is obtained.

𝜌𝐴𝑑
2𝑣
𝑑𝑡2 =

𝑑𝑉
𝑑𝑥 + 𝑞1

𝜌𝐴𝑑
2𝑣
𝑑𝑡2 =

𝑑2
𝑑𝑥2𝑀 + 𝑞1

𝜌𝐴𝑑
2𝑣
𝑑𝑡2 +

𝑑2
𝑑𝑥2 (𝐸𝐼

𝑑2𝑣
𝑑𝑥2 ) = 𝑞1

(B.10)

B.2.2. Free vibration of Euler­Bernoulli beam
As done for the single degree of freedom system, when calculating the natural frequencies of an Euler­
Bernoulli beam, the external force must be set to zero. The equation of motion for the free vibration is
then given by:

𝜌𝐴𝑑
2𝑣
𝑑𝑡2 +

𝑑2
𝑑𝑥2 (𝐸𝐼

𝑑2𝑣
𝑑𝑥2 ) = 0 (B.11)

The separation of variables method is then used to split the equation of motion into a time dependent
and a space dependent part. This is done by assuming that the displacement of the system can be
described by the product of a time dependent term and a space dependent term, as shown in equation
B.12. Here𝑊(𝑥) and Ψ(𝑡) represent the spacial coordinate along the beam and time, respectively.

1The Taylor expansion used here is the approximation that 𝑉(𝑥 + Δ𝑥) ≈ 𝑉(𝑥) + 𝑑𝑉
𝑑𝑥Δ𝑥
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𝑣(𝑥, 𝑡) = 𝑊(𝑥)Ψ(𝑡) (B.12)

Substituting this equation above in the equation of motion for free vibration and then dividing with
𝑊(𝑥)Ψ(𝑡)𝜌𝐴, the equation of motion can be written down in the following form:

1
Ψ
𝑑2Ψ
𝑑𝑡2 +

𝐸𝐼
𝜌𝐴

1
𝑊
𝑑4𝑊
𝑑𝑥4 = 0 (B.13)

As can be seen in equation B.13, the first term is only dependent on time and the second term is only
dependent on the spacial coordinate. The only way to satisfy the equation is if both terms are equal
to a separation constant, as shown in equation B.14. The separation constant has to be introduced as
shown below for the beam to be able to perform harmonic vibrations. In the equations 𝜔 represents the
frequency of the vibration of the beam. For simplification of the second equation, 𝑎 has been introduced
as 𝑎2 = 𝐸𝐼

𝜌𝐴 .

1
Ψ
𝑑2Ψ
𝑑𝑡2 = −𝜔

2

𝑎2 1𝑊
𝑑4𝑊
𝑑𝑥4 = 𝜔2

(B.14)

The first equation of B.14 has a well known general solution which represents the harmonic motion and
is given by

Ψ = 𝐴𝑠𝑖𝑛(𝜔𝑡) + 𝐵𝑐𝑜𝑠(𝜔𝑡) (B.15)

Changing the form of the second equation in B.14 as shown below

𝑑4𝑊
𝑑𝑥4 −

𝜔2
𝑎2𝑊 = 0 (B.16)

The general solution of this equation can be given in the form

𝑊(𝑥) = Σ4𝑛=1�̃�𝑛𝑒𝑥𝑝(𝑠𝑛𝑥) (B.17)

After differentiating equation B.17 four times and then substituting the general solution and the differ­
entiated general solution in to equation B.16, the following characteristic equation is found

𝑠4𝑛 −
𝜔2
𝑎2 = 0 (B.18)

Solving the characteristic equation, 𝑠𝑛 can be expressed as follows

𝑠1 = 𝛽, 𝑠2 = −𝛽, 𝑠3 = 𝑖𝛽, 𝑠3 = −𝑖𝛽 (B.19)

with

𝛽4 = 𝜔2
𝑎2 (B.20)
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After substituting B.19 back in to the general solution and applying Euler’s formula 2 and two complex
trigonometric definitions 3 the general solution for the fourth order differential equation can be written
as

𝑊 = 𝐶1 sin(𝛽𝑥) + 𝐶2 cos(𝛽𝑥) + 𝐶3 sinh(𝛽𝑥) + 𝐶4 cosh(𝛽𝑥) (B.21)

The above­mentioned general solution has the following derivatives

𝑑𝑊
𝑑𝑥 = 𝐶1𝛽 cos(𝛽𝑥) − 𝐶2𝛽 sin(𝛽𝑥) + 𝐶3𝛽 cosh(𝛽𝑥) + 𝐶4𝛽 sinh(𝛽𝑥)
𝑑2𝑊
𝑑𝑥2 = −𝐶1𝛽2 sin(𝛽𝑥) − 𝐶2𝛽2 cos(𝛽𝑥) + 𝐶3𝛽2 sinh(𝛽𝑥) + 𝐶4𝛽2 cosh(𝛽𝑥)
𝑑3𝑊
𝑑𝑥3 = −𝐶1𝛽3 cos(𝛽𝑥) + 𝐶2𝛽3 sin(𝛽𝑥) + 𝐶3𝛽3 cosh(𝛽𝑥) + 𝐶4𝛽3 sinh(𝛽𝑥)

(B.22)

B.2.3. Boundary conditions
To be able to determine the coefficients in equation B.21 boundary conditions for the beam have to
be defined. In this section, four different sets of boundary conditions are looked at. These are the
boundary conditions considered in the body of this report, they are:

1. fixed support ­ free end

2. support with rotational spring ­ free end

3. support with rotational and translational spring ­ free end

4. support with rotational and translational spring and added foundation mass ­ free end

These boundary conditions are graphically shown in figure B.3.

Figure B.3: Four boundary condition sets for Euler­Bernoulli beam

fixed support ­ free end
The boundary condition are the conditions found at the base and the free side of the beam. The
boundary conditions for Case 1 case are shown below.

2Euler’s formula: 𝑒𝑖𝑥 = 𝑐𝑜𝑠(𝑥) + 𝑖𝑠𝑖𝑛(𝑥)
3sinh𝑥 = −𝑖 sin(𝑖𝑥) and cosh𝑥 = cos(𝑖𝑥)
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At 𝑥 = 0:
𝑊(𝑥) = 0
𝑑𝑊(𝑥)
𝑑𝑥 = 0

At 𝑥 = 𝐿:
𝑑2𝑊(𝑥)
𝑑𝑥2 = 0

𝑑3𝑊(𝑥)
𝑑𝑥3 = 0

(B.23)

For the calculation of the natural frequencies of the beam, the coefficients 𝐶1 to 𝐶4 are not needed to
be known. This leaves the following coefficient matrix determined using the boundary conditions.

𝑀 =
⎡
⎢
⎢
⎣

1 0 1 0
0 𝛽 0 𝛽

−𝑐𝑜𝑠(𝛽𝐿) −𝑠𝑖𝑛(𝛽𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿)
𝑠𝑖𝑛(𝛽𝐿) −𝑐𝑜𝑠(𝛽𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿)

⎤
⎥
⎥
⎦

(B.24)

The natural frequency can be determined by equating the determinant of the coefficient matrix to 0, 𝜔
is then the only unknown left in the equation. The equation will have several solutions, the smallest
solution will result in the first natural frequency, the second smallest will be the second natural frequency,
and so on. For a bending beam, the determinant of matrix𝑀 is rather straight forward and shown below.
The

𝛽(2𝑐𝑜𝑠(𝛽𝐿)𝑐𝑜𝑠ℎ(𝛽𝐿) + 2) = 0 (B.25)

The equation can be simplified and 𝜔 can be isolated as shown below.

𝜔1 = √
𝐸𝐼
𝜌𝐴
(𝛽1𝐿)2
𝐿2 = √𝐸𝐼𝜌𝐴

(1.875104069)2
𝐿2 (B.26)

Rotational spring support ­ free end
The boundary conditions for a cantilever beam with a rotational spring support is shown below.

At 𝑥 = 0:
𝑊(𝑥) = 0

𝐸𝐼𝑑𝑊
2(𝑥)
𝑑𝑥2 − 𝐾𝑟

𝑑𝑊(𝑥)
𝑑𝑥 = 0

At 𝑥 = 𝐿:
𝑑2𝑊(𝑥)
𝑑𝑥2 = 0

𝑑3𝑊(𝑥)
𝑑𝑥3 = 0

(B.27)

This set of boundary conditions lead to the following coefficient matrix.
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𝑀 =
⎡
⎢
⎢
⎣

−𝛽2𝐸𝐼 −𝛽𝐾𝑟 𝛽2𝐸𝐼 −𝛽𝐾𝑟
1 0 1 0

−𝑐𝑜𝑠(𝛽𝐿) −𝑠𝑖𝑛(𝛽𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿)
𝑠𝑖𝑛(𝛽𝐿) −𝑐𝑜𝑠(𝛽𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿)

⎤
⎥
⎥
⎦

(B.28)

Again, 𝜔 is the only unknown. By equating the determinant of matrix 𝑀 to zero, the 𝜔 can be isolated,
and the natural frequencies can be determined.

Rotational and translational spring support ­ free end
The boundary conditions for a cantilever beam with a rotational and translational spring support is
shown below.

At 𝑥 = 0:

𝐸𝐼𝑑𝑊
3(𝑥)
𝑑𝑥3 + 𝐾𝑡𝑊(𝑥) = 0

𝐸𝐼𝑑𝑊
2(𝑥)
𝑑𝑥2 − 𝐾𝑟

𝑑𝑊(𝑥)
𝑑𝑥 = 0

At 𝑥 = 𝐿:
𝑑2𝑊(𝑥)
𝑑𝑥2 = 0

𝑑3𝑊(𝑥)
𝑑𝑥3 = 0

(B.29)

This set of boundary conditions lead to the following coefficient matrix.

𝑀 =
⎡
⎢
⎢
⎣

−𝛽2𝐸𝐼 −𝛽𝐾𝑟 𝛽2𝐸𝐼 −𝛽𝐾𝑟
𝐾𝑡 −𝛽3𝐸𝐼 𝐾𝑡 𝛽3𝐸𝐼

−𝑐𝑜𝑠(𝛽𝐿) −𝑠𝑖𝑛(𝛽𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿)
𝑠𝑖𝑛(𝛽𝐿) −𝑐𝑜𝑠(𝛽𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿)

⎤
⎥
⎥
⎦

(B.30)

Again, 𝜔 is the only unknown. By equating the determinant of matrix 𝑀 to zero, the 𝜔 can be isolated,
and the natural frequencies can be determined.

Rotational and translational spring support, with lumped foundation mass ­ free end
The boundary conditions for a cantilever beam with a rotational and translational spring support, with
a lumped foundation mass is shown below.

At 𝑥 = 0:

𝐸𝐼𝑑
2𝑊(𝑥)
𝑑𝑥2 − 𝐾𝑟

𝑑𝑊(𝑥)
𝑑𝑥 + 𝐽𝛽

4𝐸𝐼
𝜌𝐴

𝑑𝑊(𝑥)
𝑑𝑥 = 0

𝐸𝐼𝑑
3𝑊(𝑥)
𝑑𝑥3 + 𝐾𝑡𝑊(𝑥) −𝑀𝑓

𝛽4𝐸𝐼
𝜌𝐴 𝑊(𝑥) = 0

At 𝑥 = 𝐿:
𝑑2𝑊(𝑥)
𝑑𝑥2 = 0

𝑑3𝑊(𝑥)
𝑑𝑥3 = 0

(B.31)

This set of boundary conditions lead to the following coefficient matrix.
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𝑀 =
⎡
⎢
⎢
⎢
⎢
⎣

−𝛽2𝐸𝐼 𝐸𝐼𝐽𝛽5−𝐴𝐾𝑟𝜌𝛽
𝐴𝜌 𝛽2𝐸𝐼 𝐸𝐼𝐽𝛽5−𝐴𝐾𝑟𝜌𝛽

𝐴𝜌
−𝐸𝐼𝑀𝑓𝛽4+𝐴𝐾𝑡𝜌

𝐴𝜌 −𝛽3𝐸𝐼 −𝐸𝐼𝑀𝑓𝛽4+𝐴𝐾𝑡𝜌
𝐴𝜌 𝛽3𝐸𝐼

−𝑐𝑜𝑠(𝛽𝐿) −𝑠𝑖𝑛(𝛽𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿)
𝑠𝑖𝑛(𝛽𝐿) −𝑐𝑜𝑠(𝛽𝐿) 𝑠𝑖𝑛ℎ(𝛽𝐿) 𝑐𝑜𝑠ℎ(𝛽𝐿)

⎤
⎥
⎥
⎥
⎥
⎦

(B.32)

Again, 𝜔 is the only unknown. By equating the determinant of matrix 𝑀 to zero, the 𝜔 can be isolated,
and the natural frequencies can be determined.

B.2.4. Multibeam model
The theory behind the multibeam model is the same as the single beam model. The only difference is
that there are three spatial equations 𝑊𝑛. Each 𝑊𝑛 represents a different section of the beam. For a
three beam model, the three spatial equations are:

for x from 0 to ℎ1
𝑊1 = 𝐴1 sin(𝛽1𝑥) + 𝐴2 cos(𝛽1𝑥) + 𝐴3 sinh(𝛽1𝑥) + 𝐴4 cosh(𝛽1𝑥)

for x from ℎ1 to ℎ2
𝑊2 = 𝐵1 sin(𝛽2𝑥) + 𝐵2 cos(𝛽2𝑥) + 𝐵3 sinh(𝛽2𝑥) + 𝐵4 cosh(𝛽2𝑥)

for x from ℎ2 to 𝐿
𝑊3 = 𝐶1 sin(𝛽3𝑥) + 𝐶2 cos(𝛽3𝑥) + 𝐶3 sinh(𝛽3𝑥) + 𝐶4 cosh(𝛽3𝑥)

(B.33)

Where ℎ1, ℎ2 and 𝐿 represent the sectional boundaries of the beam.
To be able to determine the coefficient matrix, a set of interface conditions are needed at the locations
where two sections connect. The interface conditions for the three beam model is shown below.

at x = ℎ1

𝑊1(𝑥) = 𝑊2(𝑥)
𝑑𝑊1(𝑥)
𝑑𝑥 = 𝑑𝑊2(𝑥)

𝑑𝑥

𝐸𝐼1
𝑑2𝑊1(𝑥)
𝑑𝑥2 = 𝑑2𝑊2(𝑥)

𝑑𝑥2

𝐸𝐼1
𝑑3𝑊1(𝑥)
𝑑𝑥3 = 𝐸𝐼2

𝑑3𝑊2(𝑥)
𝑑𝑥3

at x = ℎ2

𝑊2(𝑥) = 𝑊3(𝑥)
𝑑𝑊2(𝑥)
𝑑𝑥 = 𝑑𝑊3(𝑥)

𝑑𝑥

𝐸𝐼2
𝑑2𝑊2(𝑥)
𝑑𝑥2 = 𝐸𝐼3𝑑

2𝑊3(𝑥)
𝑑𝑥2

𝐸𝐼2
𝑑3𝑊2(𝑥)
𝑑𝑥3 = 𝐸𝐼3𝑑

3𝑊3(𝑥)
𝑑𝑥3

(B.34)

In these equations the different 𝑏𝑒𝑡𝑎𝑛 values are based on the sectional properties, but all have the
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same 𝜔, as shown below. This results in 𝜔 being the only unknown, and by equation the determinant
of the coefficient matrix to 0, 𝜔 can be calculated.

