
Delft Center for Systems and Control

Towards Decentralized Grids,
EnergyBazaar: decentralized free-market energy-trade
within an isolated community micro-grid.

D.E. van den Biggelaar

M
as

te
ro

fS
cie

nc
e

Th
es

is





Towards Decentralized Grids,
EnergyBazaar: decentralized free-market energy-trade

within an isolated community micro-grid.

Master of Science Thesis

For the degree of Master of Science in Systems and Control
at Delft University of Technology

D.E. van den Biggelaar
4101618

Thesis committee

Dr. S. Grammatico
Dr.ir. M. Mazo

Dr. Z. Erkin

April 6, 2018

Faculty of Mechanical, Maritime and Materials Engineering (3mE)
Delft University of Technology



Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.



Abstract

We witness the rise of prosumers: consumers that produce a surplus of energy that can be sup-
plied back into the grid. However, for energy-trade between prosumers and consumers, a cen-
tralized and undesirable middle-man is still necessary. We developed a method to decentralize
essential aspects of energy distribution between households. Macro-grids are divided into vari-
ous neighborhood sized community-grids; a micro-grid. A micro-grid as a community yields a
degree of self-sustainability. Nevertheless, micro-grids currently still possess centralized elements.
The presence of central controllers, trading-agents or banks, maintains this undesirable situation.
Decentralization of a power-grid increases end-user autonomy, independency and fairness in the
system.

We propose to establish a truly transactive micro-grid: decentralized in its energy distribution,
control and money-flow by deploying EnergyBazaar, a distributed trading algorithm. Concepts of
game theory are used in the design to enable EnergyBazaar to solve the economic dispatch problem:
agents want to individually optimize their social welfare, while the collective task is to stabilize the
grid. Micro-grids make use of a decoupled hierarchical structure: primary control is responsible
for fast dynamics of voltage and frequency, secondary control coordinates the economics within
the micro-grid. In its core, EnergyBazaar coordinates inverter-based droop parameters within
the Energy Storage System (ESS) of each agent, managing their charging/discharging behaviour.
A trade-off is identified between economical gain and the necessity of surviving energy scarcity.
For this, energy patterns are predicted and acted upon. In contrast to a coordinator dictating a
centralized solution, EnergyBazaar creates a free market, where agents individually converge to a
global Nash equilibrium. A comparison is made to show performance of both.

By rejecting centralized institutions in the micro-grid, trust challenges are introduced: achieving
decentralized money-flows, the necessity of shared information during distributed optimization and
the manipulation of the free-market by malicious agents. We introduce an approach of mitigating
these issues in a decentralized paradigm by embedding EnergyBazaar in a smart-contract deployed
on a blockchain platform.
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Chapter 1

Decentralized energy-trade

Once there is a convenient way to sell en-
ergy into the grid, not only will home-
owners be compelled to hop onto the grid
and supply energy, but there will also be a
brand new market to develop and allocate
renewable energy.

Al Gore

In recent years, a paradigm shift has taken place in the energy sector. Next-generation power-
grids are being designed with renewable energy in mind. The necessity of reducing green house
gasses has become larger than ever [1]. In parallel, universal requirement of a robust power-grid
is of continuous importance ever-since dependency on energy in modern day society has become
a capability for social welfare [2]. Nevertheless, in bulky, old and poorly maintained grids around
the world, reliability is not a given fact. Illustratively, headlines in newspapers regularly light
up with messages as "India blackouts leave 700 million without power" [3]. A trend is developing
wherein dependency on the flawed macro-grid is substituted with self-sustainable and semi-isolated
communities.

The centralized versus decentralized paradigm

Figure 1-1: Centralized energy trade at the left figure, in which Alice and Bob have limited autonomy
and are depending on a TTP; BRP, TSO and banks, while in the figure on the right, Alice and Bob
are owner of their energy and trading independently from outside-institutions.
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2 Decentralized energy-trade

Towards a decentralized utility-grid

One of the reasons of the lack of reliability originates in the degree of centralization of the grid.
In a centralized paradigm, when the central power-plant fails, the whole grid can fail with it.
A decision has to be taken; optimizing the reliability of the single power-plant, or distribute the
grid. Distributed Energy Resources (DER) is an umbrella term for the combination of Distributed
Generation (DG) units and Energy Storage System (ESS). With DER, production responsibility
is distributed among various smaller-scale energy harvesters. Another argument against central-
ization are costs of transmission from centralized production to more distant areas. Costs of
transmission in a centralized grid are substantial, even in relatively small and modern grids such
as in the Netherlands [4, 5]. The combined arguments of increased reliability with decreased costs
per unit of energy forms a strong case against a centralized power-grid. Stating these arguments,
it does not amaze to hear that the power-grid is already in the process of being more distributed
in nature [6]. Innovation in the power-grid fuels the emergence of DG, local ESSs and small-scale
communication networks by Advanced Metering Infrastructure (AMI), i.e. smart-meters. Combin-
ing these tools, a smart micro-grid is created, able to manage generation, storage and distribution
within an isolated community grid. DGs in the form of Photo Voltaic (PV) panels are widely
available and have become a part of the scenery. Grid parity for DG, where home-produced solar
power is cheaper than centralized energy, is a huge milestone to be reached within this decade
[7]. The traditional consumer is slowly transforming into consuming producers, also known as
prosumers.

The dilemma of autonomy and energy-ownership

Nevertheless, considering the power-grid of today, there is still no method of trading a surplus
of energy without a BRP. A BRP is an energy retailer that originally retails and trades energy
between centralized power-plants and households [8]. We celebrate decentralization not only be-
cause of its efficiency and increase in reliability, but also because in the decentralized paradigm, we
can reject the notion of dependency on BRPs. BRPs offer fixed price reimbursement to surplus-
supplying prosumers, in a range of 7 to 11 cents/kWh [9]. However, these fixed prices are often
below par with dynamic market prices for energy. With an increasing portion of retailed energy
originating from prosumers, they should be able to actively participate in trading their own en-
ergy. Reducing the scope to isolated communities, we propose a community wherein agents are
regaining autonomy over their energy. Switching to a global-south perspective, the impact of a
decentralized community is even more noticeable. Not so much economically, but societal in na-
ture. In countries stricken by wide-spread inefficiency, corruption, or even war, communities that
are self-sufficient and independent from corrupted central institutions still have a chance to thrive.
Communities have both an economical as a societal motivation for decentralization. In summary,
it should be possible to create an isolated community, as a local-scale micro-grid, without the
meddling of centralized coordinating agents, wherein energy can be traded within a free-market.

Challenges introduced by decentralization

With decentralization come challenges. A substantial part of grid-control is lifted out of the hands
of the nation-wide macro-grid. Balancing the supply and demand is among the most significant
control tasks in a power-grid. In centralized grids, power-plants can supply according demand
and are very quick to ramp up- or down-production when needed, see fig. 1-2. In a decentralized
paradigm, dependency within a micro-grid shifts to DG. However, DG units produce power that
is highly variable and intermittent; e.g.solar-panels that produce energy only during the day. A
micro-grid community needs an effective and fair way to distribute the available energy among
its households, reducing community-wide deficits and dependency on the macro-grid. Parallel
to dependency on a TTP for energy distribution, households currently depend on the service of
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1-1 Contextual introduction 3

a bank for facilitate payment. Nevertheless, a transaction platform that is independent from a
TTP is a necessary feature to a decentralized micro-grid. With recent technological advances and
widespread adoption by society, a blockchain database might provide for the need of a decentral-
ized transaction method, in-line with a local energy market, completing the decentralized cycle
between energy and payment. A micro-grid where end-users can participate in energy-trade by
decentralized transactions is called a transactive grid.
Conclusively, there is a need for a community grid in which neighbors Alice and Bob can trade
energy independently, with the exclusion of other parties. In section 1-1, contextual background
to the problem is provided. Distilled from this, a research question is posed in section 1-2.

1-1 Contextual introduction

Before defining the research question, this section briefly glances at four fields of research this thesis
will touch; what are current innovations, what is trending research and what are the real-world,
state-of-the-art implementations of these technologies.

1-1-1 Energy transition and innovation in the power-grid

Since the introduction of the notion "energy transition" in the Dutch National Environmental
Policy Plan [10], the Netherlands are making an effort towards a sustainable future. The urgency
of an energy transition into sustainability was recently underlined again during the 2015 climate
talks in Paris, when a great number of countries united to halt climate change [1].

The current energy market

Currently, maintaining the balance between load and supply is a task for the TSO of the power-
system. The balancing market is an institutional arrangement that aims to fulfill this control task.
BRPs are parties that participate in energy-trade and are constrained by their responsibility to
keep balance. Deviation from balance results in the TSO to allocate its energy reserves, for which
the BRP pays a penalty. BRPs are subjected to an Program Time Unit (PTU), e.g. a time-unit
on which energy schedules have to be submitted to the TSO. In the Nordic region, including the
Netherlands, the PTU ranges from 15 to 60 minutes [8].

Emergence of the smart-grid

The term smart-grid was coined to define a new sort of power-grid with a high degree of decen-
tralization in the production and trading of energy [4]. Micro-grids are small-scale versions of the
centralized electricity grid. In smart micro-grids, appliances are equipped with sensors capable
of measuring and communicating essential data [11]. The advantages of a smart-grid are evi-
dent; deployment of DER leading to distribution of generation, interaction of end-users with the
system and real-time measurement, giving insight into the state of the system. Ultimately, this
accumulates into an increase of reliability and sustainability of the power-grid [12]. Additionally,
prosumers start to become more autonomously by installing DG at their households and thus
supplying their own needs. Nonetheless, surplus energy is still provided back into the system, to
be retailed by BRPs. Opportunities for smart micro-grids in distributed renewable energy and
peak-load reduction by integration of smart battery storage are surveyed in [13]. Distributed en-
ergy is the utilization of smaller power generation and storage systems used for powering homes,
businesses and communities [14].
ESSs are introduced as a promising new development. The potential of deploying ESSs in smart
micro-grids lies in creating a buffer between demand and supply: storing energy at low-demand
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4 Decentralized energy-trade

and selling when demand rises [15]. ESS in combination with Renewable Energy Sources (RES)
can keep a micro-grid operable even when the main grid is down. Above all, ESSs can solve the
notorious ’duck curve’ problem [16]. The duck curve visualizes the needs for quick ramping-up
of energy supply, and thus production in a grid during the start of the evening. Turbine-based
power-plants are well equipped to ramp up production, while renewable DG produces only during
periods of sun and wind. ESSs are capable to store energy, saving it for when demand rises above
natural supply. Since investment costs of ESS are still high, finding the minimum capacity that
is still capable of achieving the balancing-act is a challenge that is mostly economically driven.
In the Netherlands, exemplary ESS research projects are innovations such as [17] and [18]. For
a extensive view of all smart-grid research projects under auspices of the Dutch government see
[19, 20]

The duck-curve

Figure 1-2: A pressing matter in modern-day ’green’ power-grids is the severe mismatch between
peak-demand and renewable energy supply. With the steady rise of renewable energy, the duck-curve
is becoming more extreme. Main energy-consumption starts after sun-set, when solar-panel already
stopped generating. We modelled our input-data such that is captures this behaviour, see section 3-
2-2. Adoption of ESS could offer a solution for bridging the gap within micro-grids. Figure from
[21].

1-1-2 Methods for optimizing energy distribution in a smart-grid

After the the mid-1980’s, liberalization efforts took effect in Europe, aimed at making the sector
more efficient through the introduction of competition among players [22]. Although a sudden
switch to a decentralized grid is unwise [23], careful experimentation is incentivized through the
introduction of new policy [24]. New trends in influencing consumers in their energy consumption
behaviour, called Demand Response (DR), are surveyed in [25]. In DR, voluntary energy rationing
is incentivized through economic rewards and allows for distribution of energy for peak-shaving but
is often governed by the utility company [26]. DR strategies fall under Demand Side Management
(DSM) techniques. In this thesis, a more autonomous solution is proposed using distributed
computing using smart-meters installed in households. The authors of [27] initiated work on
abstracting electricity markets as multi-commodity markets and showed how agents trading energy
could allocated energy more efficiently by partitioning the day in time-slots. In [28], the authors
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1-2 Research goals 5

introduce the notion real-time-pricing, the first of the family of DR strategies. Its poor performance
was concluded to be due to the exclusion of human behaviour in the model, since the acting agents
in the grid are ultimately representing human households. A game-theoretical approach to this
method could mitigate these issues [29].

1-1-3 Blockchain as a market platform

In 2008 the identity known as Sathoshi Nakamoto published a new payment system Bitcoin [30],
revolutionizing the payment paradigm after the banking crisis. The blockchain behind Bitcoin
technology has been proved to be inherently secure by design, albeit lacking scalability in terms of
transaction throughput and costs per transaction. Blockchain is a combination of a Peer to Peer
(P2P) network and a distributed time-stamping server to make the system completely decentralized
while relying heavily on cryptology to guarantee security. As a result, Bitcoin proved to be the
first digital payment scheme able to solve the double spending problem without artificially created
trust in the form of a TTP. A more detailed technical explanation is given in section 2-4. Some
blockchain platforms, such as the widely known Ethereum, enable programming environments.
These, so called smart-contracts, can provide a secure escrow service in real-time without a TTP.
The interpretation of smart-contracts by various popular blockchain platforms is surveyed in [31].
In [32], the characteristics of block-chains that allow smart-contracts is analyzed, while also looking
at issues caused by negligent design. A more cautious tone was set by showing the criminal
potential in [33]. A distributed energy sharing network, where stakeholders cannot rely on trust
among players, could heavily benefit from a public ledger as database. Among the few trials of
energy sharing blockchain platforms are PowerLedger [34] and the Brooklyn MicroGrid [35].

1-2 Research goals

In chapter 1, we expressed the motivation for this thesis. We briefly discussed various fields of
study. In chapter 2, these are discussed in more detail. The aim of this research is to establish
truly decentralized energy trade in a micro-grid. The research question for this thesis is:

Can a transactive grid be established through deployment of a promise-keeping smart-contract
triggered by a distributed algorithm that enables free-market trade?

To divide this research in manageable parts, the research question is divided up into sub-questions.
Answering these sub-questions will shed light on the framework in which the sharing-algorithm
should function:

• How does a smart micro-grid operate, how is micro-grid stability controlled and what are
the boundary conditions for energy-trade with such a micro-grid? (See section 2-1)

• What are the concepts of game-theory and can elements of game-theory be used in the design
of a decentralized energy trading algorithm between agents? (See section 2-3)

• What are trust issues that are introduced by decentralization of the power-grid and can
those issues be mitigated by a smart-contact deployed on Blockchain? (See section 2-4)

1-3 Contributions

We present a novel method towards a truly transactive grids. We propose the distributed algorithm
called EnergyBazaar which makes use of a hierarchical structure derived from Stackelberg games,
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introduced in section 2-3. EnergyBazaar has as task the coordination of DER for load-balancing,
while optimizing individual welfare of the set of agents. The agents employing EnergyBazaar
are model predictive by determining their cost-functions according to an anticipation horizon,
predicting scarcity or abundance in the future. Constraints to optimization are set by linking our
secondary-level energy-distributing algorithm to the dynamics of primary-level frequency control in
order to safeguard load-balancing. We present a smart-contract capable of logging initial shared
information before optimization to check the validity of trade deals, forcing agents to keep to
their promised supply or demand. Used this way, the smart-contract is able to detect agents that
artificially attain a higher utility by breaking their initial promises. The smart-contract is deployed
on a Blockchain in order to make verified state-changing transactions to the smart-contract. In
summary, we show the following:

• An analysis of the solution-space of the Economic Dispatch Problem (EDP) optimization,
looking at grid-stability constraints. (See section 2-1-4)

• A novel approach to trade locally produced energy through a distributed game-theoretical
algorithm governed by free-market trade inside an isolated micro-grid. (See chapter 3)

• The inclusion of prediction on future energy scarcity and abundance in the micro-grid, in-
creasing the utility of the agent on average over time. (See section 4-1-2)

• A system integrated with EnergyBazaar managing trust issues introduced by decentraliza-
tion, used by agents to settle trade by a smart-contract deployed on a Blockchain. (See
section 3-4-2)

• An evaluation of EnergyBazaar compared to a central EDP solution according to a perfor-
mance metric-based on cost reduction and operability of households. (See section 4-1-5)

The source-code is available on https://github.com/dirkbig/master_thesis.

1-4 Thesis outline

In chapter 2, the application setting, a micro-grid is discussed in detail and existing solutions to
energy-trading are investigated. Following, in chapter 3, the proposed algorithm called Energy-
Bazaar is presented as a novel approach to energy-trading in a community. Chapter 4 shows the
performance of EnergyBazaar compared with a centralized method according to an evaluation
metric. Finally, in chapter 5 we end with a conclusion and recommendations for future work.
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Chapter 2

Preliminaries

This chapter presents the state-of-the-art of technology used within the scope of this thesis. Smart
micro-grids are discussed in section 2-1. In section 2-3, a basic introduction to game theory is given
and game theoretical approaches regarding energy trading are examined. Following, in section 2-4,
we introduce Blockchain and consider it as a solution to decentralized transactions.

2-1 Smart micro-grids

Micro-grids are small-scale grids that are designed to be self-sufficient from the macro-grid with
respect to control such as grid balancing and power supply [36] and energy generation. Seen
from the perspective of the macro-grid, a micro-grid can be considered as a large Distributed
Generation (DG) unit operating in either three modes; idle, importing energy or exporting energy.
Figure 2-1 shows a linear structured micro-grid. The Micro Grid Central Controller (MGCC) is
the gateway to the macro-grid and traditionally is the residence of the central dispatch controller,
which coordinates all sources of energy in the micro-grid. Households are linked such that all
Distributed Energy Resources (DER) are inter-connected. In addition, an Advanced Metering
Infrastructure (AMI) enables all household to communicate with each other. In section 2-1-1, we
discuss the application setting of our micro-grid households.
Micro-grids are either radial or meshed [37]. In a radial grid, households are connected only to
their two neighbors, while in a radial grid, households are connected to more than two households.
Research into stability of micro-grids, especially in decentralized grid-control, often assumes radial
grids, which simplifies the model substantially [38, 39]. Inverters transform Direct Current (DC)
power of DG into Alternating Current (AC) power [40]. We consider a AC micro-grid infrastructure
as an uniform and loss-less black-box, considering only in- and outputs of energy at the doorstep
of households. Additionally, we do not consider topological impedance differences throughout the
grid. Nevertheless, a topology is introduced in chapter 5 to analyze the effects of limited range of
communications.

2-1-1 Application setting: household agents

We consider a micro-grid consisting of n buses, each representing a household in the set of house-
holds N . The applications of each household consist of household DER and energy consuming
loads. The following application setting is assumed [41] for each household; DG, Energy Storage
System (ESS) and AMI.
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8 Preliminaries

Figure 2-1: Simplified lay-out of a micro-grid. LCs are tasked with primary control, where behind
the DER reside, linked by bi-directional AC/DC converters. Econsumption originates from the load,
Eproduction from its PV panels and SOCactual from the battery. All households in the community
are communicating with each other using an AMI network.

• Distributed Generation. DGs are local energy generators, for example in the form of
roof-top solar panels. Since the costs of solar power is predicted to pair with grid-power
in the near future, market penetration roof-top solar panels are rising. DERs are equipped
with local controllers that govern frequency regulation through closed-loop feedback control:

∆ω̇k = M−1 (∆Pmech −∆Pelec(δ)− g∆ωk) . (2-1)

In eq. (2-1), ω̇k is frequency deviation rade at DG unit k, M−1 a matrix representing the
dynamical model of DGk, Pmech and Pelec respectively the mechanical power ’applied’ and
the electrical power injected into the grid. Finally, g represents a control constant. See
eq. (2-7) for a generalized set of equations for frequency and voltage control. DG units can
ramp up/down their generation within bounds of [Pmin, Pmax] according to the Automatic
Generation Control (AGC) frequency set-point given. Normal operation is at their Maximum
Power Point (MPP).

• Energy Storage Systems. ESSs are essential to introduce flexibility in energy supply
within the micro-grid [42]. ESSs provide a buffer of power supply needed in self-sufficient
micro-grids that are making use of DER, often renewable sources that do not guarantee
constant power supply. Electric Vehicles (EV) batteries using Vehicle to Grid (V2G) tech-
nology are now able to both charge and discharge, effectively introducing a mobile ESS into
the micro-grid, discussed in [43] and [44]. ESSs are, from a control perspective, a class of
actuators with broad bandwidth, suitable for control of fast dynamics though with narrow
situation limits [45]. By equipping households with ESSs, a buffer is build in between pro-
duction and load, changing the mapping from eq. (2-2) to eq. (2-3), further discussed in
section 2-1-3:

Production←→ Consumption, (2-2)
Production→ (Supply←→ Demand)→ Consumption. (2-3)

• Advanced Metering Infrastructure. Smart-meters enable bidirectional measurements
of power-flow and communication among households. Also, smart-meters have basic com-
putational power [46]. A network of smart-meters is known as an AMI [47]. The typically
limited geographical radius of micro-grids facilitates communication through affordable and
simple standard network protocols. A promising means of communication is Long Range
Wide Area Network (LoRaWAN). [48, 49]. The limits of LoRaWAN are discussed in [50, 51].
Concluding from [50, 51], LoRaWAN is a suitable communication technology for small-scale
smart-grids.
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2-1 Smart micro-grids 9

2-1-2 Power flows within the micro-grid

We consider a micro-grid consisting of n buses, each representing an ESS of each household. The
ESS is placed in between the household and the micro-grid, see fig. 2-1. For inductive lines of
reactance Xi,j connecting bus i to bus j, the active and reactive power injections Pi and Qi at
bus i are given [52]:

Pi =
n∑
j=1

Vi · Vj
Xi,j

sin (θi − θj), (2-4)

Qi = V 2
i

Xi
−

n∑
j=1

Vi · Vj
Xi,j

cos (θi − θj). (2-5)

In eq. (2-4) and eq. (2-5), Vi, Vj and θi, θ2 are the respective voltages and phase angles at bus i
and j. Also, in eq. (2-5), Xi = 1/(

∑n
j=1 X

−1
i,j ). Active power is decoupled from reactive power,

for example by a control method described in [53]. Even though ESS are capable of providing
support to reactive power regulation, we focus on the interplay of active power and frequency, the
economic dispatch problem. Nevertheless, for completion, the interplay between reactive power Q
and voltage V is given as well.

