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Voorwoord bij de vijfde druk

Vanaf deze vijfde druk wordt het boek Werktuigkundige Systemen niet meer uitgebracht
door Delft Academic Press, maar in plaats daarvan door TU Delft Open Publishing.

In deze druk is Figuur 9.7 gecorrigeerd en zijn op een aantal plaatsen in het boek kleine
wijzigingen aangebracht ten behoeve van de leesbaarheid.

Juni 2023 Regine W. Vroom

Bij de vierde druk

Het boek Werktuigkundige Systemen van Jan C. Cool is al jarenlang in gebruik bij eerste-
jaars studenten Werktuigbouwkunde aan de TU Delft. Diverse docenten, waaronder ook
ik, gebruik(t)en het bij vakken of ontwerpprojecten. Het is een compacte inleiding op het
systeemdenken in de werktuigbouwkunde, met nadruk op inzicht en grafische methoden,
gelardeerd met prikkelende werkingsprincipes en constructie-elementen. Velen merken dat
ze nog lang nadat ze het vak gedaan hebben dit boek als naslagwerk gebruiken en het
steeds meer gaan waarderen, ook omdat het boek de basis legt voor veel vervolgvakken
en projecten.

De vierde druk is bewerkt door collega's Gabriélle Tuijthof, Giuseppe Radaelli, en Regine
Vroom. De volgorde van de hoofdstukken is aangepast, in het bijzonder het hoofdstuk
over wrijving is naar voren gehaald omdat dit als kracht bij evenwicht hoort en in de rest
van het boek meermaals terugkomt. Verder is de leesbaarheid verbeterd door modernise-
ring van het taalgebruik, betere figuren, nummering van formules en aanpassing van de
opmaak.

Juli 2022 Just Herder

Bij de derde druk

In deze druk is een nieuw hoofdstuk toegevoegd over evenwichten. Reden voor opname
van dit hoofdstuk is dat in het onderwijs blijkt steeds weer dat veel studenten bij deze
elementaire stof moeilijkheden ondervinden.

Verder is een flink aantal ogenschijnlijk saaie blokschema’'s wat ‘opgefrist’, waardoor ze



hopelijk beter toegankelijk geworden zijn.

Augustus 1992 J.C. Cool

Bij de tweede druk

In de nieuwe druk zijn de systeemtechnische overwegingen, die ten grondslag moeten
liggen aan het ontwerp van werktuigkundige constructies, uitgebreid.

In een hoofdstuk Stabiliteit is aangegeven waar de grenzen liggen van goed mechanisch
functioneren. De theorie is vooral toegepast op voertuigen en vaartuigen. De stabili-
teitsvoorschriften leiden ook tot ontwerpregels voor de energetisch voordelige indifferente
systemen.

In het boek worden nu ook de dynamische systemen geintroduceerd. Juist hier leidt
een modelvorming in blokschema’s tot een goed inzicht in de functionele werking. Er
is veel aandacht gegeven aan het onderscheiden van de frequentiegebieden waarbinnen
een systeem zich anders manifesteert. Voorts zijn op een aantal plaatsen in het boek
verbeteringen en aanvullingen aangebracht.

Oktober 1989 J.C. Cool

Bij de eerste druk

De oorsprong van dit boek is een college geweest, waarin op eenvoudige wijze de werking
van bestaande apparaten en machines werd geanalyseerd. In een later stadium is deze
stof uitgebreid met een aantal constructieve bijzonderheden. Dit totaal is opgenomen in
het boek ‘Inleiding Werktuigbouwkunde'.

Het boek is thans herschreven op basis van de systeemleer en de modelvorming. Er zijn
hoofdstukken toegevoegd en een aantal andere is uitgebreid. De fundamentele principes
bij ontwerpen komen in dit boek ‘Werktuigkundige Systemen’ meer naar voren.

In het eerste hoofdstuk is de systeemleer toegepast op werktuigkundige constructies. In
het hoofdstuk over modelvorming wordt de weg aangegeven om de complexe fysische
werkelijkheid om te zetten in een overzichtelijk werkingsinzicht. De hier geintroduceerde
beschouwing met vierpolen maakt het eenvoudig om belaste systemen te berekenen.

In het hoofdstuk mechanische versterkers is de modelvorming toegepast. Verschillende
manieren om kracht/moment te versterken zijn aan de hand van blokschema's toegelicht.
De invloed van de last komt naar voren.



Daarnaast is een hoofdstuk gewijd aan de belangrijke begrippen sterkte en stijfheid. Om-
dat de materiaalkeuze bij een ontwerp vaak van doorslaggevende betekenis is, wordt in
een afzonderlijk hoofdstuk inzicht gegeven in het hoe en waarom van bepaalde materiaal-
eigenschappen.

Het hoofdstuk over comparalogie laat de problemen zien bij het verkleinen of vergroten
van reeds bestaande constructies en bij de vaak noodzakelijke modelproeven.

Er is ruim aandacht gegeven aan wrijving en weerstand, alsmede aan de middelen om
deze te vergroten of te verkleinen.

Omdat veren tot de essentiéle werktuigonderdelen behoren is een hoofdstuk gewijd aan
de toepassing van veren in een ontwerp. Hier is het belangrijke begrip voorspanning be-
handeld.

Het hoofdstuk over energie geeft een inleiding in de ‘warme werktuigbouwkunde’. Hierin
is een technologisch rendement beschreven dat aangeeft in welke mate een machine warm-
tetechnisch goed is geconstrueerd.

Tenslotte wordt aangegeven op welke wijze een motor met een last moet worden gekop-
peld. Ook hier wordt een nuttig gebruik gemaakt van de vierpool-beschrijving.

In zijn huidige vorm wordt het boek gebruikt bij de opleiding van ingenieurs van de facul-
teiten der Werktuigbouwkunde en Maritieme Techniek en van het Industrieel Ontwerpen.
Dit onderwijs wordt verzorgd vanuit de sectie instrumenten van de vakgroep voor Werk-
tuigkundige Meet- en Regeltechniek, waar veel praktische ontwerpervaring op het gebied
van de proteseologie aanwezig is.

De schrijver meent dat dit boek gebruikt zal kunnen worden bij verschillende soorten
technisch hoger onderwijs; zowel door het globale overzicht van de gehele werktuig-
bouwkunde, de introductie van systeemleer en modelvorming, als door de specialistische
behandeling van enkele bijzondere onderwerpen.

De schrijver betreurt het dat ir. P.V. Pistecky niet aan de bovengenoemde uitbreiding
van het boek kon meewerken. Veel dank aan ir. D.H. Plettenburg voor zijn bereidwillige
steun en voor de medewerkers van de VSSD voor de prettige samenwerking bij het tot
stand komen van dit boek.

Alle opmerkingen betreffende dit boek zijn welkom bij de schrijver.

September 1987 J.C. Cool
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Hoofdstuk 1

Systemen

1.1 Inleiding

De systeembenadering is een universele manier van werken om iets te bestuderen. Dat
'iets' kan zeer algemeen worden opgevat. Het kan een technisch apparaat of proces zijn,
maar ook een administratieve handeling, een biologische kringloop of een sociaal gedrag.
In alle gevallen wordt het te beschouwen gedeelte - dat systeem genoemd wordt - afgezon-
derd van zijn omgeving bestudeerd. Het systeem wordt begrensd door de systeemgrens.
Binnen de systeemgrens bevindt zich het te bestuderen systeem; daarbuiten de omgeving.

In dit hoofdstuk zal de systeembenadering op mechanische werktuigen worden toegepast.
In §1.2 Begrippen, zullen de belangrijke begrippen geintroduceerd worden vanuit de al-
gemene systeemleer. Deze stellen je in staat om te begrijpen welke stappen je moet
nemen om een technische beschrijving te krijgen van het systeemgedrag. Dit is nodig
om te kunnen voorspellen of het systeem gaat voldoen aan de op voorhand gestelde ont-
werpeisen. Zo is bijvoorbeeld de invloed van de omgeving op een mechanisch systeem te
beschrijven door een aantal krachten, momenten, verplaatsingen en hoekverdraaiingen op
de systeemgrens in te voeren. De krachten en momenten die de omgeving op een systeem
uitoefent worden de uitwendige krachten en momenten genoemd. In §1.3 Uitwendige
krachten en momenten, wordt toegelicht op welke wijze die worden ingevoerd en hoe
daarmee verder gewerkt kan worden. Binnen het systeem werken de inwendige krachten
en momenten. Hoe daarmee gewerkt kan worden en hoe de relatie met de uitwendige
krachten en momenten is, staat beschreven in §1.4 Inwendige krachten en momenten.

§1.5 Toepassing, laat zien wat de kracht van het toepassen van systeemleer is aan de hand
van de mechanische invioeden op een systeem. Andere aspecten die van invloed zijn op
het ontwerpen van mechanische systemen worden kort toegelicht in §1.6 Optimalisering.
Echter deze aspecten worden pas relevant als de beoogde functionaliteit van het systeem
is aangetoond.
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1.2 Begrippen

1.2.1 Systeem, omgeving en systeemgrens

Het systeem — of het te beschouwen gedeelte van het systeem — wordt in alle gevallen
bestudeerd afgezonderd van zijn omgeving. Het systeem wordt begrensd door de systeem-
grens, die vrij kan worden gekozen. De systeemgrens kan meerdere mechanische onder-
delen omvatten of kan een onderdeel omsluiten, maar kan ook dwars door een onderdeel
heen lopen. Binnen de systeemgrens bevindt zich het te bestuderen systeem; daarbuiten
de omgeving. De omgeving heeft invloed op het systeem en het systeem beinvloedt de
omgeving. Dit kunnen allerlei invloeden zijn, zoals mechanische invioeden (bijvoorbeeld
krachten, momenten, drukken, verplaatsingen), maar ook thermische (warmtestromen,
temperaturen), elektrische spanningen, stromen, velden, enz.), magnetische en andere
invlioeden.

De invloeden van systeem en omgeving op elkaar zijn gelijk qua grootte en tegengesteld
gericht. Als de omgeving een kracht F' op het systeem uitoefent, dan oefent het systeem
tegelijkertijd een kracht F' van gelijke grootte, tegengesteld gericht langs dezelfde werklijn
op de omgeving uit. Zie Figuur 1.1. Een werklijn is de richting waarin een kracht op een
bepaald ogenblik werkt.

N - -
systeemgrens o £

-— ~

totale fysische werkelijkheid omgeving systeem

Figuur 1.1 Door de keuze van een systeemgrens wordt een systeem van de fysische werkelijkheid
afgezonderd. Het systeem heeft een omgeving. Het systeem en zijn omgeving beinvloeden elkaar.
Deze invloeden zijn gelijk en tegengesteld.

Hetzelfde geldt voor momenten. Als de omgeving een moment M op een systeem uitoe-
fent, dan oefent het systeem een even groot moment met tegengestelde draairichting op
de omgeving uit. Ook voor andere dan mechanische grootheden geldt dat de onderlinge
beinvioeding van een systeem en zijn omgeving gelijk en tegengesteld is. Als bijvoorbeeld
een systeem een warmtestroom () uit de omgeving krijgt toegevoerd (dus +@Q)), dan staat
de omgeving diezelfde warmtestroom (dus —(Q) aan het systeem af. Het gelijk en tegen-
gesteld zijn van de acties van systeem en omgeving op elkaar betekent dat de volgende
uitspraak kan worden gedaan: ‘indien de krachten en momenten die de omgeving op een
systeem uitoefent in evenwicht met elkaar zijn, en het systeem dus in evenwicht is, dan
is noodzakelijkerwijs zijn omgeving ook in evenwicht'. Is het afgezonderde systeem niet
in evenwicht dan is zijn omgeving dat ook niet. Dezelfde uitspraak is geldig voor andere
dan mechanische invloeden.
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Indien een systeemgrens is gekozen, dan is daarmee een deel van de fysische werkelijkheid
— een systeem — afgezonderd. Het afgezonderde systeem is geheel bepaald; alle eigen-
schappen van het systeem liggen vast. Door de keuze van de systeemgrens is ook de
omgeving van het systeem vastgelegd: buiten het systeem is de omgeving, die de uitwen-
dige krachten en momenten OP het systeem uitoefent. Als de uitwendige krachten en
momenten evenwicht met elkaar maken, is het systeem in rust. Echter, dezelfde krachten
en momenten die de omgeving op het systeem uitoefent, worden door het systeem (in
omgekeerde richting) als reactiekrachten op de omgeving uitgeoefend. Als het systeem in
rust is, dan moet de omgeving dat ook zijn. Eenzelfde redenering geldt voor het geval dat
de uitwendige krachten en momenten geen evenwicht met elkaar maken. Als dat het geval
is, dan is het systeem niet in rust en dan is de omgeving ook niet in rust. Zie Figuur 1.2.

Fi My F2
systeemgrens N
' TN
\\ I
N /
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F3
totaal omgeving systeem

Figuur 1.2 De invloeden die systeem en omgeving op elkaar uitoefenen zijn gelijk en tegengesteld.
Als het systeem in evenwicht is, dan is de omgeving dat ook. Als het systeem niet in evenwicht is,
dan is de omgeving dat ook niet.

1.2.2 Systeembeschrijving

Nadat het systeem gedefinieerd is door middel van zijn systeemgrens, is het de kunst het
systeem ook goed te beschrijven. Met een goede beschrijving worden de systeemeigen-
schappen eenvoudig en nauwkeurig weergegeven. De systeemleer bestudeert het gedrag
van systemen. Daarbij is vooral interessant hoe een systeem reageert op veranderingen.
Met het bestuderen van die veranderingen kun je nagaan of het systeem het juiste gedrag
vertoont ten opzichte van de gewenste ontwerpeisen voor dat systeem. Om dat na te
gaan wordt één van de invloeden tussen systeem en omgeving veranderd. Deze invloed
is daarmee als ingangssignaal gekozen. Het systeem zal reageren op een verandering van
het ingangssignaal. Eén van de reacties van het systeem wordt als uitgangssignaal ge-
kozen. De verandering van het uitgangssignaal als gevolg van een verandering van het
ingangssignaal levert een systeembeschrijving.

Ter verduidelijking de volgende voorbeelden:

- Een centrale verwarming is in gebruik voor de verwarming van een kamer. De
systeemgrens wordt getrokken rondom de kamer en de verwarmingsbuizen in de
kamer. Voor de beschrijving van dit systeem wordt de warmwaterstroom naar de
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verwarmingsbuizen als ingangssignaal gekozen, de temperatuur van de kamer als uit-
gangssignaal. De verandering van de kamertemperatuur als gevolg van een variatie
in de warmwaterstroom, beschrijft het systeem.

- Het gedrag van een rijdende auto is te beschrijven door de stand van het gaspedaal
als ingangssignaal te kiezen en de rijsnelheid als uitgangssignaal. De verandering
van de rijsnelheid als gevolg van een verandering in de gaspedaalstand levert een
systeembeschrijving. Daarmee is het systeem 'rijdende auto’ niet geheel beschreven.
Om bijvoorbeeld de doorvering van de carrosserie bij optrekken, of het gedrag in
bochten te beschrijven, moeten andere in- en uitgangssignalen worden gekozen.

1.2.3 Statische en dynamische systemen

In de systeemleer wordt onderscheid gemaakt tussen statische en dynamische systemen.
Dit onderscheid is niet helemaal correct omdat een statisch systeem in elk geval een zekere
massa heeft en alleen al daarom ook een dynamisch gedrag kan vertonen. Dus in feite
is elk fysisch bestaanbaar systeem een dynamisch systeem. Echter bij een aanzienlijk
aantal systemen komen de dynamische eigenschappen niet tot uiting onder de meest
voorkomende gebruiksomstandigheden.

Statische systemen

Statische systemen zijn gedefinieerd als systemen waarvan het uitgangssignaal op elk tijd-
stip bekend is als het ingangssignaal op datzelfde tijdstip gegeven is. Op elk tijdstip heeft
het quotiént uitgangssignaal/ingangssignaal dezelfde waarde.

Voorbeeld Een hefboom is een voorbeeld van een statisch systeem. In bijna alle toepas-
singen heeft de massa van de hefboom nauwelijks invloed op het gedrag. Als de massa van
de hefboom verwaarloosd wordt bestaat er een vaste relatie tussen de bedieningskracht F},
(ingangssignaal) en de uitgeoefende kracht F,, (uitgangssignaal). Daarmee is bedoeld dat
als op een gegeven tijdstip I, bekend is, I, ook bekend is. Andere voorbeelden van stati-
sche systemen zijn: tandwielvertragingen, elektronische versterkers en veel meetopnemers.

Bij de bestudering van statische systemen onder mechanische invloed is het voldoende
om alleen rekening te houden met zwaartekrachten, systeemgrenskrachten en centrifu-
gaalkrachten:

- Zwaartekrachten. Een zwaartekracht G grijpt aan in het zwaartepunt van een
voorwerp, is steeds naar het middelpunt van de aarde gericht en heeft een grootte
G = mg (m = massa van het voorwerp, g = versnelling van de zwaartekracht).

- Systeemgrenskrachten. Dit zijn krachten die van buitenaf door de omgeving op het
beschouwde systeem worden uitgeoefend. De aard van deze krachten is afhankelijk
van de gekozen systeemgrens. Als de systeemgrens door het contactvlak van twee
voorwerpen heen loopt dan zijn het contactkrachten . Loopt de systeemgrens door
het grensvlak van een voorwerp en een vloeibaar of gasvormig medium dan moeten
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drukkrachten en/of weerstandskrachten worden ingevoerd. Als de systeemgrens
dwars door een voorwerp heen is gekozen dan moeten materiaalkrachten worden
ingevoerd: zie §1.4.1. In dat geval moeten doorgaans ook momenten (zie § 1.3
Uitwendige krachten en momenten) worden ingevoerd.

- Centrifugaalkrachten. Roterende voorwerpen kunnen onder bepaalde voorwaarden
als een statisch systeem worden beschouwd. In die gevallen moeten optredende
centrifugaalkrachten worden meeberekend.

Dynamische systemen

Bij dynamische systemen is voor de berekening van het uitgangssignaal niet alleen de
waarde van het ingangssignaal benodigd, maar ook het verloop van het ingangssignaal in
de tijd. In H11 Dynamische systemen worden dynamische systemen uitvoerig besproken.
Hier volgen twee voorbeelden die de definitie illustreren.

Voorbeeld 1 In Figuur 1.3 is een nok met nokvolger getekend. De nok draait rond.
Bij gegeven nokvorm en toerental is de horizontale afstand w een functie van de tijd. De
nokvolger wordt door de veer tegen de nok gedrukt. Als de nok ronddraait verandert
de afstand u en daardoor de verplaatsing y van de nokvolger. De systeemgrens (zie de
onderbroken lijn in Figuur 1.3) is rondom de 'nokvolger + veer’ getrokken. Ingangssignaal
is de verplaatsing u; uitgangssignaal is de nokvolgerpositie y. Bij lage toerentallen en dus
bij een langzaam veranderend ingangssignaal u, geldt y = w.

nok

Figuur 1.3 Nok met nokvolger waarbij een systeemgrens (de onderbroken lijn) is getrokken om de
nokvolger en veer.

Dat geldt op elk tijdstip. Het systeem kan dus bij lage toerentallen als een statisch
systeem worden beschouwd. Bij hoge toerentallen moet de nokvolger als dynamisch
systeem beschouwd worden. Snelle veranderingen van u kan de nokvolger niet verwerken:
bij verhoging van het toerental komt er een moment waarop w zo snel verandert dat de
veer niet langer in staat is de versnellingskracht te leveren die nodig is om de nokvolger
tegen de nok gedrukt te houden. De nokvolger komt dan los van de nok. Het verdere
verloop van y wordt dan bepaald door de systeemparameters (voorspankracht van de
veer, veerstijfheid van de veer, massa van de nokvolger) en de nokvolgersnelheid op het
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tijdstip van loslaten. Voor de berekening van het totale uitgangssignaal moet bij hoge
toerentallen niet alleen u, maar ook het verloop van u in de tijd bekend zijn. Dus bij
hoge toerentallen komen de dynamische eigenschappen van het systeem tot uiting, maar
bij lage toerentallen kan het systeem als een statisch systeem beschouwd worden*. Het
is nu de taak van de ontwerper van een dergelijk nok-nokvolger-systeem om er voor te
zorgen dat steeds contact tussen nok en nokvolger blijft bestaan, door een correcte keuze
van de systeemparameters. Het nok-nokvolger-systeem wordt als een statisch systeem
ontworpen.

*Opmerking. In het bovenstaande is afgeleid dat bij langzame veranderingen van u geldt:
y = u. Maar dit is een benadering van de werkelijkheid. Ook bij lage snelheid du/dt
moet de volger versneld en vertraagd worden. De daarvoor benodigde versnellings- en
vertragingskrachten veranderen de grootte van de contactkracht tussen volger en nok.
Als gevolg daarvan zullen zowel de nok als de volger iets meer of iets minder inveren,
waardoor ook bij lage toerentallen het nok-nokvolger-systeem geen exact statisch systeem
is, maar slechts bij benadering.

Voorbeeld 2 Een ander voorbeeld van een dynamisch systeem is een vat met vloeistof.
Zie Figuur 1.4. Als het vat langzaam gekanteld wordt (kantelhoek ¢ is ingangssignaal)
blijft de vloeistofhoogte h (uitgangssignaal) horizontaal. Bij langzame bewegingen is er
een vaste relatie tussen @ en h. Als op een zeker tijdstip ¢ bekend is, dan is h dat ook. Het
systeem wordt dan als een statisch systeem beschouwd. Bij snelle kantelingen ontstaan er
golvingen in het vioeistofopperviak. Bij een gegeven kantelhoek ¢ is de vloeistofhoogte h
niet meer direct bekend, maar afhankelijk van het verloop van ¢ in de tijd. Het systeem
moet dan als een dynamisch systeem worden beschouwd.

l Nstatisch

a. b.

A

Figuur 1.4 a) Een kantelbaar opgesteld vat waarin zich vloeistof met hoogte h bevindt. b) Alleen bij
zeer langzame veranderingen van de kantelhoek ¢ kan het systeem als een statisch systeem worden
beschouwd. c) Bij snelle veranderingen van de kantelhoek ¢ moet het systeem als een dynamisch
systeem worden beschouwd

Zoals uit de bovenstaande voorbeelden blijkt, is de benaming statische systemen feitelijk
onjuist. In werkelijkheid bestaan er geen statische systemen. Alleen is het mogelijk onder
bepaalde voorwaarden een systeem als een statisch systeem te beschouwen.
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1.2.4 Systeem in rust en evenwichtsvoorwaarden

Elk systeem, zowel een statisch als een dynamisch systeem , kan in een toestand van rust
komen. Dat gebeurt als het ingangssignaal niet meer verandert. Een statisch systeem
is dan meteen in rust; er is immers een vaste relatie tussen in- en uitgangssignaal. Als
het ingangssignaal een constante waarde verkrijgt, heeft het uitgangssignaal op datzelfde
moment eveneens een constante waarde. Een dynamisch systeem komt pas na verloop
van enige tijd, nadat zijn ingangssignaal een constante waarde heeft aangenomen, tot rust.

Voorbeeld Zoals bijvoorbeeld het vat met vloeistof van Figuur 1.4. Op het moment
dat de kantelhoek ¢ constant wordt zal het vloeistofoppervlak nog golvingen vertonen.
Als de oscillaties zijn ‘uitgestorven’ komt het systeem tot rust. Bij een constante waarde
van ¢ behoort een rustwaarde van de vloeistofhoogte h. Deze rustwaarde wordt statische
toestand genoemd. Elk (stabiel) systeem kent statische toestanden. Uit het optreden
van een statische toestand mag uiteraard niet geconcludeerd worden dat het een statisch
systeem betreft.

Een systeem is in rust als zijn in- en uitgangssignaal niet veranderen. Een voorgespannen
veer is in rust (ingangssignaal constante verplaatsing, uitgangssignaal constante kracht).

Maar ook bewegende systemen kunnen in rust zijn. Een met constante snelheid rijdende
auto is in rust (ingangssignaal constante gaspedaalstand, uitgangssignaal constante snel-
heid), evenals een met constant toerental draaiende motor, of een met constante snelheid
dalende parachutist.

Indien een systeem in rust verkeert moeten de van buitenaf op het systeem werkende
krachten en momenten (de uitwendige krachten en momenten) evenwicht met elkaar
maken. Dat betekent dat de vectoriéle som van alle krachten, evenals de vectoriéle som
van alle momenten gelijk moet zijn aan nul. Voor het veel voorkomende tweedimensionale
geval geldt dus als voorwaarden voor evenwicht:

- geen resulterende kracht in x-richting;
- geen resulterende kracht in y-richting;
- geen resulterend moment.

Deze evenwichtsvoorwaarden zijn altijd toepasbaar. Dit wordt verder uitgebreid behandeld
in H3 Evenwichten. In een aantal gevallen kan echter met vereenvoudigde voorwaarden
worden volstaan.

1.3 Uitwendige krachten en momenten

1.3.1 Bepalen van uitwendige krachten en momenten

Het is zinvol de systeemgrens handig te kiezen en vast te leggen. Bij het bestuderen van
mechanische invloeden op het systeem moet in elk punt van de systeemgrens nagegaan
worden worden of de omgeving daar een kracht of moment OP het systeem uitoefent.
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Deze systeemgrenskrachten en -momenten of ook wel contactkrachten genoemd moeten
op die plaats worden ingevoerd. Samen met de zwaartekracht en de dynamische krachten
en momenten vormen zij de uitwendige krachten en momenten. De uitwendige krachten
en momenten moeten evenwicht met elkaar maken om het systeem in een toestand van
rust te houden. In de paragrafen 1.3.2 — 1.3.6 wordt verduidelijkt op welke wijze de
bekende uitwendige krachten en momenten worden ingevoerd waarbij de kennis over de
werking van het systeem gebruikt wordt. In H3 Evenwichten wordt vervolgens de stap
gemaakt naar het in mechanisch evenwicht brengen van systemen.

1.3.2  Contactkracht bij punt- of lijncontact

Wanneer de systeemgrens door een contactpunt loopt dan moet de van buiten op het
voorwerp werkende kracht in dat punt worden ingevoerd. In het algemeen heeft deze
contactkracht twee componenten. De ene component ligt in het raakvlak door het con-
tactpunt (W) en de andere component staat daar loodrecht op (V).

Voorbeeld In Figuur 1.5.a is een bol getekend die op een horizontaal plat vlak rust.
De systeemgrens is vlak om de bol gekozen, en loopt dus door het punt waar de bol con-
tact heeft met het vlak. In dat punt moet de van buiten op het voorwerp werkende kracht
worden ingevoerd. Deze contactkracht heeft dus in het algemeen twee componenten: de
ene in het raakvlak door het contactpunt (W) en de andere daar loodrecht op (N). Zie
Figuur 1.5.b. Indien — zoals hier is aangenomen — er geen andere krachten op de bol
werken, dan is W = 0.

systeemgrens - N

Figuur 1.5 a) Een bol op een horizontaal plat viak. De gestippelde systeemgrens is getrokken
rondom de bol. b) De systeemgrens maakt een puntcontact met het vlak en daarom moeten op
die plaats contactkrachten worden ingevoerd. In het contactpunt wordt een normaalkracht N en
een in het raakvlak liggende wrijvingskracht W ingevoerd. In dit voorbeeld, waarbij de bol in rust
is, geldt W = 0.

Als het te beschouwen systeem uit Figuur 1.5 een cilinder is, heeft de systeemgrens een
lijn gemeen met de omgeving. In dit geval kan de contactkracht in het midden van
de contactlijn worden geplaatst. Maar dat kan niet altijd, zoals wordt uitgelegd in de
volgende paragraaf 1.3.3.
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1.3.3 Contactkracht bij vlakcontact

Als een systeemgrens door een contactvlak loopt, zal de contactkracht zelfs meestal niet
in het midden van het contactvlak aangrijpen. Vaak wordt echter ter vereenvoudiging,
voor een eerste afschatting van de ordegrootte van krachten die op een systeem werken,
aangenomen dat de resulterende contactkracht 7" in het centrum van het contactopper-
vlak aangrijpt. In het volgende voorbeeld wordt dit verduidelijkt.

Voorbeeld In Figuur 1.6.a is een blok getekend waarvan het ondervlak op de vloer rust.
De systeemgrens is vlak om het blok gekozen en loopt tussen het blok en de vloer. In
het gehele ondervlak is drukcontact met de vloer. Als het blok gewoon op de vloer rust,
vormen alle drukkrachtjes samen de normaalkracht N (zie Figuur 1.6.b). Op het blok
werken nu twee krachten: het gewicht G en de normaalkracht N. Volgens de evenwichts-
voorwaarden moeten deze twee krachten even groot zijn en tegengesteld gericht zijn en
dezelfde werklijn hebben. De werklijn van N loopt door het midden van het grondvlak.
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Figuur 1.6 a) Een blok dat met zijn ondervlak op de vloer rust. De gestippelde systeemgrens
is getrokken om het blok. b) Het blok is in rust en er heerst een verdeelde belasting op het
ondervlak van het blok. In elk deelvlakje dA van het contactopperviak werkt een normaalkrachtje
dN. Gesommeerd over het totale contactoppervlak ontstaat de kracht N waarvan de locatie is
in het verlengde van de werklijn van de zwaartekracht G. c) De situatie is veranderd, omdat nu
ook een horizontale kracht F' op het blok aangrijpt. Dit zorgt er voor dat ook een resultante
wrijvingskracht W moet optreden om evenwicht te maken. Deze samengestelde kracht W wordt
op dezelfde wijze als N bepaald door in elk deelvlakje dA van het contactopperviak het een in het
raakvlak liggend wrijvingskrachtje dW te sommeren. d) De horizontale kracht F' grijpt nu boven
het grondvlak aan, hierdoor verschuift het aangrijpingspunt van W en N. W en N vectorieel
opgeteld geeft de totale resultante kracht T. e) Verdeelde belasting op het grondvlak ten gevolge
van de zwaartekracht en de horizontale kracht F uit d).

Figuur 1.6.c geeft de situatie als een horizontale uitwendige kracht F' is toegevoegd. Er
kan nu alleen evenwicht zijn als in het grensvlak vloer/blok een wrijvingskracht W = -F
werkt. Zie H4 Wrijving en weerstand voor meer uitleg over wrijving. Vectorieel optellen
van de krachten N en W levert de totale kracht T' die de vloer op het blok uitoefent.
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De drie uitwendige krachten F', G en T gaan door één punt. Als de horizontale kracht F
boven het grondvlak aangrijpt, moet de kracht 7" verschuiven. Immers, de krachten F,
G en T moeten door één punt gaan. Zie Figuur 1.6.d. De evenwichtssituatie is ook als
volgt te beschrijven: de twee even grote krachten F' en W vormen samen een koppel dat
gelijk en tegengesteld gericht is aan het koppel van de eveneens even grote krachten G
en N. De verschuiving van de kracht N betekent dat de verdeling van de drukkrachtjes
tussen vloer en blok niet meer gelijkmatig is. Zie Figuur 1.6.e. De contactkracht grijpt
dan niet in het midden van het contactvlak aan.

1.3.4 Contactkracht bij stromende media

Als de systeemgrens door het contactvlak met een vloeibaar of gasvormig medium loopt
moeten ook contactkrachten worden ingevoerd. Zoals bijvoorbeeld de rijwind bij een rij-
dende auto. De aanpak hiervan wordt aan de hand van het volgende voorbeeld behandeld.

Voorbeeld In Figuur 1.7 is een auto geschetst. De auto rijdt met constante snelheid.

Figuur 1.7 a) De gestippelde systeemgrens loopt direct rondom de auto die met een constante
snelheid rijdt. Als de systeemgrens door het contactvlak met een vioeibaar of gasvormig medium
loopt moeten ook contactkrachten worden ingevoerd. b) In het geval van een rijdende auto oefent
de rijwind op elk deelopperviakje een drukkrachtje (loodrecht op raakvlak) en een wrijvingskrachtje
(in raakvlak) uit. Gesommeerd ontstaat de luchtkracht L. L is evenwijdig met het wegdek getekend.

De systeemgrens is vlak om de auto heen genomen. Als de auto rijdt, oefent de langs-
stromende lucht allerlei druk- en zuigkrachten op de auto uit (weergegeven in de rech-
terafbeelding van Figuur 1.7 door de verdeelde-belasting-pijltjes). In H4 Wrijving en
weerstand staat meer uitleg over luchtweerstand. Voor een eerste beschouwing van dit
systeem is aangenomen dat al deze luchtkrachten horizontaal zijn. Gesommeerd leveren
zij de luchtkracht L op een afstand p boven het wegoppervlak. Waar de systeemgrens
door het contactvlak band/wegdek loopt zijn de contactkrachten A, V en W ingevoerd.
Het verticaal evenwicht eist dat het gewicht G van de auto gelijk is aan de som van V
en A. Voor het horizontale evenwicht moet L even groot zijn als W. Na toepassing van
de evenwichtsvoorwaarden kan de grootte van alle krachten bepaald worden.

Nu de contactkrachten zijn bepaald, gaan we dit voorbeeld nog nader bekijken om opmer-
kelijke aspecten uit te lichten. Deze hebben vaak te maken met de aannamen die gemaakt
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zijn, maar ook met kennis over het werkingsmechanisme van de aandrijving van de auto
zelf. Het is dus zaak bij het beschouwen van systemen altijd de fysische werkelijkheid
voor ogen te blijven houden:

- Uit het voorbeeld uit Figuur 1.7 blijkt duidelijk dat het niet is toegestaan de mo-
mentstelling (som van de momenten is nul) toe te passen op slechts een deel van
alle op een voorwerp werkende krachten. Bij een stilstaande auto (L = 0) hebben V'
en A een andere waarde dan bij aanwezigheid van de luchtkracht L. Naarmate de
auto harder rijdt wordt de luchtkracht L groter en worden dientengevolge A groter
en V kleiner.

- De voorwielen van de auto worden aangedreven, waarbij de rotatie rechtsom er voor
zorgt dat de auto vooruit rijdt. Merk op dat de wrijvingskracht W die het wegdek
op het voorwiel uitoefent naar voren is gericht. De auto zet zich dus als het ware
af tegen het wegdek om de voorwaartse beweging te realiseren. Het is deze kracht
W die de auto aandrijft, en in staat stelt de luchtweerstand L te overwinnen.

- De achterwielen zijn niet aangedreven. Zij draaien los mee, maar ondervinden in
werkelijkheid wrijving. Deze rotatiewrijving van de achterwielen is weergegeven in
Figuur 1.7.b door een naar achteren gerichte kracht in het contactpunt achter-
wiel/wegdek. Omdat deze kracht als klein wordt ingeschat ten opzichte van de
andere krachten die werken op het systeem, worden die bij een eerste systeem-
beschouwing verwaarloosd in de berekeningen. Het inschatten welke krachten in
eerste instantie wel of niet verwaarloosd mogen worden is voor een deel gebaseerd
op ervaring en veel kennis van allerlei technische systemen. Dit kan je alleen trainen,
door veel te oefenen!

1.3.5 Contactkracht/moment bij inklemming

De wijze waarop contactkrachten en —momenten bij inklemmingen moeten worden be-
handeld, wordt verduidelijkt met het volgende voorbeeld.

Voorbeeld Figuur 1.8 toont een balk die aan één zijde in een gat in een muur is gestoken.
De balk is aan het andere einde belast met een kracht F. De systeemgrens is vlak om
de balk getrokken. Door nu de inklemming wat overdreven te tekenen, zie je dat er
twee contactpunten a en b zijn tussen de balk en het muurgat. Op die plaatsen moeten
systeemgrenskrachten die op het systeem werken worden toegevoegd.

In Figuur 1.8.b zijn de op het systeem werkende uitwendige krachten getekend. In totaal
is de invloed van de muur op de balk dus ook te beschrijven door een kracht Fj; = F
en een koppel gevormd door de twee krachten F, en Fys ter grootte (F - q/p)-p=F -¢q
(Zie Figuur 1.8.e). Als de balk in de muur is ingemetseld (Figuur 1.8.d) is de situatie
onduidelijker. Er is nu niet precies bekend waar de muur krachten op de balk uitoefent.
Door de systeemgrens alleen om het uitstekende deel van de balk te nemen ontstaat de
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situatie van Figuur 1.8.e. Voor het evenwicht moet bij het inklempunt een kracht F' en
een moment F' - ¢ worden ingevoerd. Voor het uitstekende deel van de balk is de situatie
gelijkwaardig met Figuur 1.8.c; voor het in de muur verblijvende deel niet.

F Fa=93F Fa=gF F
7. SR A Ll . ]

s o s s e i | L o s e 4
b Fb1 =
a. / b. Fb = (1+3)F c. b1
e Fo2 = 3F
/ F Fi
_____ Y .
l// I F.q r |
/7— === —— | f. _______ <
F
d. e.

Figuur 1.8 a) Een balk die aan één zijde in een gat in een muur is gestoken en belast wordt door
kracht F. b) Twee contactkrachten zijn nodig om de balk in evenwicht te houden. d) Dezelfde
balk maar nu ingemetseld in de muur. Voor deze situatie zijn de werkelijk optredende krachten
bij inklemming niet bekend. e) Uit de evenwichtsvoorwaarden volgt dat de inklemming een kracht
F en een moment F - q op de balk moet uitoefenen. Deze beschrijving van een inklemming is
gelijkwaardig met die van twee contactkrachten (b).

1.3.6 Reactiekrachten en reactiemomenten

Bij het invoeren van de uitwendige krachten en momenten moeten de reactiekrachten en
reactiemomenten niet vergeten worden.

Voorbeeld In Figuur 1.9 is een boormachine getoond met roterende boor die met de
hand in een muur geduwd wordt. De systeemgrens is vlak om de boormachine met boor
getekend. De aanwezige zwaartekracht en de daarvoor benodigde ondersteuningskrach-
ten zijn in het voorbeeld weggelaten, omdat we de aanname doen dat de zwaartekracht
vele malen kleiner is dan de boorkrachten. In de contactvlakken boor/muur en boorma-
chine/hand zijn de minimaal benodigde krachten en momenten aangegeven die moeten
worden ingevoerd.

De hand drukt de boormachine met een kracht Fj, tegen de muur. De muur oefent op de
boor een gelijke en tegengesteld gerichte kracht F} uit. Deze laatste kracht noemen we
reactiekracht. Deze moet niet vergeten worden bij het invoeren van alle externe krachten
die op het systeem werken. Analoog hieraan wordt ook het reactiemoment van de hand
ingevoerd.

Bij het boren wordt het draaien van de boor tegengewerkt door het weerstandsmoment 7;,,.
De hand moet een gelijk en tegengesteld gericht moment 7T}, op de boormachine uitoefenen
om de machine in dezelfde (stationaire) positie te houden. Dit is het reactiemoment.
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Figuur 1.9 a) De systeemgrens kan ook rondom roterende onderdelen worden getrokken, zoals
bij deze boormachine met roterende boor. Voor deze situatie is de zwaartekracht niet meebe-
schouwd, omdat de inschatting is dat de boorkrachten vele malen groter zijn dan het gewicht van
de boormachine. b) Bij het boren wordt de boormachine met een kracht F}, tegen het materiaal
gedrukt. Het materiaal oefent een reactiekracht F}, op de boor uit. Als de boor ronddraait oefent
het materiaal ook een wrijvingsmoment Ty, op de boor uit. Voor het evenwicht van het systeem
boormachine+boor moet de hand een reactiemoment T}, op de boormachine uitoefenen. Merk op
dat de motor van de boormachine geheel binnen de systeemgrens ligt. Het motormoment heeft
geen invloed op de uitwendige krachten en momenten.

Nu de contactkrachten zijn bepaald, gaan we dit voorbeeld nog nader beschouwen om
opmerkelijke aspecten uit te lichten. Deze hebben veelal te maken met de aannames die
zijn gedaan, maar ook met kennis over het werkingsmechanisme van de aandrijving van
de boormachine zelf. Het is dus zaak bij het beschouwen van systemen altijd de fysische
werkelijkheid voor ogen te blijven houden:

- Dit voorbeeld geeft aan dat in dit geval een boormachine met constant roterende
boor als statisch systeem beschouwd mag worden (net als een auto die rijdt met
constante snelheid) en dat dan de statische evenwichtsvoorwaarden kunnen worden
toegepast. Van belang is dat er geen verandering in de heersende toestand binnen
de systeemgrens optreedt. Als het toerental van de boormachine verandert, moet
een traagheidskoppel worden toegevoegd. Het systeem moet dan als een dynamisch
systeem worden behandeld.

- Het door de hand uitgeoefende reactiemoment T}, is steeds even groot als het weer-
standsmoment T}, dat de boor ondervindt. Het is niet mogelijk meer te verspanen
(groot moment Ty,) dan de hand kan tegenhouden. Dit geldt ook heel algemeen.
Als een willekeurige motor een moment 7" aan zijn as afgeeft, dan moet het motor-
huis met een even groot moment 7" worden tegengehouden.

- Elektrische boormachines bezitten een ingebouwde mechanische vertraging. De
boorkop draait langzamer dan de motor; het draaimoment van de boorkop is groter
dan dat van de motor. Het draaimoment van de motor is een geheel binnen de
systeemgrens liggend moment; het is een inwendig moment en heeft niet te maken
met de evenwichtsbeschouwingen van de uitwendige krachten en momenten. De
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invioed die de omgeving op het systeem uitoefent is beschreven door de uitwendige
krachten Fj, en F}, samen met de uitwendige momenten T, en T},. Het weerstands-
moment T, dat de muur op de boor uitoefent is gelijk in grootte en tegengesteld
gericht aan het draaimoment van de boorkop (Thoorkop = T = —T1,). Inwendige
krachten en momenten worden besproken in §1.4.

- De systeemgrenskrachten en -momenten werken ook op de mens die de boormachine
bedient (—F}, en —T}) en op de muur (—F}y en -T,,). De bedienende mens en de muur
vormen samen de omgeving van de boormachine. Als de boormachine in evenwicht
is met de krachten Fj, = Fj en de momenten T, = T,,, dan zal de omgeving met
de krachten —F}, = —F} en de momenten T} = T, eveneens in evenwicht zijn.

1.3.7 Interpretatie uitwendige krachten

Zoals eerder opgemerkt, moet bij het invoeren van uitwendige krachten en momenten
altijd gelet worden op fysische werkelijkheid. Bij het maken van vereenvoudigde schetsen
van een (complex) systeem worden veel aspecten en invloeden verwaarloosd of als aanna-
men gebruikt, maar door het expliciet te maken, zoals in deze paragraaf, wordt men zich
daar meer van bewust. Dit is nodig om te kunnen herkennen dat er uitzonderingsgevallen
zijn of dat in sommige gevallen de standaardaannamen niet gelden. Bij het beschou-
wen van de contactkrachten moet de werking van de uitwendige krachten correct worden
geinterpreteerd.

Voorbeeld Ter illustratie geeft Figuur 1.10 nogmaals de belaste balk van Figuur 1.8.d.
Bedenk dat de getekende situatie slechts een deel van de werkelijkheid is. De belasting-
kracht F' kan bijvoorbeeld geleverd worden door een veer of een hydraulische cilinder;
maar alleen als deze veer of deze cilinder zich ergens tegen kan afzetten. De volledige
opstelling is dan als in Figuur 1.10.b waarbij de omgeving via de gearceerde behuizing is
weergegeven. Bij het beschouwen van de balk als systeem moeten de inklemkracht F' en
het inklemmoment F' - ¢ worden ingevoerd. De balk is dan in evenwicht. De omgeving,
met de twee krachten F' en het moment F'- q is eveneens in evenwicht. Zie Figuur 1.10.c.

Y /7477779797777 Y/ 79777747474777744
F F
Z Fl 7 F F
______ I
_ 7 | DI
a. b. c.

Figuur 1.10 a) Een ingeklemde balk is belast met een kracht F' met direct om de balk de sys-
teemgrens getekend.b) De belastingkracht F is alleen uit te oefenen door een mechanisme dat zich
tegen de omgeving kan afzetten. c) Als de omgeving beschouwd wordt moeten ter plaatse van de
inklemming de kracht F' en het moment F - q worden ingevoerd. Daarmee zijn zowel het systeem
balk als de omgeving in evenwicht.
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Voorbeeld Eenzelfde redenering geldt ook voor de zwaartekracht. Als de balk alleen door
zijn eigen gewicht is belast, is het gebruikelijk de balk te tekenen zoals in Figuur 1.11.a is

Z

WW VZ
a. b. ¢ c.

Figuur 1.11 a) Als een systeem in evenwicht is, dan is zijn omgeving dat ook. Dat geldt uiteraard
ook voor een ingeklemde balk die alleen door zijn eigen gewicht is belast. b) De balk oefent ook
een ‘zwaartekracht’ op zijn omgeving uit. ¢) De werking van de zwaartekracht is gelijkwaardig aan
de werking van een zeer slappe veer die tussen de balk en de omgeving geplaatst kan worden.

weergegeven. Dit is echter eveneens een onvolledige tekening. Krachten (en momenten)
ontstaan steeds in ‘paren’; ook de zwaartekracht. De aarde ‘trekt’ aan de balk; precies even
hard als de balk aan de aarde ‘trekt’. Zie Figuur 1.11.b. De werking van de zwaartekracht
is op te vatten als een zeer slappe veer (een veer met veerstijfheid gelijk aan nul), die
tussen de aarde en balk is aangebracht, zie Figuur 1.11.c.

Het complete belastingschema van Figuur 1.11.b is vergelijkbaar met dat van Figuur 1.10.b
en kan dienovereenkomstig behandeld worden. Ook hier blijft de omgeving in rust na
‘uitnemen’ van het systeem 'balk’.

1.4 Inwendige krachten en momenten

1.4.1 Bepalen van inwendige krachten en momenten

De uitwendige krachten en momenten veroorzaken dat er binnen in het systeem ook krach-
ten en momenten werken, deze worden inwendige krachten en momenten genoemd. Er
is een sterke wisselwerking tussen de uitwendige en de inwendige krachten en momenten.
Het is zinvol de uitwendige en de inwendige krachten en momenten goed van elkaar te
onderscheiden.

Voorbeeld Ter verduidelijking wordt een kniptang beschouwd waarmee een draad wordt
doorgeknipt. In Figuur 1.12.a is de systeemgrens weer aangegeven met een onderbroken
lijn, die vlak om de tang en draad loopt.

De tang is in evenwicht als de bedieningskrachten F}, op de beide handvatten even groot en
tegengesteld gericht zijn. Binnen de systeemgrens van de tang heersen nog vele krachten
en momenten. Zij worden de inwendige krachten en momenten van het systeem genoemd.
Voor een compleet evenwicht moet bij elk willekeurig gekozen systeemgrens er steeds
evenwicht zijn tussen de inwendige krachten en momenten en de uitwendige krachten en
momenten, zie Figuur 1.12.
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Figuur 1.12 a) Kniptang met een draad in de bek die belast wordt door een hand met krachten
F},. De systeemgrens is getrokken om de kniptang en draad met een onderbroken lijn. b) De
inwendige krachten en momenten van een systeem zijn te bepalen door het trekken van een nieuwe
systeemgrens. De systeemgrens is nu alleen om de tang getrokken waardoor de contactkrachten
F), moeten worden ingevoerd. c) De systeemgrens is getrokken om een tanghelft waardoor de
scharnierkracht Fs moet worden ingevoerd. d) Vioor het bepalen van materiaalkrachten moet de
systeemgrens dwars door het materiaal gekozen worden, zoals gedaan in dit voorbeeld waarbij één
tanghelft willekeurig door midden is verdeeld door de systeemgrens.

De systeemgrens is ook buiten de draad om te trekken; de draad maakt dan geen deel
meer uit van het systeem. Zie Figuur 1.12.b. Dan moeten de twee knipkrachten F}, als
contactkrachten draad/tang worden ingevoerd. Deze knipkrachten zijn voor het systeem
'alleen de kniptang' uitwendige krachten; terwijl zij voor het 'kniptang + draad’-systeem
inwendige krachten zijn.

Voor een nadere analyse van het systeem 'kniptang’, waarbij bijvoorbeeld de kracht op
het scharnier belangrijk is om de diameter van de scharnieras te kunnen bepalen, kunnen
de twee helften van de kniptang elk als een afzonderlijk systeem beschouwd worden. De
systeemgrens loopt dan door de scharnieras van de tang met de scharnierkracht F; als
een uitwendige kracht voor één tanghelft. Uit Figuur 1.12.c blijkt dat de scharnierkracht
F gelijk is aan de som van de bedieningskracht en de knipkracht: Fy = F}, + F}. Als de
hefboomverhouding van de tang bekend is, dan kunnen de krachten F}j en Fj in de be-
dieningskracht F}, worden uitgedrukt. Om de materiaalkrachten en momenten te bepalen
moet een systeemgrens worden getrokken dwars door het materiaal, zie Figuur 1.12.d. In
het algemeen moeten op de plaats waar de systeemgrens door materiaal heenloopt een
normaalkracht IV, een schuifkracht S en een moment M worden ingevoerd, omdat het
het materiaal vast aan elkaar zit en daardoor dus krachten en momenten in alle richtingen
kan weerstaan. Voor dit voorbeeld geldt: N =0, S = F}, en M = F}, - a.

Samenvattend: de inwendige krachten en momenten kunnen worden bepaald door steeds
een nieuw systeem af te zonderen, zodanig dat de gewenste inwendige krachten en momen-
ten voor het nieuwe systeem uitwendige krachten en momenten worden. De manier van
werken bij de nieuwe systeemgrens is geheel overeenkomstig aan die bij de oorspronkelijke
systeemgrens.
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1.4.2 Riemoverbrengingen

Figuur 1.13.a geeft een aanzicht en een doorsnede van een riemvertraging, met daarin
aangegeven de vectoren van het ingaande draaimoment 7, en het uitgaande draaimo-
ment T;,. Bij riemoverbrengingen vindt in het algemeen een versterking van draaimoment
plaats. De uitgaande as levert een groter draaimoment 7}, dan de ingaande as levert.
De systeemgrens is vlak om de riem en de wielen gekozen. De systeemgrens doorsnijdt
dus de aandrijfas en de aangedreven as. Figuur 1.13.b toont het systeem met op de
systeemgrens de draaimomenten die de omgeving op het systeem uitoefent. Het ingaande
draaimoment wordt aan het systeem toegevoerd, dus 77 = T,. Het uitgaande draai-
moment wordt aan de omgeving geleverd, de invloed van de omgeving is tegengesteld
daaraan. Dus T3 = —T,,. Voor het evenwicht van het systeem is het noodzakelijk dat de
omgeving nog een moment 7" = T5 — T} aan het systeem toevoert.
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Figuur 1.13 a) Boven- en zijaanzicht van een riemoverbrenging met externe momenten die op het
systeem werken. b) De systeemgrens is rondom de twee wielen en de riem gekozen en weergegeven
met een onderbroken lijn. De omgeving oefent op het systeem het aandrijfmoment T1 = T, en de
reactie T> op het afgegeven moment T, uit. Voor het evenwicht is het noodzakelijk dat op het
systeem nog een derde moment T - Th wordt uitgeoefend. c) De splitsing van de riemoverbrenging
in twee deelsystemen waarbij de systeemgrens dwars door de riem wordt gelegd d) Door splitsing
wordt duidelijk dat het moment Ty - T ontstaat uit twee evenwijdige lagerkrachten F', zoals verder
uitgewerkt. e) De werklijnen van beide krachten F liggen niet in elkaars verlengde, met als gevolg
dat zij een koppel vormen gelijk aan: To — Th1 = F (R2 — R1).

Om te begrijpen waar dat draaimoment 7" vandaan komt is het nodig om het oorspronke-
lijke systeem te splitsen in twee deelsystemen. Zie Figuur 1.13.c. Het linker deelsysteem
bevat het kleine wiel met het omliggende gedeelte van de riem, het rechter deelsysteem
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bevat het grote wiel met zijn omliggende riemdeel. Op de plaats waar een deelsysteem-
grens door de riem loopt moeten uitwendige krachten worden ingevoerd. Om dit goed te
kunnen doen is het noodzakelijk om kennis te hebben van de werking van een dergelijke
riemoverbrenging.

In de figuur is aangenomen dat alleen in het onderste trekkende deel van de riem een kracht
F heerst, in het andere — bovenste — deel is geen trekkracht verondersteld. Eerst wordt het
evenwicht van het kleine wiel beschouwd. Uit Figuur 1.13.c blijkt dat de riemkracht F' =
T1/Ry = T»/Rs een lagerreactiekracht van dezelfde grootte op beide assen veroorzaakt.
Met deze lagerreactiekrachten F' verkeren beide deelsystemen in evenwicht.

Bij het samenvoegen van de twee deelsystemen ontstaat het totale systeem weer, zie
Figuur 1.13.d. De riemkrachten F' vallen tegen elkaar weg als ze beschouwd worden in
het bovenaanzicht. Dat klopt, want voor het totale systeem is de kracht in de riem een
inwendige kracht. De twee lagerreactiekrachten F' blijven na samenvoegen van de twee
deelsystemen aanwezig in het zijaanzicht. Zij zijn evenwijdig en hebben een afstand (R —
R;) tot elkaar. Zie Figuur 1.13.e. Zij leveren tezamen het moment F'-(Ry — Ry) = To —
T . Dit is precies het draaimoment (grootte en richting) dat de omgeving aan het systeem
moest toevoeren. De uitwendige krachten en momenten op het systeem van Figuur 1.13.d
geven een duidelijker beschrijving van de riemoverbrenging dan Figuur 1.13.b. Hier kom je
alleen achter door een systeem met verschillende systeemgrenzen te analyseren. Het kan
dus ook zijn dat een systeemgrens onhandig wordt gekozen en dat daardoor een complexe
systeembeschrijving ontstaat. De optie is dan altijd om de systeemgrens te verleggen en
daarmee de analyse voort te zetten.

1.4.3 Tandwieloverbrengingen

Een overeenkomstige situatie als beschreven in §1.4.2 doet zich voor bij tandwieloverbren-
gingen. Figuur 1.14.a toont een tandwielvertragingskast. Allereerst is het totale systeem
(tandwielkast + tandwielen) beschouwd. De systeemgrens ligt buiten om de kast en
doorsnijdt de beide assen. Op de doorsnijdingsplaatsen zijn de draaimomenten T3 en 15
ingevoerd die de omgeving op het systeem uitoefent. Merk op dat 77 =T, en T5 = —T,,.
Voor het evenwicht van het systeem is het noodzakelijk dat de omgeving ook nog een
draaimoment T' =Ty + T, = T, — T}, aan het systeem toevoert. Evenals bij de riemover-
brenging is dit draaimoment afkomstig van de lagerreacties. Ter verduidelijking zijn twee
deelsystemen gecreéerd (systeem 1 en systeem 2), zie Figuur 1.14.c.

Systeem 1 bevat het rondsel (kleine tandwiel): de systeemgrens doorsnijdt de ingaande as
en loopt door het contactvlak met het grote tandwiel. Het gevolg is dat op die plaatsen
het draaimoment 77 en de tandwielkracht F' moeten worden ingevoerd. Het rondsel drijft
het grote tandwiel aan. Met de gegeven draairichting is de kracht die het rondsel op
het grote tandwiel uitoefent naar beneden gericht. Het grote tandwiel oefent dan op
het rondsel een naar boven gerichte kracht F' uit. Voor het evenwicht van systeem 1
is het noodzakelijk dat het aslager een kracht F' (gelijk en tegengesteld gericht aan de
tandwielkracht) op de rondselas uitoefent. Er geldt F - Ry = Tj.

34



Systemen 1.4 Inwendige krachten en momenten
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Figuur 1.14 a) Boven- en zijaanzicht van een tandwielvertragingskast. De systeemgrens is rondom
een tandwielvertragingskast getrokken. b) Op de systeemgrens moeten de momenten Th = T,
en To = —T, worden ingevoerd, maar ook het moment T\ + T> om evenwicht te verkrijgen. c)
Net als bij het voorbeeld van de riemoverbrenging helpt de splitsing van de tandwielvertragingskast
in twee deelsystemen om er achter te komen dat de lagerkrachten F' het extra moment T1 + 1>
opleveren. d) Samengesteld systeem uit systeem 1 en 2. De krachten F' op de tanden van de
tandwielen worden inwendige krachten die dan niet meer beschouwd hoeven worden.

Systeem 2 bevat het grote tandwiel. Op de systeemgrens werken het draaimoment T,
de tandwielkracht F' en de lagerreactiekracht F'. Er geldt F' - Ry = T5.

Bij samenvoegen van de systemen 1 en 2 ontstaat het systeem van Figuur 1.14.d. De
tandwielkrachten zijn niet meer getekend, omdat deze voor het samengestelde systeem (1
+ 2) inwendige krachten zijn geworden. De draaimomenten T} en T5, en de lagerreactie-
krachten F' houden het systeem in evenwicht. Het koppel van de twee krachten F' heeft
een grootte F'- (R + Rp) = Ty + T». Dit koppel verkrijgt het tandwielenpaar (systeem
1 + 2) van de tandwielkast. Het moet dus met dezelfde draairichting, zoals getekend in
Figuur 1.14.b, aan de tandwielkast worden toegevoerd.

Deze beschouwing laat zien dat er rekening mee moet worden gehouden dat de omge-
ving in staat moet zijn om het draaimoment T} + 75 op de tandwielkast uit te oefenen.
De tandwielkast moet dus stevig aan de omgeving zijn bevestigd. Als bijvoorbeeld een
tandwielvertraging een draaimoment van x Nm een factor 9 vergroot, dan moet de tand-
wielkast een moment 10 - z Nm uit de omgeving kunnen opnemen.
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1.4.4 Momentversterking algemeen

In het bovenstaande is een tandwielkast met slechts één stel tandwielen beschouwd. De
in- en uitgaande assen hebben een tegengestelde draairichting. Dit leidt ertoe dat aan de
tandwielkast een draaimoment T; + T5 moet worden toegevoerd. Indien een tandwielkast
een tussenas heeft dan krijgt de uitgaande as eenzelfde draairichting als de ingaande. De
draaimomenten 77 en T5 zijn dan tegengesteld. In dat geval moet de tandwielkast met
een moment 77 — 75 worden tegengehouden. De situatie is dan overeenkomstig aan
de riemoverbrenging van § 1.4.2, waar ook de in- en uitgaande as dezelfde draairichting
hebben.

In het algemeen kan gesteld worden: indien binnen een systeem een verandering van
draaimoment plaatsvindt dan moet aan dat systeem een extra draaimoment ter grootte
van het negatieve sommoment worden toegevoerd. Bij toepassing van deze regel moet
eerst een positieve draairichting worden aangenomen. Kies bijvoorbeeld in het systeem
van Figuur 1.13.b de draairichting van T; positief. Dan moet aan dat systeem een
draaimoment:

I'=-(T+(-T)=T-T) (1.1)

worden toegevoerd. In Figuur 1.13.b is een moment van deze grootte en dezelfde draai-
richting als T; ingetekend.

Ook op de twee-assige tandwieloverbrenging van Figuur 1.14 is de regel toe te passen.
Kies de draairichting van T3 positief. Dan geldt dat aan de tandwielkast een moment
T = —(Ty +T5) moet worden toegevoerd. Het minteken bepaalt de draairichting van het
moment. Het moment T heeft dus een grootte T} + 15 en een draairichting tegengesteld
aan Ty. Zie Figuur 1.14.b. Het is om goed te bedenken dat de gegeven formulering
niets anders is dan een bijzondere schrijfwijze van de evenwichtsvoorwaarde: som van de
momenten is nul. Hierbij is nog op te merken dat voor hefbomen en andere krachtver-
sterkingsmechanismen een overeenkomstige uitspraak is te doen. Zie Figuur 1.15.

lT:T1+T2 FoFo 4 F,
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Figuur 1.15 a) De schets is geheel overeenkomstig Figuur 1.14.b en laat dus een bovenaanzicht van
en tandwielkast zien. Met de systeemgrens rondom een tandwielbak geldt T = Ty + T». b) Ter
vergelijking is een hefboom getekend waarvoor geldt F' = F| + F>. Merk op dat de overeenkomst
ook geldt voor de hoekverdraaiingen w1 en w2 met de verplaatsingen s1 en sa.

a.
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1.5 Toepassing opsplitsen in deelsystemen

In Figuur 1.16 is een werkende blikopener getekend. Allereerst wordt het mes in het deksel
van het blik gedrukt. Dan wordt de gekartelde rand van de steel tegen de bovenrand van
het blik gedrukt. Als met de hand een kracht F}, op de steel wordt uitgeoefend wikkelen
de tanden van de steel af op de bovenrand. Het aan de draaibare stang bevestigde mes
opent dan het blik. Het samenstel van blik en blikopener wordt als systeem beschouwd,
weergegeven door de systeemgrens in Figuur 1.16.

De systeemgrens loopt door het contactvlak hand/steel en door het contactvlak hand/blik.
Op de steel staat de bedieningshandkracht F},. Het verticaal evenwicht vereist dat de hand
die het blik vasthoudt een uitwendige kracht R op het systeem uitoefent die gelijk is aan
F}, maar een tegengestelde richting heeft. De hand die het blik vasthoudt moet tevens een
moment M op het blik uitoefenen om het moment dat R en F} vormen te compenseren.

Figuur 1.16 Het systeem 'blik + blikopener’. Als op de blikopener een bedieningskracht F}, wordt
uitgeoefend moet het blik met een kracht R en een moment M worden tegengehouden.

Het beschouwde systeem bestaande uit blikopener en blik levert nog geen informatie die
voor het ontwerp van de blikopener nuttig is. Daarom wordt de systeemgrens alleen
om de blikopener gelegd zoals in Figuur 1.17. Op het contactvlak steel/blik zijn de
normaalkracht Fy, en de wrijvingskracht F}, getekend. Van de onbekende contactkracht
mes/blik zijn twee onderling loodrechte componenten F,,,; en F,, getekend. Uit de
evenwichtsvoorwaarden volgt dat de werklijn van de resultante F;,, van F,,; en F,,, de
werklijn van de resultante Fj van Fj, en Fj, samen met de werklijn van de kracht Fj,
door één punt moeten gaan. Dus indien de handkracht F}, bekend is volgen daaruit de
grootte en de richting van F,,, en F}.

Meer inzicht in de blikopener kan worden verkregen door het systeem verder op te splitsen
in twee deelsystemen. Het ene deelsysteem bevat de steel met de scharnier-as; het andere
deelsysteem bevat de trekstang met het mes. Zie Figuur 1.18.
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Figuur 1.17 Het systeem blikopener. Op het systeem werken drie uitwendige krachten Fy,, Fi, en
Fy.. De werklijnen van deze krachten moeten door één punt gaan; hun krachtendriehoek moet
gesloten zijn. Als F}, bekend is, zijn F,, en F} dat ook.

Fk

Figuur 1.18 Twee deelsystemen van de blikopener met de erop werkende krachten. Door de splitsing
in deelsystemen is de scharnierkracht Fs te bepalen.

Op het deelsysteem trekstang/mes werken slechts twee krachten: de kracht F,, die het
blik op het mes uitoefent en de scharnierkracht F;. Omdat er verder geen moment werkt
moeten deze twee krachten dezelfde werklijn hebben. De richting van de krachten F,
en F is dus bekend. Op de steel van de blikopener werken drie krachten: Fj,, Fs en de
kracht F}j die de blikrand op de steel uitoefent. Op de steel werkt geen moment. De
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werklijnen van de drie krachten moeten dus door één punt gaan. Daarmee is de richting
van F} ook bekend. Samen met een bekende grootte van Fj, levert de krachtendriehoek
de grootte van F; en Fj,.

Van de twee deelsystemen zijn nu de uitwendige krachten bekend. Van het oorspronkelijke
systeem zijn de belangrijkste inwendige krachten bekend.

De blikopener is een voorbeeld van een statisch systeem. De steel wentelt af op de blikrand.
Deze beweging is echter niet zo snel dat versnellingskrachten in rekening gebracht moeten
worden.

Bij de beweging wijzigt de hoek tussen trekstang en steel. In elke positie van de steel is het
krachtenspel op de steel anders. Voor een complete analyse moet de steel in verschillende
posities worden beschouwd. In H2 Modelvorming is dat uitgevoerd.

1.6 Optimaliseren

Met de verkregen kennis van de krachten die op de blikopener en het blik werken, is
de blikopener nader te bepalen. Hierbij komen een aantal verschillende gezichtspunten
aan de orde, zoals de locaties die het meest belast worden. Bij een ontwerp moeten
meestal compromissen gesloten worden, kies je bijvoorbeeld voor een heel sterk maar
duur materiaal om het ontwerp mee te vervaardigen of moet de kostprijs zo laag mogelijk
worden. Het is doorgaans onmogelijk om aan de verschillende optimaliseringsrichtingen
tegelijkertijd te voldoen. Daarom wordt in dit boek in eerste instantie vooral de gewenste
functionaliteit beschouwd. Als het ontwerp de belangrijk geachte functies kan vervullen,
dan kan de stap gemaakt worden om het ontwerp verder uit te werken waarbij een aantal
van de volgende optimaliseringsaspecten kunnen worden meegenomen.