𝛽𝑛 = √𝜔(
𝜌𝑛𝐴𝑛
𝐸𝐼𝑛

)
1
4

(B.35)

B.3. Timoshenko Beam
The method used to determine the natural frequency of a Timoshenko beam is by means of a single
difference equation. This method was proposed by Majkut [48] and is explained in detail in [48]. This
section will only give the equations needed for the determination of the natural frequency.

The solution of the Timoshenko beam is in a similar form as that of the Euler­Bernoulli beam, and is
shown in equation B.36. In this equation, 𝑋(𝑥) represents the vibration amplitude function of the beam.

𝑋(𝑥) = 𝑃1 sin(𝜆1𝑥) + 𝐶2 cos(𝜆1𝑥) + 𝐶3 sinh(𝜆𝑥) + 𝐶4 cosh(𝜆𝑥) (B.36)

The above­mentioned general solution has the following derivatives

𝑑𝑋(𝑥)
𝑑𝑥 = 𝑃1𝜆1 cos(𝜆1𝑥) − 𝑃2𝜆1 sin(𝜆1𝑥) + 𝑃3𝜆2 cosh(𝜆2𝑥) + 𝑃4𝜆2 sinh(𝜆2𝑥)

𝑑2𝑋(𝑥)
𝑑𝑥2 = −𝑃1𝜆12 sin(𝜆1𝑥) − 𝑃2𝜆12 cos(𝜆1𝑥) + 𝑃3𝜆22 sinh(𝜆2𝑥) + 𝑃4𝜆22 cosh(𝜆2𝑥)
𝑑3𝑋(𝑥)
𝑑𝑥3 = −𝑃1𝜆13 cos(𝜆1𝑥) + 𝑃2𝜆13 sin(𝜆1𝑥) + 𝑃3𝜆23 cosh(𝜆2𝑥) + 𝑃4𝜆23 sinh(𝜆2𝑥)

(B.37)

For the sake of reading ease, the following simplifications have been made in the equation:

𝜆1 =
−𝑑 + √(Δ)

2

𝜆2 =
𝑑 + √(Δ)

2

𝑑 = 𝑎 + 𝑏 + 𝑐
Δ = 𝑑2 − 4𝑒

𝑎 = 𝜔2𝜌
𝜅𝐺

𝑏 = 𝜌𝜔2
𝐸 − 𝑐

𝑐 = 𝐺𝜅𝐴
𝐸𝐼

(B.38)

Rotational and translational spring support, with lumped foundation mass ­ free end
For the Timoshenko beam, only be cantilever beam with a rotational and translational spring support,
with a lumped foundation mass, is considered. Thje boundary conditions for this case are:
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at x = 0:

𝐸𝐼 (𝑑
2𝑋(𝑥)
𝑑𝑥2 + 𝑎𝑋(𝑥)) − 𝐾𝑟

𝑑𝑋(𝑥)
𝑑𝑥 + 𝐽𝜔2𝑑𝑋(𝑥)𝑑𝑥 = 0

𝐺𝑘𝐴((𝑎 + 𝑏 + 𝑐)𝑑𝑋(𝑥)𝑑𝑥 − 𝑑
3𝑋(𝑥)
𝑑𝑥3 ) + 𝐾𝑡𝑋(𝑥) + 𝑀𝑓𝜔2𝑋(𝑥) = 0

at x = L:
𝑑2𝑋(𝑥)
𝑑𝑥2 + 𝑎𝑋(𝑥) = 0

𝑑𝑑𝑋(𝑥)𝑑𝑥 + 𝑑
3𝑋(𝑥)
𝑑𝑥3 = 0

(B.39)

This set of boundary conditions lead to the following coefficient matrix. Just as in the case of the Euler­
Bernoulli beam, the 𝜔 is the only unknown. By equating the determinant of matrix𝑀 to zero, the 𝜔 can
be isolated, and the natural frequencies can be determined.

M =
⎡
⎢
⎢
⎣

𝐸𝐼(𝜆21 + 𝑎) −𝜆1(−𝐽𝜔2 + 𝐾𝑟) 𝐸𝐼(−𝜆22 + 𝑎) −𝜆2(−𝐽𝜔2 + 𝐾𝑟)
𝑀𝑓𝜔2 − 𝐾𝑡 𝐴𝐺𝜅𝜆1(−𝜆21 + 𝑎 + 𝑏 + 𝑐) 𝑀𝑓𝜔2 − 𝐾𝑡 𝐴𝐺𝜅𝜆2(𝜆22 + 𝑎 + 𝑏 + 𝑐)

𝑐𝑜𝑠ℎ(𝐿𝜆1)(𝜆21 + 𝑎) 𝑠𝑖𝑛ℎ(𝐿𝜆1)(𝜆21 + 𝑎) 𝑐𝑜𝑠(𝐿𝜆2)(−𝜆22 + 𝑎) 𝑠𝑖𝑛(𝐿𝜆2)(−𝜆22 + 𝑎)
𝜆1𝑠𝑖𝑛ℎ(𝐿𝜆1)(𝜆21 + 𝑑) 𝜆1𝑐𝑜𝑠ℎ(𝐿𝜆1)(𝜆21 + 𝑑) −𝜆2𝑠𝑖𝑛(𝐿𝜆2)(−𝜆22 + 𝑑) 𝜆2𝑐𝑜𝑠(𝐿𝜆2)(−𝜆22 + 𝑑)

⎤
⎥
⎥
⎦
(B.40)
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Structural Parameters

C.1. Building bending stiffness
In this appendix, the upper and lower bound for the bending stiffnesses for the five buildings discussed
in section 3.2 will be calculated. This is done by calculating the moment of inertia of the stability
system of the buildings and then multiplying the moment of inertia with the Young’s modulus. For
concrete elements, a Young’s modulus of 7.5 GPa and 38 GPa is used for the lower and upper bound,
respectively. The Young’s modulus for steel sections is 210 GPa for both the lower and upper bound.
The axes were chosen in such a way that the bending stiffness in the x­direction (bending around the
y­axis) is the weak direction and that the bending stiffness in the y­direction (bending around the x­axis)
is the strong direction. All distances are measured in meters and angles in degrees.

Determining the moment of inertia is done on the basis of the parallel axis theorem of a rectangle
at an angle. Each concrete element contributing to the stiffness of the building gets 2 sets of x­ and
y­coordinates. The coordinates of the element are then used to calculate the length and the orien­
tation of the element. The length, thickness and orientation are then used to determine the centroid
and moment of inertia of each individual element. Hereafter, the centroid of the connected stability
elements is determined. Finally, the parallel axis theorem is used to determine the moment of inertia
of the connected stability systems. It must be noted that stability systems are only connected through
walls and outriggers. Systems connected only by the floor are assumed to work independently. The
equations used to determine the different properties are shown below. Each element of the different
stability systems are given a number, the numbered elements are then tabulated with their respective
parameters. It must be noted that for commonly used steel section the moment of inertia of the sections
are not calculated as they are readily available.

Element length: 𝑏 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2

Centroid x: 𝑐𝑥 =
𝑏 cos(𝜙) + 𝑡 sin(𝜙)

2
Centriod y: 𝑐𝑦 =

𝑡 cos(𝜙) + 𝑏 sin(𝜙)
2

moment of inertia around y: 𝐼𝑜𝑦 =
𝑏𝑡
12(𝑏

2 cos2 𝜙 + 𝑡2 sin2 𝜙)

moment of inertia around x: 𝐼𝑜𝑥 =
𝑏𝑡
12(𝑡

2 cos2 𝜙 + 𝑏2 sin2 𝜙)
Parallel axis thetem y: 𝐼𝑥 = 𝐼𝑜𝑥 + 𝐴𝑑2𝑦
Parallel axis thetem x: 𝐼𝑦 = 𝐼𝑜𝑦 + 𝐴𝑑2𝑥

(C.1)

Where 𝐴, 𝑑𝑦 and 𝑑𝑥 are the area of the element and the distance from the element’s own centroid to
the global centroid in the y and x direction, respectively.

99
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Figure C.1: Orientation of rotated rectangles used to determine moment of inertia

To illustrate the method, an example is shown below. In the example, the moment of inertia for a
horizontally and vertically orientated wall connected at their ends, as shown in the figure, is calculated.

Table C.1: Moment of inertia example calculation

Element 1 2
y1 0.00 44.02
x1 0.00 0.00
y2 44.02 44.02
x2 0.00 20.02

y2­y1 44.02 − 0 = 44.02 0.00 − 0.00 = 0.00
x2­x1 0.00 − 0.00 = 0.00 20.02 − 0.00 = 20.02

√(𝑦2 − 𝑦1)2 + (𝑥2 − 𝑥1)2 b √44.022 + 02 = 44.02 √20.022 + 02 = 20.02
t 0.32 0.32

𝑏 × 𝑡 A 44.02 ∗ 0.32 = 14.09 20.02 ∗ 0.32 = 6.41 14.09 + 6.41 = 20.49
𝜃 0.00 90.00

𝑎𝑏𝑠(𝜃 − 90) 𝜙 𝑎𝑏𝑠(0.00 − 90.00) = 90.00 𝑎𝑏𝑠(90.00 − 90.00) = 0.00
𝑏 cos(𝜙)+𝑡 sin(𝜙)

2 cx 44.02 cos(90)+0.32 sin(90)
2 = 0.16 20.02 cos(0)+0.32 sin(0)

2 = 10.01
Acx 14.09 ∗ 0.16 = 2.25 6.41 ∗ 10.01 = 64.13 2.25 + 64.13 = 66.38

Σ𝐴𝑐𝑥
Σ𝐴 Cx 66.38

20.49 = 3.24
𝑏𝑡
12(𝑏

2 cos2 𝜙 + 𝑡2 sin2 𝜙) Iy0 (44.02∗0.3212 )(44.022 cos2 90+
0.322 sin2 90) = 0.12

(20.02∗0.3212 )(20.022 cos2 0+
0.322 sin2 0) = 213.97

𝐴(𝐶𝑥 − 𝑐𝑥)2 𝐴𝑑2 14.09(3.24 − 0.16)2 = 133.57 6.41(3.24 − 10.01)2 = 293.69
𝐼𝑦0 + 𝐴𝑑2 Iyy 0.12 + 133.57 = 133.69 213.97 + 293.69 = 507.66 133.69 + 507.66 = 641.35
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Figure C.2: Moment of inertia calculation example figure

C.1.1. New Erasmus Medical Center
The stability system of the NEMC exist of four parts. The outer tube given in red, and the three internal
concrete cores given in blue, green and orange. The stability system of the NEMC is taken as constant
throughout the height of the building. There is a small divergence of the moment of inertia from the
ground floor to the fourth floor, but the effect it has on the bending stiffness is taken as negligible. In
figure C.3 the four stability systems and their numbering can be seen. The tables C.4 to C.6 show the
calculation of the moment of inertia of the different stability systems. Table C.2 is a summary of the
results of the moment of inertia.

Table C.2: Moment of inertia of the stability systems of the NEMC

Outer Tube Left Core Middle Core Right Core Total
𝐼𝑦𝑦 1863.67 37.59 34.37 41.67 1977.30
𝐼𝑥𝑥 6614.82 5.64 5.73 9.52 6635.70

The lower and upper bound bending stiffnesses can now be determined by multiplying the total moment
of inertia with the respective Young’s moduli.

Table C.3: Lower and upper bound of bending stiffness

Lower Bound Upper Bound
𝐸𝐼𝑥 1.48 × 1013 7.51 × 1013
𝐸𝐼𝑦 4.98 × 1013 2.52 × 1014
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C.1.2. Montevideo
The stability system of the Montevideo tower is split into three sections over the height of the structure.
For this reason, an upper and lower bound will be determined for each section. The first stability system
stretches over the ground and first floor and consists of a concrete core and 14 steel columns. The
second stability system ranges from the 2𝑛𝑑 floor to the 27𝑡ℎ floor and consists of a concrete core with
connected concrete walls. The third section ranges from the 28𝑡ℎ floor to the 42𝑛𝑑 floor and consists
of 14 steel columns. The three different stability systems and their element numbering can be seen
in figures C.4 to C.6. The calculation of the moment of inertia of the different stability systems can be
found in tables C.10 to C.13. In table C.8 the moment of inertia for the different sections can be found.

Table C.8: Moment of inertia of the stability systems of the Montevideo tower

Concrete section Steel section

Level 0 ­ 1 𝐼𝑦𝑦 315.00 134.82
𝐼𝑥𝑥 549.70 153.64

Level 2 ­ 27 𝐼𝑦𝑦 2786.86 ­
𝐼𝑥𝑥 4421.06 ­

Level 28 ­ 42 𝐼𝑦𝑦 ­ 13.95
𝐼𝑥𝑥 ­ 16.67

The lower and upper bounds for the different sections can be determined by multiplying the concrete
and steel parts with their respective Young’s moduli. For the bending stiffness of levels 0 ­ 1 is taken as
the product of the bending stiffness of the concrete and steel part. The results of the lower and upper
bounds are shown below.