2-1-3 Micro-grid stability

The predominant tasks for micro-grid control are frequency and voltage regulation; values for V
and ω should stay within bounds, allowing only small deviations [14]. Stability issues that occur
due to poor mirco-grid control include:

• Failure in DER coordination. Poor damping of certain modes in the grid can be the cause
of mis-interaction of control systems or poor deployment of DER units. These disturbances
can disrupt stability of the micro-grid by causing voltage oscillations [54].

• Loss of inertia. Because DER often do not provide necessary inertial reserves serving as
inertia buffers to frequency-control, small-scale micro-grids can suffer from frequency devia-
tions when proper reserves are absent [55]. In contrast to a macro-grid, a micro-grids does
not posses a virtually unlimited inertial reserve. This is due to the low-inertia characteristics
of DG often deployed in micro-grids. In the macro-grid, synchronized generators can bal-
ance supply and demand by increasing or decreasing the rotating frequency of its turbines.
In isolated micro-grids, an absence of a synchronized infinite bus means load-balancing be-
comes more complex. Load-shedding and inclusion of ESS strategies are discussed in [56].
Fluctuations of frequency above the allowable bounds can result in damage to equipment
[14].

Control values in an AC power-system

Control variables that are involved in micro-grid control are voltage, frequency, reactive and active
power, measured at each bus of the micro-grid according eq. (2-4) and eq. (2-5).

• Frequency. Maximum grid frequency deviations in Northern Europe is kept at 0.1Hz.
Comparing AGC set-point frequency ωagc to ωlocal results in a control parameter ufreq used
in Europe for simple PI-control [37]. Frequency control is explained in a couple of steps by
[57]. A clear distinction of solutions for frequency control between macro-grids and micro-
grids are given in [45]. By eq. (2-4), frequency is coupled to active power P .
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10 Preliminaries

• Voltage magnitude. Resistance R is large compared to Reactance X. Adjusting the flow
of reactive power in the grid will influence the voltage amplitude. The voltage control holds
the voltage between the limits defined by the European standard EN50160 [58]. A short
mismatch in amplitude, phase or frequency of voltage can lead to high oscillating currents
and damaged hardware; forcing DER to automatically shut-off and leading to a cascading
collapse of the grid [14]. By eq. (2-5), voltage is coupled to reactive power Q.

• Active and reactive power. In AC-grids, active power is power generated by currents
and voltages that are in phase, used in appliances. Reactive power is created when current
and voltage are shifted in phase, creating a non-working oscillating power. For example,
introducing capacitors creates a phase shift in a electrical circuit.

Inverter-based droop-control

Among technologies for grid-control such as master-slave control and average current-sharing,
inverter-based droop control is the most renowned for frequency-control for micro-grid systems
[39]. In addition, power output can be controlled by actuating the droop-frequency and output-
voltage. In medium- to high-voltage power systems, where reactance X << R with R being
resistance, the reactive power Q is coupled to voltage V , while active power P is coupled to
frequency ω. To obtain a reference set-point frequency ω∗i and voltage V ∗i , P − V and Q − ω
droop-control is used [59];

ω∗i = ωn −mi(Pi,n − Pi), (2-6)
V ∗i = Vn − ni(Qn,i −Qi). (2-7)

In eq. (2-7), ni and mi represent droop-gains that prescribe the actuation magnitude. Index n
represents either the nominal value in the power system, or the set-point AGC in case of DG
controlled through secondary control. In [57] and [59] droop-control is further described. Among
others, new droop-control methods are proposed in [60] and [61] that utilize a fast control-loop
to emulate line impedance. Droop-control does have a few drawbacks such as a inherent trade-off
between accuracy and voltage deviations and unbalance in harmonic current sharing [62]. Most
importantly, dependence on droop-control that relies heavily on high-inertia turbines, is not ideal
for a micro-grid with low-inertial DG deployed. For this, virtual inertia can be injected in the
system [59]. In [63], clear dynamical models are provided of DG and a battery based droop-control
method applicable to both inverter-based or rotating DG.

Hierarchically structured micro-grid control: decoupling control and coordination

Micro-grids employ hierarchical control by decoupling dynamics with different response times and
thus controllers with varying impact. This hierarchical control is useful as it decouples various
actors that independently influence the main control task of frequency/voltage regulation [64].
The three different control layers are identified as:

• Primary control. Ran by LC, it is exclusively based on local measurements, requiring no
communications and is characterized by quick response. Under primary control fall micro-
grid islanding detection and transition, output balancing and rudimentary power sharing.
[65, 62, 66]. Governing the system’s fast dynamics, LCs operate autonomously, but track
AGC set-points coordinated by secondary control.

• Secondary control. This control-layer is often referred to as the micro-grid Energy Man-
agement System (EMS), is introduced for coordination of demand and supply in the grid.
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On a secondary-control level, DG units communicate through a Peer to Peer (P2P) network.
Especially when the grid heavily depends on DER, potentially causing sudden changes in
power generation and fluctuations in voltages and frequency, coordination is essential to
maintain load-balance. Whether the EMS in micro-gird should be decentralized is under
debate in [37]. In terms of dynamics, secondary control operates in a region slower primary
control, effectively decoupling the two. Secondary control coordinates the power DG units
will produce at given moments by communication of frequency set-points, called AGC sig-
nals. The coordination of energy with regards to economics is called the Economic Dispatch
Problem (EDP), formally introduced in section 2-1-3.

• Tertiary control. The highest control layer and is responsible for long term goals in the
system, such as trading on the year-ahead market; characterized by a high all-round impact
but with extremely slow sampling time. Responsible for operations between micro-grids and
reactive power injection control. Tertiary control is often not embedded in the micro-grid
but applied as a link between micro-grid and the macro-grid. Thus, tertiary control is often
not regarded as part of the micro-grid control system [37].

Hierarchical micro-grid control

Figure 2-2: A DG unit utilizes a three-folded control decoupled structure. Standalone primary control
has fast sample time/dynamics and does not communicate with neighbors. Secondary control governs
energy dispatch at a larger timescale, with higher sampling time and slower dynamics. Tertiary
control is involved in the day-to-day markets. From a micro grid perspective, tertiary control governs
connection to the macro-grid.

The economic dispatch problem

Secondary control encompasses the economic dispatch problem. Briefly discussed in section 1-1-1,
the economic dispatch problem can be simply formulated as [67]:

minUT =
N∑
i=1

Ui(Pi) subject to: (2-8)

N∑
i=1

Pi = 0 and Pmin,i ≤ Pi ≤ Pmax,i. (2-9)
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Here, UT is the sum of social welfare of each agent i, expressed by Ui. Pi is the power-flux at bus
i, which is constrained by actuator saturation in a range of [Pmin,i, Pmax,i]. Equation (2-8) is often
solved through a centralized controller. Section 2-3 discusses solutions to EDP. Subsequently in
chapter 3, EnergyBazaar is presented as a decentralized solution to the EDP. Firstly however, we
discuss how DER technology influences the EDP.

Energy storage acting as a buffer to Demand Side Management (DSM)

In order to effectively balance between energy supply and demand within a micro-grid, two di-
rections can be taken; either influence variable demand so to match fixed supply, or match vari-
able supply to a fixed demand. Currently, methods such as real-time pricing, time-of-use and
critical-peak-pricing are used in micro-grids to influence energy demand, described in [68] and
[69]. End-users are rewarded for voluntarily reducing electricity consumption on peak-hours dur-
ing. Real-time-pricing portrays the dynamic costs of energy according to the imbalance between
supply and demand. With an incentive presented, end-users shift their energy demand to low-
price time-slots. In [70], energy consumption indicators that provide real-time feedback on energy
prices are installed at households. Results of these tests show that the economic benefits are small
though non-negligible, see [70] and [71]. Conclusively, assuming end-users to actively change their
behaviour, restricting their freedom and comfort for low cost reduction, is not the most elegant of
solutions. Concluding: DSM is a field that is heavily researched and many practical solutions are
proposed.

A second approach is creating energy reserves at households. With this, DSM can preform load-
balancing by allocating the energy reserve instead of directly influencing end-user behaviour. Thus,
we can implement an energy dispatch method that autonomously manages the ESS of each house-
hold to optimize load-balancing. In this scenario, energy consumption is fixed and energy demand
is variable, with the ESS decoupling the two. In this thesis, we use this principle as a basis: the
solution proposed in chapter 3 focuses on satisfying energy demand, while DSM methods can be
applied added to influence energy consumption.

DSM in a paradigm with and without household batteries

Figure 2-3: The direct and indirect influence that end-users have; with demand response, in the
figure on the left and with ESS demand response, the figure on the right

In fig. 2-3, the ESS negotiates energy prices using a distributed algorithm based on free-market
mechanics, through methods that are discussed in section section 2-3. The energy-balancing
problem can be used to define the economic incentive that drives the load-balancing optimization.
When demand is low, prices are low and vice-versa, driving supply and demand back together.
This is a key-concept that lies at the foundation of EnergyBazaar. In [15], costs for various ESSs
are discussed in detail. Prices vary in a domain of 200-1500 e/kWh.

The micro-grid as an isolated token-based economy

An islanded micro-grid can be considered as a isolated economy and the EDP as a zero-sum game,
with the sum of cash-balances is zero. In case of a connection to the adjacent macro-grid, the
micro-grids economy is pulled out of isolation and forcibly linked to the fiat-economic macro-grid.
In this case, internally submitted bids of buying agents should always be lower than macro-grid
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buying prices, while higher than external selling prices. This will ensure that sellers sell, and
buyers buy, internally [72]. Domain Cmacro represents the solution-space wherein buying agents
set their prices:

Cmacro = [cB , cS ], (2-10)
ci ≤ cS and ci ≥ cB ∀i ∈ I. (2-11)

In eq. (2-11), the macro-grid buying price is cB and its selling price is cS . Furthermore, ci is the
bidding price of agent i in set of buying agents I within the micro-grid. Within domain Cmacro, a
distributed algorithm solves the EDP by modeling a utility function that captures the economics
of the micro-grid and the behaviour of agents reacting with their bidding prices c.

Contrary to the mean-field game played in [73], within the micro-grids economy agents influence on
the nominal bidding prices is non-negligible, assuming a small enough community. Malicious agent
can artificially raise prices by sharing dishonest information. Since free-market pricing revolves
around fluctuating supply or demand; agents can pretend to have a lower supply, an effect shown
in fig. 3-4. Mitigating this attack is a show-case of the potential a promise-logging public ledger
has, discussed in chapter 3 to be solved in section 3-4-2.

2-1-4 Impact of disruptive technology

Summarizing section 2-1-3, control of a micro-grid focuses mostly on frequency and voltage, and
the EDP is constrained by actuator saturation of the primary controllers responsible this task. By
satisfying this requirement, grid-stability is assured. This subsection looks at the impact various
DER have on the stability of the micro-grid and how to translate this into dynamical constraints.

Deployment of DER in the micro-grid

As the portion of power supplied in the grid originating from inertia-less DER increases, these
DER should become providers of grid support functions that were traditionally performed by
rotating generation. The following is an overview of various proposals on how to actively deploy
DER in supportive roles.

The authors of [74] look into various methods to coordinate DER for managing the grid. In [75]
a particle swarm optimization is used to determine the best location of DER dispatch. The loss
sensitivity is used to find the optimal long-term deployment of DER. In [76], the CERTS paradigm
states that in a decentralized power grid, DER should be deployed at locations of vital- or sensitive
loads. Then, less important loads could even be switched off to save the functioning of the grid.
They propose to balance the grid through passive plug-and-play electronic interfaces on time scales
less than minutes. In [77], a robust control scheme is implemented in a small DC micro-grid to
regulate current and voltage sharing among DG by imposing constraints to the solution manifold.
In [78], the authors develop maximum-power-point-tracking control for V −ω coordination of PV
panels and ESSs. The authors of [79] propose a distributed algorithm to supply ancillary services
in a micro-grid by solving the following distributed problem at time-step k: minimize

∑
j πj(k).

Let πj(k) be the amount of P or Q demanded from a DER unit located at j at time-step k. Then:

πj(k + 1) = pj,i(k) · πj(k) +
∑
i∈Nj

pj,i(k) · πi(k), (2-12)

with pj,i(k) representing the set of weights between j and other DER units in connection with j
through a directed graph G = (V, E) with V the vertex set and E the set of edges. This way, the
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Inverter droop-control and power curve of a PV panel

Figure 2-4: The AGC signal dictates DG units how much power it should be supplying. As long
the requested power, PAGC, is within bounds of [Pmin, Pmax] (see section 2-1-4 for bounds for PV
panels), primary control is able to serve secondary control demands. Secondary control manages
the pricing behind the supply of PAGC. In the left figure: primary control regulates frequency ω by
tracking the set-point signal fAGC. In the right figure: PV panels output can operate within bounds
[0, PMPP] where MPP is the maximum power-production.

authors of [79] include a topology and are able to consider the geography and infrastructure in
their optimization.

The authors of [80] show that without voltage-control and with a 50% EV penetration rate, events
take place where voltage drops well below the allowed minimum, destabilizing the grid. As a
solution, [80] places constraints on voltage. In [81], an optimal generation dispatch algorithm is
constrained by two constraints: an upper-bound to be able to ramp-up during peak-demand and
a lower-bound to keep the generator within the area covered by the stability analysis. Also, the
relation between the frequency-droop gain kp is linked to stability-margins.

We consider an application setting where households have access to PV panels and ESS in the
form of batteries. A DER portfolio of only PV panels causes the most intermittent power supply,
spikes at day-time and zero at night. We take this extreme situation to test the limits of our
algorithm, see chapter 3. A quick overview of respective PV and ESS dynamics are given.

PV dynamics

The authors of [82] provide a review is on the impact of PV panels on a power-grid. In [83] a
dynamical model of PV panel output power Ppv is given:

Ppv = Pstc · Sing
Sstc ·

(
1 +K(Tc − Tr)

) , (2-13)

with Ppv representing the output of the PV panel, Pstc is the maximum power output point. Sstc
and Sing are the irradiance of respectively the sun at standard testing conditions and at time of
measurement. In eq. (2-13), K is a coefficient relating to power and Tc and Tr respectively the
ambient and reference temperatures. However, it is preferable to use observation data instead of
try to model the output by a dynamical model: the noisy and erratic behaviour of the weather
pattern is not included in eq. (2-13). However, it can be used as an estimator model to a prediction
of PV power output.

ESS dynamics

The dynamics of an ESS mentioned throughout our work can be modelled according the method
used in [84]. The State of Charge (SOC) of an ESS at time step k is denoted by xsoc(k), having
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the following discrete-time model:

SOC(k + 1) = SOC(k) + ηP b(k)− Esb, (2-14)

where η =
{

ηc, when charging,
1/ηd, when discharging. (2-15)

In eq. (2-15), the updated battery SOC is dependant on the previous SOC xsoc(k), the exchanged
power P b(k) times an either charging or discharging return rate η minus a constant battery
degradation xsb. Constraints to battery storage are given in [85]:

∆Pmax ≤
0.2Vsys · Cb

δt
, (2-16)

with the maximum of output power of an ESS over time interval δt is depending on the systems
voltage Vsys, the battery capacity Cb in Ah. For a visualization of the charging and discharging
by set-point frequency droop-control, see fig. 2-5. We model the battery capacity of households
at a typical 13.5 kWh, corresponding to the capacity of a Tesla Powerwall. An average house-
hold has a load of 4500 kWh, thus a daily load of 13.2 kWh. For a Tesla Powerwall, maximum
charge/discharge power in literature is set on between 3.4 and 5 kW [86],

Charging and discharging of a ESS

Figure 2-5: ESS units manage their charging and discharging behaviour by shifting their droop-
parameter upwards or downwards with respect to the prime-mover ωn. ωess has to stay within
bounds of European standards [49.9, 50.1] in Hertz and cannot exceed its power limits [Pmin, Pmax]

Rise of the EVs

A substantial part of research is conducted on methods to include EVs in the micro-grid. EVs
could greatly contribute to stability of micro-grids in terms of voltage control and congestion
management, but also pose a significant hazard due to high loads EV demand from the grid. In
either case, the emergence of EV is a profoundly disruptive trend. Increasing EV penetration
raises concern about the impact of a fleet EV poses to the balance act of a micro-grid. Concerns
range from system losses, voltage drops or oscillations, phase unbalances, general increase of power
demand and equipment overloading [44]. Both in [43] and [87] this impact on a regular macro-grid
is recognized as well. On the other hand, the batteries in EVs can also be used for good. In
[88], EVs are used to coordinate frequency-control while providing a energy reserve to the grid.
Realistically though, EVs are still economically unsuitable for tasks other than voltage regulation
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[44, 80]. In [80], charge and discharge coordination is implemented while constraining the charging
pattern to ensure stability of the grid with respect to voltage.

The authors of [89] examine the pay-back time of EV when the potential of voltage regulation,
load-balancing and costs due to decrease in performance due to the increase in charge cycles are
included. In [90] it is stated that EV can greatly contribute to ancillary services, providing a power
buffer to supply primary and secondary control. The authors of [91] and [87] show the possible
impact of EV draining local micro-grids. Firstly it is shown that EV’s can cause unpredictable
power loads through-out the micro-grid. Secondly, a game-theoretical solution is provided.

The author of [92] proposes a novel method to allow power-systems to benefit from a EV fleet, with
each EV checking for an array of constraints before allowing itself to start charging. An aggregator
agents keeps score of fairness in the system w.r.t. energy allocation to EVs. Consequently, the
method achieves an effective peak-shaving effect on load, relieving DG from high production
ramping at dawn. Selfish-draining behaviour of individual EV is restrained.

Contract based control: actuator saturation as secondary control constraint

In contract-based control, elements of a control-structure can form contracts to negotiate assump-
tions and guarantees for which these elements are decoupled from others. Contracts are represented
as Cn(A,G), contract n guarantees G1 under the set of assumptions A1.

We use contract-based control to model the interactions between primary and secondary control.
The requirements any EDP solving algorithm should satisfy to allow primary control to stabilize
the micro-grid can be expressed in such a contract

Cn =
{

C1 : A1 → G1
C2 : A2 → G2

with G2 = A1 (2-17)

Here, primary control is represented by C1 and a secondary control solution by C2. The guarantee
made by primary control that it will deliver a stable micro-grid is represented by G1; voltage and
frequency will be within required bounds grid-wide. The assumption C1 makes for this guarantee
is that secondary control C2 manages to restrict power surges within certain bounds, represented
by guarantee G2. The assumption that C2 makes is that there is a certain energy reserve left. In
eq. (2-17), C1 and C2 are coupled through G2 = A1; as long C2 honours G2, it has free reign on
providing set-points (AGC signals) to DER units, while being assured of G1; a stable micro-grid
(regarding frequency control):

C =
{

CPC :
∑N
i=0 Pi = 0 and Pmin ≤ Pi ≤ Pmax → ‖ωn − ω∗i ‖ < εω,

CEDP : ‖Estorage,n � Esc‖ →
∑N
i=0 Pi = 0 and Pmin ≤ Pi ≤ Pmax.

(2-18)

A design requirement to CEDP, the proposed trading algorithm in chapter 3, should be that
guarantee G2 holds, that is, power demand of DER units will not exceed their bounds and total
energy flux within the grid at each step k equals zero. With G2 as a boundary condition to
secondary control, it can be decoupled from primary control. Actuator saturation of DER is
discussed in section 2-1-4. The effect of actuator saturation on the solution of the EDP is discussed
in section 4-1-3.
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2-2 State-of-the-art: grid coordination on secondary level

With constraints to secondary control determined in section 2-1, focus can be shifted towards the
problem residing within this level of control. This section discusses the current state-of-the-art of
approaches of the economic dispatch problem.

2-2-1 Methods for economic dispatch in micro-grids

Dynamic economic dispatching of a micro-grid is an optimization problem that is often non-linear,
with high dimensionality and multi-index constraints. Many methods for solving these non-linear
problems have been introduced over the years; e.g. neural networks, evolutionary programs and
model predictive control are among the most recent innovations.

In [93], an ESS is modeled by an agent-based system and a management technique is developed to
converge to efficient behaviour. In [94] a game is formulated that combines prediction and price
elasticity to achieve lower a Peak to Average Ratio (PAR). The authors in [95] make use of droop-
control to stabilize the grid by reactive power sharing. While including more grid-dynamics than
conventional game-theoretical approaches, control solutions exclude human behaviour. In [96] a
micro-grid is modelled as an Multi Agent System (MAS) and uses the contract-net procedure as
an DER coordination technique.

Of all literature available, a summary of the following three methods is used to illustrate the
diversity of the problem and their solutions; inclusion of prediction, the modelling of a hierarchical
structure and the problem of convergence in large non-cooperative populations.

Model predictive control

The authors in [84] make use of Model Predictive Control (MPC) for secondary-level economic
dispatch of DER in a micro-grid. MPC is a control method where optimization of time-step k is
influenced by a prediction of coming time-steps up to a receding horizon; (kh) = (k + j). In [84],
an objective function, eq. (2-19), aiming at including all relevant earnings and costs for DER units
within the micro-grid, calculated over a time period k → kh:

kh∑
k=0

N∑
i=0

[CDGi (Pi(k)) + SUi(k) + SDi(k)]

+OM b[2zb(k)− P b(k)] + Cg(k) + ρc

Nc∑
h=1

βh(k)Dc
h(k),

=
kh∑
k=0

[c′u(k)u(k)−OM bF′(k)u(k)−OM bf′w(k) + c′zz(k)] (2-19)

In eq. (2-19), CDGi describes the cost-function of DER unit that is taken variable over Pi(k), which
is the power exchanged with unit i. Also, SU and SD are costs involved with start-up and shut-
down of the DER unit. Import/export to the macro-grid with the macro-grid is described by Cg,
operational costs with OM b. Additionally, [2zb(k)−P b(k)] is a cost involved with changing a ESS
from charging to discharging mode. Finally, ρc

∑Nc

h=1 βh(k)Dc
h(k) represents consumer discomfort

when their consumption pattern is influence by rescheduling [84]. The equation is rewritten in
a notation where variables for DER units are combined in vectors and the control variable u(k)
is visible. Note that accurate prediction up to the end of horizon kh is necessary for a optimal
solution.