1.6.1 Functionele optimalisering

Allereerst moet ervoor gezorgd worden dat de blikopener goed functioneert. Uit de Figuren
1.17 en 1.18 blijkt dat de werklijn van de kracht F} een scherpe hoek maakt met het
contactvlak steel/blik. De kracht F} is ontbonden in de kracht Fy, en de kracht Fj,,
die respectievelijk in het contactvlak ligt en er loodrecht opstaat. Als de steel niet langs
het blik mag glijden, dan moet gelden: Fy, = f - Fi, (f = wrijvingscoéfficiént). Bij
de getekende krachtrichting is ongeveer Fj, = Fj,. Dan zou de wrijvingscoéfficiént f
ongeveer gelijk aan 1 moeten zijn, een waarde die voor technische materialen niet haalbaar
is. De waarde van f is kunstmatig te verhogen door de steel van kartels te voorzien (zie
Figuren 1.17 en 1.18) die in de rand van het blik kunnen dringen.

Technisch moet er voor gezorgd worden dat de kartels scherp genoeg zijn om de benodigde
verhoging van de wrijvingskracht te verkrijgen, en hard genoeg om de blikopener een groot
aantal malen te kunnen gebruiken.

1.6.2 Constructieve optimalisering

De hoofdafmetingen van de blikopener zijn de lengte van de trekstang, de lengte van de
steel en de plaats van het draaipunt. Deze afmetingen hebben al hun grenzen gevonden
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door de opgelegde functie. Bij de optimalisering is het zaak de afmetingen zo te kiezen
dat het mes een cirkelvormige baan beschrijft en dat een zo groot mogelijke snijkracht
F,,, ontstaat bij een zo klein mogelijke bedieningskracht F},.

De constructieve uitvoering van het draaipunt is een technisch probleem. Bij een een-
voudige oplossing draait de trekstang boven de steel. Dan is de scharnierpen op buiging
belast. Moet de pen dan bevestigd worden aan de steel, aan de trekstang of aan geen
van beide?

De gegeven analyse van optredende krachten is nuttig voor de dimensionering van de
steel. Figuur 1.19 geeft de verschillende belastingen van de steel. Uit deze figuur blijkt
direct dat doorsnede A-A de zwaarst belaste is. Daar werken de grootste dwarskracht,
de grootste drukkracht en het grootste buigende moment. Door de steeldoorsnede niet
rechthoekig te maken kan een steel van gelijke sterkte worden gebouwd. Dat betekent dat
alle doorsneden dan even zwaar belast worden. De stang met het mes moet de trekkracht
F,, = F kunnen opnemen.

| trekkrachten
1

dwarskrachten

trek

]
I druk
—Fkcos « |
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Figuur 1.19 In de steel van de blikopener uit de Figuren 1.17-1.18 werken trekkrachten, dwars-
krachten en buigende momenten. De grootte van deze krachten en momenten hangt af van de
plaats op de steel.

1.6.3 Ergonomische optimalisering

Bij een ergonomische optimalisering is het streven om het systeem aan te passen aan de
begrenzingen van de mensen die het systeem gaan bedienen; onder meer qua afmetingen,
krachten en begrijpelijkheid. Er moet bijvoorbeeld voor gezorgd worden dat de blikopener
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handig is te bedienen. Voor een goede werking van de blikopener is het van belang dat
het mes met een aanvaardbare bedieningskracht F}, door het blik getrokken kan worden,
en dat de bedieningsslag niet te groot mag zijn, en dat de lengte van de steel niet te groot
mag zijn. De vorm van het handvat moet zodanig zijn dat een goede greep mogelijk is.
Bij voorkeur moet het handvat zodanig worden gevormd dat geen steelbeweging buiten
het gewenste gebied kan plaatsvinden.

1.6.4 Productie-optimalisering

Afhankelijk van het gekozen ontwerp (geometrie en materiaal), van de verlangde kostprijs
en productiesnelheid en van de productie-seriegrootte zal bepaald moeten worden hoe
de onderdelen vervaardigd gaan worden. De onderdelen kunnen bijvoorbeeld uitgezaagd,
gestanst of gefreesd worden, en de gaten bijvoorbeeld geboord of geponst, enz. Deze
overwegingen behoren bij het ontwerpproces te worden meegenomen.

1.6.5 Regelgeving-optimalisering

Binnen Europa geldt dat een bedrijf moet kunnen aantonen dat een product een bepaalde
kwaliteit heeft. Het proces hoe dit aan te tonen wordt geregeld via zogeheten 1SO- en
NEN-normen. Als aan deze regelgeving voldaan wordt dan krijgt het product de CE-
markering en mag het verkocht worden in Europa. Voor landen buiten Europa gelden
gelijksoortige systemen, maar die kunnen wel verschillen.

1.6.6 Optimalisering naar duurzaamheid

Zowel het produceren van de producten als het verkrijgen van de grondstoffen zorgen
voor een belasting van het milieu. Regelgeving rondom producten wordt steeds stren-
ger, onder meer omdat bepaalde grondstoffen schaars worden en omdat steeds vaker
negatieve gevolgen van bepaalde stoffen en processen op het milieu worden gemeten. In
het ontwerpproces dient hier rekening mee gehouden te worden door bijvoorbeeld een
handige materiaalkeuze, minder materiaalverbruik, betere repareerbaarheid, afneembare
onderdelen ten behoeve van hergebruik of recycling, en meer. Ook kan het kosten- en
milieubesparend werken voor het gehele productieproces als goed gekeken worden naar
de energiekosten voor productie en vervoer van onderdelen en systemen. Maar voor een
echte optimalisatie naar duurzaamheid moet de hele levenscyclus van een systeem in
ogenschouw worden genomen om de belasting op het milieu te kunnen minimaliseren.

1.7 Samenvatting

Het binnen de systeemgrens liggende deel van de werkelijkheid wordt systeem genoemd.
Daarbuiten bevindt zich de omgeving. Er is een wisselwerking tussen systeem en omgeving.
De omgeving oefent op het systeem de uitwendige krachten en momenten uit. Dezelfde
krachten en momenten, echter met tegengesteld teken, oefent het systeem op de omgeving
uit. Daaruit volgt dat het systeem en zijn omgeving, &f beide in evenwicht zijn, 6f het
beide niet zijn.
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De systemen zijn te verdelen in statische en dynamische systemen. Het evenwicht van
de statische systemen is besproken. De dynamische systemen worden in H11 Dynamische
systemen nader besproken.

Binnen een systeem werken de inwendige krachten en momenten. Voor de bestudering
daarvan moet het systeem worden gesplitst in deelsystemen. De deelsystemen worden
zodanig gekozen dat de te bestuderen inwendige krachten en momenten, voor het deelsys-
teem uitwendige krachten en momenten worden. De manier van werken is in voorbeelden
toegelicht.
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Hoofdstuk 2

Modelvorming

2.1 Inleiding

Model

Het woord model wordt in een aantal verschillende, soms tegengestelde, betekenissen ge-
bruikt. Een kunstenaar maakt bijvoorbeeld een afbeelding van een model. Het model is
de werkelijkheid, zijn origineel. In de gieterij wordt het woord model in een overeenkom-
stige betekenis gebruikt. Het model dient daar voor het maken van de gietvorm en is
dus het origineel van de te maken gietstukken. Het woord model wordt echter ook ge-
bruikt als aanduiding voor een afbeelding van de werkelijkheid, zoals bij modelspoorweg en
vliegtuigmodel. In het woord modelvorming is de betekenis overeenkomstig deze laatste
betekenis. Modelvormen is het maken van een beschrijving van een stuk werkelijkheid,
van het werkelijke systeem. Eenzelfde systeem kan vanuit vele gezichtshoeken worden
beschouwd. Er zijn dan ook evenzovele modellen mogelijk. Voor elk model zijn andere
gegevens belangrijk.

Voorbeeld
Van het systeem 'auto’ zijn vele modellen te maken, zoals bijvoorbeeld:

- De belastingdienst zou met een zeer eenvoudig model van de auto kunnen vol-
staan waarin slechts gegevens over gewicht en brandstofsoort van het voertuig zijn
opgenomen.

- Een verzekeringsmaatschappij beschrijft een auto bijvoorbeeld met de kostprijs van
het voertuig, het aantal schadeclaims en de leeftijd van de verzekeringnemer.

- Het model dat de gebruiker van een auto zou kunnen hanteren bevat bijvoorbeeld
informatie over uiterlijk, prestaties en gebruikskosten.
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Zo zijn er ook verschillende technische modellen van het systeem 'auto’ mogelijk, zoals
bijvoorbeeld:

- De ontwerper van de carrosserie heeft bijvoorbeeld behoefte aan een model dat
uitspraken doet over stabiliteit, zijwindgevoeligheid en luchtweerstand.

- Het comfortmodel van de auto beschrijft zaken zoals de invloed van de bandenmaat,
veerstijfheden, wielbasis en eventueel andere aspecten die betrekking hebben op de
gebruiksbeleving van de chauffeur en/of de passagiers.

- De ergonoom is bijvoorbeeld geinteresseerd in een model dat onder andere de be-
sturingseigenschappen en het weggedrag weergeeft.

In het volgende worden alleen technische modellen besproken.

Modelvormen

De fysische werkelijkheid is in het algemeen te ingewikkeld om geheel exact te beschou-
wen. In Hoofdstuk 1 Systemen is al iets aan modelvorming gedaan. Zo is het mechanisch
contact tussen twee voorwerpen doorgaans veel complexer dan in het hoofdstuk over sys-
temen is aangenomen. QOok is de stroming van gassen of vloeistoffen rondom of door een
voorwerp zeer ingewikkeld. Een enigszins nauwkeurige beschrijving daarvan is nauwelijks
te geven. In dergelijke gevallen wordt met een benadering van de fysische werkelijkheid
gewerkt, oftewel met een model. De eisen aan een model zijn:

- Een model moet goed zijn, dat wil zeggen een voldoende nauwkeurige beschrijving
van de werking geven.

- Een model moet tevens eenvoudig zijn om het benodigde rekenwerk zoveel mogelijk
te beperken.

Deze twee eisen zijn tegenstrijdig. Een goede beschrijving is niet eenvoudig en een een-
voudige beschrijving is zelden nauwkeurig. Daarbij komt de moeilijkheid dat de mate
waarin een beschrijving eenvoudig kan zijn afhangt van de probleemstelling. Een model
dat voldoet om de werking van een systeem te beschrijven, is vaak niet goed genoeg voor
een nauwkeurige berekening van de optredende spanningen.

De kunst van het modelvormen is een goede en eenvoudige beschrijving van de
werkelijkheid te geven die voor een bepaalde probleemstelling voldoet.

Ook binnen eenzelfde interessegebied zijn verschillende soorten modellen voor systemen
beschikbaar:

- Zo is het mogelijk een systeem te beschrijven met een aantal wiskundige vergelij-
kingen. Dat heet een mathematisch model.
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- Voor het beproeven van een schip of een vliegtuig wordt een verkleinde uitvoering,
een schaalmodel, in een sleeptank of een windtunnel gebracht.

- Ook is het mogelijk een mechanisme te bouwen dat de werking van een systeem
nabootst, zoals bijvoorbeeld een planetarium. Zoiets heet een mechanisch model.

- Een andere modelvorm is het blokschema. In zo'n schema wordt elke functie van
een systeem door een blok weergegeven. Een aantal geschakelde blokken geeft dan
de werking van het totale systeem weer.

Het blokschema is een algemeen toepasbare, handige en inzichtgevende manier van werken
en deze wordt daarom in §2.2 nader toegelicht en in de daarop volgende paragrafen
gebruikt.

In Hoofdstuk 1 Systemen zijn modellen weergegeven die de kracht- en momentwerking
van verschillende werktuigen beschrijven. Voor statische systemen is dat voldoende; zij
bewegen niet. Ook voor stationaire systemen is dat voldoende; daar kunnen de optredende
bewegingen buiten beschouwing blijven. Veel werktuigen hebben echter een niet-continue
beweging onder invloed van veranderlijke krachten. Daarbij treedt een sterke wisselwerking
op tussen de bewegingen en de optredende krachten.

Voorbeelden
- Bij het voortbewegen van een roeiboot bijvoorbeeld kan niet alleen uitgegaan worden

van de beschikbare armslag, maar moet ook worden gekeken naar de beschikbare
armkrachten.

- De motor van een auto moet niet alleen voldoende snel draaien om het voertuig
een bepaalde snelheid te kunnen geven, maar daarbij ook voldoende kracht kunnen
ontwikkelen om de bij die snelheid behorende luchtweerstand te kunnen overwinnen.

In §2.3 zal een inleiding in deze problematiek worden gegeven.

2.2 Blokschema’s

2.2.1 Voordelen van blokschema’s

De werking van een systeem kan in een blokschema worden weergegeven. Dat kan voor
allerlei systemen worden gedaan. Het werken met blokschema's heeft de volgende voor-
delen:

eenvoudige en overzichtelijke presentatie van een systeemfunctie;

- het blokschema is direct af te leiden uit het fysisch gedrag van een systeem;
- duidelijk overzicht van toegepaste benaderingen en vereenvoudigingen;

het blokschema is eenvoudig om te zetten in een mathematische formule;

- direct aanwijsbare vereenvoudigingen;
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- overzichtelijke aanduiding van interacties;
- mogelijkheid tot nauwkeurige analyse van deelfuncties;
- opbouw van systemen uit basisblokken.

Deze voordelen zullen in het volgende worden verduidelijkt.

2.2.2 Definities

Blok: Een blokschema is opgebouwd uit verschillende blokken. Elk blok geeft een bepaalde
functie van het beschouwde systeem weer. Elk blok heeft een ingang en een uitgang.

In- en uitgangssignaal: In Figuur 2.1 is een enkel blok getekend. Aan het blok wordt
een ingangssignaal u toegevoerd. Door het blok wordt een uitgangssignaal y afgegeven.
Tussen het ingangssignaal u en het uitgangssignaal y bestaat een oorzaak-gevolg relatie:
als u verandert, dan verandert y ook.

Blokfunctie, overbrengingsverhouding: Er geldt dat het uitgangssignaal y gelijk is aan het
ingangssignaal u vermenigvuldigd met de blokfunctie H. H wordt overbrengingsverhou-
ding genoemd. Dus: y = H.u

Figuur 2.1 Het eenvoudigste blokschema. Het ingangssignaal u beinvloedt een systeem. Het
systeem reageert met een uitgangssignaal y. De overbrengingsverhouding is H. Er geldt: y = H.u

L . |

a

Figuur 2.2 Een hefboom met het blokschema voor de verplaatsingen. Met de hefboomlengten a
en b wordt de overbrengingsverhouding H = sy /s, = b/a.

Voorbeeld Als voorbeeld van een enkel blok is in Figuur 2.2 een hefboom getekend.
Aan het linkereinde van de hefboom wordt een verplaatsing s, toegevoerd. De beweging
sy van het rechtereinde van de hefboom wordt als uitgangssignaal beschouwd. Voor de
verplaatsingsfunctie van de hefboom geldt:
b
Sy = Su

Het ingangssignaal moet met b/a vermenigvuldigd worden om het uitgangssignaal te
verkrijgen. Voor de overbrengingsverhouding H wanneer de verplaatsing van de hefboom
beschouwd wordt geldt: H =b/a
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Het is ook mogelijk aan het linkereinde van de hefboom een kracht F), aan te bieden. De
kracht I, aan het rechtereinde wordt als uitgangssignaal beschouwd. Er geldt

F, = %Fw (2.1)

Als de krachtfunctie van de hefboom beschouwd wordt is de overbrengingsverhouding:

H =a/b.
lFu lFV

1 J

e

Figuur 2.3 Een hefboom met het blokschema voor de krachten. Met de hefboomlengten a en b
wordt de overbrengingsverhouding H = Fy/F, = a/b.

Let op: In het bovenstaande is de hefboom als systeem beschouwd waarop alleen de
krachten F}, en F, werken. Echter ook het steunpunt oefent op de hefboom een kracht
F, uit, die niet in het blokschema voorkomt. De voorwaarden waaronder het is toegestaan
om de steunpuntsreactie niet mee te beschouwen worden gegeven in § 2.3. Voorlopig is
aangenomen dat de steunpuntskracht F,, kan worden weggelaten.

Signaalrichting

In de Figuren 2.2 en 2.3 is door pijlen aangegeven wat het ingangs- en wat het uit-
gangssignaal is. Het is noodzakelijk om te weten in welke richting de blokken doorlopen
worden. In een goed blokschema is de signaalrichting door pijlen aangegeven. Daarbij is
het gebruikelijk de signaalrichting zoveel mogelijk van links naar rechts te kiezen.

Moment in blokschema

De ingangskracht zoals aangegeven in Figuur 2.3 levert een moment om de draaiingsas:

M,=F,-a (2.2)

Dit moment wordt doorgegeven aan de andere zijde van de hefboom. Er geldt M, = M,.
Daarmee wordt de uitgangskracht:

By = —= (23)
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Overbrengingsverhoudingen combineren

Het verband tussen F, en Fy is in Figuur 2.4.a door drie blokken weergegeven met de
overbrengingsverhoudingen Hy = a, Ho =1 en H3 = % Er geldt:
E, F, My M,

1
b _Hy Hy Hi==-1-a=

a
= Hiotaal = —= = 2.4
F, T My M, M, b b (24)

De totale overbrengingsverhouding Hiotaal Van een rechtdoorgaande keten is steeds het
product van de afzonderlijke overbrengingsverhoudingen.

Fu . M, : My, 1 Fy
a) b
F M,=M F
b) u a a b 1 y
b
[
c) Fu Ma + Mb 1 Fv
° ® b

Figuur 2.4 Een verdere detaillering van het blokschema van Figuur 2.3

Het blok met overbrengingsverhouding Ho = 1 kan worden weggelaten. Dan ontstaat
het schema van Figuur 2.4.b, met M, = M,. Als het draaipunt wrijving heeft moet het
moment M, het wrijvingsmoment M,, overwinnen. Daardoor wordt M, = M, — M,,.
Dat is in Figuur 2.4.c op de juiste wijze weergegeven. Het cirkeltje met een kruis erin
geeft een optelpunt aan. De samenkomende signalen moeten worden opgeteld met de
bijgeschreven tekens. In dit geval dus:
My=M+ (—M,) =M, — M,
Zie ook Figuur 2.5.
u y=Uu+v u y=u-v

" —

+ f—
\% \%

Figuur 2.5 In een blokschema wordt een optelpunt aangegeven door een cirkeltje met een kruis erin.
Bij een aftrekpunt krijgt één van de signalen een minteken.

Een andere veelvoorkomende operatie in een blokschema is een vertakkingspunt. Daarmee
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wordt aangegeven dat eenzelfde signaal aan verschillende blokken wordt toegevoerd, zie
Figuur 2.6.

X

Figuur 2.6 Als een signaal aan meerdere blokken wordt toegevoerd, is een vertakkingspunt nodig.
Dat wordt op deze manier aangegeven.

De verplaatsingsfunctie van de hefboom is eveneens nader te beschrijven. Bij een ingangs-
verplaatsing s, bedraagt de hoekverdraaiing ¢, van het linker deel van de hefboom:
Su

Pa = —

a

Omdat de hoekverdraaiing van de hefboom links en rechts van het draaipunt dezelfde
waarde heeft, geldt ¢, = ¢,. De uitgangsweg s, =b- ¢y.
Het is goed zowel de krachtfunctie als de verplaatsingsfunctie in eenzelfde schema onder
te brengen, zie Figuur 2.7. Zoals zal blijken is het gunstig om daarbij signalen onder elkaar
te plaatsen die samen energie of vermogen opleveren. Het product van F,, en s, levert
energie, evenals het product van M, en ¢,, het product M - ¢ en het product F, - s,,.

il‘ va
N L

VAN VAREREN PARREN V=N
(Fu (M, [ My A
| I I I I I I |
| | | | | | | |
| | | | | | | |
| | | . | | . | | |
S s | b | Ry
\ ! \ ' \ ! \ !
\\1/ N _7 \\// ~N__7
E, [ E
M,j , = Energie

Figuur 2.7 Een hefboom heeft een verplaatsingsfunctie en een krachtfunctie. Deze kunnen door-
gaans niet onafhankelijk van elkaar worden beschouwd. In de figuur zijn beiden opgenomen, daarbij
zijn signalen die bij elkaar behoren, en waarvan het product energie oplevert, onder elkaar geplaatst:
Fy - sy =FEy, Mg pq=Eq, My -pp = Ep

2.2.3 Totale overbrengingsverhoudingen
Seriegeschakeld systeem

Als een systeem in een blokschema is weergegeven is het eenvoudig de totale overbren-
gingsverhouding Hiotaal te berekenen. Zie Figuur 2.8. Voor een serieschakeling van drie
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blokken is de formule reeds gegeven. Algemeen geldt:

Htotaal :Hl'H2'H3'-~- 'Hn (25)
u v w u v X
H, H, Hs 3 H, Hy i
+_
Hi =2 = HyHyH
a) tot =7 1M Mg c) w H,
v w
H, Ha Ho=Y_ HyH,
u + y CTUT 4 HyH,
—> f—>
+
b) Ha <

Hiot = HiHy + Hg

Figuur 2.8 Blokschema’s zijn gemakkelijk te vereenvoudigen: a) Een serieschakeling is te vervangen
door het product van de overbrengingsverhoudingen. b) Een parallelschakeling is te vervangen door
de som van de overbrengingsverhoudingen. c) Een terugkoppeling met overbrengingsverhouding is
gegeven in c.

Parallelle ketens

Voor parallelle ketens moeten de overbrengingsverhoudingen worden opgeteld. De totale
overbrengingsverhouding van Figuur 2.8.b luidt:

= H, -H>+ H3

Y w+x w T w
v ut

Htotaalzfz =—+-=
u u

SIS

v
u
Teruggekoppeld systeem

Voor signaalketens waarin een terugkoppeling voorkomt is een eenvoudige formule op te
stellen. Voor het schema van Figuur 2.8.c geldt:

y:H2~!E:H2'(U—w):H2'(H1-’LL — H3~y):H1-H2-u — HQ'Hg-y

Hieruit volgt:
Yy H, - Hy

Htotaal = a = m

(2.6)

De rechtdoorgaande keten van ingangssignaal w naar uitgangssignaal y bevat de elementen
H; en Hy. Deze vormen samen de rechtdoorgaande overbrengingsverhouding: Hyecht =
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H, - Hy. Deze rechtdoorgaande keten maakt deel uit van de in een kring geschakelde
elementen Hy en Hs. Deze vormen samen de rondgaande overbrengingsverhouding Hyong
= H, - H3. De formule voor de totale overbrengingsverhouding Hiotaal is nu te schrijven
in de vorm:

Hrecht
H. = _reem 2.7
totaal 1+ Hrecht ( )
in zeer korte notatie: L
H
Htotaal i (28)
1+H

Bij het bestuderen van teruggekoppelde systemen moet nadrukkelijk aandacht gegeven
worden aan het teken waarmee een uitgangssignaal (of gedeelte daarvan) van een systeem
wordt teruggekoppeld naar zijn ingang. Het meest voorkomende geval is een tegenkoppe-
ling, d.w.z. dat het teruggekoppelde signaal het ingangssignaal tegenwerkt. Dat gebeurt
als het uitgangssignaal (of gedeelte daarvan) wordt afgetrokken van het ingangssignaal.
Een tegenkoppeling wordt aangegeven door een aftrekpunt in het blokschema. De hier-
boven afgeleide formule is geldig voor een tegengekoppeld systeem.

Meegekoppeld systeem

Veel minder voorkomend, maar technisch interessant, is de meekoppeling. Het terugge-
koppelde signaal wordt bij het ingangssignaal opgeteld en zorgt dan voor een vergroting
ervan. Een meekoppeling wordt aangegeven door een optelpunt in het blokschema.

In de hierboven gegeven formule voor de totale overbrengingsverhouding moet dan niet

[e] o]

H, maar —H worden ingevuld.

Als een te groot deel van het uitgangssignaal is meegekoppeld (sterke meekoppeling) kan
een meegekoppeld systeem instabiel worden. Bij mechanische systemen kan instabiliteit op
verschillende manieren tot uiting komen. Bijvoorbeeld in § 5.6 Stabiliteit van voertuigen,
wordt een blokkering besproken die een vorm van instabiliteit is.

Vereenvoudiging van formules

In veel gevallen is de gegeven formule te vereenvoudigen. Als de rondgaande overbren-
gingsverhouding een grote getalwaarde heeft (H >> 1), dan kan de formule vereenvou-
digd worden tot:

| =

Htotaal = (29)

o

H
In het voorbeeld dus Hiotaa = H1/Hs. De grootte van Hs is niet meer belangrijk. In woor-

den: Als bij een tegengekoppeld systeem de rondgaande versterking groot is (H >> 1)
dan wordt het systeemgedrag gegeven door het element in de terugkoppel-baan. Als de
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rondgaande versterking klein is (H << 1) dan kan de terugkoppelbaan buiten beschou-
wing blijven. Voor het voorbeeld uit Figuur 2.8.c geldt dus:

= — als H>>1

Y_m, - Hy, as H<<l
U

Dimensies van de signalen

De blokschema's in dit boek beschrijven fysische processen. Alle signalen hebben dus een
grootte en een dimensie. Optellen is alleen mogelijk als de signalen een gelijke dimensie
hebben. Het uitgangssignaal van een optelling heeft dezelfde dimensie als de ingangssig-
nalen. Bij een teruggekoppeld systeem wordt een uitgangssignaal van een optelling na
een aantal bewerkingen teruggevoerd naar de ingang.

2.2.4 Regels voor het vereenvoudigen van blokschema's

Blokschema's kunnen soms een ingewikkelde vorm hebben. Dat komt vooral voor als het
blokschema rechtstreeks uit het fysisch gedrag van een systeem is afgeleid. Het is dan
gewenst het blokschema te vereenvoudigen. Door het verschuiven van optelpunten en/of
vertakkingspunten is dat mogelijk. De regels voor het vereenvoudigen van blokschema's
zijn weergegeven in Figuur 2.9.

!

H,

+ +

0| Hi = o B »éﬁ»@%&»
I el el e

1M, verwissel NOOIT optelpunt
i met vertakkingspunt
u

C

Figuur 2.9 Blokschema's zijn eenvoudig te herleiden tot een andere gedaante. In de figuur zijn de
regels voor het verschuiven van een optelpunt aangegeven. Het verwisselen van een optelpunt en
een vertakkingspunt kan niet eenvoudig.

De vereenvoudigingen leiden tot een opvallende gedaanteverandering van teruggekoppelde
systemen, zie hiervoor Figuur 2.10.
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% H =

Figuur 2.10 Zowel door verschuiving van optelpunten als door berekening is de juistheid van het in
de figuur gestelde aan te tonen.

Tl
+
I
I

Merk op dat twee in serie geschakelde optelpunten bij verschillende tekens eenzelfde re-
sultaat kunnen opleveren. Dat betekent ook dat bij het verwisselen van optelpunten
meerdere goede oplossingen bestaan. In Figuur 2.11 is dit verduidelijkt.

+|V _ |V _|V _ |V
- y + y u + Y u - y
—> f— — —> — —>
u - u + + -
+TW +Tw Tlw “lw

Figuur 2.11 Bij het verwisselen van optelpunten moet de mathematische functie behouden blijven.
De figuur toont vier mogelijkheden voor het weergeven van de functiey = u — v+ w

2.2.5 Niet-lineariteiten

Het is gebruikelijk om blokken die een niet-lineaire relatie tussen in- en uitgangssignaal
beschrijven duidelijk te onderscheiden van de blokken die wel een lineaire functie hebben.
Zij onderscheiden zich doordat zij met een dubbele blokrand zijn getekend. Het is zinvol
om dat te doen omdat bij een niet-lineair blok in een keten de verschillende overbren-
gingsverhoudingen niet meer vermenigvuldigd mogen worden voor het verkrijgen van de
totale overbrengingsverhouding. De volgorde van de blokken mag niet meer worden ge-
wijzigd. Ook de formule voor teruggekoppelde systemen mag niet meer gebruikt worden.
Enkele voorbeelden hiervan staan in de hoofdstukken over Stabiliteit (Hoofdstuk 5) en
Mechanische versterkers (Hoofdstuk 6).

2.3 Interactie

2.3.1 Belaste systemen

In het blokschema van Figuur 2.7 zijn de krachten en de verplaatsingen van een hefboom
geheel afzonderlijk weergegeven. Het komt echter maar hoogst zelden voor dat deze ge-
heel onafhankelijk van elkaar beschouwd kunnen worden. Meestal is een hefboom belast,
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waardoor een relatie ontstaat tussen de uitgaande kracht en de ingangsverplaatsing. De
belasting beinvloedt de verplaatsing en omgekeerd. Dit wordt interactie genoemd. Bij in-
teractie is het niet toegestaan om kracht en verplaatsing afzonderlijk te beschouwen. Een
goede manier van werken is om bijvoorbeeld de kracht als ingangsgrootheid te kiezen en
na te gaan hoe de ingangsverplaatsing daarmee samenhangt. Evenzo kan de verplaatsing
als ingangssignaal worden gekozen en de daarbij benodigde kracht worden bepaald. Beide
mogelijkheden zijn in principe gelijkwaardig. Soms levert de ene manier een eenvoudiger
blokschema dan de andere.

Voorbeeld De manier van werken wordt verduidelijkt aan de hand van een veerbelaste
hefboom. Als een hefboom belast wordt, heeft dat tot gevolg dat de verplaatsingsfunctie
en de krachtfunctie elkaar beinvloeden. In Figuur 2.12.a is de opstelling getekend. In
Figuur 2.12.b is de kracht F,, als ingangssignaal gekozen. Na vermenigvuldiging met
achtereenvolgens a en 1/b ontstaat de kracht F}, aan de andere zijde van de hefboom.
Deze kracht drukt de veer in. Als de veer een veerstijfheid c bezit ontstaat een verplaatsing
sy = F,/c. Dit komt overeen met een verplaatsing aan de ingangszijde s,, = s, - (a/b).

Ful veerstijfheid ¢
L
a. o -
u Y Fy
a b
F M Mg F S S
Sl e B a 1/b—l 2l 0 1B, Y
1/c C

s ® ® (_\ F M My
D I G T il Y S YA i b

b. sy C. F,

Figuur 2.12 a) Veerbelaste hefboom. b) Hier is de kracht als onafhankelijk ingangssignaal gekozen.
Het blokschema geeft aan dat de krachtgever daarbij een ingangsverplaatsing s,, moet kunnen
leveren. c) In (c) is het alternatieve blokschema gegeven met de verplaatsing s., als onafhankelijk
ingangssignaal. Voor het verplaatsen van de hefboom over s, is een kracht F, nodig. Als de
verplaatsingsgever niet in staat is de kracht F., te leveren, kan ook de verplaatsing s,, niet aanwezig
zijn.

Merk op dat de signaalrichting van het verplaatsingsdeel in het blokschema tegengesteld
is aan die van het blokschema van Figuur 2.7. Dat is gedaan om de bovengenoemde
afhankelijkheid van de slag s, en de ingangskracht F;, tot uitdrukking te brengen. Tevens
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is ervoor gezorgd dat de signalen waarvan het product energie oplevert, onder elkaar staan.

In Figuur 2.12.c is het alternatieve blokschema getekend. Hier is de verplaatsing s,
als ingangssignaal beschouwd. De benodigde kracht aan de ingang F,, komt nu als
afhankelijke variabele te voorschijn. Aan de ingang moet een verplaatsing s, en een
kracht F,, geleverd worden. Echter, om de ingang een verplaatsing s, te kunnen geven,
moet een kracht F,, beschikbaar zijn. De grootte van deze kracht F, wordt bepaald
door het achterliggende systeem. De pijlrichting geeft dat aan. Hoewel dus de kracht
F,, aan het systeem 'hefboom + veer' moet worden toegevoerd, is de pijlrichting daaraan
tegengesteld omdat het systeem bepaalt hoe groot F), zal moeten zijn. Als de kracht F,
niet geleverd kan worden, is ook de verplaatsing s, niet aanwezig.

2.3.2 Invloed van de omgeving

In Figuur 2.13.a is nogmaals de hefboom van Figuur 2.7 getekend. Nu is verondersteld
dat het steunpunt verticaal kan bewegen. Dat heeft geen invioed op de krachtrelaties. Er
blijft gelden b- F,, = a - F,. Ook de steunpuntskracht Fy blijft dezelfde: Fy = Fy, + F),.
Deze relaties zijn gegeven in het blokschema van Figuur 2.13.d.

Indien het steunpunt een verticale verplaatsing sq krijgt, dan geldt het schema van Figuur
2.13.c. De relatie tussen de verplaatsing luidt:

1 1
(sy + o) - b ¢ = (54 — S0) - P (2.10)
Daarmee is de verplaatsingsbaan in het blokschema van Figuur 2.13.d opgesteld. De
verplaatsing sg van het steunpunt onstaat voor de indrukking van de steunpuntveer met
veerstijfheid ¢. Er geldt so = Fy/co.

Het blokschema van Figuur 2.13.d is te vereenvoudigen tot dat van Figuur 2.13.e. Dit
blokschema beschrijft het gedrag van een hefboom met een verend ondersteund draaipunt.
Als de veerstijfheid van de ondersteuningsveer ¢y oneindig groot wordt, dan verplaatst het
draaipunt niet (sg = 0). De waarde van Fy heeft dan geen invioed meer op het systeem.

In het algemeen geldt dat alleen die krachten die een verplaatsing van hun aangrijpings-
punt teweegbrengen in het blokschema moeten worden opgenomen. Dat houdt in dat
steunpuntkrachten van 'vaste' draaipunten kunnen worden weggelaten. Hiermee is het
gestelde in § 2.2.2 verklaard. In Figuur 2.13.e is de invloed van de verende ondersteuning
aangegeven.
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Figuur 2.13 Krachten die geen verplaatsing veroorzaken, kunnen in een blokschema worden weg-
gelaten. Het blokschema is opgesteld voor het geval dat het draaipunt van de hefboom verend is
ondersteund. Als de veer oneindig stijf is wordt de overbrengingsverhouding 1/co = 0. De gete-
kende parallelbaan kan dan worden weggelaten en daarmee verdwijnt de ondersteuningskracht Fy
uit het blokschema.

Voorbeeld vereenvoudigen blokschema. Figuur 2.14.a geeft hetzelfde schema als Fi-
guur 2.13.e maar dan in vereenvoudigde vorm. Het is echter ook mogelijk de invloed van
de ondersteuning in de vorm van Figuur 2.14.b weer te geven. De twee blokschema’s van
Figuur 2.14 zijn verschillende beschrijvingen van hetzelfde systeem. Met behulp van de
in Figuur 2.9 gegeven regels zijn de blokschema's in elkaar om te schrijven.

Het blokschema van Figuur 2.14.b is handig te gebruiken om bij een veerbelaste hefboom
de benodigde stijfheid van de ondersteuning te bepalen.

In Figuur 2.15 is de opstelling getekend, samen met het bijhorende blokschema. Als de
hefboom volledig stijf is ondersteund ( ¢g — oo ) is voor het spannen van de veer c een
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F. F, F. F,
ﬂ—) a/b F— a/b l
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Figuur 2.14 Het blokschema a is gelijk aan Figuur 2.13.c. Door toepassen van de in Figuur
2.9 gegeven regels is het schema te herleiden tot blokschema b. De invloed van de verende
ondersteuning is zowel aan de ingangszijde (a) als aan de uitgangszijde (b) te beschouwen.

ingangsverplaatsing s, nodig. Een verende ondersteuning zal de benodigde ingangsver-
plaatsing vergroten. Als deze vergroting niet meer dan 10% mag bedragen, moet gelden:

b\*1 1 b\>
10(1+) — < = of CO>10<1+)
a) ¢ c c a
Deze relatie is uitgezet in Figuur 2.15. Voor een verplaatsingstoename van 10% moet
ten minste ¢g = 10 - ¢ zijn. Naarmate de hefboomverhouding b/a toeneemt, moet de

verhouding cy/c veel groter worden. Voor b = 10-a (wegvergrotende hefboom) moet ten
minste ¢y = 1200 - ¢ zijn.

2.3.3 Vierpolen

De gegeven beschrijvingswijze maakt het mogelijk dat bekende componenten achter elkaar
kunnen worden ingeschakeld. In Figuur 2.16 is het totale blokschema van twee in serie
geschakelde hefbomen getekend. De eerste hefboom is een verend ondersteunde hefboom;
de tweede hefboom is door een veer belast. Er is aangegeven welk deel bij de hefbomen
behoort en welk deel bij de veer. Het blokschema van elke component ziet er nu uit als
een systeem met twee ingangen en twee uitgangen. Dit staat bekend als een vierpool.
Bij de ingang worden twee signalen aan de vierpool toegevoerd. Aan de uitgang komen
eveneens twee signalen beschikbaar. Geheel analoog aan het blok met slechts één in-
gang en uitgang kunnen de twee uitgangssignalen y; en ys uitgedrukt worden in de twee
ingangssignalen u; en us.
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Figuur 2.15 Veerbelaste hefboom met verende ondersteuning. Getekend zijn de opstelling en het
blokschema. Als de inverende ondersteuning niet meer dan 10% slagvergroting van su mag veroor-
zaken, geldt de rechts getekende grafiek. Voor krachtvergrotende hefbomen (a > b) moet gelden
co/c ~ 10. Voor wegvergrotende hefbomen (b > a) geldt ongeveer co/c = 10 - (b/a)?.
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Figuur 2.16 Twee gekoppelde hefbomen met een veerbelasting. In het blokschema zijn de ver-
schillende onderdelen van het totale systeem aangegeven door een gestreept blok eromheen. Elk
onderdeel is te beschouwen als een systeem met twee ingangssignalen en twee uitgangssignalen.
Op deze manier is het eenvoudig met bekende blokken een totaal systeem op te bouwen.
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Figuur 2.17 Algemene vierpoolbeschrijving van de hefbomen a-b en d-e uit Figuur 2.16.

In Figuur 2.17 bekijken we de hefboom d-e (van Figuur 2.16) apart. De vierpool die deze
hefboom beschrijft, heeft als ingangssignalen de kracht F,; en de verplaatsing s4. De aan
deze hefboom toegevoerde energie bedraagt Eq = [ Fy - dsg.

Aan de uitgang wordt aan de belastingveer overgedragen: F, = j F,-ds.. De draaipunten
van de hefboom zijn wrijvingsloos verondersteld. Als de hefboom geen energie dissipeert
moet gelden:

Hl/ H,
E.= | F,-ds, = — | Fy-dsy=— - E;=F,
e / a a H2 d d H2 d d

Waaruit volgt dat H; = Hs. Het is dus juist dat het blokschema van Figuur 2.16 twee
gelijke blokken d/e bevat.

De hefboom a-b heeft een verende ondersteuning. Bij toevoeren van een kracht F,, wordt
de veer ¢, ingedrukt, die daardoor energie opneemt. Voor de hefboom a-d geldt met
a/b =k (zie Figuur 2.17):

E, = /Fa-dsa = /Fa-d(Hg)Fa)

H,
Ey = Fueer + Fg - By
Als geen energie gedissipeerd wordt, moet het verschil tussen de ingangsenergie E, en de
uitgangsenergie FEj, zijn opgeslagen in de veer. Dan moet ook H3 = Hy. De vierpool-
beschrijving van de hefboom a-b bevat terecht twee gelijke blokken.

De gevonden uitkomsten gelden algemeen voor vierpoolbeschrijvingen van componenten
die geen energie dissiperen, en al of niet energie opslaan. De vierpool-beschrijving heeft
zowel in de 'krachtbaan’ als in de 'wegbaan’ elementen van dezelfde grootte.
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2.4 Benaderingen

In deze paragraaf worden een aantal veel gebruikte vereenvoudigingen in de modelvorming
besproken. Er zijn nog meer vereenvoudigingen denkbaar. Daarbij komt het er steeds op
neer dat hun invloed op het uiteindelijke resultaat moet worden ingeschat. Afhankelijk
van het te analyseren systeem en de benodigde nauwkeurigheid moeten zij dan al of niet
in de modelvorming worden betrokken.

24.1 Stijfheid

In § 2.2.2 en § 2.2.4 is de hefboom volkomen stijf gedacht. In Figuur 2.18 is een hefboom
getekend waarvan de linker arm kan doorveren. De veerstijfheid van deze arm is ¢;. De
aanwezige ingangskracht veroorzaakt een doorbuiging aan het linkereind van de hefboom
Al = F,/c¢;. Dat betekent dat de effectieve ingangsverplaatsing:

— M (2.11)

S, =
Y a

Zie Figuur 2.18.b.

. —
a. a ’ b
b. 1 E‘i b n(——Fl

Figuur 2.18 De getekende hefboom is eenzijdig verend verondersteld. Daardoor ontstaat een extra
baan in het blokschema. Indien co — oo kan deze baan worden weggelaten. Een blokschema geeft
een duidelijk overzicht van de toegepaste benaderingen.

Een gedeelte van de ingangsenergie E, = [ F,ds, wordt opgeslagen als veerenergie in
het linker hefboomdeel. In de regel raakt deze energie verloren bij het terugveren van de
hefboom. Het energierendement 1 < 1.

60



Modelvorming 2.4 Benaderingen

2.4.2 Wrijving

Bij modelvorming is het dikwijls toegestaan om de wrijving in draaipunten van hefbomen
te verwaarlozen. Voor alle andere plaatsen waar onderdelen langs elkaar rollen of glijden,
is geen algemene gedragslijn te geven. Soms kan de wrijving verwaarloosd worden en
soms leidt het niet in beschouwing nemen van de wrijving tot geheel verkeerde resultaten.

Als met wrijving moet worden gerekend ontstaat een complexe situatie. Het blokschema
van Figuur 2.19.a is overeenkomstig dat van Figuur 2.4.c. Het wrijvingsmoment M,
van het hefboomlager is in rekening gebracht. Het teken waarmee het wrijvingsmoment
moet worden toegevoegd is afhankelijk van de aandrijfsituatie. Indien, zoals bij Figuur
2.10.a, de ingangskracht een veer indrukt (de hefboom draait dan linksom), moet het
wrijvingsmoment door F,, worden geleverd. Er geldt het plusteken:

1
F, = p (Fyb+ M,,).

Als daarna de ingangskracht vermindert en de veer de hefboom terugdrukt (de hefboom
draait dan rechtsom), levert de veer het wrijvingsmoment. Dan geldt het minteken:

1
F, =~ (Fyb— My)

F
Og

Su

Figuur 2.19 Wrijving geeft aanleiding tot hysteresis. Het blokschema geeft de kracht-signaalbaan
van een hefboom met wrijving in het draaipunt. Het wrijvingsmoment M., is oorzaak van een
tweewaardige F, — sy -grafiek. Het ingesloten opperviak is een maat voor het energieverlies

Hysteresis

Doordat het wrijvingsmoment afhankelijk is van de draairichting, kent het systeem twee
karakteristieken. De F,, — s,-karakteristiek bij toenemende waarden van s,, verschilt van
die bij afnemende waarden van s,. Dit is in Figuur 2.19 op de gebruikelijke wijze met
pijlen aangegeven. Het verschijnsel dat de karakteristiek van een systeem bij toenemende
ingang verschilt van die van afnemende ingang heet hysteresis. De oppervlakte van de
hysteresislus komt overeen met een energieverlies.
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2.4.3 Speling

Speling is alleen hinderlijk als er een omkering van de bewegingsrichting plaatsvindt.
Figuur 2.20.a toont twee stangen die met elkaar mee moeten bewegen. Daartoe is de ene
stang voorzien van een nok en de andere van een groef. Als de nokbreedte kleiner is dan
de groefbreedte dan ontstaat de spelingkarakteristiek van Figuur 2.20.b. Merk op dat de
karakteristiek in het s, — s,-vlak is getekend en dus geen energieverlies inhoudt.

Sy

_Untl

¥

Su

Figuur 2.20 Speling veroorzaakt een tweewaardige s, — sy-grafiek. In de grafiek zijn twee verplaat-
singen tegen elkaar uitgezet. Het ingesloten opperviak heeft niets te maken met een optredend
energieverlies.

2.4.4 Tweedimensionaliteit

Het is een aantrekkelijke vereenvoudiging om systemen tweedimensionaal te beschouwen,
ook als zij dat in werkelijkheid niet helemaal zijn. Dat is bijvoorbeeld bij de berekening van
de krachten in § 1.5 van Hoofdstuk 1 Systemen gedaan. Als de beschouwde onderdelen
niet in één vlak liggen, dan ontstaat er een buigend moment hetgeen afwijkingen van de
berekende toestand kan veroorzaken. Het meenemen van al deze effecten zou het gegeven
model zeer compliceren.

2.4.5 Dynamische krachten

Bij veel langzaam bewegende systemen zijn de massakrachten en centrifugaalkrachten
slechts klein. Zij worden daarom vaak verwaarloosd. Bij snel bewegende onderdelen
moeten zij worden meebeschouwd. Vaak is eerst een berekening nodig om aan te tonen
of deze krachten wel of niet verwaarloosbaar zijn.

2.5 Voorbeelden

2.5.1 Blikopener

In Figuur 2.21 is de eenvoudige blikopener van Hoofdstuk 1 nu met een een blokschema
weergegeven. Er zijn de volgende vereenvoudigingen ingevoerd:

- het systeem is tweedimensionaal beschouwd;
- alle onderdelen zijn onvervormbaar;
- het draaipunt wordt puntvormig verondersteld;
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Figuur 2.21 In a) Systeem ’'blikopener’. b) Als op de blikopener een bedieningskracht F}, wordt
uitgeoefend moet het blik met een kracht R en een moment M worden tegengehouden. c) In het
blokschema is het systeem blikopener onderverdeeld in de deelsystemen steel, trekstang en mes.
Het te openen blik vormt de belasting voor de blikopener. De mens levert de ingangskracht F},
en de ingangsverplaatsing sp,. Het schema is geldig vanaf het moment dat de kracht op het mes
Fy, > Fecheur van het blikmateriaal. Bij die kracht moet de hand de verplaatsing s;, kunnen leveren.
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- de kracht op het mes is langs het mes gericht;

het blik oefent op het mes geen moment uit;

de kracht van de hand op de steel is als puntlast beschouwd;

- er is geen slip tussen steel en blikrand;

de hoek tussen trekstang en steel blijft constant;

- de kartelrand op de steel rolt niet af. De steel draait om een vast punt.

Figuur 2.21.b geeft de twee deelsystemen 'trekstang’ en 'steel’ weer, samen met de voor
de werking relevante krachten en verplaatsingen. Figuur 2.21.c geeft het blokschema. Als
ingangssignaal is de kracht F}, die de hand op de steel uitoefent gekozen.

Ten opzichte van het contactpunt steel/blik ontstaat daardoor een moment M, = F}, - l.
Dit moment moet gelijk zijn aan het moment dat de trekstang op de steel uitoefent. Dus
de kracht in de trekstang wordt:

Fy -l

rsin «
In het gegeven model is Fy = F,,,, de kracht op het mes. Zolang de kracht op het mes
kleiner is dan de scheurkracht Ficheur van het blikdeksel gebeurt er niets. De kracht van
de hand Fj, moet toenemen totdat de kracht op het mes F},, > Ficheur- Pas dan verkrijgt
het mes een verplaatsing s,,. Dat betekent een verplaatsing van het scharnierpunt:

F, =

(2.12)

Sm (R+7)
R

De bijbehorende hoek ¢, waarover de steel draait wordt dan s = sg/r. Daaruit volgt
voor de verplaatsing van de hand s, =1 - ;.

De kracht Fj, die de hand op de steel uitoefent moet voldoende groot zijn om het mes
door het blikdeksel te kunnen trekken. Als dat gebeurt moet het eind van de steel
met de hand een verplaatsing s; kunnen leveren. De hand en de steel moeten deze
verplaatsingsmogelijkheid hebben. Zo niet dan kan ook de krachtwerking niet doorgaan.

(R = straal van het blik) (2.13)

Ss =

In het blokschema zijn drie grote blokken te onderscheiden: de mens, de blikopener en
het blik. De blikopener is weer onderverdeeld in drie blokken: de steel, het scharnier en
de trekstang. Alle blokken zijn met elkaar verbonden door middel van een verplaatsings-
signaal en een krachtsignaal. Van elk blok is dus de ingaande en de uitgaande energie te
berekenen.

2.5.2 Elektromotor

De blokschema-representatie is ook op hybride systemen toe te passen. Figuur 2.22 toont
twee blokschema's voor het systeemgedrag van een elektromotor . In het schema is:

1, - ankerstroom w - hoeksnelheid

¢ - motorconstante R, - ankerweerstand

® - veldsterkte FE - aansluitspanning

T - mechanisch draaimoment FE't - inductiespanning
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Het product - I, is het ingaande elektrische vermogen P,. Het product T'-w = Py is
het geleverde mechanische vermogen. Het vermogensrendement wordt:

P, T 1

Po  Ela 1+ @52
Bij het schema zijn alleen de ankerverliezen in rekening gebracht. Voor R, = 0 wordt

het vermogensrendement 100 %. Het elektrisch vermogen wordt dan geheel omgezet in
mechanisch vermogen.

| F—— - | T c = p—
| | | t |

i i c-®D f L_,—;D
| | |+ cd |,
| | | = |
] ]
| | | |

E Ml o T
[ E, [ [ cdh |
L - T | L - T |

Figuur 2.22 Het blokschema van een elektromotor. Ingangssignalen zijn de ankerstroom I, en
de aansluitspanning E. Uitgangssignalen zijn het aan de as afgegeven koppel T en het daarbij
behorende toerental w. De ankerweerstand betekent vermogensverlies. Alleen als R, = 0 is het
opgenomen vermogen P, = E - I, gelijk aan het afgegeven vermogen Py =T - w.

2.6 Samenvatting

De fysieke werkelijkheid is te complex om exact te beschrijven. Het geven van een benade-
rende beschrijving, die voldoende is om een gestelde vraag te beantwoorden, wordt model-
vorming genoemd. Het model moet de werkelijkheid voldoende nauwkeurig beschrijven.
Het te kiezen model is afhankelijk van de doelstellingen en de gewenste nauwkeurigheid.

Een handig hulpmiddel om systemen te beschrijven is het blokschema. Wat een blok-
schema is, welke voorwaarden eraan gesteld worden en hoe ermee te werken, is toegelicht.
Er is gekozen voor blokschema'’s in de vorm van een vierpool, omdat het daarmee mogelijk
is om de invloed van belastingen na te gaan en de inwendige interacties te bestuderen.

De invloed van stijfheid, wrijving en speling is aangegeven. Deze effecten worden vaak in

een eerste modelvorming niet meegenomen. Zij worden pas ingevoerd nadat is gebleken
dat zonder deze effecten geen goed model is samen te stellen.
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Hoofdstuk 3

Evenwichten

3.1 Inleiding

Alle werktuigkundige constructies zijn onderworpen aan krachten en koppels (of momen-
ten) . Deze krachten en koppels bepalen de wijze waarop de onderdelen van een construc-
tie zich zullen gaan gedragen. Het is voor alle ingenieurs een absolute voorwaarde dat zij
inzicht hebben in de werking van krachten, zodat zij kunnen voorspellen op welke wijze
de onderdelen van een systeem zich zullen gedragen. Zonder deze vaardigheid is het niet
mogelijk goedwerkende constructies samen te stellen.

De werking van krachten is een uitgebreid onderwerp uit de mechanica. Hier zal echter
alleen dat deel worden besproken dat belangrijk is voor de evenwichten van mechanische
systemen. In dit hoofdstuk is ervan uitgegaan dat de primaire basisbegrippen bekend zijn.

Een systeem is in evenwicht onder de voorwaarden dat de op het systeem werkende
krachten, en werkende koppels in evenwicht met elkaar zijn. Dus als er geen resulterende
kracht mag optreden, moet de som van alle op een systeem werkende krachten nul zijn,
en als er geen resulterend koppel mag optreden, moet de som van alle op het lichaam
werkende koppels nul zijn. In dit hoofdstuk worden alleen evenwichten van systemen in een
plat vlak beschouwd, dus tweedimensionaal. Driedimensionale evenwichtsbeschouwingen
zijn niet moeilijker, wel complexer. Bij drie dimensies komen er immers extra elementen
bij (F. en M), waardoor het oplossen van het stelsel vergelijkingen meer werk is, maar
niet moeilijker.

Uit het voorgaande volgt dat alleen systemen, die in rust zijn of een eenparige snelheid
hebben, in evenwicht verkeren. In de techniek worden de evenwichtsvoorwaarden vaak
benaderend toegepast, dus op systemen die niet geheel eenparig bewegen. Redenen om dit
te doen zijn bijvoorbeeld omdat men in eerste instantie een globale indruk wil krijgen van
het systeemgedrag en daarom bepaalde klein ingeschatte resulterende krachten of koppels



3.2 Kracht, krachtcomponenten en resultante van krachten Evenwichten

verwaarloost, of dat men wil weten wat het systeemgedrag is wanneer een systeem in
stationaire toestand functioneert of dat men aan het begin staat van het ontwerpproces
van een systeem en de focus ligt op de hoofdfunctie.

Het evenwicht van de krachten en koppels die op een systeem werken is op verschillende
manieren te bestuderen. Het kan vectoralgebraisch, algebraisch en grafisch. In dit hoofd-
stuk wordt de grafische manier behandeld, omdat dit een inzichtelijke manier van werken is
en vooral in het ontwerpproces een snelle evaluatie van verschillende oplossingen mogelijk
maakt.

De onderdelen van systemen die bewegen komen steeds in een andere positie ten opzichte
van elkaar. Door voor elke positie opnieuw het evenwicht van het systeem na te gaan,
wordt een serie van elkaar opvolgende evenwichtstoestanden bestudeerd. De grafische
manier van analyse van het evenwicht draagt bij in het snel inzicht krijgen in welke van
die evenwichtstoestanden cruciaal zijn. Cruciaal betekent in deze context bijvoorbeeld in
welke evenwichtstoestand het systeem de grootste belasting ondervindt. Als het systeem
zo ontworpen wordt dat het in deze evenwichtstoestand sterk en stijf genoeg is, dan houdt
het systeem het ook in al zijn andere evenwichtstoestanden.

De volgende paragraaf, §3.2, introduceert de kracht als vector en presenteert de werkwijze
om deze vector te ontbinden en samen te stellen. §3.3 geeft een meer gedetailleerde
uitwerking van de contactkrachten zoals geintroduceerd in H1 Systemen. Vervolgens
wordt in §3.4 de stap gemaakt naar de grafische of meetkundige werkwijze om evenwicht te
bepalen van systemen waarbij de nadruk ligt op twee- en driekrachten systemen. Dezelfde
werkwijze wordt in §3.5 uitgebreid naar toepassing op twee en meer gekoppelde systemen
aan de hand van concrete voorbeelden. In §3.6 ten slotte staat een samenvatting.

3.2 Kracht, krachtcomponenten en resultante van krachten

3.2.1 Definiéring van een kracht

Een kracht is een vectorgrootheid; daarmee wordt bedoeld dat een kracht wordt bepaald
door een grootte én een richting; dus door twee grootheden. De krachtvector F heeft
een grootte (|F|; een aantal Newton) en een richting (een hoek «; een aantal radialen).
Als de grootte en de richting van een kracht F' zijn gegeven dan is de krachtvector F
gedefiniéerd. Zie Figuur 3.1.

(02

Figuur 3.1 Een krachtvector F is gedefiniéerd door zijn grootte |F| en zijn richting c.
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Als een krachtvector wordt getekend is daarmee zijn richting vastgelegd. Het is gebrui-
kelijk om dan bij de getekende pijl de krachtaanduiding F' te noteren, in plaats van de
correcte grootte-aanduiding |F|. Maar daaruit ontstaat veel verwarring met tekens, want
in principe geldt de gelijkheid van Figuur 3.2.

IF| -|F|
—_— > = <«<—

Figuur 3.2 Gelijkheid van krachten. Vermijd krachtaanduidingen met negatief teken.

Het zal duidelijk zijn dat gemakkelijk onjuistheden ontstaan indien niet met de juiste
tekens wordt gerekend. Dit leidt tot het volgende advies: teken krachtvectoren altijd
zodanig dat een positieve grootte kan worden bijgeschreven (Figuur 3.2 linker pijl). Dus
in plaats van een negatieve grootte-aanduiding te noteren, moet je de vectorpijl omkeren
zodat je er een positieve grootte bij kunt kunnen zetten.

3.2.2 Componenten van een kracht

Een krachtvector kan worden ontbonden in krachtcomponenten. Het splitsen van een
krachtvector in zijn componenten wordt gedaan om berekeningen uit te voeren of om
inzichten te verduidelijken. De componenten van een kracht zijn de deelkrachtvectoren
die samengesteld de oorspronkelijke krachtvector vormen. Om een krachtvector te be-
schrijven kan niet met de beschrijving van een enkele krachtcomponent worden volstaan;
daarvoor moeten beide componenten worden benoemd. Bij een grafische voorstelling in
een x —y coordinatenstelsel worden de componenten van een krachtvector vaak verkregen
door het trekken van lijnen evenwijdig aan de codrdinaatassen door het startpunt van de
krachtvector. Zie Figuur 3.3.a.

Figuur 3.3 a) De kracht F wordt ontbonden in de krachtcomponenten F en F,, waarvan de richting
evenwijdig loopt aan het getekende orthogonale coérdinatenstelsel. Veelal zijn de componenten
gekozen in de codrdinaatrichtingen. b) Bij een scheefhoekig codrdinatenstelsel verandert de richting
van de krachtcomponenten en ook de grootte, want de samengestelde krachtcomponenten moeten
nog steeds de kracht F' geven.

Er ontstaan de component F; in de x-richting, en de component Fy, in y-richting. In
plaats van een opgave van grootte en richting (§ 3.2.1 Definiéring van een kracht) is een
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kracht F' ook te definiéren door zijn twee krachtcomponenten F, en F, (wederom twee
grootheden). Deze twee beschrijvingen zijn geheel gelijkwaardig. De beschrijvingswijze
met grootte en richting is vooral nuttig bij grafische analyses; de splitsing van een kracht
in twee krachtcomponenten in de codrdinaatrichtingen is vaak handig bij berekeningen.
Het mathematische verband tussen de twee beschrijvingswijzen is complexer bij een niet-
rechthoekig assenstelsel. Zie Figuur 3.3.b.

In een rechthoekig of orthogonaal assenstelsel ontstaat bij de splitsing van een kracht F’
in de componenten F, en I, een rechthoek. Zie Figuur 3.3.a. Het verband tussen de
twee beschrijvingswijzen van een kracht is als volgt weer te geven:

F, = |Flcosa |F|=+/F2+F?2

. F,
F, = | F'[sin o a = arctan —2
F,

Ook de componenten F, en Fy zijn krachtvectoren. Zowel F, als F}, hebben een grootte
en een richting. Strikt genomen zouden de componenten moeten worden gedefinieerd
door respectievelijk |F,|: o =0 en |F,|: o = 7/2. Maar omdat de krachtrichtingen al
zijn aangeduid door de indices = en y, wordt voor de aanduiding van de grootte van de
component F, de krachtaanduiding F zelf gebruikt en niet |Fz|. Hetzelfde geldt voor
F,.

De componenten van een krachtvector zijn delen van die krachtvector. Vectorisch gezien
geeft optellen van de componenten de oorspronkelijke vector terug. Er geldt:

F=F,+F, (3.1)

De samenstelling van de twee krachtcomponenten F, en Fj levert de kracht F. Vec-
torisch gezien is dit een optelling. Algebraisch gezien verloopt de samenstelling met een
wortelbepaling en een arctan-berekening (zie de hierboven gegeven formules). Grafisch
uitgevoerd leidt de optelling tot het tekenen van een parallellogram waarvan de twee
krachtcomponenten twee zijdes vormen, en de samengestelde kracht de diagonaal.

Het ontbinden van een kracht in twee componenten is niet noodzakelijkerwijs beperkt
tot de codrdinaatrichtingen. Veelvoorkomend is de ontbinding van een contactkracht-
component in een richting loodrecht op het contactvlak, en een krachtcomponent die in
het contactvlak ligt. De krachtcomponent die loodrecht op het contactvlak staat wordt
normaalkracht genoemd; de in het contactvlak liggende krachtcomponent is doorgaans
een wrijvingskracht (voor meer informatie over wrijving zie Hoofdstuk 4 Wrijving en weer-
stand).
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3.2.3 Verschuiven van een kracht

Voor het toepassen van de grafische werkwijze bij het bepalen van het evenwicht van een
systeem, kan het noodzakelijk zijn om een kracht te verschuiven. Hoe dat in zijn werk
gaat wordt in deze paragraaf toegelicht.

a. b. C. d.

Figuur 3.4 Werkwijze voor het verschuiven van een kracht. a) Kracht F' met zijn aangrijpingspunt A
en zijn richting weergegeven door de werklijnl. b) De wens is om kracht F te verschuiven evenwijdig
aan zijn werklijn naar punt B met werklijn m. c) Het verschuiven van kracht evenwijdig aan zijn
werklijn is alleen toegestaan als tegelijkertijd een koppel wordt ingevoerd met een draairichting die
overeenkomt met de verschuivingsrichting. d) De grootte van het koppel is gelijk aan het product
van de kracht en zijn verschuivingsafstand a.

In Figuur 3.4.a is een & — y-vlak beschouwd. In het punt A van dit vlak grijpt de kracht F'
aan. De werklijn van de kracht F'is [ genoemd. De werking van de kracht wijzigt niet als
het punt A langs de werklijn [ verplaatst wordt. De werking van de kracht verandert wel
als zijn werklijn verdraaid wordt, of als zijn werklijn evenwijdig aan zich zelf verschoven
wordt. Een krachtrichting kan natuurlijk alleen worden verdraaid als een kracht wordt
toegevoegd. Een krachtrichting kan alleen worden verschoven als tegelijkertijd een koppel
wordt toegevoegd. Dit wordt uitgelegd aan de hand van Figuur 3.4.b: Lijn m door het
punt B moet de nieuwe werklijn van de kracht F' worden. De lijn m ligt op een afstand
a van de lijn [ . Voeg nu in het punt B, langs de werklijn m, twee tegengesteld gerichte
krachten F’ en F" toe.

Maak de twee krachten van dezelfde grootte en even groot als F'; dus |F'|= |F"|= |F]|.
De drie krachten F', F’ en F” in Figuur 3.4.c oefenen precies dezelfde invloed op het
x — y-vlak uit als de kracht F' in Figuur 3.4.a. Van deze drie krachten is de kracht F’
de gewenste verschoven kracht F'. De andere twee krachten F' en F” vormen een koppel
T ter grootte van T' = |F|-a. Zie Figuur 3.4.d, die een voor het x-y-vlak gelijkwaardige
belasting weergeeft met Figuur 3.4.a. De conclusie is verwoord in de verschuivingsregel.

De verschuivingsregel De werklijn van een kracht F mag worden verschoven, als (op
voorwaarde dat) een koppel T ter grootte van het product van krachtgrootte |F| en de
verschuivingsafstand a wordt toegevoegd. De draairichting van het toe te voegen koppel
T is eenvoudig gerelateerd aan de verschuiving: Bij een verschuiving naar rechts (ten
opzichte van de krachtrichting) moet een rechtsdraaiend koppel worden toegevoegd, bij
een verschuiving naar links (ten opzicht van de krachtrichting) een linksdraaiend koppel.
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3.2.4 Samenstellen van krachten

Ook het samenstellen van krachten kan handig zijn bij het toepassen van de grafische
of meetkundige werkwijze voor het bepalen van het evenwicht van een systeem. Het
eenvoudigste geval is de sommering van twee krachten die dezelfde werklijn hebben. Zij
kunnen algebraisch worden opgeteld. Er geldt:

Fap=F, + F, waarbij |Fop|= | F,|+|F| (3.2)

Zie bijvoorbeeld Figuur 3.5. Deze directe optelling van de krachtgrootten is uitsluitend
toegestaan als de beide krachtvectoren dezelfde werklijn hebben.

Het optellen van twee willekeurige krachten F, en F; verloopt op geheel overeenkomstige
wijze als het samenstellen van een kracht uit zijn componenten.

F Eab:Ea'*'Eb

a. b.

Figuur 3.5 a) Twee krachten F, en F, die dezelfde werklijn hebben. b) F, en Fy, kunnen direct
worden gesommeerd. De somkracht ab = a + b heeft een grootte |Fyp|= |Fa|+|Fy]|.

Deze procedure kan verder uitgebreid worden naar het vectorisch optellen van twee wille-
keurige krachten F, en F;, die wel een gemeenschappelijk aangrijpingspunt hebben, tot
een samengestelde kracht Fy;. In Figuur 3.6.a is iedere kracht gesplitst in zijn compo-
nenten; I, in F,; en Fyy, Fy in Fy, en Fy,,. Omdat F, en Fy, dezelfde werklijn hebben
kunnen ze direct worden gesommeerd door hun grootten op te tellen. Hetzelfde geldt
voor Iy, en Fy,.