Table C.9: Lower and upper bound of bending stiffness

Lower Bound Upper Bound

Level 0 ­ 1 𝐸𝐼𝑥 3.07 × 1013 4.03 × 1013
𝐸𝐼𝑦 3.64 × 1013 5.32 × 1013

Level 2 ­ 27 𝐸𝐼𝑥 2.09 × 1013 1.06 × 1014
𝐸𝐼𝑦 3.32 × 1013 1.68 × 1014

Level 28 ­ 42 𝐸𝐼𝑥 2.93 × 1012 2.93 × 1012
𝐸𝐼𝑦 3.50 × 1012 3.50 × 1012

Figure C.4: Montevideo tower stability system and element numbering level 0­1
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Figure C.5: Montevideo tower stability system and element numbering level 2­27

Figure C.6: Montevideo tower stability system and element numbering level 28­42
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C.1.3. New Orleans
The stability system of the New Orleans tower is also split into three parts. The stiffness of levels 0 to 2
is provided by a concrete core and steel columns. The stability system of levels 3 to 10 is provided by a
concrete core and walls, this can be seen in figure C.9. It must be noted that the walls are split into two
groups, namely the connected and disconnected element, shown in red and blue respectively in figure
C.9. When considering the connected walls, it is assumed that the system provides stiffness in both
the x­ and y­direction, this is due to all the walls being connected, and that load is transferred through
the whole section when bending occurs. When considering the disconnected walls, it is assumed
that the walls only provide significant stiffness in the y­direction. The reason for this is that the walls
bend independently and that the moment of inertia around their respective y­axes (in the x­direction)
is assumed to be negligible. The third stability section, ranging from levels 11 to 45, is largely the
same as the previous system, the only difference is that wall 3 and 4 of the disconnected walls are
not present and that wall 5 of the disconnected walls and 1 and 2 of the connected walls are shorter.c
The stability system and element numbering can be seen in figure C.10. Throughout the whole height
of the structure there is also a lift core providing stiffness in both directions. The moment of inertia
calculation for all systems contributing to the stiffness are given in tables C.16 to C.23 with the results
thereof given in table C.14.

Table C.14: Moment of inertia of the stability systems of the New Orleans tower

Steel columns Concrete core Disconnected section Connected section Lift core

Level 0 ­ 2 𝐼𝑦𝑦 24.16 653.63 ­ ­ 25.46
𝐼𝑥𝑥 136.23 416.7 ­ ­ 6.13

Level 3 ­ 10 𝐼𝑦𝑦 ­ ­ ­ 907.82 25.46
𝐼𝑥𝑥 ­ ­ 1149.32 1621.00 6.13

Level 11 ­ 45 𝐼𝑦𝑦 ­ ­ ­ 844.55 25.46
𝐼𝑥𝑥 ­ ­ 751.68 1299.87 6.13

The lower and upper bounds for the different sections can be determined by multiplying the concrete
and steel parts with their respective Young’s moduli. The total bending stiffness is taken as the product
of the different bending stiffnesses of each section. The results of the lower and upper bounds are
shown below.

Table C.15: Lower and upper bound of bending stiffness

Lower Bound Upper Bound

Level 0 ­ 2 𝐸𝐼𝑥 1.02 × 1013 3.09 × 1013
𝐸𝐼𝑦 3.18 × 1013 4.47 × 1013

Level 3 ­ 10 𝐸𝐼𝑥 7.00 × 1012 3.55 × 1013
𝐸𝐼𝑦 2.08 × 1013 1.06 × 1014

Level 11 ­ 45 𝐸𝐼𝑥 6.53 × 1012 3.31 × 1013
𝐸𝐼𝑦 1.54 × 1012 7.82 × 1013

Figure C.7: New Orleans tower lift core element numbering level 0­45
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Figure C.8: New Orleans tower stability system and element numbering level 0­2

Figure C.9: New Orleans tower stability system and element numbering level 3­10

Figure C.10: New Orleans tower stability system and element numbering level 11­45
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C.1.4. JuBi Tower
The stability system of the JuBi tower can be split into three different sections. From the ground floor
to the 9𝑡ℎ floor, lateral stability is provided by thick concrete walls, a set of concrete columns and three
concrete cores. This can be seen in figures C.11 and C.12. The second section ranges from the 10𝑡ℎ
floor to the 27𝑡ℎ floor. This section consists of a concrete tube and three concrete cores. Only the left
core of the second section differs from the cores of the first section. The concrete tube and cores can
be seen in figures C.13 and C.14. The thirst section, which ranges from the 28𝑡ℎ floor to the 38𝑡ℎ floor,
also exists of a concrete tube and three concrete cores, all differing from the previous section. The
tube and cores are shown in figures C.15 and C.16. The moment of inertia calculation for all systems
contributing to the stiffness of the structure are given in tables C.26 to C.36 and the results thereof are
given in table C.24. The lower and upper bounds of the bending stiffnesses for each section are given
in table C.25.

Table C.24: Moment of inertia of the stability systems of the JuBi tower

Concrete columns Concrete tube Left core Top core Right core Total

Level 0 ­ 9 𝐼𝑦𝑦 2015.06 4097.47 83.88 250.26 121.17 6567.84
𝐼𝑥𝑥 1203.04 9276.85 496.88 68.28 596.81 11641.84

Level 10 ­ 27 𝐼𝑦𝑦 ­ 3917.20 29.14 250.26 121.17 4317.77
𝐼𝑥𝑥 ­ 6767.62 321.51 68.28 596.81 7754.22

Level 28 ­ 38 𝐼𝑦𝑦 ­ 2907.33 11.67 149.05 49.12 3117.17
𝐼𝑥𝑥 ­ 5658.1 109.00 39.01 150.48 5956.60

Table C.25: Lower and upper bound of bending stiffness

Lower Bound Upper Bound

Level 0 ­ 9 𝐸𝐼𝑥 4.93 × 1013 2.50 × 1014
𝐸𝐼𝑦 8.73 × 1013 4.42 × 1014

Level 10 ­ 27 𝐸𝐼𝑥 3.24 × 1012 1.64 × 1014
𝐸𝐼𝑦 5.82 × 1013 2.95 × 1014

Level 28 ­ 38 𝐸𝐼𝑥 2.34 × 1013 1.18 × 1014
𝐸𝐼𝑦 4.47 × 1013 2.26 × 1014

Figure C.11: JuBi tower outer tube element numbering level 0­9
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Figure C.12: JuBi tower core element numbering level 0­9

Figure C.13: JuBi tower outer tube element numbering level 10­27

Figure C.14: JuBi tower core element numbering level 10­27
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Figure C.15: JuBi tower outer tube element numbering level 28­38

Figure C.16: JuBi tower core element numbering level 28­38
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C.1.5. Oval
The stability system of the Oval tower is split into two sections. The first section stretching from the
ground floor to the 13𝑡ℎ floor, and the second section stretching from the 14𝑡ℎ floor to the 28𝑡ℎ floor.
For both sections, the stiffness is provided by two cores and four columns attached to each core by an
outrigger on the top floor. Between the two sections, there is only a small difference in the configuration
of the cores. The cores and the attached columns can be found in figures C.17 to C.19. The calculations
of the moment of inertia for the two sections are given in tables C.39 to C.42, where the results of these
calculations are summarized in table C.37. The lower and upper bound of the bending stiffness for the
two sections are shown in table C.38.

Table C.37: Moment of inertia of the stability systems of the New Orleans tower

Concrete columns Left core Right core Total

Level 0 ­ 13 𝐼𝑦𝑦 18.78 97.11 110.22 246.17
𝐼𝑥𝑥 187.14 142.96 147.60 664.86

Level 14 ­ 28 𝐼𝑦𝑦 20.05 84.86 99.41 221.86
𝐼𝑥𝑥 187.15 138.50 145.56 658.39

Table C.38: Lower and upper bound of bending stiffness

Lower Bound Upper Bound

Level 0 ­ 13 𝐸𝐼𝑥 1.85 × 1012 9.35 × 1012
𝐸𝐼𝑦 4.99 × 1012 2.53 × 1013

Level 14 ­ 28 𝐸𝐼𝑥 1.66 × 1012 8.43 × 1012
𝐸𝐼𝑦 4.94 × 1012 2.50 × 1013

Figure C.17: Oval tower core element numbering level 0­13

Figure C.18: Oval tower core element numbering level 14­28
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Figure C.19: Oval tower core column numbering level 0­28
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C.2. Building Density
To determine the lower and upper bounds for the building density of the 5 structure, the loads contribut­
ing to the mass of the structure is divided into three parts, the structural load, the permanent load and
the variable load. The structural loads consist of all the dead loads originating from all the systems
contributing to the structural integrity of the structure. These are the dead loads of the load bearing
walls, cores, floors etc. The permanent loads are all dead loads which do not contribute to the struc­
tural integrity of the structure. These are the loads of the floor finishings, piping, ceilings etc. Lastly, the
variable loads are all the live loads which originate due to the functionality of the building. The lower
bound of the building density is determined by the summation of all the structural loads. The upper
bound of the building density is the sum of all the structural loads, permanent loads and variable loads.
The equations for the lower and upper bounds are given in equation C.2. It must be noted that the
variable load is multiplied by a combination factor as used in the European Standards. This is due to
the assumption that not all variable loads are present at the same time.

𝜌𝑙𝑜𝑤𝑒𝑟 =
Σ𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙

𝑔𝐴𝐿

𝜌𝑢𝑝𝑝𝑒𝑟 =
Σ(𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 + 𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 +Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

𝑔𝐴𝐿

(C.2)

For the multibeam models, the building density is again split into different sections. These sections
coincide with the sections made for the bending stiffnesses. For the single beam model, the density
is determined by dividing the total mass with the volume of the structure. The density in the x­ and
y­direction is taken as constant. To determine the loads for the bounds, a combination of the design
documentation and technical drawings of each building was used.

(a) Sectional building densities

Density [ 𝑘𝑔𝑚3 ]
Building Section Lower Upper
NEMC Level 0­32 358 436

Montevideo
Level 0­1 257 269
Level 2­27 406 503
Level 28­42 362 448

New Orleans
Level 0­2 495 656
Level 3­10 405 502
Level 11­45 405 493

JuBi
Level 0­9 444 542
Level 10­27 433 532
Level 28­38 314 418

Oval Level 0­13 248 314
Level 14­28 250 324

(b) Uniform building densities

Density [ 𝑘𝑔𝑚3 ]
Building Lower Design Upper
NEMC 358 400 436

Montevideo 382 460 470
New Orleans 410 500 504

JuBi 393 530 504
Oval 249 340 318

The following sections provide tables with the density calculations for the respective structures. Due
to confidentiality reasons, the technical drawings and design documentation regarding the load calcu­
lations are not added.
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C.2.1. New Erasmus Medical Centre
Table C.48: NEMC load calculation

Description 𝐴 [𝑚2]
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

Roof
Core 99 24.00 2369
roof 861 5.28 4546 1 861 0 0
Beams and Columns 364
Façade 839 10.30 8637
Façade Massive 128 15.40 1964

Floor 30
Core 57.568 24.00 1381.63
Floor Technical Space 732.190 7.20 5271.77 0.70 512.53 7.5 5491.43 0.7 3844.00
Standard Floor 12.000 5.28 63.36 0.70 8.40 4 48.00 0.5 24.00
Saved Space ­17.160 7.20 ­123.55 0.70 ­12.01
Floor Lift Shaft 43.125 5.28 227.70 2.10 90.56 4 172.50 0.5 86.25
Stair Platform 24.375 7.56 184.28 1.40 34.13 4 97.50 0.5 48.75
Beams and Columns 315.60
Façade 403 10.30 4152.96
Façade Massive 40 15.40 608.30

Floor 29
Core 58 24.00 1381.63
Standard Floor 793 5.28 4189.10 0.70 555.37 4 3174 0.5 1587
Saved Space 5.28 0.00 0.70 0.00
Floor Lift Shaft 43.125 5.28 227.70 2.10 90.56 4 173 0.5 86
Stair Platform 24.375 7.65 186.47 1.40 34.13 4 98 0.5 49
Beams and Columns 315.60
Façade 403 10.30 4152.96
Façade Massive 40 15.40 608.30

Floor 28
same as 29 11061.76 680.06 3444 1722

Floor 27
same as 29 11061.76 680.06 3444 1722

Floor 26
same as 29 11061.76 680.06 3444 1722

Floor 25
same as 29 11061.76 680.06 3444 1722

Floor 24
same as 29 11061.76 680.06 3444 1722

Floor 23
same as 29 11061.76 680.06 3444 1722

Floor 22
same as 29 11061.76 680.06 3444 1722

Floor 21
Core 58 24.00 1382
Floor 0.3m 0 7.20 0 3.00 0.00 4 0 0.5 0
Standard Floor 793 5.28 4189 0.70 555.38 4 3174 0.5 1587
Saved Space 0 7.20 0 3.00 0.00
Floor Lift Shaft 43.125 5.28 228 2.10 90.56 4 173 0.5 86
Stair Platform 24.375 7.65 186 1.40 34.13 4 98 0.5 49
Beams and Columns 316
Façade 403 10.30 4153
Façade Massive 40 15.40 608
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Description 𝐴 [𝑚2]
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

Floor 20
Core 58 24.00 1382
Floor 0.3m 0 7.20 0 0.70 0 7.5 0 0.7 0
Standard Floor 793 5.28 4187 0.70 555 4 3172 0.5 1586
Saved Space 0 7.20 0 0.70 0
Floor Lift Shaft 43.125 5.28 228 2.10 91 4 173 0.5 86
Stair Platform 24.375 7.65 186 1.40 34 4 98 0.5 49
Beams and Columns 316
Façade 403 10.30 4153
Façade Massive 40 15.40 608

Floor 19
same as 29 11062 680 3444 1722

Floor 19
same as 29 11062 680 3444 1722

Floor 19
same as 29 11062 680 3444 1722

Floor 19
same as 29 11062 680 3444 1722

Floor 19
same as 29 11062 680 3444 1722

Floor 14
Core 66 24.00 1579
Floor 0.3m 0 7.20 0 3.00 0 4 0 0.5 0
Standard Floor 793 5.28 4187 0.70 555 4 3172 0.5 1586
Saved Space 0 7.20 0 3.00 0
Floor Lift Shaft 43.125 5.28 228 2.10 91 4 173 0.5 86
Stair Platform 24.375 7.65 186 1.40 34 4 98 0.5 49
Beams and Columns 354
Façade 461 10.30 4746
Façade Massive 45 15.40 695

Floor 13
Core 66 24.00 1579
Floor Technical Space 0 7.20 0 0.70 0 7.5 0 0.7 0
Standard Floor 793 5.28 4187 0.70 555 4 3172 0.5 1586
Saved Space 0 7.20 0 0.70 0
Floor Lift Shaft 43.125 5.28 228 2.10 91 4 173 0.5 86
Stair Platform 24.375 7.60 185 1.40 34 4 98 0.5 49
Beams and Columns 354
Façade 461 10.50 4838
Façade Massive 45 15.40 695

Floor 12
Core 66 24.00 1579
Standard Floor 793 5.28 4187 0.70 555 4 3172 0.5 1586
Saved Space 0 5.28 0 0.70 0
Floor Lift Shaft 43.125 5.28 228 2.10 91 4 173 0.5 86
Stair Platform 24.375 7.60 185 1.40 34 4 98 0.5 49
Beams and Columns 354
Façade 461 10.50 4838
Façade Massive 45 15.40 695