Master of Science Thesis D.E. van den Biggelaar



18 Preliminaries

At each step k, given initial storage xbk and horizon kh, this MPC controller computes an optimal
control strategy ukj

k through solving the following finite horizon control problem:

J (xbk) = min
ukh

k=0

N∑
j=0

[cu(k + j)u(k + j) + czz(k + j)−OM bF′(k + j)u(k + j)−OM bf′w(k + j)].

(2-20)

In eq. (2-20), a minimization is made over the (rewritten) cost-function on a time period of k → kh
eq. (2-19). By minimization, an optimal control sequence ukb

k is found, a vector that provides an
optimal control input for the coming time-steps up until kb. Of ukb

k , only uk is used. A feedback
loop is created by repeating this process at time (k+ 1), with new measured and estimated state-
values. This method of applying MPC to economic dispatch yielded cost savings of up to 34,7%
with a horizon of kh = 72.

Hybrid weighted bi-level planning

The proposed method in [97] combines bi-level planning with an internal genetic algorithm. Bi-
level planning is a subject of decision-making problems, modelled in a hierarchical structure. In
the case of micro-grid control, there are various layers that have to cooperate while having different
objectives and constraints (e.g. primary/secondary control, day/day-ahead markets). In [97] this
is illustrated. Upper-level contains optimal allocation, which aims at minimizing the daily fixed
cost, lower level contains economic dispatch. Upper and lower level solutions are influencing each
other, such that a trade-off exists. Upper-level costs are daily fixed cost of investment (DFCI),
load loss probability (LLP) and excess energy rate (EER). Lower-level costs are cost of operation
and management (COM) and cost of pollutant disposal (CPD):

P =
{

Ul = min(η1,2 · CCOM + η1,2 · CCPD + r∆P ),
Uu = min(η2,1 · CLLP + η2,2 · CDFCI + η2,3 · CEER). (2-21)

In eq. (2-21), η1,i and η2,j are weights to various costs [CCOM, CCPD, CLLP, CDFCI, CEER] and
r · ∆P is a penalty for unbalanced power. The hybrid weighted solution for optimal allocation
between these two levels is found by combining the two objective function through normalization
and weight determination. The resulting weights ∈ I and J are η=aη1,i + (1 − a)η2,i, with η1,i
and η2,j being weights that are determined by respectively the judgment matrix method (a weight
ranking matrix) and the variation coefficient method (an analysis of the ratio of the standard
deviation to the mean value) [97]. With this function, a genetic algorithm is subsequently used to
find the optimal solution in the non-linear trade-off between Ul and Uu. The authors of [97] propose
a solution to divergent objective functions and a method to decide on a trade-off in benefits within
the micro-grid. In [97], a case-study is made into high-level control of day-markets, while in this
thesis we focus on primary and secondary control-levels within the range of seconds and minutes.

Mean-field games

The authors of [73] assume a population of non-cooperative agents in the community that tend
to infinity. This way, agents are influenced by the mean field of the community, as their personal
contribution vanishes statistically. Here, the interactions between agents are modeled by two
coupled differential equations; the individual optimal responses and the dynamical behaviour of
agents. Instead of regular mean-field games, agents do not need properties of the statistical
distribution of states of all agents in order to solve the problem decentrally. In contrary, the
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author of [73] solves the problem by introducing a central coordinator that broadcasts a reference
signal. The costs that influence unit coordination are captured in the individual cost-function Ji:

Ji(si,ui, sj) =
th∑
t=0

∥∥∥∥∥∥si,t+1 −

η + 1
N

N∑
j=1

sj,t+1

∥∥∥∥∥∥
2

Qt+1

+ ‖ui,t‖2
Rt
. (2-22)

In eq. (2-22), si is the state variable of the dynamical model of agent i, ui, constrained by actuator
saturation: sit ∈ Si,t and uit ∈ Ui,t. The function is comprised out of two parts; firstly, a penalty of
deviations from the average population behaviour plus some constant off-set η, secondly the the
control-effort of agent i. Q and R are time-varying weights. Note that si statistically insignificant
to the average ’mean field’ σ of the community, 1

N

∑N
j=1 sj . From a reversed perspective, the

mean-field does influence the behaviour of agent i, resulting in an aggregative game where agent
i needs to minimize its individual deterministic cost J (xi, ε). In, [73] it is shown that there exists
a population size Nε ∈ N such that populations N ≥ Nε converge to a Nash equilibrium (see
section 2-3), as long z is a fixed point of A, thus z = A(z), reducing the problem of population
convergence to:

z = 1
N

N∑
i=1

xi∗(z) = A(z), (2-23)

with A being the mapping of optimal response by all agents to the macroscopic reference signal z.
The mean-field control problem then focuses on finding the reference signal z. Mean-field assumes
agents responding to a macroscopic reference z. This results in allowing a centralized agent in the
system, while achieving minimal information exchange thus anonymization. For a continuation on
game theory, please be referred to section 2-3.

2-2-2 Solution schemes

We have seen that the economic dispatch problem which the proposed energy trading algorithm
deals with is the optimization of a best-solution to a cost function that includes a set of costs, profits
and penalties that influence the optimal coordination of DER in the micro-grid. In section 2-1
we analyzed the constraints to primary control that have to be met, defining the solution space
of dispatch algorithms. Depending on the cost-functions and constraints, the problem becomes,
linear, convex or even non-linear. In case of non-linear problems, new solution methods are used
to find heuristic solutions. Specifically, the following two methods are used in a wide variety of
literature.

Genetic Algorithms (GA)

GA is a solution search algorithm that copies evolutionary theory, relying on genetic crossovers,
mutations and selection on a population of solutions. The goal is to abandon the low-utility popu-
lation and only allow the high-utility to survive and cross-breed. The authors of [98] use simulated
annealing, allowing certain randomly picked solutions to survive regardless of performance, in or-
der to accelerate the solution search, that exponentially increases with the increase of agents and
time. To search for the best solution, the initial solution is coded into a chromosome that evolves
over a number of generations until the process finds a solution that meets the convergence criteria.

Although acceptable for finding heuristic (sub-)optimal solutions for a non-linear problem, these
approaches are necessarily centralized because of their computational complexity. In addition
these central controllers use information on consumption and production of all agents in order to
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find an acceptable solution. In a decentralized control paradigm, agents should be able to converge
to a global optimum individually using only limited localized information. GA is an optimization
technique meant to be applied in a discrete search-space. For a continuous search-space, such as
a range of bidding-prices, a Particle Swarm Optimization (PSO) is better suited.

Particle Swarm Optimization

A PSO mimics the behaviour of natural groups of agent; e.g. flocks of birds or a swarm of bees.
PSO explores the solution-space by looking at both particle velocity and position. The modeling of
particle momentum allows for faster convergence. The author of [99] proposes a heuristic method
to find a solution to dynamic non-linear dispatch problem by PSO. Solutions are represented as
particles that have the states of position xi and velocity vi. Movement of each particle is influenced
by the current state and the best positions found by any particle. The search-space is defined by
the constraints to the problem. In a one-dimensional case, states xi and vi are updated as follows:

vk+1 = a · vk + b1 · r1(o1 − xk) + b2 · r2(o2 − xk), (2-24)
xk+1 = c · xk + d · vk+1 , (2-25)

with a as a momentum factor and b, c, d as gravity coefficients that attract particles to the respec-
tively previous local and global optimal positions o1 and o2. PSO is inspired by social behaviour of
bird flocking or fish schooling. A community of ’solution’ particles is formed by random initializa-
tion, where after particles compute both an individual optimum and a global ’grouped’ optimum,
influencing x and v, until termination criteria are met. A method found in [99] improves on
the standard PSO algorithm by including variable weighting to constraints and learning factors.
Subsequently, this requires PSO to deal with a variable solution-space.

2-2-3 Forecasting methods

Since coordination strategies discussed and proposed in this thesis often include model-predictive
control, forecasting within a micro-grid is discussed in this sub-section. Because of the non-
linearity of nature, it is a relatively hard task to capture its dynamics and fit a model. Broadly
exploited methodologies for non-linear forecasting are Neural Network (NN)s and Support Vector
Machines (SVM)s.

In [100], a forecasting method is proposed in which SVM are used. Traditional approaches to
forecasting, such as numerical weather predictions (NWP) based on satellite images are used in PV
generation prediction, yielding an Root Mean Square Error (RMSE) =

√
(
∑
Pforecast − Ptrue)2/N ,

of around 15%. However, during dusk and dawn, and under rainy conditions, the RMSE can rise to
an unacceptable 50%. Two approaches can be identified; direct, by analyzing the measured output,
or indirect, by analyzing the radiance of sunlight, coupling this to PV output by Pi = S · A · η;
the power output P of panel i being dependant on the radiation intensity S, the PV area Ai and
the efficiency η = η0[1− γ(Tp−Ty)]. Here, η0 is a reference efficiency at surrounding temperature
Tγ (298K) and γ is a temperature coefficient of the ESS linked to the PV panel.

SVM is a learning method rooted in statistical learning theory, solving the problem of limited
sample learning. For a given data-set, a regression function is: F = {f |f(x) = gT · x+ b, g ∈ R,
with ||g||2 as the describing function. The goal is minimizing risk on deviation, with a structure
risk function introduced:

minRreg = min 1
2‖g‖

2 + C ·Remp(f), (2-26)

with ‖g‖2 is the describing function, C is a trade-off constant between empirical risk Remp and the
model complexity f . The PV output is classified into four types: sunny, foggy, cloudy and rainy,
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determining which SVM model configuration is chosen to forecast the one-day-ahead output. On
average, the SVM approach yields a RMSE of 8.64%. On sunny days the RMSE drops as low as
4.85%.
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2-3 A Game-theoretical approach to energy trade in a micro-
grid

All happy families are alike; all unhappy
families are unhappy in their own way.

Anna Karenina - Leo Tolstoy

In section 2-1, we concluded that frequency control is coupled with load-balancing. Section 2-
1-1 examines the hierarchical control-structure of a micro-grid; allowing decoupling; the trade-
algorithm has free-reign within certain bounds prescribed by actuator saturation of primary-
controllers, captured a contract described by eq. (2-18). Section 2-2 presents the EDP to be
solved within bounds of eq. (2-18) and relevant solutions. In this section, an introduction to game
theory is given. In section 2-3-1, an theoretical outline is given. An extensive survey on game
theory for solving the EDP is given in section 2-3-2.

2-3-1 Game theory: an outline

Game theory can be defined as the study of mathematical models of conflict and cooperation
between intelligent rational decision makers [101]. Formally, a branch of mathematics, it has
many applications to economics, political science, biology, physics, engineering and many other
fields [102]. When using game theory to model, the assumption of intelligent rational behaviour
is made, meaning that a player in a game has not only a clearly defined goal but also can figure
out how to achieve that goal given the circumstances. Tolstoy was interested in diversity and
thus wrote about unhappiness; game theory would rather use the similarity of happy families as
a gauge. Predictable rationality as a benchmark can simplify complex behaviour significantly. A
very usefull summary on the basics of game theory is discussed in [103].
Interestingly enough, great potential game theory lies in its distributed nature. A game is divided
into rounds and players can autonomously participate and optimize within their own context. A
game can be played with players entering in between each round of the game, resembling an P2P
network like Bit-Torrent, a relatively stable network where nodes can freely enter and leave the
network [104]. With the right game design, game theory can pose solution to distributed control
and thus used as a decentralized approach to the EDP [105].
A normal-form game can be seen as the basic structure of a game [103]. It has the following
elements:

• The set of players is N = {1,..., n}.

• Player i has a set of actions, ai, available. These are generally referred to as strategies.

• The set of all profiles of strategies or actions denoted by a = (a1, ..., an)

• Player i’s pay-off as a function of the vector of actions taken. The pay-off for player i is
Ui(a) if i plays the game according to strategy a.

Two ways to formulate a game are in extensive form and the strategic form. Extensive formulation
allow for more explicit treatment of time and information, while a strategic formulation game does
not [106]. The basics of a extensive form game consist out of the following structure [107]:

• Representation of moments of choice. A node represents a decision moment for the
player. The first node is the root, the beginning of the game. From thereon, a tree branches
of representing all options of the player that initiates the game, leading to new nodes. These
nodes represent next steps, or responses of other players to the initial action of the initiator.
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Rock-paper-scissors

Figure 2-6: Alice and Bob play a game of Rock-Paper-Scissors. The pay-off vector in this game is
defined like [UAlice, UBob]. Bob plays a game of imperfect information: he has to pick a strategy
regardless of the strategy of Alice. With imperfect information, the response time (that in a game
of rock/paper/scissor is zero) to the other player is modelled.

• Path of play. The path of play represents the path through this game tree, translated to
the actions taken by all players resulting in the actual choices made.

• Labels. Players are represented by labels linked to nodes. A players label defines the player
that is permitted to make a choice between its available actions at that specific node. The
information state label specifies the information that is available at that node. Games can
be of perfect or imperfect information. When the game is information imperfect, players
cannot always respond to strategies of other players. see fig. 2-6

• Action space. The action space represents the available choices to the player. The action
space is linked to the information state.

• Terminal node. Terminal nodes are placed at the end of a path of play. They represent
the pay-offs, the outcome of the game for that specific set of actions taken by all players
during the game. A pay-off can be maximized with a best response strategy. The vector ui
gives an overview of the pay-offs for all paths of play.

An extensive-form game ΓEXT can be formulated as the tuple of the combination of all items
discussed in section 2-3-1:

ΓEXT = (N, ai, Ui)i∈N (2-27)

Game theory is divided into cooperative and non-cooperative game. Non-cooperative games are
mainly used to analyze strategic decision-making within a group of independent players that have
conflicting interests over the outcome of a game. It captures a distributed decision-making process
that allows players to optimize without communication or coordination during the game [29].
Cooperative games capture situations where players can increase their individual social welfare by
working together with other players.

Temporal games are played in rounds, known as repeated or dynamic games. An important
concept to mention is the horizon of the game Hi. Players in an infinite repeating game might
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prefer to choose for a strategy that pays off less in the near-future than a strategy with a higher
pay-off in the distant-future [108, 109]. One way of modeling this anticipation on future utility is
by incorporating a discount δ [110].

Solution schemes

Solution concepts are formal rules of what strategies will be adopted by the players, a prediction
to the outcome of the game. For example, a Nash equilibrium is a solution concept where each
player′s strategy is a best response against the equilibrium strategies of the other players [106],
where a{−i} is the set of strategies of all other players, and a′i is a arbitrary strategy not equal to
the Nash strategy ai. The Nash equilibrium is formulated as:

UNash,i(ai, a−i) ≥ Ui(a′i, a−i) ∀i ∈ I. (2-28)

Here, Ui(ai, a−i is the utility of player i. It depends on its own strategy as well as strategies of
other players. UNash,i(ai, a−i) is the best response player i can make as reaction to other players
{−i}. If all players are in a situation where there is no incentive to change, the game converged
into its Nash equilibrium. In dynamic games, a reinforcement of a Nash equilibrium is a sub-
game perfect Nash equilibrium [111]. For any node x in Γ, let F (x) be the set of all branches
and nodes thereafter, including x. In this sub-game F (x) = Γsub. Behaviour in sub-game Γsub
should also appear rational when viewed in the scope of the full game Γ. The sub-game perfect
Nash equilibrium is then a solution for the game Γ that is a Nash equilibrium solution for every
sub-game Γsub.

A Stackelberg equilibrium is found when a hierarchy is introduced in the game and where the
players that lead can anticipate on the strategies of the followers. In an energy trading game, there
is a distinction between prosumers with a surplus of energy and prosumers with a deficit of energy.
The surplus that then be shared to balance out the deficit. Prosumers with a surplus are identified
as leaders of the game and those with a deficit as followers. With this, a Stackelberg equilibrium
is found as a sub-game perfect equilibrium, given the extensive-form game ΓEXT = (N, ai, Ui)i∈N .
The followers strategy, F is also depending on that of the leader L: aF = T (aL).

Execution of the game: utility function and learning schemes

The utility function captures the behaviour of agents w.r.t. certain values such as social welfare or
economic profit. Maximizing utility Ui is the goal of agent i. This optimization problem is solved
by a so called learning algorithm, see section 2-3-1. The inputs given to the function represent the
incentive given to the players. Within a power-grid, players are often focused on maximizing their
profit or minimizing costs. In literature this is called the ’rationality axiom’ and will be further
discussed in section 3-2-1. In [112], the utility function is an representation of costs due to certain
scheduling of appliances in different time slots:

U(xn,x−n) = Ω ·
H∑
h=1

Ch

( ∑
a∈An

xhn,a +
∑

m∈N\{n}

lhm

)
. (2-29)

Minimization of this ’cost’ with respect of the action argument xn will result in a local best
response strategy x∗n and a optimized utility βn:

βn = argmin
xn∈Xn

H∑
h=1

Ch

( ∑
a∈An

xhn,a +
∑

m∈N\{n}

lhm

)
. (2-30)
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In eq. (2-29) and eq. (2-30), h ∈ H is the time-slot vector dividing the day, Ch is an convex
function (i.e. quadratic) enabling convex optimization, An are load appliances of players with x
and l being, respectively, an energy consumption scheduling vector and the total load per player
over each hour. In eq. (2-29), xn = xhn,a is the playing argument that can be influenced by the
player, Ω is a constant representing the conversion from load to costs. The utility function is
reliant on other players information, that is; the utility function needs lhm with m ∈ N \{n}. After
every round played, lhm has to be shared to update the local optimization problem of player i.
Equation (2-30) yields a peak-shaving result in terms of average energy demand of agents over
time.

After choosing a solution concept, the way to reach the solution equilibrium is the next step in
designing a suitable game. A learning scheme that forms the backbone of the energy trading
algorithm. In literature, four variants of learning schemes are commonly used:

• Best response. Best response is a concept where after each iteration, players simply pick
the strategy that maximizes its utility function. Choosing best response strategy requires
the utility function to be convex since only convex function will converge into a global
equilibrium using this method [113].

• Fictitious play. Fictitious play is a scheme where after each iteration, all players are
informed on choices made by all other players and a estimation of other players response is
made through a simulation of further game play. Afterwards, a best response function is
picked based on a empirical estimation [114].

• Regret matching. Regret matching is based on the minimization of regret under choosing
certain action. The regret function provides an insight in the missed potential of not playing
s over time t; Rt(s) = U t −U t(s), with U is the pay-off from the played strategy and U t(s)
is the missed potential from strategy s that was not played. Not focusing on the modeling
of other players forms a distinction between fictitious play. A regret matching learning rule
chooses an action with probability proportional to its regret [115, 116].

• Reinforcement learning. Reinforcement learning is observed in nature; every species
learns through trial and error. By remembering the pay-off of previous action and classifying
those ’trials’ by its success i.e. pay-off, one can learn from its successes and more importantly,
their mistakes. An simply model is cumulative pay-off matching for strategy vector α;
αt+1 = αt + utet with the term U tet being the reinforcement for each strategy with utility
U at time t [114].

2-3-2 Game theory and energy trade

From a control-theory point-of-view, balancing the decentralized micro-grid is a control task.
Intuitively, the aim of the controller should be to match supply and demand to stabilize the
grid. With further consideration, more factors and diverse optimization goals arise in this control
problem, discussed in section 2-1 and in [117]. Practically, with conscious agents as actuators,
the challenge becomes more complex. In a situation where actuators adopt human behaviour,
individual local goals often diverge from the global balancing goal. This is illustrated with a
thought-experiment:

A neighborhood plans to collectively invest in a playground. Neighbor i resists investing his share,
reasoning that in a large enough community, the fund will be filled anyhow. With this strategy,
neighbor i does not invest and still gains a playground; a maximum pay-off. However, the inevitable
result is that every rational neighbor will deduct the same strategy. Resulting in neighbors refusing
investment, no fund is collected and no playground is built; zero pay-off.

Thus, a mechanism needs to be designed that fulfills each agents individual goals, while indirectly
establishes our main control task of load balancing. We identify a collective task of maintaining
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balance by solving the EDP, and a individual task of optimizing personal welfare. The agent’s
utility function should be designed such that these tasks are aligned. Additionally, a game type
and a solution concept are to be selected. Before we present our proposed decentral solution to
the EDP in chapter 3, we give an overview of game-theoretical approaches to solve the EDP,
categorizing the examples as either cooperative or non-cooperative games.

Cooperative or coalitional games

Cooperative game theory investigates the forming of coalitions in communities acting according to
a behavioural model. Coalitions are formed through matching games; played such that a ’greater
good’ utility function is optimized. A cooperative solution concept is the Shapely value [118].
This value represents the unique distribution of the total pay-off over the contribution members
of the coalition [119]. The Shapely value Φ for player i is the result of evaluating the contribution
of i over all possible coalition combinations π:

Φi = 1
n!

π∑
i=1

(v{1, ..., π(i)} − v{1, ..., π(i)− 1}). (2-31)

The authors in [120] propose a solution by extending on the cooperative game introduced in [121]
and [122] by including a more sophisticated model for power routing and matching of supply
and demand. A traditional coalitional game is played in [123] where initially, a group of energy
consumers are matched with prosumers in a matching optimization. Afterwards, the Shapely value
Φ is used to express individual contribution to the general good, deciding on the pay-off vector.
On a higher level, the author of [122] matches micro-grids with an energy surplus to those with a
deficit.

Algorithm 1 Coalitional game, from [122], minimizes the amount of energy imported/exported
to the macro-grid.
procedure Coalitional game

Stage 0: initiation
The network is partitioned by S = S1, ..., Sk (initially S = N = 1, ..., N with micro-grids

that are initially non-cooperative).
Stage 1: coalition forming.
repeat:

1) M = Merge(S): micro-grid coalitions ∈M decide to merge.
2) S = Split(M): micro-grid coalitions ∈M decide to split.

until convergence w.r.t. solution scheme into final partition Soptimal.
Stage 2: cooperative power transfer
Coalitions of micro-grid players Si ∈ Soptimal orders its seller to play strategy aoptimal.
repeat:

Buyers in Si ∈ Soptimal attempts to satisfy demand Qj by allocation of sellers ∈ Si.
until no local power transfer is possible.
Stage 3: wrap-up
Within coalition Si ∈ Sfinal, any seller or buyer, which still has reserves left, can trade by

buying or selling from the macro-grid.