Omdat: ﬁa = Fyz + Foy en 13';, = Fy, + Fyy geldt:

ﬁab:ﬁa+ﬁb:Faz+Fbm+Fay+Fby (33)

Foe + Fpp vormen samen Fy;,.. Evenzo vormen Fy, + Fp, samen Fagy.
De vectorische som van Fpp, en Fyp, geeft de gevraagde somvector Fi,. De somvector
wordt de resultante genoemd.

De procedure voor de algemene situatie waarbij de krachten ook geen gemeenschappe-
lijk aangrijpingspunt hebben, bestaat uit het verplaatsen van de beide krachten langs
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hun werklijnen naar het snijpunt van hun werklijnen. De sommeringsprocedure is verder
dezelfde als geillustreerd in Figuur 3.6.

y|  Fa+Fo, Fap=(Fo+Fo) + Fo+Fu)  y

a. b.

Figuur 3.6 a) Twee krachten F, en Fy zijn in hun componenten gesplitst in de x- en y-richting.
b) De componenten die dezelfde werklijn hebben kunnen gewoon worden opgeteld. Uit de twee
somcomponenten ontstaat de resultante F,, = Fy, + F}.

In Figuur 3.7 is voor drie gevallen een krachtsommatie grafisch uitgevoerd van twee wil-
lekeurig in het vlak georiénteerde krachten.

a. b. c.

Figuur 3.7 Drie voorbeelden voor het sommeren van twee krachten. Dit komt grafisch neer op het
tekenen van een parallellogramconstructie.

Samenvattend bestaat de werkwijze voor het samenstellen van 2 willekeurige krachten uit
de volgende stappen:

- Twee krachten F, en F; zijn bekend (grootte en de richting)

Beschouw de werklijnen [, en [, van de krachten F, en F}

Bepaal het snijpunt S van de werklijnen [, en [

- Verschuif kracht F, langs zijn werklijn [, totdat de oorsprong van de krachtvectorpijl
samenvalt met S. De verschoven krachtvector is F}, = Fj,
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Verschuif kracht F}, langs zijn werklijn [, totdat de oorsprong van de krachtvectorpijl
samenvalt met S. De verschoven krachtvector is F} = Fj,.

Teken een parallellogram met de verschoven krachtvectoren F;, en F} als zijden.

De diagonaal van het parallellogram, die begint in S, komt overeen met de resultante
F,,=F,+ F.

Uiteraard kan de resultante F,; worden verschoven langs zijn werklijn.

De parallellogramconstructie zoals in het voorgaande gebruikt is, is te vereenvoudigen.
Ten opzichte van een diagonaal bevatten de twee parallellogramhelften dezelfde informa-

tie. Deze gedachte betekent een vereenvoudiging van de meetkundige constructie. Zie
Figuur 3.8.a.
y y Fab F, Fa :
b b
Fy @
Fa
Fa Fab
Fo
Fo
Fa
X X
a. b. c.

Figuur 3.8 a) De krachten F, en F}, samengesteld met behulp van een half parallellogram. b)
De krachten F, en F, samengesteld met behulp het andere halve parallellogram. c) De mogelijke
sommeringsconstructies afzonderlijk getekend.

Hieronder de vereenvoudigde gang van zaken:
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Bepaal het snijpunt van de werklijnen [, en [j.

Verschuif kracht Fj langs zijn werklijn totdat de oorsprong van de krachtvectorpijl
samenvalt met het snijpunt van de werklijnen.

Teken door de punt van de krachtvectorpijl F} een lijn I/, evenwijdig aan [,.

Zet de vector F af langs de lijn I/;; de oorsprong in de krachtvectorpijlpunt van
F/ en zodanig dat de grootte en polariteit van F dezelfde zijn als van F,. Let
wel op: F, en F! hebben twee verschillende werklijnen. Deze handeling is dus
alleen toegestaan als een tijdelijke handeling ten behoefte van het samenstellen van
de twee krachten. Het is niet toegestaan om F als zodanig te laten staan op de
nieuwe werklijn.
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- De resultante Fgy;, is nu bekend; Zijn oorsprong valt samen met die van F}, zijn
pijlpunt valt samen met de pijlpunt van de F.. In Figuur 3.8.b is het 'spiegelbeeld’
van de constructie uit Figuur 3.8.a uitgevoerd.

In het bovenstaande is een resultante bepaald van twee krachten, rekening houdende met
de positie van hun werklijnen. In § 3.4 Evenwicht zal blijken dat het zinvol kan zijn de
bepaling van de resultante zelf te scheiden van de bepaling van zijn werklijnpositie.

Als het alleen om een sombepaling van twee krachten gaat, kan de halve-parallellogram-
constructie direct worden uitgevoerd; zie Figuur 3.8.c. In principe komt deze constructie
erop neer dat de te sommeren krachten in serie aan elkaar worden gezet, rekening houdende
met hun richtingen. Het pijluiteinde van de ene krachtvector wordt de oorsprong van de
tweede krachtvector. De resultante wordt nu gegeven door de verbinding van de oorsprong
van de eerste krachtvector met het vectorpijleinde van de tweede kracht. De resultante is
daarmee bepaald in grootte en richting.

De plaatsbepaling van de resultante in het platte vlak moet volgen uit het snijpunt .S van
de werklijnen van de te sommeren krachten. Deze manier van werken is in Figuur 3.9
uitgevoerd. In Figuur 3.9.a zijn twee krachten F. en F; gegeven, in Figuur 3.9.b is de
resultante F,4 bepaald, in 3.9.c is het snijpunt van de werklijnen [, en [, bepaald, in 3.9.d
is de resultante Fi.4 (met behoud van gevonden grootte en richting) in de juiste positie
geplaatst. Daarmee is ook de werklijn van de kracht F.; vastgelegd.

l

X X X

Figuur 3.9 a) Twee krachten F. en Fy. b) Van F.. en F, is de resultante bepaald. c). Het snijpunt
van de werklijnen. d) De resultante F.q4 is op de juiste plaats in de juiste richting ingetekend.

Deze manier van krachtsommering is niet beperkt tot twee krachten, maar kan algemeen
toegepast worden bij n krachtvectoren. In Figuur 3.10 is bijvoorbeeld de resultante F van
de vier krachten Fy, Fy, F3 en F; bepaald. Figuur 3.10.b verduidelijkt dat de volgorde
van uitzetten geen invloed heeft op het bepalen van de resultante F.

Het samenstellen (optellen) van krachten is ook uit te voeren met behulp van de verschui-
vingsregel (zie § 3.2.3). Het toepassen van de verschuivingsregel voor het samenstellen
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Figuur 3.10 Bij het grafisch sommeren van vectoren heeft de volgorde van uitzetten geen invloed.

van krachten is soms handig als het snijpunt van de krachtvectoren buiten het werkveld
valt. Zie Figuur 3.11.

a. b. c. d.

Figuur 3.11 a) Twee krachten. b) Bij het verschuiven van een kracht F naar rechts, moet een
rechtsdraaiend koppel a - Fy, worden ingevoerd. Evenzo ontstaat bij verschuiven van F} naar links
een linksdraaiend koppel b - Fy,. c) Hier zijn a en b zodanig gekozen dat a - Fy, = b- F,. De
combinatie F", en F'", is gelijkwaardig met Fy en Fy,. d) Bij samenstellen van F"', en F',,
ontstaat de resultante F""" ,;, = Fy,.

Voorbeeld Om het snijpunt van de twee krachten binnen het werkveld te krijgen, moeten
de krachten verschoven worden. Echter, een krachtverschuiving is slechts toegestaan
indien gelijktijdig een koppel wordt ingevoerd. Figuur 3.11.b geeft de situatie waarbij de
kracht F een afstand a is verschoven en de kracht F} een afstand b. De bij verschuiving
optredende koppels T, = |F,| x a en T, = |F| x b zijn ingevoerd; Ty, is rechtsdraaiend
en Ty linksdraaiend. Indien T, = T} zou zijn, resulteert er geen koppel. Nuis T, = Ty
indien ervoor gezorgd wordt dat a : b = |F,| : |F,|. Kiesdus a =k x |Fy| en b =k x
|, |, waarbij k zo groot genomen moet worden dat de verschoven krachten F) en F}’ bij
elkaar in de buurt komen te liggen. Bij verschuivingen over deze afstanden treedt geen
resulterend koppel op. De werking van de twee krachten F' en F;’ in Figuur 3.11.c is
geheel gelijkwaardig met de twee krachten F, en Fj. In Figuur 3.11.d is uit de twee
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krachten F,' en F}' de resultante F/,” = F,; bepaald.

De sombepaling van twee krachten, die elkaar niet in het werkvlak snijden is nog op
een alternatieve manier eenvoudig uit te voeren. Figuur 3.12.a is geheel overeenkomstig
Figuur 3.11.a. In Figuur 3.12.b zijn twee gelijke, tegengestelde krachten H en J toege-
voegd, die dezelfde werklijn W hebben; de somkracht van de werkende krachten wordt
daardoor niet belnvloed Stel nu F, samen met H tot de krachtvector F + H, en F,
samen met J tot Fj 4+ J. De krachtwerking van deze in Figuur 3.12.c getekende twee
nieuwe krachtvectoren is nog geheel gelijkwaardig aan de oorspronkelijke. Door de twee
nieuwe resultanten opnieuw te sommeren ontstaat de krachtvector F, +. H+ Fb + J
Aangezien H+.J = 0is deze laatste vector precies de gezochte resultante Fy = F +Fb

/Fa F
e

v F,+H

Fo +.J

a. b. c.

Figuur 3.12 a) Twee krachten F, en F},. b) Een hulpmiddel voor het samenstellen van twee
krachten F, en F}, is het toevoegen van twee gelijke en tegengesteld gerichte krachten H en J
(zelfde werklijn). c) Bij samenstellen van de krachten F, + H en F, + J ontstaat de gevraagde
resultante Fyy,.

Figuur 3.13 verduidelijkt nog op grafische wijze dat de resultante van F,+HenFy+J
dezelfde is als de resultante van F, en F},.

Figuur 3.13 Grafische verduidelijking dat bij toevoegen van de krachten H en J de resultante Fy,,
ontstaat. Vergelijk met Figuur 3.12.
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3.2.5 Samenstellen van evenwijdige krachten

Het bepalen van de resultante van twee krachten kan niet volgens de algemene procedure
verlopen als de krachten evenwijdig zijn. Het snijpunt van de krachtlijnen valt dan in het
oneindige, en is niet bruikbaar voor verdere constructie. Dit is dezelfde moeilijkheid die
optreedt bij de sombepaling van twee elkaar buiten het werkveld snijdende krachtlijnen.
In deze paragraaf worden twee manieren aangegeven hoe de grafische sombepaling van
twee evenwijdige krachten wel kan.

De eerste is het toevoegen van twee hulpkrachten, zie Figuur 3.14. Let op dat bij het
invoeren van de twee hulpkrachten F} geen koppel wordt geintroduceerd. Dit is alleen
te vermijden als de twee hulpkrachten dezelfde werklijn hebben. Het is echter niet nood-
zakelijk dat deze hulpkrachten-werklijn loodrecht staat op de werklijnen van de samen te
stellen krachten; de constructie van Figuur 3.14.c levert ook een juiste resultante.

Fab
y y y
F
a . F Fa
ab Z Fb
F - _ _ <
h Fh :
F.-F, Fn Fn
Fb + Fh
X X X
a. b. c.

Figuur 3.14 Samenstellen van twee evenwijdige krachten Fy en F}, met behulp van twee hulp-
krachten Fy,. a). De hulpkrachten F}, zijn naar buiten gericht. b) De hulpkrachten F}, zijn naar
binnen gericht. c) De hulpkrachten Fy, kunnen onder een willekeurige hoek met Fy, en F}, worden
toegevoegd.

Figuur 3.15 laat zien dat de constructie met twee hulpkrachten eveneens kan worden
toegepast bij twee evenwijdige tegengesteld gerichte krachten.

De tweede manier is het bepalen van de resultante van twee evenwijdige krachten met
een eenvoudige berekening. Figuur 3.16.a geldt voor het geval dat de krachten F, en
F, gelijkgericht zijn. De kracht Fy; is de som van de twee verschoven krachten F! en
Fy, beide aangrijpend in R. Omdat de bij verschuiving optredende koppels elkaar moeten
opheffen, moet worden voldaan aan de voorwaarde: a x |F,|= b x | F|. Echter de afstand
d van de krachten F, en F} is bekend. Met d = a + b volgen de formules:

| Fy|
a=———Xd
|Eol+|Ep|

‘Fa|

= — xd
| Fol+|Ep)
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Fab

Fi

Fh

Figuur 3.15 Bepaling van de resultante F,; van twee evenwijdige, tegengesteld gerichte krachten
F, en Fy, met behulp van het invoeren van de hulpkrachten F;, en —Fy},.

y d y| Fa=Fa+Fy=F.+Fy
a b
Fa AFS Fa
yile p
\HT/ R4
Fy a b
X X

a. b.

Figuur 3.16 a) Bij het verschuiven van de kracht F, over een afstand a ontstaan de kracht F,
en het koppel F, - a. Bij verschuiven van F} over de afstand b ontstaan de kracht Fé en het
koppel Fp - b. F, en Fb/ hebben dezelfde werklijn. b) Indien a en b zodanig worden gekozen dat
Fy - a = Fy - b resteert geen koppel. Voor die keuze van a en b, dus als a/b = F,/F,, is de som
van F) en Fé de resultante van F, en F},.

Figuur 3.17 geldt voor het samenstellen van twee tegengesteld gerichte krachten. De
werklijn van de resultante Fj; ligt niet meer tussen de werklijnen van F, en F} in, maar
aan de buitenzijde van de grootste kracht. Nu geldt echter d = b— a, en daarmee worden

de formules:

F E,
_ IR, ,_ _IF|

a = = ————xd
‘Fa|*‘Fb‘ |Fa|*|Fb|
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Uit deze formules blijkt duidelijk dat naarmate F, en F} minder in grootte verschillen,
zowel a als b groter worden. Dat betekent dat de werklijn van de kleiner wordende
resultante Fy; steeds verder naar buiten komt te liggen. Voor het geval dat F, = Fp,
ontstaat een resultante F;, = 0 die in het oneindige ligt. Deze mathematische fictie
is een koppel ter grootte M = F, x d. Dit koppel kan worden aangegeven door twee
krachtvectoren als in Figuur 3.17.b, of door een kromgebogen pijl zoals in Figuur 3.17.c.

y b y y
a =F,d
> d m a
F, ~
Fa
Fab
Fo
F
d b
&>
X X X
a. b. C.

Figuur 3.17 a) Twee tegengesteld gerichte krachten F, en Fy zijn rekenkundig samengesteld. De
verhouding a/b = Fy/Fq, juist als in Figuur 3.15. b) Als F,, = F, is geen samenstellen mogelijk.
Deze krachtconfiguratie wordt koppel genoemd. c) Gewoonlijk wordt dat koppel zo aangegeven

In principe is een koppel een vector, die wordt gedefinieerd door twee parameters: een
grootte en een richting. In het tweedimensionale vlak is een koppel door één parameter
gedefinieerd: de grootte. Daarvan moet je nog wel aangeven wat de polariteit is: een
linksdraaiend koppel krijgt de aanduiding +M, een rechtsdraaiend koppel -M. In het
tweedimensionale vlak kan een koppel (op een star lichaam) naar believen worden ver-
schoven in zijn werkvlak. Dit betekent dat in het werkvlak koppels gewoon algebraisch
kunnen worden gesommeerd.

3.3 Contactkrachten

3.3.1 Aangrijpingspunt

Als een kracht is gedefinieerd door zijn grootte en richting is daarmee nog niet zijn
werking op een systeem beschreven. De invloed die een kracht op een systeem uitoefent
wordt bepaald door de plaats waar de kracht aangrijpt. Voor de definiéring van het
aangrijpingspunt zijn in het platte vlak twee codrdinaten nodig: x en y bij een orthogonaal
codrdinatenstelsel; of ¢ en R in een polair codrdinatenstelsel. Om de werking van een
kracht op een systeem te beschrijven moeten dus in totaal vier parameters worden gegeven;
bijvoorbeeld (|F|, o, z,y), of (Fy, Fy,, R), of in de meeste gevallen (F,, Fy, x,y).

Het is goed om te bedenken dat voor het beschouwen van het evenwicht van een systeem
kan worden volstaan met het definiéren van alleen de werklijnen van de op dat systeem
werkende krachten. Een kracht mag immers langs zijn werklijn worden verschoven. Het
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maakt niet uit voor het aantal benodigde parameters. Om een lijn te definiéren moet een
punt (twee codrdinaten) van het systeem worden gegeven waar die lijn (in de krachtrich-
ting) doorheen loopt. In zeer veel gevallen, bijvoorbeeld als het aangrijpingspunt hetzelfde
blijft bij bewegen van het systeem, biedt het voordeel het aangrijpingspunt te definiéren.
Dit vergemakkelijkt de bestudering van het effect van de kracht op het systeem. Bij
stabiliteitsbeschouwingen is van essentieel belang om te weten wat het aangrijpingspunt
is. Zie daarvoor H5 Stabiliteit.

Contactkrachten zijn de krachten die de omgeving op het systeem uitoefent. De sys-
teemgrens wordt doorgaans direct rondom een onderdeel of een combinatie van onder-
delen getrokken. zie H1 Systemen. De systeemgrens volgt dan het contactvlak van een
onderdeel met andere onderdelen. In zo'n contactvlak grijpen de contactkrachten aan;
de contactkrachten representeren de invloed die naburige onderdelen op het gekozen sys-
teem uitoefenen. De grootte en richting van de contactkrachten hangen ook af van de
relatieve beweging van de contactvlakken: stilstaand of schuivend. Een rollend contact
is hierbij inbegrepen omdat steeds wordt aangenomen dat bij rollen de contactvlakken
ten opzichte van elkaar stilstaan. Steeds moet rekening gehouden worden met verande-
rende omstandigheden: systeembewegingen die een loslaten van de contactvlakken (geen
contactkracht meer) of een kantelen van de contactvlakken (verschuiven contactkracht)
veroorzaken. Het maakt dus heel erg uit in welke stand je het systeem hebt staan waarin
je de evenwichtsbeschouwing maakt.

Doorgaans zijn de contactvlakken bekend. In het algemeen zal de verdeelde belasting
dF op elk deeloppervlakje dA bijdragen aan de krachtoverdracht. De resultante F' van
alle deelkrachtjes is de contactkracht. Het is vaak moeilijk te bepalen in welk punt van
het contactvlak de resultante aangrijpt. Veelal wordt als eerste benadering het centrum
van het contactvlak gekozen. In een aantal gevallen (zie H1 Systemen, § 1.3.3 is dat
aantoonbaar onjuist. Ook bij aslageringen is de plaats aan te wijzen waar de resulterende
contactkracht aangrijpt (zie H4 Wrijving en weerstand, § 4.1.2). Dus wees er op be-
ducht als je zelf krachtensommen gaat maken dat een belangrijke stap in de analyse het
beschouwen van de contactvlakken is, omdat je op basis van die beschouwing de juiste
aannamen of modelvorming kan doen.

3.3.2 Normaalkracht en wrijvingskracht

Het is vaak doelmatig om een contactkracht F' te splitsen in de eerder geintroduceerde
normaalkracht N en wrijvingskracht W.

Voorbeeld In Figuur 3.18.a is de werklijn getekend van de contactkracht F' die aan-
grijpt in het contactpunt tussen een stilstaande as en een daaromheen draaiende ring met
constante hoeksnelheid. De plaats van het contactpunt is bekend verondersteld. Het
raakvlak aan de as in het contactpunt is het contactvlak. Loodrecht op dit vlak werkt
de normaalkrachtcomponent; in het contactvlak ligt de wrijvingskrachtcomponent. In
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Figuur 3.18.b zijn de krachten getekend die op de as werken als de ring linksom draait.
De normaalkracht NV is dus naar het ascentrum gericht. In Figuur 3.18.c zijn de krachten
getekend die op de ring werken. Ze zijn gelijk van grootte en tegengesteld aan de krach-
ten die in het contactpunt op de as werken. De normaalkracht N’ op de ring is van het
centrum af gericht. De wrijvingskracht W’ op de ring is zodanig gericht dat de beweging
van de ring wordt tegengewerkt. Dit correspondeert met de getekende richting van de
wrijvingskracht W op de as. De bewegende ring probeert de stilstaande as mee te nemen
in zijn draairichting.

werklijn contactkracht

s F

®

normaal N F

contactviak

a. b. C.

Figuur 3.18 Een ring draait om een as. a) In het contactpunt (bekend verondersteld) kan het
contactvlak en de normaal daarop worden getekend. b) In het contactpunt zijn de contactkracht
F' en zijn componenten N en W getekend die op de as werken. De contactkracht wordt meestal
ontbonden in een component in het contactvlak en een component loodrecht daarop. c¢) Contact-
kracht F' en zijn componenten N en W die op de ring werken.

Let op: In het bovenstaande is alleen de contactkracht tussen as en ring beschouwd. Het
evenwicht van het systeem as en van het systeem ring is onbesproken. Alhoewel de as
stilstaat en de ring draait, moeten beide aan dezelfde evenwichtsvoorwaarden voldoen.
Indien de ring met constante hoeksnelheid roteert, kan (na het samenstellen van alle op
de ring werkende krachten) geen kracht of koppel resulteren.

3.4 Evenwicht van een systeem

3.4.1 Principiéle opzet

In het voorgaande is aangegeven op welke manier krachten worden samengesteld en wordt
het belang van contactpunten verduidelijkt. Het zal duidelijk zijn geworden dat een wille-
keurig aantal krachten en koppels die op een systeem werken kunnen worden samengesteld.
In het algemeen zal na samenstellen een kracht en een koppel resulteren. Dan zal het
systeem gaan transleren in de richting van de resulterende kracht, en roteren in de draai-
richting van het resulterende koppel. Uitsluitend in het geval dat na het samenstellen én
geen kracht én geen koppel resteert, zal het systeem blijven in de toestand waarin het
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zich bevindt. Slechts dan is er evenwicht.

Indien op een bepaald moment ¢ een systeem gegeven is, met de erop werkende krachten
en koppels, is het mogelijk te voorspellen of dat systeem al of niet zal blijven in de
toestand waarin het zich op dat moment ¢ bevindt. Als op het moment ¢ geen kracht en
geen koppel op het lichaam werkt, zal het systeem in evenwicht verkeren, dat wil zeggen:
blijven in de toestand waarin het zich bevindt. Als het systeem op het moment ¢ beweegt
met een snelheid v en een rotatie w, zal het systeem dat blijven doen. Als het systeem
op het moment ¢ stilstaat, zal het blijven stilstaan.

Bij de analyse van systemen wordt vaak de omgekeerde redenering gevolgd. Er wordt
van uitgegaan dat een systeem in rust blijft. Uit die veronderstelling volgt dat geen
resulterende kracht en ook geen resulterend koppel op het systeem mag werken. Dat
leidt ertoe dat de evenwichtsbeschouwingen als voorwaarden worden gehanteerd. Deze
voorwaarden worden gebruikt om onbekende krachten en momenten te bepalen. Dit wordt
in het volgende verduidelijkt.

3.4.2 Algemene evenwichtsvoorwaarden

Er is gesteld dat een systeem slechts in een evenwichtssituatie kan verkeren indien er geen
kracht, en ook geen koppel op dat systeem werkt. Daarbij moet bedacht worden dat voor
de definiéring van een kracht F' twee grootheden moeten worden gegeven; bijvoorbeeld
(zoals in § 3.2.2) door zijn twee componenten in de codrdinaatrichtingen F, en F,,.
Voor de definiéring van een koppel is één gegeven voldoende: de grootte van het koppel
(waarin de draairichting is verdisconteerd), berekend uit het product van krachtgrootte
en verschuivingsafstand. Daarmee is verklaard dat de tweevoudige eis:

1. geen resterende kracht
2. geen resterend koppel

leidt tot drie evenwichtsvoorwaarden:

1. de resulterende kracht heeft geen component in z-richting
2. de resulterende kracht heeft geen component in y-richting
3. geen resulterend koppel

In § 3.2.4 is verduidelijkt dat de xz-component van de resulterende kracht kan worden
gevonden door de z-componenten van de afzonderlijke krachten te sommeren. In formu-
levorm geschreven: [>_ F|, = > [F,]. Daarmee worden de drie evenwichtsvoorwaarden:

1. som krachtcomponenten in z-richting = 0: > F, =0
2. som krachtcomponenten in y-richting = 0: S F,=0
3. som koppels = 0: >M=0

Voor evenwicht is het noodzakelijk dat aan alle drie de eisen tegelijkertijd wordt voldaan.
De voorwaarde 3 wordt meestal omschreven als: som van de momenten is nul. Een

83



3.4 Evenwicht van een systeem Evenwichten

formulering met koppels (in plaats van momenten) heeft echter de voorkeur, omdat het
moment van een kracht steeds behoort bij een gekozen punt in het codrdinatenvlak. Bij
een ander gekozen punt in het vlak behoort een ander moment van die kracht. Een
dergelijke moeilijkheid doet zich niet voor bij koppels; koppels behouden hun grootte bij
verschuiving in het codrdinaatvlak.

3.4.3 Gebruik van de evenwichtsvoorwaarden
Evenwicht van systeem met twee uitwendige krachten

Een eenvoudig geval is een systeem waarop slechts twee krachten werken. Evenwicht is
dan alleen mogelijk indien de twee krachten een gelijke grootte hebben, dezelfde werklijn
hebben, en tegengesteld gericht zijn. Alleen in dit geval heft de invloed van de ene kracht
die van de andere op. Er is geen resulterende kracht en ook geen koppel. Dus: het
systeem is in evenwicht. Deze situatie doet zich vaak voor. Zie bijvoorbeeld Figuur 3.19.

Figuur 3.19 Vooorbeelden van systemen waarop slechts twee uitwendige krachten werken: a) boek
op plank; b) standbeeld op sokkel; c) hanglamp aan plafond; d) langwerpige schakel (schalm) van
ketting.

Op elk voorwerp dat ergens alleen maar ligt (boek op plank), staat (standbeeld op sok-
kel) of hangt (lamp boven tafel) werken slechts twee krachten: de zwaartekracht G en de
ondersteuningskracht N, of de zwaartekracht G en de ophangkracht O. Van de zwaarte-
kracht G is alles bekend: het aangrijpingspunt, de richting van de werklijn en de grootte
van de kracht. Als er evenwicht is, kan het niet anders dat de tweede uitwendige kracht
(ondersteuningskracht of ophangkracht) dezelfde werklijn heeft, dezelfde grootte heeft,
en tegengesteld is gericht. De onbekende ondersteuningskracht (ophangkracht) is hier
bepaald uit de bekende gewichtskracht.

Evenwicht van systeem met twee uitwendige krachten en een koppel

Een bijzondere situatie doet zich voor als de twee krachten wel dezelfde grootte hebben
en tegengesteld gericht zijn, maar niet dezelfde werklijn hebben. Figuur 3.20 geeft enkele
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voorbeelden.

In Figuur 3.20.a is Z het zwaartepunt van de lantaarnpaal op een afstand p van de centrale
paalas; daar grijpt de verticaal gerichte zwaartekracht G aan. Waar de paal is ingegraven
oefent de grond een nog onbekende uitwendige belasting op de paal uit. Deze belasting
wordt bepaald met behulp van de evenwichtsvoorwaarden. Voor het verticale evenwicht
is het noodzakelijk dat op de paal een opwaarts gerichte kracht O, met grootte |O|= |G|
werkt. De werklijn van O (centrale paalas) valt echter niet samen met die van G. Het
verticaal evenwicht van de lantaarnpaal is nu in orde, maar de krachten G en O oefenen
op de paal een koppel ter grootte |G|xp = |O|xp uit. Opdat de som van de koppels nul
wordt, moet de grond op de paalas een tegengesteld koppel van gelijke grootte uitoefe-
nen. In totaal moet de grond op de paal een kracht O, en een koppel |O|Xxp uitoefenen.
De paal moet zodanig worden ingegraven dat de grond deze uitwendige belasting aan de
paal kan overdragen. Dan is aan de drie evenwichtsvoorwaarden voldaan. Het systeem
lantaarnpaal is met twee uitwendige evenwijdige krachten en een koppel in evenwicht.

Figuur 3.20 Voorbeelden van systemen waarop twee uitwendige krachten en een koppel werken. De
twee uitwendige krachten zijn dan altijd gelijk van grootte en tegengesteld gericht. a) De grond
oefent op de lantaarnpaal een kracht O = G en een koppel M = G -p uit. b) De stuurwielas oefent
een koppel S op het stuurwiel uit. Er is evenwicht als S = H - D.

In Figuur 3.20.b is een stuurwiel getekend. Twee handen oefenen op het stuurwiel de
twee getekende krachten H uit. De krachten H zijn evenwijdig, gelijk en tegengesteld;
hun werklijnen liggen een afstand D uit elkaar. Het verticaal evenwicht is in orde; het
horizontaal evenwicht ook. Voor het evenwicht van koppels is het noodzakelijk dat de
stuurwielas een linksdraaiend koppel S ter grootte S = |H|x D op het stuurwiel uitoefent.
Afhankelijk van de constructie zal dit koppel door een spie, een wrijvingsmoment of een
lasnaad worden overgebracht.
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3.4.4 Belang van modelvorming

In Figuur 3.21.a is een steeksleutel getekend, waarmee een moer wordt aangedraaid. Op
het einde van de steel wordt een kracht F' uitgeoefend. De steeksleutel wordt als systeem
beschouwd. Voor evenwicht moeten nog andere krachten op de sleutel werken.

F
|
a.
) m
b M=F m@ |
S iF
t\
c i |
|
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Figuur 3.21 a) De steeksleutel ligt met zijn bekken om een moer. Op de steel wordt een kracht
F uitgeoefend. b) De kracht en het koppel zijn getekend die de moer op de sleutel moet uitoe-
fenen om evenwicht te verkrijgen. c) Een betere modelvorming door andere beschouwing van de
contactpunten tussen moer en steeksleutel: er staan namelijk twee krachten op de bekken van de
steeksleutel. d) De krachten S1 en Sa zijn verschoven naar het moercentrum met behulp van de
verschuivingsregel. Bij sommatie van de krachten en momenten blijkt deze situatie gelijkwaardig
met die in b te zijn.

Bij het vastdraaien oefent de moer ook krachten op de sleutel uit. De redenering uit §
3.2 leidt ertoe dat een contactkracht F’ wordt ingevoerd om een evenwicht van krach-
ten te bewerkstelligen. Als gevolg daarvan moet de moer ook een koppel M ter grootte
|F|xm op de sleutel uitoefenen. Zie Figuur 3.21.b. Het belastingbeeld is verkregen uit
een toepassing van alleen de evenwichtsvoorwaarden. Over de wijze waarop de moer dit
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koppel M overdraagt op de steeksleutel, ontstaat geen enkel inzicht en daarom is dit
geen bevredigende oplossing. Het wordt wel inzichtelijk indien er geschikte systeemgren-
zen worden gekozen. De goede manier van werken is: beginnen met modelvorming en
vervolgens de modelmatig ingevoerde krachten en koppels controleren op evenwicht. In-
dien een evenwicht niet kan worden gevonden, dient de modelvorming te worden herzien;
net zo lang totdat een bevredigend beeld van in evenwicht verkerende krachten en koppels
is verkregen. Bij het trekken van een systeemgrens rondom de steeksleutel, en het nagaan
van de contactpunten met de omgeving, ontstaat het inzichtgevende belastingbeeld van
Figuur 3.21.c. Dat inzicht is namelijk dat bij het aandraaien van de moer met de steek-
sleutel niet één, maar twee kanten van de steeksleutelbek contact maken met de moer.
Het is dus noodzakelijk twee contactkrachten tussen moer en sleutel aan te nemen. Dat
is gedaan in Figuur 3.21.c. Door dit veelvuldig te oefenen raak je vaardig in het uitvoeren
van deze modelvorming stap. Deze is essentieel om op een correcte wijze evenwicht te
kunnen bepalen en de juiste ontbrekende krachten en koppels te herleiden.

De twee krachten S7 en S5 zijn een afstand t verschoven ten opzichte van het moercen-
trum. De werklijnen van de krachten moeten evenwijdig zijn omdat ze een koppel M
moeten genereren. Het krachtenevenwicht eist: S; = So + F'; het momentenevenwicht
eist: |Sa|x2t = |F|x(m —t). Uit deze twee vergelijkingen zijn S; en Sy op te lossen.
Het resultaat is |S1|= 0.5 X |F|x(1 +m/t); |Sa|= 0.5 x |F|x(—=1+m/t).

De twee krachten S; en Sy kunnen worden verschoven over een afstand ¢ naar het moer-
centrum. Zie Figuur 3.21.d. Daarbij ontstaan twee linksdraaiende koppels M; = |Sq|xt
en My = |Ss|xt. In totaal een linksdraaiend koppel ter grootte F' x m. Bij optellen
van de krachten S| en S} ontstaat de resultante F. De verbeterde modelvorming van
Figuur 3.21.c geeft een krachtenbeeld van drie evenwijdige krachten, die evenwicht met
elkaar maken. Dit evenwicht blijkt gelijkwaardig aan het evenwicht van twee krachten en
een koppel van Figuur 3.21.b, maar is nu wel bereikt met correcte modelvorming.

3.4.5 Evenwicht van systeem met drie uitwendige krachten

Systemen waarop drie uitwendige krachten werken komen heel vaak voor. In principe kan
het evenwicht van drie krachten F,, F}, en F, worden teruggebracht tot het evenwicht
van de twee krachten F,;, = F, + F} en F,, of van F,. en F}, of van Fj. en F},.

Voorbeeld In Figuur 3.22.a bevindt een systeem zich binnen de getekende systeemgrens.
Op het systeem werken de drie evenwijdige krachten F,, F, en F.. In de figuur zijn de
krachten F, en F} samengesteld tot hun resultante Fj;. Het systeem is in evenwicht als
de werklijn van Fj;, samenvalt met de werklijn van F¢, en als ook de resultante Fy; gelijk
en tegengesteld is aan F,. Het samenvallen van de krachtlijnen blijkt uit Figuur 3.22.a;
de krachtgelijkheid F,;, = —F, blijkt uit Figuur 3.22.d.

Voorbeeld In Figuur 3.22.b werken drie niet-evenwijdige krachten op het systeem. De
manier van werken is dezelfde. Bepaal de resultante Fy;, van F,, en Fj.
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Eis 1. De eerste eis is dat de werklijn van F,; samenvalt met de werklijn van F; dat blijkt
uit Figuur 3.22.b. Merk op dat deze eis van samenvallende werklijnen ook kan worden
gesteld in de vorm:

De werklijnen van de drie krachten moeten door één punt gaan.

Fab Fab
T /Systeemgrens Fab -
FBT | b
[
|
|
[
i[/FC /Fa IFC Fo IFC
A /
a
a b. c.
Fo
F
Fa xi % l:bc
Fb Fc Fb Fc
. Fe

/.

Figuur 3.22 Als op een systeem drie krachten werken, is een goede manier van werken om twee
krachten samen te stellen. Deze resultante moet dan evenwicht maken met de derde kracht. In
(a) is dat uitgevoerd voor drie evenwijdige krachten, in (b) voor drie willekeurige krachten. In (d)
en (e) zijn de krachtendriehoeken behorend bij (a) en (b) getekend. In principe maakt het niet uit
welke twee krachten worden samengesteld. In (c) maakt Fy;, evenwicht met F¢; in (f) maakt Fj,.
evenwicht met F,

Eis 2: De tweede eis is dat F,, = —F,. F,, is de vectorsom van F, en F,. In de
vectoralgebra kan de tweede eis geschreven worden in de vorm:

— —

F,+ F, = —ﬁc; of ook:
F,+ F,+ F,=0.
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De som van de drie op het systeem werkende krachten moet nul zijn. Volgens § 3.2.4 is de
resultante te bepalen door de krachten in hun juiste richting en grootte achtereenvolgend
uit te zetten. Indien de resultante nul moet zijn, moet in die figuur de pijlpunt van
de derde kracht samenvallen met de oorsprong van de eerste kracht. De tweede eis in
grafische vorm luidt:

De krachtendriehoek moet gesloten zijn.

In het bovenstaande is steeds evenwicht gezocht door de resultante van de twee krachten
F, en F, te vergelijken met de kracht F,.. Uiteraard ontstaat eenzelfde resultaat als
evenwicht wordt gezocht tussen de resultante van twee andere krachten en de derde
kracht. Dit is verduidelijkt in Figuur 3.22.c en 3.22.f.

De grafische evenwichtsvoorwaarde voor een systeem waarop drie krachten werken bestaat
uit twee delen. Het is interessant na te gaan wat er gebeurt als aan één van beide
voorwaarden niet is voldaan. Het systeem en de belasting van Figuur 3.23.a is niet geheel
overeenkomstig Figuur 3.22.a.
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Figuur 3.23 a) De werklijnen van de drie uitwendige krachten gaan niet door een punt; de krachten-
driehoek is echter gesloten. Dan resteert een koppel ter grootte van twee maal het opperviak van de
krachtlijnendriehoek. In (b) gaan de drie werklijnen wel door een punt maar is de krachtendriehoek
niet gesloten. Er resteert de resultante van de uitwendige krachten op het systeem.
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Bij het samenstellen van de krachten F}, en F} ontstaat een resultante F,;, waarvan de
werklijn op een afstand d evenwijdig met die van F.. loopt. Wel is | Fyp|= |Fe|. In het geval
dat de werklijnen van de drie krachten niet door één punt gaan, en de krachtendriehoek
wel gesloten is, resteert een koppel ter grootte M = |F.|xd. Beschouw nu de driehoek
die wordt ingesloten door de drie werklijnen van de krachten F,, F, en F.. Schaal de
krachtendriehoek zodanig dat de werklijnendriehoek congruent is met de krachtendrie-
hoek. Dan is het oppervlak van de werklijnendriehoek juist gelijk aan de halve waarde van
het resterende koppel. De werklijnendriehoek en de daarmee overeenkomende geschaalde
krachtendriehoek zijn in Figuur 3.23.a gearceerd aangegeven. Dus: Als de werklijnen van
de drie krachten een driehoek insluiten, en de krachtenschaal is overeenkomstig gekozen,
resteert op het systeem een koppel ter grootte van tweemaal de oppervlakwaarde van die
driehoek.

Figuur 3.23.b geeft aan wat er gebeurt als de drie krachtlijnen wel door één punt gaan,
maar de krachtendriehoek niet is gesloten. Dan resteert een krachtvector ter grootte
Fres = Fap + F. op het systeem.

Uit het voorgaande volgt direct het volgende verband:

Evenwichtsvoorwaarde | Formule Grafische voorwaarde

Geen resterende kracht Zﬁ =0 | krachtendriehoek gesloten

werklijnen door één punt als geen
uitwendig koppel aanwezig

of

werklijnen vormen driehoek met
oppervlak = 0,5 x koppelmoment als
uitwendig koppel aanwezig

Geen resterend koppel | "M =0

Bij een rekenkundige bepaling van een evenwicht wordt de aanwezigheid van een resterend
koppel op andere wijze verrekend. Dit gaat volgens het protocol:

- Kies een punt in het codrdinatenvlak, en
- Bepaal de momenten van elke kracht ten opzichte van dat punt.

In Figuur 3.24.a is het punt R willekeurig gekozen. De rekenkundige benadering geeft dus
als voorwaarde —|Fy,|xa + |Fp|xb — |F¢|xc = 0. In Figuur 3.24.b zijn de krachten Fy,
Fy en F, verplaatst naar het punt R.

Dat mag alleen als tegelijkertijd drie koppels worden ingevoerd ter grootte van —|F,|xa,
|Fp|xb en —|F.|xc. Indien de som van deze koppels nul is, resteert geen koppel, en zal
het systeem geen rotatieversnelling ondergaan. De som van de koppels is uiteraard juist
gelijk aan de gegeven momentenvoorwaarde.

Merk op dat voor het opstellen van de momentenvergelijking, het punt R willekeurig mag
worden gekozen. De keuze is echter eenmalig; dat wil zeggen: het heeft geen zin een
tweede momentenvergelijking op te stellen, rondom een ander gekozen punt R'. Deze
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tweede momentenvergelijking is afhankelijk van de reeds gevonden evenwichtsvoorwaar-
den.

werklijn F.
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Figuur 3.24 In (a) mag voor het momentenevenwicht de momentstelling > M = 0 worden gebruikt,
dat is verduidelijkt in (b) waar de uitwendige krachten zijn verschoven naar het (willekeurig gekozen)
momentenpunt R. De algebraische som van de ingevoerde koppels levert dezelfde voorwaarde. De
momentstelling > M = 0 is in principe dezelfde voorwaarde als: er mag geen koppel resteren.

Waarschuwing

Bij het gebruik van de stelling: “De werklijnen van de drie krachten moeten door één
punt gaan.” moet aandacht aan de krachtrichtingen worden gegeven. In Figuur 3.25
is een staaf getekend, waarop drie krachten F,, F} en F, werken, die aangrijpen in de
contactpunten A, B, en C. De krachten F, en F} zijn gegeven; hun werklijnen snijden
elkaar in het punt S. De verbindingslijn C'S is nu niet de werklijn van de kracht F..
De verschoven krachten F, en F; maken dit duidelijk. De resultante van F), en F} is
een vector die in S aangrijpt en ergens tussen de vectoren F en F} in ligt. De kracht
F,. moet de resultante van F en F opheffen; de werklijn van F, moet dan binnen de
hoek BSA vallen. De lijn C'S valt buiten deze hoek en kan dus niet de werklijn van F,
zijn. De conclusie luidt: het is niet mogelijk dat in het punt C een kracht aangrijpt die
evenwicht maakt met de gegeven krachten F en F}. Evenwicht is wel te bereiken als
één van de krachten F, of F} van polariteit wisselt, zoals is aangegeven in Figuur 3.25.b.
Overigens blijkt de noodzaak tot polariteitswisseling ook uit de besproken tweede eis. In
het geval van Figuur 3.25.b is een gesloten krachtendriehoek bestaanbaar, in het geval
van Figuur 3.25.a niet.
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Figuur 3.25 a) Een staaf met de twee krachten F, en F, die aangrijpen in A en B. Welke kracht
F. moet in C' aangrijpen zodat evenwicht ontstaat? Verlengen van de werklijnen van F, en Fj
levert het snijpunt S. Dan moet voor evenwicht F. de werklijn C'S hebben. Dat is echter een
onmogelijkheid; de werklijn C'S valt niet langs de vector F,;. b) Hier wordt aangetoond dat een
evenwichtskracht F. wel gevonden kan worden als de polariteit van F, wijzigt.

3.4.6 Evenwicht van systeem met drie evenwijdige uitwendige krachten

De voorwaarde: ‘de drie werklijnen moeten door één punt gaan', moet met voorzichtig-
heid worden gehanteerd als het snijpunt in het oneindige ligt. Zowel in Figuur 3.26 als
Figuur 3.22.a snijden de werklijnen van de krachten F,, F} en F, elkaar in het oneindige,
en is de krachtendriehoek gesloten. Het systeem van Figuur 3.22.a is in evenwicht; het
systeem van Figuur 3.26.a is niet in evenwicht.

/ Fab

A,

b.

Figuur 3.26 In (a) is een systeem getekend waarop drie evenwijdige krachten werken. Het snijpunt
van de werklijnen van de krachten ligt in het oneindige. De krachtendriehoek is gesloten. Toch is
het systeem niet in evenwicht omdat de resultante F,;, niet dezelfde werklijn heeft als F.. b) Op
het systeem resteert een koppel F. - d. Vergelijk Figuur 3.22.a.
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In het geval van evenwijdige krachten kan de voorwaarde beter vervangen worden door de
eis: de werklijn van de resultante van twee krachten moet samenvallen met de werklijn
van de derde kracht. Een andere mogelijkheid is het aanbrengen van twee hulpkrachten,
zoals is besproken in § 3.2.4 en § 3.2.5. Voor de drie krachtvectoren F, + H, F;, + (—H)
en F, geldt weer wel dat de werklijnen door één punt moeten gaan.

3.4.7 Voorbeelden

Voorbeeld Een balk is met twee scharnierpunten verbonden met de omgeving. Het ene
scharnierpunt is vast opgesteld, het andere scharnierpunt is rollend opgesteld. Zie Fi-
guur 3.27. De balk is belast door een kracht F. Gevraagd wordt de waarde van de
scharnierpuntkrachten te bepalen.
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Figuur 3.27 Links is een balk getekend die statisch bepaald is ondersteund. De roloplegging kan
alleen een verticale kracht op de balk overdragen. De werklijnen van de ondersteuningskracht S
en I snijden elkaar in P. Daarmee is ook de richting van de ondersteuningskracht So gegeven.
Met drie bekende krachtrichtingen en de bekende grootte van F, is de krachtendriehoek (midden)
bepaald. In de figuur rechts is het probleem gereed gemaakt voor wiskundige bewerking: de
ondersteuningskrachten zijn gesplitst in hun horizontale en verticale componenten.

Benoem de gevraagde scharnierkrachten Sy (het rollende) en Sy (het vaste). De schar-
nierkracht Sy is geheel onbekend, zowel in grootte als in richting. De scharnierkracht Sy
is verticaal gericht, omdat de roloplegging het ontstaan van een horizontale krachtcom-
ponent verhindert. Met dit gegeven is van twee krachten de richting bekend (F en S;).
Het punt P is dan het snijpunt van de werklijnen van S; en F'. We hebben te maken met
een 3-krachtensysteem zonder koppel, dus voor evenwicht is het noodzakelijk dat ook de
werklijn van S5 door het punt P gaat. Daarmee is de werklijnrichting van S gevonden.
Nu kan de krachtendriechoek worden getekend, zie Figuur 3.27.b. Start bijvoorbeeld met
het tekenen van krachtvector F' door middel van een pijl en leg dan de werklijnen van Sy
en S5 elk aan een uiteinde van de pijl. Nu ontstaat de contour van de krachtendriehoek.
De krachten in de krachtendriehoek moeten rondlopen; de pijlpunt van de ene kracht is
de oorsprong van de volgende pijl. Daarmee zijn de krachtrichtingen van de krachten S
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en Sy bepaald, en kunnen ze worden ingetekend, zie Figuur 3.27.b. De krachtendriehoek
is op schaal; de grootte van de krachten S7, S en F verhouden zich als de corresponde-
rende zijden van de krachtendriehoek.

Om te laten zien dat deze grafische bepaling van het evenwicht exact hetzelfde is als
het bepalen van de scharnierkrachten via de algebraische wijze wordt dit nu ook bepaald.
Splits daartoe de optredende krachten in hun z- en y-componenten, zie Figuur 3.27.c.
De krachtcomponent S7, ontbreekt vanwege de roloplegging. Invullen van de drie even-
wichtsvergelijkingen levert:

_SQ:E+F$:0
Sly—Fy—f—Sgy:O
+Syxm—-—Fyxn—F,xd=0

Uit deze drie vergelijkingen kunnen de drie onbekenden Sy, S, en Sg, worden opgelost.
Grootte en richting van Ss volgen uit:

grootte Sy = [Sy|= /53, + 53,

richting Sa = arctan (Say/S2)

Let op: Gegeven het feit dat er evenwicht moet zijn (het systeem heeft immers een snel-
heid 0 m/s) is het absoluut noodzakelijk dat S; een roloplegging is. Met twee vaste
scharnieren ontstaat een statisch onbepaalde constructie, d.w.z. dat de evenwichtsvoor-
waarden alleen dan niet voldoende zijn om het probleem op te lossen. Dat blijkt direct
uit de algebraische oplossingsmethode, omdat er nog steeds maar drie evenwichtsverge-
lijkingen zijn, maar er dan wel vier onbekenden (S1,, Siy, S2. en Say) zijn, die dan niet
allemaal bepaald kunnen worden.

Voorbeeld Een bloembakhaak met de in Figuur 3.28 gegeven vorm hangt in de gete-
kende stand aan een muur. Daarbij steunt de bloembakhaak in punt @ tegen de muur.
Met een ring R hangt de bloembakhaak aan een in de muur bevestigd haakoog. De muur
is volkomen glad verondersteld. Het zwaartepunt z van de constructie is in de figuur
aangegeven. Het gewicht van de bloembakhaak bedraagt G. Bepaal de richting van de
ring R door aan te namen dat er evenwicht heerst, immers de bloembakhaak blijft op zijn
plek en heeft dus een snelheid van 0 m/s Door het tekenen van de systeemgrens wordt
het systeem los gemaakt uit zijn omgeving en zien we dat er naast de zwaartekracht,
twee contactpunten zijn met de omgeving (Q en O). We hebben dus te maken met een
systeem van 3 krachten en geen koppel.

In Figuur 3.28.b is de oplossing grafisch bepaald via de systematiek zoals beschreven in §
3.4.5. De zwaartekracht G werkt verticaal. De werklijn van de zwaartekracht is dus een
verticale lijn door het zwaartepunt z. Nadere analyse van het contactpunt in @), geeft
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de volgende modelvormingstap. We veronderstellen dat de muur zo glad is dat hij geen
wrijving geeft. Het gevolg is dat de werklijn van de steunkracht in het punt Q ook bekend
is, deze is namelijk loodrecht op de muur gericht. De twee werklijnen snijden elkaar in
het punt P. Dan is ook de derde werklijn van de kracht die de ring in het punt O op
de bloembakhaak uitoefent bekend, want die moet door O en ook door P lopen. Op de
ring R werken slechts twee resulterende krachten: één in het ophangpunt O, en één op
de plaats waar de ring contact maakt met de haakoog. Deze twee krachten op de ring
moeten dezelfde werklijn hebben voor evenwicht en de ring neemt diezelfde richting aan.
Uit de in de figuur ingeschreven maten volgt nu de gevraagde richting van de ring. De
ring hangt onder een hoek arctan = b/(a — ¢) met de horizontaal.

o\

a. b. c.

Figuur 3.28 a) Een bloembakhaak is opgehangen aan een ring R en rust met het punt Q) tegen een
muur. b) Op het voorwerp werken drie krachten: de verticale zwaartekracht G door het zwaartepunt
Z; de loodrecht op de muur gerichte contactkracht in het punt Q; en de ophangkracht in het punt
O. De werklijnen van de zwaartekracht en de contactkracht snijden elkaar in het punt P. c) De
krachtendriehoek. Dan moet ook de werklijn van de ophangkracht door het punt P gaan. Op de
ring werken slechts 2 krachten. Die hebben dus dezelfde werklijn in het viak van de ring.

3.5 Evenwicht van twee en meer gekoppelde systemen

3.5.1 Procedure grafisch bepalen evenwicht

Bijna alle technische systemen zijn uit meerdere ten opzichte van elkaar bewegende on-
derdelen opgebouwd. Voor een bepaling van de stijfheid en sterkte van de onderdelen
moeten de belastingen op elk onderdeel bekend zijn. De te volgen algemene procedure
voor het grafisch bepalen van het evenwicht is als volgt:

- Teken het totale systeem, compleet met alle onderdelen.

- Loop de systeemgrens van het totale systeem langs en bepaal de contactpunten met
de omgeving. Geef die contactpunten duidelijk aan. Vergeet niet de contactpunten
van de krachten die langsstromende media (bijvoorbeeld vloeistoffen en gassen) op
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het systeem uitoefenen, te bepalen. Bepaal via modelvorming wat de aard van het
contactpunt is, dus welke kracht of welk koppel kan het contactpunt doorgeven. Als
het niet geheel duidelijk is doe dan in eerste instantie een redelijke veronderstelling.
Het meest algemene is in een contactpunt twee krachtcomponenten (F, en F) en
een koppel (M) in te voeren. Splits echter geen kracht in zijn componenten indien
dit niet nodig is. Maak de situatie ook niet complexer dan nodig is. Voer geen
moment of koppel in als dat niet nodig is. Bijvoorbeeld de vloer (omgeving) oefent
op een tafelpoot geen koppel uit. Een (wrijvingsloos) scharnier draagt geen koppel
over.

Geef de bekende uitwendige krachten en koppels aan in de juiste richting. Ze
grijpen aan in de getekende contactpunten. Teken de uitwendige krachten zoveel
mogelijk in hun werkelijke richting. Zie Figuur 3.29.a. Bedenk dat de krachtrichting
wordt bepaald zowel door de pijl—richting als door de bijgeschreven polariteit. Deze
kunnen worden verwisseld zoals is aangegeven in Figuur 3.29.b.

trekkracht P eQe R
< — Q < — R
drukkracht
S
T U
a.
F = -F S
b —=> T <~ > U <
C.

Figuur 3.29 Het is zinvol een getekende krachtvector te laten overeenkomen met de werkelijke
krachtrichtingen. In a) is een trekkracht op het systeem aangegeven met een pijl van het systeem
af; een drukkracht met een pijl naar het systeem toe. De duidelijkheid neemt toe als krachtvectoren
een positieve krachtgrootte krijgen; dan geeft de vectorpijl immers de werkelijke krachtrichting aan.
In b) is de vergelijkende identiteit gegeven. Bij de scheiding in deelsystemen moeten ook steeds
werkelijke krachtrichtingen worden getekend. In c) zijn twee systemen in deelsystemen gesplitst
met behoud van positieve krachtvectoren in de werkelijke richtingen. De buitenste deelsystemen
zijn niet in evenwicht.
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- Bepaal het type systeemevenwicht: Twee krachten, twee krachten en een koppel,
drie krachten, drie krachten en een koppel, meer dan drie krachten, meer dan drie
krachten en een koppel. Trek daaruit zoveel mogelijk conclusies: zoals noodzakelijke
richtingen van uitwendige krachten, noodzakelijke aan- of afwezigheid van uitwendig
koppel enz.

- Als de conclusie is dat er meer onbekende uitwendige krachten en koppels zijn
dan er evenwichtsvergelijkingen zijn, splits dan het totale systeem in deelsystemen.
Kies in eerste instantie evenveel deelsystemen als er onderdelen zijn. Het blijkt
echter vaak van voordeel meerdere onderdelen als één deelsysteem te beschouwen.
Dit geldt bijvoorbeeld als een gevraagde onbekende uitwendige kracht niet direct
tevoorschijn komt bij het tekenen van de systeemgrens om het totale systeem. Het
handig kiezen waar je de systeemgrens kiest is een kwestie van oefenen. Je kunt het
in principe niet fout doen, maar soms kan het wel op een handigere manier. Dus
ga lekker aan de slag met oefenen.

- Loop de systeemgrens van elk deelsysteem langs en bepaal de contactpunten met
naburige deelsystemen. Indien een contactvlak aanwezig is, kies dan voorlopig het
midden van het contactvlak als contactpunt. Corrigeer eventueel later. Bedenk
dat in het systeem aanwezige vloeistoffen en gassen als deelsysteem beschouwd
moeten worden. Qok zij oefenen krachten op de andere deelsystemen uit. De
aangrijpingspunten van deze krachten zijn meestal eenvoudig te bepalen. Elk in het
totaalschema gevonden contactpunt tussen twee deelsystemen A en B wordt bij het
scheiden van de deelsystemen gesplitst: een contactpunt op de deelsysteemgrens
van systeem A en een op de deelsysteemgrens van systeem B. Teken de vectoren
van de bijbehorende contactkrachten tegengesteld, zie Figuur 3.29.c.

- Indien in een contactpunt de richting van de contactkracht bekend is, teken dan
alvast de werklijn in. Bij twee oppervlakken die zonder wrijving tegen elkaar drukken,
staat de contactkracht loodrecht op het contactoppervlak. Twee opperviakken die
met wrijving langs elkaar bewegen, hebben een resulterende contactkracht die onder
een hoek staat ten opzichte van de normaal. Deze hoek wordt de wrijvingshoek
genoemd (zie H4 Wrijving en weerstand).

- Geef de bekende contactkrachten met pijlen aan. Teken de pijlen in de positieve
krachtrichting. Vergeet niet de uitwendige belastingkrachten op de desbetreffende
onderdelen over te brengen (derde wet van Newton: actie = -reactie).

- Bepaal/controleer het evenwicht van alle deelsystemen afzonderlijk. Begin bij die
deelsystemen die slechts twee contactpunten hebben. De twee daar werkende con-
tactkrachten moeten dezelfde werklijn hebben. Draag de gevonden werklijnrichting
over op de aanliggende deelsystemen in de corresponderende contactpunten. Alle
deelsystemen moeten in krachten- en koppelevenwicht zijn.
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- Teken van alle deelsystemen de krachtendriehoeken (veelhoeken). De krachten-
driehoeken van de verschillende onderdelen bevatten gedeeltelijk dezelfde (con-
tact)krachten. Laat deze krachtendriehoek daarna samenvallen in een figuur, zodat
een krachtennetwerk van het systeem ontstaat.

- Controleer het evenwicht van het totale systeem. Als alle deelsystemen in evenwicht
zijn, dan is ook het totale systeem in evenwicht.

3.5.2 Voorbeelden

Voorbeeld Twee gekoppelde scharnierende staven.

Twee systemen die vast aan elkaar zijn gekoppeld (bijvoorbeeld via een lasverbinding)
functioneren als één systeem. Alleen het evenwicht van twee beweegbaar gekoppelde sys-
temen is interessant bij de analyse van uitwendige resulterende krachten op de systemen.

Figuur 3.30 geeft als voorbeeld een systeem dat is opgebouwd uit twee, scharnierend
met elkaar verbonden balken. Eén balk is belast door de uitwendige kracht F. Ge-
vraagd wordt om de ondersteuningskrachten van het totale systeem zoals uitgeoefend
in de scharnierpunten te bepalen. Daartoe wordt eerst een systeemgrens getrokken om
het totale systeem. Hierdoor komen de vier onbekende krachtcomponenten van de twee
ondersteuningskrachten (O1, O1y, O2z, Oz,) naar voren.

Echter we beschikken nog steeds maar over drie evenwichtsvergelijkingen (>° F, = 0,
> F,=0,> M = 0) om evenwicht te bepalen, dus er is één onbekende parameter te
veel.

Het is noodzakelijk het totale systeem te splitsen in twee deelsystemen: Deelsysteem balk
L en deelsysteem balk R. Dit is gedaan door een systeemgrens om balk L te trekken en
om balk R. Zie Figuur 3.30.c.

Bij deze splitsing en het nagaan van de systeemgrens worden twee extra onbekende kracht-
componenten (S, en Sy) van de scharnierkracht S ingevoerd, omdat hier het contact was
tussen de twee deelsystemen. Aangezien elke deelsysteem ook in evenwicht moet zijn,
immers het totale systeem heeft een constante snelheid 0 m/s, gelden per deelsysteem
ook de drie evenwichtsvergelijkingen.In totaal zijn er dus zes vergelijkingen, en nu ook zes
onbekende krachten (O15, O1y, O2z, Oay, Sy en Sy)). Na de splitsing in deelsystemen
zijn er dus evenveel vergelijkingen als onbekenden en kan de algebraische oplossing worden
bepaald.

In Figuur 3.30.d is de grafische oplossing van het evenwicht getekend. Op het deelsysteem
R werken slechts twee krachten: de scharnierkracht S en de ondersteuningskracht Os.
Deze twee krachten moeten daarom dezelfde werklijn hebben (net zoals bij de ring R in
het vorige voorbeeld). Daarmee is de richting van S en O3 bepaald. De scharnierkracht
S’ op deelsysteem L is tegengesteld gericht aan S op deelsysteem R, en heeft dezelfde
werklijn als S. Deelsysteem L is een systeem van 3 krachten waarvan voor twee krachten
de werklijnen bekend zijn. Het snijpunt van de werklijnen van de krachten F' en S’ is nu
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te bepalen. Dan is ook de richting van O; bekend. Met de grootte van F' en de werklijnen
kan vervolgens de krachtendriehoek van deelsysteem L getekend worden. Deze driehoek
moet gesloten zijn om evenwicht te hebben. Met de waarde van |F|, zijn de waarden van
|O1| en |S’| te bepalen, zie Figuur 3.30.e. Via de derde wet van Newton (actie = -reactie)
kan dan de kracht S’ worden overgezet naar deelsysteem R, waarmee ook de grootte van
kracht O, is bepaald, zie Figuur 3.30.e.

d.

Figuur 3.30 a) Een systeem bestaande uit twee scharnierende balken. b) De systeemgrens is getrok-
ken rondom het totale systeem, hierdoor komen de contactpunten met de omgeving tevoorschijn
en zijn de contactkrachten Oy en O3 ingeschat door hun componenten te schetsen. c) Het systeem
is gesplitst in twee deelsystemen L en R. Voor elk deelsysteem geldt dat er 3 evenwichtsvergelij-
kingen zijn om ook de deelsystemen in evenwicht te laten zijn. In totaal dus zes vergelijkingen.
Omdat er zes onbekende krachten zijn, zijn de krachten op het systeem te bepalen. d) Hier is
de grafische oplossing van het evenwicht getekend. De twee krachten op deelsysteem R moeten
dezelfde werklijn hebben om evenwicht te verkrijgen. Dan is de richting van S bekend en daarmee
die van Og. Verder kan de kracht (via de derde wet van Newton: actie = -reactie) overgenomen
worden op het deelsysteem L, waarmee vervolgens ook de laatste onbekende kracht Og kan worden
bepaald. Hier is ook de krachtendriehoek getekend.

99



3.5 Evenwicht van twee en meer gekoppelde systemen Evenwichten

Voorbeeld Verbrandingsmotor.

In Figuur 3.31 is schematisch een verbrandingsmotor getekend. De heen- en weergaande
beweging van de zuiger Z wordt met behulp van de drijfstang D omgezet in een roterende
beweging van de kruk K. Om een eerste analyse van het evenwicht te starten worden
een aantal aannamen gedaan waarmee het dominante systeemgedrag behouden blijft, en
worden andere aspecten als constant of te verwaarlozen beschouwd. De machine wordt
wrijvingsloos verondersteld. Alle krachten die op de motor werken, worden in het vlak van
tekening gedacht. Het gewicht van de motor en zijn onderdelen wordt niet verwaarloosd.
Voor de eenvoud wordt verondersteld dat de bevestigingsbouten B; en By juist zijn
aangedraaid, zonder voorspanning. Als de machine stilstaat werkt er geen enkele kracht
op de motor. Alle te berekenen krachten zijn dan een gevolg van de werking van de motor.

zuiger  drijffstang kruk

Figuur 3.31 De krachten en koppels zoals die werken in een draaiende verbrandingsmotor. In (a)
is het totale systeem getekend. In (b) en (c) zijn de krachten en koppels op de deelsystemen
gegeven. De krachtenveelhoeken zijn in (d) eenvoudige vormen geworden. In (e) zijn de uitwendige
krachten en koppels op het totale systeem gegeven. De arbeidsbelasting van de machine zijn twee
tegengesteld gerichte koppels.

Vervolgens wordt de algemene procedure voor het grafisch bepalen van het evenwicht toe-
gepast door eerst de systeemgrens van het totale systeem te tekenen, zie Figuur 3.31.e.
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Ter plaatse van de bevestigingsbouten kunnen verticale krachten (naar boven ten gevolge
van de ondersteuning door het frame, of naar beneden ten gevolge van een trekkracht
in de bouten) op de motor worden uitgeoefend. Deze werklijnen zijn overgebracht naar
Figuur 3.31.c, waar het deelsysteem motorhuis H is weergegeven. Voorts heeft de ver-
brandingsmotor een uitgaande as. Deze draait linksom, en oefent daarbij een linksdraaiend
koppel op de last uit. Op het systeem ‘motor’ moet rekening worden gehouden met de
invloed van de omgeving daarom is op het deelsysteem kruk in Figuur 3.31.b en 3.31.e
een rechtsdraaiend uitwendig koppel M, aangegeven. Als de hoeksnelheid van de motor
constant blijft, is het systeem in evenwicht en is het door de motor geleverde moment
Mm gelijk en tegengesteld aan het uitwendige moment M,,.

In de Figuren 3.31.b en 3.31.c zijn de verschillende deelsystemen afzonderlijk getekend.
De contactpunten zijn daarin met stippen weergegeven.

