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1 Introduction

Depth-contours are an essential part of any hydrographic chart—a map of a water-
body intended for safe ship navigation. Traditionally these were manually drawn by
skilled hydrographers from a limited set of surveyed depth measurements. Nowadays
this process of map making is shifted towards the digital domain, not in the last
place because of the sheer size of the point clouds that result from modern surveying
techniques such as Multi Beam Echo Sounding (MBES) (see Figure 1a). This is no
trivial task, since the the produced depth-contours need to comply with the four
hydrographic generalization constraints of safety, legibility (smoothness), topology
and waterbody morphology. The challenge is to solve the generalization problem for
these four constraints.

(a) Multi Beam Echo
Sounding (MBES) is based on the
principle of measuring the time of
flight of hundreds of individual
signal pulses.

Unsafe generalization

Safe generalization

Original depth-contour

+

−
(b) During generalization, contours can only be moved

towards greater depth, indicated by a ’−’, in order to
respect the safety constraint.

Figure 1

The hydrographic generalization constraints ensure that the resulting contours
are compatible with the purpose of a hydrographic chart (to be an efficient and
reliable guide for a shipper). Zhang and Guilbert (2011) describe these generalization
constraints. In our own words these are:
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1. The safety constraint. A hydrographic chart is primarily a depth-map of a
waterbody. At every location, the indicated depth may never be deeper than
the depth that was originally measured at that location. See Figure 1b. This
is to guarantee that a ship never runs aground because of a faulty map.

2. The legibility constraint. An overdose of information slows down the map
reading process, thus only the essential information should be present on the
map in a form that is clearly and efficiently apprehensible. This requires
cartographic generalization.

3. The topology constraint. The topology of the depicted map elements must be
correct. Contour lines for instance may not intersect.

4. The morphology constraint. The map should be as realistic and accurate as
possible, i.e. the overall shape of the morphology of the underwater surface
should be clearly perceivable and defining features should be preserved.

Note that the safety constraint is unique to hydrographic generalization. Sub-
sequently it is not dealt with in generalization solutions for landforms. Moreover,
and primarily related to the morphology constraint, as argued by the cartographer
Imhof (1965): “One must never overlook the fact that (geographic) surfaces are
being depicted with contours. A single line says very little. One line does not define
a surface. Everything comes back, eventually, to the formation of the system of
lines, that is, the surface.” This is a clear argument for an approach that does not
generalize contours independent from each other.

It should further be noted that the four hydrographic generalization constraints
are sometimes incompatible with each other. For instance, the morphology con-
straint tells us to stay close to the measured shape of a waterbody. Yet, the legi-
bility constraint forces us to deviate from that exact shape by disregarding details.
And, for the sake of the safety constraint, contours can only be modified (to achieve
legibility) so that the safety is respected at all times. It is therefore evident that
the end result must be a reasonable compromise between the four generalization
constrains, although the safety constraint can never be broken.

(a) Aggregation (b) Omission

Figure 2: Generalization operators for hydrographic contours. The ‘+’ and ‘−’
symbols respectively indicate shallow and deep regions.

In order to satisfy the generalization constraints cartographic generalization, i.e.
generalization of spatial data for cartographic visualization (Weibel, 1997), must be
applied. Figure 2 illustrates two cartographic generalization operators. Aggregation
(Figure 2a) reduces the number of contours by merging a group of nearby contours
that represent local maxima. Omission (Figure 2b) means removing features that
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are insignificant for the map purpose, in the hydrography these are often contours
that indicate particularly deep areas that pose no risk to safe ship navigation.

In this paper we show that the methods that are currently used in practice for
the generation and generalization of depth-contours for hydrographic charts are not
fully complying with the hydrographic generalization constraints. In fact the most
critical constraint, for safety, is never strictly met at all.

We also introduce and demonstrate a surface-based generalization approach that
is guaranteed to be safe. The concept is based on the Voronoi Diagram (VD) and
the related Laplace spatial interpolation (Belikov et al., 1997; Hiyoshi and Sugihara,
1999), a variant of the more widely known Natural Neighbour or Sibson interpolation
(Sibson, 1981). We have implemented this using the Delaunay Triangulation (DT),
which is a unique mapping of the VD (i.e. its dual). Furthermore, we describe a
number of generalization operators based on this concept. Results, based on real
data, are provided as well.

2 Current approaches to generating and generalizing
depth-contours

Practitioners use mostly two methods to generate depth-contours from randomly
distributed input points. The first method is to use shallow filtering or gridding
(Smith, 2003). Supposedly in favor of the safety constraint, only the shallowest
point is retained for every cell in a grid or quadtree that is overlaid on the input
data. Resulting points are either stored exactly (see Figure 3a), preserving their
planimetric coordinates, or as a raster (see Figure 3c), in which case exact plani-
metric coordinates are discarded.