Voluntary games, also known as voluntary contribution games, are a separate class within coop-
erative games. They model a realization event of a public good [124, 125, 126]. Players have the
option to voluntarily participate; an action that influences game dynamics. The authors of [127]
theorize that multiple rounds could increase probability of donors contributing to a public cause. In
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[128] the authors aim to measure discomfort from rescheduling energy consumption for Dynamic
Pricing (DP) after which the agent is able to reduce this discomfort utility through voluntary
rescheduling. In algorithm 1, an example of a coalitional game is expressed in pseudo-code.

Non-Cooperative Games

Non-cooperative games, in contrast with cooperative games, focus on situations where players do
not cooperate with each other. Players individually optimize their strategies according to the their
context to optimize their utility, not by joining certain strategy coalitions. A Nash equilibrium
is found when all players decide on a strategy that is a best response to all other players. The
degree of information exchange between players dictate the height of the optimum.

In [129] a game is modeled between a single energy retailer and multiple consumers, while different
revenue stream models were used to influence the outcome. A model that includes large-scale
micro-storage while introducing an adaptive consumer strategy is developed in [130]. The ability
to adapt to the model makes the consumer more versatile and increases all over efficiency. The
paper [131] stands out by including an online learning algorithm focusing heavily on prediction
on EV price elasticity, introduced in [69]. In [29], EV batteries were used to store energy traded
in a non-cooperative game. Prices are determined via an auction mechanism. A subclass of
non-cooperative games are congestion games, or exact potential games [132]. Able to efficiently
allocate resources to players, congestion games are especially useful when modeling the charging
behaviour of EVs [133]. [134] extends this model by allowing EVs to discharge as well, supplying
back during peak-hours. In [91], the author tries to bridge the gap between the micro-grid and
EV by playing a scheduling game between EVs and charging stations. The authors of [135] aim
to control peak-load by distributed load management in smart-grids through dynamic pricing. In
algorithm 2, an example of a non-cooperative game is expressed in pseudo-code.

Algorithm 2 Non-cooperative game from [112], yields a peak-shaving result.
procedure Autonomous demand side management

Stage 0: initiation
For each agent: initialize ln and l−n.
Stage 1: individual optimization
repeat

while listening to broadcasts of ln ∈ N do:
Solve local convex-optimization problem in eq. (2-30).
if xn changes compared to current schedule then:

Update xn according to the new solution.
Broadcast control message announcing updated li to other players.

if a control message is received then:
Update l−n with new schedule.

until no players announce new schedules li.
Stage 2: wrap-up
Execute schedules li.

Stackelberg games

The, already briefly introduced in section 2-3-1, Stackelberg game enables the inclusion of a player
hierarchy. In non-cooperative trading games, Nash equilibria can prove to be Pareto inefficient;
agent could increase their own utility without harming others utility, thus a sub-optimal solution
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[136]. The authors of [137] manage to improve the pay-off of best-responses by introducing a players
hierarchy. In [72], a distinction between buyers and sellers is made through a leader-follower two-
step Stackelberg game. A major advantage is within each step, a global Nash equilibrium is agreed
on within one iteration. An iterative process is thus not needed. This is called backward induction,
which is possible when the game is played with perfect information.

A Stackelberg game approach is used in [113], where utility companies are identified as the leaders,
while not including DER in the model. [138], contributing to [139] by introducing V2G, models an
aggregator that owns arrays of DER. The optimization is performed by stochastic programming,
useful to handle optimization with uncertainties, where multiple plausible realizations (or scenar-
ios) of each stochastic variable are generated [140]. A Stackelberg framework is used in [141] to
model the interaction between the micro-grid and a following fleet of EVs. A Stackelberg game
has a certain advantage over normal non-cooperative games in that, by dividing the pool of play-
ers into a hierarchy, the optimization pools are smaller. Also, leaders can anticipate on the best
response of the follower, and thus can algebraically find their strategy. Additionally, by including
hierarchy, the traditional market mechanism is modeled more accurately. Numerical solutions to
Stackelberg games can be found in [142], providing a practical overview on approaches to solve
the optimization problems stated by an Stackelberg-game. Closed-form Stackelberg games can be
algebraically solved, as done in [72].

Algorithm 3 Stackelberg game, from [72], allows sellers (leaders) and buyers (followers) to trade
among each other. Sellers are able to algebraically find their best response strategy if they know
about followers utility function.
procedure Hierarchical-bidding open-form game

Stage 0: initialization
Divide players in buyers-pool I and sellers-pool J according to measurements.
Determine energy surplus. Êj and bidding range Ci = [cB , cS ].
Initialize ci and wj ∀j ∀i.
Stage 1: hierarchical game
repeat:
→ Level-1 Game: buyers optimize iteratively, results in c∗i .
B̂i(b) = argminci

Ûi(ci, c−i,w)) ∀i.
Buyers broadcast c∗i to sellers.
→ Level-2 game: sellers ∈ I optimization using c∗i in B̂j(c) for w∗j .
B̂j(c) = argminwj

Ûj(wj , c) ∀j.
Sellers converge and broadcast w∗j .

until 2-layered distributed optimization converges to (c,w).
Stage 2: wrap-up
Execute c∗i ∀i ∈ I and w∗j ∀j ∈ J .

The authors in [143] deal with a central energy supplier while consumers can choose whether to
participate in the collective trade or not. In algorithm 3, a Stackelberg game is expressed in
pseudo-code.

We model our algorithm, discussed in chapter 3 as a non-cooperative game since we expect house-
holds to be individualistic non-collaborative in nature; a Nash equilibrium is a solution-scheme
that captures this. As framework, we adopt the hierarchical structure of the Stackelberg game in
[72]. A Stackelberg game, such as in [72], is restricted to using only standard functions as follower
utility function Ufollower. Although the algorithm presented in chapter 3 is open-loop, standardness
is still requirement (source: personal correspondence with S. Bahrami, author of [144]). We prove
standardness of Ufollower in appendix A-1-3.
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2-4 Blockchain for decentralized energy trading

The Blockchain does one thing: it replaces
third-party trust, in whether something
happened, with mathematical proof.

Adam Draper

A Blockchain is a public ledger that keeps record of all transactions preformed among participating
nodes in a P2P network. Transactions are grouped together into blocks, while blocks are linked
together to form a chain, establishing a Blockchain. Due to the fact that every node keeps track of
its own version of the public ledger, nodes independently verify transactions announced over the
P2P network. Consensus is reached on the validity of transactions through a consensus protocol,
comparable to a democratic election with all nodes casting votes. A crucial result is a data-base
that is governed by all and owned by none. By doing so, a Blockchain effectively cuts out the
middle-man during a transaction of value.

An brief outline of Blockchain is given in section 2-4-1. In addition, in section 2-3 it has become
evident that agents are sharing information among each other in order to converge to a global
optimum. A method to counter malicious agents that provide licentious information is discussed
in section 2-4-1.

2-4-1 Outline of Blockchain

The notion of digital money started out with the first attempt of building cryptocurrencies with
projects like described in [145]. These currencies did still depend on a centralized trusted authority
to validate the transactions. In case two friends, Alice and Bob, want to transfer value, Alice
could announce to a group of people a signed contract stating "a transferal of a certain value
to Bob". This contract would be called the transaction. With signatures, this transaction can
be considered valid, while it is not forgery-proof. Normally, a centralized institution is needed
to generate trust by enforcing regulation, for example by issuing serial numbers to each contract
to counter replayability. In the absence of a bank, what is needed to establish transactions in a
trust-less asynchronous environment are the following features [30]:

• Tokens. A token is a chain of digital signatures, showing a trail of previous owners of
this coin. Tokens need to be uniquely identifiable, while not making use of serial numbers.
Namely, a mapping between serial numbers and tokens has to be issued by an Third Trusted
Party (TTP), not allowed in a decentralized paradigm; Blockchain solves this problem.
Ownership of tokens is moved around by transactions, which are grouped together in blocks
for time-stamping.

• Procedure in time. A time-stamping server is needed to show a temporal order. The
trail of owners of a specific coin can be rightly sequenced. The server proves the existence of
transactions at a certain location of the sequence by referring back all future transaction to
this block wherein the transaction resides [146]. The genesis block is the first block in the
Blockchain to be mined.

• Consensus protocol. In a decentralized network of nodes, a dependable and fair consensus
protocol picks out a specific node to suggest a new block of transactions collected by listening
to announcements in the network. To exclude forging of identities in a the network (e.g. Sybil
attacks [147], explained in section 2-4-1), the consensus protocol allocates ’voting power’
according to certain schemes that proof an entity instead of an identity by demanding an
investment of real-world resources.
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A Sybil attack

Figure 2-7: Sybil Attack: a honest node represents itself as a single identity while a malicious node
cheats by representing itself as multiple identities, gaining a majority of voting power in the network.
Testing entities instead of identities is the solution

• Network participation. To make nodes contribute to the network by participating in the
consensus protocol whereby the participating entity has to invest its resources, a financial
incentive is given. Often, this results in a reward of crypto-coins to those nodes selected by
the consensus protocol to suggest a block of transactions or through transaction fees.

• P2P network. All nodes participating in a Blockchain form a P2P network similar to
data-sharing networks such as employed by Bit-Torrent [104]. In this network nodes are
responsible for announcing new transactions, gathering transactions into blocks by listening,
preforming a resource-intensive calculation to prove entity before allowed to propose a formed
and valid block to other nodes in the network.

An in-depth review on Blockchain is given in [148]. Requiring every node to keep its own public
ledger enables decentralization but evidently opens up numerous possibilities for nodes to cheat.
The problem of replayability of transactions, also known as double-spending, was resolved in [149]
in 1998, but with a unrealistic assumption of a completely synchronous network. In a real-world
P2P network, latency between a transaction and all nodes receiving the respective announcement
results in a distributed consensus problem.

Double-spending in a decentralized paradigm

Figure 2-8 portrays an example of a double-spending attack of Alice on Bob. In the example, Bob
is owner of a innovative pizza-restaurant and Alice is a customer able to pay by Blockchain. Alice
executes a double-spending attack on the transaction with which she payed Bob for a pizza she
just ate. According to the ground-rule that the longest chain is accepted by the network as the
truthful chain, Alice has to make an effort to make her fork, b, longer than the previously accepted
fork a, containing her pizza-payment. The probability of winning the leader-election and thus the
right of proposing a new block increases with the amount of voting power. Statistically, only a
> 50 % majority of the voting-power can keep up winning the election over time. Nevertheless,
it is not impossible for Alice to make some progress with only a small percentage of the voting
power. This is why k blocks have to be chained after block 2a for Bob to be assured that Alice paid
for her pizza, basically waiting for fork a to be provided with a head-start to any double-spend
attack aimed at a transaction in block 2a. Bob thus waits a while with serving Alice her pizza,
allowing other customers to make transactions and mine blocks. Consequently, after k blocks have
been mined, Alice has to win the leadership-election for k consecutive times to over take fork a.
Statistically, if Alice continuously owns > 50 % of voting-power, she is certain of a successfully
executed double-spending attack. If so, Alice ate here pizza, while not paying for it. With this
premise, and assuming that the total voting-power in the network is large, the key-concept of a
consensus protocol is that it should counter the fraudulent use of forged identities. The consensus
protocol requires of Alice real-world resources in the form of computing power; translated into

D.E. van den Biggelaar Master of Science Thesis



2-4 Blockchain for decentralized energy trading 31

Broadcasting conflicting transactions

Figure 2-8: Bob is an owner of a pizza-restaurant and Alice is a customer. After block 2a is proposed
and accepted by Bob, Alice is allowed to eat her pizza, paid for by token transfer on the Blockchain.
If Alice, after finishing her pizza, tries to propose a new block 2b at the height of her original pizza-
payment, in which her pizza-payment does not exist. A fork is created, and a leader-election race
initiated between Alice and the network is initiated. Figure from [148], but modified.

hardware investments and electricity, this amounts to real-word fiat-resources. An attack on
consensus of Alice by trying to represent here entity by multiple identities (Sybil attack) to gain
artificial voting power in a consensus vote-count is thus not viable. The consensus protocol makes
it impossible for Alice to gain > 50% voting power by fraud.

Solving double-spending: Consensus protocols

In order to give voting power proportional to entities instead of identities, a consensus protocol
trades voting power for a task that consumes real-world resources. For this a proof is needed
that is generated by a ’Proof-of-X’ scheme. Multiple ways of measuring the contribution of the
entity are possible. Among the best known are Proof of Work (PoW) and Proof of Stake (PoS).
PoW makes use of the computing power of the hardware of the node. PoW is used most often
and by the better known Blockchains but is wasteful w.r.t. real-world resources. PoW was first
introduced in [150] and later adopted by Bitcoin [30]. PoS works by counting the invested stake
of each entity in the Blockchain; the larger the amount of so-called coin-age, the larger the chance
of winning the leader-ship election and to suggest a new block to the chain.

A cryptographic hash function H(m) = h is a one-way mapping from a variable-length input
bit string m to a fixed-length output string h: h is called the hash of the message m. The
mathematical puzzle to be solved in a PoW scheme is based on a hash-function. An in-dept look
at the commonly used and yet unbroken hash function SHA-256 is given in [151]. A cryptographic
hash function has three distinct features:

• It is computationally simple to compute a hash value from any amount of alpha-numerical
piece of data m.

• It is computational unfeasible to compute the original alpha-numerical piece of data m from
its hash value.

• The probability of two pieces of data m1 and m2, with m1 6= m2, having the same hash is
beyond negligible: H(m1) 6= H(m2).

A celebrated consequence of these features is that a small change in the input data m results
in an uncorrelated change of its hash value. PoW requires the node to compute a hash value
of the block-format mblock that the node wants to propose with a certain structure, such that
hblock is a string beginning with a certain amount of zeros. The data to be hashed is the block
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information. To change the hash value, a small piece of information (a nonce) is added into the
block-format data. At each try, the nonce is changed to a different value and thus a different
hash value is yielded. Since it is impossible to predict what nonce will yield a block hash with the
right structure, the only way is to try. The first node that yields a rightly structured hash hnew
wins. Other nodes then easily verify whether this node truly should be the winner by recreating
hnew using the provided nonce and block-format provided by the winning node. The proposed
block then is adopted by the network and thus added to the Blockchain, adding the transactions
included in the new block to the public ledger.

By ordering transactions into blocks and adding blocks behind each other, a network-wide con-
sensus is reached on an arrangement of blocks, similar to a time-stamping server. Since the hash
value hprev of the previous block is included in the block-format of the new block, an unbreakable
link is made from the most recent block to previous block. Without this previous block hash, the
block is not deemed valid by the network, who again can easily verify by recreating the new hash
value hnew using the previous block-format and hprev. This mechanism creates a trail from the
newest block all the way back to the genesis block, ordering the blocks in time in the process.

Blockchain transactions

Figure 2-9: Blockchain uses uniquely identifiable tokens to represent value and transactions to move
around this value among users. Transactions are digital ’contracts’ stating ownership of tokens,
signed using PKI!. A trail of transactions regarding a token is equal to a certificate of ownership of
that token. In order to verify whether a pretender is truly owner of a token, one need to be able to
trace back the trail from genesis up-to the current moment and verify the trail ends up with. The
figure is taken from [30].

To transfer value between Alice and Bob, both need a virtual wallet, consisting of a public-
private key-pair for signing transactions. The transaction-format includes a previous transaction
hash hprev,tx to create a easily verifiable trail back to the genesis transaction, much like the time-
stamping mechanism for blocks. Alice proves that she is able to to mandate over the value-transfer
referenced on the input side by providing her public-key and a signature. The network rejects the
proposed transaction if it becomes apparent that Alice does not own the needed amount of tokens.
In [152] and [153], extended information on the method of signing a transaction using the Elliptic
Curve Digital Signature (ECDS) algorithm is given. The transaction process is visualized in
fig. 2-9. Requirements of a Blockchain platform are the following:
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Mining of blocks

Figure 2-10: All participating nodes collect transactions by listening in on the P2P network. When
collected enough transactions, they form a valid block by preforming resource-intensive iterations on
the consensus protocol. The first node to present a valid solution wins the leader-election and is
allowed to propose their block to the Blockchain, receiving a financial incentive in the process. The
figure is taken from [30].

• High transaction throughput. With every node in the network validating every trans-
action, validation rate is low with Blockchains such as Bitcoin and Ethereum [154]. Scaling
issues are widespread.

• Low transactions fees. Aim is to have near real-time transaction among nodes to allow
for near real-time energy trade within the micro-grid. Following the duration of deployment
of primary control services as a guideline, the maximum amount between each algorithm
time slot is 15 minutes [88]. Transaction costs should not exceed the added value of the
Blockchain.

• A resource-light consensus protocol. PoW intentionally wastes energy during its lead-
ership election. This is not a sensible doctrine when trading energy, since again, costs should
not exceed added value. PoS, the Tangle [155], or a permissioned practial Byzantine Fault
Tolerance (pBFT) network offer a better solution.

The platform Ethermint provides these criteria, as it utilizes the on pBFT based consensus protocol
PoS. A detailed explanation of PoS is given in [156]. In [157], a lengthy comparison is made
between PoW and PoS schemes.

Smart-contracts: verified and decentralized state-change

A smart-contract is a computer protocol to digitally facilitate and enforce negotiation between
agents. It can be triggered by making a transaction to it, causing the smart-contract to execute
independently and automatically on every node in the network, according to the data that was
included in the triggering transaction [158].

By deploying a computer program on Blockchain and allowing state-changes through Blockchain
transactions, the contract is honoured in a decentral paradigm with distrusting agents. Solidity is
a contract-oriented programming language developed by the creators of Ethereum. As of this date,
it is the most practical approach to writing Blockchain deployed smart-contracts, as it has the most
extensive documentation and is backed by a strong developing community. In section 3-4-1, we
present a smart-contract capable of accounting a zero-sum game between agents in a micro-grid,
keeping track of a promise system and providing a time-stamp server in order to recognize.
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2-4-2 Application of Blockchain in energy-trade

Research of Blockchain applied in energy-trade has only recently picked up pace. Most existing
work has been on permission-less, public platforms such as Bitcoin and Ethereum, focusing mainly
on interesting problems such as security, privacy and scalability. The ability of participants on a
Blockchain network to reach an universal agreement on a certain state while in the presence of
an asynchronous network or malicious nodes is valuable in decentralized optimization. Neverthe-
less, parallels made in literature with distributed energy trading are few, with examples as [159]
and [160]. We slightly modify the realizations of [159] to find requirements to an EDP solving
distributed algorithm:

• Aggregation of information should be protected against cyber attacks or malicious agents.

• Agents in the network should have means to verify payments to and from their wallets.

• Essential network elements of distributed optimization such as brokering and negotiation
need to take place among agents on a secure and ’trust-less’ platform.

In [160], the authors propose NRGcoin, a decentralized digital currency generated by smart-
meter that prove they supplied back energy, generated in household DERs. Incentive given is
proportional to supply and demand, thus achieving a DSM mechanism, flattening energy peaks
throughout the grid. However, extensive testing is in order to prove the effectiveness of the
system. The authors of [159] approach the problem of integrating disruptive fleets of EV’s in
small-scale grids by introducing a P2P energy trading model. Trade is auction-based with a
set of central auctioneers that also serve as a consortium among which a Blockchain platform is
created. Conclusively, not much literature is available in the field of Blockchain application in
energy trading. In [158], distributed control is achieved by function-blocks deployed as smart-
contract to enable edge-computing. a methodology that shows more similarity with our proposed
smart-contract in section 3-4-2.
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Chapter 3

EnergyBazaar: a decentralized
energy market

Although acting independently, all household agents are charged with the collective task of main-
taining a stable micro grid: when supply and demand are balanced. Introducing storage capacity
in the grid allows a buffer in both: the mapping of production to supply and demand to consump-
tion, such that this margin can be used for economical optimization. The goal of the distributed
optimization is to allow for free-market pricing.

3-1 Problem formulation

The micro-grid Economic Dispatch Problem (EDP) consists of taking decisions on how to opti-
mally schedule charging and discharging of Energy Storage System (ESS)s, meeting the micro-grid
balance in demand and supply, section 2-1-3. In addition, we do not want to include a central
controller subject to a central control law that steers agents with a certain behaviour towards an
equilibrium, such as proposed [73]. Instead, we want to design the agents behaviour by modeling
their utility function; such that they autonomously steers themselves towards an equilibrium. The
micro-grid is considered in a fail-state when it needs the macro-grid for energy-import (deficits) or
load-shedding (overflows). The goal is minimized deficit while economical optimization of agents
a ∈ N and while dynamical constraints are met. Additionally, the battery dynamics pose a con-
straint. The challenge for the community as a micro-grid, Bmg, is to minimize the total deficit in
the micro-grid:

Bmg = min
∑td
k=0 Edeficit,a(k)

k
subject to: (3-1)

∑
j∈J

Esupply,j(k)−
∑
i∈I

Eallocation,i(k) = 0, (3-2)

Pmin,a ≤ Pa(k) ≤ Pmax,a ∀a ∈ N , (3-3)
SOCa(k + 1) = SOCa(k) + η · Eflux,a(k) + SOCd,a ∀a. (3-4)
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The optimization problem is described by eq. (3-1) and is subjected to three requirements: The
total flux of energy in the system on time-step k is equal to zero, see eq. (3-2); the actuation of the
ESS installed at households cannot exceed its saturation limits and the State of Charge (SOC) of
all batteries are subject to its dynamical model, eq. (3-4).

3-2 Modelling a micro-grid community

We model the micro-grid with an agent-based model, see appendix B-1 for a layout of the system.
Assumptions are made for the agent-based system’s environment and its agents; respectively the
micro-grid and its households. First, we discuss the assumptions and claims regarding households
situated in the micro-grid. Afterwards, the micro-grid itself is discussed.