Floor 11
Core 66 24.00 1579
Standard Floor 793 5.28 4187 0.70 555 4 3172 0.5 1586
Saved Space 0 5.28 0 0.70 0
Floor Lift Shaft 43.125 5.28 228 2.10 91 4 173 0.5 86
Stair Platform 24.375 7.60 185 1.40 34 4 98 0.5 49
Beams and Columns 354
Façade 461 10.50 4838
Façade Massive 45 15.40 695
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Description 𝐴 [𝑚2]
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

Floor 10
Core 66 24.00 1579
Standard Floor 793 5.28 4187 0.70 555 4 3172 0.5 1586
Saved Space 0 5.28 0 0.70 0
Floor Lift Shaft 43.125 5.28 228 2.10 91 4 173 0.5 86
Stair Platform 24.375 7.60 185 1.40 34 4 98 0.5 49
Beams and Columns 354
Façade 461 10.50 4838
Façade Massive 45 15.40 695

Floor 9
same as 10 12066 680 3442 1721

Floor 8
Core 66 24.00 1579
Floor 0.3m 0 7.20 0 3.00 0 4 0 0.5 0
Standard Floor 793 5.28 4187 0.70 555 4 3172 0.5 1586
Saved Space 0 7.20 0 3.00 0
Floor Lift Shaft 43.125 5.28 228 2.10 91 4 173 0.5 86
Stair Platform 24.375 7.60 185 1.40 34 4 98 0.5 49
Beams and Columns 354 354
Façade 461 10.50 4838
Façade Massive 45 15.40 695

Floor 7
Core 66 24.00 1579
Floor 0.3m 793 7.20 5710 0.70 555 7.5 5948 0.7 4163
Standard Floor 17 5.28 90 0.70 12 4 68 0.5 34
Saved Space ­17 7.20 ­124 3.00 ­51
Floor Lift Shaft 43.125 5.28 228 2.10 91 4 173 0.5 86
Stair Platform 24.375 7.60 185 1.40 34 4 98 0.5 49
Beams and Columns 354 354
Façade 461 10.50 4838
Façade Massive 45 15.40 695

Floor 6
same as 10 12066 680 3442 1721

Floor 5
same as 10 12066 680 3442 1721

floor 4
Core 66 24.00 1579
Standard Floor 793 5.28 4187 0.70 555 4 3172 0.5 1586
Saved Space 0 5.28 0 0.70 0
Floor Lift Shaft 43.125 5.28 228 2.10 91 4 173 0.5 86
Stair Platform 24.375 7.60 185 1.40 34 4 98 0.5 49
Beams and Columns 354
Façade 461 10.50 4838
Façade Massive 45 15.40 695

Floor 3
Core 66 24.00 1579
Standard Floor 779 5.28 4115 0.70 546 4 3117 0.5 1559
Saved Space 0 5.28 0 0.70 0
Floor Lift Shaft 56.780 5.28 300 2.10 119 4 227 0.5 114
Stair Platform 24.375 7.60 185 1.40 34 4 98 0.5 49
Beams and Columns 354
Façade 461 10.50 4838
Façade Massive 45 15.40 695

Floor 2
Core 66 24.00 1579
Standard Floor 779 5.28 4115 0.70 546 4 3117 0.5 1559
Saved Space 0 5.28 0 0.70 0 0
Floor Lift Shaft 56.780 5.28 300 2.10 119 4 227 0.5 114
Stair Platform 24.375 7.60 185 1.40 34 4 98 0.5 49
Beams and Columns 354
Façade 461 9.90 4564
Façade Massive 45 15.40 693
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Description 𝐴 [𝑚2]
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

Floor 1
Core 66 24.00 1579
Standard Floor 779 5.28 4115 0.70 546 4 3117 0.5 1559
Saved Space 0 5.28 0 0.70 0
Floor Lift Shaft 56.780 5.28 300 2.10 119 4 227 0.5 114
Stair Platform 24.375 7.60 185 1.40 34 4 98 0.5 49
Beams and Columns 354
Concrete walls 512 8.10 4150

0
Gound Floor 0
Core 20 24.00 478
Floor 0.25m 779 6.00 4676 1.20 935 10 7794 0.5 3897
Standard Floor 0 5.28 0 0.70 0 4 0 0.5 0
Floor Lift Shaft 56.780 5.28 300 2.10 119 4 227 0.5 114
Stair Platform 24.375 7.60 185 1.40 34 4 98 0.5 49
Stubs 14 24.00 335
Concrete Walls 146 24.00 3505

Total 374019 21458 117472 60593

Table C.49: NEMC density lower and upper bound calculation

Density Lower Upper
floor 𝐿 [𝑚] 𝐴 [𝑚2] 𝑚𝑎𝑠𝑠 [𝑘𝑔] 𝜌 [ 𝑘𝑔𝑚3 ] 𝑚𝑎𝑠𝑠 [𝑘𝑔] 𝜌 [ 𝑘𝑔𝑚3 ]
All 121 881 38126301.42 357.65 46490309.27 436.12

C.2.2. Montevideo Tower
Table C.50: Montevideo load calculation

Floor Description 𝐴 [𝑚2] n Floors
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

43 Roof 290.70 1.00 5.28 1534.90 0.20 58.14 1.00 290.70 0.00 0.00
43 Roof Installation Space 16.64 1.00 5.28 87.86 0.35 5.82 7.00 116.48 1.00 116.48
42 to 29 Living Space 624.80 14.00 5.28 46185.09 2.10 18369.07 1.75 15307.56 0.40 6123.02
28 Living Space 751.68 1.00 5.28 3968.87 2.10 1578.53 1.75 1315.44 0.40 526.18
28 Balconies 71.76 1.00 5.28 378.89 2.10 150.70 2.50 179.40 0.50 89.70
27A Installation Space 751.68 1.00 7.20 5412.09 0.00 0.00 7.00 5261.76 1.00 5261.76
43 ­ 27A masonry walls 21767.26
43 ­ 27A structural steel 57913.08
27 to 24 Living Space 691.45 4.00 5.28 14603.40 2.10 5808.17 1.75 4840.14 0.40 1936.06

Balconies 28.91 4.00 5.28 610.47 2.10 242.80 2.50 289.05 0.50 144.53
23 to 5 Living Space 756.23 19.00 5.28 75865.39 2.10 30173.74 1.75 25144.78 0.40 10057.91

Balconies 28.91 19.00 5.28 2899.75 2.10 1153.31 2.50 1372.99 0.50 686.49
4 & 3 Living Space 771.53 2.00 5.28 8147.40 2.10 3240.44 1.75 2700.37 0.40 1080.15
4 & 3 Balconies Balconies 28.91 2.00 5.28 305.24 2.10 121.40 2.50 144.53 0.50 72.26
2 Commercial Space 745.20 1.00 7.20 5365.44 1.60 1192.32 5.00 3726.00 0.40 1490.40
27­2 concrete core 116332.99
27­2 masonry walls 14849.28
1 & 0 Core Floor 110.40 2.00 5.28 1165.82 2.10 463.68 1.75 386.40 0.40 154.56
1­0 concrete core 5146.92
1­0 structural steel 7226.46
Total 389766.61 62558.12 27739.50

Table C.51: Montevideo density lower and upper bound calculation

Density Lower Upper
floor 𝐿 [𝑚] 𝐴 [𝑚2] 𝑚𝑎𝑠𝑠 [𝑘𝑔] 𝜌 [ 𝑘𝑔𝑚3 ] 𝑚𝑎𝑠𝑠 [𝑘𝑔] 𝜌 [ 𝑘𝑔𝑚3 ]
0­1 8.1 662.4 1380142.5 257.2 1443163.9 269.0
2­27 80.6 745 24360791.9 405.7 30211962.3 503.1
28­42 51.4 751 13990626.0 362.4 17281084.0 447.7
Uniform 140.1 743 39731560.4 381.6 48936210.3 470.0
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C.2.3. New Orleans Tower
Table C.52: New Orleans load calculation

Floor Description 𝐴 [𝑚2] n Floors
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

0 entrance 700.7 1 9.81 6873.89 1 700.70 10 7007.02 0.25 1751.75
129.6 1 7.85 1017.10 1 129.6 10 1296 0.25 324
97.68 1 0 3.6 351.64 0
99.93 1 4.91 490.19 1.2 119.92 3 299.81 0.25 74.95

1 shops and bike storage 827.42 1 3.8 3144.20 1.2 992.90 5 4137.11 0.25 1034.27
827.42 1 0 0.5 413.71 0
827.42 1 0 1.75 1447.98 0
99.93 1 4.91 490.19 1.2 119.92 3 299.81 0.25 74.95

2 installation space 697.82 1 7.36 5134.22 1.2 837.38 5 3489.11 1 3489.11
99.93 1 4.91 490.19 1.2 119.95 3 299.81 0.25 74.95

3 storage 697.82 1 7.36 5134.22 1.2 837.38 5 3489.11 1 3489.11
697.82 1 0 0.5 348.91 0
99.93 1 4.91 490.19 1.2 119.92 3 299.81 0.25 74.95

4­5 living space 710.62 2 7.36 10456.75 1.2 1705.48 1.75 2487.16 0.25 621.79
710.62 2 0 1.2 1705.48 0
99.93 2 4.91 980.38 1.2 239.85 3 599.62 0.25 149.90
53.76 2 6.87 738.40 1.3 139.78 2.5 268.82 0.5 134.41

6­10 living space 679.6 5 7.36 25000.72 1.2 4077.59 1.75 5946.48 0.25 1486.62
679.6 5 0 1.2 4077.59 0
99.93 5 4.91 2450.96 1.2 599.62 3 1499.06 0.25 374.76
102.7 5 6.87 3526.03 1.3 667.51 2.5 1283.68 0.5 641.84

11 living space 635.01 1 7.36 4672.07 1.2 762.01 1.75 1111.26 0.25 277.81
635.01 1 0 1.2 762.01 0
99.93 1 4.91 490.19 1.2 119.92 3 299.81 0.25 74.95
87.42 1 6.87 600.31 1.3 113.64 2.5 218.55 0.5 109.27

12­39 living space 699.55 28 7.36 144114.39 1.2 23504.89 1.75 34277.97 0.25 8569.49
699.55 28 0 1.2 23504.89 0
99.93 28 4.91 13725.41 1.2 3357.9 3 8394.75 0.25 2098.68
91.65 28 6.87 17622.09 1.3 3336.06 2.5 6415.5 0.5 3207.75

40­41 living space 686.3 2 7.36 10098.94 1.2 1647.12 1.75 2402.05 0.25 600.51
686.3 2 0 1.2 1647.12 0
99.93 2 4.91 980.38 1.2 239.85 3 599.62 0.25 149.90

Floor Description 𝐴 [𝑚2] n Floors
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

0 entrance 700.7 1 9.81 6873.891525 1 700.7025 10 686.3 2
0 1.2 1647.126 0

99.93 2 4.91 980.38 1.2 239.85 3 599.62 0.25 149.90
43 living space 568.22 1 7.36 4180.69 1.2 681.86 1.75 994.385 0.25 248.59

568.22 1 0 1.2 681.867 0
99.98 1 4.91 490.19 1.2 119.95 3 299.81 0.25 74.95

44 living space 473.36 1 7.36 3482.76 1.2 568.03 1.75 828.38 0.25 207.09
473.36 1 0 1.2 568.03 0
99.93 1 4.91 490.19 1.2 119.92 3 299.81 0.25 74.95

45­46 living space 155.06 2 7.36 2281.74 1.2 372.15 1.75 542.71 0.25 135.67
155.06 2 0 1.2 372.15 0
99.93 2 4.91 980.38 1.2 239.85 3 599.62 0.25 149.90

all lift 21.503 47 5.28 5336.06 0 6 6063.70 0.25 1515.92
all beams 0
all columns 0
all Concrete core and outriggers 0
all masonry and cladding 0
Total 275963.56 82472.12 96050.44 31292.92

Table C.53: New Orleans density lower and upper bound calculation

Density Lower Upper
floor 𝐿 [𝑚] 𝐴 [𝑚2] 𝑚𝑎𝑠𝑠 [𝑘𝑔] 𝜌 [ 𝑘𝑔𝑚3 ] 𝑚𝑎𝑠𝑠 [𝑘𝑔] 𝜌 [ 𝑘𝑔𝑚3 ]
0­2 11.47 671 3812195.69 495.32 5051185.251 656.30749
3­10 26.64 856 9240444.76 405.21 11457630.51 502.44303
11­46 116.735 789 37263429.5 404.58 45404099.07 492.96601
Uniform 154.845 793 50316070 409.83 61912914.84 504.29051
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C.2.4. JuBi Tower
Table C.54: JuBi load calculation

Floor Description 𝐴 [𝑚2] n Floors
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

0­9 concrete floor 390 1168.4 10 8.2 95808.8 1.6 18694.4 4 46736 0.5 23368
0­9 core floor 200 69.2 10 5 3460 1.6 1107.2 3 2076 0.5 1038
0­9 Staircase 39.9 10 5 1995 1.6 638.4 3 1197 0.25 299.25
0­9 lift 77.5 10 5.28 4092 0 6 4650 0.25 1162.5
0­9 prefab façade 0
0­9 concrete columns 0
0­9 concrete core 0
0­9 connecting floors 0 0 0
10­22 concrete floor 350 1190.6 13 7.2 111440.16 1.6 24764.48 4 61911.2 0.5 30955.6
10­22 core floor 200 69.2 13 5 4498 1.6 1439.36 3 2698.8 0.5 1349.4
10­22 Staircase 26.6 13 5 1729 1.6 553.28 3 1037.4 0.25 259.35
10­22 lift 68.6 13 5.28 4708.704 6 5350.8 0.25 1337.7
10­22 façade 0
10­22 concrete columns 0
10­22 concrete core 0
23­27 concrete floor 350 979.6 5 7.2 35265.6 1.6 7836.8 4 19592 0.5 9796
23­27 core floor 200 69.2 5 5 1730 1.6 553.6 3 1038 0.5 519
23­27 Staircase 26.6 5 5 665 1.6 212.8 3 399 0.25 99.75
23­27 lift 68.6 5 5.28 1811.04 6 2058 0.25 514.5
28­38 concrete floor 350 980.2 11 7.2 77631.84 1.6 17251.52 4 43128.8 0.5 21564.4
28­38 core floor 200 63.3 11 5 3481.5 1.6 1114.08 3 2088.9 0.5 1044.45
28­38 Staircase 26.6 11 5 1463 1.6 468.16 3 877.8 0.25 219.45
28­38 lift 31.5 11 5.28 1829.52 6 2079 0.25 519.75
23­38 façade 0
23­38 concrete columns 0
23­38 concrete core 0