Op de zuiger Z bevinden zich drie stippen. Boven de zuiger heerst de verbrandingsdruk p.
Met zuigeroppervlak A ontstaat daaruit een kracht p x A. Deze kracht zal aangrijpen in
het centrum van het zuigeroppervlak, en is aldaar getekend. Het manteloppervilak van de
zuiger Z maakt contact met de cilinderwand van het motorhuis H. Het contactpunt is niet
bekend, maar is voorlopig op de halve zuigerhoogte aangenomen. Verder heeft de zuiger Z
een scharnierende verbinding met de drijfstang D. Het contactpunt van de scharnierkracht
is in het centrum van de zuigerpen geplaatst. Bij een wrijvingsloos scharnier is dat de juiste
plaats. De drijfstang D heeft aan beide einden een scharnierende verbinding. De drijfstang
D heeft twee contactpunten, die beide in de scharniercentra zijn geplaatst. De kruk K
heeft eveneens twee contactpunten van lagers. Aan het uiteinde van de kruk K bevindt
zich het drijfstanglager. De kruk zelf is bevestigd aan de motoras (krukas), die gelagerd is
in het motorhuis H. Ook deze lagers zijn wrijvingsloos verondersteld. De contactkrachten
grijpen aan in de ascentra. Als de systeemgrens van het deelsysteem het motorhuis H
wordt langsgelopen blijkt dat er vijf contactpunten zijn. De contactpunten en werklijnen
van de krachten B; en By zijn reeds besproken. De contactpunten motorhuis/zuiger
en motorhuis/kruk zijn overgenomen van het beschouwen van de systeemgrenzen van de
deelsystemen zuiger Z en kruk K. Het vijfde contactpunt is de plaats waar de boven de
zuiger heersende gasdruk op het motorhuis aangrijpt, zie Figuur 3.31.c

Voor de evenwichtsbeschouwingen wordt begonnen met de drijfstang D omdat daarop
slechts twee krachten werken. Deze twee krachten hebben als werklijn de verbindingslijn
van de twee contactpunten. Deze twee krachten zijn in de juiste richting ingetekend.
Omdat ze een gelijke grootte hebben, zijn beide krachten F' genoemd; de pijlen geven de
juiste krachtrichting aan. Om ook de juiste verhouding van de krachten die op alle deel-
systemen werken te kunnen bepalen dient één resultante kracht qua grootte vastgelegd te
worden door de lengte van zijn pijl. In dit voorbeeld kiezen we de lengte van F’, vanwaaruit
de grootte van de andere krachten bepaald kunnen worden met de krachtendriehoek.

Op de zuiger Z werken drie krachten. De richting van de zuigerpenkracht en van de
gasdrukkracht zijn bekend. De werklijnen van deze krachten snijden elkaar in het centrum
van de zuigerpen. Dan is de werklijn van het derde contactpunt, de op het manteloppervlak
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van de zuiger werkende kracht N, ook bekend en loopt dus door dat centrum. Omdat de
machine wrijvingsloos is verondersteld staat N loodrecht op het manteloppervlak. Het
contactpunt van N is dus oorspronkelijk verkeerd aangenomen. In de Figuur 3.31.b is N
op de juiste plaats getekend.

De kracht op het krukuiteinde K is gelijk en tegengesteld gericht aan die op het onderste
drijfstanglager D. De kruk/krukas-combinatie heeft nog een contactpunt waar de onder-
steuningskracht van de krukas K aangrijpt. Verder werkt op de krukas nog het uitwendige
moment M,. Het evenwicht van de kruk K eist dat de ondersteuningskracht samen met
de kracht F' op het krukuiteinde een koppel vormt ter grootte van M,. Daarmee liggen
richting en grootte van deze ondersteuningskracht vast: evenwijdig aan de drijfstang met
grootte |F|. Er geldt: F x r = M,.

Nu moet nog het evenwicht van de vijf krachten die op het motorhuis werken worden
gecontroleerd. De krachten p x A en N die op het motorhuis werken, kunnen worden
vervangen door een kracht F', door het centrum van de zuigerpen, in drijfstangrichting.
Dat dit zo is kan direct worden afgeleid van het evenwicht van de zuiger Z, waarop dezelfde
drie krachten werken. Deze kracht F' vormt samen met de asreactiekracht eveneens een
koppel ter grootte F'xr. Op het motorhuis H werken nu een koppel F'xr en twee verticale
krachten By en Bs. Het motorhuis H kan alleen in evenwicht zijn als de krachten B; en
Bs samen een koppel vormen ter grootte van M,,.

In Figuur 3.31.d zijn de krachtendriehoeken van de verschillende onderdelen getekend.
Ter controle is in Figuur 3.31.e is nog het evenwicht van het totale systeem getekend.
De figuur moet als volgt gelezen worden: De machine levert een linksdraaiend koppel aan
een last. Als het toerental (hoeksnelheid) van de machine constant blijft is het tegen-
werkende lastkoppel even groot en tegengesteld, dus rechtsdraaiend. Indien de motor een
koppel genereert, zetten de onderdelen van de motor zich af tegen het motorhuis. Op
het motorhuis werkt dan een tegengesteld koppel. Dat is zo bij elke motor; altijd wordt
een koppel opgewekt tussen het motorhuis en de motoras. Wordt het motorhuis vastge-
houden, dan draait de as (in dit geval) linksom; wordt de as vastgehouden dan draait het
motorhuis rechtsom. Het rechtsomdraaiende reactiekoppel op het motorhuis moet worden
tegengegaan door de krachten By en By. Deze leveren een linksdraaiend koppel om het
rechtsdraaiende koppel op het motorhuis tegen te werken, zodat het motorhuis stil blijft
staan.

Voorbeeld Koordvasthouder van een zeilboot.

In Figuur 3.32 is een mechanisme getekend waarmee het bedieningskoord van bijvoorbeeld
het grootzeil van een zeilboot kan worden vastgezet. Het mechanisme is voorzien van een
rol met twee aseinden, die in een sleuf kunnen bewegen. Op het koord werkt continu een
omhoog gerichte kracht F'. Voor het in positie houden van het zeil moet op het koord een
kracht F’ worden uitgeoefend. Om het koord vast te houden moet de rol omhoog worden
gedrukt. Daarna neemt het mechanisme de vasthoudfunctie over, en kan F’ vervallen.
Het mechanisme is in deze toestand weergegeven. Bepaal de krachten die de verschillende
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onderdelen op elkaar uitoefenen.
De rondom het totale systeem getrokken systeemgrens is herhaald in Figuur 3.32.b. Daarin
zijn ook de twee contactpunten voor uitwendige krachten met open cirkeltjes aangegeven.

ﬁkoord IF
= houder r*————1
| \
| \
| \
muur MCI \\
| \
ro ‘I‘K |
] sleuf [ |
ad
d
<o b
a.
IF
P
b | R

Figuur 3.32 De krachten en momenten op een koordvasthouder dat gebruikt word op een zeilboot.

De trekkracht F' van het koord is verondersteld in het koordcentrum aan te grijpen. Het
contactpunt met de zeilboot is voorlopig in het midden van het contactvlak gekozen.
In het contactpunt moet een kracht aangrijpen die evenwicht maakt met F'. Het is niet
mogelijk deze contactkracht houder/zeilboot (de contactkracht tussen houder en zeilboot)
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een werklijn te geven die samenvalt met de werklijn van F'; ook niet als in het contactvlak
een ander punt wordt gekozen. De enige oplossing is dus in het contactpunt een kracht K
te kiezen die evenwijdig met en tegengesteld gericht is ten opzichte van F. Het bootvlak
moet dan bovendien een koppel M = F x (t 4+ d/2) op de houder uitoefenen. In de figuur
loopt het contactvlak houder/zeilboot evenwijdig aan de kracht F. In deze situatie doet
het er niet toe welk punt van het contactvlak als contactpunt wordt gekozen.

De keuze van deelsystemen ligt voor de hand: houder, koord en rol. In Figuur 3.32.c
zijn de verschillende deelsystemen afzonderlijk getekend. Nalopen van de deelsysteem-
grenzen levert drie contactpunten voor overdracht van de nu uitwendige krachten op de
deelsystemen (L, R en P). Ze zijn met gevulde cirkeltjes aangegeven in Figuur 3.32.a.
Er is verondersteld dat de aseinden van de rol geen contact maken met de sleuf. Het
contactpunt koord/houder P is niet in het midden van het contactvlak getekend, maar
tegenover het contactpunt rol /koord L. Dit lijkt meer in overeenstemming met de plaat-
selijke doorgeleiding van de klemkracht op het koord. Zo zie je dat modelvorming en
inzicht hebben in de werking van een systeem ontzettend belangrijk om het evenwicht
correct en realistisch af te leiden.

Het beste kan begonnen worden met een evenwichtsbeschouwing van de rol, omdat deze
twee uitwendige krachten heeft. De krachten L en R die in de twee contactpunten
aangrijpen moeten dezelfde werklijn hebben, en tegengesteld gericht zijn. Omdat we hier
starten kiezen we de kracht L met een bepaalde pijlgrootte. Daaruit volgen dan de grootte
van alle andere krachten en momenten die bepaald worden met de krachtendriehoek.
Dus het is nadrukkelijk niet zo dat je elke kracht kan weergeven door een pijl met een
willekeurige lengte. De reactiekrachten L’ en R’ op respectievelijk het koord en de houder
zijn ingetekend.

Op het koord werken drie krachten; de krachtlijnen ervan moeten door één punt gaan. Bij
het gekozen contactpunt is de kracht P de gespiegelde van L’. De horizontale componen-
ten van P en van L’ zijn even groot zijn; de verticale componenten van P en L’ hebben
beide de grootte 0,5 x |F|. Ook bij nadere overweging blijkt het contactpunt rol/koord
juist gekozen. Elke andere keuze zou geleid hebben tot een op het koord werkend koppel.
Het is niet mogelijk op een aanliggend koord een koppel over te dragen. De reactiekracht
P’ is overgebracht op de houder.

Ook het deelsysteem houder moet in evenwicht verkeren. De werklijnen van de drie krach-
ten P/, R’ en K gaan niet door één punt; ze vormen een gelijkbenige driechoek. Dat klopt,
want op de houder werkt ook nog een koppel M. Het snijpunt van de werklijnen van
P’ en R’ ligt een halve koorddikte van de houderwand verwijderd. De ‘hoogte’ van de
driehoek bedraagt dan t + d/2. De basis van de driehoek is de geschaalde waarde van
de kracht K. Het oppervlak van de krachtlijnendriehoek bedraagt 0,5 x |K|x (¢t + d/2);
juist de helft van het berekende koppel M.

Figuur 3.32.d toont het krachtennetwerk van het mechanisme, zowel in afzonderlijke als
in aaneengesloten vorm. Het evenwicht van het totale systeem is al bepaald.
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Voorbeeld Draaiende haspel.

In Figuur 3.33 is een haspel H getekend die is opgehangen aan een beugel B. De
zijwanden (wangen) van de haspel maken contact met een muur. Het gewicht van de
haspel is G; het gewicht van het koord en van de beugel worden verwaarloosd. Het
op de haspel gewikkelde koord wordt verticaal afgetrokken met een bekende uitwendige
kracht F'. Daarbij roteert de haspel eenparig en wrijvingsloos om zijn centrum. Als de
haspel draait, schuiven de wangen van de haspel tegen de muur. De werklijn van de
contactkracht haspel/muur heeft de ingetekende richting (zie H4 Wrijving en weerstand).
De vraag is hoe de contactkrachten veranderen tussen de verschillende onderdelen als de
haspel wordt afgewikkeld?

Om dat te bepalen wordt de algemene procedure voor het grafisch bepalen van het even-
wicht weer toegepast: start weer met het trekken van de systeemgrens om het totale
systeem. Daaruit volgt dat er op het totale systeem vier uitwendige krachten werken: de
trekkracht F, de zwaartekracht G, de contactkracht haspel/muur M en de contactkracht
beugel/muur P. De aangrijpingspunten zijn met open cirkeltjes aangegeven. De eerstge-
noemde drie krachten hebben een bekende richting. Omdat op het systeem vier krachten
werken zijn er geen eenvoudige evenwichtsvoorwaarden te stellen, zoals de krachtwerklij-
nen moeten door een punt gaan.

Het opsplitsen in logische deelsystemen levert slechts twee deelsystemen: de haspel H en
ophangbeugel B. Ze zijn afzonderlijk getekend in Figuur 3.33.b. Hun gemeenschappe-
lijke contactpunt is het centrum C' van de haspel. De contactpunten voor de inwendige
krachten zijn met gevulde cirkeltjes aangegeven op de deelsystemen.

Het evenwicht van de beugel B is eenvoudig te bereiken. De twee krachten P en O
moeten dezelfde werklijn hebben. De reactiekracht O’ op de haspel is ingetekend.

Het evenwicht van de haspel H is moeilijker te verifiéren. Op de haspel H werken vier
krachten. Daarom is nu de stap om twee krachten samen te stellen tot één kracht, dan
resteren er drie krachten. Voor een systeem met drie krachten zijn eenvoudige grafische
evenwichtsvoorwaarden bepaald die dan toegepast kunnen worden. Het ligt voor de hand
de krachten F' en G samen te stellen, omdat ze beide verticaal gericht zijn; hun resultante
K is dus ook verticaal gericht. De juiste ligging van de resultante K van F en G is nog
niet bekend. Wel is het zeker dat de verticale werklijn van K tussen die van G en van F
in ligt.

In Figuur 3.33.c zijn de twee krachten M en O’ samengesteld. De werklijn van de
resultante van deze twee krachten moet gaan door het snijpunt S van de werklijnen
van M en O’. Hoek JCT bedraagt 60°; hoek CT'S bedraagt 30°; dan is ook hoek C'ST
30°% dus driehoek T'CS is gelijkbenig; Dus TC = CS = R,; het punt S ligt op de
haspelomtrek. De resultante K’ van M en O’ moet evenwicht maken met de resultante
K van de krachten F' en G. Gebleken is dat K een verticale werklijn heeft. Nu blijkt dat
K’ dus ook een verticale werklijn heeft. De verticale werklijn van K en K’ moet door
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R _ _ _
R, = = 0,75 =0,67

e.

Figuur 3.33 De analyse van de krachten bij het afwikkelen van een aan de muur gehangen haspel.
Het is niet mogelijk de haspel verder dan de helft af te wikkelen.
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het punt S lopen. De afstand CU van deze werklijn tot het haspelcentrum C' bedraagt
0,5 X Ry.

Nu is te bepalen wat er gebeurt bij afwikkelen van de haspel H. Het is vastgesteld
dat de resultante van F' en G altijd dezelfde verticale werklijn door het punt S moet
hebben. De verhouding CU/UQ (Q is het aangrijpingspunt van de kracht F') bepaalt
hoe groot F' moet zijn om afwikkelen mogelijk te maken, immers steeds moet gelden
GXxCU=FxUQ. Dus: F=GxCU/UQ. Nuis R=CU+UQ, en CU = R, /2.
Er geldt dus:

F_ R
G 2R-R,

In Figuur 3.33.d is dit verband grafisch weergegeven. Als de haspel H vol is (R/R, = 1),
bedraagt F//G = 1. Bij het afwikkelen is steeds een grotere kracht F' benodigd. Als de
haspel voor de helft is afgewikkeld (R/R, = 0,5) zou een kracht F' — oo benodigd zijn.
Dit betekent fysisch dat de haspel H blokkeert. Zolang de kracht F' verticaal is gericht,
kan de haspel H niet verder dan tot de helft worden afgewikkeld. Figuur 3.33.e toont de
krachtenveelhoeken van het totale systeem bij verschillende waarden van R/R,,.

3.6 Samenvatting

Alle werktuigkundige constructies zijn onderworpen aan krachten en koppels die bepalen
hoe de onderdelen van een constructie zich zullen gaan gedragen. Het deel dat belangrijk is
voor de evenwichten van mechanische systemen is besproken. Een systeem is in evenwicht
onder de voorwaarden dat de op het systeem werkende krachten, en werkende koppels
in evenwicht met elkaar zijn. Deze voorwaarden kunnen vervolgens gebruikt worden om
onbekende krachten en koppels die op een systeem werken te bepalen met behulp van de
evenwichtsvergelijkingen:

Evenwichtsvoorwaarde | Formule Grafische voorwaarde

Geen resterende kracht ZF" =0 | krachtendriehoek gesloten

werklijnen door één punt als geen
uitwendig koppel aanwezig

of

werklijnen vormen driehoek met
oppervlak = 0,5 x koppelmoment als
uitwendig koppel aanwezig

Geen resterend koppel | > M =0

In dit hoofdstuk wordt dit met name gedaan door het toepassen van een grafische wijze
voor het bepalen van het evenwicht. Om dit te kunnen doen, zijn eerst regels ten aanzien
van het opsplitsen en samenstellen van krachtvectoren behandeld. Ook het bepalen van
de contactpunten tussen het systeem en zijn omgeving met behulp van modelvorming
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is toegelicht aan de hand van voorbeelden. Vervolgens is afgeleid dat voor systemen
waar twee of drie uitwendige krachten op werken, via de meetkunde makkelijk is af te
leiden wat het evenwicht moet zijn: twee krachten hebben dezelfde werklijn en even grote
tegengestelde krachten, drie krachten hebben werklijnen die elkaar snijden in één snijpunt
en een gesloten krachtendriehoek waar de krachtvectoren kop-staart liggen. De algemene
procedure voor het grafisch bepalen van het evenwicht is vervolgens opgesteld en aan de
hand van voorbeelden toegelicht.
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Hoofdstuk 4

Wrijving en weerstand

In de werktuigbouwkunde speelt wrijving een belangrijke rol. Allerlei bewegingen worden
erdoor tegengewerkt, andere bewegingen worden erdoor juist mogelijk gemaakt. Bijvoor-
beeld:

- Alle draaiende assen ondervinden wrijving in hun lagerpunten die de beweging te-
genwerkt. Schroefspillen en geleidingsvlakken oefenen een wrijvingskracht uit op
het erlangs bewegende lichaam. Ook kettingen en tandwielen hebben een verlies als
gevolg van wrijving.

- Aan de andere kant maakt het optreden van wrijving ook een aantal mechanische
bewegingen mogelijk. Door de wrijving blijft een bout-moer verbinding in elkaar.
De wrijving maakt dat wielen op een wegdek of rails zich kunnen afzetten. Ook
zouden zonder wrijving geen riemoverbrengingen (v-snaren en dergelijke) mogelijk
zijn.

In de hierboven genoemde voorbeelden is alleen de wrijving tussen vaste lichamen naar
voren gekomen. Maar ook een vast lichaam dat zich ten opzichte van een vloeistof of een
gas beweegt ondervindt een (viskeuze) wrijvingskracht. Ook deze vorm van wrijving kan
nadelig of juist nuttig zijn:

- Meestal is deze kracht nadelig, zoals de wrijving die optreedt bij stromingen van
gassen of vloeistoffen in pijpleidingen. Ook de zich ten opzichte van hun omgeving
verplaatsende lichamen zoals auto's, boten, vliegtuigen en treinen ondervinden veel
last van de door het langsstromende medium uitgeoefende krachten.

- In enkele gevallen is de optredende vloeistofwrijving nuttig bruikbaar. Bijvoorbeeld
de weerstand die een roeispaan in het water ondervindt maakt het mogelijk om door
de roeibeweging vooruit te komen. Ook de toepassing van windmolens is slechts
mogelijk dankzij de krachten die langsstromende lucht op de wieken uitoefent.



4.1 Droge wrijving Wrijving en weerstand

4.1 Droge wrijving

4.1.1 Theorie

Droge wrijving treedt op indien twee lichamen langs elkaar bewegen zonder de aanwe-
zigheid van een smeermiddel. Wanneer twee oppervlakken langs elkaar glijden, dan is de
optredende dynamische wrijvingskracht W in eerste benadering slechts afhankelijk van
de materialen die langs elkaar glijden en de normaalkracht N waarmee de glijvlakken op
elkaar gedrukt worden. Zie Figuur 4.1. Er geldt:

W=f-N (4.1)

waarin f de materiaalafhankelijke wrijvingscoéfficiént is. Dus als IV twee keer zo groot
wordt, wordt ook W twee keer zo groot. In de tabel van figuur 4.2 zijn voor een aantal
combinaties van glijvlakken de waarden van de dynamische wrijvingscoéfficiént f opgeno-
men.

Drie belangrijke opmerkingen bij formule (4.1):

1. De dynamische wrijvingskracht W is onafhankelijk van de grootte van het contac-
toppervlak. Deze komt namelijk niet in de formule voor. De opperviakteruwheid
van de contactvlakken heeft wel enige invloed.

2. De dynamische wrijvingskracht W is nauwelijks afhankelijk van de snelheid (zie de
grafiek in Figuur 4.3).

3. De wrijvingskracht is altijd tegengesteld aan de bewegingsrichting.

Figuur 4.1 Bij de glijdende beweging van twee oppervlakken langs elkaar, treedt een wrijvingskracht
W op die afhankelijk is van de aandrukkracht N. In de figuur is Wnax getekend. De vector van de
wrijvingskracht blijft dus binnen de gestippelde cirkel liggen.

Een bijzondere situatie treedt op als relatieve snelheid v van de contactvlakken gelijk aan
nul is. Er is namelijk een verschil tussen de wrijvingskracht Wy bij rust (statisch) en
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de wrijvingskracht W bij beweging (dynamisch). Bij rust kan een grotere wrijvingskracht
optreden dan bij beweging (zie Figuur 4.3). De verschillen zijn vaak aanzienlijk. Voor deze
statische wrijvingskracht is een afwijkende statische wrijvingscoéfficiént fy te definiéren
(zie Figuur 4.2). De grootst mogelijke wrijvingskracht W,.x treedt op, juist voordat de
contactvlakken zich ten opzichte van elkaar zullen gaan bewegen:

Winax = fo- N (4.2)

Voor de relatieve snelheid v van de contactvlakken gelijk aan nul kan de statische wrij-
vingskracht W alle waarden aannemen tussen W=0 en W=W,.x. De consequentie is
dat de vergelijking overgaat in een ongelijkheid:

Wo< fo-N (4.3)

Hierin schuilt een grote onzekerheid. Dus in rust is de grootte van de wrijvingskracht
niet rechtstreeks bekend. Alleen net voor een beweging begint, verkrijgt de wrijving zijn
maximale waarde Wi,ax.

Is in rust de grootte van de wrijvingskracht een onzekere factor, bij beweging is de situatie
niet veel beter. Zeer geringe hoeveelheden van een vloeistof, maar vooral van een smeer-
middel, kunnen zowel de waarde van fj als die van f aanzienlijk wijzigen. De grootte
van de werkzame wrijvingskracht is niet exact te voorspellen. Vandaar dat voor specifieke
toepassingen de wrijvingskracht gemeten wordt.

materiaal f fo
staal/messing 0,2 0,26
staal/staal 0,15 0,3
staal/ijs 0,015 0,03
rubber/staal 0,5 1
rubber/wegdek 0,5 1
remvoering/staal 0,5 0,7
staal/teflon 0,05 0,05
plastic/teflon 0,03 0,03
menselijke huid/ ... | 3 5

Figuur 4.2 De wrijvingscoéfficiénten van een aantal materiaalcombinaties. De coéfficiént van stati-
sche wrijving fo is steeds hoger dan die voor dynamische wrijving f. Een uitzondering vormt teflon.
De combinatie staal/ijs hoort eigenlijk niet thuis in deze lijst. Het is geen droge wrijving; de lage
waarde ontstaat door de vorming van hele dunne waterfilm. Merk de zeer hoge waarde op van de
wrijvingscoéfficiént die ontstaat bij contact van de menselijke huid met een willekeurig materiaal.
Vrij aanzienlijke afwijkingen van de opgegeven waarden kunnen voorkomen.
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W={N

Figuur 4.3 De wrijvingskracht als functie van de snelheid. Zodra de wrijvingsviakken onderling
bewegen daalt de waarde van de wrijvingskracht van Wnax tot W = f - N. De bij beweging
optredende wrijvingskracht W is nauwelijks snelheidsafhankelijk.

Het verschil tussen de wrijvingskracht bij rust (statisch) en bij beweging (dynamisch)
heeft een tweetal belangrijke consequenties:

1. In de eerste plaats moet ervoor gezorgd worden dat, indien een maximale wrijvings-
kracht Wp,.x gewenst is, er dan geen beweging optreedt.

2. In bepaalde mechanismen ontstaat een hortende en stotende beweging die bekend is
onder de naam stick-slip. De aanwezigheid van een verend element of enige speling
is voor dit verschijnsel essentieel.

Voorbeeld bij 1 Een auto remt het hardst indien de wielen ten opzichte van het wegdek
stilstaan, dus rollen zonder te slippen. Het remmen met geblokkeerde wielen heeft een
langere remweg dan noodzakelijk tot gevolg. Daarom is voor auto’s een antiblokkeersys-
teem (ABS) ontwikkeld, dat verhindert het automatisch blokkeren van de wielen en zorgt
daardoor altijd voor een minimale remweg (zie Figuur 4.4 voor het schema van een ABS).
Normaal wordt de pedaalkracht door het stuurventiel omgezet in een hydraulische druk
die naar de remcilinders wordt gevoerd. Met deze druk worden de remschoenen tegen de
remtrommel of remschijf aangedrukt. Het antiblokkeersysteem grijpt alleen in als één van
de wielen een voor de autosnelheid te lage omtreksnelheid heeft (dus: neigt te blokkeren).
Via de regelaar wordt de remdruk op dat moment voor elk wiel zodanig verminderd dat
blokkeren niet kan optreden. Omdat de wielen altijd blijven rollen is het voertuig ook in
kritische situaties goed bestuurbaar. Het gedrag van een voertuig bij blokkerende wielen
is beschreven in § 5.6.4.
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pedaalkracht
stuur-
[ ventiel /
remtrommel
\
remdruk-
\, regelaar ] regelaar
wielsnelheidsensor

remschoen

Figuur 4.4 Schema van de werking van een antiblokkeersysteem (ABS).

Voorbeeld bij 2 Het blok met gewicht G moet worden voortgetrokken over de glijbaan
(zie Figuur 4.5). In het treksysteem bevindt zich een verend element. Bij het opvoeren van
de trekkracht F' vanaf 0 spant de veer zich. Als de trekkracht F' gelijk is aan de maximale
rustwrijving Wax begint het blok te bewegen. De nu optredende glijdende wrijving W
is veel kleiner (zie Figuur 4.3) en er ontstaat plotseling een krachtoverschot dat gebruikt
wordt voor het versnellen van het blok. Door de plotselinge versnelling ontspant de veer
zich en het blok komt weer stil te liggen. Bij het wederom oprekken van de veer zal de
wrijvingskracht weer de grote waarde van de maximale rustwrijving bereiken waarna het
blok weer in beweging komt. Dit gedrag herhaalt zich regelmatig.

Stick-slip is het fenomeen dat het piepen van een krijtje op het schoolbord veroorzaakt,
en ook bijvoorbeeld van het piepen en kraken van een deur en van andere bewegende
systemen. Vooral bij servomechanismen kan dit verschijnsel tot grote regelproblemen
leiden.

Vkonstant Vvariabel

- -

< W

+= 1

Figuur 4.5 Model van het voorttrekken van een gewicht G waarbij stick-slipverschijnselen kunnen
optreden.
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4.1.2 Verminderen droge wrijving

Voor het verminderen van de droge wrijvingskracht kunnen betrekkelijk weinig maatrege-
len worden genomen. Met behulp van de geintroduceerde vergelijking/ongelijkheid komen
we tot een paar logische opties. De eerste is het verkleinen van de normaalkracht N. De
tweede voor de hand liggende mogelijkheid is de keuze van materialen met een geringe
wrijvingscoéfficiént. Kunststoflagermaterialen (waaronder bijvoorbeeld: PTFE (zoals Tef-
lon) en Pl (zoals Vespel)) resulteren in een zeer lage dynamische wrijvingscoéfficiént (f <
0,1) maar zij verdragen doorgaans slechts een lage vlaktedruk, zodat grotere lageropper-
vlakken zijn vereist. Later in deze paragraaf wordt daarop nader ingegaan.

Een andere soms bruikbare methode om de invloed van de wrijvingskracht in een be-
paalde bewegingsrichting te verminderen is het toevoegen van een extra beweging. Zie
Figuur 4.6. In het schema rechts is een additionele beweging vy in het horizontale viak
toegevoegd dat een resulterende bewegingsrichting vy,: geeft en daarmee ook de richting
van de wrijvingskracht Wi, heeft verdraaid. Bij deze verdraaiing blijft de wrijvingskracht
even groot. Echter in de beschouwde richting 1 (verticaal) wordt de ontbonden TW; van
de wrijvingskracht Wi, wel kleiner. Hoe groter de verhouding van de bewegingssnelheden
vg/v1, des te kleiner de storende wrijvingskracht W dat wordt gedefinieerd door:

Wy = L (4.4)

2
(%)

wrijvingskracht '*‘—-'HH\

ongewenst groot loegevpegde ': \*\

Wy=Wyo = IN beweging , \
{-2— | W \

l —————————
*“'1 ;_@___...-—Z"' yI\.r1

resulterende
bewegingsrichting

Figuur 4.6 Effect van het toevoegen van een extra beweging op de richting van de wrijvingskracht
Weot.

Voorbeeld Een toepassing van het toevoegen van een extra beweging is te vinden bij de
drukbalans ; dit is een instrument om nauwkeurig een bepaalde druk te leveren en daarmee
drukmeters te ijken. Figuur 4.7 geeft het principeschema. Bij de opening o wordt een
medium (meestal vloeistof) ingebracht. Er zal zich onder de zuiger en in de drukmeter
een druk p opbouwen. Er wordt een vloeistof ingepompt totdat de zuiger net gaat zweven.
Op dit moment is er evenwicht tussen de door de vloeistofdruk p op het zuigeroppervlak
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A uitgeoefende opwaartse kracht Fyie = p - A en de op de zuiger en daarop geplaatste
massa's werkende zwaartekracht F, = m - g. Door de zuiger te laten roteren vermindert
(zie ook Figuur 4.6) de wrijvingskracht in de axiale bewegingsrichting. Daardoor verkrijgt
het instrument een hogere nauwkeurigheid.

De nauwkeurige krachtgelijkheid wordt verstoord door de wrijving W7, aanwezig tussen
zuiger en cilinder. De zuiger beweegt op en neer en de wrijvingskracht is daarom verticaal
gericht en heeft maximale invloed op het evenwicht van de verticale krachten. Door nu de
zuiger vrij snel te laten roteren ontstaat in de rustsituatie (som van de krachten in verticale
richting is nul) een horizontaal werkende statische wrijvingskracht. Bij toevoeging van
een verticale beweging die relatief langzaam is ten opzichte van de rotatiesnelheid van
de zuiger zal de wrijvingskracht maar weinig gaan afwijken van de horizontale richting.
In verticale richting blijft dan slechts de kleine in die richting ontbonden component Wy
invloed uitoefenen.

zuigerrotatiemotor
.

| drukmeter

zuiger

| lo

Figuur 4.7 . Principe van de drukbalans.

Ook bij het slippen van de aangedreven wielen van een auto op sneeuw of ijs is het bo-
venbeschreven verschijnsel van het toevoegen van een extra bewegingsrichting goed waar
te nemen. Als de wielen doorslippen is het gemakkelijk de auto in de dwarsrichting te
verschuiven.

Bij roterende bewegingen manifesteert zich de droge wrijving in de vorm van een wrijvings-
moment T,, op de astap (lageras), zie Figuur 4.8.a. Figuur 4.8.b geeft het krachtenspel
op een astap. In het contactpunt tussen de astap en lagerschaal (de gestreepte cirkel in
Figuur 4.8.b) grijpen de systeemgrenskrachten N en W aan. De wrijvingshoek 1) bevindt
zich tussen de naar het ascentrum gerichte kracht N en de verticaal. Het wrijvingsmo-
ment T, is eenvoudig te berekenen: T, = T - (d/2) - siny. Het verticaal evenwicht eist
dat T' = F,s. Voor de wrijvingshoek geldt met grote benadering siny = tany = f.
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Daarmee wordt het wrijvingsmoment:

d
Ty, =1f Fas- 5 (4.5)
Om het wrijvingsmoment T, te overwinnen moet aan de as een koppel T, = —T,, worden

toegevoerd. Dit koppel is in Figuur 4.8.b getekend.

Door nu gebruik te maken van bovenstaande formule, kun je ontwerptechnisch bepalen
welke maatregelen je kunt nemen om de wrijving bij rotatie te minimaliseren. Voor een
minimaal wrijvingsmoment moet de asdiameter d zo klein mogelijk worden gekozen. De
kleinst mogelijke asdiameter wordt bepaald door de toelaatbare vlaktedruk o, van het
lagermateriaal, volgens o, = Fas/(b - d), waarbij b = lagerbreedte (gedefinieerd loodrecht
op de doorsnede uit Figuur 4.8.b (en niet expliciet getekend) en d = asdiameter. Bij
invoering van de lagerverhouding a = b/d ontstaat voor de vlaktedruk de formule:

FBS

Oy = a-d2 (46)
Daarmee is voor het wrijvingsmoment T, te schrijven:
F?
Ty=f ———— (4.7)
' 2(a- av)1/2
a. Ve b.

Figuur 4.8 Droge wrijving bij roterende bewegingen. a) Bij roterende bewegingen bepalen de
asbelasting en het lagermateriaal de grootte van het wrijvingsmoment. b) De astap (lageras)
afgebeeld door doorgetrokken cirkel met de daarop werkende krachten en momenten vergroot
getekend. De lagerschaal is afgebeeld door de gestreepte cirkel.

Bij een gegeven asbelasting Fjs en lagerverhouding a moet dus gezocht worden naar een
lagermateriaal dat een lage waarde voor f/,/0, heeft. Het is goed te bedenken dat het
hier (zoals zo vaak) een gecombineerde materiaalfactor betreft. Een materiaal X dat een
50% hogere toelaatbare vlaktedruk heeft dan materiaal Y is toch minder geschikt om te
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worden toegepast als de wrijvingscoéfficiént tussen materiaal X en het asmateriaal ook
50% hoger is dan die met materiaal Y.

Bij deze overwegingen over de keuze van het lagermateriaal moet bedacht worden dat de
asdiameter d slechts schijnbaar uit de formule voor het wrijvingskoppel is verdwenen. Het
is niet zo dat voor d een willekeurige waarde mag worden aangenomen. De asdiameter d
moet zo klein worden gekozen dat het lagermateriaal met de toelaatbare vlaktedruk o,
wordt belast.

Voor zeer lage belastingen (kleine Fg) zijn puntlagers in gebruik (Figuur 4.9). Bij een
horizontale opstelling van de as (Figuur 4.9.b) heeft de noodzakelijke (kleine) speling s
tot gevolg dat de hartlijn van de draaiende as niet samenvalt met de hartlijn van het
stilstaande lager. Hier geldt:

Ty=W-r=f-N-r (4.8)
Uit de figuur blijkt verder dat:
N = _G en sina= — (4.9)
sin« Tpunt
waardoor: ,
N=G. 2" (4.10)
r
s
_>1.¢_
i
i
I P
W "punt
al r
N O )
————— G
a. b.

Figuur 4.9 Puntlagers. a) In kleine instrumenten zoals horloges, kompassen en dergelijke, zorgen
puntlagers dat storende wrijvingsmomenten geminimaliseerd worden doordat ze een kleine straal
hebben. b) Optredende krachten in een horizontaal geplaatste puntlager.

Het wrijvingsmoment is dan gelijk aan:
Ty = f G- Tpunt (411)

en dus evenredig aan de grootte van de wrijvingscoéfficiéent f, de verticale lagerkracht
G en de straal van de aspunt rpunt. Deze afronding kan veel kleiner zijn dan de kleinst
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mogelijke straal d/2 van een cilindrische tap van Figuur 4.8. Het puntlager voert daarom
tot zeer kleine waarden van het wrijvingsmoment. De lagerschalen zijn vaak uit edelstenen
vervaardigd die de hoge vlaktedrukken onder de scherpe aspunt kunnen verdragen.
Indien de bovengenoemde maatregelen ter beperking van de glijdende wrijving niet kunnen
worden toegepast, of onvoldoende resultaat hebben, dan moet van glijdende wrijving wor-
den afgezien. Dan moet de constructie met gas/vloeistofwrijving (§ 4.2) of met rollende
wrijving (§ 4.3) worden uitgevoerd.

4.1.3 Vergroten droge wrijving

Voor het vergroten van droge wrijving is natuurlijk de materiaalkeuze ook van invloed.
Zoals te zien is in de tabel van Figuur 4.2 zijn er materiaalcombinaties die juist een hoge
statische en dynamische wrijvingscoéfficiént hebben en daarmee de droge wrijving kunnen
vergroten. In die gevallen waarbij slip optreedt bij het vergroten van de wrijvingscoéfficiént
is het een uitdaging om ervoor te zorgen dat de ontwikkelde warmte afgevoerd kan worden.
Aan remvoeringmaterialen bijvoorbeeld moeten hoge thermische eisen worden gesteld.
Het vergroten van de normaalkracht N helpt natuurlijk ook. Een bekende manier om dit
te bereiken is door toepassing van de mechanica van het hellende vlak (zie extra uitleg
hierover in § 6.4.2 en § 6.4.3).

A
g

Figuur 4.10 Schematische tekening van een koppeling waarbij een vergroting van de op de wrij-
vingsvlakken werkende normaalkracht N is bereikt.

Voorbeeld Figuur 4.10 geeft een voorbeeld van een koppeling waarbij, gebruikmakend van
een hellend vlak, een vergroting van de normaalkracht is bereikt. Let op dat in de figuur
uitsluitend de op het schuifbare deel van de koppeling werkende krachten zijn getekend
(dus er is geen compleet krachtenevenwicht van het systeem opgesteld). Af te leiden is
dat de bedieningskracht F' gelijk zal zijn aan de ontbondene N -sina. Ten gevolge van
de normaalkracht IV ontstaat een wrijving W = f - N langs het oppervlak in tangentiéle
richting. Het over te brengen wrijvingsmoment bedraagt dan W-R = f-F- R/sin . Bij
uitschuiven van de koppelingshelften ligt de wrijving W/ = W in het vlak van tekening. Als
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W'.cosa > N -sin o dan komt de koppeling niet meer vanzelf los (als de bedieningskracht
F =0). Voor W -cosaw = 2- N -sina is ook lossen met een tegengesteld gerichte
bedieningskracht F' niet meer mogelijk. Wordt dit als grens geaccepteerd, dan volgt met
W' = f- N voor de minimale hoek «:

tana = g (4.12)
Voor een koppeling met stalen loopvlakken met f = 0,2 volgt hieruit:
Qmin = arctang = arctan 0.1 ~ 6° (4.13)

Een andere methode voor het vergroten van droge wrijving is het meerdere keren gebruiken
van dezelfde normaalkracht (zie Figuur 4.11). Hier is de bedieningskracht F gelijk aan de
tussen de wrijvingsvlakken optredende normaalkracht N. Bij elk wrijvingsvlak ontstaat een
W = f-N = f-F. Met zeven wrijvingsvlakken ontstaat een totale wrijvingskracht Wiy =
7-f-F. Dein Figuur 4.10 gebruikte koppeling levert bij & = 8° een wrijvingsmoment
T=71-f-F-R.

W/‘*‘/ <
(L1l =
q i )

Figuur 4.11 Koppeling waarbij de opgedrukte normaalkracht N = F' zevenvoudig wordt gebruikt

4.1.4 Remweg

In het voorgaande is gebleken dat de optredende droge wrijvingskracht W in hoofdzaak
alleen afhankelijk is van de normaalkracht V. Bij constant blijvende normaalkracht zal
een eenparig vertraagde beweging ontstaan. Uit de formules voor deze beweging volgt
dat voor de remweg x kan worden geschreven:

2

Yo

r=_—

2a

waarin a de optredende vertraging voorstelt. Indien de normaalkracht door het eigen
gewicht van de massa m wordt geleverd is voor a te schrijven:

m_ m o m o

(4.14)

fg (4.15)
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Hiermee wordt de remweg:

2
Yo

xr =
2f-g
Met invoering van schaalfactoren (zie Hoofdstuk 12 Comparologie) bij constant veron-
derstelde f en g:

(4.16)

S, =52, (4.17)

De remweg wordt dus uitsluitend bepaald door de beginsnelheid. De massa van het
voorwerp heeft geen invloed. Dit betekent onder andere dat alle auto’s een even lange
remweg hebben, tenminste, bij gelijke bandmaterialen en profielen. Dit laatste is echter
niet het geval. Banden van vrachtwagens zijn veel zwaarder belast (staan onder hogere
druk) dan banden van personenauto's en zijn daarom van een andere rubbersoort gemaakt,
terwijl ook een andere profilering is aangebracht. Figuur 4.12 toont de resultaten van
metingen aan wrijvingscoéfficiénten van personenauto- en vrachtwagenbanden op een nat
wegdek. Opvallend is de geringe wrijvingscoéfficiént bij de vrachtwagenbanden.

Omdat het gevaar van blokkeren van de wielen op een nat wegdek altijd aanwezig is moet
dus het rijden met een vrachtwagen sneller dan 30 km/h onder deze omstandigheden
al dubieus worden geacht. Het verplicht stellen van een antiblokkeersysteem (zie ook
Figuur 4.4) lijkt aanbevelenswaardig, zeker bij vrachtauto’s. Voor een personenauto ligt
de kritische snelheid op een nat wegdek bij 60 km/h.

A
o 10 i wielen rollen max. profiel 1,0 4 wielen blokkeren
bl po
T | c
o 1 = J
& 08 | min. = 08 T
i profiel i
S 06 S ot
g 2
T 04 2 04 +
3 2
0,2 T 02 +
0 bt t————— 0 } } ! ! o —
0 20 40 60 80 100 0 20 40 60 80 100
snelheid [km/h] snelheid [:kmflﬂ

A — personenwagenbanden

B — vrachtwagenbanden
Figuur 4.12 Wrijvingscoéfficiénten van personenwagen- en vrachtwagenbanden op een nat wegdek.
Links de waarden van de statische wrijvingscoéfficiént fo die tijdens het rollen van de banden

optreden (relatieve stilstand van de band op het wegdek). Rechts de veel lagere dynamische
wrijvingscoéfficiénten f geldig voor slippende (geblokkeerde) wielen.
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4.2 Vloeistofwrijving

4.2.1 Theorie

Droge wrijving kan worden voorkomen door ervoor te zorgen dat zich steeds een vloei-
stoffilm tussen de bewegende opperviakken bevindt. Dit is het terrein van de tribologie
(deze term is afgeleid van het Griekse woord voor wrijven, slijten).

Bij dit proces moeten vloeistoffen langs elkaar schuiven. Stel dat één oppervlak stilstaat
en dat het andere oppervlak met een snelheid v daarlangs beweegt (zie Figuur 4.13).
Het eenvoudigst is een lineaire snelheidsverdeling over de hoogte z van de vloeistoffilm
aan te nemen. Bij het stilstaande oppervlak is de vloeistofsnelheid gelijk aan 0, de vloei-
stofsnelheid neemt dan lineair toe met de hoogte om bij de hoogte z de snelheid v te
verkrijgen. Deze snelheid v is gelijk aan die van het bewegende oppervlak, zodat ook aan
dit oppervlak geen snelheidsverschil met de vloeistof aanwezig is.

—_—
’ - bewegend opperviak
 —

e

7 ‘ N vioeistof
1

| o .
stilstaand oppervlak
\v=0

Figuur 4.13 Model van een lagering met vloeistofwrijving.

In de over elkaar schuivende vloeistoflagen treedt een schuifspanning 7 op. Volgens

Newton bedraagt deze:
dv

T = 77@ (4-18)

De schuifspanning is evenredig met de snelheidsgradiént dv/dz. De evenredigheids-

constante 7 wordt de dynamische viscositeit genoemd.
De schuifspanning die over het gehele bewegende oppervlak A werkzaam is veroorzaakt
een weerstandskracht W: J
v
W=A-1=A-n— 4.19
T o (4.19)
Bij de aangenomen lineaire snelheidsverdeling is dv/dz = v/z. Hiermee wordt de weer-

standskracht: v
W=A. n- (4.20)

In tegenstelling tot de weerstand bij droge wrijving treedt nu een snelheidsafhankelijkheid
op. Om de weerstand klein te houden moet A-7)/z klein zijn. Dit geeft echter constructieve
problemen. Een kleine waarde van A maakt een hoge druk in de vloeistoffilm nodig. Een
hoge waarde van z veroorzaakt grote lekverliezen.
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Als medium wordt doorgaans een dunne olie gebruikt waarmee de waarde van 1 ook
ongeveer vastligt. Indien een gas als medium wordt gebruikt, kan door de lagere n-waarde
een nog veel kleinere weerstand worden verkregen (zie Figuur 4.14). De 7 van vloeistoffen
en gassen is nagenoeg snelheidsonafhankelijk. Wat daarentegen opvalt in de figuur is dat
de n-waarde van de synoviale (gewrichtsvloeistof) progressief toeneemt met de afname
van de snelheid. Ook sommige kunstmatig vervaardigde vloeistoffen vertonen een dergelijk
gedrag (zoals bijvoorbeeld thixotrope verven).

|

sinoviale vloeistot

viscositeit n

vioeistof

snelheidsgradiént %

Figuur 4.14 De dynamische viscositeit 11 van vloeistoffen en gassen is nagenoeg snelheidsonafhan-
kelijk.

Het is niet mogelijk bij vloeistof- of gaswrijving een wrijvingscoéfficiént te definiéren. De
optredende weerstand is onafhankelijk van de normaalkracht (zie ook de zojuist afge-
leide formule). Bij verhoging van de normaalkracht is alleen een hogere druk in de gas
of vloeistoffilm nodig. De karakteristiek van de wrijvingskracht als functie van de snel-
heid bij vloeistofwrijving is gegeven in Figuur 4.15. In het algemeen zijn de optredende
wrijvingskrachten zeer gering. Ingetekend is ook de wrijvingskracht die in de menselijke
gewrichten optreedt. De daling van de dynamische viscositeit van de gewrichtsvloeistof bij
toenemende snelheid maakt dat de wrijvingskracht over een groot snelheidsgebied vrijwel
constant blijft.

Voorbeeld Enige karakteristieke waarden: n = 0,03 Ns/m2; v=1m/s; z=0,5 mm.
Bij een oppervlakte A = 0,1 m? ontstaat er een weerstandskracht:

103

W=0,1-0,038-— =6N

0,5
Met de lage hydraulische druk van p = 1 N/cm? [10 kPa] is de te dragen last N =
10%-0,1 = 1000 N.
Indien droge wrijving aanwezig was geweest met de lage wrijvingscoéfficient f = 0.1
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zou de weerstandskracht W = 0,1 - 1000 = 100 N zijn geweest, dus ruim 16x zoveel.
Figuur 4.16 toont nog schematisch de uitvoering van een met een vloeistoffilm uitgevoerde
dubbelzijdige lagering.

wrijvingskracht W

sinoviale vioeistof

N ——

—

snelheid v

Figuur 4.15 De wrijvingskracht bij vioeistofwrijving als functie van de snelheid v van het bewegend
oppervlak.

LT U

|

AT ARITIAD

drukregelaar

e drukverdeling onbelast lager R, t/m R, — stromingsweerstanden
—==—= drukverdeling belast lager

Figuur 4.16 Hydrostatisch dubbel viaklager .

4.2.2 Hydrodynamische aslagers

Een zeer bijzonder geval van vloeistofwrijving treedt op bij lagers. De viskeuze werking van
de vloeistof oefent een aan de draaiing tegenwerkend koppel uit. Maar door de draaiende
beweging van de as en de viskeuze werking van de vloeistof wordt de vloeistof in een
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wigvorm gebracht en wordt een ‘drukberg’ opgebouwd die bij een juiste dimensionering
in staat is de belasting te dragen, zie Figuur 4.17.

Het optreden van de wigvorm en de erdoor veroorzaakte geringe vloeistofwrijving in plaats
van droge wrijving is alleen mogelijk bij hoge toerentallen. Bij lage toerentallen wordt een
onvoldoende wigvorm opgebouwd en herstelt zich het (metallisch) contact tussen as en
lagerschaal.

lagerschaal

videokcp

Tm lager

drukverloop

in de oliefilm asbelasting

a. b.

Figuur 4.17 a) Hydrodynamische radiaal aslager. b) Hydrodynamische axiaal aslager.

Bij contact tussen as en lagerschaal treedt droge wrijving op. Als dat in voldoende mate
gebeurt komt het ascentrum bij dezelfde draairichting aan de andere kant van de verticale
lagerhartlijn te liggen. Zie Figuur 4.8.

4.2.3 Luchtweerstand, vloeistofweerstand

Indien een voorwerp zich met een relatieve snelheid v verplaatst ten opzichte van een om-
ringend medium (gas of vloeistof) dan wordt er op dat voorwerp een kracht F' uitgeoefend.
Deze kracht F' is evenredig met de soortelijke massa p van het medium, evenredig met
de voorwerpoppervlakte loodrecht op de stroming A en evenredig met de gekwadrateerde
relatieve snelheid v2. Er geldt:

1
F=c,- gpv2A (4.21)

De weerstandscoéfficiént ¢, is afhankelijk van de vorm van het lichaam (zie § 12.7.2
Kental en invloed van de vorm). Voor een aantal gevallen is de weerstandscoéfficiént c,,
gegeven in de tabel van Figuur 4.18.
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Figuur 4.18 Weerstandscoéfficiént c,, van een aantal lichamen. De coéfficiénten zijn bepaald voor
een driedimensionale vrije stroming rondom het lichaam.

4.2.4 Draagvlakken

Het is niet zo, dat voorwerpen die zich ten opzichte van een omringend medium verplaat-
sen, daarvan alleen maar een weerstandskracht F,, ondervinden. Figuur 4.19 geeft als
voorbeeld een schuin op de stromingsrichting geplaatste vlakke plaat. Aan de voorzijde
van de plaat treedt een drukverhoging op door opstuwing van het medium, aan de achter-
zijde een drukverlaging door snelheidsvergroting. De resulterende kracht bevat niet alleen
de evenwijdig aan de stroom gerichte weerstandskracht F,, maar ook de gewoonlijk als
liftkracht F; aangeduide component loodrecht op de stromingsrichting.

Bij een praktisch toegepast draagvlak worden door de keuze van de vorm van het vlak de
wervelingen voorkomen, zodat de stroming een rustiger beeld vertoont (zie Figuur 4.20).
De twee krachten F,, en Fj blijven echter bestaan. Van de kracht F; wordt vaak nuttig
gebruik gemaakt.

Voorbeeld Bij een vliegtuigvleugel levert F; de draagkracht voor het hele toestel. Voor
beide krachtscomponenten Fj en F,, geldt:

1
F=c¢- 5/}02 -A (4.22)

Fy,=cy =pv°- A (4.23)
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luchtstroom

Figuur 4.19 Stromingsbeeld van een rechte plaat in een stroming. Door de stroming wordt een
kracht F' op de plaat uitgeoefend, die ontbonden is in de componenten F,, (weerstandskracht) en
F; (liftkracht).

luchtstroom

Figuur 4.20 Stromingsbeeld rondom een vleugelprofiel. Van belang voor het stromingsbeeld en ook
voor de resulterende krachten F, en F} is de hoek o die het profiel maakt met de stromingsrichting.

De grootte van de coéfficiénten c¢,, en ¢; is afhankelijk van de hoek « die de vleugel maakt
met de stromingsrichting. Figuur 4.21 geeft deze afhankelijkheid.

Er wordt het meest efficiént gebruik gemaakt van het toestel als een zo groot mogelijke
last bij een zo gering mogelijke weerstand wordt vervoerd, met andere woorden: als de
verhouding F}/F,, maximaal is. Figuur 4.22 laat zien, dat bij een hoek « &~ 3° optimale
vliegcondities zijn te verkrijgen. In werkelijkheid is er meestal een kleinere hoek . Dit
komt omdat vaak meer belang wordt gehecht aan snelheid dan aan economie.
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Figuur 4.21 Afhankelijkheid van de liftcoéfficiént c¢; en de weerstandscoéfficiént c,, van de hoek
waaronder het profiel is aangestroomd. Merk op dat de verticale schalen ongelijk zijn.
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Figuur 4.22 Bepaling van de gunstigste aanstromingshoek voor vliegen.

4.2.5 Verminderen luchtweerstand

Het verminderen van de luchtweerstand F' = % -pv? - ¢, - Ais praktisch alleen te bereiken

door het verlagen van ¢,,- A. Het verminderen van de grootte van het aanstroomoppervlak
A stuit vooral bij voertuigen op bezwaren in verband met de gewenste binnenruimte. In
het voordeel zijn hier relatief lange voertuigen zoals treinen en vliegtuigen. Dat met
bepaalde vormveranderingen verlagingen van de weerstandscoéfficiént ¢,, mogelijk zijn,
toont Figuur 4.23. Door de jaren heen is de c,-waarde bij personenauto’s opmerkelijk
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gedaald als onderdeel van de pogingen het brandstofverbruik te verlagen.

L >

Ford A"~ 1930 c¢,=0,83 Audi 100-1982  ¢,=0,30

Fard 1955 c,=0,50 Ford Probe IV-1983 ¢,=0,15

Figuur 4.23 Weerstandscoéfficiénten van verscheidene auto’s.

Een belangrijke factor bij de weerstandscoéfficiént is steeds de wijze waarop de stroming
aan de achterzijde langs het lichaam stroomt. Het ‘loslaten’ van de stroming gaat gepaard
met wervels en geeft grote verliezen. Ook het verstoren van de stroming door uitstekende
delen (bij een auto bijvoorbeeld door een imperiaal, door antenne of spiegels) is een oor-
zaak van een verhoging van de c¢,,-waarde.

Door het toevoegen van een luchtgeleidend profiel — een ‘spoiler’ — is vaak een aanzien-
lijke luchtweerstandsvermindering te verkrijgen. Figuur 4.24 laat dit effect zien bij een
vrachtwagen.

Figuur 4.24 Schematische voorstelling van de luchtstroom bij een rijdende vrachtwagencombinatie
op de weg. Boven zonder, onder met spoiler.
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4.2.6 Leidingweerstand

In het voorgaande is gesproken over de weerstandskracht die voorwerpen ondervinden die
zich in een omgevend medium verplaatsen. Ook het omgekeerde heeft technische beteke-
nis. Stromingen van gassen of vloeistoffen in pijpen ondervinden eveneens weerstanden.
Het is hier niet zinvol een weerstandskracht te berekenen, het is praktischer om alleen
maar het benodigde drukverschil op te geven waarmee de stroming kan worden verkregen.
In principe is hiervoor dezelfde coéfficiént ¢, te gebruiken. Immers, F'/A heeft ook het
karakter en de dimensie van een druk. Gebruikelijk is echter om hier de coéfficiént £ in te
voeren. Figuur 4.25 geeft voor een aantal instroomopeningen de £-waarden. Ook hier valt
op dat door uiterst kleine constructieve maatregelen de weerstandscoéfficiént en daarmee
het benodigde pomp- of ventilatorvermogen sterk is te beinvioeden.

scherpe rand E=0,5 afhankelijk van de

wandruwheid £=0,06...0,005

rand iets afgerond g=0,25

Figuur 4.25 Weerstandscoéfficiénten van twee instroomopeningen van pijpen. De weer-
standscoéfficiénten van een zonder voorzorgen aangesloten pijp (§ = 0,50) is reeds door het 'breken’
van de kanten met een factor 2 te verbeteren. Een werkelijk geprofileerde instroomopening heeft
ten minste een decimering van de weerstand tot gevolg.

Ook bochten en aftakkingen veroorzaken veel drukverlies. Zie hiervoor Figuur 4.26. Lei-
dingappendages zoals ventielen en afsluiters kunnen ook grote weerstand veroorzaken.

4.3 Rollende Wrijving

4.3.1 Theorie en modelvorming

Alleen theoretisch is rollen wrijvingsloos. In werkelijkheid zullen door allerlei oorzaken
verliezen optreden, waardoor ook een rollende beweging een aandrijvende kracht (koppel)
nodig heeft. Er zijn verschillende theorieén ontwikkeld die verklaren waarom rollende wrij-
ving optreedt. Daarop wordt hier niet ingegaan. Hier wordt volstaan met het presenteren
van een veelgebruikt model.

Het model voor rollende wrijving kan op verschillende manieren worden weergegeven. Dat
is in het volgende verduidelijkt. In Figuur 4.27.a is een wiel getekend dat met een kracht
I tegen een plat loopvlak wordt gedrukt. Het wiel staat stil. Op het wiel werken twee
krachten: de aandrukkracht F' en de normaalreactiekracht IV, die het loopvlak op het wiel
uitoefent. De krachten F' en N zijn gelijk en tegengesteld gericht langs dezelfde werklijn.
Deze modelvorming voldoet niet meer als het wiel rolt.
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r 8 0.1
ruwe
bocht / wand 0,20
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Q,/a=0 02 06 1,0
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Figuur 4.26 Weerstandscoéfficiénten van bochten en knooppunten in leidingen. Merk op dat ook
bij geen toe- of afvoer in het T-stuk een weerstandscoéfficiént aanwezig blijft.

De optredende rolweerstand wordt in rekening gebracht door de normaalkracht N over
een kleine afstand 4 in de rolrichting te verschuiven. Zie Figuur 4.27.b.

Er is dan geen momentevenwicht meer. Dat betekent dat bij rollen een tegenwerkend
koppel M,, = N - 6 de beweging afremt.

D
-~ |

-
()
N wN

a. b. : c.

Figuur 4.27 Modelvorming van rollende wrijving. a) Een stilstaand wiel belast met een kracht F. b)
Zodra rollen optreedt, verschuift de normaalkracht N in de bewegingsrichting. Daarvoor ontstaat

een koppel My, = N -4 dat de beweging tegenwerkt. c) Andere manier om de rollende wrijving
weer te geven.
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Dat is ook weer te geven met de modelvorming van Figuur 4.27.c, die geheel gelijkwaar-
dig is met die van Figuur 4.27.b. Voor blijvend rollen moet in de draairichting continu
een aandrijvend koppel M, worden toegevoerd. De grootte van dit aandrijvend koppel
bedraagt M, = N - 0. Deze evenwichtssituatie is weergegeven in Figuur 4.28.a.

a. b.

Figuur 4.28 Aandrijving van wielen met rollende wrijving. In (a) is een wiel aangedreven door een
koppel M. Voor het onderhouden van een constant toerental van het wiel moet Mgy = N - 6. In
(b) is een wiel aangedreven door een horizontale kracht op ashoogte F,.

In veel praktische toepassingen wordt een wiel niet door een koppel maar door een kracht
voortgerold. In Figuur 4.28.b wordt een aandrijvende kracht F, op de as van het wiel
uitgeoefend. Op het wiel werken nu twee krachten: de resultante van de door de as op
het wiel uitgeoefende krachten F' en F,, en de reactiekracht die het loopvlak op het wiel
uitoefent. Deze twee krachten moeten gelijk en tegengesteld gericht zijn langs dezelfde
werklijn. Het contactpunt tussen wiel en loopvlak is de afstand & verschoven. Voor
evenwicht is het noodzakelijk dat de loopvlakreactiekracht een component R heeft die in
het loopvlak ligt.

De grootte van de aandrijfkracht F, is te berekenen uit het momentenevenwicht. Met D
= wieldiameter geldt:

F
F,=2.0-—=f " F 4.24
=265 = e (4.24)

In analogie met de glijdende wrijving wordt een rolweerstandcoéfficiént f,. gedefinieerd:
F, = f, - F. Daaruit volgt dus dat f. =2-§/D. De waarde van ¢ is afhankelijk van de
roldiameter van het wiel en van materiaaleigenschappen van wiel en loopvlak. De waarde
van f, dus ook.

Voorbeeld Voor spoorwegwielen van gebruikelijke constructie en afmetingen bedraagt
fr = 0,0001 (6 ~ 0,05 mm). Bij kleinere wielen uit minder stijve materialen neemt
fr toe. Bij de zeer deformeerbare luchtbanden heeft f,. de relatief grote waarde f, ~
0,02 (4 is enkele mm). In beide gevallen is de coéfficiént voor rollende wrijving enigszins
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snelheidafhankelijk. Bij verhoging van de rijsnelheid neemt f,. toe.

In de techniek komen naast wielen ook veel los meedraaiende rollen en kogels voor (rol-
lagers, kogellagers, kogelsleden, kogelmoeren). Voor de weerstandcoéfficiént f, van deze
onderdelen wordt verwezen naar de datasheets van fabrikanten en/of leveranciers te vinden
op internet.

C.

Figuur 4.29 . In a) ligt een blok op een plat vlak. Op het blok werken twee krachten: mg en N.
In b) wordt voor verschuiven van het blok een aandrijvende kracht F, = W = f - mg toegevoegd.
In c) is het blok door een wiel ondersteund. In d) wordt bij beweging rekening gehouden met de
aswrijving en de rollende wrijving. Voor bewegen moet een aandrijvende kracht worden toegevoerd.
Vergelijk Figuur 4.30.

4.3.2 Toepassingen van rollende wrijving

Het voordeel van het gebruik van wielen is in het volgende toegelicht. In Figuur 4.29.a
is een blok (massa m) getekend dat op een plat vlak ligt. Als het blok moet worden
verplaatst is tenminste een horizontale kracht F, nodig voor het overwinnen van de in
het contactvlak heersende wrijvingskracht W = f - N. Daaruit volgt:

Fo=f-m-g (4.25)

Bij beweging verplaatst het contactpunt van de vloerreactiekracht zich in de richting van
de beweging. Zie Figuur 4.28.b en vergelijk met Figuur 1.6. Voor vermindering van
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de aandrijtkracht kunnen wielen worden gemonteerd. In Figuur 4.28.c. is verondersteld
dat aan het blok een as is bevestigd. Het centrum van de as bevindt zich juist onder
het zwaartepunt van het blok. Wielen met glijlagers kunnen rond deze as draaien. Bij
voortbewegen verplaatst het contactpunt wiel /as zich langs de asomtrek. Het contactpunt
wiel /loopvlak verplaatst zich over een afstand § in de bewegingsrichting. Zie Figuur 4.28.d
waarin de krachten zijn getekend die op het wiel werken. Voor de in het loopvlak liggende
component R van de loopvlak-reactiekracht geldt met grote benadering:

d-siny + 26
VD% = (d-sing +25)°

R=myg (4.26)

Op het systeem 'blok + wielen' werken slechts drie krachten: de aandrijfkracht F,, de
loopvlakreactiekracht R en de gewichtskracht m - g. Voor evenwicht is het noodzakelijk
dat deze drie krachten door één punt gaan. Zie Figuur 4.30. Dat houdt in dat in het
algemeen de aandrijfkracht een hoek met het loopvlak zal maken. Uit het krachteneven-
wicht volgt dat de horizontale component F,hor van de aandrijfkracht gelijk moet zijn
aan de horizontale component R van de loopvlak-reactiekracht.

- Fshor.

Figuur 4.30 De aandrijtkracht voor het bewegen van een op wielen geplaatste massa is niet hori-
zontaal gericht. Op het systeem 'blok + wielen’ werken drie krachten die naar één punt gericht
moeten zijn. Daaruit volgt de richting van F,. Slechts als het zwaartepunt van de massa de afstand
§ is verschoven ten opzichte van het asmiddelpunt is een horizontale aandrijfkracht mogelijk. Voor
de aandrijving is alleen de horizontale component van de aandrijfkracht F,hor van betekenis. De
loopvlak-reactiekracht heeft een horizontale component R. Uiteraard geldt: Fghor = R.

De verticale component van de aandrijfkracht staat steeds loodrecht op de afgelegde
weg en verricht geen arbeid. Deze component is alleen nodig voor de stabiliteit van het
blok, en heeft niet te maken met de aandrijving. In het volgende zal daarom de verticale
component van de aandrijfkracht niet worden meebeschouwd. Als over aandrijfkracht
wordt gesproken is uitsluitend de horizontale component van deze kracht bedoeld.

Indien harde wielen en harde loopvlakken worden toegepast zal § een kleine waarde hebben
en zal d -sinty >> 2§. In de gebruikelijke toepassingen is steeds D > d, en dus zeker
D? > (d-sin ¢)2. Verder geldt met zeer grote benadering siny) = tany = f. Dit leidt
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in totaal tot een goede benaderingsformule voor de aandrijfkracht:

d

F,~ f-mg- D (4.27)
Door het monteren van wielen (met glijlagers) is de benodigde aandrijfkracht van het blok
met een factor d/D verkleind. Een combinatie van een kleine asdiameter en een grote
wieldiameter betekent dus een geringe aandrijfkracht. Bijna altijd is D/d >> 10. Bij
toepassing van wielen met glijlagers wordt de benodigde aandrijfkracht ten minste gede-
cimeerd. Bij gebruik van kogellagers is een verdere grote reductie van de aandrijfkracht
mogelijk.
Bij kleine of sterk deformeerbare wielen (kunststofwielen) en/of loopvlakken zachte grond,
rubbermat) is de waarde van ¢ zo groot dat deze niet verwaarloosd mag worden. Bij deze
constructies vormt de rollende wrijving een belangrijk deel van de benodigde aandrijf-
kracht. In dat geval mag de formule voor de aandrijfkracht niet verder benaderd worden

dan:
f-d+26

D

Voor het geval dat de rollende wrijving tussen wiel en loopvlak veel groter is dan de
aswrijving wordt de formule:

F,=mg (428)

2
F,=mg- 56 = fr-mg (4-29)

De laatste uitdrukking ontstaat als de rolweerstandcoéfficiént f,. wordt ingevoerd. Dan
verkrijgt F, uiteraard dezelfde waarde als in § 4.3.1 is afgeleid.