3-2-1 Smart households

A very significant assumption made in this research is that households are rational actors that
pursue economical gain. We investigate the validity this assumption in the following discussion.

Rationality of agents

The classical model of economy is a concept introduced by Adam Smith published in [161]. The
classical model described the world as actors in constant pursue of welfare, but constrained by
their empathy to others. Opposing this, the neoclassical model of economics simplifies economy
down to a set of actors, either firms or households, each respectively maximizing profit and utility,
with no regard to empathy. All actors are assumed to interact in perfectly competitive markets
[162]. In [162], the ’rationality axiom’ is introduced; the economic agent maximizes its own utility
or self-interest, a premise used throughout this thesis for modeling human behaviour. However,
the rationality axiom is strained under criticism, since it exempts altruism as a drive for human
behaviour. Game-theoretical rationality therefore is loosing ground in softer area’s as political
science [163]. Nevertheless, the argumentation to use the rationality axiom is two-fold:

• It is assumed that micro-grids are formed within a neighborhood with negligible social in-
equality, excluding altruism from our model. In case this assumption fails, methods to
mitigate the social inequality are needed, methods provided in [164].

• With assuming rationality, it is possible to anticipate actions of players, the model becomes
deterministic. It allows designing an utility function that captures the behavioural dynamics
of all agents, making analysis practical [165].

Although a community can be considered as a social entity were cooperation takes place among
its neighbors, economic gain can still be assumed to be a personal drive for agents in the system.
Within the scope of this thesis, agents are modelled to be non-cooperative in their pursuit of profit,
such that agents will compete with each other in a free-market economy. Making use of element
of non-cooperative gametheory, we use the Nash equilibrium to express the utility of the players.
The Nash equilibrium is used because in a free-market, prices are driven by supply and demand,
i.e. players respond to the situation within the environment, that is comprised of the strategies
of all other players [29]. Irrational behaviour such as discrimination, induced for example by the
Indian caste system [164], is not considered. The primary drive for each agent is to optimize its
revenue or decrease costs. We design a mechanism that ensures the stability of the grid while
abstaining to force its members into alignment with a global pursuit that conflicts with personal
goals.
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Household characteristics

Households are given three characteristics: energy consumption, storage capacity and energy
production by Photo Voltaic (PV) panels. We assume all Distributed Energy Resources (DER)
units to have equal characteristics and efficiency. Econsumption,i is the amount of energy needed to
saturate the consumption of household i. The load of a household is not variable since load-shifting
(e.g. as done in [112]), does not lie within the scope of this research. Eproduction,i is the energy
produced by Distributed Generation (DG) units, modeled as PV panels. Only if Eproduction,i
is greater than Econsumption,i, the surplus Esurplus,i is traded on the local energy-market, because
using self-produced energy is more economical. This is due to the incentive given to consumers with
a smaller Edemand,i according to proportional allocation, see section 3-2-2. To satisfy Edemand,i,
a rational buyer will allocate its own Eproduction,i first. The capacity of the household battery,
Ecapacity,i represents the amount of energy that can be stored in each house. Each agent will aim
to maintain a preferred SOC, SOCpreferredi. This level is determined by a prediction model and
acts like a set-point parameter the agent uses to determine its trading-behaviour; the gap between
the actual SOC, SOCactuali, and SOCpreferredi will influence the size of Edemand,i. Thus, the
household battery acts as a buffer and mediator between demand and imported supply. Edemand,i
is thus the demand requested by agent i from the micro-grid to maintain SOCpreferredi

Prediction of supply and demand patterns

In [72] prediction on future supply and demand is not included. In [72], the law of diminishing
return, compared to direct revenue, is the sole drive for selling-agents to decide on their strategies.
We explore the inclusion of prediction to actively anticipate coming scarceness or abundance of
energy in the micro-grid.

Information on agent specific consumption and production is sensitive and cannot be simply shared
among the community. Agents thus can only predict future supply and demand based on data
from their own household and on data generated by the community as an entity, such as global
equilibria on nominal bidding price cn and sharing factor wn. In addition, open-source data such
as the weather forecast are used by agents. The number of agents participating in the micro-grid
is known by all agents, analogous to an permissioned network.

Smart-meters and the communications network

It is assumed that smart-meters are able to perform accordingly and deployment of smart-meters
is (economically) feasible, discussed in [47]. We assume a network that is synchronous: there are
no agents lagging due to latency in the network and broadcasts are not jammed.

3-2-2 The micro-grid

In this section, we discuss the assumptions made while modelling the micro-grid.

PV panels in the Californian sun

The test-data used to model the community originates from Laboratory for Advanced System
Software (LASS). LASS offers an open-source repository for smart-home data [166]. For 114
single-family homes the consumption has been monitored through 1-minute interval data-points.
For production, 1-minute interval monitored solar panels situated in California, USA are used to
provide the generation data [167]. The pattern in the consumption data is highly erratic, and
does not compare to standard average household spikes in morning/evening times. However, this
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spike-pattern is proven to exist [168]. Thus, the behaviour of the algorithm should be analyzed
with inclusion of morning/evening spikes. These spike characteristics are added using a sine-wave
function. The finalized data spans a week for both production and consumption. We assume that
generation capacity in the micro-grid is as high as energy consumption, the very basic requirement
for a self-sufficient system.

Input data for the micro-grid simulation

Figure 3-1: Total production and consumption of energy in a micro-grid with 12 agents. We capture
the characteristics of the duck-curve, see fig. 1-2: a constant base-load with spikes in morning and
evening; production peaks during solar hours and drops to zero during the nights. Data-set, after
grooming, has a 5-day duration, with 1440 data-points per day.

Proportional Allocation

Proportional allocation is a method of distribution of goods from a seller to potential buyers. We
use proportional allocation in our implementation of EnergyBazaar, see section 3-3. The allocated
share to agent i is ai(x, y), when x is the bid of i and y is the sum of all other bids of agents, I/i:

a(x, y) = min

(
x,

x

x+ y
K

)
.

This method ensures that buyers will never receive zero goods, opposed to, for example, linear
allocation [169]. In addition, the more agent i bids relative to the total other bids y, the bigger
the share of K is allocated to i. Usually, x and y would represent the quantity of the order. In
EnergyBazaar, this is substituted with the bidding price per unit of energy of buying agents ∈ I.
Not using proportional allocation, buying agents ∈ I would simply order more than the actual
demand Edemand,i without consequences. Now, a higher allocation means a higher bidding price
ci. This is fair in a isolated system where energy is considered a scarce resource; there is an
incentive to have a low Edemand,i thus introducing an incentive to invest in increasing Eproduction,i
or lowering Eload, resulting in a more sustainable community.

When using proportional allocation, it is preferred to decrease Edemand,i, for it allows the agent
to lower the share of energy allocated x/(x + y) by lowering x. Since x is a bidding price, it
is preferable for it to be low, see eq. (2-29). This reinforces the claim that agents will first use
Eproduction,i to (partially) satisfy Eload,i, reducing or even satisfying Edemand,i.

Over- and under-capacity of the micro-grid

A situation can occur wherein the community’s combined production eventually overflows the
total storage capacity in the grid:
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N∑
i=1

Esupply,i +
N∑
i=1

Eactual,i >

N∑
i=1

Ecapacity,i. (3-5)

Either the excess energy has to leave the grid by exporting to the macro-grid, or production
has to halt. An approach to production-shedding coordination for DER in a community during
over-production beyond the scope of this thesis. For research in this area, see [79].

N∑
i=1

Esupply,i +
N∑
i=1

Eactual,i <

N∑
i=1

Edemand,i (3-6)

On the other hand, it can happen that the combined total supply of the community cannot satisfy
its demand, see eq. (3-6). In this case, energy has to be imported from an adjacent grid, or
operations will have to halt. The community can supply its total deficit by importing energy, but
either-way this case is considered as a fail-event for the community:

• The algorithm is not capable of distributing the energy efficiently through the system or
does not provide enough incentive to store enough energy to survive periods of scarcity.
Individual agents witness depletion-events.

• The micro-grid hardware failed: the production of energy or storage capacity in the isolated
micro-grid is not high enough to survive periods of scarcity and has to import energy from
the macro-grid. There is consistent deficit of allocated energy throughout the micro-grid.

Connection to the Macro-Grid.

We make an assumption of semi-isolation: local trade within the grid is motivated by a two-fold
of reasons; firstly, transmission costs within grid will be more efficient due to smaller transmission
costs and second, dependence and autonomy of the micro-grid is increased, reducing the demand
on the national grid [29]. Only in case of depletion or overflow, see ?? and eq. (3-5), the macro-grid
will either provide or adsorb energy.

3-3 Mechanism design: the EnergyBazaar algorithm

EnergyBazaar establishes interaction between buying and selling agents, ensuring that enough
energy is stored within the micro-grid to provide a smooth and reliable supply throughout time,
depending on Edemand. Time is modelled as discrete time-steps k of 10-minute intervals. At each
time-step, a game is played between players n ∈ N , either classified as a buyer i ∈ I, or as seller
j ∈ J , introducing a hierarchical structure. Buyers are deciding among themselves on a bidding-
price while sellers react by fine-tuning the amount of the amount of energy willing to supply to
the community. The action-space ai of buyers i, at k is governed by utility function Ui. Its best-
response strategy is ci; the bidding price. Meanwhile, the action-space aj of seller j is governed by
utility function Uj , with the sharing-factor wj as strategy. Both utility functions are designed to
capture rational behaviour of the agents. The community is assumed to be non-cooperative and
rational, letting agents to pursue individual economical gain.

3-3-1 Dynamics of the game

With the assumption of uncontrollable energy load Econsumption,n, the trading-algorithm is de-
signed to portion the amount of stored energy passed from time-step (t) to (t + 1). Nominal
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sharing factor wn governs the share of available energy in the grid to be stored or to the be spent.
For a buying household, the demanded energy will not always be fully allocated. In this case, its
battery will supply the remainder to satisfy Econsumptionn. A discrete-time model for the total
amount of energy available in the system:

Estored,total(t+ 1) =
[
(Estored,total(t)− Econsumed,total(t) + Eproduced,total(t))(1− wn(t))

]
. (3-7)

At time-step t, a game is played to determine the nominal sharing factor, wn(t). At the start, a
participating player is either a buyer i or seller j: according their production, consumption and
the preferred SOC of its battery. Ultimately, wn(t) is the control variable that influences the
state of the micro-grid, seen in eq. (3-7). wn(t) is to be determined by the interaction of agents.
A hierarchical structure is introduced to separate a buyers-level game from a sellers-level game,
respectively optimizing in rounds to find global equilibria c∗i (kfinal) and w∗j (kfinal), with k being
the number of the round played, within game at time-step t. The EnergyBazaar game EBZ,
played at k, is defined as:

EBZ(t) =
[
ci(kb)
wi(ks)

]
=
[

argminci
Ubuyers

argmaxwj
Usellers

]
, (3-8)

=


γi ·
∣∣∣∣Edemand,i − Eallocationi

(
wn(ks − 1), c(kb)

)∣∣∣∣λi,1

+
(
Ci
(
wn(ks − 1), c(kb)

))λi,2

γj ·
∣∣∣∣SOCgap,j − Estorage,j(wj)

∣∣∣∣λj,1

+
(
Rj
(
cn(kb),w(ks)

))λj,2

 . (3-9)

In eq. (3-9), Ci stands for the costs made by buyer i and Rj stands for the share of total revenue
seller j receives. The input to the game is Esurplus(t), the nominal (grid-wide) sharing factor
wn(ks − 1) of the previous step and prediction data on the energy pattern of the micro-grid.
The result is wn(k), used to determine Esupply(k + 1), the energy supplied for that time-step.
Round k, consisting of respectively the buyers-level kb and sellers-level ks is initialized with values
ci(kb − 1) and wj(ks − 1). At k = 0, random values within reasonable bounds are generated
(convex-optimization guarantees the discovery of a global-optimum).

3-3-2 Predicting abundance and scarcity: selling or storing

The household ESS plays a role in determining the amount of surplus energy available to the
buyers, or energy demanded by buyers. The ESS gives incentive to buy or sell energy by pursuing
a certain preferred SOC:

Esurplus,j(k) = Eproduction,j(k)− Econsumption,j(k)−
(
SOCpreferred,j − SOCactual,j

)
. (3-10)

The value Esoc preferred,j is deduced from the difference of the actual SOC of agents battery and the
preferred SOC. The preferred SOC is determined by evaluation of the energy needed to survive
until the prediction-horizon h:
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Rounds of EnergyBazaar

Figure 3-2: Progress of rounds and time of the EnergyBazaar algorithm. At each time-step k, an
EBZ game is player to yield an wn, that decided the amount of energy that is left in the micro-grid.
Tuning the game is done by giving agents the right utility functions such that supply and demand
are balanced while social welfare is optimized.

Êbalance,j =
h∑

kp=0
Êproduction,j(kp)−

h∑
kp=0

Êconsumption,j(kp) (3-11)

SOCpreferred,j =
{
Êbalance,j if Êbalance,j > 0

0 if Êbalance,j ≤ 0
(3-12)

Here, h is the distance of the prediction horizon the agent uses. Receding horizon hi is the number
of steps the agent anticipates on. In eq. (3-12) this method is used as well in a micro-grid context.
Prediction Êprediction is retrieved from the data-set, but this should be extended on with real
prediction curve-fitting on past data. As discussed in [170] and [171], neural networks are well-
suited for this task. That said, more simplistic methods could prove as efficient, due to the easily
recognizable patterns within the grid [172], see section 2-2-3.

3-3-3 Buyers-level game

Buyers start off by playing a distributed optimization game using information on demand, Edemand
and energy supply by sellers, Esupply. Since sellers did not yet decide on a wn, this it is randomly
initialized within the domain [0, 1], creating a random Esupply. With a convex utility function,
buyers can converge to a buyers-level Nash equilibrium, see the proof in appendix A-1. Buyer i
needs information on the outcome of the sellers game with which the buyers game is initialized,
w(kb,opt), as well as information on utility function Ui and its corresponding optimization is given:

Ui(c, wn) = γi ·
∣∣∣Edemand,i − Esupply ·

ci∑
l∈I cl

∣∣∣λi,1
+
(
Esupply ·

c2
i∑

l∈I cl

)λi,2

(3-13)

Bi = c∗i (kb) = argmin
ci

U buyers
(
c(kb,opt − 1), wn(ks − 1)

)
. (3-14)

In eq. (3-14), Bi is the best response of buyer i. Logically, buyers want to close the gap between
their energy demand Edemand,i and the energy that is allocated to the agent, Eallocation,i, as much
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as possible, while minimizing their costs of doing so. The parameters λi,1 and λi,2 are set to two
and one to make the utility function convex, while γi is a weight used to express preference for
either deficit minimization or costs suppression. Edemand consists of the in- and out-flux of energy
and the difference between the actual and preferred SOC of its household battery. Eallocation,i is
the amount of energy allocated to agent i through proportional allocation derived from the total
supply at (ks − 1), Esupply:

Edemand,i = Eload,i − Eproduction,i + (SOCpreferred,i − SOCactual,i), (3-15)

Eallocation,i = Esupply ·
ci∑
l∈I cl

. (3-16)

Within Edemand,i, the preferred battery SOC is accounted for; agent i uses battery energy to
supply energy to the load of its household. Since the load is invariable, the agent has to make
sure it can consistently provide demanded energy. It needs to anticipate on the necessary SOC
of its battery. For this, the agent combines a prediction model on its own load, on Esupply from
sellers and on Edemandi from buyers in the community. Value SOCpreferred,i is the SOC that
represents this minimum amount of energy needed to sustain operations on the respective time-
step k. SOCpreferred,i is a set-point variable that is used by the agent to control Edemand,i. By
changing SOCpreferred,i in the next buyers-round (kb+1), the agent is able to close the gap between
Edemand,i and Eallocation,i, the same way a buyer would artificially increase its order in a traditional
proportional allocation game [169].

3-3-4 Sellers-level game

Esupply is decided in the sellers game. Rational seller j ∈ J wants to optimize revenue gained by
selling energy in the buyer-seller game. Decisions on sharing-factor vector for all sellers, w, governs
total supply Esupply, the share of total surplus energy Esurplus to be supplied.

∑
j∈J Esurplusj ·wj

can also be expressed as Esurplus · wn, with wn as the community-wide nominal sharing factor.
Utility function Uj and its corresponding optimization is given:

Uj(w, cn) = γj ·
∣∣∣SOCgap,j − Esurplus(1− wj)

∣∣∣λj,1
−

(
Rdirect

wj∑
l∈J wl

)λj,2

(3-17)

Bj = w∗j (ks) = argmin
wj

Usellers(w(kopt,sopt), cn(kb − 1), ) (3-18)

Utility function Uj is a trade-off between storing energy and selling energy. The share to be
saved for future sales is (1 − wj) and thus wj is the share to be directly supplied to the com-
munity for direct revenue. Total revenue Rdirect is governed by total energy allocated to buyers,∑
i∈I(Edemand,i ∗ ci) and the nominal price cn, decided upon by the buyers urgency for energy

in section 3-3-3. λj,1 and λj,2 are both set to two to make function Uj convex. The total direct
revenue Rdirect is then divided between sellers, proportional to the share of total Esupply that
seller j supplies. The potential share of predicted revenue seller j will receive is the utility gained
by storing energy. Besides pursuing revenue, sellers want to replenish their batteries by covering
SOCgap,j with Esurplus,j(1 − wj). The weight γj expresses the preference of either covering the
storage gap or selling for revenue. Absolute values are taken since no incentive should be given to
store more energy than needed.
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3-3-5 Interaction between buyers and sellers

Since both utility functions Ui and Uj are convex functions, local optima are found through
convex optimization. For this, Sequential Least Squares Programming (SLSQP) is used in both
games. SLSQP makes use of the Han-Powell quasi-Newton method [173]. A merit functionM is
constructed that makes a trade-off between loyalty to constraints and utility maximization [173].
Optimization should have been constrained, see section 3-3-5 but implementation in Python using
scipy.optimize was not successful. The control variable wj is bounded in the domain [0, 1].
Buyers communicate value cn to the sellers to give insight in the direct revenue Rdirect to be made.
The nominal price cn of all bidding prices c is defined as:

cn =
∑
i∈I
(
Eallocation,i · ci

)∑
i∈I Eallocation,i

(3-19)

Subsequently, the sellers use cn within their sellers-level round (ks). The sellers-level game pro-
duces wn which is defined as:

wn =
∑
j∈J

(
Esurplus,j · wj

)∑
j∈J Esurplusj

(3-20)

Finally, wn is plugged into the buyers-level game, providing insight in the amount of Esupply
available in the community, given the fact that Esurplus is know by all. In a decentralized paradigm,
establishing both cn and wn is a task of a smart-contract: agents update their private state within
the smart-contract with respectively their ci or wj and a time-stamp k, after which the smart-
contract is able produce public values cn and wn.

Actuator saturation of ESS

To constraint the optimization in order to satisfy the contract-based requirement to primary
control, discussed in section 2-1-4, we should pose upper-bounds to ci and wj . An approach is
to algebraically derive these upper-bounds from equations of Eallocation,i, and Esupply,j . Upper-
bounds for discharging and charging are:

Esupply,j = Esurplus,j · wj ≤ Pmax,j , (3-21)

Eallocation,i = Esupply,total ·
ci∑
i∈I ca

≤ Pmin,i. (3-22)

For wmax,j and cmax,i, an upper-bound is algebraically derived:

wmax,j = Pmax,j
Esurplus,j

, (3-23)

cmax,i =
∑
a∈N/{i} ca

Esupply,total − Pmax,i
. (3-24)

Here, cmax,i would only be imposed when Esupply,total − Pmax,i > 0. An issue arises when im-
plementing upper-bound cmax,i in a hierarchical game; buyers respond to each other by altering
their price. An constraint on bidding price ci that depends on the sum of all other bidding prices,
expressed as

∑
a∈N/{i} ca, will eventually decrease ci to zero. In eq. (3-24), we clearly see the rela-

tionship between ci and
∑
a∈N/{i} ca. Since wmax,j depends on local values, we do not experience

this issue at the sellers-level game. We further discuss the method and the unconstrained behaviour
of ESSs in section 4-1-3. Note that chapter 4 discusses results of unconstrained optimization.
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3-3-6 Proof of convergence: existence of a Nash equilibrium

We use a Nash equilibrium as solution concept, motivated in section 2-3. A Nash equilibrium is
a situation wherein all players cannot further improve their utility Ui by changing their personal
strategies c∗i in response to all other player’s strategies:

Ui(c∗i , c) ≥ Ui(c′i, c) ∀i ∈ I (3-25)

For player i to find the optimal response to the strategies of others, −i, it optimizes utility function
Ui over ci, its game variable. For agents to converge in a round-based game, it is essential that
Ui is convex, since convex optimization guarantees a unique local optimum [72]. To prove the a
function to be convex, the second derivative is required to be positive.

∂2Ui
∂c2
i

> 0 (3-26)

∂2Uj
∂w2

j

> 0 (3-27)

For ci bounded from below at 0 and for wj bounded in the domain [0, 1], this is the case. For
this proof of both Ui and Uj , please be referred to appendix A-1. For households to converge
to a Nashequilibrium, an unique Nashequilibrium must exist where each player [101]. In case of
the Stackelberg-game framework taken from [72], the followers utility function, in this case the
buyer-function Ui, must be a standard function [174, 72]. For function f(p) = (f1(p), ..., fN (p)
with p = (p1, ..., pN ), f(p) is a standard function when the following three properties are satisfied
for p ≥ 0 [174]:

• Positivity: f(p) > 0,

• Monotonicity: For all p and p′, if p ≥ p′, then f(p) ≥ f(p’),

• Scalability: For all µ > 1, µf(p) > f(µp).