351609.164 74634.08 94047.1

Table C.55: JuBi density lower and upper bound calculation

Density Lower Upper
floor 𝐿 [𝑚] 𝐴 [𝑚2] 𝑚𝑎𝑠𝑠 [𝑘𝑔] 𝜌 [ 𝑘𝑔𝑚3 ] 𝑚𝑎𝑠𝑠 [𝑘𝑔] 𝜌 [ 𝑘𝑔𝑚3 ]
0­9 41 1355 23872047.17 429.70 29322006.40 527.80
10­22 46.02 1355 25914756.74 415.59 32098158.37 514.75
23­38 59.26 1144 20957390.13 309.14 27248344.26 401.93
Uniform 146.28 1268 70744194.05 381.27 88668509.03 477.88

C.2.5. Oval Tower
Table C.56: Oval load calculation

Force moved
to column Floor Description 𝐴 [𝑚2] n Floors

𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

column V roof roof floor 23.19 1 2.35 54.50 3.70 85.80
Wood midsection 6.40 1 2.00 12.80 0.00 0.00 0.55 12.80 0.00 0.00

1 to 24 floor 727.69 1 2.43 1768.28 1.94 1411.72 117.19 750.00 0.50 375.00
1 to 24 floor 44.49 1 2.43 108.10 1.94 86.30 0.05 35.00 0.50 17.50
0 floor 17.60 1 6.70 117.91 2.50 43.99 0.79 35.20 0.50 17.60
all prefab façade 1 1481.00 0.00 0.00
0 edge beam 1 229.10 0.00 76.80 0.50 38.40
1 to 24 bottom part façade 1 400.80 0.00
all column 1 820.90 0.00
all stub 1 82.90 0.00

column Z roof roof floor 23.00 1 2.35 54.05 3.70 85.10
midsection 6.40 1 2.00 12.80 0.00 0.00 0.56 12.80 0.00 0.00

1 to 24 floor 727.69 1 2.43 1768.28 1.94 1411.72 117.19 750.00 0.50 375.00
concrete strip 44.49 1 2.43 108.10 1.94 86.30 0.05 35.00 0.50 17.50

0 floor 17.60 1 6.70 117.91 2.50 43.99 0.79 35.20 0.50 17.60
all prefab façade 1 1481.00 0.00
0 edge beam 1 229.10 0.00 76.80 0.50 38.40
all column 1 820.90 0.00
all stub 1 82.90 0.00

sprinkler basin 1 77.70 0.00 440.00 0.70 308.00
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Force moved
to column Floor Description 𝐴 [𝑚2] n Floors

𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

column A & H roof floor 12.50 2 2.35 58.73 3.70 92.47 0.00 0.00
1 to 24 floor 248.79 2 2.43 1209.11 1.94 965.29 31.61 395.00 0.50 395.00
0 floor 22.80 2 6.70 305.58 2.50 114.02 0.18 45.60 0.50 45.60
all prefab façade 2 3147.00 0.00
0 edge beam 2 486.80 0.00 81.60 0.50 81.60
all walls 2 647.80 0.00
all columns 2 1641.80 0.00
all stubs 2 202.20 0.00

column J roof floor 12.50 1 2.35 29.37 3.70 46.23 0.00 0.00
1 to 24 floor 248.79 1 2.43 604.55 1.94 482.65 31.61 395.00 0.50 197.50
0 floor 22.80 1 6.70 152.79 2.50 57.01 0.18 45.60 0.50 22.80
all prefab façade 1 1573.50
0 edge beam 1 243.40 81.60 0.50 40.80
all walls 1 323.90
all columns 1 820.90
all stubs 1 101.10

installation strip 10.25 1 2.00 20.50 0.00 20.50
column R roof floor 12.50 1 2.35 29.37 3.70 46.23 0.00 0.00 0.00

1 to 24 floor 248.79 1 2.43 604.55 1.94 482.65 31.61 395.00 0.50 197.50
0 floor 22.80 1 6.70 152.79 2.50 57.01 0.18 45.60 0.50 22.80
all prefab façade 1 1573.50
0 edge beam 1 243.40 81.60 0.50 40.80
all walls 1 323.90
all columns 1 820.90
all stubs 1 101.10

installation strip 10.25 1 2.00 20.50 20.50 0.50 10.25
strinkler basin 1 32.60 55.61 570.00 0.70 399.00

column B roof roof floor 11.70 1 2.35 27.50 3.70 43.30 0.00 0.00
roof roof floor 21.40 1 8.10 173.30 0.00 0.00 0.00 0.00
roof Technical space 3.01 1 2.35 7.07 2.50 7.53 0.28 6.00 0.50 3.00
roof 25th field 26.63 1 7.15 190.39 1.45 38.61 49.76 149.80 1.00 149.80
roof extra concrete 1 204.90 0.00
1 to 24 floor 221.33 1 2.43 537.83 1.94 429.37 395.00 0.50 197.50

floor 301.12 1 2.43 731.72 1.94 584.18 2.56 566.70 0.50 283.35
0 floor 28.16 1 6.70 188.69 2.50 70.41 0.15 46.30 0.50 23.15
all prefab façade 1 1666.10
0 edge beam 1 257.80 86.40 0.50 43.20
all walls 1 342.90
all columns 1 820.90
all stubs 1 82.90

column G roof roof floor 11.70 1 2.35 27.50 3.70 43.30 0.00 0.00
roof floor 21.40 1 8.10 173.30 0.00 0.00
Technical space 3.01 1 2.35 7.07 2.50 7.53 0.28 6.00 0.50 3.00
25th field 26.63 1 7.15 190.39 1.45 38.61 49.76 149.80 1.00 149.80
extra concrete 1 204.90

1 to 24 floor 221.33 1 2.43 537.83 1.94 429.37 395.00 0.50 197.50
floor 301.12 1 2.43 731.72 1.94 584.18 2.56 566.70 0.50 283.35

0 floor 28.16 1 6.70 188.69 2.50 70.41 0.15 46.30 0.50 23.15
all prefab façade 1 1666.10
0 edge beam 1 257.80 86.40 0.50 43.20
all walls 1 342.90
all columns 1 820.90
all stubs 1 82.90

floor stairs 18.38 1 6.00 110.30 36.80 0.50 18.40
Column K roof roof floor 11.70 1 2.35 27.50 3.70 43.30 0.00 0.00

Concrete wall 1 173.30
25th field 26.63 1 7.15 190.39 1.45 38.61 149.80 1.00 149.80

1 to 24 floor 221.33 1 2.43 537.83 1.94 429.37 14.83 395.00 0.50 197.50
floor 301.12 1 2.43 731.72 1.94 584.18 2.56 566.70 0.50 283.35

0 floor 28.16 1 6.70 188.69 2.50 70.41 0.15 46.30 0.50 23.15
all prefab façade 1 1666.10
0 edge beam 1 257.80 86.40 0.50 43.20
all walls 1 342.90
all columns 1 820.90
all stubs 1 82.90

intermidiate strip
technical space 10.85 1 2.00 21.70 21.70 0.50 10.85
concrete walls

installation space 1 113.90
Column Q roof roof floor 11.70 1 2.35 27.50 3.70 43.30

Concrete walls 1 173.30
25th field 26.63 1 7.15 190.39 1.45 38.61 149.80 1.00 149.80

1 to 24 floor 221.33 1 2.43 537.83 1.94 429.37 14.83 395.00 0.50 197.50
floor 301.12 1 2.43 731.72 1.94 584.18 2.56 566.70 0.50 283.35

0 floor 28.16 1 6.70 188.69 2.50 70.41 0.15 46.30 0.50 23.15
all prefab façade 1 1666.10
0 edge beam 1 257.80 86.40 0.50 43.20
all walls 1 342.90
all columns 1 820.90
all stubs 1 82.90

intermidiate strip
technical space 10.85 1 2.00 21.70 21.70 0.50 10.85
concrete walls

installation space 1 113.90
Extra wall filling 1 99.20
water 1 0.00 625.00 1.00 625.00

column 2W roof roof floor 75.95 1 2.35 178.48 3.70 281.02
intermediate floor 10.85 1 2.00 21.70 0.29 21.70 0.50 10.85
25th field 44.79 1 7.15 320.25 1.45 64.95 23.23 252.00 1.00 252.00
prefab façade 1 227.70 0.00

1 to 24 floor 3368.79 1 2.43 8186.15 1.94 6535.45 4598.80 0.50 2299.40
0 floor 65.39 1 6.70 438.12 2.50 163.48 0.04 135.60 0.50 67.80
all columns 1 1108.50
all stubs 1 186.60
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Force moved
to column Floor Description 𝐴 [𝑚2] n Floors

𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

column 2Y roof roof floor 75.95 1 2.35 178.48 3.70 281.02 0.00 0.00
intermediate floor 10.85 1 2.00 21.70 0.29 21.70 0.50 10.85
25th field 44.79 1 7.15 320.25 1.45 64.95 23.23 252.00 1.00 252.00
prefab façade 1 227.70

1 to 24 floor 3368.79 1 2.43 8186.15 1.94 6535.45 4598.80 0.50 2299.40
0 floor 65.39 1 6.70 438.12 2.50 163.48 0.04 135.60 0.50 67.80
all columns 1 1108.50
all stubs 1 186.60

walls sprinkler system 1 217.80 888.00 1.00 888.00
Column C roof roof floor 30.00 1 8.10 243.00 0.00 0.00

intermediate floor 27.51 1 2.35 64.64 2.50 68.76 1.83 55.00 0.50 27.50
25th field 34.07 1 7.15 243.60 1.45 49.40 6.62 182.00 1.00 182.00
extra concrete 1 91.10
steel outrigger 1 41.00

1 to 24 floor 328.33 1 2.43 797.84 1.94 636.96 623.30 0.50 311.65
floor 288.33 1 2.43 700.64 1.94 559.36 1.65 542.50 0.50 271.25

0 floor 12.96 1 6.00 77.79 2.50 32.41 0.09 25.90 0.50 12.95
all prefab façade 1 1666.10
0 edge beam 1 257.80 86.40 0.50 43.20
all walls 1 342.90
all columns 1 782.70
all stubs 1 82.90

column F roof roof floor 30.00 1 8.10 243.00 0.00 0.00
intermediate floor 27.51 1 2.35 64.64 2.50 68.76 1.83 55.00 0.50 27.50
25th field 34.07 1 7.15 243.60 1.45 49.40 6.62 182.00 1.00 182.00
extra concrete 1 91.10
steel outrigger 1 41.00

1 to 24 floor 328.33 1 2.43 797.84 1.94 636.96 623.30 0.50 311.65
floor 288.33 1 2.43 700.64 1.94 559.36 1.65 542.50 0.50 271.25

0 floor 12.96 1 6.00 77.79 2.50 32.41 0.09 25.90 0.50 12.95
all prefab façade 1 1666.10
0 edge beam 1 257.80 86.40 0.50 43.20
all walls 1 342.90
all columns 1 782.70
all stubs 1 82.90

stairs 12.97 1 6.00 77.80 25.90 0.50 12.95
column L roof roof floor 15.93 1 8.10 129.00 0.00 0.00

gridfloor 1.75 1 8.00 14.00 0.00 0.00
25th field 33.91 1 7.15 242.43 1.45 49.17 101.71 178.00 1.00 178.00
outrigger 1 41.00

3 to 24 floor 264.30 1 2.43 642.25 1.94 512.75 499.10 0.50 249.55
1 to 24 floor 328.33 1 2.43 797.84 1.94 636.96 2.36 623.30 0.50 311.65
0 floor 11.98 1 6.70 80.25 2.50 29.95 0.08 25.90 0.50 12.95
all prefab façade 1 1634.00
0 edge beam 1 128.90 43.20 0.50 21.60
all walls 1 342.90
all columns 1 782.70
all stubs 1 82.90
2 awning 1 432.00 28.70 0.50 14.35

inner walls 1 58.30
0 dividers 1 75.60

column P roof roof floor 15.93 1 8.10 129.00 0.00 0.00
gridfloor 1.75 1 8.00 14.00 0.00 0.00
25th field 33.91 1 7.15 242.43 1.45 49.17 101.71 178.00 1.00 178.00
outrigger 1 41.00

1 to 24 floor 616.66 1 2.43 1498.48 1.94 1196.32 1165.80 0.50 582.90
0 floor 12.96 1 6.00 77.79 2.50 32.41 0.04 25.90 0.50 12.95
all prefab façade 1 1661.10
0 edge beam 1 257.80 86.40 0.50 43.20
all walls 1 342.90
all columns 1 782.70
all stubs 1 82.90
2 awning 1 751.70

columns D & E roof roof floor 29.00 2 8.10 469.80 0.00 0.00
gridfloor 29.01 2 2.35 136.35 2.50 145.05 2.00 58.00 0.00 0.00
25th field 32.83 2 7.15 469.41 1.45 95.19 5.00 145.00 1.00 290.00
extra concrete 2 182.20
outrigger 2 82.00

1 to 24 floor 576.66 2 2.43 2802.56 1.94 2237.44 1085.00 0.50 1085.00
0 floor 11.98 2 6.70 160.51 2.50 59.89 0.04 25.90 0.50 25.90
all prefab façade 2 3332.20
0 edge beam 2 515.60 86.40 0.50 86.40
all walls 2 685.80
all columns 2 1565.40
all stubs 2 165.80

column M roof gridfloor 3.63 1 8.00 29.00 0.00 0.00
25th field 29.34 1 7.15 209.76 1.45 42.54 56.00 203.00 1.00 203.00
outrigger 1 41.00

2 to 24 floor 552.63 1 2.43 1342.89 1.94 1072.11 1041.60 0.50 520.80
0 floor 18.00 1 6.00 108.00 2.50 45.00 0.07 36.00 0.50 18.00
all prefab façade 1 1602.00
0 edge beam 1 128.90 43.20 0.50 21.60
all walls 1 342.90
all columns 1 782.70
all stubs 1 82.90
2 awning 1 759.00
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Force moved
to column Floor Description 𝐴 [𝑚2] n Floors

𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

column N roof roof floor 3.63 1 8.00 29.00 0.00 0.00 0.00
25th field 29.34 1 7.15 209.76 1.45 42.54 56.00 203.00 1.00 203.00
outrigger 1 41.00