However, picking the shallowest point per grid cell does not guarantee safe con-
tours in principle. The problem is that contour extraction algorithms perform a
linear interpolation on top of the points present in the data structure. As can be
observed from Figure 3b, this easily results in safety violations at ’secondary’ local
maxima in a single grid cell. The number and severity of these violations is related
to the used resolution of the grid cells. A bigger cellsize will result in more and
more severely violated points. Furthermore, when compared to triangulation, ras-
terization is likely to cause more extreme safety violations, because the depths are
snapped to the cell’s centers.

A second method that is used to generate contours is (some variant of) inverse
distance weighting (IDW) interpolation (Shepard, 1968), that assigns raster cells a
depth that is an inversely distance weighted sum of nearby points (see Figure 3e).
From Figure 3f it is evident that this can also easily result in a violation of the safety
constraint.

None of the above methods strictly respects the safety constraint. As a con-
sequence, also any processing chain that uses one of these methods may not be
absolutely safe.

While the above methods are able to achieve a certain form of generalization,
most notably the somewhat arbitrary reduction of high frequency detail, i.e. the
noisy character in raw contours (see Figure 6a), generalization can also be achieved
by processing the contour lines themselves. However, two general problems arise

3



(a) Virtual gridding (b) Virtual gridding and TIN-based contour
values

(c) Max rasterization (d) Max rasterization and contours

?

2r

(e) IDW rasterization

?

(f) IDW rasterization and contours

Figure 3: On the left: profile views of different filtering and rasterization
methods. On the right: the corresponding contours. Red arrows
indicate where the safety constraint is violated with respect to the
original points. Also note that in case a grid cell contains no data, no
contours can be derived.

with line-based methods. Firstly, there is the problem of intersecting contour lines
(the topology constraint). And secondly, these methods require safe and clean input
contours to begin with. However, as described above, obtaining those safe contours
is not a trivial task.

In reaction to the problem of intersecting contours, Hennau and De Wulf (2006)
propose a method that combines a line-based smoothing technique with a TIN-
based patch smoothing technique. Unfortunately, they do not consider the safety
constraint.

A line-based generalization method that does respect safety is double-buffering
(Smith, 2003). It works by buffering the set of input contours back and forth by some
configurable buffering distance. A weakness of this approach is its non-adaptiveness,
i.e. the buffer-distance is strongly dependent on local details in the contour lines.
Guilbert and Lin (2007) and Guilbert and Saux (2008) use a spline-snake model
to achieve hydrographic contour generalization in an iterative optimization. The
authors do note that the preservation of safety comes at the price of a significantly
slower convergence of iteration. In addition, the algorithm requires manual inter-
vention in some cases.
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3 A surface-based approach

We present a different approach to the problem of generating and generalizing hy-
drographic depth-contours from raw input points that is based on a continuous
interpolation of the raw input points. It does not perform any kind of gridding or
rasterization. Instead, it retains all input points at their exact planimetric coordi-
nates during processing. Implementation-wise, the points are represented as vertices
in a Delaunay Triangulation (DT), which can be considered a piecewise linear sur-
face. We, however, define a continuous surface through the Voronoi Diagram (VD),
a unique mapping of the DT (see Figure 4a), which conveniently exposes topological
relationships of adjacency between vertices. Natural Neighbour or Sibson interpola-
tion (Sibson, 1981; Gold, 1989) is a spatial interpolation method that exploits these
relationships of spatial adjacency. The basic idea is to insert a point in the VD at
the location that is to be interpolated, which of course creates a new Voronoi cell
at that location. The area that is ’stolen’ by this new cell from adjacent Voronoi
cells (the Natural Neighbours), sets the weights in a weighted sum of the depths of
those Natural Neighbours. The Laplace interpolant (Belikov et al., 1997; Hiyoshi

(a) The Voronoi Diagram (VD), drawn in
dashed lines, uniquely maps to the
Delaunay Triangulation (DT), drawn in
dotted lines.

p1d1

dV1

p2

p3

p4

p0

(b) Laplace interpolation. The depth
at p0 is defined as the weighted
sum of the depths of its natural
neighbours p1, . . . , p4, with weights

wi =
dVi
di

Figure 4

and Sugihara, 1999) that we use, is a variant of Sibson interpolation. See Figure 4b.
It is very similar to Sibson interpolation in terms of properties and results, but com-
putationally faster to compute. Some interesting properties of these interpolation
methods are:

1. Smooth: the derivative of the interpolated surface is continuous.

2. Adaptive: it performs well for varying configurations and density patterns of
sample points.

3. Automatic: it requires no manual configuration.
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Figure 5: Overview Voronoi- and surface-based approach

Figure 5 schematically depicts how our surface-based approach works. Input points
are triangulated and contours are extracted from the that triangulation. However,
before extracting contours the triangulation is altered by means of several operators.
These operators make use of the beneficial properties of the Laplace interpolation
that is based on the triangulation, to achieve generalization of the surface. Topo-
logical correctness is guaranteed in the contours since they are directly derived from
the triangulation. Therefore the topology constraint is satisfied.