Waarschuwing

In het bovenstaande is de in het loopvlak liggende component R van de loopvlak-reactiekracht
ingevoerd als maat voor de rollende wrijving. Het is goed te bedenken dat deze kracht
R voortkomt uit een rekenmodel voor de rollende wrijving. Met grote nadruk wordt erop
gewezen dat hiermee niets is gezegd van de grootte van de wrijvingskracht W die tussen
wiel en loopvlak kan optreden. Als in het contactvlak tussen wiel en loopvlak een nor-
maalkracht IV aanwezig is, dan kan in het loopvlak een wrijvingskracht W optreden. De
maximale waarde Wi, van deze wrijvingskracht wordt gegeven door de formules voor
glijdende wrijving (§ 4.1.1): Als het wiel rolt en de contactvlakken van wiel en loopvlak
ten opzichte van elkaar stilstaan dan geldt: Wy,.x = fo - N. Onafhankelijk van de grootte
van W (zolang W < Wi,ax), moet een rolweerstand (gekarakteriseerd door de kracht R)
worden overwonnen.

4.3.3 Afrollende ringen

Een trekveer is een veelgebruikt constructie-element. De trekveer is aan de uiteinden van
een oog voorzien dat in een gat of om een pen wordt gemonteerd. Zeer dikwijls zijn
deze constructies verkeerd uitgevoerd. Ter toelichting het volgende. In Figuur 4.31 is het
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algemene geval getekend van twee ringen die ten opzichte van elkaar kunnen bewegen.
Indien de bovenste ring stilstaat, kan de onderste ring in twee richtingen bewegen. In
Figuur 4.31.b draait de ring in zijn eigen vlak; in Figuur 4.31.a loodrecht daarop. In de
Figuren 4.31.c en 4.31.d is de systeemgrens vlak om de bewegende ring gekozen.

e. f.
a in graden a in graden
f=0,2 f=02
40 40
20 20
R2 R2
. . R] v v v T T R
q 1 2 3 4 5 6 h. 1 2 3 4 5 6

Figuur 4.31 Bij een goede constructie draait een ring in zijn eigen vlak om een dunne pen.

Op het systeem 'bewegende ring' werken drie krachten: de belastingkracht F, en de
contactkrachten N en W. De belastingkracht is verondersteld in het vlak van de ring te
liggen. De drie krachten moeten door één punt gaan.
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In de verticale rustpositie van een ring, is in beide gevallen de wrijvingskracht W = 0.
Als de ring verdraait, verplaatst het contactpunt en neemt W toe. In het begin zullen de
ringen op elkaar afrollen. Dat gaat door totdat de wrijvingskracht zijn maximale waarde
W = f-N bereikt. Bij een verdere toename van de verdraaiingshoek « is geen afwikkelen
meer mogelijk en zullen de ringen langs elkaar glijden. In het volgende is nagegaan over
welke hoek o« de onderste ring kan verdraaien voordat glijdende wrijving optreedt, zie
Figuur 4.31.e en 4.31.1.

In beide gevallen geldt altijd 5 = a. + v en zolang er rollen optreedt bovendien 3 - Ry =
7 - Ro. Op het moment dat rollen overgaat in glijden, is W maximaal en geldt tan 5 = f.
Dan is 8 gelijk aan de wrijvingshoek 1, dus 8 = 1. Met dit gegeven zijn de Figuren
4.31.g en 4.31.h opgesteld. Zij geven de maximale verdraaiingshoek die de bewegende
ring kan verkrijgen voordat glijden optreedt. In het geval van Figuur 4.31.g treedt rollen
alleen op bij zeer kleine verdraaiingshoeken. Bij de veelvoorkomende wrijvingscoéfficiént
f=0,2is amax = 12°. De situatie van Figuur 4.31.h is veel gunstiger. Een in zijn vlak
draaiende ring kan over grote hoeken verdraaien, terwijl rollende wrijving blijft bestaan.
Bij f = 0,2 en Ry/Ry =5 is een verdraaiingshoek oo = 45° mogelijk.

In een goede constructie zal de opstelling van Figuur 4.31.b zijn gekozen. Daarmee kan in
een groot gebied rollende wrijving worden verkregen. Dan is een constructie met minder
energieverlies, betere positioneerbaarheid, geringere geluidsproductie (piepen) en minder
slijtage opgebouwd. Het constructieprincipe is kort te formuleren: een ring moet in zijn
eigen vlak om een dunne pen draaien. Daarbij is aangenomen dat de belastingkracht met
de ring meedraait.
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Hoofdstuk 5

Stabiliteit

5.1 Inleiding

In de voorgaande hoofdstukken is het evenwicht van statische systemen besproken. Als
voldaan is aan de daarvoor gestelde voorwaarden dan is een systeem in evenwicht. Uiter-
aard is het van belang om te weten of het evenwicht wel of niet stabiel is. Dit hoofdstuk
behandelt de stabiliteit van statische systemen.

De hier beschouwde mechanische systemen zijn opgebouwd uit starre componenten en
veren die onderling draaibaar of verschuifbaar zijn. In het algemene geval heeft elk on-
derdeel van zo'n mechanisch systeem zes vrijheidsgraden; drie translatierichtingen en drie
rotatierichtingen. Daarom moet de stabiliteit in principe in zes richtingen onderzocht
worden, waarbij er rekening mee moet worden gehouden dat de stabiliteit in de verschil-
lende richtingen niet onafhankelijk is. Het probleem kan daarom snel complex worden.
In dit hoofdstuk zal vooral de stabiliteit van systemen met één vrijheidsgraad (rotatie of
translatie) worden onderzocht.

Stabiliteit is een uitgebreid fenomeen. Ook systemen die uitsluitend elastische vervor-
mingen ondergaan, kunnen een instabiel gedrag vertonen. Een voorbeeld is het uitknikken
van axiaal belaste staven of het uitknikken van op druk belaste schroefveren. Voor de
theorie van dit soort elastische instabiliteiten wordt verwezen naar de mechanicaboeken.
Stabiliteit is een systeemeigenschap. Als een systeem is gegeven ligt het stabiele of insta-
biele gedrag vast. Alleen door systeemparameters te veranderen of door componenten toe
te voegen is het gedrag van een systeem te beinvioeden. Op deze wijze kunnen systemen
gestabiliseerd worden. Zie daarvoor § 5.3. Ook kan aan systemen een indifferent gedrag
worden gegeven, dat is een gedrag dat op de grens tussen stabiel en instabiel zit, met de
daarbij behorende energetische voordelen. Dat is besproken in § 5.4. In § 5.5 en § 5.6
wordt ingegaan op de specifieke gevallen van stabiliteit van vaartuigen en van voertuigen.

Op enkele plaatsen in dit hoofdstuk is de invloed van droge wrijving besproken. De
grondbeginselen van droge wrijving zijn verduidelijkt in § 4.1.



5.2 Theorie Stabiliteit

5.2 Theorie

5.2.1 Begrippen

Voor het bestuderen van de stabiliteit van een systeem wordt er steeds van uitgegaan dat
het systeem in een toestand van evenwicht verkeert. Dit is een belangrijk uitgangspunt.
Vanuit een evenwichtstoestand wordt aan het systeem een (kleine) verplaatsing opgelegd.
Het systeem wordt daarna losgelaten en aan zichzelf overgelaten. Het systeemgedrag in
de tijd na het loslaten is maatgevend voor de stabiliteit van het systeem.

Het gedrag van een systeem, na het loslaten vanuit een nabij een evenwichtstoestand
gelegen positie, kan in drie categorieén worden verdeeld.

- Het systeem keert (eventueel na één of meer grote uitwijkingen) terug in de even-
wichtspositie of in een positie die daar vlak bij ligt. De terugkeer in de evenwichts-
positie mag eventueel lang duren; het gaat alleen om de uiteindelijke rustsituatie.
Deze systemen heten (asymptotisch) stabiel .

- Het systeem keert niet terug naar de oorspronkelijke evenwichtstoestand. De uit-
wijkingen worden steeds groter. Deze systemen zijn instabiel. De bijbehorende
evenwichtstoestand wordt een labiel evenwicht genoemd.

- Het systeem keert niet terug naar de evenwichtspositie, maar behoudt de gegeven
uitwijking. Deze systemen worden indifferent genoemd. De indifferente systemen
zijn op te vatten als systemen die zich bevinden in het grensgebied tussen de insta-
biele en de stabiele systemen in.

De drie categorieén kunnen duidelijk worden gedemonstreerd aan de hand van evenwichten
van een kegel. Zie Figuur 5.1. Vanuit de gestippeld aangegeven uitwijking keert de kegel
wel (a) of niet (c) terug naar het evenwicht van de uitgangspositie. In situatie (b) is de
kegel een indifferent systeem. Elke nieuwe positie blijft behouden.

V2

indifferent instabiel
a b c

Figuur 5.1 Een kegel op een horizontaal vlak kan ofwel stabiel (a), of indifferent (b) of instabiel (c)
zifn.
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Stabiliteit 5.2 Theorie

Een lichaam in de ruimte heeft in het algemene geval zes vrijheidsgraden. Translaties
zijn mogelijk in drie onderling onafhankelijke richtingen en rotaties zijn mogelijk om drie
onafhankelijke draaiingsassen. In het volgende zullen de optredende bewegingen worden
aangegeven in een rechthoekig codrdinatenstelsel. De translaties langs de codrdinaatassen
zullen worden aangegeven met u, v en w; de rotaties om deze assen met respectievelijk

Pur Pov €N oy

5.2.2 Stabiliteitsbalken

Voor het aangeven van de stabiliteitssituatie bij verschillende uitwijkingen kunnen stabi-
liteitsbalken worden gebruikt. Zij zullen in het volgende aan de hand van voorbeelden
worden toegelicht.

Voorbeeld 5.1 In Figuur 5.2 is een kubus getekend die vrij kan schuiven over een hori-
zontaal vlak. De kubus blijft staan in elke verschoven positie waarin hij is achtergelaten.
Voor verplaatsingen in de u- en v-richting is het evenwicht indifferent. Dat is op de
stabiliteitsbalken van de verplaatsingen u en v door dwarsstrepen aangegeven. Ook voor
rotaties om de w — as vertoont de kubus een indifferent gedrag; zie de y,,-stabiliteitsbalk.
Verticale verplaatsingen zijn alleen in positieve w-richting mogelijk, daarom is voor deze
richting alleen een halve stabiliteitsbalk getekend. Voor verplaatsingen 4w is een verti-
cale kracht nodig. Bij het loslaten vanuit een -+w-positie zorgt de zwaartekracht voor
een terugbrengen van de kubus naar het vlak. Dit is door de pijlen op de stabiliteitsbalk
aangegeven.

De stabiliteitsbalken voor verdraaiingen ¢, en ¢, rondom respectievelijk de u-as en de
v-as worden uitgewerkt in § 5.2.3.

o+ o+
Y
<

TW

|

\

Py

Py

o+ o+ o+ o
\]

Figuur 5.2 Een kubus die vrij kan schuiven over een horizontaal vlak en de bijbehorende stabiliteits-
balken.

Voorbeeld 5.2 Een bol drijft in een vloeistof. Zie Figuur 5.3.a. Op de bol werken
twee krachten: de zwaartekracht G en de opwaartse kracht O. Voor verplaatsingen in de
horizontale u- en v-richtingen, alsmede voor rotaties om de drie asrichtingen is het systeem
indifferent. Voor verplaatsingen in de verticale w-richting is de bol in stabiel evenwicht.
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Bij een verplaatsing van de bol in de positieve w-richting (naar boven) neemt de opwaartse
kracht O(w) af. De omlaag gerichte zwaartekracht blijft gelijk. Zwaartekracht en vloeistof
oefenen samen op de bal een omlaag gerichte kracht G—O(w) uit. Om een verplaatsing w
aan de bal op te leggen is dus een positieve (opwaarts gerichte) kracht F,(w)= G —O(w)
nodig. Als bij het bereiken van +w de bol wordt losgelaten resteert de omlaag gerichte
zwaartekracht. Als gevolg van deze kracht beweegt de bol terug naar de uitgangspositie.
Een soortgelijke redenering geldt voor verplaatsing in negatieve richting. Bij loslaten
vanuit een opgelegde uitwijking —w, resteert een kracht die de opgelegde uitwijking teniet
doet.

Ter illustratie geeft Figuur 5.3.b nog het verloop van de uitwendig op de bol uit te oefenen
krachten F,, voor het verkrijgen van verplaatsing w. In de evenwichtsstand w = 0 is F},, =
0. Om de bol geheel uit het water te tillen is een opwaartse kracht i, = G = pp-g-V nodig
(p» = soortelijke massa bol, g = versnelling zwaartekracht, V' = volume bol). Om de bol
geheel onder te dompelen is een neerwaarts gerichte kracht ter grootte F,, = (p,—pp)-g-V
nodig. Figuur 5.3.c geeft de stabiliteitsbalk. Bij alle (positieve en negatieve) uitwijkingen
w wordt op de bol een evenwichtsherstellende kracht uitgeoefend. Het systeem is in de
buurt van w=0 in deze richting dus stabiel.

w
positie bolmiddelpunt
PVg =G
$Fo
bol juist boven water
> Fvv - w=0
o L= -
bol juist onder water
a >
b |« Py~ PpVY = O =G ¢

pv\/g =0 max

Figuur 5.3 De stabiliteit van een drijvende bol. a) Op het systeem werken de zwaartekracht G,
de opwaartse kracht O en de opgelegde kracht F,, die nodig is om evenwicht te bereiken. b) De
opgelegde kracht F, als functie van de verticale positie w. c) de bijbehorende stabiliteitsbalk.

De bolvorm veroorzaakt de indifferente stabiliteit in vijf vrijheidsgraden. Voor vaartuigen
is een indifferent gedrag gewenst voor de twee horizontale translaties en een rotatie om
de verticale as; echter niet voor de verticale translaties en de rotaties om de langsas en
dwarsas. In § 5.5.4 zal de invloed van de vormkeuze op de vaartuigstabiliteit worden
verduidelijkt.

Voorbeeld 5.3 In Figuur 5.4.a is een windvaan (windwijzer) getekend. Er is slechts
één vrijheidsgraad: de rotatie ,, om een verticale as. Als de draaiingsas verticaal staat,

heeft de zwaartekracht geen invloed op de rotatiehoek van de windvaan. Zolang het niet
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waait blijft de vaan staan in de stand waarin hij is geplaatst. Als het waait ontstaan er
contactkrachten die de vaan in de windrichting plaatst. Om de vaan onder een hoek ¢,
ten opzichte van de windrichting te houden, is een extern opgelegd moment M,, nodig.
Dit moment werkt het verschilmoment tegen dat wordt veroorzaakt door de krachten F,
en Fj. Dit zijn de normaalcomponenten van de krachten veroorzaakt door de wind op de
twee delen van de vaan, zie Figuur 5.4.b. Als de vaan daarna wordt losgelaten doet dit
verschilmoment de vaan terugdraaien naar de windrichting. Het systeem is stabiel. Zie de
stabiliteitsbalk van Figuur 5.4.d. De aanwezigheid van wrijving veroorzaakt afwijkingen
van het besproken gedrag. Als er weinig wrijving is, dan bereikt de vaan niet precies de
windrichting. Op het moment dat het verschilmoment M, gelijk is aan het wrijvingsmo-
ment My, verdraait de vaan niet verder. Zie de stabiliteitsbalk van Figuur 5.4.f. Bij zeer
grote wrijvingsmomenten is het mogelijk dat de windkrachten de vaan niet meer kunnen
laten draaien. Het systeem is dan indifferent geworden.

W M.,

Pw

N2

Figuur 5.4 a) De windvaan heeft alleen een rotatiemogelijkheid om de w-as. b) Bovenaanzicht:
Voor het uit de wind brengen van de vaan is een extern opgelegd moment M., nodig. ¢) My -pw
grafiek bij afwezigheid van een wrijvingsmoment: Het evenwicht is stabiel. d) Stabiliteitsbalk bij
afwezigheid van wrijving. e) Gewijzigde M.,-p., grafiek bij aanwezigheid van wrijving. Voordat
de vaan beweegt vanuit de middenstand is ten minste een moment My nodig. Als daarna het
moment tot nul afneemt, is nog een uitwijking p. aanwezig. f) Stabiliteitsbalk bij aanwezigheid
van wrijving.

5.2.3 Stabiliteitsgebied

In het voorgaande is besproken wanneer een systeem stabiel kan worden genoemd. Veelal
is stabiliteit slechts aanwezig in een beperkt gebied. Het is zinvol de grootte van het
stabiliteitsgebied op te geven. Ter toelichting is hier de rotatiestabiliteit van de kubus uit
voorbeeld 5.1 nader uitgewerkt.

In Figuur 5.5.a is de kubus over een hoek ¢,, gedraaid vanuit een evenwichtssituatie. Voor
het bereiken van rotatiehoek ¢, is een extern moment M, = 3 mgr/v/2 -sin (X — ¢,)
benodigd. Voor kleine hoeken is M, positief. Bij het loslaten vanuit een hoek ¢, keert
de kubus terug in zijn uitgangspositie. Voor grotere hoeken geldt dit niet. Bij het loslaten
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vanuit hoeken ¢, = 7 is geen moment meer beschikbaar om de kubus terug te draaien;

en bij ¢, > 7 kantelt de kubus naar een andere zijvlak. Figuur 5.5.b geeft de grootte van
het benodigde moment als functie van ¢,. Figuur 5.5.c toont de stabiliteitsbalk. Daarin
is het stabiliteitsgebied aangegeven.

ﬁ
N
N~
ENYE]
Nla

Figuur 5.5 De stabiliteit van een kubus die om een ribbe roteert. a) Voor rotatie is een extern
moment M, nodig. b) De My-p., grafiek laat zien dat het evenwicht bij ¢, = O stabiel is. c) De
stabiliteitsbalk toont dat het stabiliteitsgebied is — T < ¢ < + 7.

In Figuur 5.6 is nogmaals benadrukt dat de begrippen stabiel en labiel zijn gekoppeld
aan een evenwichtssituatie. In Figuur 5.6.a is een omgekeerde slinger getekend. Voor
(p,, = T is er een evenwicht. Een analyse toont aan dat het een labiel evenwicht is. De
omgekeerde slinger is instabiel; dat blijkt ook uit de stabiliteitsbalk van Figuur 5.6.b.

Lecccecdorront”
b \ - \ . \ 0, |
0, labiel evenwicht
-n 0 T Pu
1 1 o
a d stabiel evenwicht c

Figuur 5.6 Bij de omgekeerde slinger (a) is uitgegaan van het evenwicht bij @, = m. De stabili-
teitsbalk (b) toont dat het systeem instabiel is rondom deze evenwichtstand. De gewone, hangende
slinger (c) is stabiel rondom de evenwichtstand ¢,, = 0 (d). In het gebied 0 < ¢, < m staan de
pijlen op de stabiliteitsbalken in dezelfde richting.

In Figuur 5.6.c is een gewone, hangende slinger getekend. Er is evenwicht bij ¢, = 0
als de slinger naar beneden hangt. Bij analyse blijkt dat dit evenwicht stabiel is. Zie
ook de stabiliteitsbalk van Figuur 5.6.d. De twee stabiliteitsbalken bevatten beide het
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gebied 0 < ¢, < 7. De pijlen in de stabiliteitsbalken zijn in dit gebied gelijkgericht in
beide balken. Uitgaande van de evenwichtstand van Figuur 5.6.d betekenen de pijlen een
stabiel systeem. Uitgaande van de evenwichtstand van Figuur 5.6.b betekenen dezelfde
pijlen een instabiel systeem.

5.2.4 Stabiliteit en blokschema's

Voor een analyse van de stabiliteit van een systeem kunnen blokschema's worden gebruikt.
Een systeem is stabiel gedefinieerd als het na loslaten vanuit de nabije omgeving van
een evenwichtstand in die evenwichtstand terugkeert. De uitwendige kracht die nodig
is om een uitwijking vanuit de evenwichtstand mogelijk te maken is de kracht die in de
blokschema's wordt aangegeven.

In het blokschema van Figuur 5.7 wordt aan het systeem met overbrengingsverhouding H
een verplaatsing u opgelegd. F), is de kracht die op het systeem moet worden uitgeoefend
om de verplaatsing u te bewerkstelligen.

Figuur 5.7 Blokschema van een simpele overbrenging. Als bij een uitwijking u vanuit de evenwicht-
stand een kracht F,, in dezelfde richting op het systeem moet worden uitgeoefend, houdt dat in
dat het systeem een inwendige kracht bezit die een teruggaande beweging verzorgt. Als dus u en
F,, gelijkgericht zijn is het systeem stabiel.

Voor evenwicht bij u = 0 is geéist dat daarbij F;, = 0. Het systeem is stabiel in het punt
u = 0 als in een gebied —Au < u < +Awu de op het systeem uitgeoefende kracht F;,
hetzelfde teken heeft als de erbij horende verplaatsing . Is dat niet het geval dan is het
systeem instabiel. Voor het geval dat F;, = 0 in het gehele gebied, dan is het systeem
indifferent. De helling van de F,, — u-karakteristiek bepaalt de stabiliteit/instabiliteit van
een systeem. Een positieve helling staat voor een stabiel systeem, een negatieve helling
staat voor een instabiel systeem. Dit is aangegeven in Figuur 5.8.

Bij toename van de waarden —Awu en +Awu kan de grootte van het stabiliteitsgebied
worden nagegaan. De grootte en de ligging van het stabiliteitsgebied volgt uit de waarden
van u waarvoor F, = 0 wordt.
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stabiel indifferent instabiel

Figuur 5.8 Indien u en F, gelijkgericht zijn is het systeem stabiel (links); zijn ze tegengesteld gericht
dan is het systeem instabiel (rechts); en bij F, = 0 is het systeem indifferent (middelste).

Ter verduidelijking is in Figuur 5.9 het blokschema van een kantelend blok gegeven.
Ook in de stabiliteitsbalk is aangegeven dat het stabiliteitsgebied afhankelijk is van de
afmetingen van het blok. Voordat een hoekverdraaiing optreedt moet een moment M, =
%mgh -sin (o — ¢y,) /cos a worden uitgeoefend in dezelfde richting als ¢,,. Het systeem
is stabiel. Het stabiliteitsgebied strekt zich uit tot sin (o — ) = 0; dus tot a = ¢,
of —a = —p,. Omdat a = arctan (b/h), is het stabiliteitsgebied afhankelijk van de
blokafmetingen. Bij positieve (,-waarden kantelt het blok om een andere ribbe dan bij
negatieve (,-waarden.

o
i+ sin(o—¢) h

Py :
—~) sin 2 cos(o; l

¢

o,=-0o ¢,=0 (pu:oc:arctan%
|
I

Figuur 5.9 Het blokschema van een kantelend blok en de daarbij horende stabiliteitsbalk.

In Figuur 5.10.a is het blokschema gegeven van een systeem dat twee signaalbanen parallel
heeft. Nu geldt: F,, = (H; + H2) - u. Voor stabiliteit is het nodig dat de ingangskracht
F,, en de verplaatsing u in dezelfde richting positief zijn. In een blokschema is deze
stabiliteitsvoorwaarde als volgt te formuleren:

Systeem stabiel als Hy+ H, >0
Systeem indifferent als Hi+ H,=0
Systeem instabiel als H,+ Hy, <0
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Bij stabiliteitsbeschouwingen wordt steeds uitgegaan van een verplaatsing. Daarop zijn
alle criteria gebaseerd. Het blijft echter mogelijk een alternatief blokschema op te stellen
met de ingangskracht F,, als onafhankelijke variabele. Het teruggekoppelde systeem van
Figuur 5.10.b is fysisch en mathematisch volkomen gelijkwaardig aan het parallel systeem
van Figuur 5.10.a. Voor het teruggekoppelde systeem geldt:

= — et =— (5.1)
1+ H

u
Fy
De stabiliteitsvoorwaarde (u > 0; F, > 0) leidt nu tot de formulering:

H> -1 (5.2)

Deze korte en krachtige uitdrukking is gelijkwaardig met de bovenstaande formuleringen.
Bij de stabiliteit van dynamische systemen wordt dezelfde uitdrukking veel gebruikt.

. +
u l Fu _ FuZ Fuw
H; H, 1
H, o
R A Fuo u
H,+H,>0 G=Ha o 4
H,

Figuur 5.10 De parallelschakeling van a is gelijkwaardig met de terugkoppeling van b. Toepassen
van het stabiliteitscriterium leidt tot de bijgeschreven voorwaarden, die ook gelijkwaardig zijn.

5.3 Stabiliserende systemen

In verreweg de meeste gevallen is het de bedoeling dat systemen een stabiel werkgebied
hebben. Indien het systeem in het werkgebied niet of onvoldoende stabiel is kunnen
stabiliserende maatregelen worden genomen. Deze worden in deze paragraaf besproken.

5.3.1 Stabiliseren met massa

De omgekeerde slinger uit § 5.2.3 is instabiel in het punt ¢, = 0. Stabiliteit is eenvoudig
te verkrijgen door het toevoegen van een massa. Zie Figuur 5.11. Voor een stabiel
gedrag moet ls - mg > [y - my zijn. Daarmee wordt het systeem absoluut stabiel. Na
alle uitwijkingen komt de slinger bij loslaten terug in de ¢, = 0 positie. In het geval
dat Iy - mo = Iy - mq is er een indifferent evenwicht. De stabiliteitsvoorwaarde blijkt uit
het in Figuur 5.11.b gegeven blokschema. Het blokschema is ook te presenteren als een
tegengekoppeld systeem. Zie § 5.2.4. Dat levert met H°> —1 (let goed op de tekens)
dezelfde voorwaarde.
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Figuur 5.11 a) Een omgekeerde slinger met massa m1 is te stabiliseren door toevoegen van een
massa ma. b) Uit het blokschema blijkt dat daarmee een parallelbaan ontstaat. Voor stabiliteit
moet lg - mg > 11 -mq.

5.3.2 Stabiliseren met veer

Veren kunnen op veel manieren aan de omgekeerde slinger worden toegevoegd waarbij in
veel gevallen stabiliteit ontstaat. Figuur 5.12 toont een symmetrisch opgestelde veer.

Figuur 5.12 Een omgekeerde slinger is met een veer te stabiliseren, bijvoorbeeld zoals aangegeven
in a. Het bijbehorende blokschema is gegeven in b. Voor kleine uitwijkingen kan het versimpelde
blokschema van c gebruikt worden. Als Fo > ml-g-11/l2 is het systeem stabiel voor ¢, = 0.
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Bij voldoende veerlengte en kleine afstand I kan de veerkracht als verticaal worden be-
schouwd. Afhankelijk van voorspanning en veerstijfheid kunnen verschillende stabiliteits-
gebieden worden verkregen. Figuur 5.12.b geeft het blokschema van het systeem. Daaruit
blijkt duidelijk de stabiliserende werking.

De resultaten van een nauwkeurige analyse zijn gegeven in Figuur 5.13. Bij de keuze
van een veer worden de waarden van de voorspanning Fy en de veerstijfheid ¢ bepaald.
Elk punt van het Fyy — c-vlak komt dus overeen met een gekozen veer. Langs de p-as
is aangegeven voor welke hoeken het systeem stabiel is. Een analyse leert dat het sys-
teem instabiel is onder het getekende oppervlak en stabiel erboven. Voor bijvoorbeeld
een voorspankracht Fy = 0 en een veerstijfheid ¢ = my - g - 11 /12 is het systeem instabiel
voor de hoeken — 5 < ¢ < +7. Daarbuiten is het systeem stabiel. Bij toenemende
voorspankracht en toenemende veerstijfheid neemt het stabiliteitsgebied toe. Voor alle
waarden van de veerstijfheid moet (bij positieve c-waarden) tenminste een voorspankracht

Fy =my - g-1li/ls aanwezig zijn, om een geheel stabiel systeem te bereiken.

Figuur 5.13 De stabiliteit van de veergestabilisereerde omgekeerde slinger van Figuur 5.12. Alleen
de systemen met parameters boven het getekende vlak zijn stabiel. Voor absolute stabiliteit is nodig
Fo > my - g-1li/la. Voor kleinere waarden van Fy is het systeem beperkt stabiel.

Het getekende oppervlak is de grens tussen de stabiele en de instabiele systemen. Het
oppervlak bevat de indifferente systemen. Als bijvoorbeeld bij een veerstijfheid ¢ = mq-g-
11/12, de voorspankracht Fyy zou veranderen volgens de functie Fy = (my - g- 11 /l2)cosp,
dan zou de in de figuur getekende grenskromme worden doorlopen. Daarbij zou het
systeem tussen de hoeken ¢ = —7 en +7 steeds in een toestand van indifferent evenwicht
verkeren. Systemen met een veranderende voorspankracht zijn echter niet eenvoudig te
maken en komen daarom zelden voor. Een bijzondere situatie treedt op voor ¢ = 0
en Fy = my - g -11/ls. Bij deze waarden heeft het grensoppervlak een horizontale lijn
evenwijdig met de y-as. Dan is dus een systeem gevormd dat bij constant blijvende
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systeemparameters voor alle hoeken ¢ een indifferent evenwicht bezit. Voor die waarden
van c en Fj is een indifferent systeem ontstaan. Dat was ook te verwachten. De richting
van de veerkracht is verticaal verondersteld. Dan is een constante voorspankracht en een
veerstijfheid ¢ = 0, hetzelfde als het aanbrengen van een tegenwicht (§ 5.3.1).

De bovenstaande stabiliteitsgrens is afgeleid voor een verticale veer; dus voor a/ly — co.
Voor kleine waarden van a/ls ontstaan slechts geringe afwijkingen in de afleiding. Pas
voor a/ls < 5 worden de afwijkingen groter dan 2%. Kleine waarden voor a/ls geven
constructieve problemen voor de plaatsing van de veer. Tussenschakeling van een hefboom
of een omloopschijf is dan nodig.

5.3.3 Stabiliseren met wrijving

Bij de aanwezigheid van wrijving wijzigt een systeem in de richting van een indifferent
systeem. Dat bleek reeds bij de windvaan, besproken in voorbeeld 5.2. Indien veel wrijving
aanwezig is kan de vaan nog wel versteld worden; maar blijft hij wel staan in de richting
waarin hij is achtergelaten. In het systeem is wel een terugstelkracht aanwezig, maar die
is onvoldoende groot om het systeem tegen de wrijvingskracht in te kunnen terugstellen.
Dat is dus een voorbeeld van een stabiel systeem dat door wrijving een indifferent gedrag
krijgt.

Instabiele systemen worden door wrijving gestabiliseerd. Ook zij neigen naar een indiffe-
rent gedrag. Een lichaam dat op een hellend vlak rust, is zonder wrijving een instabiel
systeem. Bij voldoende wrijving wordt het systeem indifferent. Dat geldt ook voor de
omgekeerde slinger en vele andere mechanische instabiele systemen. Verstelbare appa-
raten behouden veelal hun ingestelde positie dankzij wrijving in de verstelpunten. Bij
een aantal uitvoeringen is wrijving aangebracht als aanvulling op een gebrekkige veer-
compensatie. Stabilisatie door wrijving is een eenvoudige en goedkope manier. Om die
reden wordt het veel toegepast. Echter, het toepassen van wrijving om een systeem te
stabiliseren impliceert wel dat er bij beweging arbeid verloren gaat in het overwinnen van
de wrijvingskrachten. Dit heeft negatieve gevolgen voor de grootte van de benodigde
aandrijving en diens efficiéntie.

5.4 Indifferente systemen

In § 5.3.1. is de zwaartekrachtwerking van een massa gestabiliseerd door een andere
massa. In § 5.3.2 gebeurt hetzelfde, maar door een veer. Afgeleid is dat de veer dan
aan voorwaarden moet voldoen. Zowel aan de voorspanning als aan de veerstijfheid zijn
minimum eisen gesteld voor het bereiken van stabiliteit. De minimum eisen zijn steeds de
overgang tussen de stabiele en de instabiele systemen. Daar bevinden zich de indifferente
systemen.

Een indifferent systeem heeft een bijzondere betekenis. Dat komt goed naar voren bij
de stabilisering van een omgekeerde slinger. Als de stabilisatie is uitgevoerd door een
massa, vindt energie-uitwisseling plaats tussen de massa van de omgekeerde slinger en
de stabiliteitsmassa. Bij elke uitwijking van de slinger gaat potentiéle energie van de
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slingermassa over in potentiéle energie van de stabiliteits-massa. Bij het terugkeren in de
nulpositie gebeurt het omgekeerde. De energie-uitwisseling is perfect als geen kracht nodig
is om een uitwijking te bewerkstelligen. Als geen kracht nodig is voor het verkrijgen van
een uitwijking, neemt het systeem geen ingangsenergie op. Dat wil zeggen: het systeem
is indifferent. Indifferente systemen worden ook wel statisch gebalanceerde systemen of
neutraal stabiele systemen genoemd.

Ook bij stabilisatie van een omgekeerde slinger met een veer treedt energie-uitwisseling op.
De potentiéle energie die de slingermassa bij uitwijken afstaat wordt in de veer opgeslagen
in de vorm van elastische energie . Bij terugkeer in de nulpositie wordt elastische energie
van de veer gebruikt om de slingermassa omhoog te brengen. Energie-uitwisseling kan
ook tussen twee veren plaatsvinden. Eén veer ontspant en geeft elastische energie af.
Die energie wordt toegevoerd aan een andere veer die daarmee wordt gespannen. Dit is
toegelicht aan de hand van Figuur 5.14.

Figuur 5.14 Een hefboom is belast met een axiale veer cy en met een tangentiéle veer c1. De axiale
veer heeft een kleine veerstijfheid en levert een constante kracht Fy. De tangentiéle veer levert in
de nulpositie geen kracht. In (b) zijn de optredende veerkrachten getekend. Uit het blokschema
van (c) is de voorwaarde voor indifferentie af te leiden.

De hefboom van Figuur 5.14.a is axiaal belast met de kracht van een drukveer . Die veer
is voorgespannen met een kracht Fy. De stijfheid van de veer is klein verondersteld, zodat
de kracht Fjy constant mag worden verondersteld. Indien de kracht F{, precies door het
draaipunt van de hefboom gaat, wordt geen draaiend moment op de hefboom uitgeoefend.
Deze stand van de hefboom wordt als nulpositie beschouwd. Bij een kleine uitwijking ¢
vanuit de nulpositie oefent de axiale veer een moment M5 op de hefboom uit ter grootte:
My =Fy-¢-a-la/(a—12). Op de hefboom kan ook een tangentieel gerichte kracht
van de veer met veerstijfheid c; werken. Als de hefboom in de nulpositie staat is de
tangentiéle veer juist ongespannen. Bij een hoekverdraaiing ¢ van de hefboom wordt de
tangentiéle veer een afstand -1; ingedrukt en oefent dan een moment M, = cl-¢-1% op
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de hefboom uit. De momenten M1 en M, zijn tegengesteld gericht. Als M 1 = Mo,
dus als I3 - ¢l = I3Fy - a/(a — l2) ontstaat een indifferent systeem. Dat is verduidelijkt in
Figuur 5.14.c.

Het indifferent maken van een systeem is bijvoorbeeld toe te passen bij de vingers van
handprothesen. De beweging van de vingers (vooral van de duim) wordt hinderlijk belast
door de elastische krachten van de cosmetische handschoen. Voor het bewegen van de
vingers is dan ongewenst veel energie benodigd. Dat is te voorkomen door het toevoegen
van een extra veer. Zie Figuur 5.15. Bij een goed ontwerp ontstaat een indifferent systeem.
Er is dan geen bedieningsenergie benodigd. Bij het openen van de hand ontspant de extra
toegevoegde veer. De daarbij vrijkomende veerenergie wordt gebruikt voor het overwinnen
van de elastische krachten van de handschoen. Bij het sluiten van de hand worden in de
handschoen opgeslagen elastische krachten gebruikt om de toegevoegde veer weer te
spannen.

R

Figuur 5.15 De duimbeweging van een kunsthand worden tegengewerkt door de veerwerking van de
cosmetische handschoen. Het toevoegen van een extra veer maakt het systeem indifferent. Voor
het bewegen van de duim is dan geen energie benodigd.

5.5 Stabiliteit van vaartuigen

5.5.1 Inleiding

Op drijvende voorwerpen in rustig water werken in principe twee krachten: de zwaarte-
kracht GG en de opwaartse kracht O. Deze krachten zijn tegengesteld gericht. Bij drijvende
voorwerpen hebben G en O dezelfde grootte. Voor evenwicht is het noodzakelijk dat de
gewichtskracht en de opwaartse kracht dezelfde werklijn hebben. Voor stabiliteit moet
nog aan meer voorwaarden worden voldaan.

Vaartuigen hebben doorgaans een symmetrische opbouw. Als het midscheepse vlak ver-
ticaal staat zal er evenwicht zijn. Bij vaartuigen is het absoluut noodzakelijk dat zij
rotatie-stabiel zijn om twee horizontale assen. De stabiliteit rondom de langsscheepse as
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is het meest kritisch. Hiervoor zijn de volgende beschouwingen opgesteld.

De gewichtskracht grijpt aan in het zwaartepunt. Bij vaartuigen is het gebruikelijk om
het zwaartepunt aan te duiden met de letter G. De opwaartse kracht grijpt aan in het
zwaartepunt van de onderwatervorm. Dit punt wordt drukkingspunt genoemd en aange-
duid met de letter B. Als een schip helt, verandert de onderwatervorm en daarmee de
positie van het drukkingspunt. Bij een hellingshoek ¢ behoort een drukkingspunt B,,.
De bouw en de belading van een schip bepalen de plaats van G. Die plaats verandert niet
als het schip helt. De plaats van B, verandert wel met de hellingshoek. Bij elke hellings-
hoek van het schip zijn de gewichtskracht en de opwaartse kracht even groot, evenwijdig
en tegengesteld gericht. De arm van dit krachtenkoppel wordt gegeven door de afstand
van G tot de verticaal door B,,. De positie van G ten opzichte van deze verticaal bepaalt
daarmee de stabiliteit van een schip. Dat is toegelicht in Figuur 5.16.

stabiel indifferent instabiel
a b c

Figuur 5.16 Indien een schip helt, verplaatst het drukkingspunt B,. De onderlinge posities van
het vaste punt G en B, bepalen de stabiliteit. In (a) treedt een terugstellend moment op; het
systeem is stabiel. In (c) is het optredende moment hellingvergrotend; het systeem is instabiel.
Alleen indien G in een gebied van hellingshoeken op een verticale lijn door B, ligt, is het systeem
indifferent (b).

5.5.2 Drukkingspunt

In Figuur 5.17.a is een vaartuig van zeer eenvoudige vorm getekend. Een rechthoekig
ponton heeft een lengte [, een breedte b en een hoogte h. Het ponton heeft een diepgang
d. Het totale onderwatervolume bedraagt dus V' =1-b-d. Dit onderwatervolume wordt
aangeduid met de term waterverplaatsing. Het internationale symbool daarvoor is V
(naam symbool: nabla). Bij een rechtliggend ponton bevindt het drukkingspunt B zich
midscheeps op een afstand d/2 van de onderzijde. G en B liggen boven elkaar. Er
is evenwicht. In Figuur 5.17.b is hetzelfde ponton getekend, een hoek ¢ gedraaid van
uit de evenwichtstand. De opwaartse kracht grijpt nu aan in het punt B,; het nieuwe
drukkingspunt bij de hellingshoek .
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Figuur 5.17 Bij hellen van een schip om de langsas wordt het onderwatervolume vergroot met de
intreewig AV; en verminderd met de uittreewig AV,,. De grootte van de wiggen AV, samen met
hun horizontale zwaartepuntsafstand v, bepaalt de horizontale verschuiving B|B.

Figuur 5.18 De verschuivingsstelling. De twee massa‘s mq en m. met zwaartepunt A1 en C' vormen
samen de massa (mq + mc). Het gezamenlijk zwaartepunt ligt in G1, zodanig dat A1G1/G1C =
me/mq. Als de massa mg verplaatst naar Ag, ligt het nieuwe zwaartepunt G2 zodanig dat
A2G2/G2C = mc/mq. Dit betekent dat G1G2/A1 A2 = mg (ma + me). Ook voor de horizontaal
gemeten verschuivingen geldt dezelfde verhouding G1L/A1K = mq/(ma + me).

De afstand van B tot de verticaal door B, (in het volgende aangeduid met B|B,) is
eenvoudig te berekenen met behulp van de verschuivingsregel. De verschuivingsregel is in
Figuur 5.18 afgeleid voor gewichtskrachten, maar geldt uiteraard eveneens voor opwaartse
krachten. Bij hellen van het ponton wordt het onderwatervolume vergroot met het volume
van de intreewig AV; en verminderd met het volume van de uittreewig AV,,. De opwaartse
kracht blijft gelijk en dus geldt AV; = AV,,. Het volume van de intree- en uittreewig is
eenvoudig te berekenen:

1
AV, = AV, = gle sin (5.3)

De horizontale afstand v tussen de zwaartepunten van de intree- en uittreewig is te
berekenen: 5
2 1-—sin®2
v=-b—-—2 (5.4)
3 cos
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Voor ¢ < 7 geldt met zeer goede benadering v = %b. Bij een hellingshoek ¢ verschuift
het drukkingspunt over een horizontale afstand:

AV; lelb?’ tan ¢
v Vv

v
B|B, = (55)
In deze betrekking is %163 het kwadratisch oppervlaktemoment van de waterlijn-doorsnede.
Daarmee vereenvoudigt de formule tot:

B|B, = %tangp (5.6)

Deze formule is afgeleid voor een rechthoekig vaartuigprofiel en kleine rotatiehoeken. Bij
andere profielvormen ontstaan meestal slechts kleine afwijkingen.

5.5.3 Stabiliteit

Een vaartuig is stabiel om zijn langsas als een moment nodig is om het vaartuig uit zijn
verticale evenwichtsstand te brengen. Dat houdt in dat het koppel gevormd door de
zwaartekracht mg en de opwaartse kracht O de uitwijking tegenwerkt. Bij een rotatie
0y om het zwaartepunt G verplaatst het punt B een afstand BG - sinp,,. Zie Figuur
5.19. Een stabiel vaartuig ontstaat indien de onderwatervorm zodanig wijzigt dat de
verplaatsing van het drukkingspunt groter is dan BG - sin ¢,,. In formule:

B|By,, > BGsin g, (5.7)

Alleen dan verkrijgt het mg — O-koppel de juiste richting. Met behulp van de in § 5.5.2
afgeleide betrekking is deze uitdrukking om te zetten in een voorwaarde aan vaartuigpa-
rameters. Voor kleine hoeken (sin ¢, = tan ¢,,) luidt dan het stabiliteits-criterium:

Ju
— =B .
o =BG (5.8)

Hierin is:

Ju - Kwadratisch oppervlaktemoment van de waterlijndoorsnede om langsas.
V - Waterverplaatsing.
BG - Afstand zwaartepunt tot drukkingspunt in verticale vaartuigpositie.

De stabiliteitsvoorwaarde volgt ook uit het blokschema voor rotaties om de u-as. Zie
Figuur 5.19. De eis dat een positief moment M,, ontstaat leidt direct tot de voorwaarde
B|By, > BG -sing,. Daaruit volgt de bovengenoemde stabiliteitsvoorwaarde. Nadruk-
kelijk wordt hier nog gesteld dat de gegeven stabiliteitsvoorwaarde is afgeleid voor kleine
rotatiechoeken. De formule kan niet gebruikt worden bij grote rotatiehoeken. Er wordt
alleen uitspraak gedaan over de stabiliteit van het evenwicht; niet over de grootte van het
stabiliteitsgebied.
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Figuur 5.19 In (a) is een om de langsas geroteerd vaartuig getekend. Uit het blokschema van de
rotatie (b) volgt dat het vaartuig stabiel is als M,, > 0 dus als B|By > BG - sin¢,,. Voor kleine
hoeken geldt sin ¢, = tan¢,. Daarmee vereenvoudigt het blokschema tot (c). Daaruit volgt
direct de stabiliteitsvoorwaarde J,,/V > BG. In (a) is ook de metacenterhoogte GM aangegeven.

Scheepsbouwkundigen duiden de stabiliteit van een schip aan met de metacenterhoogte.
Deze is aangegeven in Figuur 5.17. De verticaal door het drukkingspunt By, snijdt het
midscheepse vlak in het punt M, metacenter genaamd. De afstand GM staat bekend
als de metacenterhoogte. Een positieve waarde voor GM komt overeen met een positief
moment M,,. Een positieve metacenterhoogte betekent dus een stabiel schip. Voor grote
hellingshoeken ¢, is er nog wel een snijpunt tussen de werklijn van de opwaartse kracht
en het midscheepse vlak. Dat snijpunt — vals metacenter genaamd — valt doorgaans niet
samen met het ware metacenter, en kan niet gebruikt worden voor de berekening van de
metacenterhoogte.

5.5.4 Invloed van de vorm

In de vorige paragraaf is de stabiliteitsvoorwaarde berekend uit de verschuiving van het
drukkingspunt ten gevolge van de verandering van de onderwatervorm van het vaartuig.
De vorm van het vaartuig beinvloedt de stabiliteit. In deze paragraaf wordt deze invloed
nader besproken.
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Figuur 5.20 Dwarsdoorsnede van een drijvende cilinder met centraal zwaartepunt G. In a is uit-
gangspositie getekend. Bij rotatie (b) blijft het drukkingspunt juist onder het zwaartepunt. Het
evenwicht is indifferent.

In figuur 5.20 is een drijvende cilinder (straal R en lengte ) getekend. Het zwaartepunt
G ligt op de centrale as. Door berekening of uit de handboeken volgen de waarden voor
Ju — kwadratisch oppervlaktemoment van de waterlijndoorsnede om de langsas, BG en
de waterverplaatsing V.

Ju = 6% b - waterlijnbreedte
BG = %bS/A A - segmentopperviak
A = 1R* (20 — sin20a) « - middelpuntshoek

Met b = 2R -sina en V = A -1 volgt hieruit de gelijkheid J,,/V = BG. Dit komt geheel
overeen met uit de praktijk bekend gedrag. Er is geen voorkeurspositie. Het evenwicht is
indifferent. Daarbij moet worden bedacht dat dit indifferente evenwicht alleen aanwezig
is bij cilinders met een centraal zwaartepunt.

Een vaartuig, waarvan de romp een deel van een cilinder is, heeft een eenvoudig te bepa-
len stabiliteitsgedrag. Het indifferente evenwicht van een drijvende cilinder met centraal
zwaartepunt is de overgang tussen de stabiele en de instabiele vaartuigen met cilinder-
vormige romp . De hoogte z die het zwaartepunt van het schip boven de waterlijn mag
liggen is te berekenen uit de waterlijnbreedte b en de diepgang d. De relatieve zwaar-
tepuntligging z/d is in Figuur 5.21 uitgezet als functie van de b/d-verhouding. De lijn
geeft de vaartuigen met een indifferent evenwicht aan. Het gebied onder de lijn geeft de
stabiele vaartuigen aan.

Vaartuigen met een rechthoekige of een driehoekige rompvorm kunnen ook een indiffe-
rent gedrag bezitten. Berekening daarvan levert de twee andere lijnen van Figuur 5.21.
Bij eenzelfde breedte/diepgang-verhouding kan een grotere relatieve zwaartepuntshoogte
worden verkregen bij een driehoekige rompvorm dan bij een cilindervormige of rechthoe-
kige dwarsdoorsnede. De driehoekige rompvorm levert de meest stabiele schepen, de
rechthoekige de minst stabiele.

De grafieken van Figuur 5.21 hebben alle een negatief deel. Dat deel geeft de vaartui-
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gen aan, waarvan het zwaartepunt onder de waterlijn ligt. Voor b/d < /2 is dit voor
het stabiele driehoekige profiel nodig. Het rechthoekige profiel moet al bij b/d < /6
een zwaartepunt onder de waterlijn bezitten. Een zwaartepunt dat meer dan de halve
diepgang onder de waterlijn ligt (z/d < —0,5) levert altijd een stabiel vaartuig op.

- relatieve zwaartepuntshoogte z/d
~/ T
61
—
51
=
instabiel
3
=
11 stabiel
e—" T
1 2 3 4 5 6 7
=17 relatieve breedte b/d

Figuur 5.21 De invioed van de vorm van een vaartuig op de stabiliteit. De lijnen geven de grens
aan van stabiele en instabiele vaartuigen bij verschillende rompvormen. YV = driehoekige, U =
cilindervormige en 00 = rechthoekige dwarsdoorsnede. Bij eenzelfde b/d-verhouding levert een
driehoekige dwarsdoorsnede het meest stabiele schip.

Met de karakteristieken van Figuur 5.21 is het mogelijk de stabiliteit van verschillende
rompvormen in elkaar om te rekenen. Zie Figuur 5.22. De aangegeven onderwaterpro-
fielen hebben alle dezelfde zwaartepuntshoogte boven de waterlijn. Bij de aangegeven
verhoudingen zijn de drie profielen met zeer goede benadering in indifferent evenwicht.

G G !
o o
¥ | Y ! ¥ |
%du_l_l dL\J_/ éd\/
b b b

Figuur 5.22 Het cilindervormige vaartuigprofiel met waterlijnbreedte b en diepgang d is juist indiffe-
rent bij een zwaartepunt z boven de waterlijn. Bij eenzelfde waterlijnbreedte b zijn het rechthoekige
en driehoekige profiel ook juist indifferent, indien de diepgang respectievelijk 3/4d en 4/3d bedraagt.
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5.6 Stabiliteit van voertuigen

Dit houdt in dat de stabiliteit van bijvoorbeeld een ponton eenvoudig is te bepalen. Bij
eenzelfde waterlijnbreedte b is het overeenkomende cilindersegmentprofiel snel te bepalen;
dilinder = %drechthoek. Van het cilindersegmentprofiel is de indifferente zwaartepuntsligging
direct te vinden door een middelloodlijnconstructie. Zie Figuur 5.23. Dat is dan ook de

indifferente zwaartepuntsligging van het rechthoekige profiel.

Op overeenkomstige wijze is de maximale zwaartepuntsligging van een driehoekig profiel
te vinden. Bij werken met de getallen 3 en 2 ontstaan zeer goede benaderingen van de

theoretische waarden.
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Figuur 5.23 Grafische bepaling van de hoogste zwaartepuntsligging van een ponton.
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Door de

pontondiepgang met 4/3 te vermenigvuldigen ontstaat de diepgang van een cilinderprofiel met
eenzelfde indifferente stabiliteit. Met behulp van een middelloodlijnconstructie is het indifferente

zwaartepunt van het cilinderprofiel en dus ook van het ponton te vinden.

5.6 Stabiliteit van voertuigen

Alvorens de stabiliteit van voertuigen te onderzoeken is het gewenst inzicht te hebben in
het weggedrag van wielen. In het volgende zullen de contactkrachten wiel /wegdek worden

geanalyseerd in drie verschillende gebruiksomstandigheden.

5.6.1 Het weggedrag van een geblokkeerd wiel

In Figuur 5.24 is een geblokkeerd wiel van boven getekend. Het punt C' geeft het centrum

van het contactvlak wiel /wegdek aan.

-
/
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*'\*E
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Figuur 5.24 Een voertuig beweegt langs de lijn CP met een geblokkeerd wiel. De tekening geeft een
bovenaanzicht van het wiel. Het eind van de wrijvingskrachtvector moet op de gestippelde cirkel
liggen. In het contactvlak wiel/wegdek heerst een wrijvingskracht Wmax die tegengesteld gericht is

aan de bewegingsrichting.
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5.6 Stabiliteit van voertuigen Stabiliteit

De bewegingsrichting van het contactvlak is dezelfde als die van het voertuig. De wrij-
vingskracht W is steeds tegengesteld gericht aan de bewegingsrichting van het voertuig
en heeft een grootte Wiax = f - N, waarin N de kracht is waarmee het wiel tegen het
wegdek wordt gedrukt en f de dynamische wrijvingscoéfficiént is (zie § 4.1 over droge
wrijving). Bij een beweging van het voertuig langs de lijn CP in de richting van de pijl
behoort de wrijvingsvector W.

5.6.2 Het weggedrag van een vrij rollend wiel

Het weggedrag van een vrijrollend wiel is ook eenvoudig. Als de bewegingsrichting van het
voertuig valt langs de lijn VC A is er geen wrijvingskracht in het contactvlak wiel /wegdek
aanwezig (de wrijvingskracht nodig voor het overwinnen van de wiel-lagerwrijving is ver-
waarloosd). Zodra de bewegingsrichting niet meer precies samenvalt met de lijn VCA,
heeft het wiel een zijdelingse slip en treedt de maximale wrijvingskracht op. Indien de op-
tredende beweging een rechtsgerichte component bezit (zoals bijvoorbeeld bij de voertuig-
richtingen C'P; of C'P, in Figuur 5.25) is een linksgerichte wrijvingskracht W; aanwezig.
Bij een linksgerichte snelheidscomponent van het voertuig treedt W,. op. De optredende
wrijvingskracht is of W; of W,. of W = 0. Bij een vrijrollend star wiel is er geen andere
mogelijkheid.

Figuur 5.25 Bovenaanzicht van een vrijrollend wiel. De wrijvingskracht W in het contactvlak
wiel/wegdek van een vrijrollend wiel heeft drie mogelijkheden. Is de bewegingsrichting van het
voertuig langs de lijn CV dan is W = 0. Een rechtsgerichte snelheid van het voertuig (richting
CPy of CP>) veroorzaakt een wrijvingskracht W, Een linksgerichte voertuigsnelheid veroorzaakt
een wrijvings-kracht W, Zowel W, als W, zijn maximale wrijvingskrachten.

5.6.3 Het weggedrag van een geremd rollend wiel

Dit is een complexe situatie. In Figuur 5.26.a is een wiel getekend. Er wordt geremd met
een moment M,,. Het momentenevenwicht van het wiel vereist dan dat in het contactvlak
wiel /wegdek een wrijvingskracht Wy = M.,/ R aanwezig is (R = straal wiel). Als de wielas
beweegt met een voorwaarts gerichte snelheid v zal deze wrijvingskracht W de beweging
afremmen. Indien de beweging van de as een zijdelingse component krijgt, moet ook
de wrijvingskracht een zijdelingse component hebben. De totale wrijvingskrachtvector
heeft echter een maximale waarde W,.x. De optredende wrijvingskracht is ;. Deze
wrijvingskrachtvector W7 wijzigt niet als de assnelheid verandert. Voor alle snelheden v,
die gericht zijn tussen vy en vVgrens treedt de wrijvingskracht W op. Pas als de hoek die
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Stabiliteit 5.6 Stabiliteit van voertuigen

Uas Maakt met het wielvlak kleiner is dan 8 (vas meer axiaal gericht dan vgrens), verandert
de situatie. De hoek (3 kan bepaald worden aan de hand van het gegeven remmoment
M., en de dynamische wrijvingscoéfficiént f. In dat geval wordt de tangentieel gerichte
component van de wrijvingskracht kleiner dan W;. De totale wrijvingskrachtvector heeft
dan de maximale waarde W,,... Het gevolg is dat het remmoment M, overheerst en het
wiel blokkeert.

De optredende wrijvingskracht beinvloedt de wielrotatie. De snelheid van het contactvlak
wiel /wegdek is steeds tegengesteld gericht aan de wrijvingsvector. De snelheid van het
contactvlak is steeds gelijk aan de vectorische som van de assnelheid v, en de wielrota-
tiesnelheid vyot. Zie Figuur 5.26.b. Naarmate de assnelheid meer overeenkomt met vgrens
wordt vyo kleiner. Als v,5 = Vgrens dan is vt = 0; het wiel roteert niet.

E Vwi\el/WEQ
/

Figuur 5.26 a) Een voertuigwiel wordt afgeremd met een constant remkoppel M,,. Dat resulteert
in een wrijvingskracht Wo = M., /R in het contactvlak wiel/wegdek. b) De wrijvingskracht is
tegengesteld gericht aan de beweging. Als de richting van de voertuigsnelheid afwijkt van de
rotatievlak moet het contactvlak een zijdelingse slip opnemen. Er ontstaat een wrijvingskracht W7 .
Dat is het geval voor alle vas tussen v en vgrens. De contactvilaksnelheid v jej/yegdek iS tegengesteld
gericht aan W1 (b). Er geldt Unviel/wegdek = Vas + Urot- Als va5 = Vgrens dan draait het wiel niet.

Een verdere verduidelijking van het wielgedrag in de situaties vrijrollend, geremd rollend
en blokkerend is gegeven in de ruimtelijke schets van Figuur 5.27.

5.6.4 Stabiliteit van geremde voertuigen

De stabiliteit van voertuigen is een bijzonder gecompliceerd fenomeen. In het volgende is
alleen de rotatiestabiliteit om een verticale w-as van vierwielige voertuigen geanalyseerd.
Dit stabiliteitsonderzoek is in drie gebruikstoestanden onderzocht:

A - alle wielen blokkeren
B - de voorwielen blokkeren : de achterwielen niet
C - de achterwielen blokkeren ; de voorwielen niet

Er is aangenomen dat het voertuig zich remmend op een glad wegdek bevindt, terwijl het
voertuig aan het begin van de remprocedure een snelheid v heeft. Verder is verondersteld
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wiel, top wae\,top \Y

wiel, top

Vwiel/weg

wiel/weg

vrijrollend geremd rollend blokkerend

Figuur 5.27 Wielgedrag bij remmen. Zolang het wiel vrij rolt, heeft het contactvlak wiel-weg geen
tangentiéle snelheidscomponent. Dan is vy weg = Vas-axiaal- De wrijvingskracht W' is axiaal gericht.
Bij remmen moet de wrijvingskracht W een tangentiéle component hebben. De axiale component
is zo groot mogelijk. Het eindpunt van de wrijvingsvector moet op de in het grondviak getekende
streeplijn liggen. Omdat vyjeweg tegengesteld gericht is aan W heeft het wiel rotatieslip. Bij het
geblokkeerde wiel heerst overal dezelfde snelheid vss. De wrijvingsvector is daaraan tegengesteld
gericht. Het eindpunt ligt op de gestreepte cirkel. Alle snelheden zijn gegeven ten opzichte van het
wegdek.

dat het zwaartepunt van het voertuig zich vlak boven het wegdek bevindt; bij remmen
veranderen de wrijvingskrachten tussen wiel en wegdek niet. Dynamische effecten zijn
niet meebeschouwd.

A. Alle wielen blokkeren

Dit geval is eenvoudig. Op alle wielen werkt in het contactvlak wiel/wegdek een wrij-
vingskracht W, tegengesteld aan de bewegingsrichting. Zie Figuur 5.28.a. Deze krachten
zijn twee aan twee samen te stellen. Bij elke ¢,, ontstaat een in het zwaartepunt van het
voertuig aangrijpende kracht ter grootte 4.-W. Het evenwicht is indifferent. Zie ook het
blokschema van Figuur 5.28.b, waaruit duidelijk blijkt dat het rotatiemoment nodig om
P te behouden gelijk is aan M, = 0.

Door verschillen in de wrijvingscoéfficiént kunnen verschillen in W ontstaan waardoor
zwakke rotatiemomenten kunnen optreden. Zodra een rotatie optreedt, wijzigt de richting
van de wrijvingskrachten, waardoor een tegenwerkend moment ontstaat. Een voertuig met
geblokkeerde wielen zal zonder veel rotatie rechtlijnig voortbewegen.
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Figuur 5.28 Een voertuig beweegt met een snelheid v met geblokkeerde wielen over een wegdek.
In elk wiel ontstaat een wrijvingskracht W. Het blokschema (b) geeft de momenten om het
zwaartepunt die deze wrijvingskrachten veroorzaken. Het resulterend moment M,, = 0. Dat geldt
voor elke rotatiehoek ,,. Het systeem is indifferent.

B. De voorwielen blokkeren ; de achterwielen niet

Indien de voorwielen blokkeren is de wielstand niet van belang. De wrijvingskracht is
steeds tegengesteld gericht aan de bewegingsrichting. De wrijvingskracht op de achter-
wielen heeft een sterk richtend effect op de koers van het voertuig. Hier geldt de situatie
van § 5.6.3. Zodra de richting van de voertuigsnelheid niet meer precies loodrecht op
de draaiingsas van de achterwielen staat, ontstaat een wrijvingskracht met een grote
zijdelingse component die een rotatie tegenwerkt. Zie Figuur 5.29.

Er is een moment voor nodig om een rotatie te verkrijgen. Voor dit geval geldt het
blokschema van Figuur 5.29.b. Door samenvoegen van goniometrische termen en door
verschuiven van het optelpunt is dit blokschema te vereenvoudigen tot dat van Figuur
5.29.d. Hieruit blijkt dat voor de stabiliteit vereist is dat cos 8 > sin ¢, of 8 < 5 — ©y.

Bij licht remmen is 8 klein; naarmate sterker geremd wordt neemt 8 toe. De hoek (3
mag maximaal 8 = 7 — ¢, worden. Dan zijn de wrijvingskrachten tegengesteld aan
de snelheidvector, en is de situatie overeenkomstig Figuur 5.28. Zolang 8 < 5 — ¢y
is een geremd voertuig dat met geblokkeerde voorwielen voortschuift, een rotatie-stabiel
systeem.
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Figuur 5.29 Een voertuig beweegt met een snelheid v over een wegdek. Bij het remmen blokkeren
de voorwielen. De achterwielen blijven echter draaien. Uit (a) blijkt dat reeds bij een zeer kleine
uitwijking ¢., een corrigerend moment ontstaat ten gevolge van de wrijvingskrachten op de ach-
terwielen. In (b) is het blokschema getekend. Dit blokschema is vereenvoudigd tot (c) en door
verschuiven van het aftrekpunt tot (d). Het systeem is stabiel als My, > 0, dus als sin ¢, < cos f3.

C. De achterwielen blokkeren : de voorwielen niet

Bij het blokkeren van de achterwielen ontstaan op deze wielen wrijvingskrachten tegen-
gesteld aan de bewegingsrichting. Als aangenomen wordt dat hoek ¢,, ongelijk aan nul
is, en dat de voorwielen in de rechtuit-stand staan, dan ontstaan op de voorwielen wrij-
vingskrachten met een grote zijdelingse component (zie § 5.6.3). Deze wrijvingskrachten
wekken een instabiliteit op. Een geremd voertuig dat met geblokkeerde achterwielen
voortschuift, is rotatie-instabiel. Door verdraaiing van de voorwielen is een terugdraaiend
moment te verkrijgen. Daarmee is de koers van het voertuig beheersbaar, zie Figuur 5.30.
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Figuur 5.30 Een voertuig beweegt met een snelheid v over een wegdek. Bij het remmen blokkeren
de achterwielen; de voorwielen blijven ronddraaien. In (a) staan de voorwielen in de rechtuit-
stand. De op de voorwielen werkende wrijvingskrachten vergroten een aanwezige uitwijking pq,.
Het systeem is instabiel. Door verdraaiing van de voorwielen (b) is een terugdraaiend moment te
verkrijgen. Daarmee is de koers van het voertuig beheersbaar. Het voertuig blijft instabiel. In (c)
is het vereenvoudigde blokschema getekend.

De instabiliteit is veroorzaakt door de werking van de voorwielen. Zoals uit de modelvor-
ming van § 5.6.3 blijkt, is de optredende wrijvingskracht vooral afhankelijk van de hoek
tussen de wielomtreksnelheid en de voertuigsnelheid. Als deze hoek van teken verandert,
doet de zijdelingse component van de wrijvingskracht dat ook. Door verdraaien van de
voorwielen kan de hoek gewijzigd worden. Als de voorwielen worden verdraaid over een
hoek ~y die groter is dan de reeds opgetreden rotatiehoek ¢,, van het voertuig, dan geven
de wrijvingskrachten op de voorwielen een terugdraaiend moment. Daarmee is het voer-
tuig beheersbaar, maar niet stabiel. De situatie is te vergelijken met het balanceren van
een stok op een hand. De stok is met handbewegingen verticaal te houden, maar blijft
instabiel. Bij een voertuig is de maximale verdraaiingshoek van de voorwielen ongeveer
45°. Een achterwielslip waarbij het voertuig minder dan 45° verdraaid is, kan nog gecor-
rigeerd worden door een stuurverdraaiing. Een voertuig dat reeds meer dan 45° is geslipt,
is onbeheersbaar.

Figuur 5.31 geeft een overzicht van de stabiliteit van voertuigen in de drie beschreven
situaties.
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Figuur 5.31 Overzicht van de stabiliteit van voertuigen. De wielen zijn gekarakteriseerd door hun
wrijvings-vectorfiguur; bij geremde wielen een cirkelsegment, bij blokkerende wielen een volledige
cirkel. De pijl v duidt de bewegingsrichting aan. Blokkerende achterwielen veroorzaken een instabiel
weggedrag.

5.7 Overzicht

Een lichaam in de ruimte heeft in principe zes vrijheidsgraden: drie translaties en drie
rotaties. Voor totale stabiliteit moet aan de stabiliteitsvoorwaarde voor elke vrijheidsgraad
worden voldaan.