2 to 24 floor 552.63 1 2.43 1342.89 1.94 1072.11 1041.60 0.50 520.80
1 floor 3.59 1 2.43 8.73 1.94 6.97 0.01 7.20 0.50 3.60
0 floor 12.96 1 6.00 77.79 2.50 32.41 7.21 25.90 0.50 12.95
all prefab façade 1 1610.00
0 edge beam 1 257.80 86.40 0.50 43.20
all walls 1 342.90
all columns 1 782.70
all stubs 1 82.90
2 awning 1 759.00

0.00
Right side core
(inner loads) 25 and roof concrete core 1 1678.30

15 to 24 concrete core 1 11975.00
0 to 14 concrete core 1 18882.70
all stairs 292.03 1 6.00 1752.16 1.50 438.04 337.00 0.50 168.50

all
stairs and
lift shafs 1 2297.00

roof
roof and

technical space 1 1312.70 166.20 1.00 166.20
0 to 25 floors 512.21 1 6.00 3073.28 1.50 768.32 1058.40 0.50 529.20
all mid section 442.00 1 6.00 2652.00 1.50 663.00 1.78 910.00 0.50 455.00
all beams 1 765.50

right side core
(outer loads) all

floors and
outriggers 1 24681.00 9708.50 0.50 4854.25

left side core
(inner loads) 25 and roof concrete core 1 1776.90

15 to 24 concrete core 1 11923.20
0 to 14 concrete core 1 17755.20
all stairs 292.03 1 6.00 1752.16 1.50 438.04 337.00 0.50 168.50

roof
roof and

technical space 1 1301.00 164.70 1.00 164.70

all
stairs and
lift shafs 1 1638.70

0 to 25 floors 436.43 1 6.00 2618.56 1.50 654.64 901.80 0.50 450.90
all mid section 442.00 1 6.00 2652.00 1.50 663.00 2.09 910.00 0.50 455.00
all beams 1 765.50

left side core
(outer loads) all floors and outriggers 1 24704.40 9665.00 0.50 4832.50
Total 247564.37 38043.58 55192.60 30860.05

Table C.57: Oval density lower and upper bound calculation

Density Lower Upper
floor 𝐿 [𝑚] 𝐴 [𝑚2] 𝑚𝑎𝑠𝑠 [𝑘𝑔] 𝜌 [ 𝑘𝑔𝑚3 ] 𝑚𝑎𝑠𝑠 [𝑘𝑔] 𝜌 [ 𝑘𝑔𝑚3 ]
0­14 57.4 1030 14663037.87 248.01 18583946.25 314.33
15­24 41 1030 10572881.57 250.36 13675788.71 323.84
Uniform 98.4 1030 25235919.45 248.99 32259734.96 318.29

C.3. Foundation Mass
For the foundation mass, the same principle was used as for the building density. The only difference
being that the total mass is determined, and not the density, as shown in equation C.3. For the foun­
dation mass, all sub­zero levels are taken into account. As the foundation mass is added to the single
beam and multibeam models, by adding a lumped mass to the bottom of the beam, the determined
added mass is the same for both models.

𝑀𝑓𝑙𝑜𝑤𝑒𝑟 =
Σ𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙

𝑔

𝑀𝑓𝑢𝑝𝑝𝑒𝑟 =
Σ(𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙 + 𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡 +Ψ𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒)

𝑔

(C.3)

Table C.58 shows the lower and upper bound for the foundation mass for each building.
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Table C.58: Lower and upper bound of the foundation mass

Foundation Mass [kg]
Lower Bound Upper Bound
5.97E+06 6.03E+06
6.06E+06 6.32E+06
4.98E+06 5.21E+06
8.90E+06 9.54E+06
5.95E+06 6.38E+06

Below, the tables with the foundation mass calculations are given.

Table C.59: Foundation mass calculation of the NEMC

Foundation 𝐴 [𝑚2]
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 [𝑘𝑁] 𝑀𝑓 [𝑘𝑔]

Concrete Plate 2342.52 24.00 56220.48 Lower Bound 5969018.72
Deep Plate 205.77 24.00 4938.60 Upper Bound 6028102.39
Saved Space ­105.45 24.00 ­2530.77
Saved Space ­3.01 24.00 ­72.23 4.00 ­12.04 0.50 ­6.02
Crawl Space 1171.26 1.00 1171.26 0.50 585.63
Total 58556.07 1159.22 579.61

Table C.60: Foundation mass calculation of the Montevideo tower

Description Floor 𝐴 [𝑚2] Description
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ] Q Φ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 [𝑘𝑁] 𝑀𝑓 [𝑘𝑔]

Parking 𝐴 [𝑚2] ­1 630.66 Concrete floor 210 5.04 3178.53 2.00 1261.32 0.70 882.92 Lower 6062900.89
Parking 𝐴 [𝑚2] ­1 264.96 Concrete Floor 500 12.00 3179.52 2.00 529.92 0.70 370.94 Upper 6318531.47
Foundation Slab ­2 895.62 Concrete slab 48.00 42989.76 2.00 1791.24 0.70 1253.87
Concrete core & columns ­1 & ­2 Concrete 9712.07 0.00
Structural Steel ­1 & ­3 Steel 417.18 0.00
Total 59477.06 2507.74

Table C.61: Foundation mass calculation of the New Orleans tower

Description Floor 𝐴 [𝑚2] Description
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 [𝑘𝑁] 𝑀𝑓 [𝑘𝑔]

Parking ­1 797.76 concrete floor 260mm 6.38 5086.92 2.00 1595.52 0.70 1116.86 Lower 4995035.32
beams 1065.60 0.00 Upper 5222734.41

Parking + slab ­2 797.76 foundation slab 2m 48.00 38292.48 2.00 1595.52 0.70 1116.86
­1&­2 core 4009.95 0.00
­1&­2 lift core 546.35 0.00

Total 49001.30 2233.73

Table C.62: Foundation mass calculation of the JuBi tower

Description Floor 𝐴 [𝑚2] Description
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 [𝑘𝑁] 𝑀𝑓 [𝑘𝑔]

parking ­1 1355 concrete floor 4.40 5962.00 1.80 2439.00 2.00 2710.00 0.70 1897.00 Lower 8903802.93
Parking + slab ­2 1355 concrete floor 48.00 65040.00 0.00 0.00 2.00 2710.00 0.70 1897.00 Upper 9539175.00
core walls ­2 & ­1 13902.56 0.00 0.00
columns ­2 & ­1 2441.75 0.00 0.00
Total 87346.31 2439.00 5420.00 3794.00

Table C.63: Foundation mass calculation of the Oval tower

Description Floor 𝐴 [𝑚2]
𝑤𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[ 𝑘𝑁𝑚2 ]

𝐺𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙
[𝑘𝑁]

𝑤𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[ 𝑘𝑁𝑚2 ]

𝐺𝑝𝑒𝑟𝑚𝑎𝑛𝑒𝑛𝑡
[𝑘𝑁]

𝑞𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[ 𝑘𝑁𝑚2 ]

𝑄𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
[𝑘𝑁] Ψ 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 [𝑘𝑁] 𝑀𝑓 [𝑘𝑔]

Concrete Plate ­1 1030.00 37.50 38625.00 0.00 Lower Bound 5952476.48
floor ­1 488.02 9.60 4684.99 1.00 488.02 5.00 2440.10 1.00 2440.10 Upperbound 6375270.13
foundation ­1 1008.00 7.50 7560.00 1050.00 1.00 1050.00
mid section foundation ­1 22.00 13.75 302.40 157.60 1.00 157.60
columns ­1 782.70 0.00
concrete core ­1 4441.90
walls ­1 1996.80
Total 58393.79 488.02 3647.70 3647.70
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C.4. Foundation Spring Stiffnesses
C.4.1. Rotational Stiffness
Lower Bound
In a study done by Furgo, the rotational spring stiffnesses of the structures were determined using the
D­Pile Group software. During the D­Pile Group analysis, the pile group is modelled with an infinitely
stiff foundation slab. Due to the size of the pile group, the software calculates the rotational stiffness
using the Poulus model. This is a static model which considers two layers of fully elastic soil. The top
layer is along the entire height of the piles, the second layer is located below the tip of the pile. The
stiffness of these soil layers is specified by the user. In the analysis done by Furgo, large shear strains
in the soil were assumed. This leads to a relatively small E­modulus of the soil, which is approximated
by 𝐸 = 2𝐺(1+𝜈), with 𝐺 being the shear modulus and 𝜈 the Poisson’s ratio. The large strain assumption
made for the D­Pile Group analysis is seen as conservative, and thus this analysis is used as the lower
bound. After the pile group and foundation slab is modelled, and the soil stiffness is specified, a moment
is applied to the foundation. D­Pile Group then determined the rotation of the pile heads. Using the
determined rotation and the applied force, the rotational spring stiffness can then be determined. Table
C.64 shows the input parameters and the results of the D­Pile Group analysis.

Table C.64: Input parameters and the results of the D­Pile Group analysis for the rotational spring stiffness

Building E surface E below pile Applied Moment Rotation pile head Kr
𝑘𝑁
𝑚2

𝑘𝑁
𝑚2 kNm x direction [rad] y direction [rad] x direction [𝑘𝑁𝑚𝑟𝑎𝑑 ] y direction [𝑘𝑁𝑚𝑟𝑎𝑑 ]

NEMC 3000 60000 1.00E+06 7.57E­03 2.96E­03 1.23E+08 3.38E+08
Montevideo 6000 70000 1.00E+06 6.98E­03 5.98E­03 1.42E+08 1.67E+08
New Orleans 5000 70000 1.00E+06 4.78E­03 5.65E­03 2.10E+08 1.77E+08

JuBi 35000 100000 1.00E+06 1.19E­03 8.12E­04 8.40E+08 1.23E+09
Oval 25000 70000 1.00E+06 1.29E­03 2.88E­03 7.75E+08 3.47E+08

Upper Bound
Accompanying the explanation of the upper bound of the rotational spring stiffness is an Excel file
named ”Kr Upper Bound Calculation”. The calculations of the upper bound of the rotational spring
stiffness can be found there, as the calculations consist of tables too long to add to the appendix.

For the upper bound of the rotational spring stiffness, each pile under the foundation slab is represented
by a vertical spring. For each building, the vertical spring stiffness was determined in the design phase
by geotechnical institutions. These spring stiffnesses are shown in table C.65.

Table C.65: Vertical spring stiffness of an individual pile

NEMC Montevideo New Orleans JuBi Oval
𝐾𝑧 [

𝑘𝑁
𝑚 ] 87000 90000 85000 210000 190000

The assumption is then made that the foundation slab is infinitely stiff and that it does not deform when
the slab rotates. The slab is then rotated around the pile group’s centre of gravity, as shown in figure
C.20. Due to the shortening and elongation of the springs, a force is exerted on to the foundation slab.
By combining the well­known equations in C.4, the single rotational spring stiffness of equation C.5 can
be obtained.



140 C. Structural Parameters

𝐹𝑖 = 𝑘𝑧𝛿𝑖
𝑀𝑖 = 𝐹𝑖𝑎𝑖
𝛿𝑖 = 𝜃𝑎𝑖

𝑘𝑟,𝑖 =
𝑀𝑖
𝜃

where,
𝐹𝑖 is the force of an individual pile,
𝑘𝑧 is the vertical spring stiffness,
𝛿, 𝑖 is the shortening/elongation of the springs,
𝑀, 𝑖 is the moment due to the spring forces,
𝑎, 𝑖 is the lever arm of the different springs,
𝜃 is the angle of rotation of the foundation slab, and
𝑘𝑟,𝑖 is the rotational stiffness of each spring.

(C.4)

𝐾𝑟 = Σ𝑘𝑧,𝑖𝑎2𝑖 (C.5)

Figure C.20: Foundation with piles represented by vertical springs (left). Rotated foundation slap with vertical force equilibrium
(right)

Following this method, the rotational stiffnesses of the foundations can be determined for each structure
in each direction. The rotational stiffnesses in both direction are shown in the table below for each
structure.

Table C.66: Rotational Spring stiffnesses for each structure in both directions

Rotational Spring Stiffness [kNm/rad]
Building 𝐾𝑟𝑥 𝐾𝑟𝑦
NEMC 1.75E+9 6.05E+9

Montevideo 1.42E+9 1.75E+9
New Orleans 2.29E+9 2.04E+9

JuBi 1.16E+10 2.16E+10
Oval 4.48E+9 1.49E+9
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C.4.2. Translational Stiffness
Lower Bound
In the same study done by Fugro, as mentioned for the lower bound of the rotational stiffness, the
translational spring stiffness was determined. Again the D­Pile Group software, with the same input
parameters, was used. This time, instead of applying a moment to the pile heads, a horizontal force
was applied. The software then calculated the displacements of the pile heads. The displacement and
the applied force is then used to determine the translational spring stiffness. Table C.67 shows the
input parameters and the results of the D­Pile Group analysis.

Table C.67: Input parameters and the results of the D­Pile Group analysis for the rotational spring stiffness

E surface E below pile Applied Force Translation pile head 𝐾𝑡
Building 𝑘𝑁

𝑚2
𝑘𝑁
𝑚2 kN x direction [rad] y direction [rad] x direction [𝑘𝑁𝑚 ] y direction [𝑘𝑁𝑚 ]

NEMC 3000 60000 1000 7.39E­03 8.13E­03 1.35E+05 1.23E+05
Montevideo 6000 70000 1000 9.00E­03 9.28E­03 1.11E+05 1.08E+05
New Orleans 5000 70000 1000 5.33E­03 5.42E­03 1.89E+05 1.85E+05

JuBi 35000 100000 1000 6.27E­04 5.97E­04 1.59E+06 1.68E+06
Oval 25000 70000 1000 1.06E­03 1.16E­03 9.40E+05 8.62E+05

Upper Bound
Accompanying the explanation of the upper bound of the translational spring stiffness are 3 Excel files
named ”Kx Upper bound ­ Shallow foundation ­ weak”, ”Kx Upper bound ­ Shallow foundation ­
strong” and ”Kx Upper bound ­ Piles”. The calculations of the upper bound of the translational spring
stiffness can be found there, as the calculations consist of tables too long to add to the appendix.

The upper bound of the translational stiffness is a combination of two methods proposed by Gazetas
[21]. The first part is calculating the translational stiffness provided by a surface foundation on deep
inhomogeneous soil. This represents the resistance of the foundation slab. The translational stiffness
is determined with equation 3.9. Where 𝐺0 is the shear stiffness of the soil at the surface, and 𝛼 and
𝑛 are variables determined by finding the best fit line to the shear stiffness of the soil profile. The
method is described in detail in Foundation Engineering Handbook [21]. The translational stiffness is
determined for a foundation strip of 1m and then multiplied by the total width of the foundation.