We have implemented the Voronoi- and surface based approach in the C++ pro-
gramming language using several open source libraries, most notably the Computa-
tional Geometry Algorithms Library (CGAL) (Boissonnat et al., 2002).

3.1 Operators on the surface

Every operator that is defined in our surface-based approach is based on the Laplace
interpolant (see Figure 4b) that we constrained in such a way that a sample point is
never removed and never moved to a deeper depth. Consequently, all modifications
in the shape of the surface are upwards, which implies that the safety constraint is
respected at all times.

The surface-based smoothing operator

The smoothing operator re-evaluates the depth of a vertex using a Laplace inter-
polation of its Natural Neighbours. Only if the interpolated depth is higher than
the original depth, the depth of the vertex is updated. Thus, smoothing does not
change the planimetric coordinates of vertices, it only lifts vertices upwards. It can
be performed either on a portion of a dataset or the whole dataset. Furthermore this
operator can be applied any number of times, delivering more generalization with
each pass. The smoothing operator, as defined here, not only smoothens the surface
(i.e. by reducing its angularity as described by Kimerling and Muehrcke (2009)),
but also simplifies it, in the sense that the overall complexity in the shape of the
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surface and its derived contours is reduced. The effect of the smoothing operator on

(a) Raw contours (b) 100x Smoothed contours

Figure 6: The effect of the smoothing operator on the extracted contours (at
every 50cm). The ellipses mark areas where aggregation (green),
omission (blue) take place. Note that local maxima as the one
indicated by the red ellipse are preserved.

the contour lines is demonstrated in Figure 6. The contours of Figure 6a are directly
derived from the Delaunay Triangulation (DT) of input points. It is evident that
the amount of clutter, the number of superfluous bends and the sharp angles in the
contours lines are significantly reduced in Figure 6b, that demonstrates the same set
of contours after one hundred simplification passes. As indicated by the ellipses by
Figure 6, the sort of cartographic generalization illustrated in Figure 2 is effectively
achieved. This is thus in service of the legibility constraint.

The surface-based densification operator

The aim of densification is to reduce the error between the continuous Laplace
interpolation of input points and its computer representation. By inserting vertices
at the circumcenters of large triangles, the resolution of the Delaunay triangulation
is improved, and subsequently also the resolution of any contours that are derived
from it. Naturally, these newly inserted vertices are assigned a depth value using the
Laplace interpolant. The densification operator is particularly relevant for (parts of)
datasets that have very sparse sampling. By densifying the DT that represents the
surface, smooth contours, that serve the legibility constraint, can still be achieved.
Figure 7a illustrates this.

3.2 Comparison with other methods

Figure 7b shows an overlay of representable results from the most common current
methods and our approach.

4 Conclusion and future work

We have introduced a new approach for the generation and generalization of hydro-
graphic depth-contours. Rather than performing generalization on input points or
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(a) Densification: Comparison of corresponding
contour lines. The red line is derived from a
surface that was not densified, the green line
is derived from a surface that was densified 3
times. Also shown are the sample points in
blue.

IDW (radius=5m, power=2)

Double buffering (radius=6m)

Max Raster (cellsize=5m)

Surface-based (10x smoothing, 3x densification)

(b) Comparison between methods for
hydrographic contour generalization.

Figure 7

derived contour lines, we work on the surface that is inferred from the input points
by means of the Laplace interpolant. All points are retained in the corresponding
DT that serves as a basis for our generalization operators. Those operators are
constrained such that no point is removed or moved downwards. In this manner we
strictly respect the hydrographic safety constraint. Also the topology constraint is
guaranteed, since contours are directly extracted from the generalized surface. As for
the legibility and morphology constraint, these can—to some degree—be controlled
by the number of smoothing passes that is applied on the surface. Less smoothing
passes result in a contours that relate closer to the measured geomorphology, yet
more smoothing passes result in more legible contour lines. Determining the optimal
number of smoothing passes is still a manual process.

Future work includes searching for ways to automatically control the generaliza-
tion process based on our surface-based approach. One idea is to conceptually link
the surface with the contours, i.e. by performing specific surface generalization at
places that are interesting based on analysis of the corresponding contours. Alter-
natively, such analysis might be performed directly on the surface. Relevant work
in this area is presented by Zhang and Guilbert (2011) and Guilbert and Zhang
(2012). A second area of interest is the addition of generalization operators to our
surface-based approach. We are, for instance, working on a way to perform more
specific aggregation in the surface by re-interpolating surface patches in between a
group of peaks, using only those those peaks and the surrounding samples.
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