Een lichaam kan stabiel en instabiel zijn opgesteld, maar ook indifferent. De indifferente
systemen zijn op te vatten als het grensgeval tussen de stabiele en instabiele systemen in.
Bij het onderzoek naar de stabiliteit is de verplaatsing als onafhankelijk ingangssignaal te
kiezen. Indien aan een systeem een uitwijking (translatie of rotatie) wordt toegevoerd,
en als daarvoor op het systeem een kracht of moment in dezelfde richting moet worden
uitgeoefend, dan is dat systeem stabiel. Als deze uit te oefenen kracht of moment negatief
is (een verdere uitwijking van het systeem moet worden tegengewerkt), dan is het systeem
instabiel. Als geen kracht of moment nodig is dan is het systeem indifferent.

In de paragrafen 5.3 en 5.4 zijn mogelijke beinvloedingen van de stabiliteit door middel
van massa's, veren en wrijving nader onderzocht. De extra mogelijkheden zijn belicht die
ontstaan wanneer een systeem indifferent gemaakt wordt.

Verder is veel aandacht besteed aan de stabiliteit van vaartuigen en voertuigen. Van beide
bleek de statische stabiliteit al zeer complex. Hier bleek ook dat de stabiliteiten van de
verschillende vrijheidsgraden elkaar beinvloeden.
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Hoofdstuk 6

Mechanische versterkers

6.1 Inleiding

Onder mechanische versterkers worden apparaten verstaan die mechanische grootheden
zoals kracht, verplaatsing, moment, hoek, toerental, druk en volumestroom versterken.
In dit hoofdstuk valt de nadruk op het versterken van kracht en moment, waarbij zes prin-
cipiéle mogelijkheden worden toegelicht: § 6.2 hefboomwerking, § 6.3 krachtontbinding,
§ 6.4 hellend vlak, § 6.5 meekoppeling, § 6.6 servosystemen en § 6.7 compensatie.

In de meeste gevallen is de mechanische versterker als afzonderlijke vierpool (zie Hoofdstuk
2: Modelvorming) behandeld; dus los van de aandrijvende bron en los van de belasting.
Dit is gedaan om de nadruk te leggen op de mechanische versterking zelf. Maar let op
dit is dan maar een deel van een systeem. Voor een totaalontwerp of totale constructie
geldt dat het van belang is om de aandrijvende bron en belasting mee te beschouwen
(Hoofdstuk 2 Modelvorming).

Bij de mechanische versterkers in dit hoofdstuk wordt de versterking met behulp van
statische krachten verkregen. Het is echter ook mogelijk met dynamische krachten
(versnellings- en vertragingskrachten) een mechanische versterker te bouwen. Deze wor-
den echter in dit hoofdstuk niet besproken. Hoe groot de versterkingsfactor van een
mechanische versterker moet worden gekozen is een belangrijke keuze die niet in dit
hoofdstuk maar in Hoofdstuk 10 Aandrijvingen wordt behandeld.

6.2 Hefboomwerking

6.2.1 Overbrengingen voor translerende beweging

De rechte hefboom is reeds besproken in het hoofdstuk over Modelvorming (Hoofdstuk
2). In veel apparaten zal de hefboom een andere vorm hebben.

Voorbeeld De spijkertrekker van Figuur 6.1 is ook als een hefboom te beschouwen. De
situatie is echter gecompliceerder dan een simpele scharnierende hefboom zoals je hebt bij
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een wipwap. De spijkertrekker heeft namelijk geen vast draaipunt. De ronde onderzijde
van de spijkertrekker rolt af over de ondergrond. Indien het raakpunt van de spijkertrekker
met de ondergrond als draaipunt wordt beschouwd, geldt het blokschema van Figuur 6.1.

Fh M Fs Fhout
_ 4 114,
Fh—a| ——=sh + _
XZ
2h i
Spij-
\ ker
I S f s
s i 1/, s
Fs

Figuur 6.1 De krachtversterkende werking van een spijkertrekker. De hefboom heeft geen vast
draaipunt; de spijkertrekker rolt af langs de ondergrond. Daarom zijn een aantal overbrengings-
verhoudingen niet-lineair, wat weergegeven wordt in het blokschema door blokken met dubbele
rand.

De kracht van de hand F}, op de steel van de spijkertrekker veroorzaakt een kracht F
op de spijker. Pas indien F; groter is dan de wrijvingskracht tussen de spijker en het
hout (Fhout) zal er beweging kunnen optreden, en zal verplaatsing s, ter hoogte van de
spijkerkop toenemen. De blokken hebben een dubbele rand om aan te geven dat het blok
een niet-lineaire overbrengingsverhouding bevat. De lengten [;, en I zijn beide functies
van de afmetingen van de spijkertrekker en van de verdraaiingshoek .

Voorbeeld De handrem van een fiets is gemodelleerd in Figuur 6.2. Daarin is de be-
dieningshendel van een fietsrem getekend die een vast draaipunt heeft. Door gebruik te
maken van modelvorming is verondersteld dat de handkracht Fj, steeds op dezelfde plaats
van de handel aangrijpt, en steeds zo is gericht dat een moment F}, - [;, ten opzichte van
het draaipunt wordt uitgeoefend.

Bij de velg van het fietswiel bevinden zich de remhefbomen (figuur 6.2 links). Voor de
eenvoud wordt hier slechts één hefboom beschouwd. De remhefboom is gekoppeld aan
de bedieningshendel door de remkabel die bestaat uit een buitenkabel die vast zit aan de
wereld en een binnenkabel die verplaatst als de bedieningshendel bewogen wordt. In het
eerste deel van het samenknijpen van de bedieningshendel is alleen de verplaatsingsfunctie
van de hefboom van belang, aangezien het remblokje dan nog geen contact maakt met
de velgrand. Bij bewegen van de hand over een afstand s; verdraait de hefboom over
een hoek ¢, . De binnenkabel wordt daardoor een afstand sy verplaatst in horizontale
richting naar rechts. Het remblokje beweegt bij benadering dan een afstand s, = sy -1/,
naar de velgrand toe in horizontale richting naar links. De situatie wordt anders op het
moment dat het remblokje gaat aanliggen tegen de velgrand. Dan is s; precies gelijk
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aan de oorspronkelijke vrijloopruimte sy tussen velgrand en remblokje. Bij groter worden
van s, wordt het verschil s,- sg positief. Onder deze voorwaarde wordt de rest van het
blokschema geldig. Dat is aangegeven door het blok met het ‘diode-symbool’ dat in de
elektronica gebruikt wordt om aan te geven dat de stroom alleen in de richting van de
pijl kan lopen. Alleen als s, — sg > 0 wordt het signaal doorgelaten naar de volgende
blokken. De verplaatsing van het remblokje kan slechts groter worden dan sq als het rem-
blokje inveert. Bij een veerstijfheid ¢, is daarvoor een kracht F, = ¢ - (s, — s9) nodig.
De opgewekte kracht F} veroorzaakt een tangentieel gerichte wrijvingskracht op de velg
van het draaiende fietswiel. Het aandrukken van het remblokje veroorzaakt een remmend
moment op het fietswiel.

My =f-F, Ry (Ry is de straal van de fietswielvelg) (6.1)

Dit remmend moment veroorzaakt door wrijving is een essentieel onderdeel van de werking
van de handrem en moet dus absoluut meegenomen worden in het blokschema.

n_+ I Mw
< 1/4, 4 O 112, % f Rw F—
Fr My, Fe Fy

Figuur 6.2 De werking van de handrem van een fiets. Het remsysteem is vereenvoudigd tot de
bediening van slechts één remschoen (links) die via de remkabel (linksboven) en de bedieningshendel
wordt geactiveerd (midden boven). De remkabel bestaat uit de buitenkabel (gearceerd) en een
binnenkabel. De invloed van de vrije slag van de remschoenen en de vering van de aandrijfkabel
zijn in het blokschema aangegeven. De benodigde veer voor het terugstellen van de remblokken is
weggelaten.
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Het aandrukken van het remblokje met kracht Fj, vereist in de binnenkabel een trekkracht:

Iy

Fi=Fy-

(6.2)
De kabelkracht F}, doet de kabel rekken. Bij een veerstijfheid ¢, bedraagt de kabelrek
$r = Fy/ck. Als de kabel rekt moet de bedieningshendel meer verdraaien voor eenzelfde
verplaatsing van het remblokje. Er geldt:

l
sbz(sk—sr)-l—b

(6.3)

De afgeleide formule is een benadering voor de hefboomwerking.
We lichten nog een extra stap toe namelijk de wrijving in dit systeem (zie basisprincipe in
Hoofdstuk 4 Wrijving en weerstand). Als je in eerste instantie geen idee hebt hoe groot
een wrijvingskracht zal zijn en of je deze mag verwaarlozen, kun je beginnen door eerst
een model te maken zonder de wrijving en deze dan in tweede instantie pas toe te voegen.
Dat verhoogt het begrip. In de werkelijke situatie ondervindt de binnenkabel nog een
ongewenste wrijvingskracht W, veroorzaakt door het glijden in de buitenkabel. Ook deze
wrijvingskracht W dient gemodelleerd te worden in het blokschema, omdat deze meestal
een behoorlijk grote waarde heeft. W is sterk afhankelijk van het aantal bochten in de
geleiding en van de grootte van de kabelkracht. In het blokschema is de grootte van
W niet nader gespecificeerd. Met het meebeschouwen van de wrijving in de buitenkabel
wordt de bedieningskracht:

F,=(F,+W)- ;—: (6.4)
De wrijvingskracht W die de binnenkabel ondervindt, grijpt niet op één plaats aan, maar
is verdeeld over de lengte van de kabel. Dat betekent dat de kracht in de binnenkabel niet
overal even groot is. Dientengevolge zal de binnenkabel ook niet gelijkmatig rekken. In
het blokschema is aangenomen dat de rek in de kabel veroorzaakt wordt door de kracht
Fi, + W. Dat is de meest ongunstige situatie. De werkelijk optredende rek zal kleiner
zijn.
De wrijvingen in de draaipunten van de remhefboom en bedieningshefboom zijn doorgaans
te verwaarlozen ten opzichte van de kabelwrijving. Zodra de hand niet meer in staat is
om een grotere bedieningskracht te leveren, neemt ook de verplaatsing s;, niet meer toe.

In de twee bovenstaande voorbeelden is de hefboom in gebruik als krachtversterker. Dat
is niet altijd het geval. In een aantal toepassingen wordt de hefboom als wegversterker
gebruikt.

Voorbeeld Een bekend voorbeeld zijn de spieren in het menselijke bewegingsapparaat.
Stel je een menselijke arm voor die naar beneden hangt met een kogel in de hand. De
hand tilt de kogel vervolgens op tot de stand die is getekend in Figuur 6.3. Je ziet daar
een elleboog die is gemodelleerd door een rotatiescharnier en (voor het inzicht slechts)
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één spier die vastzit op de onderarm op een afstand al van het rotatiescharnier van de
elleboog. Te zien is dat er een hefboom ontstaat waarbij de hand met het object op een
afstand as een kracht Fy uitoefent. De hand beweegt bij het heffen over een grotere
afstand dan de bedienende spier, die maar verkort over een kleine afstand. Dit komt door
de grotere momentarm. Aangezien momentenevenwicht heerst rondom het rotatieschar-
nier van de elleboog is af te leiden dat de bedienende kracht van de biceps-spier F; veel
groter is dan de kracht die de hand kan uitoefenen F5.

Een gelijksoortige opbouw waarbij de hefboom als wegversterker gebruikt wordt is te zien
bij veel werktuigen die met hydraulisch bediende hefbomen zijn uitgerust. Voorbeelden
zijn mobiele hefkranen, grondbewerkingsmachines en verstelmachines.

Figuur 6.3 Bij het tillen van een object met gewicht F» wordt de onderarm als hefboom met
wegvergroting gebruikt. De door de biceps uit te oefenen bedieningskracht F is veel groter dan
het getilde gewicht F». Bij de mens is de verhouding az/a1 ~ 7.

6.2.2 Overbrengingen voor roterende beweging

Het principe van krachtvergroting door hefboomwerking is ook toepasbaar op roterende
onderdelen.

Voorbeeld Een voorbeeld van een eenvoudige katrol is getoond in Figuur 6.4, waar de
analogie met de hefboomwerking van een conventionele wipwap is weergegeven.

Voorbeeld Een meer complexe toepassing van roterende hefboomwerking is de hangende
katrol in Figuur 6.5.a. Opnieuw is het hefboom-analogon weergegeven (Figuur 6.5.b), als-
mede het kracht- en verplaatsingsgedrag (Figuur 6.5.c en d), als het algemene blokschema
(Figuur 6.5.e). Het blokschema heeft twee krachtuitgangen. Als de ingangskracht F} is
gegeven, zijn de kracht F5 in het andere part en de askracht F5 bepaald (controleer zelf
met Figuur 6.5.c). Zoals je ziet is in dit voorbeeld het verplaatsingsgedrag wat complexer.
Voor een juiste positiebepaling van het katrol moeten twee van de 3 verplaatsingen zijn
gegeven. Het blokschema heeft dan ook twee verplaatsingsingangen s3 en so in symme-
trie met het krachtgedrag. Het gegeven schema heeft een grote overeenkomst met het
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blokschema van een hefboom met bewegend steunpunt uit Figuur 2.13.e. Per definitie
heeft de katrol gelijke hefboomarmen. Dus bij invullen van @ = b in Figuur 2.13.e en het
weglaten van de veerwerking worden de blokschema's gelijk.

VA
F
b v
% 7
3
] F
. SE—

a. C.

Figuur 6.4 In a is schematisch een eenvoudig hijswerktuig (katrol) getekend. In het frontaanzicht
b is de krachtversterking aangegeven, die volledig overeenkomt met de hefboomwerking getoond
in c.

T TF1 Fj TF1 S3 S [S

Figuur 6.5 Een hangende katrol (a) is op te vatten als een hefboom met het draaipunt op de
katrolomtrek (b). In (c) zijn de optredende krachten getekend. In (d) de optredende verplaatsingen
voor het algemene geval dat s3 # 0. Er geldt dat 2so = s1 + s3. Het algemene blokschema (e)
heeft twee krachtuitgangen en twee verplaatsingsingangen. Vergelijk Figuur 2.13.e.

Het principe van de hangende katrol is zeer goed in serie toe te passen om een kracht-
versterking te krijgen (Figuur 6.6). In beide constructies in de figuur is de meest rechtse
katrol een omloopschijf, die niet aan de krachtversterking mee doet, maar dient slechts
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om de krachtrichting om te draaien zodat je bijvoorbeeld de last F5 omhoog kan hijsen
door het touw in F} met je handen omlaag te trekken. De oplossing van de linkse figuur
levert de grootste krachtversterking, maar geeft ook twee nadelen. Nadeel 1 is dat de
katrol die het snelst beweegt (de katrol met uitgangskracht 2F7) de kleinste slag (verticale
verplaatsing) heeft en beperkt daarmee het hele systeem. Nadeel 2 is dat de kabelkrachten
sterk verschillend zijn wat verschillende slijtage van de katrollen geeft. De oplossing van
de rechtse figuur heeft deze nadelen niet en wordt daarom algemeen toegepast. De bo-
venste en de onderste rij katrollen van de rechtste constructie worden dan in twee blokken
verenigd.

ofoNe

He)
)
<)

F,=6F,

Figuur 6.6 Twee mogelijkheden om de krachtversterking van een hangende katrol herhaald toe te
passen in één systeem.

De momentversterkende werking van riemoverbrengingen en tandwielvertragingen is be-
sproken in het hoofdstuk Systemen (H1). De toepassing van tandwielen is zeer uitge-
breid. Er bestaan tandwielvertragingen voor grote en voor kleine momenten en voor hoge
en lage toerentallen. Er kunnen compacte meervoudige overbrengingen mee worden ge-
bouwd, zoals veel toegepast bij mechanische klokken en horloges waarbij de wijzers van
door verschillende verhouding van de tandwielen op verschillende snelheid roteren. Door
toepassing van schakelmechanieken kunnen verschillende overbrengingsverhoudingen in
een tandwielbak worden gerealiseerd. Het schakelmechaniek zorgt ervoor dat als er ge-
schakeld wordt de verhouding van de tandwielbak verandert door bepaalde tandwielen
juist uit- of in te schakelen. Dit vindt toepassing onder andere bij auto’s (Figuur 6.7),
motoren, maar ook bij draaibanken. De tandwielen B, C en D kunnen met behulp van
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de schuivende tandwielkoppelingen aan de uitgaande as worden gekoppeld. Zo zijn de
volgende overbrengingen te realiseren:

1  in-A-E-H-D-uit
2 in-A-E-G-C-uit
3 in-A-E-F-B-uit
4 in-uit

'versnelling’

De achteruit'versnelling’ (R) wordt door het tussenschuiven van tandwiel | verkregen.

1L T T

[TTD | mTIm

=/

m 1/ 7N\ >
(s

Figuur 6.7 Tandwielvertragingsbak (versnellingsbak) van een auto.

Voorbeeld Een bijzondere groep tandwieloverbrengingen is de planetaire tandwielconfi-
guratie (Figuur 6.8). Doorgaans wordt het zonnewiel 1 (straal R1) aangedreven met een
hoeksnelheid w,, bijvoorbeeld via een elektromotor. De tandkrans 3 met inwendige ver-
tanding (straal R3) staat stil. Het planeetwiel 2 wikkelt af langs de inwendige vertanding.
In dit voorbeeld is het rotatiemiddelpunt van het planeetwiel 2 (straal R3) door middel
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van de arm 4 verbonden met de uitgaande as, die dezelfde hartlijn heeft als de ingaande
as. Zo kun je een compacte tandwielconstructie creéren met relatief grote overbrenging
en hebben de in- en uitgaande assen dezelfde hartlijn. Een planetaire tandwielconfiguratie
wordt bijvoorbeeld toegepast in accuboormachines.

w32
&N
R2 v23 = vm — w2R2
- _4/_/_ vm
' v1,2 = vm + w2R2
My wy
a. C.
, Via ] , R
— R [ w:R R Ry 01 172 f>frm; % T -
2
-1V
M, 5 Fiz F. R M, M, ; " ] M, M, 7 M,
1 I 73 1 I S Ri+Ro[T R1+R3
T < I
- Rg
Ry Fia=Fy Rs A1
d. VM . M oYM

Figuur 6.8 De overbrengingsverhouding van planetaire tandwielstelsels is eenvoudig uit het blok-
schema af te leiden. Voor elk punt van een tandwiel geldt dat de snelheid v = vVpiddelpunt +Wwiel - R
Zie bijvoorbeeld bij c). In de figuur staat de tandkrans 3 stil, dus w3 = 0. Dan is echter het koppel
op de tandkrans M3 # 0. Zie figuur f).

Voor de bepaling van de overbrengingsverhouding is eerst het planeetwiel in detail be-
schouwd, want daar zit de complexiteit. De beweging van het planeetwiel is namelijk
op te vatten als de vectoriéle som van de beweging van het rotatiemiddelpunt van het
planeetwiel (snelheid v,,) om het rotatiemiddelpunt van het zonnewiel en een rotatie om
zijn eigen rotatiemiddelpunt (met hoeksnelheid ws) (Figuur 6.8.c). Het contactpunt van
het planeetwiel 2 met het zonnewiel 1 heeft de snelheid:

V12 = U + wo R (6.5)
Voor het tegenoverliggende contactpunt van het planeetwiel met de tandkrans geldt

V23 = U — waRa (6.6)
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Zoals boven beschreven staat de tandkrans 3 meestal stil. Dan is v 3 = 0. Het blok-
schema van Figuur 6.8.d is opgezet voor het algemene geval dat v3 3 = w3 - R3. In beide
gevallen moet op de tandkrans 3 het moment M3 worden uitgeoefend (tegenhouden resp.
bewegen). Het blokschema van Figuur 6.8.d is te vereenvoudigen tot dat van Figuur
6.8.e. Zie hoofdstuk Systemen en let op de R4 = Ri + Rs. Indien de tandkrans 3
stilstaat (w3 = 0) geldt het zeer eenvoudige schema van Figuur 6.8.f.

Voorbeeld Een tweede bijzondere constructie is het differentieel (Figuur 6.9). Een diffe-
rentieel is toegepast in het aandrijfsysteem van auto’s. Het heeft tot taak het aandrijf-
moment T} van de motor aan de aangedreven wielen door te geven, ook als deze wielen
bij het door een bocht rijden een verschillend toerental hebben. Het binnenste wiel legt
in een bocht immers een kortere weg af dan het buitenste wiel en heeft dan een andere
snelheid.

wh Th ow, T
L—> —>> 'y _ 3

differentieelhuis

satellieten

aangedreven
rechter
steekas

aangedreven
linker
steekas

differentieel-
tandwiel op steekas

aandrijving ;, Vi Yy @,
_ door 1/R 12 &)
pignon cardanas +
i
2 o,
@ T T
vr : 1/2 4
v VY >
Fr Fy T

+
Fh T " o

Figuur 6.9 Het blokschema van een differentieel is op te stellen, als eerst de snelheidsvectoren en de
krachtvectoren van een satellietwiel zijn beschouwd. Net als bij de planetaire tandwielconfiguratie.
Na vereenvoudiging ontstaat het onderste blokschema.

In Figuur 6.9.a vertalen de pignon en het kroonwiel het aandrijffmoment van de cardan-as
naar het stuk van het differentieel waar we het blokschema voor gaan opstellen. Belangrijk
hierbij is dat beide satellieten een vergelijkbaar gedrag vertonen als het planeetwiel in het
voorgaande voorbeeld: ze draaien zowel om hun eigen as als lopen mee met de tandwielen
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op de steekas. Aangezien dit een 3D constructie is, is de beweging nog wat lastiger voor
te stellen. Tip: bekijk wat bewegende animaties op internet, dat verhoogt het inzicht. In
Figuur 6.9.b (rechtsboven) is het symbool van een differentieel weergegeven, waarbij T},
het ingaande draaimoment is en 7; en T, de uitgaande draaimomenten. De uitgaande
draaimomenten T; en T, hebben altijd dezelfde grootte. De ingaande hoeksnelheid wy,
van het differentieelhuis is gelijk aan de gemiddelde hoeksnelheid van de beide aandrijfas-
sen. Als een wiel wordt tegengehouden (bijvoorbeeld w; = 0), dan gaat het andere wiel
draaien met een hoeksnelheid w, = 2wy,. Dit is schematisch weergegeven in Figuur 6.9.c
(linksonder), waarbij de ronde schijf het satelliet voorstelt van boven gezien.

6.3 Krachtontbinding

Een andere methode voor krachtversterking is door middel van krachtontbinding. Daar-
mee is bedoeld dat de richtingen waarin verschillende krachten werken zodanig worden
gekozen dat een kleine kracht in staat is een grote kracht op te wekken. Een voorbeeld
van een toepassing is te vinden in industriéle drukmachines die onder meer gebruikt wor-
den om staal machinaal te smeden.

Voorbeeld De zogenaamde kniehefboom is een voorbeeld van krachtontbinding (Figuur
6.10). In elk van de beide hefbomen werkt een drukkracht F. Als het mechanisme wrij-
vingsloos verondersteld wordt, dan moet de bedieningskracht F,, evenwicht maken met
de twee door krachtontbinding verkregen componenten F - sina (Figuur 6.10.b). Bij
kleine waarden van de hoek « zijn deze componenten ook klein en kan met een kleine
bedieningskracht F,, een grote drukkracht:

F.
Fs: .u
2sin o

(6.7)

worden verkregen. Vandaar de naam versterking door krachtontbinding. De drukkracht
in een hefboom is nagenoeg gelijk aan de uitgangskracht F,, = Fcosa. In totaal is een

krachtversterking:
F, 1

F, 2tana

bereikt. In Figuur 6.10.c is de krachtversterking uitgezet als functie van de hefboomhoek
a. Je ziet dat deze type krachtversterking vooral in te zetten is bij o < 5°, omdat dan
de versterking het grootst is.

(6.8)

In het bovenstaande is het mechanisme wrijvingsloos verondersteld. Dat is meestal niet
terecht. Bij grote drukkrachten in de hefbomen ontstaan grote wrijvingsmomenten in
de draaipunten. In werkelijkheid is alleen een grote krachtversterking bereikbaar als de
verhouding hefboomlengte:asdiameter groot is.
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Figuur 6.10 De krachtoverbrenging van Fy /Fy, is sterk niet-lineair, zie figuur c.

Voorbeeld Een tweede voorbeeld van krachtversterking door krachtontbinding geeft de
ophangstrip voor papieren zoals in Figuur 6.11.

Het papier wordt omhoog gedrukt in de strip, waarna de losliggende rol voor voldoende
inklemming zorgt. In Figuur 6.11.b zijn de op de rol werkende krachten getekend in de
juiste verhouding. De twee contactkrachten F; en F,. moeten evenwicht maken met het
eigen gewicht G van de rol.

Omdat op de rol geen moment werkt moeten de drie krachten door één punt gaan (zie
paragraaf 3.4.5). Als de krachten F; en F. ongeveer dezelfde richting hebben worden zij
veel groter dan GG. Een grote F} is gewenst omdat het papier dan met een grote kracht
wordt aangedrukt. Er kan een grote wrijvingskracht W ontstaan, die het papier omhoog
houdt (Figuur 6.11.a).
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Fo

a. b.

Figuur 6.11 Een ophangstrip voor papier. De aandrukkracht F; die de rol uitoefent is veel groter
dan het eigen gewicht van de rol.

6.4 Hellend vlak

Er zijn veel werktuigkundige constructies waarbij krachtversterking door middel van een
hellend vlak wordt toegepast. De krachtenwerking zal worden besproken aan de hand
van een hellend vlak met lineaire beweging waarbij wrijving een belangrijke rol speelt.
Daarna wordt de meest bekende constructieve toepassing van het hellend viak besproken:
schroefdraad.

6.4.1 Hellend vlak zonder wrijving

Reeds in de oudheid wist de mens dat het eenvoudiger was om een last tegen een hellend
vlak op te duwen dan omhoog te tillen. Ook uit de mechanica volgt dit direct. Figuur 6.12
toont een blok dat op een hellend vlak ligt. Tussen het blok en het vlak is het volkomen
wrijvingsloos (f = 0) verondersteld. Figuur 6.12.b geeft het krachtenevenwicht van het
blok (zie paragraaf 3.4.5) en het bijbehorend blokschema.

Als het blok een afstand w aflegt (de wu-richting is langs het hellend viak gekozen), is
de verplaatsing in verticale richting ¥y = wu - sina. Het blok is belast met een kracht
F, in de verticale y-richting. Krachtontbinding van F), langs het hellend vlak geeft een
normaalkracht N = F), - cos o loodrecht op het hellend vlak en een kracht —F - sina
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langs het hellend vlak. Hier volgt uit dat om het blok de helling op te trekken tenminste
een kracht I, = F, - sin o nodig is.

sin o

sin o

a. b.

Figuur 6.12 a) Het omhoogbrengen van een blok met gewicht Fy, met behulp van een hellend vlak.
Het vlak is wrijvingsloos verondersteld. b) Krachtendriehoek van de last waarbij de werklijnen van
de bedieningskracht F,,, de normaalkracht N en de last Iy door één punt moeten gaan. Het
blokschema is eenvoudig.

De relaties van de variabelen van het hellend vlak zijn op verschillende manieren mathe-
matisch te beschrijven.

- Allereerst de relatie tussen de ingangssignalen. Bij een constante waarde van Fy,
moet zowel bij omhoog als bij omlaag bewegen van de last, dezelfde kracht F,, =
F, - sina op het blok worden uitgeoefend (zie Figuur 6.13).

Fy sina

Figuur 6.13 De relatie tussen de ingangssignalen F,, en u bij een wrijvingsloos hellend vlak.

- Ten tweede de krachtversterking van het systeem. De krachtversterking F,/F, is
afhankelijk van de hellingshoek « van het vlak, zie Figuur 6.14. Bij kleine hellings-
hoeken is de krachtversterking groot; dan is met een kleine kracht F, een zeer grote
kracht F} op te heffen. Bij toenemende hellingshoek neemt de krachtversterking
snel af. Bij a = 7 ontstaat heffen. Uiteraard is daarbij I, = F}, endus F,/F, = 1.
In sommige gevallen is het gunstig om de inverse waarde van de krach-versterking
op te geven. De in dit geval zeer eenvoudige functie F,,/F, = sina is in Figuur
6.14.b weergegeven.
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Figuur 6.14 De krachtversterking Fy/F, bij een wrijvingsloos hellend vlak, als functie van de
hellingshoek a.. Voor een redelijke krachtversterking moet a < 15° zijn. b) geeft de inverse waarde
van de krachtversterking: F,, /F, = sina,

- Ten derde het energierendement ng. Voor het hellend viak zonder wrijving wordt

dit: By
Y
voor alle waarden van «. Zie Figuur 6.15.
=
1
T a
90

Figuur 6.15 Het energierendement ng van een wrijvingsloos hellend vlak is altijd ng = 1.

6.4.2 Hellend vlak met wrijving

In werkelijkheid is steeds een wrijvingskracht W = f - N aanwezig in de krachtverster-
king van het hellende vlak (Figuur 6.16). Deze invloed passen we toe door middel van
uitbreiding van Figuur 6.12.

De relatie tussen de verplaatsingen in de u- en y-richting verandert niet door de wrijving
(Figuur 6.16.b). De wrijving beinvloedt wel de kracht F, die nodig is om het blok de
helling op te trekken (zie het krachtenevenwicht in Figuur 6.16.a). Nu geldt:

F,=F,-sima+W =F,-sina+ fF,-cosa (6.10)

Het blokschema wordt dan als getekend in Figuur 6.16.b, en geldt alleen voor omhoog
bewegen van het blok.
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Figuur 6.16 De optredende krachten bij het omhoog bewegen van een last Fy langs een hellend
vlak met wrijving. De resultante van de krachten N en W gaat door het snijpunt van F, en F.

——>{sin a

<—sin a

Cos a

Het blokschema krijgt een parallelle krachtbaan. Vergelijk Figuur 6.12.

Bij omlaag bewegen zijn er twee mogelijkheden. Bij een grote hellingshoek en een lage
wrijvingscoéfficiént f, drijft een kracht F), - sina — W het blok de helling af. De kracht

W is gericht zoals getekend in Figuur 6.17.a.

OMLAAG
N

a.
w
w Fu
N N Fu
Fy Fy
b fcosa < sina fcosa > sina

Figuur 6.17 De optredende krachten bij het omlaag bewegen van een last I langs een hellend viak
met wrijving. Bij kleine hellingshoeken moet het blok de helling worden opgetrokken (—F, ), bij
grote hellingshoeken moet het blok worden tegengehouden. Uit het blokschema blijkt direct dat

C.

—>{sina

sin o

COoS o

F,, negatief wordt (oftewel van richting verandert) als f - cos o > sin c.

Er is een langs het vlak naar boven gerichte kracht F,, nodig, om afglijden te voorkomen.
y -sina — W. Bij kleine hellingshoeken

Bij het omlaag bewegen geldt in dit geval F,, =
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en grote wrijving, glijdt het blok niet zelf de helling af. Het moet naar beneden worden
getrokken met een kracht —F,,, zie Figuur 6.17.b. Er geldt:

—F,=F,-sina—W (6.11)

Een systeem waarbij de last niet uit zichzelf de helling afglijdt wordt zelfremmend ge-
noemd. De overgang tussen zelfremmend en niet-zelfremmend ligt bij F;, = 0. Dus als
F,-sina =W of F},-sina = f - F, - cosa. De voorwaarde voor zelfremming luidt dus

tana < f.

Het hellend vlak zonder wrijving is in de Figuren 6.13, 6.14 en 6.15 beschreven. De
invloed van de wrijving blijkt uit een vergelijking van deze figuren met de Figuren 6.18,
6.19 en 6.20, waar het hellend vlak met wrijving is beschreven.

Fu Fu‘
W # Fysina .
_____ Y2 W
=['-: T ] fy_*SI_n_a
——y i — =y
f < tan a f> tana
a. b. ZELFREMMEND

Figuur 6.18 De relatie tussen de ingangssignalen F, en w bij een hellend vlak met wrijving. De
wrijvingskracht W veroorzaakt dat bij omhoog bewegen (pijlen naar rechts) een hogere bedienings-
kracht nodig is dan bij omlaag bewegen (pijlen naar links). In Figuur b is de relatie getekend bij
een zelfremmend vlak. Er is een kracht —F,, nodig voor omlaag bewegen.

De F, — u-relatie blijft eenvoudig. In Figuur 6.18.a is de hellingshoek o zo groot dat geen
zelfremming optreedt. De grootte van de hysteresis bedraagt 2WW. Het energieverlies bij
een heen- en weergaande beweging met slag s bedraagt 2W - s.

In Figuur 6.18.b is een zo kleine waarde van de hellingshoek verondersteld dat zelfremming
optreedt. Voor het omlaag bewegen is een naar beneden gerichte kracht (F, wordt
negatief) nodig. Ter vergelijking is in beide figuren de ingangsrelatie voor een hellend
vlak zonder wrijving met een onderbroken lijn getekend.

Bij het bewegen van een last tegen het hellend vlak op is voor het energierendement af
te leiden (zie paragraaf 13.5 Vermogens en rendementen)

tan o

= it f (6.12)

e
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gebied van zelfremming

Figuur 6.19 De inverse krachtversterking F/F, bij een hellend viak met wrijving als functie van
de hellingshoek «.. Bij omhoogbewegen (pijlen naar rechts) is de krachtversterking F;/Fy kleiner
dan bij omlaagbewegen (pijlen naar links). Voor aw < arctan f treedt zelfremming op. De figuur is
getekend voor f = 0,2. Vergelijk deze figuur met Figuur 6.14.

Figuur 6.20 geeft dit energierendement voor enkele waarden van f.

0 J J ! J I T n(i'n raden
15 30 45 60 75 90 g

Figuur 6.20 Het energierendement van een hellend vlak met wrijving is sterk afhankelijk van de

hellingshoek. Bij kleine hellingshoek is het energierendement zeer laag. De figuur is getekend voor
f=0,1en f=0,2, en geldt alleen voor omhoog bewegen van de last.
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6.4.3 Schroefdraad, theorie

Zoals reeds is gebleken is de werking van het hellend vlak alleen effectief bij kleine hel-
lingshoeken. Dit leidt tot lange hellingen. Ter besparing van ruimte wordt het hellend
vlak dan om een cilinder gewonden. Zie Figuur 6.21.a. Er ontstaat een schroeflijn, die
zeer veel in de techniek wordt toegepast. Het meest bekende gebruik is de schroefdraad.
Deze ontstaat door een bepaald profiel (bijvoorbeeld een rechthoek) langs een schroeflijn
te laten bewegen, zie Figuur 6.21.b.

spoed |

Figuur 6.21 Als een hellend vlak rond een cilinder wordt gewonden ontstaat een schroeflijn (a).
Door een bepaald profiel (bijvoorbeeld een rechthoek) langs deze schroeflijn te bewegen ontstaat
een schroefdraad (b).

De schroeflijn kan zijn aangebracht aan de buitenzijde van de omwentelingscilinder (bout,
uitwendige draad) of aan de binnenzijde ervan (moer, inwendige draad). Als een bout
met een moer moet samenwerken, dan moeten uiteraard het profiel en de spoed (de
grootte van de rechtlijnige axiale verplaatsing van het profiel per omwenteling) van de
schroefdraad hetzelfde zijn.

Bij de modelvorming van het hellend vlak zijn de kracht en de verplaatsing langs het
vlak als ingangssignalen, en de verticale kracht en verplaatsing als uitgangssignalen be-
schouwd. Door het hellend vlak om een cilinder te wikkelen wijzigen de ingangssignalen
in een draaimoment M, en een hoekrotatie ¢,, beide rondom de cilinderhartlijn. De
uitgangssignalen worden een kracht F, en verplaatsing y, beide langs de cilinderhartlijn.

Voor de modelvorming van een bout-moer-verbinding wordt de systeemgrens vlak om de
moer gekozen. De systeemgrens loopt dan door het contactvlak tussen bout en moer.
Zie Figuur 6.22 waarbij een stukje van het profiel ofwel schroefdraad-contactoppervlak uit
Figuur 6.22.b is losgesneden.
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AN &Ny
AW AN
~ - t
& AW AWy

a. b.

Figuur 6.22 Op een oppervlakte AA van een schroefdraad werken de systeemgrenskrachten AN
en AW . Zij zijn ontbonden in hartlijnrichting (AN, en AW, ) en in tangentiéle richting (AN en
AWy).

Beschouw voor de verdere modelvorming een stukje oppervlak AA van dit contactvlak.
Het centrum van het oppervlakje ligt op een afstand:

Ry=—+

5 T (6.13)

van de cilinderhartlijn. De in het oppervlakje werkende contactkracht is te verdelen in
twee componenten: een normaalkracht AN en (bij bewegen) een wrijvingskracht AW =
f+ AN, zie Figuur 6.22.

Beide krachten grijpen aan in het centrum van het opperviakje AA. In het uitgeslagen
schroeflijnvlak (straal R4) van Figuur 6.22.b zijn de twee krachten AN en AW ontbonden
in de richting van de cilinderhartlijn en tangentieel gericht aan de cilinder met straal R,.

Als het totale schroeflijnvlak beschouwd wordt, dan sommeren de krachtjes AN, en AW,
zich tot een langs de cilinderhartlijn gerichte kracht Fyy = N, — W,,.

Op de straal R; werken de tangentieel gerichte krachten AN; en AW;. Zij sommeren
zich tot een wringend moment:

Mu - (Nt + Wt) . Rd = Ft . Rd (614)

Het blokschema van Figuur 6.23.a geeft de beschreven berekening weer. In de Figuren
6.23.b en 6.23.c is het blokschema vereenvoudigd volgens de in het hoofdstuk Modelvor-
ming gegeven regels (Tip: probeer dit zelf).

Bij invoeren van de relatie f = tant ontstaat het zeer eenvoudige schema van Figuur
6.23.d.

Het opstellen van een blokschema kan helpen om een wat complexere relatie in een
werktuigkundige systeem gestructureerd en stapsgewijs af te leiden.
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Figuur 6.23 Het blokschema van een schroefdraad met wrijving. Ingangssignalen zijn de rotatiehoek
pwu en het aandraaimoment M, van de moer. Het schema is opgesplitst in Figuur b. De invloed
van de tangentieel gerichte aandrijfkracht blijkt uit een vergelijking met Figuur 6.17. Berekening
van de parallel- en de terugkoppelbaan geeft Figuur c. Bij invoeren van de wrijvingshoek ontstaat
het eenvoudige schema van Figuur d. De schema’s gelden voor omhoog bewegen van de last.

De bovenstaande berekening is uitgevoerd voor het geval dat de last F}, omhoog be-
weegt, d.w.z. tegen het hellend vlak wordt opgetrokken. Bij omlaag bewegen langs
het hellend vlak krijgt de wrijvingskracht een tegengestelde richting. Dan geldt M, =
Fy - Rgtan (o — ). Bij schroefdraad geldt hetzelfde als in § 6.2 (Hefboomwerking) is
beschreven. Alleen bij kleine hellingshoeken en grote wrijvingscoéfficiénten treedt zelf-
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remming op. De grens ligt bij M, = 0 of tan (v — ¢) = 0. Dit leidt tot de voorwaarde
voor zelfremming f > tan «; dezelfde voorwaarde als afgeleid in § 6.2.

Figuur 6.24 toont de ingangsmoment/uitgangskracht-relatie voor schroefdraad. Om een
dimensieloze schaal te verkrijgen is het ingangsmoment M, teruggerekend op de omtreks-
kracht F;. Langs de verticale as is uitgezet (M, /Rq) /Fy; dus eigenlijk F}/F,.

N
0.8 /

0,6+
0,4+

0,21

0 T T T T T T T .
/é 0 15 20 25 30 35 40 45 « in graden
__0,2._

Figuur 6.24 De kracht/momentversterking van een schroefdraad als functie van de hellingshoek
a. Alleen bij kleine hellingshoeken is er een redelijke krachtversterking. Bij o > 45° wordt de
krachtoverdracht snel zeer ongunstig. De naar rechts gerichte pijlen gelden voor helling op; de naar
links gerichte pijlen voor helling af. Vergelijk deze figuur met Figuur 6.19.

6.4.4 Schroefdraad, toepassingen

Soms is een schroefdraad in gebruik voor het verplaatsen van een last, zoals voor het
verschuiven van het support van een draaibank of voor het omhoogbrengen (krik of vijzel)
van een zwaar voorwerp. In dat geval wordt gesproken van een bewegingsschroefdraad .
Dan is het energierendement g van belang. Voor omhoog bewegende last geldt:

_ [F,dy  tana
- [M,dp,  tan(a+ 1)

e (6.15)

De optimale waarde voor ng volgt uit dng/da = 0. Voor niet te grote waarden van
f =tant is ey = 7 een goede keus. Bij praktisch optredende waarden van f = 0,1
tot f = 0,2 zijn de bereikbare maximale rendementen niet erg hoog. Zie Figuur 6.25.
Deze energetisch optimale waarde van a wordt slechts zelden toegepast, omdat dan het
benodigde ingangsmoment M,, erg groot wordt. Bij vijzels wordt bovendien vaak prijs

gesteld op zelfremming, waardoor a < 1) gekozen moet worden.
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De belangrijkste toepassing van schroefdraad is bij het uitoefenen van een axiale klem-
kracht (grote Fy-waarde). Voor dit type schroefdraad wordt doorgaans geen rechthoekig,
maar een driehoekig schroefdraadprofiel gekozen. Bij een driehoekig schroefdraadprofiel
met tophoek 23 blijven de gegeven formules geldig, mits de wrijvingscoéfficiént f wordt
vervangen door een fictieve wrijvingscoéfficiént f' = f/cos .

ME
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0,64
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0,24

0 T T T T T T T T T -
10 20 30 40 50 60 70 80 90 @ ingraden

Figuur 6.25 Het energierendement van een schroefdraad als functie van de hellingshoek o, met de
wrijvingscoéfficiént f als parameter. Bij bevestigingsschroefdraad (o klein) is het energierendement
altijd laag. Bij bewegingsschroefdraad wordt a groot gekozen i.v.m. het hogere rendement. De
figuur geldt voor omhoog bewegen van de last.

Voor een driehoekig schroefdraadprofiel is dezelfde formule bruikbaar die voor een recht-
hoekig draadprofiel is afgeleid.

Bij bevestigingsschroefdraden is zelfremming vereist en een hoge waarde voor F),/M,, van
belang. Bevestigingsschroefdraad heeft steeds een kleine spoedhoek o < 4 graden. Bij
het gebruik van schroefdraad moet bedacht worden dat de opgewekte axiale kracht F},
ook afgesteund moet worden. Daardoor ontstaat extra wrijving. Dit is toegelicht aan
de hand van Figuur 6.26 waar een bevestigingsschroefdraad wordt gebruikt om een blok
tegen zijn omgeving vast te klemmen. De bout is verondersteld één geheel met de om-
geving te zijn en verplaatst dus niet. De moer wordt aangedraaid met een sleutel met
hefboomlengte L. Een verplaatsing van de hand s;, geeft dan een hoekverdraaiing van de
moer 1) = s, /L. Zie Figuur 6.26.c.

De schroefdraad zorgt ervoor dat de moer over een afstand y verplaatst in de richting van
het blok. Op het moment dat de moer de vrije ruimte tussen moer en blok verplaatst,
gaat de moer aanliggen op het bovenvlak van het blok. Bij verder aandraaien van de
moer wordt e positief, en wordt het blok samengedrukt. Bij een stijfheid van het blok ¢,
is daarvoor een kracht F}, = c. - e nodig. Deze kracht wordt door de bout geleverd. De
bout rekt daardoor een afstand:

F,

Alpout = C—y (cp is de stijfheid van de bout). (6.16)
b

Door de verlenging van de bout wordt het blok minder aangedrukt. Zie de terugkoppelbaan
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in het blokschema. Om de kracht F, met de moer op te wekken moet de moer met een
moment Mgraag = Fy - Rqtan (o + ) worden rondgedraaid.

i

a.
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4 Rq
TMd AWmoer
Fvl | AFmoer
' ‘ﬁ.{
b. Fmoer
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—5 1L R tan o : :
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Figuur 6.26 Bij het toepassen van schroefdraad is er niet alleen wrijving in de schroefdraad, maar
ook in het ondersteuningsvlak van de moer. Bij een vlakke ondersteuning zijn de momenten M moer
en Myya.4 ruwweg gelijk. Het blokschema c verduidelijkt het proces van aanklemmen.

De kracht F), is ook aanwezig in het contactvlak moer/blok. Bij ronddraaien van de moer
ontstaat daar een wrijvingsmoment Muyoer = Fy - f - Ry, dat eveneens door de sleutel
moet worden toegevoerd.

Voorbeeld Een soortgelijk geval als hierboven beschreven, is de bevestiging van een
autowiel op zijn naaf. Omdat deze boutverbinding tevens het wiel moet centreren, zijn
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moeren met een conisch oplegvlak toegepast. Zie Figuur 6.27. Daardoor verhoogt het
extra wrijvingsmoment in het contactvlak aanzienlijk, zoals te zien is aan het aandeel
(percentage) hiervan in het aandraaimoment.

wiel

v

@z~

moer bout

\

aandraaimoment = momentverlies + momentverlies

moer t.g.v. wrijving t.g.v. wrijving
schroefdraad konisch draagvlak
100 % 15—-20% 60--80%

Figuur 6.27 Bij het aandraaien van de bevestigingsmoer van een autowiel is het totale aandraaimo-
ment veel groter dan benodigd zou zijn voor het alleen overwinnen van de schroefdraadwrijving.

Slechts in uitzonderingsgevallen is alleen de schroefdraad de bron van wrijving.

Voorbeeld De spanschroefmoer van Figuur 6.28 is voorzien van een linkse en een rechtse
schroefdraad. De beide haakvormige schroefuiteinden bewegen bij het aandraaien van de
gekoppelde moeren naar elkaar toe. Daardoor kan een bepaalde constructie op spanning
gebracht worden. Het aandraaikoppel T' behoeft slechts de wrijving in de schroefdraad te
overwinnen.

Figuur 6.28 Een spanschroefmoer voor het op spanning brengen van bepaalde constructies.

6.4.5 Roterende overbrengingen

Een worm /wormwiel constructie is een toepassing van het hellend vlak bij roterende over-
brengingen. De behandeling hiervan is analoog aan het bovenstaande.
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6.4.6 Hydraulisch hellend vlak

Een bijzondere toepassing van het hellend vlak is de hydraulische wigvorm, zie Figuur
6.29. De vloeistof (meestal olie) die door de beweging van het ene grensvlak wordt mee-
genomen, wordt in de wig geperst. De drukverhoging die daardoor ontstaat maakt het
mogelijk dat de belastingkracht G wordt opgenomen. In de figuur zijn de op de hydrau-
lische wig werkende krachten getekend. De krachten W en W5 ontstaan ten gevolge
van vloeistofwrijving en zijn niet groot. Zie ook het hoofdstuk Wrijving en Weerstand.
Doordat ook de hellingshoek « zeer klein is (enkele tienden van een graad) is de effectieve
werking van de wig zeer groot. De mogelijke belasting G is vele malen de optredende
wrijvingskrachten W.

Figuur 6.29 De hydraulische wig. a) Door de relatieve snelheid van de twee grensviakken ten
opzichte van elkaar wordt olie in de wig geperst. De hierdoor ontstane drukverdeling is in het
onderste deel van de figuur getekend. De resulterende kracht van deze hydraulische druk kan de
belasting G opnemen. b) De op de hydraulische wig optredende krachten. De wrijvingskrachten
W1 en Wy zijn klein ten opzichte van de resulterende drukkrachten P en G.

De constructie wordt toegepast bij zwaarbelaste lagers, zoals die bijvoorbeeld voorko-
men bij grote centrifugaalpompen en schroefassen van schepen. Er zijn dan een aantal
drukblokjes aangebracht in een ringvormige ruimte, zie Figuur 6.30.

Bij berekening blijkt de optimale hellingshoek a van de hydraulische wig af te hangen
van de bedrijfstoestanden. Bij een zogenaamd Mitchell-blok zijn zelfinstellende blokjes
toegepast, die zich automatisch in de optimale hellingshoek instellen. lets dergelijks
gebeurt bij de hydraulische cilindrische lagers voor radiale belasting.

Bij de hydraulische wig ondergaat de geleverde kracht geen verplaatsing. Er wordt dus
geen energie geleverd. Om de wigvorm te onderhouden moet er echter wel energie, nodig
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voor het overwinnen van de vloeistofwrijving, worden toegevoerd. Deze energie wordt
onttrokken aan de rotatiebeweging van de as.

Figuur 6.30 Bij een constructieve uitvoering van een hydraulisch axiaal lager zijn een aantal zelf-
instellende drukblokjes ringvormig aangebracht. De afstand tussen de drukblokjes moet gekozen
worden afhankelijk van het astoerental. Bij sneldraaiende assen grote tussenruimten.

6.5 Meekoppeling

In sommige gevallen is het mogelijk krachtversterking te verkrijgen door meekoppeling.
Daarmee is bedoeld dat een gedeelte van de geleverde kracht wordt teruggevoerd naar
de ingang en daardoor de ingangskracht doet toenemen. Beschouw ter verduidelijking
Figuur 6.31, waarin een opstelling is getekend om een draaiende schijf af te remmen.

Het remblokje kan draaien om een vast punt A, dat op de afstanden R + a en b van
het middelpunt van de schijf is verwijderd. Er werkt een bedieningskracht F,, op een
afstand p van het draaipunt A. De krachten N en W die de draaiende schijf op het
remblokje uitoefent zijn gedacht aan te grijpen in het centrum van het contactoppervlak.
De krachten F,,, N en W oefenen alle via momentarmen p, b, en a een moment om het
draaipunt A van het remblokje uit.

De opstelling levert bij de gegeven linksdraaiende rotatie van het wiel een wrijvingsmoment
W - a dat gelijkgericht is aan het bedieningsmoment van de kracht F, - p. Daardoor
helpt de opgewekte wrijvingskracht W het remblokje aandrukken. Dit is de aanwezige
meekoppeling. Zie ook het blokschema van Figuur 6.32. Met de gegeven formules (§ 2.3)
is af te leiden dat het verkregen wrijvingsmoment op de schijf M,, = W - R afhangt van
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de bedieningskracht F), volgens:
M,  pRf

F, b-af

(6.17)

De mate van meekoppeling is te beinvloeden door de keuze van de afstanden a en b.
Daarbij moet bedacht worden dat voor b/a < f de verhouding M,,/F, — oo. De rotatie
van de schijf blokkeert dan; ook zonder dat een ingangssignaal F), aanwezig is.

momenten om A:
Fup+Wa=Nb

Figuur 6.31 Met de aangegeven draairichting zorgt het optredende wrijvingsmoment Wa voor
ondersteuning van het aandrijfmoment F,, - p. Bij omkeren van de draairichting van het wiel
verandert de meekoppeling in een tegenkoppeling, zie Figuur 6.32.

F. Fpo Nb N W M
—> p 1/b f R

+
+
/ Wa
bij getekende draai-
richting +, anders —

Figuur 6.32 Het blokschema van de opstelling van Figuur 6.31. Het + teken (meekoppeling) geldt
voor de aangegeven draairichting. Indien H = —a - f/b < —1, dus als b/a < f treedt blokkeren
van de remschijf op.

De meekoppeling is alleen aanwezig bij een linksdraaiende schijf (zie Figuur 6.31). Als de
draairichting van de schijf omkeert, verandert de meekoppeling in een tegenkoppeling. In
dat geval is de remwerking minder, en kan blokkeren niet meer optreden.
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Voorbeeld Een zeer illustratief voorbeeld van meekoppeling is te vinden in een differen-
tiaaltakel. Figuur 6.33.a geeft schematisch de opstelling weer. Een differentiaaltakel is
samengesteld uit een bovenblok met ophangbeugel, een onderblok met hijshaak en een
hijskabel. Het bovenblok bestaat uit twee gekoppelde katrolschijven. Een einde van de
hijskabel is vast bevestigd aan de kleine katrolschijf van het bovenblok. De hijskabel loopt
via het onderblok terug naar de grote katrolschijf. Aan het afhangende part van deze schijf
wordt getrokken met een ingaande kracht F), en de bijbehorende ingaande verplaatsing
daar bedraagt s,,.

D,
<>
D,
<>
F Ful YFy
SX sW
A R a
T Sy V bovenblok onderblok
a le b
D,
D,
Foo o+ ) F,
SU
+ , b
+ Sy
D,
C. D,

Figuur 6.33 Een differentiaaltakel is een duidelijk voorbeeld van kracht-meekoppeling. Een deel F,
van de uitgangskracht helpt de bovenschijven van de takel ronddraaien. De meekoppeling blijkt
ook uit de blokschema's van de figuurgedeelten b en c.

Uit een nadere bestudering van de opstelling blijkt de meegekoppelde werking. Beschouw
daartoe het momentenevenwicht van de bovenblokschijven. De kracht F,, = F,,/2 levert
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een moment in dezelfde richting als F, en helpt dus de schijven ronddraaien. De mee-
koppeling is te verminderen door D5 kleiner te kiezen. Met Dy = 0 ontstaat een gewone
takel. De meekoppeling is te versterken door Ds groter te kiezen. Als Dy = D; dan
ontstaat een bijzonder situatie. Er is geen ingangskracht F,, meer nodig om de schijven
in het bovenblok rond te draaien. Dan is echter de verplaatsing s,, van het aflopende
part gelijk aan de verplaatsing s, van het oplopende part. Het onderblok ondervindt dan
geen verplaatsing. Aan de uitgang wordt geen energie afgenomen omdat s, = 0. Aan de
ingang wordt geen energie toegevoerd omdat F;, = 0.

Met betrekking tot het blokschema van Figuur 6.33.b is nog het volgende op te merken.
Op de bovenblokschijven werken vier krachten in verticale richting. De krachten kunnen
worden berekend als van 2 krachten de grootte bekend is. Het blokschema van het
bovenblok heeft daarom 2 krachtingangen F' en 2 krachtuitgangen (de steunpuntkracht
is niet getekend en komt ook niet voor in het blokschema). Als ingangskrachten zijn F,
en de meekoppelkracht F,, gekozen. Daaruit is met behulp van de momentenstelling de
kracht F, te berekenen.

Het bovenblok heeft één graad van vrijheid; een rotatie. Daaruit zijn de kabelverplaat-
singen op elke willekeurige straal af te leiden. Het bovenblok heeft 1 verplaatsingsingang
(eigenlijk rotatie ¢). In het gegeven geval met 2 schijfdiameters zijn 2 verplaatsingsuit-
gangen (s, en s,,) voldoende.

Het blokschema van het onderblok is reeds gegeven in Figuur 6.5.e. De blokschema'’s van
onderblok en bovenblok zijn met twee krachtsignalen (F,, en F,) en twee verplaatsings-
signalen (s, en s,,) met elkaar verbonden. Het gehele blokschema is te vereenvoudigen
tot dat van Figuur 6.33.c. De veronderstelde verliesvrije werking blijkt uit de gelijke
blok-inhouden van krachtbaan en verplaatsingsbaan.

6.6 Servosystemen

6.6.1 Algemeen

Voor de in het voorgaande gegeven constructies voor krachtversterking gold steeds:
toegevoerde energie = afgegeven energie + verliezen.

De verliezen werden veroorzaakt door allerlei wrijvingen en vervormingen. Er wordt steeds
naar gestreefd de verliezen te beperken. Een bijzonder geval was het Mitchell-blok (Figuur
6.30) waar geen energie werd afgegeven en de toegevoerde energie geheel werd gebruikt
voor compensatie van de verliezen.

Er zijn veel gevallen waarbij het gewenst of noodzakelijk is dat energieversterking verkregen
wordt. Zoals bijvoorbeeld bij kopieerinrichtingen voor draaibanken waarmee bijvoorbeeld
een tafelpoot met een organische vorm gekopieerd kan worden. De beweging van een
taster langs een mal (bijvoorbeeld dus de tafelpoot) wordt overgebracht naar een beitel
die het werkstuk bewerkt. Om slijtage te voorkomen kunnen op de mal slechts kleine
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krachten worden uitgeoefend, terwijl de beitel juist grote verspaningskrachten moet kun-
nen opnemen. De beitel heeft dezelfde verplaatsing als de taster; de krachten op de beitel
zijn veel groter dan die op de taster. De kopieerinrichting moet dus aan zijn uitgang meer
energie afgeven dan aan de ingang wordt toegevoerd.

Dergelijke mechanismen waarbij aan de uitgang meer energie kan worden geleverd dan aan
de ingang wordt toegevoerd, worden servosystemen genoemd. Voorbeelden van servosys-
temen zijn: kopieerinrichtingen, (mechanische) hydraulische persen in de machinebouw,
stuurbekrachtigingen, hydraulische armen van graafmachines.

Ook voor servosystemen geldt de wet van behoud van energie. De hoeveelheid energie
die aan de uitgang meer is geleverd dan aan de ingang is aangeboden moet extra worden
toegevoerd. In het servosysteem van § 6.6.2 gebeurt dat in de vorm van hydraulische
energie. In het servosysteem van § 6.6.3 wordt pneumatische energie toegevoerd. Van-
wege de steeds aanwezige verliezen moet meer dan het berekende verschil aan energie
worden toegevoerd.

6.6.2 Hydraulisch servosysteem

Een kopieerinrichting zou kunnen worden uitgevoerd als in Figuur 6.34 is geschetst.

5“6 ——— - .

—_— -~ —
—
_— ]

I |t
LI/ arbeids-

zuiger
afvoer toevoer [ ]

—

stang stuurzuigers

.,

Figuur 6.34 Schematische weergave van een kopieerinrichting waarbij stuurzuigers en de arbeids-
zuiger gekoppeld zijn door een hefboom.

Met behulp van twee gekoppelde stuurzuigers kan olie naar één van de twee zijden van een
arbeidszuiger worden gevoerd. Zodra het linkeruiteinde van de bovenliggende hefboom
verplaatst zal ook de stuurzuigerstang een uitwijking verkrijgen. Dit heeft tot gevolg dat
olie van de toevoer naar de bovenste (onderste) zijde van de arbeidszuiger toestroomt
en van de onderste (bovenste) zijde wordt afgevoerd. De beweging die de arbeidszuiger
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hierdoor krijgt verplaatst ook het rechtereinde van de hefboom waardoor de stuurzuiger in
de rustpositie terugkeert en de oliestromen beéindigt. Het hydraulische systeem is slechts
dan in rust wanneer de stuurzuigers de aansluitkanalen van de arbeidszuiger afsluiten. Het
punt van de hefboom dat aan de stuurzuigerstang is gekoppeld functioneert als draaipunt
voor de hefboom.

In de figuur zijn de stuurzuigers en de arbeidszuiger gekoppeld door een hefboom. De
verplaatsing van de stuurzuigers sy is te beschrijven door:
Sub  sy-a

5 a+b a+bd (6.18)

Zie het blokschema van Figuur 6.35. Het systeem is alleen in rust als s; = 0. Dus als
b-s,=a-sy.

Voor de ingangsverplaatsing s, en de uitgangsverplaatsing s, geldt een normale hefboom-
relatie. Indien a = b dan is s, = s,.

Voor de ingangskracht F, en de uitgangskracht F), geldt de hefboomrelatie niet. Hier is
Fy,>>F,-a/b.

De ingangskracht F), is slechts benodigd om de wrijving van de stuurzuigers te over-
winnen. De uitgangskracht F}, kan door keuze van een groot zuigeropperviak A van de
arbeidszuiger of door keuze van een hoge hydraulische druk p willekeurig groot gemaakt
worden. Immers Fyy = A - p. Zie Figuur 6.35.

Wijziging van A heeft echter ook invloed op de bewegingssnelheid van de arbeidszuiger.
Als de bewegingssnelheid onveranderd moet blijven, dient een stuurzuiger met een grotere
doorlaat voor de oliestroom te worden gemonteerd.

a+b
S, S . s
b I s |stuur- arbeid- Y
*a+b >3 zuiger|| fzuiger
Fu b Wstuur p 1 A F\/
a+b /

Figuur 6.35 Het blokschema van de hydraulische servo uit Figuur 6.34. Het systeem is in rust
wanneer ss = 0, dus als b- s, = a- sy. Voor de uitgangsslag/ingangsslag geldt de hefboomrelatie.

6.6.3 Pneumatische versterker

In Figuur 6.36 is een pneumatische druk-volume-versterker getekend. In de kamer 1
wordt de ingangsdruk p, toegevoerd. De kamer 2 heeft een open verbinding met de
omgevingsdruk p,. De kamer 3 is verbonden met de uitgangsdruk p,. De kamer 4 is
aangesloten op de voedingsdruk p,,.
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Voor het evenwicht van de twee gekoppelde membranen A; en As geldt: p, - A1 =
py - Ao (eigenlijk (py, — po) - A1 = (py — Do) - A2, maar er is verondersteld dat p, = 0).
Daarmee wordt de uitgangsdruk p, geregeld. Wanneer p, > p, - A1/As beweegt het
membranenstelsel naar boven. Daardoor sluit de onderste klep en opent de bovenste
klep. Dan ontsnapt lucht naar de omgeving. De uitgangsdruk p, daalt. Alleen als
Py = Pu - A1/ A zijn de beide kleppen gesloten.

Het blokschema van Figuur 6.36.b verduidelijkt de werking. De ingangsdruk p,, oefent
op het grote membraan de kracht F; = A; - p, uit. Deze kracht F; wordt vergeleken
met de kracht F3 = A, - p, die de uitgangsdruk op het kleine membraan uitoefent, zie
Figuur 6.36.b. De verschilkracht F; — F3 bedient de klep. Als F; — F3 > 0 opent de
onderste klep en neemt p, toe; als F; — F3 < 0 dan opent de bovenste klep en daalt de
uitgangsdruk.

Als de druk p, # 0 werkt op het membranenstelsel nog een extra kracht:
Fy =po (A1 — A2) (6.19)

Zie het blokschema in Figuur 6.36.c.

Figuur 6.36 Een pneumatisch servosysteem. Het membranenstelsel is in evenwicht als A - py =
pu. Er is drukversterking als A1 > Aa. Er vindt eveneens volumestroomversterking plaats. De
benodigde versterkingsenergie wordt toegeleverd door de voedingslucht.

Aan de ingang is slechts een zeer kleine volumestroom nodig. Er moet alleen lucht wor-
den toegevoerd voor verdichten van de lucht in de kamer 1 en voor compensatie van
de volumeverandering ten gevolge van membraandoorbuigingen. De beschikbare volume-
stroom aan de uitgang wordt bepaald door de klepdoortochten. Deze is dus willekeurig
groot te maken. De volumestroom aan de uitgang zal groter zijn dan die aan de in-
gang. Er vindt steeds volumeversterking plaats. Voor drukversterking is het nodig dat
Ay < Ay. Als Ay = A, dan is py, = p,,. Ook in dat geval (drukversterking p,/p, = 1) is
energieversterking aanwezig.

De principiéle opbouw van de pneumatische versterker is geheel overeenkomstig aan het
hydraulisch servosysteem van § 6.6.2. Er is een vaste relatie tussen de ingang en de
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uitgang. Bij het hydraulisch systeem tussen de in- en uitgangsverplaatsing, bij de pneu-
matische versterker tussen de in- en uitgangsdruk. Aan de ingang is slechts zeer weinig
energie benodigd; aan de uitgang kan veel energie worden geleverd. De pneumatische
versterker kan dus evengoed een pneumatisch servosysteem worden genoemd.

6.7 Compensatie

Compensatie is een techniek waarbij door toevoeging van een extra element aan een sys-
teem kan worden bereikt dat het totale systeem met een kleine ingangskracht kan worden
bediend. Binnen het systeem is geen element aan te wijzen dat voor krachtversterking
zorgt. Het totale systeem bezit echter wel een (soms aanzienlijke) krachtversterking. De
methode van krachtversterking door compensatie kent verschillende uitvoeringsvormen.
Bij compensatie is het doorgaans de bedoeling om een stabiel of instabiel systeem indif-
ferent te maken, om de evenwichtsherstellende of evenwichtsverstorende krachten zo laag
mogelijk te houden, zie § 5.4 Indifferente systemen.

6.7.1 Zwaartekrachtcompensatie

Het principe van compensatie is goed te onderscheiden bij het systeem van Figuur 6.37.
Voor het bewegen van de massa m; is een hefboom in gebruik. Voor de bediening is een
kracht:

b
F,=mi-9g- o (6.20)

nodig. Deze bedieningskracht is te verminderen door het aanbrengen van een compensa-
tiemassa my. Zie Figuur 6.37.b.

Door het aanbrengen van de zwaartekracht ms - g vermindert de benodigde bedienings-
kracht. Voor de bediening is nu een kracht:

b
Fu:ml'g-g—mz-g (6.21)

voldoende. Zie het blokschema in Figuur 6.37.b. Als mg = my - b/a kan in theorie de
hefboom bewogen worden zonder dat daarvoor een bedieningskracht nodig is. Dan geldt
dat in elke stand van de hefboom de massa’s elkaar balanceren. In werkelijkheid zal wel
een bedieningskracht beschikbaar moeten zijn om de wrijvingskrachten te overwinnen en
de versnellingskrachten te leveren.