With f(ci) = Ui, these properties need to hold in order for the iterative interaction between buyers
(outputting c∗n(k)) and sellers (outputting w∗n(k)) to converge towards a global Nash equilibrium.
Please be referred to appendix A-1-3 for proof of standardness of Ui. Utility functions Ui and Uj
are depicted in fig. 3-3.
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Utility functions Ui and Uj

Figure 3-3: Shape of utility functions Ui and Uj . Clearly visible are the trade-offs; for Ui between
the closing the gap and corresponding costs, for Uj between closing the gap and missed revenue.
Grey lines indicate the local optima. Uj actually is a concave function, while Ui is convex.

3-4 EnergyBazaar on Blockchain

Using Blockchain within the micro-grid solves three distinct problems that arise when introducing
decentralization. Firstly, introducing a smart-contract as a substitute for a centralized institute
governs the payments made by buyers to sellers in a decentralized fashion. This way the micro-
grid becomes a transactive grid. Secondly, a smart-contract can function as a record keeping
of promises made during trading, countering fraudulence manipulation of prices. Lastly, the
communications network between agents cannot simply be assumed synchronous and the smart-
contract can function as a time-stamping server to create an temporal order in transactions made
in the micro-grid.

3-4-1 Blockchain applied to energy-trade

With the micro-grid as a closed community in which the number of participating agents is known,
we can implement EnergyBazaar as a permissioned Blockchain. In a permissioned network, an
identity based practial Byzantine Fault Tolerance (pBFT) consensus protocol suffices, whereas
in a permissionless network a more extensive entity-based consensus protocol, such as Proof of
Work (PoW) is needed since leader-election according to voting power has to be linked to entities
instead of identities. In a permission-less network, Sybil attacks can be made by malicious nodes
to represent a its entity with multiple identities, increasing its voting power in case of a identity-
based consensus protocol. In a closed community micro-grid, the number of agents is known and
thus voting power can be divided according to identities; it can be easily verified whether the
number of nodes (identities) is equal to the number of households (entities).

A Blockchain platform that combines a permissioned network with smart-contract is Ethermint:
a combination of Ethereum and Tendermint. Tendermint is a secure state-machine replication
algorithm, originally making use of the pBFT consensus protocol. With a pBFT protocol, in a
network of 2f + 1 nodes, up to f < N

3 of nodes can arbitrarily fail, while still achieving consensus
in an asynchronous network. For a complete overview of Tendermint, see [175]. Ethereum provides
a smart-contract programming language; Solidity. We write in Solidity since it will be used by
Ethermint. See appendix B-2 for a walk-through of the smart-contract.
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3-4-2 Design of the EnergyBazaar smart-contract

We wrote a smart-contract that we deployed on Ethereum. It has the purpose to settle deals
agreed upon by a buyers and sellers and to act as a negotiator between buyers and sellers. Either
directly deployed on the Ethereum Virtual Machine (VM) or used by a permissioned Blockchain
on Ethermint, the smart-contract is written in Solidity, a smart-contract orientated and Turing-
complete programming language. We use the Application Programming Interface (API) Web3.py
to connect the smart-contract to the micro-grid model in Python. In appendix B-2, further
explanation on certain functions is given.

Broadcasting minimal information to the community

Agents make use of a smart-contract to share their optimization context with the rest of the
network. Preferably, EnergyBazaar maintains the privacy of agents and is confidential. Privacy
means that the identity of the agent is not given away when an agent participates in energy-
trade. Confidentiality of EnergyBazaar makes sure that the information that is shared with the
smart-contract is not shared with all other agents. Privacy and confidentiality on Blockchain is a
challenge since all state-changing transactions to the smart-contract are per definition shared with
all nodes in the Blockchain network. This is a major drawback of a smart-contract: information
cannot be privately stored.

Considering information shared in EnergyBazaar: Edemandi is sensitive since it tells about the
characteristics of the household of agent i. For example, malicious agents could identify agents
that away from home by looking for periods of time where Edemandh of honest agent h is zero.
Thus, effort is made to keep Edemandi concealed from other agents. The distributed optimization
algorithm of EnergyBazaar is designed such that agent i does not have to share Edemandi, but
only its bidding price ci. The information sensitivity of sellers is lower: both Esurplusi and wj ,
combined to be the product of the trade Esupplyi, are necessarily shared. The mapping of shared
information in EnergyBazaar among buyers and sellers is:

buyeri → buyers−j : ci
buyers→ sellersall : cn
sellerj → sellers−j : (Esurplus,j , wj)
sellers→ buyersall : (Esurplus,j , wj).

Bidding price ci expresses the necessity for energy; even with this information, behavioural patterns
can be derived [176]. An ideal situation would be to obscure ci as well. Currently, this is not
possible, since buyers necessarily have to be updated by other agents to solve the optimization
game.

Market manipulation of malicious nodes

EnergyBazaar opens a way to fraud the system: a malicious agent am could yield a higher revenue
when mid-optimization it lowers its Esurplus,m. Since this incentive applies to all sellers, prices
can artificially surge through this mechanism when all sellers participate. The promise system
requires all agents to record their surplus and maximum demand prior to optimization. After
the market game has been played by participating agents, the smart-contract verifies through an
internal function whether {Esurplus,j · wj = Esupply,j is True}. If so, the payment is executed.

For this, the first smart-contract state-change initialized in a trading agent is a promise, see
eq. (3-28). After optimization, the output of the game consists of trading-deal, see eq. (3-29).
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Influence of a seller breaking its promise on the utility of a buyer

Figure 3-4: Selling agent am increases the minimum utility of buying agents by reducing its promised
supply at the last moment. To counter this, sellers have to update their promised Esurplus in the
state of the smart-contract prior to the optimization round. The buyer has to bid a higher prices for
the same amount of energy.

Mpromise,a = {Edemand,promise,a, Esurplus,promise,a, ka}, (3-28)
Mexecutea = {Eallocated,real,a, Esupply,real,a, ka}. (3-29)

As mentioned before, in between seller and buyer-level rounds, c and w are transformed to cn and
wn. Function computeNominalc receives the set of bidding prices and internally computes and
afterwards discloses cn. The same is done for wn. For each agent to know who is momentarily
participating in solving the EDP, the smart-contract acts as a time-stamping server. All agents
include their current time-step ka within each message. Agents thus are able to exempt lagging
agents from the current optimization at round k. These lagging agents are then excluded from
that particular trading-round, since they are not able to provide up-to-date information on either
demand, supply, bidding price or sharing factor. The complete mapping between agent i its
address and smart-contract state at agents time-step ki:

addressi → {balancei, updatepromise,i, updateaction,i, promisesell,i, promisebuy,i|ki}. (3-30)

The mapping 3-30 is a state in the smart-contract and is public to all participating nodes.
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Chapter 4

Results and Validation

In chapter 3, a trading mechanism has been designed that coordinates the charging/discharging
of a Energy Storage System (ESS) of households in a distributed fashion. To be able to draw
conclusions, performance and comparison to existing methods investigated in chapter 2, we analyze
results and comparisons in this chapter.

4-1 EnergyBazaar: evaluation of performance

This section will present the results achieved by deploying the EnergyBazaar algorithm as a
distributed solution to the Economic Dispatch Problem (EDP).

4-1-1 Testing EnergyBazaar

Evaluation is three-fold; the measure of self-sustainability of a micro-grid from the macro-grid,
the costs involved with decentralization, and the ability to link EnergyBazaar to the macro-grid.
For this we identify three areas in which EnergyBazaar must be tested:

• Decentralization and independence. We look at the measure of independence from the
macro-grid. A conclusion is drawn on the optimal battery capacity of a household.

• Cost of Anarchy. We make a comparison between EnergyBazaar and a centralized EDP
solution to investigate the sense of fairness and computational viability of the micro-grid
with EnergyBazaar as a solution to the EDP.

• Linking micro-grid and macro-grid. We make a statement regarding the tipping point
where communities would decide to decentralize and about the link that remains with the
outside world.

Key Performance Indicator (KPI)

To show the performance of our algorithm, we compare a micro-grid running on EnergyBazaar
to a situation where no trading is allowed. Additionally, a half-way approach is given in order to
benchmark the utility functions of EnergyBazaar with agent behaviour used in [72]. In a ’no-trade’
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situation, households are fully isolated from each other in terms of energy trade. In a situation
where EnergyBazaar is implemented, households are able to trade energy with each other. Energy
shortages are expressed in deficits: the amount of energy that was needed satisfy the households
original energy load. To maintain operations, this deficit needs to be imported from an other
source; the macro-grid. EnergyBazaar should make a micro-grid independent from the macro-grid
in terms of energy import. Thus the performance indicator that is used is the deficit of agents in
the micro-grid:

Ebalance,i(k) = ESOC,i(k − 1) + Eproduction,i(k) + Eallocation,i(k)− Eload,i(k), (4-1)

Edeficit,i(k) =
{

Ebalance,i(k) when Ebalance,i(k) < 0,
0 when Ebalance,i(k) ≥ 0. (4-2)

To maintain grid-stability; considering our assumption that all Eload is critical, all households have
to be able to satisfy Eload using either battery reserves, personal energy production or allocated
energy. If not, the total deficit at step k,

∑N
i=0 Edeficit,i(k), has to be imported from the macro-

grid, ruling out independency. Beside the average deficit, we look at the overflow of energy;
energy that is produced but cannot be stored or sold. If batteries overflow, energy is not used
and goes to waste. Overflow occurs when production is too high, battery capacity is too low or
when EnergyBazaar is not effective in distributing energy among all agents, and thus has to be
minimized.

Table 4-1: An overview of relevant control parameters.

Parameters Symbol Value Unit
Battery Capacity Ci 19 kWh
Prosumers p 50 %
Prediction horizon h 90 steps
Population size N 40 -
Buyers weight γbuyers 1 -
Sellers weight γsellers 1/3 -

In table 4-1, all initialization parameters are given that influence the outcome of the simulation.
Effects of capacity Ci, prosumer participation p and the horizon h are investigated in section 4-1-3.
Weights γbuyers and γsellers are fixed at 1 and 1/3 after tuning trials.

Simulation in Python

We run our micro-grid model, of which the systems-layout is as discussed in appendix B-1, in a
5-day simulation, using the input-data discussed in section 3-2-2, with a resolution of 1-minute.
Time is divided into discrete time-steps k. In this work, the interval of (k + 1)− k is 10 minutes.
This interval prescribed that energy-trade within the grid operates in a 10-minutes ahead market,
slightly faster than the German Program Time Unit (PTU) interval of 15-minutes [177]. However,
the interval resolution can be set to arbitrary intervals, with a minimum of 1 minute.

The default size of the agent population N is 40, but can vary between 6 and 100 agents. See
section 4-1-6 for an evaluation of variable complexity of solving the EDP within the range of
N . Total energy generation is assumed to be equal to total energy consumption. Prosumer
penetration p is set to 0.5, meaning that 50% of agents are households with Photo Voltaic (PV)
panels installed. On default, the prediction horizon h is at (k + 72). With a 720 minute horizon,
agents can anticipate on the coming 12 hours. All households are given an ESS with a capacity of
19 kWh. A battery of 19 kWh is considered very large for a household ESS: ≈ 1.5 times as large as
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a Tesla Powerwall. Maximum charge and discharge limits are set according to battery saturation,
see eq. (2-16).

Due to discontinuation of the simulation, the final day of 144 steps shows irregular charging
behaviour in all situations, resulting in higher overflows of batteries. These overflows are caused
by the prediction horizon h shrinking to zero steps, resulting in consumer demand Edemand,i to drop
to zero. When comparing between methods, these irregularities are not omitted. Irregularities
only occur at boundaries of the simulation.

To simplify our model, we assume all households to have uniform utility functions, either Ui when
buying or Uj when selling. In a real application, utility functions might differ: agents could have
a preference towards economical gain or a zero-deficit, see section 5-2.

4-1-2 A week in the life of a semi-isolated micro-grid

We monitor the trading behaviour within the micro-grid for a duration of five days. A comparison
is made between a ’no-trade’ paradigm and the ’EnergyBazaar’ paradigm. We compare Energy-
Bazaar to the energy-trading framework discussed in [72] as a benchmark. Batteries are given an
initial State of Charge (SOC) of half of their total capacity to minimize the boundary irregularities
but also witness the agents coping with initial scarcity.

Regarding the coming figures (figures 4-1, 4-2, 4-4 and 4-5), we show for each method both SOC
progression over the week and the deficits and overflows occurring over the week. in the upper
plot, the averaged SOC (kWh) of consumers and prosumers is showed for the duration of five days.
The standard deviation is given as a blue fill-in and the both extremes of all batteries is given
in a red fill-in. In the lower-plots, the total mean deficit and the prosumer mean deficits shown
along-side with the total overflow in the systems at each time-step k.

No inter-trade among agents

A ’no-trade’ situation is simulated, seen in fig. 4-1. Trade among agents has been disabled, showing
the natural deficit that would occur. This situation is comparable with households residing in
a normal utility-grid where prosumers are not given opportunity to sell their energy. Buyers
import from the macro-grid and sellers export to the macro-grid. Although prosumers are able
to survive energy scarcity by replenishing their batteries and are thus autonomous, consumers
experience depletion early on in the week and are thus forced to import energy from the macro-
grid. Independence from the macro-grid is not possible since at all times, there is a deficit for
both consumer as for prosumer.

EnergyBazaar deployed in full

Figure 4-2 shows the micro-grid when EnergyBazaar is deployed. An extensive formulation of
EnergyBazaar is given in chapter 3. With EnergyBazaar, agents are able to trade among each
other. The result is that energy, previously aggregated at prosumers, is dispersed over all agents,
thus reducing neatly distributed are consumers and overflow at prosumers. We see a drastic reduce
in overflow and deficit, fig. 4-2; which means that energy is efficiently distributed throughout the
micro-grid. Prosumer energy is able to reach the consumers, for which they pay a price, see lower
left figure in fig. 4-7. Consumers have a stronger preference to maintain a high SOC, thus start
loading their ESS earlier than prosumers. This process derails slightly at the end of the simulation,
due to boundary issues discussed in section 4-1-1.

H(s)
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Progression of SOC, deficits and overflows with no trade enabled

Figure 4-1: Micro-grid consisting of 40 household agents, without EnergyBazaar deployed; agents
are not allowed to trade energy. Only prosumers are barely able to survive scarcity by night, consumers
experience a depletion event early on in the week.

Progression of SOC, deficits and overflows with EBZ

Figure 4-2: Micro-grid consisting of 40 household agents, with EnergyBazaar deployed; agents are
trading energy among each others according to a hierarchical round-based game, where in energy
demand is expressed in higher prices, creating incentive to trade.
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Bench-marking agent behaviour

The Stackelberg-game framework of [72] is an inspiration to the hierarchical game structure of
EnergyBazaar. However, the game played in [72] is closed-loop where sellers anticipate buyers
plugging an algebraically computed c into their utility function Uj . Also, [72] does not utilize
prediction and needs a distinct link to the macro-grid for agents to establish bidding prices c.
To see the increase in performance that EnergyBazaar’s inclusion of prediction yields, we replace
utility function for selling agents, see eq. (3-18), with a function proposed in [72], where a trade-off
for sellers is modelled between battery degradation and the revenue Rj and does not look at the
preferred SOC of its battery w.r.t future needs. Sellers utility function Uj of [72]:

Uj,new(w, c) = ln[1 + Esurplus,i(1− wj)] + γj ·

(
Rdirect

Ejwj∑
l∈J Elwl

)
, (4-3)

with utility of agent j being is a trade-off between a diminishing return function of battery storage,
expressed by the natural logarithm, and a direct revenue Rj . γj is tuned to 0.4, relaxing the trade-
off function such that the bandwidth of optimal w∗j is extended, see appendix A-1-4.

4-1-3 Parameters influencing total deficit in the micro-grid

As default, we chose a battery size of 19 kWh, a prosumer participation of 50% and a prediction
horizon of 15 hours (i.e. 90 time-steps). The value of these parameters have a big influence on the
applicability of EnergyBazaar to a real-world setting.

Battery size

Assuming that in the micro-grid,
∑N
i=0 Eproduction ≈

∑N
i=0 Eload, deficit and overflow is decided

by the initial battery SOC, the battery size and the efficiency of EnergyBazaar in distributing
Esurplus to consumers. The initial battery SOC really only influences deficit and overflows during
the first 12 hours. More importantly, the battery capacity decides whether agents are able to have
enough storage capacity to survive the night. For a household with an average energy demand of
15 kWh per day, we look at different battery sizes and compare deficits.

Figure 4-3: Influence of battery sizes on total deficit: by increasing the maximum battery capacity,
deficits in the micro-grid decrease. The rate of deficit reductions slows down with higher battery
sizes. On default, we chose a battery size of 19 kWh.

On default, all households in the community own a personal ESS with a capacity of 19 kWh. This
capacity yielded the best results: since we modelled the load-patterns to mostly have their 15 kWh
energy consumption during the night, batteries have to be large to survive this nightly scarcity.
However, with this we intended to show a worst-case scenario. Since costs (e/kWh) for chemical
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Progression of SOC, deficits and overflows with a benchmark Uj

Figure 4-4: Micro-grid state-of-charge and deficits in a EnergyBazaar deployed paradigm using a
bench-mark utility function for sellers, Uj , from [72].

Progression of SOC, deficits and overflows with PSO controller

Figure 4-5: Micro-grid state-of-charge and deficits of trade dictated by a central controller replacing
the hierarchical game structure with a PSO.
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batteries are still high, we foresee a combination of technologies to be used in unison [15], such a
combination of a low-friction and inexpensive community-shared fly-wheel for long term storage
and smaller personal household chemical batteries. Using ESS shared by the community, discussed
in [178], could greatly decrease capital costs and could be easily managed by a smart-contract that
leases out virtual space of the community energy storage.

Prosumer participation

Less prosumers means less sellers but equal demand thus higher allocations. An increase of
Eallocation,i is allowed until actuator saturation occurs. For an Tesla Powerwall, actuator saturation
lies at 0.83 kWh for each time-step k (kWh/k, k being a 10 minutes interval), discussed in eq. (2-16).
Sellers are thus physically not able to deliver more at one time-step. We showed in section 3-3-5
that a naive method of charging/discharging behaviour of ESS does not prove effective. Although
additional research on actuator saturation within the trading-game EnergyBazaar is needed, we
already look at the actual behaviour of ESS in the micro-grid.

In fig. 4-6 we see the most extreme (dis)charging at given k. Although the averages lie below
the saturation boundary of 0.83 kWh, certain batteries show spikes, especially at the end of the
day, that gravely exceed boundaries. Furthermore we see the effect of an increase of prosumer
participation in the micro-grid. With an increase of 2 0% to 50% of prosumers, the extremes are
limited significantly. An even higher increase in prosumer participation, e.g. from 50% to 80%
does not yield an as big of an improvement w.r.t. lowering extreme dis(charging) behaviour. Three
measures should be taken in parallel to mitigate restriction of trading by actuator saturation: have
a sufficiently high participation of prosumers in the micro-grid, lowering the burden of individual
sellers; increase the actuator limits of ESS by improvement in battery technology and; develop
hard-coded constraints to the trading optimization.

Maximum charging and discharging behaviour of all ESS

Figure 4-6: Maximum charging and discharging behaviour of agents with a variable prosumer par-
ticipation p. Increasing p lowers the maxima. Upper figure is charging behaviour, below which the
discharging behaviour is depicted.
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Prediction horizon p

Additionally, the performance of EnergyBazaar depends on prediction horizon h. To investigate
the optimal value for h, we preform a parameter-sweep in the range of [50−110] steps. The default
horizon is set to 90 steps, since for this horizon distance, total deficits are the lowest, see table 4-6.
The accuracy of weather and consumption pattern prediction for a horizon of 15 hours (90 · 10
minutes) should be sufficiently high using simple forecasting techniques discussed in section 2-2-3.

Table 4-2: Deficits and overflows for respectively prosumers and consumers. Over the range of [50,
110] it is clear that an optimum is found around a horizon distance of 90 steps. This distance also
roughly equals the average length of the production scarce periods.

h length 50 60 70 80 90 100 110
deficit consumers 42.55 54.92 33.57 16.63 11.24 17.40 30.04
deficit prosumers 239.13 159.33 99.61 70.13 37.60 84.32 111.46
overflow consumers 236.70 196.02 135.08 121.27 134.26 156.91 192.24
overflow prosumers 36.15 83.54 38.02 52.54 39.58 43.20 18.45

4-1-4 Central control by PSO

A optimal solution for the economic dispatch problem is found using a PSO algorithm. We used
this as comparison scenario to EnergyBazaar in terms of agent costs and computational complexity.
By solving the EDP by using PSO we substitute the hierarchical distributed game by a central
controller. Although the behaviour captured in utility functions Ui and Uj remains the same, we
change the means of reaching the optimal configuration for this behaviour.

PSO is a non-linear, centralized and collaborative optimization method: particles are created
and are assigned a position and velocity, with which a momentum is calculated. After initiation,
particles search the multi-dimensional solution space. This solution space consists of all possible
combinations for c, bounded by [0,∞) and w, bounded by [0,1]. Particles with an high utility have
less incentive to search an other location in the solution-space, while particles with a low utility
do have this incentive. Particles are drawn to locations with a high-density of fellow-particles,
mimicking the behaviour of a swarm, school or flock of animals. These three mechanisms cause
particles to conglomerate at locations of high utility, thus pin-pointing the optimal configuration
of c and w. See section 2-2-2 for more information on PSO.

We do not include the hierarchical game in the PSO, since PSO is meant to evaluate all dynamics
at once. Thus, an combined utility function Uj is created and tuned:

Upso(c,w) = γpso · Uj(w) + Ui(c)
γpso

, (4-4)

with a γpso set to 1.5, increasing slightly the resolution of the evaluation of Uj , yielding an slightly
lower total deficit. Parameters used during the PSO: the minimum change of swarm’s best utility
before termination, minfunc, is set to 0.01 and the swarm consists of 1000 particles.