𝐾𝑡 =
2

2 − 𝜈𝐺0(1 +
2
3𝛼)

𝑛 (C.6)

Example: Surface foundation stiffness of NEMC
In figure C.21, the shear stiffness of the soil is shown by the blue line. This is the shear stiffness of
measurements done in the design phase of the NEMC. The best fit line, shown in orange, is plotted
using equation C.7. Using the well known least square method, 𝛼 and 𝑛 can be iterated until the best
fit is determined.

For the NEMC 𝛼 = 0.006 and 𝑛 = 148.5. From the figure of the shear stiffness, it can be seen that
𝐺0 = 31.22𝐺𝑃𝑎. The foundation has a width (2𝐵) of 24m. A Poisson ratio of 0.3 is used. All unknowns
are now known, and equation C.6 can be used to determine the translational stiffness for a strip of
1m. Multiplying this strip with the length of the foundation (48𝑚), the total translational stiffness can be
determined. This is shown in equation C.8.

𝐺(𝑧) = 𝐺0 (1 + 𝛼
2
3)

𝑛
(C.7)
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Figure C.21: Shear stiffness vs depth for the NEMC

𝐾𝑡 =
2

2 − 𝜈𝐺0(1 +
2
3𝛼)

𝑛 = ( 2
2 − 0.3) (31.22 × 10

6) (1 + 2 × 0.0063 )
148.5

× 48 = 3.12 × 109𝑁𝑚 (C.8)

This calculation is done is both directions, to determine the translational stiffness in the strong and
weak direction.

The second part of the calculation is determining the translational stiffness of a single pile. The trans­
lational stiffness of a pile can be determined with the first part of equation C.9. where 𝑑 is the diameter
of the pile, �̃�𝑠 is a reference E­modulus of the soil determined using the best fit line of the E­modulus
profile of the soil, and 𝐸𝑝 is the E­modulus of the pile. After the translational stiffness is determined for
a single pile, the stiffness is multiplied by the number of piles in the foundation.

𝐾𝑡 = 0.6𝑑�̃�𝑠(
𝐸𝑝
�̃�𝑠
)0.35 × 𝑛𝑝𝑖𝑙𝑒𝑠 (C.9)

Example: Pile stiffness of NEMC
In figure C.22, the elasticity modulus of the soil is shown by the blue line. This is the elasticity modulus
of measurements done in the design phase of the NEMC. The best fit line, shown in orange, is plotted
using equation C.10, where 𝑧 id the depth and 𝑑 is the pile diameter. Using the well known least square
method, �̃�𝑠 can be iterated until the best fit is determined.

For the NEMC �̃�𝑠 = 2.07𝑀𝑃𝑎. The piles have a diameter (𝑑) of 0.508m and elasticity modulus (𝐸𝑃)
=f 20𝐺𝑃𝑎. All unknowns are now known, and equation C.9 can be used to determine the translational
stiffness for 1 pile. Multiplying the stiffness for 1 pile with the total number of piles, the total translational
stiffness of the pile group can be determined. This is shown in equation C.11.

𝐸𝑠 = �̃�𝑠 (
𝑧
𝑑) (C.10)
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Figure C.22: Elasticity modulus vs depth for the NEMC

𝐾𝑡 = 0.6𝑑�̃�𝑠(
𝐸𝑝
�̃�𝑠
)0.35 × 𝑛𝑝𝑖𝑙𝑒𝑠

= 0.6(0.508)(2.06 × 106) ( 20 × 109
(2.06 × 106)

0.35

× 334 = 5.23 × 109
(C.11)

The translational stiffness of a single pile is assumed to be the same in both directions.

The total translational spring stiffness is then calculated by the product of equations C.6 and C.9. The
spring stiffness for each structure is given in table C.68 and C.69. The full calculations can be found in
the added Excel files.

Table C.68: Translational spring stiffness weak direction

𝐾𝑡𝑥 [
𝑘𝑁
𝑚 ]

Shallow Foundation n piles Total
NEMC 3.12E+06 5.23E+06 8.35E+06
MV 1.53E+06 2.40E+06 3.93E+06
NO 1.60E+06 3.28E+06 4.88E+06
JuBi 5.00E+06 9.99E+06 1.50E+07
Oval 4.63E+06 3.94E+06 8.57E+06

Table C.69: Translational spring stiffness strong direction

𝐾𝑡𝑦 [
𝑘𝑁
𝑚 ]

Shallow Foundation n piles Total
NEMC 2.76E+06 5.23E+06 7.98E+06
MV 1.44E+06 2.40E+06 3.84E+06
NO 1.54E+06 3.28E+06 4.82E+06
JuBi 5.20E+06 9.99E+06 1.52E+07
Oval 4.85E+06 3.94E+06 8.79E+06





D

Sensitivity Study Results

This chapter provides the results of the sensitivity study, which were not added to the body of the thesis.

D.1. Varying Parameters
This section shows the results of the single and multibeam for the analyses done where different pa­
rameters are varied. In each case, one parameter varies from its lower bound to its upper bound, while
all other parameters are kept constant.

145
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D.1.1. Single Beam Model
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Figure D.1: Influence of varying parameters on the second translational frequency
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D.1.2. Multibeam Beam Model
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Figure D.2: Influence of varying parameters on the first translational frequency
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Figure D.3: Influence of varying parameters on the second translational frequency
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D.2. Extreme Parameter Combinations
D.2.1. Multibeam Beam Model

NEMC MV NO JuBi Oval

Building

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
F

re
q

u
e

n
c
y
 [

H
z
]

Weak Axis: Extreme Frequency Range Case 1

Case 2

Case 3

Case 4

Measured

NEMC MV NO JuBi Oval

Building

0

0.2

0.4

0.6

0.8

1

1.2

F
re

q
u

e
n

c
y
 [

H
z
]

Strong Axis: Extreme Frequency Range

Figure D.4: Frequency of extreme parameter combinations



150 D. Sensitivity Study Results

D.3. 90% Probability Interval
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(a) Probability density and cumulative density
for the E modulus of the NEMC tower.
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(b) Probability density and cumulative density
for the density of the NEMC tower.
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(c) Probability density and cumulative density
for the rotational stiffness of the NEMC tower.
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(a) Probability density and cumulative density
for the E modulus of the Montevideo tower.
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(b) Probability density and cumulative density
for the density of the Montevideo tower.
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(c) Probability density and cumulative density
for the rotational stiffness of the Montevideo

tower.
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(a) Probability density and cumulative density
for the E modulus of the New Orleans tower.
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(b) Probability density and cumulative density
for the density of the New Orleans tower.
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(c) Probability density and cumulative density
for the rotational stiffness of the New Orleans

tower.
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(a) Probability density and cumulative density
for the density of the JuBi tower.
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(b) Probability density and cumulative density
for the rotational stiffness of the JuBi tower.

(c) Probability density and cumulative density
for the rotational stiffness the JuBi tower.
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(a) Probability density and cumulative density
for the E modulus of the Oval tower.
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(b) Probability density and cumulative density
for the density of the Oval tower.
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(c) Probability density and cumulative density
for the rotational stiffness of the Oval tower.





Bibliography

[1] Makola M. Abdullah et al. “Use of a shared tuned mass damper (STMD) to reduce vibration
and pounding in adjacent structures”. In: Earthquake Engineering and Structural Dynamics 30.8
(2001), pp. 1185–1201. ISSN: 00988847. DOI: 10.1002/eqe.58.

[2] American Society of Civil Engineers. ASCE 7: Minimum Design Loads for Buildings and Other
Structures. Tech. rep. 2012.

[3] Stavros A. Anagnostopoulos. “Pounding of buildings in series during earthquakes”. In: Earth­
quake Engineering & Structural Dynamics 16.3 (1988), pp. 443–456. ISSN: 10969845. DOI:
10.1002/eqe.4290160311.

[4] L. Arany et al. “An analytical model to predict the natural frequency of offshore wind turbines
on three­spring flexible foundations using two different beam models”. In: Soil Dynamics and
Earthquake Engineering 74 (2015), pp. 40–45. ISSN: 02677261. DOI: 10.1016/j.soildyn.
2015.03.007. URL: http://dx.doi.org/10.1016/j.soildyn.2015.03.007.

[5] Andrew Bartolini. “Advancements in Full�Scale Monitoring Hardware for Improved Modeling of
Tall Buildings: A System Behavior Perspective”. PhD thesis. University of Notre Dame, 2019.

[6] R.L.J. van den Berg and Steenbergen R.D.J.M. “Identifying the Damping Contribution of Build­
ing components based on measured top vibration”. In: 4th ECCOMAS Thematic Conference on
Computational Methods in Structural Dynamics and Earthquake Engineering. 2013.

[7] R. E.D. Bishop, S. M. Cannon, and S. Miao.On coupled bending and torsional vibration of uniform
beams. 1989. DOI: 10.1016/0022­460X(89)91005­5.

[8] Rune Brincker, Lingmi Zhang, and Palle Andersen. “Modal identification from ambient responses
using frequency domain decomposition”. In: Proceedings of the IMAC 18, International Modal
Analysis COnference. 2000.

[9] A J Bronkhorst, C A Van Bentum, and S S Gomez.Wind­induced vibrations and damping in high­
rise buildings. Tech. rep. 2018.

[10] A J Bronkhorst and D Moretti. Application of the Frequency Domain Decomposition method on
the residential tower New Orleans. Tech. rep. 2021, p. 17.

[11] Okke Bronkhorst and Chris Geurts. “HIVIBE ­ Monitoring van trillinggen in hoogbouw: Naar een
Nationaal Programma Hoogbouwmonitoring”. In: Cement (2021).

[12] J. M.W. Brownjohn, T. C. Pan, and X. Y. Deng. “Correlating dynamic characteristics from field
measurements and numerical analysis of a high­rise building”. In: Earthquake Engineering and
Structural Dynamics 29.4 (2000), pp. 523–543. ISSN: 00988847. DOI: 10.1002/(SICI)1096­
9845(200004)29:4<523::AID­EQE920>3.0.CO;2­L.

[13] Bureau of Indian Standards. “Criteria for earthquake resistant design of structures”. In: Earth­
quake Resistant Design of Structures (2002).

[14] S. Campbell, K. C.S. Kwok, and P. A. Hitchcock. “Dynamic characteristics and wind­induced
response of two high­rise residential buildings during typhoons”. In: Journal of Wind Engineering
and Industrial Aerodynamics 93.6 (2005), pp. 461–482. ISSN: 01676105. DOI: 10.1016/j.
jweia.2005.03.005.

[15] Canadian Commission on Building and Fire Codes and National Research Council of Canada.
National Building Code of Canada 2005. Tech. rep. 2005, pp. 182–183.

[16] ECarrera, GGiunta, andMPetrolo.BeamStructures BeamStructures. 2001. ISBN: 9780470972007.
[17] Helen Crowley and Rui Pinho. “Revisiting Eurocode 8 formulae for periods of vibration and their

employment in linear seismic analysis”. In: Earthquake Engineering and Structural Dynamics
39.2 (2010), pp. 223–235. ISSN: 10969845. DOI: 10.1002/eqe.949.

[18] Clive L. Dym and Harry E. Williams. Analytical estimates of structural behavior. CRC Press, Feb.
2012, pp. 1–214. ISBN: 9781439870914. DOI: 10.1201/b11638.

[19] B. R. Ellis. “An assessment of the accuracy of prediction the fundamental frequencies of build­
ings”. In: Institution of Civil engineers 69 (1980), pp. 763–776.

153

https://doi.org/10.1002/eqe.58
https://doi.org/10.1002/eqe.4290160311
https://doi.org/10.1016/j.soildyn.2015.03.007
https://doi.org/10.1016/j.soildyn.2015.03.007
http://dx.doi.org/10.1016/j.soildyn.2015.03.007
https://doi.org/10.1016/0022-460X(89)91005-5
https://doi.org/10.1002/(SICI)1096-9845(200004)29:4<523::AID-EQE920>3.0.CO;2-L
https://doi.org/10.1002/(SICI)1096-9845(200004)29:4<523::AID-EQE920>3.0.CO;2-L
https://doi.org/10.1016/j.jweia.2005.03.005
https://doi.org/10.1016/j.jweia.2005.03.005
https://doi.org/10.1002/eqe.949
https://doi.org/10.1201/b11638


154 Bibliography

[20] EUROPEANCOMMITTEEFORSTANDARDIZATION.Eurocode 8: Design of structures for earth­
quake resistance ­ Part 1 : General rules, seismic actions and rules for buildings. Tech. rep. 2005.
2011.

[21] G Gazetas. “Foundation Engineering Handbook”. In: Foundation Engineering Handbook. Ed. by
H Fang. 1991. Chap. Foundation, pp. 553–593. DOI: 10.1007/978­1­4757­5271­7.

[22] Damien Gilles. “IN SITU DYNAMIC CHARACTERISTICS OF REINFORCED By requirements of
the degree of Doctor of Philosophy”. In: February (2011).

[23] Rakesh K. Goel and Anil K. Chopra. “Period Formulas for Moment­Resisting Frame Buildings”.
In: Journal of Structural Engineering 123.11 (Nov. 1997), pp. 1454–1461. ISSN: 0733­9445. DOI:
10.1061/(ASCE)0733­9445(1997)123:11(1454).

[24] Pilar Alaejos Gutierrez and Manuel Fernandez Canovas. “The modulus of elasticity of high per­
formance concrete”. In: Materials and Structures 28.10 (1995), pp. 559–568. ISSN: 00255432.
DOI: 10.1007/BF02473187.

[25] George D. Hatzigeorgiou and George Kanapitsas. “Evaluation of fundamental period of low­rise
and mid­rise reinforced concrete buildings”. In: Earthquake Engineering and Structural Dynamics
42.11 (2013), pp. 1599–1616. ISSN: 10969845. DOI: 10.1002/eqe.2289.

[26] Ward Heylen, Stefan Lammens, and Paul Sas. “Modal Analysis Theory and Testing”. In: (1997),
p. 340. URL: https://asset­pdf.scinapse.io/prod/156689764/156689764.pdf%
0Ahttps://pdfs.semanticscholar.org/bad9/0f4967dc926830c47226f2157ce4727a3983.
pdf.

[27] E Ho and L Kong. “Full scale and wind tunnel comparison of wind­induced responses of tall
buildings”. In: Proceedings of 12th international conference on wind engineering. 2007, pp. 1231–
8.

[28] Li­Ling Hong and Woei­Luen Hwang. “Empirical formula for fundamental vibration periods of
reinforced concrete buildings in Taiwan”. In: Earthquake Engineering & Structural Dynamics 29.3
(Mar. 2000), pp. 327–337. ISSN: 0098­8847. DOI: 10.1002/(SICI)1096­9845(200003)
29:3<327::AID­EQE907>3.0.CO;2­0.