Energetisch gezien wordt potentiéle energie uitgewisseld tussen de twee massa’'s mq en
ms. Voor het omhoog gaan van de massa my over een afstand is benodigd aan potentiéle
energie:

b
Elzmlg-y:mlg~ug (6.22)
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Figuur 6.37 Zwaartekrachtcompensatie. Door het aanbrengen van een compensatiegewicht ma - g
is de benodigde ingangskracht F,, te verkleinen.

De massa moy gaat naar beneden en staat een hoeveelheid potentiéle energie af:

E; =mag-u (6.23)

Voor de beweging moet het verschil toegevoerd worden door het ingangssignaal, dus:

E, = (m1 . b m2> g-u (6.24)
a

Als my-b/a = mqy dan is geen energietoevoer door het ingangssignaal nodig. De verminde-
ring van de potentiéle energie van de massa my is gelijk aan de toename van de potentiéle
energie van de massa my. De hefboom met massa's my en mg = my - b/a is krachtloos
te verstellen, mits we de aanname doen van een statisch model zonder wrijvingskrachten.
Zwaartekrachtcompensatie met behulp van een gewicht wordt veel toegepast, bijvoorbeeld
in spoorwegslagbomen, klapbruggen, ja-knikkers, hijskranen en liften.

Het is echter ook mogelijk dat de compensatiekracht door een veer wordt geleverd, zo-
als aangegeven in Figuur 6.38. Zonder compensatieveer is de benodigde ingangskracht
F, =myg-b/a. Als de veer is voorgespannen met deze kracht Fy = m1g-b/a, wordt de
benodigde bedieningskracht F,, = ¢,. Met een slappe veer (oftewel veer met een kleine
c-waarde) ontstaat een goede compensatie. Door de veer (veerstijfheid = ¢) wordt op
de hefboom een kracht F,, = Fy — ¢ - u uitgeoefend. Omdat een veerstijfheid ¢ = 0
niet realiseerbaar is, wordt geen exacte compensatie bereikt. Bij zwaartekrachtcompen-
satie met behulp van een veer vindt uitwisseling plaats van de in de compensatieveer
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opgeslagen energie met de potentiéle energie van de bewegende massa. Zwaartekracht-
compensatie met veren is uitgevoerd bij kanteldeuren (garages, auto's), bureaulampen en
bij hulpmiddelen voor mensen met een fysieke beperking aan hun armen.

u Y

b il e

!
-
&

+F0
l<——
+

Fy mg
<— b/a &——

<

mi1g

Figuur 6.38 Zwaartekrachtcompensatie door veerwerking.

6.7.2 Veerkrachtcompensatie

In de voorgaande paragraaf is aangegeven op welke wijze de invloed van een constante
kracht kan worden gecompenseerd. Het is echter ook mogelijk om de invloed van een
veerkracht (veerstijfheid ¢,) te compenseren. Met de compensatie van een veerkracht
kan ook een krachtversterking worden verkregen. Dit wordt verduidelijkt aan de hand van
de veerbelaste hefboom van Figuur 6.39.a die ongecompenseerd is en voor het indrukken
van de veer met veerstijfheid ¢ een slag u en een kracht F,, = (b/a)? c,u nodig heeft.

De veer wordt ingedrukt door de ingangsverplaatsing u. Voor deze verplaatsing is een

ingangskracht nodig:
b\ 2
F,=u-c, <> (6.25)
a

Naarmate u toeneemt, wordt de veer verder ingedrukt en is een grotere kracht F,, ver-
eist. De ingangskracht F, is te verminderen door het systeem uit te breiden met twee
veren. Zie Figuur 6.39.b. De twee veren oefenen gezamenlijk een compensatiekracht Fj
uit. Daardoor wordt op het linkeruiteinde van de hefboom een kracht F, = F, + F}
uitgeoefend.

De compensatiekracht Fj wijzigt met de ingangsverplaatsing u. Voor de berekening
van Fj moeten de twee veerkrachten F,, vectorieel worden opgeteld. Bij toenemende u
ontspannen de twee compensatieveren. Hun veerkrachten worden daardoor kleiner; hun
werklijnen verdraaien echter zodanig dat hun vectoriéle som Fj, toeneemt met u.

Na berekening blijkt dat zolang u < p/2 met goede benadering gesteld kan worden dat
Fy, = u-c-lo/p. (cr = veerstijfheid en [y = ongespannen lengte van een compensatieveer).
Met k = ¢ - lo/p volgt dus Fj, = k - u.
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Figuur 6.39 a) Het linkerdeel van de figuur geeft de ongecompenseerde situatie. b) Twee schuin
geplaatste veren leveren de compensatiekracht. Bij toename van u ontspannen de compensatieve-
ren. Daarbij verdraaien hun werklijnen zodat de resulterende compensatiekracht F}, ook toeneemt.

Bij een goede opstelling is te bereiken Fy, = ku. Met k = (b/ a)2 ¢y is een volledige compensatie
bereikt.

Het blokschema van Figuur 3.39.b geeft de compenserende werking aan. De benodigde
kracht op de hefboom F, wordt bepaald door de hefboomverhouding en de veerstijfheid

¢y. Er geldt:
I
F, = <> Coll (6.26)
a

Zonder compensatie moet deze kracht geheel door het ingangssignaal worden geleverd.
Door het compenserende element wordt de benodigde ingangskracht verminderd met een
kracht Fj = ku. Dus:

F, = u{(g)%v —k} (6.27)

Voor alle waarden van k kan met een kleinere ingangskracht F,, worden volstaan. Voor

het geval dat:
b\ 2
k=c, |- 6.28
«(2) (6.28)

wordt Fj, = F, en dus F,, = 0. Het systeem is dan zonder ingangskracht te bedienen.
Dat de ingangskracht F,, = 0 kan zijn is met een energetische beschouwing te verdui-
delijken. Bij toenemende u ontspannen de compensatieveren en wordt de belastingveer
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gespannen. De compensatieveren dragen hun opgeslagen energie via de hefboom over aan
de belastingveer en helpen daarmee de belastingveer spannen. Door een juiste keuze van
veerstijfheden, ophangpunten en hefboomlengten is te bereiken dat de afgegeven ener-
gie van de compensatieveren juist gelijk is aan de energie die voor het spannen van de
belastingveer nodig is. Er behoeft dan geen energie door het ingangssignaal te worden toe-
gevoerd. Voor bewegen van de hefboom is dan een verplaatsing u zonder ingangskracht
F, voldoende.

In een werkelijke opstelling is F;, = 0 niet helemaal te bereiken. Dat komt doordat
F,. = k - u een benaderingsformule is, en ook doordat altijd wrijvingen optreden. Bij
een goed ontworpen compensatie kan de benodigde ingangskracht ten minste worden
gedecimeerd.

6.7.3 Algemeen

Uit het bovenstaande blijkt dat krachtcompensatie een eenvoudige en goed bruikbare
methode voor krachtversterking is. Zwaartekrachtcompensatie wordt veelvuldig toege-
past. Zie de genoemde voorbeelden in § 6.7. Compensatie van andere storende krachten
vindt nauwelijks toepassing. Met eenvoudige middelen zou echter wel een aanzienlijke
verbetering in prestaties te bereiken zijn.

Uit de gegeven energetische beschouwing blijkt dat compensatie toegepast kan worden
indien een energie-uitwisseling kan worden gerealiseerd. Daarvoor is het noodzakelijk dat
het systeem een element bevat dat energie kan opnemen: een massa of een veer. De
invioed van wrijvings- of weerstandkrachten kan niet met een compensatiemechanisme
worden verkleind.

6.8 Samenvatting

In dit hoofdstuk zijn de mechanische versterkers besproken. Vooral het versterken van
kracht heeft aandacht gekregen. Zes principiéle mogelijkheden voor kracht/moment-
versterking zijn genoemd en toegelicht. Figuur 6.40 geeft een overzicht.

De methoden voor kracht/moment-versterking zijn besproken aan de hand van blok-
schema’s, die de functionele werking weergeven. De blokschema’s zijn opgebouwd als
vierpolen. Voor de versterker zelf kunnen de krachtversterking en de wegversterking af-
zonderlijk worden beschouwd. Als de krachtversterker wordt belast, treedt interactie op.
Zie bijvoorbeeld het besproken remsysteem van een rijwiel. Daar bleek dat een sterk rek-
kende trekkabel de beschikbare krachtversterking kon beperken. Voor een goede analyse
van versterkers moeten steeds de na- en voorgeschakelde systemen (de last en de bron)
worden mee beschouwd.

De werking van de meeste krachtversterkers komt neer op het ‘ruilen’ (uitwisselen) van
weg tegen kracht. Aan de uitgang is meer kracht beschikbaar, maar minder verplaatsing.
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Figuur 6.40 Overzicht van 6 verschillende methoden voor het verkrijgen van krachtversterking. De
methoden zijn benoemd en genummerd in overeenstemming met de paragraafnummers. In de lin-
kerkolom zijn de constructieve oplossingen (6.2, 6.3 en 6.4) verzameld. Daar is de krachtversterking
verkregen met constructief verschillende systemen. In de rechterkolom staan de systeemtechnische
oplossingen. Zij ontstaan uit verschillende rangschikkingen van bekende componenten.

De geleverde uitgangsenergie is ten hoogste gelijk aan de toegevoerde ingangsenergie.
Voor sommige toepassingen is dat onvoldoende. Dan is het nodig dat aan de uitgang meer
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energie beschikbaar is dan aan de ingang kan worden toegevoerd. In die gevallen is een
servosysteem nodig. In de moderne techniek worden servosystemen veelvuldig toegepast.
Een andere toegepaste methode is die van krachtcompensatie. Het compenseren van
storende veerkrachten is mogelijk, vrij eenvoudig en nuttig.
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Hoofdstuk 7

Spanningen en vervormingen

7.1 Spanningen

Trekspanning

Indien een staaf met een kracht F' wordt belast (zie Figuur 7.1) zal in een doorsnede
van de staaf een trekspanning optreden. Een materiaalspanning is de maat voor de
krachtdichtheid (kracht per oppervlakte) en is te berekenen uit de optredende kracht en
het beschouwde oppervlak.

doorsnede A

-J
-

; 4
el | —_—
1

af
I

Figuur 7.1 De kracht F veroorzaakt in de staaf met dwarsdoorsnede A een trekspanning F/A.

Heeft de staaf van Figuur 7.1 een dwarsdoorsnede A dan heeft de optredende trekspanning
een waarde F'/A. Het is gebruikelijk trekspanningen aan te duiden met het symbool o.
Er geldt hier dus o = F/A.

Schuifspanning

Een geheel ander type materiaalbelasting komt bijvoorbeeld voor bij het ponsen van gaten
in een plaat, zie Figuur 7.2.

Op de met een streeplijn aangegeven plaatsen wordt het materiaal niet gerekt maar af-
geschoven. Als het stempel een rond gat maakt met diameter D en de plaatdikte is h,
dan is de grootte van het af te schuiven oppervlak A = wDh. De schuifspanning is dan:
7 = F/nDh, zie Figuur 7.2.
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Figuur 7.2 De ponskracht F' veroorzaakt een schuifspanning in het door een streeplijn aangegeven
oppervlak.

Elke willekeurige kracht kan ontbonden worden in twee componenten, waarvan één com-
ponent loodrecht op een beschouwd oppervlak staat en dus een normaalspanning o tot
gevolg heeft, en de andere component in het beschouwde oppervlak ligt en een schuifspan-
ning T veroorzaakt. Omstandigheden waarin alleen een normaalspanning (trekspanning
of drukspanning ) of alleen een schuifspanning optreedt komen niet vaak voor.

Beschouw hiertoe nogmaals de staaf van Figuur 7.1. Het is onjuist om te denken dat in
deze staaf uitsluitend trekspanningen optreden. Dit is wel het geval voor een doorsnede
loodrecht op de staafas, zoals de aangegeven doorsnede in Figuur 7.1. In elke andere
doorsnede treden naast trekspanningen ook schuifspanningen op. Dit is verduidelijkt in
Figuur 7.3 waar een scheve doorsnede van de staaf is getekend.

opperviak A opperviak A/sina
\
\ Fsina —
I ) \
- ) - —>
E : F F \ F
A s \_“""—
Fcosa

Figuur 7.3 De kracht F' veroorzaakt in de staaf van Figuur 7.1 ook schuifspanningen, zoals hier
verduidelijkt bij een niet-loodrechte doorsnede in de staaf.

De kracht F' is ontbonden in de twee componenten F'sina en F'cosca, respectievelijk
loodrecht op en langs het oppervlak. Voor het beschouwde oppervliak dat een grootte
heeft van A/sin« is F sin« de normaalkracht en levert dus de normaalspanning o =
(F/A) -sin® . De component F cosa veroorzaakt een schuifspanning ter grootte van
T = (F/A)sinacosa.

Constructies bezwijken doordat de schuifspanningen te hoog oplopen. Het is daarom
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zinvol om na te gaan waar de maximale schuifspanning optreedt. De formule voor de
schuifspanning is ook te schrijven in de vorm:

F
T= ﬂSiHQOz (7.1)

Hieruit volgt direct dat Tmax optreedt bij sin 2a = 1, dus als o = 45°:

F

max — 5 4 7.2
T oA (7.2)

Bij op trek belaste staven treedt dus in vlakken onder 45° met de lengte-as van de staaf
de grootste schuifspanning op. Dit kan ook worden waargenomen. Een onderdeel dat
door trekbelasting is gebroken vertoont de 45°-hoek.

Maximale normaalspanning

In vlakken loodrecht op de lengte-as (o = 90°) treedt geen schuifspanning op; de nor-
maalspanning is daar maximaal.

Buiging

In de techniek zijn nog twee andere eenvoudige belastingstoestanden bekend, namelijk
buiging en wringing. Deze toestanden ontstaan onder de invloed van respectievelijk bui-
gende en wringende momenten. Een willekeurig moment dat op een opperviak werkt is
te ontbinden in een buigend moment dat loodrecht op het beschouwde oppervlak werkt,
en een wringend moment dat in het oppervlak werkt.

Bij zuivere buiging treden alleen trek- en drukspanningen op. Indien een balk wordt
ondersteund en belast zoals aangegeven in Figuur 7.4, dan ontstaat in het balkdeel tussen
de steunpunten een zuivere buiging.

Aangenomen wordt nu dat de middelste vezels (de ‘neutrale lijn’) van de balk even lang
blijven, dat in de bovenste vezels een trekspanning ontstaat en dat in de onderste vezels
van de balk een drukspanning ontstaat. Naarmate een vezel verder van de neutrale lijn
afligt is een grotere spanning aanwezig. Deze aannames zijn in Figuur 7.4 weergegeven.

In de buitenste vezels is de trek-of drukspanning maximaal. Bij het dimensioneren van
een op buiging belast onderdeel moet ervoor gezorgd worden dat in de buitenste vezels
de toelaatbare spanningen niet worden overschreden. Voor de materiaalspanning in de

buitenste vezels geldt:

M
gp = 7 - r (73)

Waarbij geldt:

M= buigend moment
I= axiaal kwadratisch oppervlaktemoment (traagheidsmoment)
r= uiterste vezelafstand
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Fle2 s e
i - - = - -
1
zuivere buiging
a.
0 i
i
M+
M=Fs
b.
neutrale lijn § —————% trekspanningen
{spanningslcoes) drukspanningen
C. ‘

Figuur 7.4 Zuivere buiging in een balk: a) De balk bij a vertoont tussen de twee ondersteu-
ningspunten zuivere buiging. b) Het verloop van het buigend moment is in b getekend. c) De

spanningsverdeling in de balk is in ¢ aangegeven.

Weerstandsmoment tegen buiging
Figuur 7.5 geeft het traagheidsmoment (of axiaal kwadratisch oppervlaktemoment) I en
de uiterste vezelafstand r van een aantal doorsneden weer.

=

'&D)l ‘<~b—>1
= M 4 T (D444 1
I 54D 57(D*-ad tha
I, = 2p* T (D%-d* 1 (bh34b3h)
p 320 32(0 da*) 3 (bh34b3h)
ro= D D h
2 2 2

Figuur 7.5 Axiaal kwadratisch oppervlaktemoment I (bij buiging om de horizontale as) en polair
kwadratisch oppervlaktemoment I,, (bij wringing) van een drietal belangrijke doorsneden. Tevens

is de uiterste vezelafstand r aangegeven.
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Zoals uit Figuur 7.4.c blijkt wordt bij een massieve doorsnede van de staaf het materiaal
van de binnenste vezels niet volledig benut. Bij een buisvormige doorsnede, waar het ma-
teriaal verder van de neutrale lijn is geplaatst, is de materiaalbelasting veel gelijkmatiger.
Uit o, = (M/I) - r volgt dat, bij een gegeven buigbelasting M, de verhouding I/r van
de staaf en de buis gelijk moet zijn om een bepaalde materiaalspanning in de buitenste
vezels niet te overschrijden. De verhouding I/r wordt weerstandsmoment tegen buiging
genoemd. Voor een gelijke verhouding I/r van de staaf en de buis, zal de buis (zie Figuur
7.5) altijd een grotere uitwendige diameter hebben dan de staaf. Het kan echter worden
bewezen dat de buis desondanks altijd lichter zal zijn dan de staaf. Zie hiervoor Figuur
7.6.

‘ bij gelijke sterkte is ? Dy,
buis lichter dan staaf ! [

m, = Mg
‘ massa van
i de buis my
) | Dy, =4Dg
My = ¥4 ms#
|
\ D, =3D,
My = 1/2 mg +

uitwendige
| diameter van

| de buis D
mp = Yamg + AN

e

——
0O Ol 02 03 04 05 06 07 08 09 10 dy
v 17 v v Dy

Figuur 7.6 Als een staaf en een buis even sterk moeten zijn is het nodig dat zij een gelijk weer-
standsmoment bezitten (2Ipyis/ Dy = 2151227/ Ds). De buis moet weliswaar een grotere uitwendige
diameter hebben, maar desondanks is zijn massa lager dan die van de staaf. Opvallend is dat tot
een verhouding dy /Dy, 22 0,8 de buisdiameter Dy, nog nagenoeg gelijk is aan de staafdiameter D,
terwijl de massa van de buis my, nu slechts de helft van de staafmassa ms bedraagt.
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Wringing

Wringing, ook wel torsie genoemd, is een in de werktuigbouw veel voorkomende belas-
tingstoestand. Bij het overbrengen van momenten via assen en tandwielen en dergelijke
ontstaat wringing. De optredende spanningen zijn schuifspanningen en worden weer met
7 aangeduid. Wordt bijvoorbeeld (zoals in Figuur 7.7) een as door een moment T'= F' - a
belast op wringing dan ontstaat in de buitenste vezels een schuifspanning:

T wringend moment .
F=—.p = g - uiterste vezelafstand (7.4)

polair kwadratisch oppervlaktemoment

De waarden voor I, voor de belangrijkste doorsneden zijn in Figuur 7.5 vermeld.

Figuur 7.7 Eenzijdig ingeklemde ronde staaf belast met een wringend moment T' = F - a.

Knik

Bij het belasten van constructies op druk, bestaat in sommige gevallen kans op uitbuigen
(knikken). Vooral relatief dunne lange staven knikken gemakkelijk. Het is praktisch niet
mogelijk om ervoor te zorgen dat bij drukbelastingen de resultante van de drukkrachten
precies langs de symmetrieas werkt. Eveneens zal, ondanks een nauwkeurige bewerking
van een onderdeel de lengteas nooit volkomen recht zijn.

Het gevolg is dat de staaf zal knikken voordat de toelaatbare drukbelasting in het mate-

riaal is bereikt. Hoe groot belasting zal zijn waarbij knik optreedt is mede afhankelijk van
de wijze waarop de staaf of buis is bevestigd. Figuur 7.8 geeft de vier basissituaties weer.

210



Spanningen en vervormingen 7.2 Vervormingen, wet van Hooke

Figuur 7.8 Vier basismogelijkheden van een knikbelasting. De factor n uit de formule voor de
kritische knikspanning s, is weergegeven.

De kritische spanning o, is volgens Euler :

7T2EImin

Al (75)

O =N
waar n afhankelijk is van de bevestiging (zie Figuur 7.8) en waarbij geldt:

E = de elasticiteitsmodulus van het materiaal (zie § 7.2);

Imin = kleinste kwadratische oppervlaktemoment van de staafdoorsnede (Fig 7.5)
A = staafdoorsnede

[= de staaflengte.

7.2 Vervormingen, wet van Hooke

De wet van Hooke

Als gevolg van spanningen treden in het materiaal vervormingen op. Deze vervormingen
zijn het eenvoudigst te bestuderen bij een uitsluitend door trekkrachten belaste prisma-
tische staaf (Figuur 7.1). Als gevolg van de trekbelasting zal de staaf een verlenging Al
vertonen ten opzichte van de onbelaste lengte [y. Deze elastische rek zal toenemen met
de aangelegde kracht F', toenemen met de oorspronkelijke lengte [y en afnemen met de
doorsnede A. De evenredigheidsconstante is 1/E:

F
Al = —1 7.6
= (7.6)
Een proef waarbij een staaf op trek wordt belast wordt in de techniek veel uitgevoerd en
heet trekproef. Bij de gebruikelijke uitvoering van deze proef wordt de belastingskracht
F' continu verhoogd en met de bijbehorende rek Al van de proefstaaf geregistreerd.
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De resultaten van verschillende trekproeven zouden niet goed vergelijkbaar zijn als in de
registratie-grafieken de kracht F' en de verlenging Al zouden zijn uitgezet. De toegepaste
afmetingen van de trekstaaf [y en A beinvloeden immers het verloop van de grafiek. Deze
beinvioeding is te vermijden door in plaats van F' en Al de materiaalspanning o = F/A
en de relatieve rek ¢ = Al/ly in de grafiek uit te zetten. Deze evenredigheid is uit te
drukken met de zeer eenvoudige formule:

€=z (7.7)

Hierbij moet worden opgemerkt dat de rek e gewoonlijk in procenten wordt uitgedrukt.
Uit proeven blijkt dat bijna alle materialen bij een lage materiaalspanning aan de veronder-
stelde evenredigheid tussen opgelegde spanning o en optredende relatieve rek e voldoen.
Het was Hooke die deze evenredigheid het eerst aantoonde. Tegenwoordig is de evenre-
digheid bekend als de wet van Hooke.

Elasticiteitsmodulus

De reciproke evenredigheidsconstante F staat bekend onder de naam elasticiteitsmodulus
(Engels: Young's modulus). Uit de formule e = o/F volgt dat de dimensie van E die
van een spanning (kracht per oppervlakte) is. De eenheid van elasticiteitsmodulus is een
kracht op een oppervlak of N/m? of Pa. Meestal gebruikt men de grotere eenheid N/mm?
= MPa, zo heeft staal een E-modulus van 210000 MPa = 210GPa of GN/mQ. De tabel
van Figuur 7.9 geeft van een aantal materialen de waarde van hun elasticiteitsmodulus FE.

elasticiteits- proportionaliteits-

modulus E grens ¢
materiaal (GPa) (MPa)
zacht staal (99% Fe) 210 170
gelegeerd staal AlSI 4340 210 1400
roestvast staal AlSI 304 190 200
gietijzer 120 110
nodulair gietijzer 170 500
aluminium (99% Al) 70 35
gelegeerd aluminium 7075 70 500
koper 120 70
messing 90 70
aluminiumoxide 400 500
wolframcarbide 600 300
nylon 3 -
polyvinylchloride( PVC) 3 -
teflon (PTFE) 1 -
rubber 0,001 -

Figuur 7.9 Overzicht van de elasticiteitsmodulus E en de proportionaliteitsgrens o, van een aantal
in de techniek gebruikte materialen. Bij metalen hangt de proportionaliteitsgrens sterk af van de
legeringsbestanddelen en de thermisch-mechanische voorgeschiedenis, terwijl dat nauwelijks of geen
invloed heeft op de elasticiteitsmodulus. Polymeren gedragen zich in het algemeen niet volgens de
wet van Hooke, zodat een waarde van o, niet opgegeven kan worden.
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Als de spanning o gelijk aan de elasticiteitsmodulus E zou worden, dan zou € = 1 (of
100%) moeten zijn. De staaf zou tot zijn dubbele lengte uitgetrokken worden:

Al

e:T:1:Al:lo (7.8)

0
Zo'n grote vervorming is voor bijna alle materialen, rubber uitgezonderd, ondenkbaar.
De maximale rek waarbij de evenredigheid ¢ = o/FE nog geldt is bij de gebruikelijke
constructiematerialen doorgaans niet groter dan 0,005 (0,5%).

Proportionaliteitsgrens

Met grote nadruk moet herhaald worden dat de wet van Hooke alleen geldig is voor lage
materiaalspanningen. De hoogste spanning waarbij nog juist een lineair verband tussen
o en e geldt heet proportionaliteitsgrens o,,. Bij grotere belastingen treden afwijkingen
op; de optredende rek is niet meer lineair met de aangelegde spanning. De vervorming is
echter nog wel elastisch, dat wil zeggen dat na wegnemen van de spanning de staaf weer
de oorspronkelijke lengte aanneemt.

Elasticiteitsgrens, breukspanning en treksterkte

De hoogste spanning waarbij de staaf nog elastisch blijft vervormen heet elasticiteitsgrens,
o (in het Engels: yield strength). Bij nog grotere spanningen treedt ook blijvende ofwel
plastische rek op. De staaf verkrijgt niet meer de oorspronkelijke lengte terug na wegnemen
van de belasting. Opvoeren van de spanning leidt uiteindelijk tot breuk. De breukspanning
wordt ook treksterkte o, genoemd.

Figuur 7.10 verduidelijkt aan de hand van het begingedeelte van de trekkromme van een
metaal de elastische en plastische vervormingen.

De totale plastische rek die een materiaal kan ondergaan is bij de meeste metalen veel
groter dan de elastische rek. De elastische rek is doorgaans 0,1-0,2 % terwijl de plastische
rek waarden tussen 15 en 30 % kan bereiken. Zie Figuur 7.11. Een grote plastische rek
is van belang voor een aantal vormgevingstechnieken.

Verschillende materialen vertonen een totaal afwijkende o — e-karakteristiek. Zie Figuur
7.11. Het is mogelijk de optredende verschillen gedeeltelijk te verklaren uit de atomaire
structuur van de materialen. Een voorzichtige poging om de genoemde en andere mate-
riaaleigenschappen uit de materiaalstructuur te verklaren is in Hoofdstuk 8 (Materialen)
ondernomen.
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Figuur 7.10 De praktisch bepaalde registratie van spanning o en rek € bij een trekproef. Voor
belastingen met een spanning o < o), geldt de wet van Hooke. Voor o, < 0 < og is de wet van
Hooke niet meer geldig omdat er een afwijking van het lineaire gedrag optreedt. De rek blijft echter
elastisch. Voor spanningen o > op treedt naast elastische ook plastische rek op. Bijvoorbeeld bij
een spanning o1 (01 > og) is de totale rek in het materiaal €1or1. Deze rek is een som van de
elastische rek ec;1 en de plastische rek ey . Bij wegnemen van de belasting verloopt de registratie
van o en € langs de lijn 1-0. Bij geheel weggenomen spanning (o = 0) resteert de blijvende rek ey .
Bij weer opnieuw belasten wordt de lijn 0-1 in de tegengestelde richting doorlopen. Bij de spanning
o1 is de totale rek weer €ior1. Bij een verdere verhoging van de spanning (o > o1) wordt de
trekkromme verder vervolgd waarbij in het materiaal veel extra, blijvende rek wordt geintroduceerd.

Voor de beoordeling van het mechanische gedrag zijn de volgende materiaalgegevens van
belang. Zij kunnen uit de trekkromme worden bepaald:
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- Elasticiteitsgrens o . Voor machine-onderdelen is dit de maximaal toelaatbare span-
ning. Voor hogere spanningen bezwijkt de constructie niet, maar treedt plastische
rek op waardoor te grote maatafwijkingen zouden optreden. Voor sommige meet-
instrumenten is de proportionaliteitsgrens o, reeds bepalend.

- Elasticiteitsmodulus E. Dit is eigenlijk een soort veerstijfheid van het materiaal. Aan-
gegeven wordt welke relatieve vervorming een belastende spanning teweeg brengt
(onder de proportionaliteitsgrens). Deze maat is van betekenis indien de stijfheid
van de constructie maatgevend is.
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Figuur 7.11 Trekkrommen van een aantal verschillende materialen. Met een * is de combinatie
van spanning ot en rek €; aangeduid waarbij het materiaal breekt. De figuren zijn niet op dezelfde
schaal getekend. a) Trekkrommen van drie staalsoorten. Bij constructiestaal is het deel van
de karakteristiek waar de rek toeneemt en de spanning niet stijgt opmerkelijk, de vloeigrens o,.
Veredelde staalsoorten vertonen veel minder rek en hebben een hogere treksterkte. b) Koolstofvezels
gedragen zich als keramisch materiaal, ze zijn erg bros. De vezels breken abrupt. De rek bij breuk
is uitzonderlijk laag, hoewel de elastische rek juist bijzonder hoog is t.o.v. de meeste metalen. c)
Rubber vertoont, net als andere polymeren, een sterke niet-lineaire trekkarakteristiek, die bovendien
vaak tijd- en temperatuurafhankelijk is. De rek is uitzonderlijk hoog. d) Bij aluminium beinvloeden,
evenals bij staal, de legeringsbestanddelen de treksterkte en de rek aanzienlijk.
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- Treksterkte o;. Dit is het absolute maximum van de materiaalspanning. De toelaat-
bare spanning is veel lager dan dit maximum. Naarmate de belasting slechter bekend
is en de materiaaleigenschappen minder zeker, wordt de toelaatbare spanning lager
gekozen.

- Breukrek €; en in het bijzonder de plastische rek zijn onder andere van betekenis

voor een aantal vormgevingstechnieken. Indien een plaat bijvoorbeeld moet worden
omgezet, moet het materiaal voldoende plastisch kunnen rekken om de optredende
grote vervorming in de hoeken mogelijk te maken. Maar ook in veel constructies
is de mogelijkheid van plastische vervorming een groot voordeel, ook al zijn de
spanningen onder de normale omstandigheden in het elastische gebied. Plastische
rek begrenst plaatselijk optredende hoge spanningen bijvoorbeeld bij interne fouten,
verbindingen als materiaalovergangen, enzovoorts.
Echter, ook met brosse materialen kan heel goed gebouwd en geconstrueerd worden.
Denk bijvoorbeeld aan de nog bestaande bruggen van gietijzer of aan structurele
onderdelen van gereedschapsmachines, die soms ook van het brosse gietijzer zijn
vervaardigd. Ook de brosse koolstofvezels zijn uitstekend geschikt als constructie-
materiaal.

7.3 Sterkte en stijfheid

Sterkte en stijfheid zijn twee belangrijke begrippen die de mechanische eigenschappen van
een constructie beschrijven.

De sterkte van een onderdeel is de maat voor de grootte van de belasting F' die het
onderdeel kan verdragen. Voor trek- of drukbelastingen is:

F=A o, (7.9)
voor buigbelastingen geldt:
M = d - 0. (7.10)
r

De sterkte is dus uitsluitend afhankelijk van de afmetingen van de belaste doorsnede van
de constructie en de toelaatbare spanning (afhankelijk van de toepassing: o, og, enz.).

Stijfheid daarentegen zegt iets over de grootte van de elastische vervormingen als gevolg
van de opgelegde belasting. Volgens de wet van Hooke is voor de stijfheid, de verhou-
ding van de kracht en de daardoor veroorzaakte vervorming, bij trek- of drukbelasting te
schrijven (zie Figuur 7.1):

F AE

CTAT I

Bij buiging is de grootte van de elastische vervorming onder andere afhankelijk van het
belastingsgeval en de plaats op het belaste onderdeel (zie ook Figuur 12.9). Voor bij-
voorbeeld een tweezijdig ondersteunde balk belast met een kracht F' (Figuur 7.12) is de

(7.11)
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stijfheid in het midden van de balk:

F ET
F
___T_‘:._____g._..___-__ __'_______.______=.__,.__-—-f_-—_“_"’__._‘ 2
| o |
< % iz M

Figuur 7.12 Een tweezijdig ondersteunde balk wordt op buiging belast door een kracht F. De
doorbuiging van de balk in het midden is Ay.

Altijd geldt dat de stijfheid slechts afhankelijk is van de afmetingen van het belaste onder-
deel en van de elasticiteitsmodulus E van het gebruikte materiaal. De materiaalsterkte o
komt in de formule niet voor.

De grootte van de elasticiteitsmodulus is te bepalen uit de helling  van de trekkromme
in het proportionaliteitsgebied:

E=7 =tana (7.13)
€

In Figuur 7.13 zijn voor staal, aluminium en koolstof de trekkrommen op schaal in één
diagram getekend. De drie verschillende materialen hebben in het ‘Hookse’ gebied een ver-
schillende hellingshoek o en dus ook een verschillende elasticiteitsmodulus E. Met nadruk
dient te worden opgemerkt dat de elasticiteitsmodulus van een bepaalde metaalsoort een
constante is. Deze wordt nauwelijks beinvloed door legeringsbestanddelen, koudvervor-
ming of warmtebehandeling. Een zachte staalsoort heeft dus dezelfde elasticiteitsmodulus
als het harde gereedschapstaal. Binnen het proportionaliteitsgebied zijn de elastische rek-
ken € van de diverse staalsoorten ten gevolge van eenzelfde spanning o dan ook identiek.
Het is dus onjuist te denken dat bijvoorbeeld een zachte staalsoort geen verende werking
bezit. Deze staalsoort zal echter wel eerder plastisch gaan vervormen dan een sterkere
soort vanwege zijn lagere elasticiteitsgrens op.

Indien twee constructies een gelijke stijfheid hebben, dan houdt dat niet in dat zij ook
even sterk zijn en omgekeerd geldt het ook niet. Drie voorbeelden illustreren dit duidelijk.
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Figuur 7.13 De elasticiteitsmodulus is voor een bepaalde metaalsoort als constant te beschouwen.
De helling van het rechte gedeelte van de trekkromme is een maat voor de grootte van de elastici-
teitsmodulus.

Voorbeeld 7.1 Twee verschillende buizen van een gelijkwaardige constructie worden op
druk belast. De eerste buis is vervaardigd uit een gewone staalsoort met een toelaatbare
spanning van o; = 200 N/mm?. Het materiaal van de andere buis is speciaal chroom-
molybdeenstaal met oo = 800 N/mm?2. De afmetingen van de buizen zijn aan Figuur
7.14 te ontlenen. Omdat de producten:

Fy=A; -0, =160-200 = 32-10°N (7.14)
en

Fy=Ay 09 =40-800 = 32-103N (7.15)
gelijk zijn kunnen de buizen dezelfde kracht verdragen. De buizen zijn dus even sterk.
De krachten veroorzaken een bepaalde elastische vervorming Al. Uit:

F-ly
Al = 1
I=—= (7.16)

blijkt dat de dunnere buis een factor 4 méér ingedrukt wordt dan de dikkere buis. De
stijfheid van de buizen (F/Al) is dus geheel verschillend.
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Figuur 7.14 Vergelijking van sterkte en stijfheid van twee buizen die verschillend van wanddikte en
materiaal zijn.

Voorbeeld 7.2 Twee qua vorm gelijke onderdelen worden uit twee verschillende me-
taalsoorten vervaardigd. Het ene onderdeel is gemaakt van een zachte staalsoort, het
tweede uit hoogwaardig aluminium. Uit Figuur 7.13 blijkt dat het stalen onderdeel stijver
is dan dat van aluminium, maar minder sterk. Het aluminium onderdeel zal bij gelijke
belasting dus meer vervormen, maar kan een hogere belasting verdragen dan dat van staal.

Voorbeeld 7.3 De balk van Figuur 7.12 kan van een massieve staaf of van een buis
vervaardigd worden. Analoog aan Figuur 7.6 wordt gesteld dat de balk in beide gevallen
dezelfde belasting F' moet kunnen dragen, dus dat de staaf en de buis even sterk moeten
zijn. Daarom is het nodig dat de weerstandsmomenten van de staaf en de buis aan elkaar
gelijk zijn:
21, 21
Db B Ds
De buis zal daardoor altijd een grotere diameter hebben dan de staaf (zie Figuur 7.6),
afhankelijk van de d;/Dy-verhouding.
De stijfheid in het midden van de balk is voor het belastingsgeval van Figuur 7.12:

(7.17)

- Aiy - 481531 (7.18)

dus voor de staaf: 5
cs = 481—?)[S (7.19)

en voor de buis: P
cp = 481—3Ib (7.20)
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Aangenomen is dat buis en staaf dezelfde E en dezelfde [ hebben. Voor de stijfheid van

de buis geldt dan:
Iy Dy

€=t =y (7.21)
De stijfheid van de buis zal dus met de groeiende d,/ Dj-verhouding even snel toenemen
als de uitwendige diameter van de buis. Vergelijk daarvoor Figuur 7.15 met Figuur 7.6.
Dat betekent dat het vervangen van een massieve staaf door een dikwandige buis nagenoeg
geen verandering van de stijfheid tot gevolg heeft. Daarentegen neemt bij dunwandige
buizen (dp/Djp > 0, 8) de stijfheid snel toe. Elke buis is echter altijd lichter dan de staaf.
Verdere algemene beschouwingen over sterkte en stijfheid zijn nog te vinden in Hoofdstuk
8.

my * b,

?

bij gelijke sterkte is buis
lichter en stijver dan staaf !

My = Mg

my, =3/4m,T

massa van
de buis m,

—

' Cb = 4Cs

| Cp=3cCq
my, =1/ mg 4
T Cb=2cs
stijfheid van
de buis ¢p
my =Yamg+
—————————————— I Cb=Cs
+ + + + + t 1 t t ——
0O o1 02 O3 04 O5 06 07 08 09 10 f’_b
v v v Dy
Ds

Figuur 7.15 Een op buiging belaste staaf kan vervangen worden door een even sterke buis. Deze
buis zal altijd lichter zijn dan de staaf. Bij dikwandige buizen is de stijfheid nagenoeg gelijk aan
die van de staaf. Dunwandige buizen kunnen echter veel stijver zijn terwijl hun massa een fractie
van die van de staaf wordt.
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Hoofdstuk 8

Materialen

In dit hoofdstuk worden materiaaleigenschappen uitgelegd vanuit de materiaalopbouw.
Hierbij worden slechts globale lijnen van het gedrag van diverse materialen aangege-
ven. Concrete waarden van bepaalde materiaalgrootheden worden, waar nodig, in andere
hoofdstukken vermeld (zie hoofdstukken 7 en 12).

8.1 Atomaire opbouw van materialen

8.1.1 Typen bindingen

Een atoom kun je je voorstellen als een atoomkern waaromheen een aantal elektronen
bewegen. De elektronen bevinden zich in een aantal ‘schillen’. Het chemische gedrag van
een stof is bepaald door het aantal elektronen dat zich in de buitenste schil bevindt.
Alle atomen streven ernaar om hun buitenste schil geheel gevuld te krijgen. Alleen bij de
zogenaamde edelgassen He, Ne, Ar, Kr, Xe en Rn is dit voor elk atoom het geval. Deze
stoffen zijn in hoge mate inert (reageren niet of nauwelijks met andere materialen). Bij
andere stoffen is op verschillende manieren bereikt dat de buitenste schil toch geheel met
elektronen is gevuld. Afhankelijk van de wijze waarop dit gebeurt ontstaan de hieronder
toegelichte interatomaire krachten die de stof bij elkaar houden:

- lon-binding. Een ion-binding is alleen mogelijk tussen atomen van verschillende
elementen. Hierbij heeft het ene atoom net zoveel elektronen in zijn buitenste schil
als een andere atoom nodig heeft om geheel gevuld te raken. De atomen wisselen
zoveel elektronen uit dat elk atoom een geheel gevulde buitenste schil heeft. Door
het verlies van - danwel de winst aan - elektronen ontstaan elektrische ladingen die
de bindingskrachten veroorzaken. Zie Figuur 8.1.a.

- Covalente binding. Bij een covalente binding worden een aantal elektronen gemeen-
schappelijk gebruikt door verschillende atoomkernen totdat hun buitenste schillen
zijn gevuld. Zie Figuur 8.1.b.
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- Metallische bindingen . Bij metallische bindingen bezitten alle atoomkernen alle
elektronen van de buitenste schil gemeenschappelijk. Zie Figuur 8.1.c. De ge-
heel door het materiaal vrij bewegende elektronen geven de metalen — waarnaar de
binding genoemd is — een aantal unieke eigenschappen.

In veel materialen komen verschillende typen bindingen naast elkaar voor.
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a. ionbinding b. covalente binding c. metallische binding

Figuur 8.1 Zeer vereenvoudigde voorstelling van de verschillende typen atomaire bindingen. De
grote grijze cirkel stelt een atoomkern voor. Daaromheen is een cirkel getekend die de plaats van
de buitenste elektronenschil voorstelt. De elektronen zijn als kleine zwarte cirkeltjes voorgesteld.
a) de atomen wisselen hun elektronen uit zodat alle kernen een geheel gevulde buitenschil bezitten.
b) een aantal elektronen zijn in gemeenschappelijk gebruik om tot geheel gevulde buitenschillen te
komen. c) alle elektronen van de buitenste schil zijn gemeenschappelijk.

8.1.2 Bindingskrachten en bindingsenergie

Door de afgifte dan wel ontvangst van een aantal elektronen ontstaan ionen met respec-
tievelijk positieve en negatieve ladingen.

De verschillend geladen ionen trekken elkaar aan. De aantrekkingskracht neemt toe bij
een verkleining van de onderlinge afstand van de ionen. Zie Figuur 8.2. De negatief
geladen elektronen stoten elkaar echter af. De afstotende kracht, tegengesteld aan de
aantrekkende kracht, neemt ook toe met de verkleining van de onderlinge atoomafstand.
Bij een afstand r( zijn de krachten in evenwicht; de atomen bevinden zich in een stabiele
evenwichtstoestand.

Indien de atomen — door wat voor oorzaak dan ook — uit de evenwichtstoestand worden
gebracht ontstaat een evenwichtsherstellende kracht. De mate waarin deze evenwichtsher-
stellende kracht toeneemt met de verplaatsing bepaalt mede de stijfheid van het materiaal.
Of anders geformuleerd: de afgeleide van de krachtkromme (atoomkracht versus atoomaf-
stand) van een materiaal bij de evenwichtssituatie is een maat voor de elasticiteitsmodulus
van dat materiaal. Uitgaande van de kracht-verplaatsingskromme is door integratie de
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potentiéle energie van de atomen onderling als functie van de verplaatsing te bepalen. Zie
Figuur 8.3.
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Figuur 8.2 De som van de afstotende en aantrekkende krachten is nul bij de atoomafstand rg.
Daar is een stabiel evenwichtspunt, omdat bij vergroting van de atoomafstand de aantrekkende
kracht toeneemt en bij afstandsverkleining de afstotende kracht toeneemt. De grootte van de
krachtverandering AF' bij een kleine afstandsverandering Ar rondom het evenwichtspunt rq is de
maat voor de elasticiteitsmodulus (de ‘veerconstante’) van het materiaal. Hoe steiler de raaklijn
aan de kracht-verplaatsingskromme bij ro, des te groter de elasticiteitsmodulus.

potentiéle energie

atoomafstand r

Figuur 8.3 De potentiéle energie als functie van de atoomafstand. Bij de evenwichtsafstand rg is
een energieminimum. De kromme van de totaal optredende kracht uit Figuur 8.2 is de afgeleide
van deze potentiéle energiekromme (afgezien van het teken).
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Nu is de afgeleide van de kracht-atoomafstandskromme de tweede afgeleide van de
energie-atoomafstandskromme. Een grote waarde van de tweede afgeleide betekent een
kleine kromtestraal. Hoe puntiger dus het minimum in de energiekromme van een mate-
riaal, des te hoger is de elasticiteitsmodulus van dat materiaal.

Ook thermische eigenschappen zijn uit de energiekromme af te leiden. Allereerst zal
de minimale waarde van de energieckromme (de ‘diepte’ van de kromme) een maat zijn
voor de toe te voeren energie om de binding op te heffen en dus een maat voor de
smelttemperatuur.

De positie van de atomen moet niet als vast worden beschouwd. Afhankelijk van de
temperatuur zullen de atomen (ionen) met een kleinere of grotere amplitude rondom
de evenwichtstoestand trillen. Bij verhogen van de temperatuur komt het dal van de
energiekromme hoger te liggen (Figuur 8.4). Dit gaat gepaard met een vergroting van de
gemiddelde atoomafstand ry. Deze verandering in de gemiddelde evenwichtstoestand is
een maat voor de thermische uitzettingscoéfficiént. Nu zal het dal in de energiekromme
smaller en rechter worden naarmate de diepte toeneemt. Hieruit volgt dat een grote
elasticiteitsmodulus, een hoog smeltpunt en een kleine thermische uitzettingscoéfficiént
gewoonlijk bij elkaar horen. Zie de tabel van Figuur 8.5.
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Figuur 8.4 Bij temperatuurwijziging verandert ook — afhankelijk van de vorm van de energiekromme
— de gemiddelde atoompositie. Deze verandering is een maat voor de lineaire thermische uitzet-
tingscoéfficiént.
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elasticiteits-  lin. th. uitzettings-
smeltpunt modulus coéfficiént

materiaal (°cl [GPa] (1°clx 10—6
diamant 3550 770 1:2
wolframcarbide 2700 610 ~
wolfram 3370 380 44
aluminiumoxyde 2000 400 8,7
magnesiumoxyde 2640 270 ~10
ijzer 1480 210 12
nikkel 1450 210 13
silicium 1420 200 76
koper 1080 120 17
goud 1060 79 14
siliciumoxyde 1720 70 17
aluminium 660 70 24
magnesium 1100 45 26
keukenzout 800 40 40
polystyreen 70* 2.7 80
nylon 100" 2,7 100
polytetrafluoretheen 250" 0,4 100
polyetheen 100* 0,2 300
natuurrubber 60" 0,002 650

*) ontledinastemperatuur

Figuur 8.5 Tabel met smeltpunt, elasticiteitsmodulus en lineaire thermische uitzettingscoéfficiént
van een aantal materialen. Er blijkt uit dat een materiaal met een hoge elasticiteitsmodulus ook
een hoge smelttemperatuur en een lage thermische uitzettingscoéfficiént zal bezitten.

8.1.3 Rangschikking van de atomen

Veel materialen zijn direct opgebouwd uit een grote verzameling atomen, bij elkaar ge-
houden door de besproken atoomkrachten. Als hierbij de atoomkernen in een regelmatig
patroon zijn geplaatst dan wordt de opbouw kristallijn genoemd. De veel minder voor-
komende opbouw volgens een onregelmatig patroon heet amorf . Figuur 8.6 toont sche-
matisch het verschil tussen een kristallijne en een amorfe rangschikking van de atomen.

O zuurstof
® silicium

b.

Figuur 8.6 Schematische voorstelling van de opbouw van kwarts (SiO2). a) in kristallijne vorm. b)
in amorfe vorm. Deze twee-dimensionale weergave toont slechts drie van de vier zuurstofatomen
rond elk silicium-atoom.
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Indien de optredende atoomkrachten richtingsonafhankelijk zijn, dan is het aannemelijk
dat alle atomen zich in een onderling vergelijkbare positie bevinden. Bij richtingsonaf-
hankelijke atoomkrachten zoals de ion-binding en de metallische binding ontstaat daarom
een kristallijne opbouw. De covalente binding is richtingsafhankelijk. Hieruit kan zowel
een kristallijne als een amorfe opbouw resulteren.

Bij het verkrijgen van een vaste stof uit de vloeibare fase zal de kristalgroei op een
aantal plaatsen in de vloeistof tegelijkertijd beginnen. Bij verlaging van de temperatuur
zet de kristalgroei door totdat de gehele vloeistof uitgekristalliseerd is in een groot aantal
kristallen. Zie Figuur 8.7. Uiteraard zal de ruimtelijke oriéntatie van de roosterviakken
in elk kristal verschillend zijn. Ook is het mogelijk dat de verschillende atomen van een
materiaal zich eerst tot moleculen verenigen en dat het materiaal uit deze moleculen wordt
opgebouwd. De samenhang van het materiaal ontstaat dan door de (zwakke) krachten
die de moleculen op elkaar uitoefenen. Alle in de levende natuur voorkomende materialen
vertonen een dergelijke moleculaire opbouw. Dit is ook het geval bij de meeste kunstmatig
gemaakte polymeren.

Figuur 8.7 De opbouw van een kristalliin materiaal. Het materiaal is samengesteld uit een groot
aantal kristallen. Elk kristal heeft een eigen oriéntatie van het patroonrooster van de atoomkernen.

8.1.4 Elastische en plastische vervormingen

In Figuur 8.8.a is schematisch de atomaire opbouw van een kristallijn materiaal getekend.
Stel dat er nu krachten optreden die schuifspanningen tussen de horizontaal getekende
roostervlakken veroorzaken. De atomen worden hierdoor iets van hun plaats gedrukt
en verkrijgen de in Figuur 8.8.b getekende positie. Bij nog verdere verhoging van de
uitwendige krachten en dus van de inwendige schuifspanningen zal ergens de kritische
waarde overschreden worden en zullen twee roostervlakken zich langs elkaar bewegen. Er
treedt plastische vervorming op. Zie Figuur 8.8.c. In Figuur 8.8.d is de nieuwe — eventueel
tijdelijke — evenwichtsstand getekend.
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W e

a. b. c. d.

Figuur 8.8 Voorstelling van het plastisch gedrag van een kristallijn materiaal. Het oorspronkelijke
atoomrooster uit a) wordt door schuifspanningen die tussen de roosterviakken optreden elastisch
vervormd tot b). Bij nog verdere verhoging van de uitwendige krachten verschuiven twee roos-
tervlakken (2 en 3) langs elkaar. Er treedt plastische rek op. In c) is een verschuiving over één
atoomafstand getekend. Na wegnemen van de belasting komt het rooster in de situatie d). Bij
aanhouden van de schuifspanningen zullen opnieuw rooster-verschuivingen mogelijk zijn.

Theoretisch zijn de optredende atoomkrachten bekend en daaruit kan de maximaal moge-
lijke schuifspanning van een materiaal berekend worden. De in de praktijk voorkomende
waarden blijken enkele orden van grootte lager te zijn. De optredende verschillen worden
veroorzaakt door onvolkomenheden (dislocaties) in het kristalrooster, zoals bijvoorbeeld
veroorzaakt door het ontbreken van een atoom op een bepaalde plaats of wanneer er een
atoom teveel aanwezig is. Figuur 8.9 laat zien hoe door een overtollige atoomrij de maxi-
maal mogelijke schuifspanning kleiner wordt. De overtollige atomen drukken namelijk hun
buren uit hun evenwichtspositie en maken daardoor een onderlinge verschuiving van twee
roosterviakken veel gemakkelijker.

Figuur 8.9 In a) bevinden zich de atomen aan weerszijde van het vlak A in een min of meer labiele
positie. Een kleine schuifkracht is dan ook voldoende om de roosterviakken in de stabiele positie
van b) te brengen.

Immers, de reeds uit hun evenwicht gebrachte atomen zijn betrekkelijk eenvoudig in hun
nieuwe, verschoven evenwichtspositie te brengen, waarbij zij op hun beurt weer andere
buurtatomen uit hun evenwicht brengen en daarmee een verdere voortgang van de ver-
schuiving initiéren. Pas als alle atoomposities van een roostervlak een overtollig atoom
hebben gehad en het overtollige atoom dus schijnbaar het gehele roosterviak heeft door-
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lopen dan zijn de betreffende roostervlakken slechts één atoomafstand ten opzichte van
elkaar verschoven. In de praktijk zijn afwijkingen in de ideale atoomstructuur bij materi-
alen geen zeldzaamheid. Na een plastische vervorming kunnen onder een microscoop de
verschoven roostervlakken als zwarte lijnen worden waargenomen (zie ook Figuur 8.11).

8.2 Materiaaleigenschappen

8.2.1 Onderverdeling van materialen

Het is mogelijk en gebruikelijk om materialen in een aantal soorten onder te verdelen.
Deze soorten worden gekenmerkt door een aantal specifieke eigenschappen. In de op-
somming hieronder worden deze kenmerkende verschillen genoemd. En in de volgende
paragrafen worden deze verschillen verklaard aan de hand van de eerder besproken ato-
maire opbouwvan de materialen en hun microscopische gedaante.

Metalen. De opbouw is steeds kristallijn. De atomen van deze materialen worden bij
elkaar gehouden door de metallische binding (zie § 8.1.1) waarbij de elektronen uit de
buitenste schil zich vrij door het gehele materiaal kunnen bewegen. Dit leidt tot de
karakteristieke eigenschappen: grote elektrische en thermische geleidbaarheid, en grote
plasticiteit en mengbaarheid in alle verhoudingen. Doordat de buitenste elektronenschil
ontbreekt verkrijgen de atoomkernen een relatief kleine onderlinge afstand en is de soorte-
lijke massa hoog. Voor de werktuigbouwkunde zijn de metalen en vooral staal van belang.
Metalen worden verder behandeld in § 8.2.2.

Keramieken. Hiertoe behoren de oudste materialen die de mens gebruikt: klei en steen,
maar ook: zouten, edelstenen, metaaloxyden en grafiet. Essentieel voor de keramieken
is het bestaan van ion-bindingen, maar ook covalente bindingen. Karakteristieke eigen-
schappen van een keramiek zijn: grote hardheid, brosheid, hittebestendigheid en geringe
chemische aantastbaarheid. Het is mogelijk gebleken om de mechanische eigenschap-
pen van keramieken te verbeteren . Het aantal werktuigbouwkundige toepassingen van
de keramische materialen zal daarom verder toenemen. De elektrische en magnetische
eigenschappen zijn ook bijzonder belangrijk. De meeste keramische materialen zijn kris-
tallijn. In § 8.2.3 worden de keramische materialen nader besproken.

Glassen. Dit is een groep amorfe materialen. Karakterisitieke eigenschappen zijn licht-
doorlaatbaarheid, elasticiteit en een brosse breuk bij kamertemperatuur. Glassen hebben
een viskeus gedrag bij hogere temperatuur. Ze worden ook wel tot de keramische mate-
rialen gerekend. In dit hoofdstuk wordt niet nader ingegaan op de glassen.

Halfgeleiders. Niet altijd worden halfgeleiders als een afzonderlijke groep materialen
gezien. Veelal zijn ze ingedeeld bij de keramieken. Voor de elektrotechniek zijn ze enorm
belangrijk. De mechanische eigenschappen zijn niet relevant. De halfgeleider materialen
worden in dit hoofdstuk niet nader besproken.
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Polymeren. Bij deze materialen hebben de atomen zich eerst tot moleculen verenigd.
Alle uit levende materie verkregen materialen zijn polymeren; bijvoorbeeld hout, rubber,
olie, leer, katoen, wol, papier en touw. Sinds ongeveer 1930 kunnen de lange mole-
cuulketens van de polymeren ook kunstmatig worden gemaakt. Nog steeds worden de
eigenschappen van de kunstmatig gefabriceerde polymeren verbeterd, waardoor deze ma-
terialen voor steeds meer functies worden toegepast. Karakteristieke eigenschappen zijn:
lage soortelijke massa, hoge chemische bestendigheid, matige sterkte, slechts bruikbaar
in een klein temperatuurgebied. In § 8.2.4 is meer te vinden over polymeren.

Composieten. Soms levert de combinatie van twee materialen een nieuw materiaal op
dat de goede eigenschappen van beide in zich verenigt. De composieten vormen zo'n
groep van gecombineerde materialen. Alhoewel strikt genomen de legeringen ook hierbij
zouden moeten worden ingedeeld, gebeurt dit niet. Composieten worden ten slotte verder
besproken in § 8.2.5.

8.2.2 Metalen

Zoals eerder aangegeven, is bij metalen de metallische binding aanwezig, die niet rich-
tingsafhankelijk is. De binding is enigszins voor te stellen als een elektronenlijm die zich
vrij tussen de atomen door beweegt.

De metallische binding is een sterke binding, maar laat vooral bij aanwezigheid van ver-
ontreinigingen of roosterfouten tamelijk makkelijk verschuivingen toe. Zie § 8.1.4. Dit
verklaart de grote mate van plastische vervorming die bij metalen mogelijk is. Bij deze
plastische vervorming schuiven de roostervlakken over elkaar. Zie Figuur 8.10. De schui-
vende vlakken komen meer in de trekrichting te liggen. Door een microscoop gezien
verschijnen de verschoven vlakken als zwarte lijnen.

Figuur 8.10 Plastische vervorming in een metaal veroorzaakt door de verschuiving van de rooster-
vlakken.
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Het metaal is opgebouwd uit kristallen. De kristallen liggen vlak tegen elkaar en de elek-
tronenlijm beweegt zich door de kristalgrenzen heen. De kristallen zijn daarom onderling
stevig verbonden. Een metaal zal dan ook niet langs de kristalgrenzen breken, tenzij deze
door verontreinigingen of op andere wijze zijn verstoord.

De schuivende vlakken eindigen uiteraard bij de kristalgrenzen. Een gedeformeerd metaal
verkrijgt dan microscopisch gezien het uiterlijk van Figuur 8.11. Elk kristal is anders in
de ruimte georiénteerd en de richting van de schuifvlakken zal dan ook niet samenvallen.
Omdat het schuiven van de roostervlakken samengaat met het ‘doorgeven’ van onvolko-
menheden zullen de onvolkomenheden zich ophopen bij de kristalgrenzen. Indien grote
kristallen aanwezig zijn zullen zich bij de grens van grote kristallen veel onregelmatigheden
ophopen waardoor het eerder zal breken.

Figuur 8.11 Een gedeformeerd materiaal. De op de kristalgrenzen eindigende schuifvlakken zijn
duidelijk zichtbaar. De oriéntatie van elk kristal is anders, daarom zijn de schuifvlakken niet gelijk
gericht.

Kleine kristallen hebben hier minder last van en daarom is een materiaal met kleine
kristallen sterker dan een materiaal met grote kristallen. Veelal is de kristalgrootte in een
materiaal te beinvloeden door een warmtebehandeling (vooral afkoelingssnelheid) van het
materiaal.

Uit het gegeven beeld van de elektronenlijm die de atomen bij elkaar houdt kan ook
begrepen worden dat de verschillende metalen in alle verhoudingen met elkaar mengbaar
zijn. De rangschikking van de atomen kan op verschillende manieren gebeuren. Uiteraard
heeft deze opbouw invloed op de vervormbaarheid.

- Tot de groep materialen met een gemakkelijk in verschillende richtingen te vervor-
men (schuiven) rooster behoren: ijzer bij hoge temperatuur, koper, zilver, goud,
aluminium , nikkel en lood.

- De moeilijk te verschuiven roosteropbouw levert de moeilijk te vervormen materia-
len: ijzer bij kamertemperatuur, chroom, wolfram en molybdeen.

ljzer, gietijzer. Van het element ijzer zijn een aantal voor de werktuigbouw belangrijke
materialen afgeleid. Zuiver ijzer vindt bijna geen enkele toepassing. Steeds is er sprake
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van een legering van ijzer (Fe) met koolstof (C). Alleen de legeringen met minder dan
6,7% C zijn technisch interessant. Is het koolstofgehalte meer dan 1,7% (maar minder dan
6,7%) dan is het materiaal geschikt om te worden gegoten en heet het gietijzer. Gietijzer
was vroeger berucht om zijn brosheid. Tegenwoordig kunnen veel betere soorten gietijzer
worden gemaakt.

Staal. Is het koolstofgehalte minder dan 1,7% dan heet de legering staal. De twee
verschillende roosterstructuren van het gietijzer komen ook in staal voor bij langzame
afkoeling. Bij snelle afkoeling ontstaan afwijkingen. Er vormen zich dan naaldvormige
kristallen (martensiet genaamd) met een iets afwijkende roosterstructuur die zeer hard
zijn.

Door snelle afkoeling (afschrikken) is staal zeer hard te maken. Deze eigenschap van staal
is tamelijk uniek. Slechts enkele andere legeringen kennen ook het mechanisme van mar-
tensietvorming (onder andere Cu-Sn) en alleen deze legeringen kunnen door snel afkoelen
worden gehard.

De martensietvorming is door de toevoeging van legeringsbestanddelen te beinvioeden. Er
kan mee worden bereikt dat reeds bij normale afkoeling in lucht martensietvorming en dus
harding optreedt. Maar nogmaals: harding door afschrikken is praktisch alleen bij staal
mogelijk. De andere metalen kunnen alleen harder gemaakt worden door het proces van
koudvervormen. Door de koudvervorming en de daarmee gepaard gaande verwijdering van
de fouten uit het kristalrooster verkrijgt een metaal een hogere treksterkte en een grotere
hardheid.

In de vervaardigingsfase van het materiaal zijn de treksterkte en de hardheid (uiteraard)
te beinvloeden door het toevoegen van legeringsbestanddelen.

De belangrijkste mechanische eigenschappen van metalen zijn direct uit de vorm van hun
trekkromme te bepalen. Zie hiervoor de Figuren 7.9 en 7.10 uit het hoofdstuk Spanningen
en vervormingen.

8.2.3 Keramische materialen

Zoals al eerder aangegeven hebben de keramische materialen ion-bindingen en covalente
bindingen. Deze zeer sterke bindingen zorgen voor de sterkte en de stabiliteit van ke-
ramische materialen. De keramieken zijn chemisch weinig aantastbaar en geschikt voor
gebruik bij hoge temperatuur.

Bij de keramische materialen treedt nauwelijks plastische vervorming op. De keramieken
met een covalente binding hebben een richtingsafhankelijke, voor bepaalde atomen spe-
cifieke, bindingskracht . Hierdoor is verschuiving van roostervlakken niet mogelijk; het
materiaal is bros.

Bij de keramieken met een ion-binding is de bindingskracht niet richtingsafhankelijk maar
wel specifiek. Slechts enkele zeer bepaalde roostervlakken kunnen schuiven (de geladen
ionen moeten niet in de buurt van gelijkpolig geladen buur-ionen komen). In enkelkristallen
vertonen deze materialen aanzienlijke plasticiteit. In polykristallijne vorm is het materiaal
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bros, veroorzaakt door de haarscheurtjes die ontstaan op de kristalgrenzen. Samengevat
leveren praktisch alle keramieken een brosse breuk. Doordat de treksterkten over het
algemeen hoog liggen wordt tegenwoordig veel onderzoek gedaan om het breukgedrag te
wijzigen.

De keramische materialen hebben geen vrije elektronen. Zij geleiden daarom de elektri-
citeit en de warmte slecht. Er zijn veel toepassingen van keramiek als isolator, vooral bij
hoge temperaturen. Tegenwoordig komen er veel toepassingen bij dankzij unieke elek-
trische en magnetische eigenschappen. Eén van die eigenschappen is piézo-elektriciteit:
een kristal produceert een elektrische spanning bij vervorming. Vooral kwarts (SiO2) en
barium-titanaat zijn hierdoor bekend. De hoge frequentienauwkeurigheid maakt ze daarbij
geschikt om te worden gebruikt als frequentiestandaard.

Ook de magnetische eigenschappen zijn bijzonder. Keramieken worden toegepast bij de
vervaardiging van de moderne, zeer krachtige magneetmaterialen. Vanwege hun hardheid
worden sommige keramische materialen (wolfram-carbide, aluminiumoxyde) met succes
gebruikt als gereedschap voor metaalbewerking. Vooral een blijvende hardheid en een
grote druksterkte bij hogere temperaturen zijn hier van betekenis. De hoge hardheid
maakt deze keramieken ook geschikt voor gebruik in slijpmiddelen.

8.2.4 Polymeren

Onder de naam polymeren worden die materialen samengenomen die uit zeer grote mo-
leculen zijn opgebouwd. Deze grote moleculen ontstaan door het telkens aan elkaar
vastzetten van eenzelfde groep atomen. De bindingskrachten tussen de atomen van het
molecuul zijn covalent. De verbindende schakel in de keten is meestal een koolstof-atoom,
soms silicium.

Het eenvoudigste voorbeeld is waarschijnlijk polyetheen (PE), ontstaan uit de veelvuldige
herhaling van het monomeer etheen:
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of eenvoudiger:

| |
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Figuur 8.12 geeft van een aantal polymeren de gedaante van de herhalende atoom-groep.
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Figuur 8.12 Overzicht van een aantal kunstmatige en natuurlijke polymeren. Er is slechts de
herhalende atoomgroep gegeven.

233



8.2 Materiaaleigenschappen Materialen

Thermoplasten, thermoharders, rubber. In de opbouw van de polymeren kan men vier
groepen onderscheiden. Deze zijn in Figuur 8.13 schematisch voorgesteld.

In Figuur 8.13.a is het normale beeld van eenvoudige polymeren zoals polyetheen gegeven.
De regelmatige opbouw van de ketens opent de mogelijkheid om op die plaatsen waar de
ketens dicht bij elkaar komen een kristallijne opbouw te vormen. Verder blijven de ketens
alleen tot elkaar aangetrokken door de zwakke moleculaire krachten. Bij verwarming van
het materiaal worden deze moleculaire krachten gemakkelijk overwonnen en het materiaal
is eenvoudig plastisch te vervormen. Deze polymeren worden thermoplastisch genoemd.