Evidently, the PSO has to be executed at a central controller that necessarily needs information
on Edemand,i for all buying agents and Esurplus,j of selling agents. Since especially Esurplus,j
is sensitive, see section 3-4-2 for a discussion on this topic, a centralized PSO approach is not
privacy preserving and creates a single-point of failure; if the controller fails the grid will fall back
into a ’no-trade’ situation. The result that this approach yields is seen in fig. 4-5.
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Looking at control values of both EnergyBazaar and PSO, we see that the pricing appears more
predictable for the case of EnergyBazaar. The PSO does not regard buyers responding to each
other, omitting the game-theoretical part of EnergyBazaar. Thus, PSO solves the EDP prob-
lem, but not through a more natural free-market mechanism. Because of a less efficient solution,
Edemand is higher later in the week than in the case of EnergyBazaar. We see that under Ener-
gyBazaar, prices drop to zero when supply is higher than demand, which is not the case with our
PSO method. The combined size of set of sellers J and buyers set I is not necessarily equal to
the total number of agents N . This is because agents can decide not to participate in trade and
live off their battery reserve, thus become ’passive’.

A peculiarity is that during EnergyBazaar trading, sellers either sell all their Esurplus,j or nothing
at all. This originates from the utility function Uj that provides an incentive to close the gap
between a preferred battery charge and the actual battery charge. Under EnergyBazaar, sellers
decide to become sellers only to when their preferred SOC is reached, thus with the gap already
closed. With the PSO algorithm, this gap is not always closed.

4-1-5 Comparison of deficit and overflow over all methods

We give an overview of deficits and overflows during 5 days of micro-grid simulation. In fig. 4-9
and fig. 4-10, we plot the deficit per time-step k in kWh/k over time-steps k. In a no-trade situa-
tion, energy is not distributed among agents, creating deficits at consumers and energy overflows
(i.e. waste) at prosumers. By introducing a trading algorithm, energy is distributed according
supply and demand, resulting in a lower deficit and overflow. EnergyBazaar out-performs both
its benchmark and the centralized PSO method w.r.t. distribution efficiency.

In table 4-3 the total deficits and overflows for both the set of consumers and set of prosumers is
given. EnergyBazaar (EBZ) manages to attain the best energy distribution in general, but does
not yet completely reduce the deficit and overflow to zero: consumers tend to buy to much energy,
resulting in a consumer overflow.

Table 4-3: Deficit and overflow comparison between various methods. No trade is a worst-case
scenario. EnergyBazaar improves deficit for both prosumers and consumers.

KPI (in kWh) No trade Benchmark EBZ PSO
Deficit consumers 1111.21 24.23 17.99 118.66
Deficit prosumers 222.78 129.79 43.47 56.64
Overflow consumers 0.0 146.35 133.840 144.43
Overflow prosumers 1460.76 70.96 12.14 95.56

No method used yields a deficit of zero. This means that no method is able to isolate the micro-
grid from the macro-grid completely. Nevertheless, we expect that with EnergyBazaar, deficits
are reduced to a point that load-shifting strategies, discussed in section 2-1-3, could mitigate the
remaining deficit, as discussed in section 5-2.

4-1-6 Computational complexity

To look at computational scalability, we preformed a batch-run on both EBZ and PSO over an
increasing number of agents. Since the PSO approach is a non-linear ’shot-gun’ approach, the
computational difficulty increases exponentially when increasing the amount of agents in the grid.
See table 4-4 for the experimental set-up specifications. On the contrary, EnergyBazaar performs
better: with a linear increase of complexity as N increases. The PSO complexity progression is
fitted by a second order polynomial, while the progression under EnergyBazaar is a best fit with
a linear function.
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Control values (demand and supply, agents classes, cavg and wavg) with EBZ

Figure 4-7: From upper-left plot, clock-wise: supplied energy and energy demand; buyers and sellers
pools; sharing factor wj ; average bidding-price ci, all plotted over the duration of 5 days. Simulation
of the micro-grid with EnergyBazaar. We see bidding prices that intuitively correspond to demand
and supply in the system.

Control values (demand and supply, agents classes, cavg and wavg) with central controller

Figure 4-8: From upper-left plot, clock-wise: supplied energy and energy demand; buyers and sellers
pools; sharing factor wj ; average bidding-price ci, all plotted over the duration of 5 days. Simulation
of the micro-grid using the centralized PSO approach. We see that the bidding prices is erratic, while
supply factors are not 1 even-though demand is higher than supply.
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Deficit comparison between various methods

Figure 4-9: A comparison of deficits during the week in various situations; No-trading, see section 4-
1-2, EnergyBazaar deployed, see section 4-1-2, a benchmark to EnergyBazaar, see section 4-1-2 and
the centralized PSO approach, see section 4-1-4. At every night and day cycle, EnergyBazaar is
better at reducing energy deficit in the grid than other methods. Deficit over all is reduced by a
factor ≈ 50, but not reduced to zero.

Overflow comparison between various methods

Figure 4-10: A comparison of overflows during the week in various situations; No-trading, see
section 4-1-2, EnergyBazaar deployed, see section 4-1-2, a bench-mark to EnergyBazaar, see sec-
tion 4-1-2 and the centralized PSO approach, see section 4-1-4. At every night and day cycle,
EnergyBazaar is better at reducing energy overflow in the grid than other methods.

Nevertheless, a centralized controller is able to aggregate computational power and communica-
tion is solely intern, while EnergyBazaar requires agents to communicate with each through a
blockchain with a smart-contract. This is not included but is expected to deal a considerable
blow to the performance of EnergyBazaar. The creators of the practial Byzantine Fault Toler-
ance (pBFT) discuss in [179] the performance of the protocol w.r.t. the communications network,
but only on a limited scale of 4 nodes (one of which malicious). A model accounting for network
latency should aid in testing the scalability of an EnergyBazaar micro-grid.

Table 4-4: Experimental set-up: Mac-Book pro 2014

2.6 Ghz Intel Core i
8 GB 1600 Mhz DDR3
Intel Iris 1536 MB
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Complexity comparison between EBZ and a central PSO controller

Figure 4-11: Elapsed computation-time comparison between PSO and EBZ; with increasing the
number of agent in the micro-grid, EnergyBazaar linearly increases in computational complexity
while the centralized PSO method shows an exponential increase

4-1-7 EnergyBazaar on Blockchain

To test the performance of EnergyBazaar running over the Ethereum Virtual Machine (VM),
with the TestRPC provide we create a test-network using the Web3.py Application Program-
ming Interface (API). Agents are assigned an address and use it to sign transactions. With
Blockchain enabled in the implementation of EnergyBazaar in Python, agents communicate over
the blockchain. State-changing transactions are made towards the smart-contract. This way, the
shared values of ci, wj , Esurplus,j , cn and wn are shared through the smart-contract. In TestRPC,
blocks are immediately mined after transactions are broadcast. The elapsed time of a simulation
with communications over Blockchain greatly increases, see table 4-5.

Table 4-5: EnergyBazaar on-chain versus off-chain. Adding the communications through Blockchain
in the TestRPC network increases the elapsed time with factor 37. In this simulation, community
contains nine participating households.

EnergyBazaar off-chain ≈ 1.5min
EnergyBazaar on-chain ≈ 56min

Regarding on-chain communications, especially buyers have a high communication burden. Before
each game, buyers and sellers make a promise transaction Txpromise,n. For each optimization
round, both buyers and sellers communicate their ci and wj to the smart-contract by making an
action-transaction Txaction,n for all agents in N . Thus the number of transactions made in the
micro-gird at time-step k is NTx = (NI + NJ ) + (itbuyers · NI + itsellers · NJ ). Here, N is the
number of participating households, NI is the amount of buyers and NJ is the number of sellers.
Respectively, itbuyers and itsellers is the number of iterations in the buyers and sellers game.

The most iteration intense time-step is during the third day in the afternoon. The transaction
rate over Blockchain reaches ≈ 2Tx/sec, when k is 10 minutes. For a permissioned Blockchain
such as Ethermint, with its Proof of Stake (PoS) protocol that takes up to 200 Tx/sec, this is
not a problem [180]. The transaction rate scales linearly when increasing the number of agents,
since the average number of iterations does not increase significantly when increasing the number
of agents. This was tested up to 100 agent; but with duplicated data-sets for agents i > 44 where
noise was added to.
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Iterations for buyers and sellers rounds

Figure 4-12: Iterations for buyers-level, sellers-level and global-level game.

Transaction throughput rate of EnergyBazaar with 40 households

Figure 4-13: Transaction rate of agent communication to the Blockchain. Maximum transaction
rate is ≈ 2 Tx/sec for a micro-grid of 40 households.

4-2 Micro-grid versus the macro-grid: when to decentralize?

When a community cannot rely on central institutions it might decide to decentralize, decen-
tralization fueled by a social motivation. A community can also decide to decentralize its grid
because it is cheaper, an economical motivation: for this case it is important we investigate in a
methodology to find this tipping-point.

Levelized Cost of Electricity (LCOE) for a micro-grid

Within the micro-grid, buyer i gives prosumers tokens in return of their Eallocation,i. Since pro-
sumers have a steady Esurplus to be sold, prosumers will aggregate token within the grid, while
consumers will constantly buy energy, thus spend tokens. Without circulation of token consumers
will soon run out of initial token reserves. Additionally, without a way to use tokens, they will
be worthless to the prosumer, stealing away the incentive to trade on the micro-grid market and
thus help consumers. We search for a way to vitalize token-exchange in the micro-grid.

For both problems, two solution can be found. Firstly, establish a circular token-based economy
with the EnergyBazaar token as a decentralized corner-stone. Then, energy-tokens can be spend
by prosumers for services or products consumers offer in return. However, the commitment of a
community to reject a fiat-currency must be large and infrastructure must be developed for this.
A more realistic method is to link the energy-token to a fiat-currency.
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One clue is the fiat-investment in hardware made by prosumers at the creation of the micro-grid.We
calculate the LCOE of both prosumer and consumer, a calculation used to express generalized
e/kWh for generation plants [181]:

LCOE =
Ic +

∑n
t=1

Oc,t

(1+i)t∑n
t=1

Eproduction,t
(1+i)t

. (4-5)

In eq. (4-5), the levelized costs of electricity in e/kWh for any power-plant is described. Ic is
the base investment, Eproduction,y is the annual power output and Oc,y are annual costs. n is the
life-span of the plant, in this case the PV panels and ESS and the year of operation t is included
to express interest rates over the years.

The LCOE for a consumer buying from the macro-grid is the average price for a kWh, 0.204e/kWh
[182]. For a consumer in a micro-grid running on EnergyBazaar, the LCOE within the Energy-
Bazaar community is calculated by eq. (4-5):

LCOEEBZ =
(Ic +Oc) · Esupply,y

Eproduction,y

n · Esupply,y
. (4-6)

Here, a prosumer sells surplus energy for a price that accounts for its investment in hardware and
for the LCOE: the price the agent would pay as a consumer to the utility grid if not producing
energy himself. In eq. (4-6), a few assumptions have been made for simplification. The missed
interest rate is omitted, thus t is 1. Also, Oc,y is a constant, yielding Oc which is the total
expected operational costs for the total lifespan. An economic assumption is that the prosumer
wants to break even with its costs, through reimbursements with tokens. With these assumption,
an expression for the token value Tv is derived:

(Ic +Oc) ·
n · Esupply,y

n · Eproduction,y
−Nt · Tv = 0. (4-7)

In eq. (4-7), Nt is the average amount of tokens received by a prosumer over the year. A payment
at a given time-step k of : Nt = ci · Eallocation,i. The energy originates from prosumers, who in
return receive tokens for their supplied energy. Economically motivated consumers will refuse to
pay more than macro-grid prices.

Table 4-6: Parameters that are used for a calculation of LCOE in the micro-grid.

Parameter Symbol Value Origin
Life-span PV panel n 25-30 years from [181]
Installed investment Ic 56,000 e 7 e/Wp, from [181]
Operational costs Oc 10,000 e from [181]
Annual production Eproduction,y 10950 kWh from assumption, 8kWp
Annual supply Esupply,y 5111 kWh from simulation
LCOE of macro-grid LCOEutility 0.204 e from [182]
Aggregated tokens Nt 222 from simulation
Token value Tv e
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An simplified LCOE example

A token should be carefully linked; if token value Tv proves too high, consumers would rather buy
energy from the macro-grid. If Tv is too low, prosumers won’t invest and maintain hardware, see
eq. (4-7). A calibration for Tv with fiat-currency (e) is algebraically derived from eq. (4-5):

Tv = (Ic +Oc) · Esupply,y

Nt · Eproduction,y
(4-8)

Filling in the variables in eq. (4-8) and eq. (4-7) produces an example:

Tv = (56, 000 + 10, 000) · 5111
222 · 10950 = 138, 12e (4-9)

mLCOEEBZ =
(56, 000 + 10, 000) · 5111

10950
25 ∗ 5111 = 0.241e/kWh (4-10)

With these two values, a rudimentary answer is given to two questions posed in this subsection.
When should a community decentralize? And what is a method of calibrating a token to a fiat-
currency. With a method to set the token value Tv to a value in e, an bona fide exchange is
possible between prosumer and consumer and with it, the rest of the world, solving the problem
of prosumers aggregating ’useless’ tokens.

Secondly, a community grid should decentralize when prosumers can get break-even in their costs
of energy generation, yielding LCOEEBZ. In addition, consumers pay less to sellers in the micro-
grid than to the macro-grid. For this last requirement, LCOEEBZ ≤ LCOEutility needs to hold. In
the example given above, this is not yet the case with current prosumer-costs; with the LCOEEBZ
being 0,0370 e/kWh (or a factor 1.18) more expensive than buying energy from the macro-grid.
We can make a statement on the relation between prosumer costs, its energy production during
the lifespan of the Distributed Generation (DG) plant and the prices on the competing macro-grid
(i.e. utility-grid).

LCOEEBZ =
(Ic +Oc) · Esupply,y

Eproduction,y

n · Esupply,y
≤ LCOEutility (4-11)

(Ic +Oc) ≤ LCOEutility · n · Eproduction,total (4-12)

As seen in fig. 4-14, the requirement LCOEEBZ ≤ LCOEutility in case of solar based grids, so-called
’grid-parity’, is expected to be reached in more and more countries in the near future. Grid-parity,
as seen in eq. (4-6), depends on production capacity of the power-plant, on costs Ic, Oc, and on
prices of macro-grid energy. Our results compares well to the global trend of grid-parity; with a
costs decrease of 18%, our micro-grid would achieve grid-parity as well.
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Figure 4-14: Expected grid parity around the world, a situation where LCOEEBZ ≤ LCOEutility
holds. Figure is taken from [183].

4-3 Discussion

In chapter 4, the performance of EnergyBazaar is tested and compared to other methods. We
tested EnergyBazaar both off-chain as on-chain and were able to make a statement on its scalability
using a platform such as Ethermint.

The solution EnergyBazaar yields is better than its centralized counterpart when looking at the
total energy deficit in the micro-grid. Agents make bids as a response to each other, in contrast to
the centralized solution; energy prices become erratic. We see that, with EnergyBazaar and with
default settings, deficits and overflows are small compared to a no-trade situation. Demand Side
Management (DSM) solutions, to shift consumption away from the locations where deficits do not
disappear completely, are easily added to EnergyBazaar. This is because Edemand and Econsumption
are decoupled by the batteries.

The pricing mechanism makes use of proportional allocation: for a larger piece of the total avail-
able energy, buyers have to increase their bidding price. Thus costs scale quadratically. This
way, the utility functions of buyers have a suitable trade-off for convex optimization. Meanwhile,
proportional allocation is also a fair way to divide a scarce asset: large consumers have propor-
tionally higher costs; in a real-world micro-grid this would encourage efficient energy use. The
pricing mechanism only works when demand is higher that supply. If not, energy is not a scarcity
and proportional allocation fails to create a bidding market. In a real-world setting this works
a bit different: in a power-grid, over-generation is a burden for the prosumers. Consumers can
charge a price for taking over the extra energy, as a grid-balancing service. EnergyBazaar can be
extended to also capture load-shedding services. Currently, consumers have the tendency to buy
more energy than necessary, creating overflows at their batteries. Even after tuning of consumer
utility parameters, this behaviour did not completely vanish.

In [72], the presence of a macro-grid that ushers external energy prices (possibly by dynamic
pricing), creating a (variable) price domain for the buyers to make bids in. In this work, the
macro-grid is modelled by overflows and deficits that are exported/imported from the micro-grid.
Currently, the buyers in the micro-grid are not provided with the choice to buy from either the
macro-grid or from sellers in the micro-grid. In case a micro-grid is not fully isolated from the
macro-grid, this is a not a realistic assumption.
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Agents take no regard to trade-minimization. Battery degradation is negligible over 5 days, but
over the life-span of a battery, this is a real cause of concern. Batteries degrade especially with
extreme (dis)charging, thus agents have a distinct incentive to have a constant supply or energy
allocation to preserve their batteries. This is not captured in the utility functions. Other infras-
tructure considerations are not included as well: for example line-congestion and the introduction
of Electric Vehicles (EV). Above all, functional actuator constraints is the most important feature
that is missing. Even more so since we showed that current dis(charging) exceeds the limit on
interval k at multiple moments throughout the day.

We considered a simplified micro-grid model. In a real-world setting, a more diverse portfolio of
Distributed Energy Resources (DER) would be available. A more diverse portfolio decreases the
dependency of agents on the solar energy spike in the afternoon. Previously mentioned EV could
act as mobile ESS, further complicating the model but also assist in an efficient solution.

Furthermore, the assumption of an ESS installed at each household is not realistic. Households
that have an ESS installed could lease virtual battery space to consumers that have none. This
is a perfect extra use-case for a Blockchain: the smart-contract could be extended to record this
agreements among agents. Generalizing this concept, communities could install an aggregated
ESS and cover its costs by decentralized lease-contracts on Blockchain.

We implemented EnergyBazaar on Ethereum as a proof-of-concept. We saw that money-flows
can be accounted for by a smart-contract deployed on the public ledger of Blockchain, albeit for
a heavy toll on simulation execution time. How this will translate into a real-world setting is
still unclear. The performance of a large scale micro-grid has not sufficiently been researched to
conclude on scalability of on-chain EnergyBazaar, but transaction rate appears to scale almost
linearly for up to 100 agents. For an micro-grid of 40 agents, a maximal average of 2Tx/sec is
needed to fit all transactions necessary at k within the time-frame prescribed by k. Ethermint has
a maximum transaction rate of 200Tx/sec. This shows great promise for scale-up of an order of
magnitude: a community of 400 households would be a realistic real-world setting.

The ’cost of anarchy’ is estimated at 0.046e/kWh, although this estimation is by far not sophisti-
cated enough. Costs have to be better defined; such as including battery costs and degradation, in-
frastructure costs and pricing strategies of the adjacent macro-grid. An effect shown in [72], where
a macro-grid influences the energy prices within the micro-grid will be present in any real-world
micro-grid that is not completely isolated. Especially for economically motivated micro-grids, this
effect will greatly influence the decision whether to decentralize. Additionally, the installation and
maintenance of the micro-grid is not accounted for. The Transmission System Operator (TSO)
could still play an important role in this.

With an ideology such as EnergyBazaar, a self-sufficient community with an independent token-
based economy has transgressed form being an Utopian concept into something that could be
applied in the real-world in the foreseeable future.
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Chapter 5

Conclusion and recommendations

5-1 Conclusion

In the future, communities will have an incentive to quit their dependency on centralized institu-
tions. This incentive will have both: a economical basis as a societal basis. In order to investigate
the possibilities of returning autonomy and energy ownership to such communities, we started our
research with the question:

Can a transactive grid be established through deployment of a promise-keeping smart-contract
triggered by a distributed algorithm that enables free-market trade?

As an answer, we proposed EnergyBazaar, a method that allows free-market energy trade within a
micro-grid, allocating generated energy of prosumers to consumers. By doing this, EnergyBazaar
minimizes the total energy deficit of any consuming household within the community, energy that
otherwise should have been imported from the macro-grid. Additionally, prosumers obtain a way
of trading their surplus energy, energy that otherwise would have been wasted after overflowing
household batteries, or sold to the macro-grid for an unfair fixed price. With EnergyBazaar,
consumers and prosumers within the community have a fair and dynamic market-place for energy,
while completely decentralized.
This marketplace proves to be as efficient in its energy distribution as a centralized dispatching
solution; which dictates rather than trades. With EnergyBazaar, households automatically full-fill
the most important control task in any power-grid; balancing of demand and supply, a task nor-
mally reserved for a Balance Responsible Party (BRP)s. We compared the distributed algorithm
of EnergyBazaar create energy prices that are intuitive; they are proportional to the degree of
scarcity of energy in the community and form a solid basis to a true smart-grid; combining an
energy market place with other Demand Side Management (DSM) solutions. This is in stark
contrast with a centralized controller, which yields erratic prices.
Aiming for a complete decentralized paradigm, the value flows of EnergyBazaar cannot depend
on a Third Trusted Party (TTP). As a proof-of-concept, we deployed EnergyBazaar as a smart-
contract on an Ethereum Blockchain. Through it, we established decentralized payment. A major
draw-back of using Blockchain is that all agent states are completely public. We reduced the
amount of sensitive data to be shared among agents, yet through public bidding prices, network
participants can still derive load-patterns of households.
Considerable costs are involved in creating an independent micro-grid. Prosumers have to invest
in Distributed Generation (DG) units while all households need some sort of energy storage.
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Although energy production by means of Photo Voltaic (PV) panels is becoming as inexpensive
as energy imported from the macro-grid, the same cannot yet be said about energy storage. A
considerable technological advancement is needed to decrease battery costs. Once a community is
decentralized, its energy economy becomes a token-based zero-sum game. We showed the drawback
of this situation; prosumers aggregate ’useless’ tokens in case tokens cannot be exchanged with
the outside-world. By linking tokens with fiat-currencies, this problem is mitigated and a cautious
statement can be made about the economics of decentralization.

Although EnergyBazaar yields satisfying results, additional research is needed to apply this con-
cept to a real world setting. We discuss this in the following section.

5-2 Recommendations for future work

In this thesis, we proposed a concept of decentralized energy markets. We provided a ground-layer;
on top of which extra work can be added to make the complete system more sophisticated. Future
work is categorized in different sections. Improvements on the algorithm itself, the Blockchain
structure and further research necessary for the application of a real-world micro-grid with Ener-
gyBazaar.