[29] Jorrit van Ingen. “Stabiliteitskern met tweede­orde­effecten”. In: Cement (2021), pp. 54–61.
[30] International Conference of Building Officials. Uniform building code ­ 1970. Tech. rep. 1970.
[31] International Conference of Building Officials. Uniform building code ­ 1997. Tech. rep. 1997.
[32] S. K. Jang and C. W. Bert. “Free vibration of stepped beams: Exact and numerical solutions”. In:

Journal of Sound and Vibration 130.2 (1989), pp. 342–346. ISSN: 10958568. DOI: 10.1016/
0022­460X(89)90561­0.

[33] S. K. Jang and C. W. Bert. “Free vibration of stepped beams: Exact and numerical solutions”. In:
Journal of Sound and Vibration 132.2 (1989), pp. 164–168.

[34] Robert Jankowski. “Non­linear FEM analysis of earthquake­induced pounding between the main
building and the stairway tower of the Olive View Hospital”. In: Engineering Structures 31.8
(2009), pp. 1851–1864. ISSN: 01410296. DOI: 10.1016/j.engstruct.2009.03.024.
URL: http://dx.doi.org/10.1016/j.engstruct.2009.03.024.

[35] Robert Jankowski. “Non­linear FEM analysis of pounding­involved response of buildings under
non­uniform earthquake excitation”. In: Engineering Structures 37 (2012), pp. 99–105. ISSN:
01410296. DOI: 10.1016/j.engstruct.2011.12.035. URL: http://dx.doi.org/10.
1016/j.engstruct.2011.12.035.

[36] Jasper Monster. Hoogbouw is de ideale oplossing in de strijd tegen woningnood. Of toch niet? –
Gebiedsontwikkeling.nu. 2021. URL: https://www.gebiedsontwikkeling.nu/artikelen/
hoogbouw­is­de­ideale­oplossing­in­de­strijd­tegen­woningnood­of­
toch­niet/.

[37] R. Jategaonkar and D.S. Chehil. “Natural frequencies of a beam with varying section properties”.
In: 133 (1989), pp. 303–322.

[38] F. Ju, H. P. Lee, and K. H. Lee. “On the free vibration of stepped beams”. In: International Journal
of Solids and Structures 31.22 (1994), pp. 3125–3137. ISSN: 00207683. DOI: 10.1016/0020­
7683(94)90045­0.

[39] Ahsan Kareem. “Effects of Parametric Uncertainty on Wind Excited Structural Response.” In:
Journal ofWind Engineering and Industrial Aerodynamics 30 (1988), pp. 233–241. ISSN: 01676105.
DOI: 10.1016/j.jweia.2013.08.007.

https://doi.org/10.1007/978-1-4757-5271-7
https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1454)
https://doi.org/10.1007/BF02473187
https://doi.org/10.1002/eqe.2289
https://asset-pdf.scinapse.io/prod/156689764/156689764.pdf%0Ahttps://pdfs.semanticscholar.org/bad9/0f4967dc926830c47226f2157ce4727a3983.pdf
https://asset-pdf.scinapse.io/prod/156689764/156689764.pdf%0Ahttps://pdfs.semanticscholar.org/bad9/0f4967dc926830c47226f2157ce4727a3983.pdf
https://asset-pdf.scinapse.io/prod/156689764/156689764.pdf%0Ahttps://pdfs.semanticscholar.org/bad9/0f4967dc926830c47226f2157ce4727a3983.pdf
https://doi.org/10.1002/(SICI)1096-9845(200003)29:3<327::AID-EQE907>3.0.CO;2-0
https://doi.org/10.1002/(SICI)1096-9845(200003)29:3<327::AID-EQE907>3.0.CO;2-0
https://doi.org/10.1016/0022-460X(89)90561-0
https://doi.org/10.1016/0022-460X(89)90561-0
https://doi.org/10.1016/j.engstruct.2009.03.024
http://dx.doi.org/10.1016/j.engstruct.2009.03.024
https://doi.org/10.1016/j.engstruct.2011.12.035
http://dx.doi.org/10.1016/j.engstruct.2011.12.035
http://dx.doi.org/10.1016/j.engstruct.2011.12.035
https://www.gebiedsontwikkeling.nu/artikelen/hoogbouw-is-de-ideale-oplossing-in-de-strijd-tegen-woningnood-of-toch-niet/
https://www.gebiedsontwikkeling.nu/artikelen/hoogbouw-is-de-ideale-oplossing-in-de-strijd-tegen-woningnood-of-toch-niet/
https://www.gebiedsontwikkeling.nu/artikelen/hoogbouw-is-de-ideale-oplossing-in-de-strijd-tegen-woningnood-of-toch-niet/
https://doi.org/10.1016/0020-7683(94)90045-0
https://doi.org/10.1016/0020-7683(94)90045-0
https://doi.org/10.1016/j.jweia.2013.08.007


Bibliography 155

[40] Kazuhiko Kasai and Bruce F. Maison. “Building pounding damage during the 1989 Loma Prieta
earthquake”. In: Engineering Structures 19.3 (1997), pp. 195–207. ISSN: 01410296. DOI: 10.
1016/S0141­0296(96)00082­X.

[41] Hemant B. Kaushik et al. “Performance of structures during the Sikkim earthquake of 14 February
2006”. In: Current Science 91.4 (2006), pp. 449–455. ISSN: 00113891.

[42] Do Hyun Kim and Ji Young Kim. “Assessment on Natural Frequencies of Structures using Field
Measurement and FEAnalysis”. In: International Journal of High­Rise Buildings 3.4 (2014), pp. 305–
310. ISSN: 2234­7224. DOI: 10.21022/IJHRB.2014.3.4.305.

[43] J.Y. Kim et al. “Evaluations of dynamic structural properties using wind­induced responses”. In:
Proceedings of annual conference of KSSC. 2007.

[44] Ji Young Kim et al. “Calibration of analytical models to assess wind­induced acceleration re­
sponses of tall buildings in serviceability level”. In: Engineering Structures 31.9 (2009), pp. 2086–
2096. ISSN: 01410296. DOI: 10.1016/j.engstruct.2009.03.010.

[45] Q. S. Li et al. “Full­scale measurements and numerical evaluation of wind­induced vibration of
a 63­story reinforced concrete tall building”. In: Engineering Structures 26.12 (2004), pp. 1779–
1794. ISSN: 01410296. DOI: 10.1016/j.engstruct.2004.06.014.

[46] Q. S. Li et al. “Full­scale measurements of wind effects on the Jin Mao building”. In: Journal of
Wind Engineering and Industrial Aerodynamics 95.6 (2007), pp. 445–466. ISSN: 01676105. DOI:
10.1016/j.jweia.2006.09.002.

[47] Bruce F. Maison and Kazuhiko Kasai. “Dynamics of pounding when two buildings collide”. In:
Earthquake Engineering & Structural Dynamics 21.9 (1992), pp. 771–786. ISSN: 10969845. DOI:
10.1002/eqe.4290210903.

[48] Leszek Majkut. “Free and forced vibrations of timoshenko beams described by single difference
equation”. In: Journal of Theoretical and Applied Mechanics 47.1 (2009), pp. 193–210. ISSN:
14292955.

[49] C. Michel et al. “Comparison between seismic vulnerability models and experimental dynamic
properties of existing buildings in France”. In: Bulletin of Earthquake Engineering 8.6 (Dec. 2010),
pp. 1295–1307. ISSN: 1570­761X. DOI: 10.1007/s10518­010­9185­7.

[50] M. Miwa et al. “Modal identification by FEM analysis of a building with CFT columns”. In: Pro­
ceedings of the 20th international modal analysis conference. 2002, pp. 1618–22.

[51] NEN­EN. NEN 6702: Technical principles for building structures ­ TGB 1990 ­ Loadings and
deformations. Tech. rep. 2007.

[52] Tso­Chien Pan, Key Seng Goh, and Kusnowidjaja Megawati. “Empirical relationships between
natural vibration period and height of buildings in Singapore”. In:Earthquake Engineering & Struc­
tural Dynamics 43.3 (Mar. 2014), pp. 449–465. ISSN: 00988847. DOI: 10.1002/eqe.2356.

[53] C Petrone et al. “Stress­Strain Behavior of Plasterboards Subjected in Tension and Compres­
sion”. In: (2017).

[54] S Sánchez Gómez. “Energy flux method for identification of damping in high­rise buildings sub­
ject to wind”. PhD thesis. Technical University of Delft, 2019, p. 161. DOI: 10.4233/uuid:
bc4fe937­2711­4ee0­95b7­baad7c5d234c.

[55] Angelo Simone. An Introduction to the Analysis of Slender Structures. 2011.
[56] M Sonneveld. Sensitivities and prerequisites of the application of the Energy Flux Analysis to

high­rise structures excited by wind using in situ measurements. Tech. rep. Technical University
of Delft, 2020, p. 204.

[57] R. K.L. Su et al. “Influence of non­structural components on lateral stiffness of tall buildings”. In:
Structural Design of Tall and Special Buildings 14.2 (2005), pp. 143–164. ISSN: 15417794. DOI:
10.1002/tal.266.

[58] Y. Tamura et al. “Measurement of wind­induced response of buildings using RTK­GPS”. In: Jour­
nal of Wind Engineering and Industrial Aerodynamics 90.12­15 (2002), pp. 1783–1793. ISSN:
01676105. DOI: 10.1016/S0167­6105(02)00287­8.

[59] Pulkit Dilip ; Velani and P K Ramancharla. “New Empirical Formula for Fundamental Period of
Tall Buildings in India By Ambient Vibration Test”. In: 16th World Conference on Earthquake
Engineering (2017).

[60] Peter D. Welch. “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A
Method Based on Time Averaging Over Short, Modified Periodograms”. In: IEEE Transactions

https://doi.org/10.1016/S0141-0296(96)00082-X
https://doi.org/10.1016/S0141-0296(96)00082-X
https://doi.org/10.21022/IJHRB.2014.3.4.305
https://doi.org/10.1016/j.engstruct.2009.03.010
https://doi.org/10.1016/j.engstruct.2004.06.014
https://doi.org/10.1016/j.jweia.2006.09.002
https://doi.org/10.1002/eqe.4290210903
https://doi.org/10.1007/s10518-010-9185-7
https://doi.org/10.1002/eqe.2356
https://doi.org/10.4233/uuid:bc4fe937-2711-4ee0-95b7-baad7c5d234c
https://doi.org/10.4233/uuid:bc4fe937-2711-4ee0-95b7-baad7c5d234c
https://doi.org/10.1002/tal.266
https://doi.org/10.1016/S0167-6105(02)00287-8


156 Bibliography

on Audio and Electroacoustics 15.2 (1967), pp. 70–73. ISSN: 00189278. DOI: 10.1109/TAU.
1967.1161901.

[61] Yun Zhou et al. “Operational Modal Analysis and Rational Finite­Element Model Selection for
Ten High­Rise Buildings based on On­Site Ambient Vibration Measurements”. In: Journal of
Performance of Constructed Facilities 31.5 (Oct. 2017), p. 04017043. ISSN: 0887­3828. DOI:
10.1061/(ASCE)CF.1943­5509.0001019.

https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1109/TAU.1967.1161901
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001019

	Preface
	Abstract
	List of Figures
	List of Tables
	Introduction
	Introduction
	Problem Statement
	Research Objective and Approach
	Thesis Layout

	Literature Study
	Introduction
	Determining the natural frequency of high-rise structures
	Design codes
	NEN 6702
	NEN-EN 1991-1-4

	Emperical formlae
	Beam Theory
	Finite Element Method Software


	Sensitivity Study I: Analytic Models of 5 Existing High-Rise Structures in the Netherlands
	Introduction
	Building Descriptions and Measurements
	The New Erasmus Medical Center
	The Montevideo Tower
	The New Orleans Tower
	The JuBi Tower
	The Oval Tower

	Determining the natural frequency using measured data
	Natural frequency in the time domain
	Natural frequency in the frequency domain
	Measured Mode Shapes

	Analytic Model Description
	Case 1: Cantilever Euler-Bernoulli Beam with Fixed Support
	Case 2: Cantilever Euler-Bernoulli Beam with Rotational Spring Support
	Case 3: Cantilever Euler-Bernoulli Beam with Rotational and Translational Spring Support
	Case 4: Cantilever Euler-Bernoulli Beam with Rotational and Translational Spring Support including Foundation Mass
	Case 5: Cantilever Timoshenko Beam with Rotational and Translational Spring Support including Foundation Mass

	Structural Parameters
	Bending Stiffness
	New Erasmus Medical Center
	Montevideo
	New Orleans
	JuBi
	Oval Tower

	Building Mass
	Superstructure Density
	Foundation Mass

	Foundation Stiffness
	Rotational Spring Stiffness
	Translational Spring Stiffness


	Analytic Models
	Single Beam Model
	Frequencies Using Design Values
	Influence of Different Structural Parameters on the Frequency
	Frequency of Extreme Parameter Combinations

	Multiple Beam Model

	Calibration of multibeam model
	Conclusions

	Sensitivity Study II: Finite Element Model of the new Erasmus Medical Centre
	Introduction
	The FEM Model
	Original Model
	Complete Model

	Modal Analyses
	Conclusion

	Conclusion
	Recommendations
	Measurements of dynamic properties
	Influence of the low-rise structure
	Further recommendations

	Appendices
	Beam Theory
	Euler-Bernoulli Beam
	Relationship between deflection and curvature
	Relationship between curvature and longitudinal strain
	Relationship between external load, shear force and bending moment
	Relationship between internal bending moment and curvature
	Differential equation of the transverse deflection

	Timoshenko Beam
	Governing equations of a shear beam
	Kinematic assumptions for the Timoshenko beam
	Relationship between deformations and internal forces
	Differential equation for transverse deflection


	Dynamics
	Single degree of freedom system
	Continuous systems
	Euler-Bernoulli beam
	Free vibration of Euler-Bernoulli beam
	Boundary conditions
	Multibeam model

	Timoshenko Beam

	Structural Parameters
	Building bending stiffness
	New Erasmus Medical Center
	Montevideo
	New Orleans
	JuBi Tower
	Oval

	Building Density
	New Erasmus Medical Centre
	Montevideo Tower
	New Orleans Tower
	JuBi Tower
	Oval Tower

	Foundation Mass
	Foundation Spring Stiffnesses
	Rotational Stiffness
	Translational Stiffness


	Sensitivity Study Results
	Varying Parameters
	Single Beam Model
	Multibeam Beam Model

	Extreme Parameter Combinations
	Multibeam Beam Model

	90% Probability Interval