5-2-1 Continuation on EnergyBazaar

The EnergyBazaar algorithm was modeled as a hierarchical game, a structure borrowed from [72],
in which a Stackelberg formulation is used. Although EnergyBazaar is an open-loop iterative game,
the utility function of buyers, Ui is a standard function: a requirement for a traditional Stackelberg
game. Thus, the algorithm could possible be improved by adopting this method. Besides extending
the non-cooperative game, a comparison can be made with collaborative games. Although outside
the scope of this thesis, coalitional games discussed in section 2-3 have proven to be able to tackle
the Economic Dispatch Problem (EDP) as well.

Considering agents behaviour, the current utility functions Ui and Uj can still be sophisticated.
The ability of a certain agent to predict community-wide energy scarcities would create an incentive
to store energy, waiting until energy demand rises; even-though there is sufficient energy-demand.
This can thus be included in the behaviour of agents. Currently, EnergyBazaar does not provide
this foresight; an agent is merely able to predict its own production and consumption. An ethical
study should also be conducted to see how in how far this behaviour should be before agents are
considered to manipulate the market.

Furthermore, we made the assumption that sellers and buyers are uniform in their behaviour.
When this assumption does not hold, agents will use varying and personal utility function. Re-
search should be conducted into the real-world behaviour of agents in a community and this
behaviour should be captured and accounted for. For example, altruism, where agents show ir-
rationality in that they share energy without pursuing the highest possible personal utility. In
this example, a collective welfare could be modeled: individual agents that strive against energy-
poverty across the community. Afterwards, an investigation should conclude whether agents with
diverse behaviour still converge to a solution to the EDP problem.

A feature that was unsuccessfully implemented in EnergyBazaar where battery saturation limits
Pmax. We looked at the charging behaviour of a Energy Storage System (ESS) in an unconstrained
optimization and concluded that certain spikes surpass the limit Pmax, which is not physical
possible. Although discharging can be constrained by an upper-bound of wj , constraining charging
behaviour with ci using the same method is not possible without destroying the free-market pricing
mechanism, with plummeting prices as a result. A constraint to battery charging needs to be
added.
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Continuing on the pricing mechanism; EnergyBazaar currently does not allow negative prices of
ci. Negative prices make sense when overflows occur in a real-world situation. The problem of
overflow or over-generation and its solutions (load-shedding) are discussed in [184]. Adding such
strategies to EnergyBazaar would enable consumers to take on the burden of over-generation for
a price. A mobile fleet of autonomous Electric Vehicles (EV) could play a very interesting role in
a load-shedding solution, if allowed to roam the grid in search for overflows in the system.

In a real-world setting, the micro-grid infrastructure should be accounted for in the EDP. Power
congestion in a power-grid is an issue that cannot be omitted. The methodology used in [185] can
be added to the EnergyBazaar concept to account for line-congestion. To model this, a cooperative
games can be used such as the authors in [132] do. For this, a realistic topology of the grid should
be modeled, discussed in [4]. Another feature that is omitted is the presence of a fleets of EV in
the micro-grid, discussed in section 2-1-4. The integration of a fleet of EV in a grid is the topic of
[92] and its method can be layered over EnergyBazaar.

Finally, prediction is omitted in the scope of this thesis. We provided agents with the real data.
In a real-world application, this obviously is not possible. Thus a prediction methods should
be implemented. Beforehand, it is already possible to discover what the impact of prediction
accuracy has on the micro-grid. An uncertainty in prediction data will always remain and needs
to be accounted for by the agents in the form of a minimum energy reserve.

5-2-2 Blockchain and EnergyBazaar

We proposed a smart-contract layer for EnergyBazaar. EnergyBazaar, implemented in Python,
makes use of a Python - Ethereum Application Programming Interface (API) called Web3.py. The
newest version 4.0.0 will contain the feature eth.account, which enables adding accounts. Only
then, a test-environment can be created with more that 9 agents, essential for testing scalabil-
ity of the smart-contract feature of EnergyBazaar. Afterwards, implementation of EnergyBazaar
on Ethermint is the next step. Ethermint makes use of a Proof of Stake (PoS) consensus pro-
tocol based on a practial Byzantine Fault Tolerance (pBFT) protocol and does not require the
waste of physical resources such as the Proof of Work (PoW) of Ethereum. Whether distributed
optimization over Blockchain is realistic should then be answered.

An important next step in the development of EnergyBazaar is shifting the focus from a syn-
chronous network assumption to assuming an asynchronous network. In such network, agent need
to know what agents are jammed or lagging. Namely, this will influence distributed optimization:
if a transaction that updates Esurplus,j(k) of agent j is jammed, other agents have the chance
either to use Esurplus,j(k − 1) or omit agent j from the optimization.

The biggest draw-back of the implementation of EnergyBazaar on Blockchain is the issue of privacy
and confidentiality. All information stored within the smart-contract is per definition shared
and public to all nodes. Although the most sensitive data on energy consumption Edemand,i
is not shared over the network, bidding prices are. Bidding prices are only needed by buyers.
Nevertheless, sellers also receive ci, while they only need cn. For EnergyBazaar to become privacy
conserving and confidential, features of privacy-preserving Blockchains such as pseudonymous
transactions used by Monero [186] and Hawk [187] should be adopted, discussed in appendix C-2.
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Appendix A

EnergyBazaar: proofs

A-1 Proof of convexity for utility functions Ui and Uj

A-1-1 Utility function Ui

To proof a Nash equilibrium exists for Ui, we must prove ∂2Ui

∂c2
i
> 0, see [72]. Settings are λi,1 = 2

and λi,2 = 1. We derive Ui twice over cj to yield Ui

∂c2
i
:

Ui(wn, c) =
(
Ed − Es

ci
ci + co

)2
+ Es

c2
i

ci + co
(A-1)

∂Ui
∂ci

= −2EdEs
co

(cico)2 + E2
s

cico
(ci + co)3 + Es

c2
i + 2cico

(ci + co)2 (A-2)

∂2Ui
∂c2
i

= 2EdEs
2cico + 2c2

o

(ci + co)4

+ E2
s

co(ci + co)− 3co
(ci + co)4 + Es

(2ci + co) + 2(ci + co)(c2
i + cico)

(ci + co)4 (A-3)

∂2Ui

∂c2
i
> 0: the negative term −3co is countered by positive quadratic terms of co in the first of the

three parts of ∂
2Ui

∂c2
i
, when Ed > Es. Indeed, when Ed < Es, prices in the micro-grid drop to zero

immediately.

A-1-2 Utility function Uj

To proof a Nash equilibrium exists for Uj , we must prove ∂2Uj

∂w2
j
> 0, see [72]. Settings are λj,1 = 2

and λj,2 = 2. We derive Uj twice over wj to yield Uj

∂w2
j
:
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Uj(c) =
(
SOCgap − Ej(1− wj)

)2

−

(
Rd

Ejwj
Eowj + Elwl

)2

(A-4)

∂Uj
∂wj

= 2SOCgapEj − E2
j + E2

jwj − 2Rd
E2
jEowj

(Eo + Ejwj)3 (A-5)

∂2Uj
∂w2

j

= E2
j − 2Rd

E2
jEo(Eo + Ejwj)3 − 2E3

jEowj

(Eo + Ejwj)3 (A-6)

Here, ∂
2Uj

∂w2
j
≥ 0 does not hold for all situations. To be more specific, only when Rd(Eo + Ejwj

Eo
) ≤

2Rd(Ejwj), the second term of ∂
2Uj

∂w2
j
≤ 0. This is also see in fig. 3-3: if utility from direct revenue

would be high enough, it would bend Uj into a non-convex function. If this situation occurs,
posing an upper-bound on wj at 1 still constrains wj within physical bounds. Clearly, when the
gap of SOCgap − Ej(1− wj) is fully closed, there is incentive for the seller to sell all its Esurplus,
causing wj to hit its upper-bound of 1.

A-1-3 Standardness of functions Ui

In a closed-loop Stackelberg game, the best-response Bi = argmaxci
Ui is algebraically plugged-in

at the sellers level game. Using this formal Stackelberg game structure as a hierarchical distributed
optimization is possible only when utility function Ui, of the followers, is a standard function,
see proposition 2 and definition 3 in [72]. Although EnergyBazaar is not closed-loop, personal
correspondence with S. Bahrami, author of [144] convinced us to verify standardness of Ui(ci):

• Positivity: f(p) > 0 with p ≥ 0.

– Ui(ci): Since both terms are squared, both terms will be positive. Ui(ci) is positive
only when ci > 0. Positivity thus does not strictly hold for Ui(ci). However, given the
fact that ci 6= 0, positivity holds. In [72], this relaxation has been applied as well.

• Monotonicity: For all p and p′, if p ≥ p′, then f(p) ≥ f(p’).

– Ui(ci): if ci > c0, then Ui(ci) > Ui(c0). With ci

co
= α, Ui(ci) = α·ci

Ed−Es·α . With α > α0
and ci > c0, α·ci

Ed−Es·α − α > α0·ci

Ed−Es·α0
− α0, when Ed < Es, which is easily verifiable

numerically. Ed and Es are initialized values and are fixed during the game. If at the
beginning Ed < Es holds, a bidding game is played among buyers. When Ed 6> Es,
bidding prices drop to zero, as observed in chapter 4. Under normal conditions with
Ed < Es, monotonicity holds for Ui(ci).

• Scalability: For all µ > 1, µf(p) > f(µp).

– Ui(ci): for the first term of Ui(ci) scalability holds since µEd−Es µci

ci+co
> Ed−Es µ·ci

ci+co
.

For the second term it holds as well, since 1
ci+co

> 1
µ·ci+co

. Conclusively, scalability
holds for Ui(ci) with the first and second term being added up.

Summarily, Ui(ci) is a standard-function, allowing us to apply the Stackelberg framework, albeit
in open-loop form. For a revisit to open-loop discrete dynamic Stackelberg games, see [188].
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A-1-4 Benchmark to utility function Uj

We substituted Uj with a utility function that does not regard prediction. This utility function
is used in [72]. In figure fig. A-1, its shape for different trade-off weights γj is visualized. In
section 4-1-2, we chose γj to 0.4. This yielded the best result.

Utility function Ubenchmark,j for different γj

Figure A-1: Prediction-less utility function for seller j in a ’no-prediction’ paradigm, from [72].
Plotted over a range of weights γj , it becomes clear that at a γj of 0.4, the convex function is
sufficiently relaxed to find an optimum over a wide range of wj .
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Appendix B

EnergyBazaar: implementation in
Python and Solidity

B-1 System high-level lay-out

The implementation of EnergyBazaar is done in Python. We made use of the MESA package to make
an agent-based model [189]. Two classes are created: an micro-grid class called MicroGrid and
an agent class HouseholdAgent. A high-level overview of the implementation is given in fig. B-1.
For the actual code, please be referred to https://github.com/dirkbig/master_thesis.

Figure B-1: High-level system-layout of the implementation of EnergyBazaar in Python. The smart-
contract is written in Solidity and compiled through an API to Python called Web3.py.

Data is loaded in by the micro-grid model, wherein agents are communicating through state-
changes on the smart-contract while either executing the distributed optimization algorithm EBZ,
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or being directed by the central PSO controller. The batchrunner preforms simulations for various
parameter settings and outputs the results into files. These files are used to make plots.

B-2 Smart-contract pseudo-code

The smart-contract written in Solidity is used to store the mappings between accounts and their
states. In the smart-contract, getter-functions call on these states and setter-functions make
transactions to the Blockchain in order to change states. Functions can be either external or
internal: external functions can be called by all agents, internal functions can only be called by
other functions within the smart-contract. Functions consist out of simple logical rules that check
where some requirement is satisfied. If so, the function proceeds to a next rule or action. The
smart-contract has an escrow structure, wherein a decentralized aggregation of tokens pays-out
and receives tokens from respectively sellers and buyers after a proof of supply of Esupplied or
Edemand, provided by the smart-meter. An other option would be a token-mint and token-burn
contract, where no aggregation of tokens exists, but where they are created and destroyed on the
spot.

The contract is deployed by the function MyToken(), which signifies the origin of the transaction as
the creator, saving its account in the supplier-state. A one-time function giveStartingMoney()
pays-out an amount of tokens as a starting capital to agents that call this function. The mapping
startingMoneyGiven is initialized at zero, and set to one when giveStartingMoney() is called by
this address. This way, the smart-contract knows whether this address already received a starting
capital.

In mapping (address => uint256) public lastUpdatePromise, promises are being stored.
Actual trade-deals are stored in mapping (address => uint256) public lastUpdateAction.
These mappings are public such that they can be seen by all agents. These states are updated by
makePromiseOfsell(value, timestamp) and makePromiseOfbuy(value, timestamp), provid-
ing the promised amount of energy and timestamp as inputs. Afterwards, the optimization rounds
of EnergyBazaar begins, during which nominal bidding price cn and nominal sharing factor wn
are updated by an internal function computeNominalc and computeNominalw. The mappings
where cn and wn are stored are public and thus call-able. After optimization, deals are settled by
functions allocatedEnergy(value, timestamp) and suppliedEnergy(value, timestamp).

Blocks that are mined consist out of transactions of agents calling setter-functions. In ap-
pendix B-2, a ’receipt’ of the 156th block is given.
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Algorithm 5
procedure Smart-contract EnergyBazaar

I: deployment of contract:
MyToken()

supplier = sender
balanceOf[sender] = totalSupply
timestampSmartcontract = 0

giveStartingMoney()
require(startingMoneyGiven[sender] 6= 1)
balanceOf[sender] = startingCapital
startingMoneyGiven[sender] = 1

II: initialization trading round:
makePromiseOfsell(value, timestamp):

promiseOfsell[sender] = value
promiseOfbuy[sender] = 0
lastUpdatePromise[sender] = timestamp

makePromiseOfbuy(value, timestamp):
promiseOfbuy[sender] = value
promiseOfsell[sender] = 0
lastUpdatePromise[sender] = timestamp

III: optimization rounds:
repeat

repeat
biddingpriceOf(price, allocation, timestamp):

biddingpriceOf[sender] = price
allocationOf[sender] = allocation
lastUpdateAction[sender] = timestamp

until all buying agents reported
computeNominalc():

cNominal = sum
(
biddingpriceOf[i]*Eallocation[i])/

∑
(Eallocation[i]

)
repeat

sharingfactorOf(value, timestamp):
sharingfactorOf[sender] = value
lastUpdateAction[sender] = timestamp

until all selling agents reported
computeNominalw():

wNominal = sum
(
sharingfactorOf[i]*Esurplus[i])/

∑
(Esurplus[i]

)
until wNominaltolerance < εsellers and cNominaltolerance < εbuyers

IV: settling deals:
allocatedEnergy(value, timestamp):

require(balanceOf[sender] >= value)
require(promiseOfbuy[sender] >= allocatedTo[sender]
balanceOf[sender] -= value
balanceOf[supplier] += value

suppliedEnergy(value, timestamp):
require([sender] != 0x0)
require(balanceOf[sender] >= value)
require(promiseOfsell[sender] >= suppliedFrom[sender]
balanceOf[sender] += value
balanceOf[supplier] -= value
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1 AttributeDict ({ ’number’ : 156 , ’hash’ : ’0
xa4ac7c3c6c54e810755d40fe8ade29a60e27fd3fc7a18ff79876ffbf7fdb261e ’ , ’
parentHash ’ : ’0
x0fa3bf4a6e25bd23516ea6f6f2929e223389316f5146b9ccfab9dcb62211b7c6 ’ , ’
nonce’ : ’0x0000000000000000 ’ , ’sha3Uncles ’ : ’0
x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347 ’ , ’
logsBloom ’ : ’0x000000000000000000000000000000200004000000000000000 ...’ ,
’transactionsRoot ’ : ’0
x6444c25820c66ea509037120d6060e658ef5561a15baa18f848dc312a8656668 ’ , ’
stateRoot ’ : ’0
x7afacd0368c2821b177e666686b4bb839315f736949d8c51db7058ced9a4204e ’ , ’
miner’ : ’0x82a978b3f5962a5b0957d9ee9eef472ee55b42f1 ’ , ’difficulty ’ :
134745 , ’totalDifficulty ’ : 20874617 , ’size’ : 674 , ’extraData ’ : ’0
x0000000000000000000000000000000000000000000000000000000000000000 ’ , ’
gasLimit ’ : 4000000 , ’gasUsed ’ : 41586 , ’timestamp ’ : 1410974997 , ’
transactions ’ : [ ’0
x2ae22f862c6d2862671f6c15dbc68e35cf69586dfe03f80445d7a6ee5593489d ’ ] , ’
uncles’ : [ ] } )

Figure B-2: Block format of an arbitrary block (number 156) mined at time step 15. Since the
TestRPC network immediately mines blocks, the nonce value is still its initial value.
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Blockchain

C-1 Blockchain overview

An overview of Blockchains is given in table C-1. We chose Ethereum as a platform to test Ener-
gyBazaar. Our motivation was that we could test a smart-contract using Ethereum with Solidity
as smart-contract programming language. An Application Programming Interface (API) from
Python to Ethereum, Web3.py, is available, though not yet all necessary functions are available,
which made testing difficult. Ethereum makes use of a Proof of Work (PoW) consensus protocol
that is unsuitable for energy-trading with a high transaction rate and necessary scaling. Ethermint
is a combination Ethereum and Tendermint, that is based on the practial Byzantine Fault Toler-
ance (pBFT) consensus protocol. Ethermint makes use of a fast and scalable Proof of Stake (PoS)
protocol that is not wasteful.

List of various Blockchains
Name Persmission Protocol Tx/s SC 1 Ref
Ethereum permission-less Proof of Work Low Yes [190]
Iota permission-less the Tangle High No 2 [155]
Hyperledger Fabric permissioned Custom High Yes [191]
Tendermint permissioned pBFT Medium No [192]
Ripple permissioned RCPA High No 3 [193]
Chain permissioned Federated High Yes [194]
MultiChain permissioned pBFT 4 High No [195]
ZCash permissioned Proof of Work Medium No [196]
Hawk permission-less Proof of Work Low Yes [187]
Ethermint permissioned PoS High Yes [180]

Table C-1: Overview of Blockchain platforms.
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C-2 Privacy and confidentiality

Oracle published guidelines to follow in order to conform to new General Data Protection Reg-
ulation (GDPR) legislation within the European Union. On the topic of anonymization and
pseudonymization: the application of pseudonymization to personal data can reduce the risks for
the data subjects concerned and help controllers and processors meet their data protection obliga-
tions [197]. Through the public ledger of a Blockchain, any agents could gather gain information
on load-patterns of households in the grid.

To protect the privacy of the end-user, different cryptographic techniques are capable of providing
solutions for privacy safe-guarding both Blockchain and off-chain. Homomorphic encryption is
used to obscure the information on the public ledger. Ring-signatures are used to obscure the
identity of the node in a communications network.

Homomorphic encryption

In [198], a basic definition on homomorphic encryption is given. Let M denote the message in
plain-text and C the cipher-text. Encryption is called homomorphic if for any encryption key k
the encryption function E satisfies:

∀m1,m2 ∈M, E(m1 �M m2)← E(m1)�C E(m2), (C-1)

using operator �M and �C , with ← representing direct decryption. For a fixed key k, it is
equivalent to perform math operations on M or C. This property enables remote modification
of encrypted data without decryption. Applying homomorphic encryption on a Blockchain could
means that information inside of transactions could be completely hidden while still allowing for
the prover and verifier to prove the validity of a transaction.

Homomorphic encryption is applied in zero knowledge Succinct Non Interactive Arguments of
Knowledge (zk-SNARKs), a proof construction where interaction between prover and validator
is not necessary. This reduces the communication necessary, saving valuable computational re-
sources. Both in Hawk [187] and ZCash [196], zk-SNARKs are used in order to encrypt transactions
on the public ledger.

Ring-signatures

Group-signatures allow a group master to set up a pool of member that becomes authorized to
produce a signature for messages on behalf of the whole group [199]. The authors of [200] improve
this scheme by anonymization of the signer within the group itself. Adversaries have negligible
probability of specifying the original sender within the group. Among different issues, the key
drawback of group-signatures is that a trusted group-master is needed to set up the group [201].
To solve this issue, ring-signatures are created. Ring-signatures are first introduced in [202].
Unlike group-signatures, ring signatures are completely decentralized, a key feature that makes
application for anonymization in decentralized systems possible. Monero utilized ring-signatures
for hiding of the destination and origin of transactions [186]. Link-able ring-signatures go one step
further by making the anonymous transactions linked to each other, linking transaction according
to the anonymous signer, useful for example in e-voting [203].
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AC Alternating Current

AGC Automatic Generation Control

AMI Advanced Metering Infrastructure

API Application Programming Interface

pBFT practial Byzantine Fault Tolerance

BRP Balance Responsible Party

DC Direct Current

DER Distributed Energy Resources

DG Distributed Generation

DSM Demand Side Management

DP Dynamic Pricing

DR Demand Response

EBZ EnergyBazaar

ECDS Elliptic Curve Digital Signature

EDP Economic Dispatch Problem
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EV Electric Vehicles

GA Genetic Algorithms
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KPI Key Performance Indicator
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LoRaWAN Long Range Wide Area Network

MAS Multi Agent System

MGCC Micro Grid Central Controller

MPC Model Predictive Control

MPP Maximum Power Point

NN Neural Network

P2P Peer to Peer

PAR Peak to Average Ratio
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PSO Particle Swarm Optimization

PTU Program Time Unit

PV Photo Voltaic

PoW Proof of Work

RES Renewable Energy Sources

RMSE Root Mean Square Error
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ω Frequency a Strategy
M Dynamical Model Matrix h Horizon
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X Reactance l Load Schedule
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U Utility M Message

c Bidding Price H Hash Function
wj Sharing Factor h Hash Value
I Set of Buyers SOC State of Charge
J Set of Sellers k Time Step
S Solar Irradiance R Revenue
T Temperature p Prosumer Participation
E Energy Tx Transaction
C Contract T Number of Tokens
G Guarantee I Capital Costs
A Assumption O Operational Costs

u Control Action
C Costs
s State Variable
A Mapping of Optimal Response
z Fixed Point
x Position State
v Velocity State
a Momentum
o Optimal position
g SVM Describing Function
γ Weight
N Number of Agents
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