F
e

Figuur 8.13 . Vier verschillende manieren waarop polymeren voorkomen, schematisch aangeduid.
a) Diverse lange ketens die op bepaalde plaatsen langs elkaar lopen en daar een kristallijne structuur
opbouwen. b) De hoofdketens hebben een aantal vertakkingen. c) De hoofdketens zijn onderling
dwars verbonden. d) Hier is een netwerk gevormd.

De opbouw volgens Figuur 8.13.d is het andere extreem. Hier vormt zich een netwerk
door een onderlinge verbinding van de moleculen. Deze verbinding ontstaat door atomaire
krachten en is goed bestand tegen temperatuurverhoging. Materialen met deze opbouw
behouden hun vorm bij verwarming. Zij worden thermoharder genoemd. De bekende
polymeren van dit type zijn bijvoorbeeld fenolformaldehyde oftwel bakeliet, melamine-
formaldehyde (vaak foutief ook melamine genoemd) en polyesterharsen.

De in Figuur 8.13.b en c geschematiseerde opbouwstructuren liggen tussen de genoemde
uitersten in. In Figuur 8.13.b is een molecuul met zijketens getekend. Natuurlijk hinderen
deze zijketens de beweeglijkheid van de moleculen. QOok bij hogere temperaturen zijn
stoffen met deze opbouw stijver. Het andere type, zoals in Figuur 8.13.c getekend, heeft
sterke verbindingen (‘bruggen’) tussen de moleculen. Dit type komt veel voor bij rubbers.
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Polymeren zijn bijzonder aantrekkelijke materialen voor een aantal toepassingen. Ze kun-
nen in gecompliceerde vormen worden gebracht, ze zijn voor vele andere stoffen onaan-
tastbaar, ze bezitten goede isolerende eigenschappen, ze kunnen in allerlei kleuren worden
gemaakt, ze bestaan in de vorm van staaf, plaat en folie, maar ook hard, rubberachtig
of schuim, zowel doorzichtig als ondoorzichtig. De betrekkelijk slechte mechanische ei-
genschappen staan een nog uitgebreider toepassingsgebied in de weg. De hoofdbezwaren
zijn: te geringe sterkte, te geringe elasticiteitsmodulus en een te klein bruikbaar tempe-
ratuurgebied. Ter verbetering van deze eigenschappen worden de volgende technieken
toegepast.

Kristallisatie. Vele eenvoudige polymeren bezitten al enige gekristalliseerde gebieden.
Uitbreiding van het aantal en vergroting van de omvang van deze gebieden levert een
verbetering op van de mechanische eigenschappen. Polyetheen (PE) en nylon (behoort
tot de polyamiden) zijn vaak voor een groot percentage gekristalliseerd.

Brugvorming. In tegenstelling tot de vorige techniek is deze methode onomkeerbaar. Een
goed voorbeeld is rubber. In de meest bekende vorm (gevulkaniseerd zoals in autobanden)
is zwavel toegevoegd dat een bepaald aantal bruggen vormt (zie verbindingen in Figuur
8.13.c). Een verdere verhoging van het aantal bruggen levert eboniet, een op bakeliet
gelijkend product.

Ketenverstijving. Deze techniek is eerst uitgevoerd door grote zijketens aan de moleculen
toe te voegen. Een voorbeeld hiervan is polymethylmethacrylaat (PMMA, ook perspex
of plexiglas genoemd). Een andere methode voor verstijving levert cellulose. Hier is de
stijve ring van glucose in de molecuulketen opgenomen. Een veelbelovende werkwijze is de
vorming van zogenaamde laddermoleculen. Hier zijn de ringen van Kekulé aan één zijde
met elkaar verbonden. Zie Figuur 8.14. Er worden harde, warmtebestendige polymeren
mee gevormd.

Er zijn ontwikkelingen om de drie genoemde verstijvingsmethoden gecombineerd toe te
passen.

. Q\\\Y A\Yb\y (\ /\/Q
b "* A v)\c)\d/‘ ‘\ov’" ~oF

@® koolstofatoom

O stikstofatoom

Figuur 8.14 Laddermolecuulvorm. Door deze opbouw van polymeren kunnen de mechanische ei-
genschappen sterk worden verbeterd.
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8.2.5 Composieten

In de techniek wordt vaak een samenstel van twee materialen gebruikt. Een eenvoudig
voorbeeld is verf op staal, waarbij de verflaag is aangebracht om oxidatie (bij ijzer: roest)
van het staal te voorkomen. Een nog duidelijker voorbeeld is een bimetaal, waarbij de
verschillende uitzettingscoéfficiénten van twee metalen (meestal ijzer en brons) worden
gebruikt om een grote verplaatsing te krijgen. Bimetalen worden veel toegepast in een-
voudige goedkope temperatuuropnemers (huisthermostaten).

Ook voor het verbeteren van de mechanische eigenschappen van een materiaal kan aan
de combinatie van twee materialen worden gedacht. Dit is het eigenlijke terrein van de
composieten. Het bekendste voorbeeld van een composiet is gewapend beton. Het beton
zelf is in staat grote mechanische belastingen op te nemen mits het materiaal alleen
op druk wordt belast. Voor trekbelastingen is beton niet geschikt. In de combinatie
staal /beton nemen de aangebrachte stalen staven de optredende trekbelasting op. Deze
staven kunnen echter geen drukbelasting opnemen, omdat ze daarbij zouden uitknikken.
De composiet staal/beton is voor allerlei belastinggevallen te gebruiken. Ook hout is een
composiet. Lange vezels van cellulose kunnen grote trekbelastingen opnemen, maar zijn
erg flexibel. Het toegevoegde lignine bindt de vezels aan elkaar en geeft het materiaal
zijn stijfheid.

Met composieten worden meestal materialen bedoeld die zijn opgebouwd uit vezels van
glas, koolstof of aramide en gebonden in een matrix van epoxy of polyester. Deze ma-
terialen hebben hun superieure eigenschappen onder meer bewezen in ruimtevaart- en
vliegtuigconstructies waar een minimaal gewicht in combinatie met een hoge sterkte en
stijfheid een doorslaggevende rol speelt.

Figuur 8.15 geeft een overzicht van twee belangrijke materiaaleigenschappen o/p en E/p
van ongebonden vezels in vergelijking met enkele conventionele materialen.

Van de drie belangrijkste vezelmaterialen is glasvezel het meest bekend, vooral in combi-
natie met een matrix van polyesterharsen. Een hoge treksterkte gepaard aan een relatief
lage elasticiteitsmodulus maakt glasvezels zeer geschikt voor toepassing als veermateriaal
(zie § 4.2.2).

Koolstofvezels (carbon fibres) worden gemaakt uit sterke kunststofvezels die in een neu-
trale atmosfeer bij een zeer hoge temperatuur (tot 3000 °C) verkoold worden. Dit ma-
teriaal wordt steeds meer toegepast. De prijs per kilo is relatief hoog, vergeleken met
bijvoorbeeld staal (circa 100x) of aluminium (ruim 10x), maar door de hoge specifieke
sterkte en stijfheid is er maar weinig van nodig. De prijs van een totale constructie kan
daardoor toch aantrekkelijk zijn. Een mogelijk nadeel van koolstof is de elektrische ge-
leidbaarheid. Daardoor kan er tussen dit materiaal en de meeste metalen een elektrisch
potentiaalverschil ontstaan met als gevolg elektro-chemische corrosie.
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Figuur 8.15 Specifieke treksterkte (o /p) en specifieke elasticiteitsmodulus (E/p) van de vezelma-

terialen en de gebruikelijke constructiematerialen zoals staal, titanium en aluminium.

Koolstofvezels naar type: A: gewone uitvoering; HT: met hoge treksterkte; HM: met hoge elasti-

citeitsmodulus. Glasvezels naar type: E: gewone uitvoering; S: met hoge treksterkte.

Aramidevezels zijn kunststofvezels met een uitzonderlijk hoge treksterkte en een hoge elas-
ticiteitsmodulus bij een zeer lage soortelijke massa. Ze zijn, omdat ze niet geleidend zijn,
uitstekend geschikt in een corrosieve omgeving als vervanging van koolstof in combinatie

met metalen.

De tabel van Figuur 8.16 vermeldt enkele mechanische eigenschappen van drie vezel-
materialen. Deze gelden voor in één richting georiénteerde vezels, opgenomen in een

epoxymatrix.

materiaal o [MPa] E [GPa] plkg/m?
glasvezel type S 1200 54 2500
type E 2750 54 2500
aramide KEVLAR 29 1470 83 1440
KEVLAR49 | 1950 102 1450
koolstof  type A-S ' 1500 110 1500
type HT-S 1900 130 1500
type HM-S 1500 190 1500

Figuur 8.16 Mechanische eigenschappen van enkele vezelmaterialen.

Bij metalen zijn de meeste mechanische eigenschappen zoals treksterkte, elasticiteitsmo-
dulus en dergelijke richtingsonafhankelijk. Bij composieten daarentegen zijn deze me-
chanische eigenschappen sterk afhankelijk van de vezelrichting. Dit biedt onder andere
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de mogelijkheid plaatselijk de gewenste eigenschappen te optimaliseren door de meest
gunstige vezelrichting te kiezen (Figuur 8.17).

glijdingsmodulus G

i

L _ X ‘

0° 45° 90°
hoek spanningsrichting/vezelrichting

Figuur 8.17 De stijfheid E bij trekbelasting en bij verdraaiing G is afhankelijk van de vezelrichting.
Als de richting van de trekkracht gelijk is aan de vezelrichting (0°) dan is de stijfheid maximaal,
en als de trekkracht er loodrecht op staat (90°) dan is de stijfheid minimaal. De weerstand tegen
verdraaien is maximaal bij vezels die 45° schuin liggen ten opzichte van de draaiingsas.

Wordt een in alle richtingen meer homogene sterkte of stijfheid gewenst dan worden de
onderdelen opgebouwd uit meer lagen met wisselende vezelrichting (Figuur 8.18). Verder
is het mogelijk om de doorsneden zo te laten verlopen, dat er een zeer gelijkmatige
spanningsverdeling tot stand komt (zie ook § 4.2.2).

enkele vezellaag

Figuur 8.18 Om goede mechanische eigenschappen in alle richtingen te verkrijgen kunnen onder-
delen opgebouwd worden uit lagen met wisselende vezelrichting.
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Een opmerkelijke eigenschap van sommige vezelmaterialen (vooral van koolstof) is de
afwezigheid van plastische rek. Bij het bereiken van de treksterkte bezwijken de vezels
abrupt. Dit geldt natuurlijk alleen voor onderdelen waarin de vezels slechts in één richting
gelegd zijn. Figuur 8.19 laat een schematisch verloop van de trek en de spanning zien bij
drie soorten koolstofvezels in vergelijking met staal en aluminium. De sterren geven aan
dat het materiaal bij deze spanning plotseling bezwijkt.
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Figuur 8.19 Trekdiagram van enkele typen koolstofvezels in vergelijking met die van staal en alumi-
nium. Koolstof is bros en bezwijkt abrupt, terwijl de meeste metalen veel plastische rek vertonen
(het horizontale gedeelte van de kromme in de grafiek).

Een interessante eigenschap van vezelmaterialen gebonden in een kunststofmatrix is het
vermogen om trillingen te dempen. Mede daardoor hebben composieten een hoge sterkte
bij wisselende belastingen (hoge vermoeiingssterkte).

Speciaal in de vliegtuighouw worden vezels gebruikt ter versterking van zwaar belaste me-
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talen onderdelen. Daardoor is het mogelijk om een flinke gewichtsbesparing te realiseren
bij verbeterde mechanische eigenschappen.

Omdat de vezels ingebed zijn in een kunstharsmatrix worden bij de opbouw van de ge-
wenste onderdelen in het algemeen lijmverbindingen toegepast.

Het ontwerpen in vezelconstructies vraagt een duidelijke integrale aanpak, het zou verkeerd
zijn om de huidige constructies te willen verbeteren door slechts het metaal te vervangen
door composiet en de vorm ongewijzigd over te nemen. De vezels leveren slechts dan
optimale constructies indien hun specifieke eigenschappen ten volle worden benut. Een
constructie moet in de regel niet opgebouwd worden uit vele afzonderlijke onderdelen,
maar eerder een gesloten geheel vormen.
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Hoofdstuk 9

Veren

9.1 Inleiding

Alle materialen bezitten ten minste enige elasticiteit, zie H8 Materialen. Soms is dit na-
delig zoals bijvoorbeeld bij het ontwerpen van optische apparatuur, meetinstrumenten en
precisiemachines, zoals een wafer stepper. In al deze gevallen wordt geprobeerd door de
combinatie van vormgeving en materiaalkeuze in het ontwerp de optredende vervormingen
ten gevolge van de elasticiteit klein te houden. In andere gevallen is elasticiteit juist ge-
wenst en wordt deze doelbewust ingebouwd. Het is gebruikelijk om constructie-elementen
die een relatief geringe stijfheid hebben en dus relatief grote verplaatsingen kunnen opne-
men veren te noemen.

Veren zijn in gebruik als:

- energieaccumulator klok- en horlogeveren, speelgoedkrachtbron, pro-
thesen, krachtcompensatiemechanismen
impuls- en trillingsdempers  voertuigophanging, trillingsarme opstellingen

- terugstelmechanisme motorkleppen, reduceerventiel, palveer, meetin-
strumenten, skibindingen, toetsen
- meetveer meetopnemers, unsters.

Alhoewel minder gebruikelijk — en ook buiten de gegeven definitie vallend — zouden beves-
tigingsmiddelen als bout/moer en klinknagels ook als veren beschouwd moeten worden.
Immers, hun werking berust (voor een groot deel) op het blijvend samentrekken van de
bevestigde onderdelen door middel van de in de bout of klinknagel aangebrachte veer-
kracht.

In dit hoofdstuk worden zowel formules afgeleid om veerstijfheden en veerdimensies te
bepalen als formules om de optimale veren te kiezen gebaseerd op hun energieopslag per
volume of massa. Tot slot wordt de ontwerper allerlei handige tips aangereikt om op
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een constructieve wijze de zo gunstig mogelijke veer te kiezen op basis van de gewenste
veerkarakteristiek.

9.2 Eigenschappen van een veer

9.2.1 \Veerkarakteristiek, veerstijfheid en werkpunt

Bij een elastisch of verend element neemt de uitgeoefende kracht toe met de bereikte ver-
plaatsing. Bij lineaire veren is er evenredigheid tussen de veerkracht F' en de verplaatsing
x. De in te voeren evenredigheidsconstante ¢ heeft de naam veerstijfheid. In formule
wordt deze relatie dan als volgt beschreven:

F=c-z (9.1)

De formule in grafische vorm is algemeen geldig voor zowel trekveren als voor drukveren,
zie Figuur 9.1. Hiertoe moet echter wel de gegeven formule F' = ¢ - = als een vector-
vergelijking worden opgevat, dat wil zeggen: de op de veer uitgeoefende kracht F' en de
verplaatsing = moeten in dezelfde richting werken, zie Figuur 9.1. Dat wil zeggen bij een
trekveer staat de trekkracht naar buitengericht en rekt de veer uit onder deze belasting.
Bij een drukveer is de drukkracht naar binnen gericht en verkort de veer onder deze be-
lasting. De veerstijfheid is een maat voor de stijfheid van de veer. De veerstijfheid is
gelijk aan de richtingscoéfficiént van de lineaire veerkarakteristiek zoals weergegeven in
Figuren 9.1 en 9.3. Als de veerstijfheid een hoge waarde heeft, dan betekent dit dat voor
het verkrijgen van een kleine verplaatsing een grote kracht nodig is. De veer is dan stug
of stijf. Een kleine veerstijfheid betekent een slappe veer, wat betekent dat een relatief
grote verplaatsing te realiseren is met een kleine kracht.

A stijve veer

e

slappe veer

x¥

Figuur 9.1 Veerkarakteristiek geldig voor druk- en trekveren indien de kracht en de verplaatsing in
dezelfde richting positief worden beschouwd.
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il

—_—
x

—

-
X

Figuur 9.2 Veerkarakteristiek van een veer waarbij de kracht F' en de verplaatsing x in tegengestelde
richtingen positief zijn verondersteld. De veer heeft dan een negatieve stijftheid. Deze karakteristiek
is niet zonder meer met alleen een veer te realiseren.

Voor het geval dat F' en x in tegengestelde richtingen positief zijn verondersteld, geldt de
veerkarakteristiek van Figuur 9.2.

Een veerstijfheid ¢ = 0 en negatieve waarden van een veerstijfheid zijn slechts indirect te
bereiken met speciale constructies. Voorbeelden van constructies waarbij een veerstijfheid
met waarde 0 is gerealiseerd zijn te vinden in § 5.5.2 Stabiliseren met een veer, § 5.6
Indifferente systemen, en § 6.7.2 Compensatie.

Gedefinieerd is dat een veer in zijn onbelaste toestand een vrije lengte [, heeft, zie Figuur
9.3. Veren worden meestal niet in deze toestand gebruikt. Doorgaans wordt een veer door
het aanbrengen van een voorspanning Fy in een werkpunt gebracht met een bijbehorende
initiéle lengte Ly, zie Figuur 9.3. De uitrekking of indrukking in dit werkpunt is dan:

o = LQ — lo (92)
de voorspanning is dan:
FOZC'JTOZC'(Lo—lo) (93)

De veerverplaatsingen worden vaak vanuit het werkpunt opgegeven. Dit komt er op neer
dat in het werkpunt een nieuw assenstelsel word gekozen, zie Figuur 9.3. De verplaatsin-
gen vanuit de initiéle lengte Ly worden aangegeven met z, de verplaatsingen vanuit het
werkpunt met Az. Er geldt dus:

x=x0+ Az (9.4)
Eenzelfde notatie zal voor de optredende kracht worden gebruikt:
F=F+AF (9.5)

Een lineaire veer heeft in het werkpunt dezelfde veerstijfheid ¢ als in de oorsprong. Dus
F =c-z, maar ook AF = ¢- Az. Ook voor het nieuw gekozen werkpunt moet aan de
tekenafspraak gedacht worden. Dus AF' en Az moeten in dezelfde richting gekozen zijn,
want dan blijft de veerkarakteristiek hetzelfde.
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Opmerking. In het algemeen worden de codrdinaten die vanuit het werkpunt gemeten zijn
en die vanuit de rusttoestand van de veer gemeten zijn, niet met verschillende symbolen
aangeduid.

’ s
2
Ly
F € >
Ly = initi€le lengte
£p = vrije lengte
% Fp=voorspanning [N]
P N r
Fo o Kracht F
’

o

—
Verplaatsing x

Gewone veer (trek of druk)

Figuur 9.3 Veerkarakteristiek en werkpunt.

9.2.2 Berekening van de veerstijfheid

De afmetingen van de zeer veel voorkomende schroefveren (trek- of drukveer) kunnen
worden berekend. Deze formule kan geheel afgeleid worden door analyse van het evenwicht
van een schroefveer die belast wordt door een kracht F' waarbij de systeemgrens getrokken
is dwars horizontaal door de veer, zie Figuur 9.13. Hieruit volgt een uitdrukking voor F'.
De F' delen door de verplaatsing x geeft dan de volgende formule voor de veerstijfheid
[Grieve, 2001]:

G-
- 8-n-D3
Waarbij: ¢ de veerstijfheid is (N/m), G de glijdingsmodulus (N/m?), d de diameter van
de veerdraad (m), n het aantal effectieve veerwindingen en D de windingsdiameter van
de veer (m). Merk op dat het aantal windingen n vermenigvuldigd met de draaddiameter
d de veerlengte [, geeft.

c

(9.6)

Zoals in formule te zien is, is de veerstijfheid van dit type schroefveren volledig bepaald
door de karakteristieke afmetingen van de veer en een materiaaleigenschap (de glijdings-
modulus). Veren zijn vaak gemaakt uit verenstaal (staal met een hoog koolstofgehalte).
Een typische waarde voor de glijdingsmodulus van verenstaal is 80 GPa [Ashby, 2010],
[Ansys, 2014].
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De keuze van deze afmetingen van een schroefveer is niet geheel vrij. Zo wordt voor
praktische toepassingen de verhouding windingsdiameter/draaddikte (D/d) bijna steeds
8 a 10 gekozen.

Deze veerformule is bedoeld voor een eerste afschatting van de veerprestaties en de af-
metingen bij de normaal voorkomende veerconfiguraties. Het blijft mogelijk om gunstiger
waarden te verkrijgen. Raadpleeg daarvoor bijvoorbeeld de websites van veerfabrikanten.
Voor de berekening van afmetingen van andere typen veren wordt verwezen naar bronnen
waarin de theorie van stijfheid en sterkte van materialen verder wordt behandeld.

9.3 Samenwerkende veren

Veren kunnen op verschillende manieren samenwerken. Voor de ontwerper biedt dit meer
mogelijkheden om een verende werking in een constructie in te bouwen. Argumenten
kunnen zijn dat er niet genoeg inbouwruimte is voor één veer of dat een berekende veer-
stijfheid niet standaard verkrijgbaar is en moet worden samengesteld uit een combinatie
van veren. In deze paragraaf worden verschillende configuraties besproken en formules
daarvoor afgeleid.

9.3.1 Parallelschakeling

Veren kunnen naast elkaar geplaatst worden en zo een gelijke vervorming ondergaan. Dit
heet een parallelschakeling, zie Figuur 9.4.

e ——
-

o

veer 1 veer 2

a. b.

Figuur 9.4 a) Bij de parallelschakeling van twee veren ondergaan de beide veren eenzelfde verplaat-
sing. b) Hier is de constructie gesplitst om de inwendige krachten zichtbaar te maken.

Voor veer 1 met veerstijfheid ¢; geldt F; = ¢; - ©. Veer 2 met veerstijfheid co ondergaat
dezelfde verplaatsing x. Voor deze veer geldt F» = co - . Verder moet natuurlijk
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F = F| + F5. Indien van de combinatie van de twee veren een veerstijfheid cio; wordt
aangenomen, dan geldt:

F = Ctot X (.) (97)
maar ook:
F=F+F=c-z24+c-x=(c1+c) x (9.8)
of:
AF = (Cl + Cg) - Az (99)

Combineren van deze formules geeft:
Ctot = C1 + Co (9.10)

De veerstijfheid van twee parallel geschakelde veren is gelijk aan de som van de afzonder-
lijke veerstijfheden. Bij parallelschakeling ontstaat een veer die stijver is dan elk van de
oorspronkelijke veren.

Het blokschema van parallel geschakelde veren is op twee manieren samen te stellen. Zie
H2 Modelvorming voor de theorie over blokschema’s. In Figuur 9.5.a is de verplaatsing
x als onafhankelijke ingangsvariabele beschouwd. Uit het schema blijkt duidelijk dat de
veren een gelijke verplaatsing x ondergaan en dat de veerkrachten F; en Fj zich op de
beweegbare bovenplaat sommeren tot de uitgangskracht F'. Uit het schema is direct af
te lezen dat F' = (¢1 + ¢2) - .

x| I Fl o o
| T | T+ 1 |
o ‘ veer!2 S et ‘ !
o dveer1 } I N i Fa |
| | | | | |
. } c } ‘ \ . } c } ‘ 1 \
b 1 | } K | bt 1 | } <, |

| | | |
L | I I L | I I
Pt N leTTveert | |
| ¥ 1 | | I | |

i el | X L |
| | I I | | I I
e J L J e J L i

bovenplaat bovenplaat veer 2
a. b.

Figuur 9.5 Blokschema's voor parallel geschakelde veren. a) De verplaatsing x is gekozen als
onafhankelijk ingangssignaal en F als afhankelijk ingangssignaal. Het blokschema is een parallel-
schakeling. b) De kracht F is gekozen als het onafhankelijke ingangssignaal en de verplaatsing
als het afhankelijke ingangssignaal. Dit blokschema is een tegenkoppeling. Uit beide blokschema’s
blijkt het essentiéle van parallelgeschakelde veren: de veren hebben een gelijke verplaatsing. Deze
essentie is benadrukt door een dubbele signaalbaan in de schetsen.

In het blokschema van Figuur 9.5.b is de kracht F als onafhankelijk ingangssignaal ge-
kozen. De kracht I’ verminderd met de veerkracht Fy, is beschikbaar voor het indrukken
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van de veer 2. Veer 2 wordt daardoor een afstand 2 = F5/cy ingedrukt. In de opstelling
is de indrukking van veer 1 gelijk aan die van veer 2. Daarmee is de tegenkoppelbaan te
tekenen: Fy = ¢ - . Met de voor tegenkoppeling geldige formule (zie § 2.3 Interactie) is
direct op te schrijven:
pe e F
1+ a+e

Uiteraard is dezelfde formule als voor het blokschema van Figuur 9.5.a afgeleid.
De twee blokschema's van Figuur 9.5.a en Figuur 9.5.b zijn namelijk geheel gelijkwaardig.
Uit beide blokschema’s blijkt duidelijk het karakteristicke van een parallelschakeling: de
veren hebben een gelijke verplaatsing. In de figuren is dit aangegeven door een dubbele
signaalbaan. In beide figuren kunnen ¢y en ¢y verwisseld worden met behoud van hetzelfde
resultaat.

(9.11)

9.3.2 Serieschakeling

Veren kunnen zo geplaatst zijn dat zij door dezelfde kracht worden ingedrukt. Dit heet
een serieschakeling, zie Figuur 9.6.

\Lx
veer 1
indrukking x,

veer 2
indrukking x,

F
F
F
F
F
F
F
Figuur 9.6 Bij een serieschakeling ondervinden de beide veren eenzelfde kracht.

De kracht F' zal veer 1 een afstand x; indrukken. Veer 1 heeft een veerstijfheid ¢;. Er
geldt F' = c¢; - x1. Op veer 2 werkt dezelfde kracht F' en veroorzaakt hier een indrukking
To. Voor veer 2 geldt F' = co - .
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9.3 Samenwerkende veren Veren

In totaal worden de samengestelde veren een afstand xy; = 1 + =2 ingedrukt. Indien
de combinatie van de twee veren met de veerstijfheid ¢yt wordt aangegeven, dan moet
gelden:

F
F =ciot Trot of Tt = — (9.12)
Ctot
Maar ook geldt:
F F 1 1
Itotl’1+IQ+F(+> (9.13)
C1 C2 C1 C2
of:
1 1
Awtot =AF | — + — (914)
C1 C2
Combineren van deze formules geeft:
1 1 1
=—+— (9.15)

Ctot C1 C2

De reciproke waarde van de veerstijfheid van twee in serie geschakelde veren is gelijk aan de
som van de reciproke waarden van de afzonderlijke veerstijfheden. Bij een serieschakeling
ontstaat een veer die slapper is dan elk van de oorspronkelijke veren.

Ook het blokschema van in serie geschakelde veren is op twee manieren weer te geven.
In het schema van Figuur 9.7.a is de op de veren werkende kracht F' als onafhankelijke
ingangsvariabele gekozen. Beide veren worden door dezelfde kracht belast. De som van
veerindrukkingen x1 = F/c¢y en x5 = F/co levert de afstand waarover de bovenplaat
verplaatst. Uit het schema volgt direct:

—_— (1 + 1) (9.16)

C1 C2

Indien de verplaatsing = als onafhankelijk ingangssignaal wordt gekozen, ontstaat het
blokschema van Figuur 9.7.b. De indrukking z2 van veer 2 is gelijk aan de verplaatsing
x van de bovenplaat verminderd met de indrukking van veer 1.

Dus x5 = x — 1. De kracht F' waarmee veer 2 wordt ingedrukt volgt uit F' = ¢ - x5. De
in serie geschakelde veren worden door dezelfde kracht belast. Dus x; = % Daarmee
is het blokschema compleet. De totale overbrengingsverhouding is te berekenen uit het
blokschema:

F Co C1 - C2

Hyp = — = _ =
© T 1+Z—f 1+ ¢

(9.17)

Dit is te herleiden tot dezelfde formule als voor Figuur 9.7.a is afgeleid. De karakteristieke
eigenschap van in serie geschakelde veren is dat ze door een gelijke kracht worden belast.
Dat is verduidelijkt door een dubbele signaalbaan.
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tussenplaat bovenplaat
AN I o b
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T T \ I r \
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| A | — | | | [ ——— — | |
N | T \ [ R e, SRR S I X
P veer | | Lo I |
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| I | )| I |
R R 1 IR R o |
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\ | Pl \ \ | P \
AR PR v | Lo Ilveer1 1| }
T 0 2 I 0 |
3 S | £ Jius |
| bl | | P |
e N i e N i
bovenplaat veer 2 b tussenplaat veer 2
a. .

Figuur 9.7 Blokschema'’s voor in serie geschakelde veren. a) De kracht F is gekozen als onafhankelijk
ingangssignaal en de verplaatsing x als afhankelijk ingangssignaal. Let op: hoewel de veren in serie
staan is het blokschema een parallelschakeling. De veerverplaatsingen x1 en x2 sommeren zich
tot de totale ingangsverplaatsing x. b) Het blokschema met de verplaatsing x als onafhankelijk
ingangssignaal is een tegenkoppeling. De essentie van in serie geschakelde veren: de veren zijn door
dezelfde kracht belast, is in de blokschema’s door een dubbele signaalbaan aangegeven. Vergelijk
met Figuur 9.5.

9.3.3 Samenwerkende veren, nadere beschouwing

Bij het vaststellen of twee veren in serie of parallel zijn geschakeld moet niet worden gelet
op de constructieve opbouw, maar alleen op de functionele werking.

Voorbeeld Beschouw de veerschakeling in Figuur 9.8. Constructief lijkt het hier een
serieschakeling. Doordat de beide veren echter dezelfde verplaatsing (afgezien van een
teken) ondergaan is het functioneel een parallelschakeling. Er geldt dan ook dat de totale
schakeling een veerstijfheid heeft die gelijk is aan de som van de veerstijfheden van de
beide veren. Bij toepassing van twee gelijke veren is de resulterende veerstijfheid 2 keer
die van één veer afzonderlijk. Blijkbaar is deze uitkomst in tegenspraak met de intuitieve
gedachten van velen. Het is echter onjuist te menen dat de veerkrachten tegen elkaar
inwerken en dat daardoor een veerstijfheid ¢ = 0 kan worden verkregen. Het onderling
in evenwicht houden van de veerkrachten betreft alleen de statische indrukkracht. Bij
het aanbrengen van een externe kracht F' wordt veer 2 nog meer ingedrukt. Tegelijkertijd
neemt echter ook de kracht van veer 1 af, zodat deze vermindering ook nog gecompenseerd
moet worden door de kracht F.

Een parallelschakeling is gekenmerkt doordat beide veren eenzelfde indrukking ondergaan.

Een manier om snel te zien of twee veren in serie- of parallelschakeling staan, is het in
gedachte oneindig stijf maken van één van de veren. Als dan de andere veer nog steeds
kan worden ingedrukt of uitgerekt dan is er sprake van een serieschakeling; als de andere
veer dan ook niet meer kan bewegen is er sprake van een parallelschakeling.
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a.
F1 F1 F F2 Fz
—> e
— —_—
b. * F+F = F, X2
F, Fq, Fo
| F
A ;A F1
T R A
F2
X
Xo, Xo, x X
c. d. e.

Figuur 9.8 a) Schematische weergave van twee samenwerkende veren. b) De constructie is op-
gesplitst in componenten: veer 1, veer 2 en het blok. Op veer 1 werkt de kracht Fi, op veer 2
werkt de kracht Fa. c) Grafische weergave van beide lineaire veerkarakteristieken, waarbij in de
rusttoestand veer 1 een afstand xo1 is ingedrukt (voorspanning) en veer 2 een afstand zo2. Beide
veren zijn daardoor voorgespannen met dezelfde kracht Fy1 = Fp2. Let op dat nu gekozen is om
de indrukking van veer 1 NIET te definiéren in de richting van de kracht F;. De reden hiervoor is
dat het grafisch samenstellen van de beide veerkarakteristieken tot één dan duidelijker is weer te
geven. d) Voor de totale veerkarakteristiek geldt F' = Fy — F.

Het blokschema van Figuur 9.9 geeft aan dat beide veren inderdaad eenzelfde indrukking
ondergaan, met de verplaatsing = gekozen als onafhankelijk ingangssignaal. In het schema
zijn de veerkrachten opgebouwd uit de som van voorspanning en de kracht ten gevolge
van de externe belasting: F} = Fy; —c¢1 - x en Fy = Fys + ¢ - ©. De voorspanningen
Fo1 en Fyo komen met tegengesteld teken tot uiting in de totale ingangskracht F'. Voor
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het bestuderen van de veranderingen in het ingangssignaal is de voorspanning niet van
belang. Daarom kunnen zij worden weggelaten, zie Figuur 9.9.b

X

) ! )

Cy G

_ +
+ + i G
<— —>
For = Fo2 F +
F, +
F —_
F ! +
a. b.

Figuur 9.9 a) Blokschema behorend bij de samenwerkende veren van Figuur 9.8. De voorspanning
van de veren Fo1 en Foo komt in het resultaat F' niet tot uiting. b) Bij weglaten van de voorspan-
ningen ontstaat een gelijkwaardig blokschema. De schakeling is duidelijk een parallelschakeling.
Het plusteken in de ‘ci-baan’ is ontstaan uit het samenvoegen van twee mintekens uit de eerste
signaalbaan van het blokschema in (a)

9.3.4 Voorspanning

In § 9.3.3 Samenwerkende veren, nadere beschouwing, is het begrip voorspanning al ter
sprake gekomen. Het aanbrengen van voorspanning is in de werktuigbouwkunde veel
voorkomend. Het volgende voorbeeld is bedoeld om inzicht te geven in het doel van het
aanbrengen van voorspanning, alsmede in de te nemen voorzorgen daarbij.

Voorbeeld In Figuur 9.10 is schematisch de cilinderkop van een verbrandingsmotor ge-
tekend. De moeren op de cilinderkop worden aangedraaid om ervoor te zorgen dat een
gasdichte afdichting tussen cilinder en cilinderkop ontstaat. Daarbij komen de tapeinden
van de bout onder trek te staan en worden de cilinderkop, de pakking, de moer en een
deel van het motorblok op druk belast. In de figuur is aangegeven welke componenten
van de constructie daarbij een verend gedrag vertonen. In Figuur 9.10.b is de functionele
werking van de verschillende verende componenten aangegeven. Samengevat ontstaat
er een parallelschakeling van een aantal in serie geschakelde veren. Als de onder druk
staande veren een totale veerstijfheid ¢4 hebben, en de onder trek staande veren een to-
tale veerstijfheid c¢;, dan is de figuur te vereenvoudigen tot Figuur 9.10.c. Alle in serie
geschakelde drukveren hebben een voorspanning Fy,. Alle in serie geschakelde trekveren
hebben een voorspanning Fp;. In de rustsituatie geldt uiteraard: Fyg = Fo:.

Als de motor in bedrijf is, oefent de verbrandingsdruk in de cilinder een extra kracht Fj,
op de cilinderkop uit. Daardoor worden de op trek belaste veren nog verder uitgerekt
en zullen de op druk belaste veren iets ontspannen. De veerkrachten veranderen daarbij
zoals in Figuur 9.10.d is aangegeven. In de nieuwe situatie zijn de trekveren een afstand
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Veren

%= schroefdraad
tapeind 1

% schroefdraad moer

= tapeind

4

Zcilinderkop
=

—=pakking

NN

= schroefdraad
tapeind 2

BN

moer

schroefdraad moer

L

| —=schroefdraad blok
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schroefdraad tapeind 1
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F b
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cilinderkop tapeind “ «
pakking
schroefdraad tapeind 2
blok
- referentievlak 2 -
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F F, Fi = For — ¢y
F Fe
d Fa = Fod — CaX . +
Fod = Fot <~ =
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\
\
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N\ Fring! t
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Figuur 9.10 a) De constructie van een cilinder die wordt afgesloten met een cilinderkop d.m.v. bou-
ten en moeren en met een pakking die een gasdichte afdichting mogelijk maakt. Elke benoemde
component heeft in de constructie een verende werking. b) De verende componenten staan onder

trek- of drukspanning, zoals schematisch weergegeven.

Hierdoor ontstaat een geschakelde con-

structie van veren. c) De geschakelde verenconstructie is vereenvoudigd door de veren die in serie
staan samen te stellen tot één veer. Hierdoor ontstaat een parallelschakeling. d) De grafiek geeft

de veerkarakteristieken van de trek- en drukveer weer.

Ook is te zien hoe de parallelschakeling

zich gedraagt bij het aanbrengen van een extra belasting Fy. f) Het blokschema verduidelijkt de
parallelschakeling en laat zien waar de voorspanning in een blokschema wordt ingebracht. Opnieuw
is het goed opletten op de + en — tekens.

252



Veren 9.3 Samenwerkende veren

xp, verder uitgerekt, de drukveren zijn dezelfde afstand x, minder ingedrukt. Er geldt nu:
Fp=(catct) mp (9.18)

Ook uit de formule blijkt inderdaad het karakter van een parallelschakeling, namelijk dat
de veren eenzelfde verplaatsing ondergaan en dat de veerstijfheden sommeren.

Ten gevolge van de verbrandingsdruk is de aandrukkracht van de pakking verminderd
tot Fy = Foq — cq - ®,. De verbrandingsdruk oefent een kracht F,, op de pakking
uit, zie Figuur 9.10.e. De wrijvingskrachten W; en W5 moeten deze kracht F}, kunnen
weerstaan. Dat betekent dat de aandrukkracht Fj; niet te klein mag zijn en dat er een
hoge wrijvingscoéfficiént moet zijn met het pakkingsmateriaal (Hoofdstuk 4 Wrijving en
weerstand).

Het pakkingmateriaal dat gebruikt wordt bij verbrandingsmotoren heeft een gedrag dat
verandert in de tijd. Het materiaal wordt langzamerhand samengedrukt en wordt daarbij
stijver. De veerkarakteristiek van de samengestelde drukveer, waar de pakking onderdeel
van is, krijgt daardoor een andere gedaante. Deze is in Figuur 9.10.d met een streeplijn
aangegeven. Het gevolg is dat de constructie nu een kleinere voorspanning heeft, namelijk
de grootte die hoort bij het snijpunt van de streeplijn en de veerkarakteristiek van de trek-
veer. Onder bedrijfsomstandigheden zal dan een zeer lage aandrukkracht Fi,in 4 ontstaan,
zie Figuur 9.10.d. De aandrukkracht Fiin 4 moet nog steeds de wrijvingskrachten W; en
W kunnen opwekken om de pakking op zijn plaats te houden. Om te zorgen dat Fiin 4
ook daadwerkelijk groot genoeg blijft ondanks het verouderen van het materiaal, wordt
de cilinderkop van een nieuwe motor met een hoge aandrukkracht Fy; gemonteerd. In
het blokschema van Figuur 9.10.f zijn de voorspankrachten Fj; en F{; opgenomen. Het
blokschema geeft de parallelschakeling weer maar nu met een tegenkoppeling, vergelijk
met Figuur 9.5.b. Met behulp van het blokschema kan bepaald worden wat de minimale
waarde van Fjg moet zijn om voldoende aandrukkracht Fj; te behouden. Merk op dat de
waarde van de voorspanning Fpy; niet kritisch is.

In het bovenstaande is uitgegaan van een gemonteerd motorblok. Er is aangenomen dat
de voorspankrachten Fy, en Fj; waren aangebracht. De onder voorspanning gebrachte
tapeinden en pakking zijn extra belast met de door de gasdruk veroorzaakte externe kracht
E,.

P

Voorbeeld Beschouw opnieuw de constructie uit Figuur 9.10.a. Echter nu bekijken we
de situatie die optreedt bij het aanbrengen van de voorspanning, dus als de moeren op de
tapeinden worden aangedraaid. Figuur 9.11 geeft schematisch aan wat er dan gebeurt. Bij
het aandraaien van de moeren wordt de afstand u tussen tapeind en cilinderkop vergroot.
Daarbij wordt de veer ¢; (tapeind) uitgerekt en de veer ¢g (pakking) ingedrukt. De kracht
in de veren ¢; en ¢4 is dan steeds dezelfde en dat betekent dat bij het aanbrengen van de
voorspanning de veren ¢; en c¢q in serie staan. Het blokschema van Figuur 9.11.b geeft
aan hoe de voorspankracht Fy = Fj; tot stand komt. In dit blokschema is Fyy = For
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9.4 Energieopslag in veren Veren

uiteraard geen constante. De aan het eind van dit voorspanproces verkregen waarde voor
de voorspanning kan als constante waarde in het blokschema van Figuur 9.10.f worden
ingevoerd.

w
u A
u W
=g
+ 1V
ct cd 1/c4 G
For = Fog |Fog Fot
a. b. D

Figuur 9.11 Deze figuur behoort bij Figuur 9.10. a) Bij het aanbrengen van voorspanning door
middel van het aandraaien van de moer in Figuur 9.10.a staan de veren c; en cq in serie geschakeld.
b) Het blokschema dat bij deze serieschakeling hoort, vergelijk met Figuur 9.7.b.

9.4 Energieopslag in veren

De veer behoort tot de meest toegepaste constructie-elementen. Toch blijkt de keuze van
de meest geschikte veer uitdagingen te geven.

Een veel toegepaste methode is de keuze van een veer te beoordelen naar de hoeveelheid
opgenomen mechanische energie per volume of massa. Een optimaal ontworpen veer
heeft een gunstige (hoge) verhouding tussen de hoeveelheid opgenomen energie en het
eigen volume respectievelijk de eigen massa. De reden hiervoor is dat een te zware veer
het gewicht van een constructie nadelig beinvloedt, en daarmee ook het systeemgedrag
van de constructie, zie § 12.3.2 Belasting door zwaartekracht en § 12.3.5 Stijfheid. Een
minimale veermassa kan van belang zijn voor goede dynamische eigenschappen, zie §
12.4.3 Eigenfrequentie. Daarnaast is een minimaal volume van het veermateriaal gunstig
voor de kostprijs van een constructie.

9.4.1 Theorie

Als een prismatische staaf door de kracht F' wordt belast, zie Figuur 9.12.a, dan ontstaat
een verlenging z. Tijdens het uittrekken neemt de verlenging toe vanaf 0 tot de waarde
Tmax- Door het uittrekken van de staaf slaat deze elastische energie op, die bij het
wegnemen van de kracht F' weer gebruikt wordt om de oorspronkelijke lengte aan te
nemen. De maximaal in de staaf op te hopen elastische energie W,.x bedraagt:

Lmax

Winax = Fdx (9.19)
0
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Als de staaf zich elastisch gedraagt, dan is de verlenging te beschrijven met de wet van
Hooke (zie § 7.2 Vervormingen, wet van Hooke):

dF -y
dx = 9.20
z=—0 (9.20)
Invullen hiervan in de energievergelijking levert:
Fmax Fly F? lo o2 o2
Wm = dF — max _ “maz Al — maxV 21
? /0 AE 2AE  2E ° 2E (921)

waarin V het volume van de trekstaaf voorstelt. Met opzet wordt de elastische energie
Winax uitgedrukt in het volume om zo de verhouding opgeslagen energie per volume
te kunnen bepalen. In het gegeven belastinggeval (een staaf op trek belast) wordt de
gehele doorsnede van de staaf gelijkmatig belast met spanning omax, zie voor meer uitleg
over spanningen H7 Spanningen en vervormingen . Hierdoor is de berekende hoeveelheid
maximale energie die een lichaam bij elastische vervorming kan opnemen:

1
Whax = §Fmax * Tmax (922)

Blijkbaar is deze maximale energie afhankelijk van het volume V van het vervormde
lichaam en van de materiaalfactor 02, /FE.

opperviak A

Figuur 9.12 a) Door het belasten met de kracht F verkrijgt de staaf een verlenging x. b)
Het oppervlak onder de veerkarakteristiek stelt de hoeveelheid energie Wmax voor die de veer
bij vervorming xmax opgenomen heeft. Bij lineaire veren is de maximale energie te schrijven als
Winax = %Fmax * Tmax-

9.4.2 Invloed van de veervorm

Op trek belaste staven zijn in het algemeen niet geschikt om als veer te worden gebruikt
vanwege hun relatief hoge stijfheid. Een lage veerstijfheid is slechts te bereiken bij staven
die op buiging of wringing worden belast, waarbij niet de gehele materiaaldoorsnede gelijk-
matig belast is. Zie hiervoor Figuren 9.13 en 9.14, waarin de materiaalspanningen in een
schroefveer (wringing) en in een bladveer (buiging) zijn getekend. Zie voor meer uitleg
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9.4 Energieopslag in veren Veren

over wringings- en buigingsbelasting H7 Spanningen en vervormingen. Evenzo wordt ook
bij spiraalveren en draaiveren (beide op buiging belast) niet de gehele doorsnede gelijk-
matig belast. Dit heeft tot gevolg dat in eenzelfde volume als dat van de uitgerekte staaf
minder energie is op te slaan.
Een schroefveer is ten opzichte van energieopslag nog vrij gunstig, omdat elke doorsnede
van de draad is belast met hetzelfde torsiemoment. De energie die in een schroefveer kan
worden opgeslagen is te schrijven als:

_ Ty (9.23)
RTEl '
In deze formule komen nu in plaats van de maximale spanning en de elasticiteitsmo-
dulus, twee andere materiaaleigenschappen voor: de maximale schuifspanning 7 en de
glijdingsmodulus GG, omdat de doorsnede op wringing is belast, zie H7 Spanningen en
vervormingen. Voor de gangbare veermaterialen is echter 72, /G ~ o2 ,,/F, zodat in
totaal de mogelijke energieopslag ongeveer de helft is van die van de uitgerekte staaf. Be-
nadrukt dient te worden dat het volume V' uit de bovengenoemde formule de hoeveelheid
veermateriaal vertegenwoordigt en niet de benodigde inbouwruimte.

W

a. c.

Figuur 9.13 Materiaalspanningen in een schroefveer. a) Een schroefveer is belast met een kracht F'.
b) Een willekeurige doorsnede is belast met de kracht F' en het wringmoment M = F - (D/2). c)
In elke veerdoorsnede heerst hetzelfde spanningsverloop. In de buitenste vezels treedt de maximale
schuifspanning Tmax op. De neutrale ljjn is spanningsloos.

Bij de bladveer is het belastende moment het grootst vlakbij de inklemming, zie Figuur
9.14. In alle andere doorsneden tussen het aangrijpingspunt van de kracht en de inklem-
ming is het belastende moment kleiner. Dit resulteert in een lagere spanning in de uiterste
vezels van de doorsneden. De mogelijkheid tot energieopslag is daardoor nog ongunstiger
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dan bij een schroefveer. Bij berekening blijkt voor dit veertype:

0.2

Winazw = o= (9.24)

18F

F{2-x)

neutrale lijn

d.

Figuur 9.14 Materiaalspanningen in een bladveer. a) Een bladveer is door een kracht F' op buiging
belast. b) De belasting in een willekeurige doorsnede op afstand x van de inklemming. c) Het
buigend moment heeft een lineair verloop, ter plaatse van kracht F' is M = 0, bij de inklemming
is het moment maximaal: M = F -1. d) De spanningsverdeling in de veer. Boven de neutrale
lijn treden trekspanningen op, eronder drukspanningen. De materiaalspanning is maximaal bij de
inklemming.

De ongunstige energieopslag per volume van een bladveer is te verbeteren, door de vorm
van de veer aan te passen. Er moet dan wel voor gezorgd worden dat alle doorsneden met
eenzelfde spanning worden belast. Dit is onder andere te bereiken door de breedte van de
bladveren aan te passen, waardoor een driehoekvormig profiel ontstaat, zie Figuur 9.15.
Bij berekening volgt dat de energieopslag voor dit bladveerprofiel is:

max . 7 (9.25)
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Driehoekvormige bladveren in de getekende gedaante van Figuur 9.15 worden niet veel
toegepast, omdat het nu eenmaal lastiger is om driehoeken te snijden dan rechte stroken.
Door de veer in de lengterichting in een aantal stroken te verdelen en deze stroken op te
stapelen ontstaat een veerpakket met dezelfde gunstige mogelijkheden tot energieopslag.
Deze veerconstructie is veel toegepast voor veersystemen van voertuigen, zie Figuur 9.16.

Figuur 9.15 Boven- en zijaanzicht van een bladveer met driehoekvormig profiel. In deze gedaante
worden alle veerdoorsneden gelijk belast.

¢ kracht van de as=2F

Figuur 9.16 a) Uit een driehoekige bladveer zijn stroken 1 t/m 5 geknipt. b) Door opstapeling van
deze stroken ontstaat het veerpakket. c) De tweezijdige toepassing als voertuigveer. In de onbelaste
toestand zijn deze voertuigveren gekromd om een grotere totaaluitslag mogelijk te maken.
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Uit het voorgaande blijkt dat voor de energieopslag per veervolume V in het algemeen

geldt:
Wmax _ max. opgeslagen energie 02

= -

= = 9.26
Vv materiaalvolume v/d veer E (9:26)

De hoogste waarde voor « treedt slechts dan op als er in de gehele materiaaldoorsnede
een gelijke maximaalspanning heerst. Dit is het geval bij een op trek of druk belaste staaf.
1

Danis a = 5

Bij verende elementen die op buiging of wringing worden belast, treedt de maximale
spanning slechts in de buitenste vezels van de doorsnede op, zie Figuur 9.17.a. Ook
hier kan door aanpassing van de vorm van een veer weer een gunstigere energieopslag
per volume bereikt worden. Dit kan bijvoorbeeld door het materiaal in deze buitenste
lagen, symmetrisch ten opzichte van de neutrale lijn, te concentreren, want dan is aan
de voorwaarde van gelijke materiaalspanning goed voldaan. De gunstigste vorm is dan
een dunwandige buis, wat zowel voor buigende als voor wringende belasting geldt, Figuur
9.17.b.

Umax

a. b.

Figuur 9.17 Vergelijking van materiaalspanningen ten gevolge van een buigbelasting. a) In een
massieve ronde staaf. b) In een dunwandige buis. In de buis is het materiaal veel gelijkmatiger
belast dan in de staaf. Als er voldaan wordt aan de voorwaarde D3 = (Dgfdg) /Dy, dan treden in
de buitenste vezels van de staaf en buis ten gevolge van dezelfde uitwendige belastingen dezelfde
materiaalspanningen op.

Bij buiging van een buis met een constante wanddikte treedt in het algemeen niet in elke
doorsnede de maximale spanning op. Doorsneden waarin de optredende spanning lager
is dan de maximale worden niet optimaal benut. Een verlopende wanddikte kan soms
uitkomst bieden.

Anders is de situatie bij wringbelasting van een dunwandige buis. Doordat de schuif-
spanning over de gehele lengte van de buis eenzelfde waarde heeft, is ook bij constante
wanddikte het materiaal overal maximaal belast. De hoeveelheid opgeslagen energie per
volume benadert hier de maximaal mogelijke waarde:

172 loZ,
W — =Imaz /. - Tmax 2
= 3022 L0y (027
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9.5 Keuze van een veer Veren

In de tabel van Figuur 9.18 is de mogelijke energieopslag per veervolume voor een aantal
gebruikelijke veertypen opgenomen.

op trek of druk 102
belaste staaf 2E
rechthoekvormige 102
bladveer 18E
driehoekvormige 14?2
bladveer 6E
schroefveer 172 102
ronde draad 4G ~ 4E
draaiveer 1g?
ronde draad 8E
%g spiraalveer 142
rechthoekige doorsnede 6 E

Figuur 9.18 Vergelijkingstabel van de in verschillende veertypen op te nemen hoeveelheid energie

W, e
per volume: 7 = o~ %

9.5 Keuze van een veer

9.5.1 Invloed van gewenste functionaliteit

In de meeste gevallen worden bij een ontwerp twee veergrootheden opgegeven: de voor-
spankracht F en de verplaatsing s die de veer vanuit het werkpunt nog moet kunnen
maken. In het volgende zal blijken dat de toelaatbaar geachte toename van de veerkracht
AF over het traject s maatgevend is voor het materiaalvolume (en dus voor de massa)
van de veer.
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Uit Figuur 9.12 en Figuur 9.19 blijkt dat het veervolume is:
_1E 1 E1

V* o5 V¥max — *77Fmax' max 9.28
ao? oao??2 v ( )
Met Frax = Fo + AF en Zmax = F";ax, en onder invoering van A = % is dit te
schrijven als:
A-(F 2
V= A (Fo+cs)” (9.29)
c
Fl
Fmax T T T T T T T T T T T, L
i
I |aF
|
FO B ¥

!

|
L—— - Xmax

Figuur 9.19 Voor een veer is de voorspankracht Fy en de verplaatsing s vanuit het werkpunt
opgegeven. De toename van de kracht AF is nog te kiezen.

Met een gegeven voorspankracht Fj en werkverplaatsing s is het veervolume een functie
van de veerstijfheid c¢. De optimale waarde van c is te berekenen uit dV/dc = 0. Daaruit
volgt copt = Fo/s. Het minimale veervolume wordt Vigin = 4 - A - Fy - s. Daarmee is te

schrijven:
2
14 (1 + copt>

Vmin 4. =

Copt

Dit verband is weergegeven in Figuur 9.20. Het kleinst mogelijke veervolume treedt op
VOOr ¢ = copt. Elke andere keuze voor c resulteert in een grotere (dus zwaardere) veer.
Vooral voor slappere veren ¢ < cope wordt de situatie snel ongunstig. Indien mogelijk
moet een veer gekozen worden in het gebied 0,4 < ¢/cope < 2, 5.

In het bovenstaande is uitgegaan van een gewenste voorspanning Fy en een werkverplaat-
sing s. Daaruit volgde een meest gunstige keuze voor de veerstijfheid c. In de praktijk

261



9.5 Keuze van een veer Veren

blijkt echter dat het niet mogelijk is de belastingkracht en de voorspanning willekeurig te
kiezen. Met behulp van veerformules en gegevens over praktisch realiseerbare veerafme-
tingen blijkt dat er slechts smalle toepassingsgebieden in de F' — ¢ ruimte bestaan voor
elke veersoort.

Copt

Figuur 9.20 Het veervolume V' is afhankelijk van de veerstijfheid c. Voor ¢ = copt is het veervolume
minimaal. Voor c/copt = AF/Fy < 0,4 neemt het veervolume snel toe.

In Figuur 9.21 zijn deze gebieden voor schroefveren, bladveren, rubberveren en luchtveren
aangegeven. Tevens zijn de lijnen van constante veerenergie Wi ,.x en van maximale
veerverplaatsing zmax ingetekend. Daar waar de gebieden elkaar overlappen is uiteraard
keuze uit meerdere veersoorten mogelijk.

Bij het bepalen van het bruikbare gebied van drukbelaste schroefveren is er al rekening
gehouden met hun knikveiligheid. Op drukbelaste schroefveren hebben bij een te hoge ver-
houding tussen de ongespannen lengte [, en de veerdiameter D de neiging uit te knikken.
Zulke veren hebben gewoonlijk een lage veerconstante en bezitten veel veerwindingen. Zij
liggen links van het normale schroefverengebied.

Is er in bepaalde gevallen een slanke en slappe veer noodzakelijk dan is het aan te bevelen

de knikveiligheid te toetsen. Figuur 9.22 geeft aan welke veerafmetingen en veerverplaat-
singen nog toelaatbaar zijn.
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Figuur 9.21 Gebieden van praktisch bruikbare veren zijn opgegeven voor een aantal veersoorten in
het F'—c vlak. Let op dat beide schalen logaritmisch zijn. Zowel de lijnen van constante energie als
de lijnen van maximale veerverplaatsing xmax zijn ingetekend. Het gebied van schroefveren geldt
voor knikveilige drukbelaste schroefveren. Bij bladveren is met een rechthoekige vorm rekening
gehouden. De rubberveren worden verondersteld op trek belast te zijn.
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Figuur 9.22 Grafiek voor bepaling van de knikveiligheid volgens de Duitse norm DIN 2089 of de
Nederlandse nom NEN-EN 13906-1.
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9.5.2 Invloed van de overbrenging

De selectie van een veer met de gewenste veerconstante c en de gevraagde kracht Fjy kan
tot bepaalde problemen leiden. Zoals in § 9.5.1 Invloed van de gewenste functionaliteit is
aangegeven kan soms een slappe, te slanke veer gevraagd worden, waarvan de knikveilig-
heid onvoldoende is. In andere gevallen vraagt een veer een te grote inbouwruimte, die
niet beschikbaar is. In beide gevallen kan het toepassen van een overbrengingsmechanisme
een uitkomst bieden.

Voorbeeld In Figuur 9.23 levert de veer met veerstijfheid ¢; een kracht F;. Ter vervanging
is de hefboomconstructie ontworpen waarin een veer met veerstijfheid c; is ondergebracht.
Voor een krachtevenwicht van de hefboom moet gelden F -l = F} - I;. Uiteraard moet
dit ook gelden voor de krachttoenamen, en dus AF, -l = AF; - [;. Voor de beide veren
geldt respectievelijk AF; = ¢1-Axy en AFy = co-Axo. Hieruit volgt voor de veerstijfheid
co van de vervangende veer:

oo A BAR_ () A0 (1Y (0.30)
N %Aml la) Az l2 ' '

Dat de twee opstellingen van Figuur 9.23.a en Figuur 9.23.b gelijkwaardig zijn indien
c1 =co- (12/11)2, blijkt direct uit een vergelijking van de bijbehorende blokschema's, zie
Figuur 9.23.c.

| - Bl 7
A @ =[=
c, r\l,
"1\L PN f\"2
a. b.
X4 X e/ %o X1
K o I
< Q| = (&/6)c,
: Fy
c i——l : &/, (—Fj P S

Figuur 9.23 Invloed van de overbrenging op de veerkeuze. a) De oorspronkelijke veer wordt ingedrukt
door een kracht F over een weg x1. b) Door het toepassen van een hefboomoverbrenging is het
mogelijk een compactere, stuggere veer te gebruiken. Aan het vrije uiteinde van de hefboom zijn
de oorspronkelijke kracht Fi en verplaatsing x1 ongewijzigd gebleven. c) Uit de blokschema's blijkt

2
direct de voorwaarde voor gelijkwaardigheid: ¢1 = (%) - c2.
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Door het aanbrengen van een overbrenging met hefboomverhouding 11 /lo = i wordt de
door de vervangende veer te leveren kracht i keer zo groot en de benodigde veerstijfheid
i2 keer zo groot. Hierdoor wordt het mogelijk om stugge veren met een grote kracht te
gebruiken voor het verkrijgen van het gedrag van een slappe veer. Een slappe uitknik-
kende veer kan met behulp van een overbrenging vervangen worden door een veer uit het
gebruikelijke schroefverengebied.

De grootte van de overbrenging bepaalt de verschuiving in het F' — c-vlak. Duidelijk is te
zien dat als de verschuiving langs de lijnen van constante veerenergie gaat, W,,,, door
de overbrenging niet wordt beinvloed, zie Figuur 9.24.

Z Wax [Nm]
w

=

Q

8

X

&

£

£

8

X

-2
10 ‘ + ; ; + T
1 10° 108

veerconstante ¢ [N/m]

Figuur 9.24 Met behulp van een overbrenging kan een gunstiger veer gekozen worden. De mate van
verschuiving in het F — c vlak is afhankelijk van de grootte van de overbrenging. De veerenergie
verandert nooit met de overbrenging. Het bedrijfspunt A; dat buiten het schroefverengebied ligt
is te verkrijgen door de (stugge) veer Ag via een overbrenging i = 10 te gebruiken. Het punt By is
uit Ba door overbrenging i = 3 verkregen. Overbrengingen zijn uitsluitend in gebruik om een lage
effectieve veerstijfheid te verkrijgen.

In sommige gevallen speelt een minimale inbouwruimte een belangrijke rol. Stugge veren
met weinig windingen nemen minder plaats in dan slappe veren met een grotere veerdia-
meter en veel windingen. Een overbrenging zorgt ter plaatse van de aangebrachte kracht
voor een vergroting van de kleine veeruitwijkingen. Het inbouwen van compacte stugge ve-
ren is dan mogelijk. Het veervolume en de veermassa veranderen niet met de overbrenging.

Voorbeeld Een toepassing is de wielophanging van een sportwagen die schematisch is
weergegeven in Figuur 9.25. Een kleine, compacte stugge veer is ingebouwd. Door de
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overbrenging die gerealiseerd is via een hefboomcombinatie is de effectieve veerstijfheid
aan het wiel 62 = 36 keer kleiner dan de stijfheid van de gemonteerde veer.

Figuur 9.25 Voorwielophanging van een sportwagen. De hefboomcombinatie heeft een overbrenging
1 = 6. Terwijl de veer slechts een indrukking van s = l, — l, = 25 mm maakt is de mogelijke
wielinvering ., 150 mm.

9.5.3 Keuze van het veermateriaal

In § 9.3 Energieopslag is de energieopslag per volume bekeken. In het algemeen geldt
hiervoor:

max. energie  Wiax 02
= = 9.31
veervolume Vv E ©31)

waarbij de waarden voor « uit Figuur 9.18 kunnen worden ontleend.

Voor energieopslag per veermassa (de energiedichtheid) is te schrijven:

s N2
) 2 (M>

max. energie _ Wmax _ aamax =« pE (932)

veervolume Viep Ep )

Hier ontstaan de relatieve sterkte omax/p en de relatieve stijfheid E/p in de formule. In §
12.3.2 Belasting door zwaartekracht kan worden teruggezocht dat de relatieve stijfheden
van de verschillende gebruikelijke materialen voor veren niet veel verschillen. Voor een
maximale energieopslag per massa moet dus bij metaalveren een materiaal met een hoge
relatieve sterkte worden gekozen. De tabel 9.26 geeft een overzicht van de meest gebruikte
metalen als veermateriaal. Gelegerd staal (verenstaal) heeft een hoge sterkte en is dus
een goede keuze voor veermateriaal.
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S breuk r Soreuk! I
materiaal vorm [MPal [kg/m3] [MNm/kg]
koudgewalst verenstaal band 1400 0,18
koudgetrokken verenstaal draad 1500 -2700 } 7800 0,19 - 0,35!
koudgewalst roestvastverenstaal band 1300 0,17
koudgetrokken roestvastverenstaal draad 1900-2200 0,24 -0,29
zinkbrons SnBr6 band 600 } 9000 0,07
zinkbrons draad 950 0,11

Figuur 9.26 Overzicht van de meest toegepaste metalen als veermateriaal. De draden hebben
dankzij de noodzakelijke thermische tussenbehandelingen bij het vervaardigen altijd een hogere
treksterkte dan een band. Bij de draad horen de hogere o, -waarden bij de kleinere diameters.
De waarden van de draden zijn overgenomen van www.matweb.com van het merk Sandvik, en van
de roestvastverenstalen band is overgenomen van 302 Stainless Steel strip.

De optredende materiaalspanningen mogen natuurlijk de waarde van de breukbelasting
Obreuk Niet bereiken. Als vuistregel geldt zowel voor de toelaatbare buigspanning @ als
voor de schuifspanningen 7:

0,4-0,7 Opbreuk  bij constante belasting
ocgof 7= 0,3-04 Obreuk  Dij pulserende belasting
0,2-0,25  Opreuk  bij wisselende belasting.

Wordt gestreefd naar de maximaal mogelijke waarde voor energieopslag per volume of
per massa, dan zijn rubberveren en composietveren een betere keuze dan metaalveren,
zie tabel 9.27. In deze tabel is het spectrum van de waarden voor de verschillende
eigenschappen weergegeven en een gemiddelde waarde waarmee de energiedichtheid in de
laatste kolom is berekend om een indruk te krijgen van de variatie.

Rubber heeft de uitzonderlijke eigenschap dat de waarde van zijn elasticiteitsmodulus
dezelfde orde van grootte heeft als die van zijn treksterkte. Daardoor is de Wi.x/m
verhouding zeer gunstig, zie tabel 9.27. Bovendien kan rubber direct op trek of druk
worden belast, zodat de maximaal mogelijke waarde van a = % geldt. Een mogelijk
nadeel van rubber is zijn niet-lineaire veerkarakteristieck en de relatief hoge hysteresis,
zie § 2.4.2 Wrijving. De daarmee samenhangende hoge demping is echter voordelig bij
trillingsisolerende opstellingen.

De composietveren zijn materiaalcombinaties van vezels uit glas, koolstof of aramide,
gebonden in de gewenste vorm met epoxy- of polyesterharsen. Door een hoge treksterkte
en een lage soortelijke massa hebben de composietveren een hoge Wi,/ m-waarde, zie
Figuren 9.27. Hoewel de vezels slechts trek- of drukbelastingen kunnen opnemen zijn
zij vanwege hun hoge elasticiteitsmodulus als zuivere trek- of drukveren niet bruikbaar.
Slechts bij buig- of torsieveren kunnen de geringe elastische vervormingen van de vezels
resulteren in bruikbare veeruitwijkingen.
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. a E Y2l W/m
materiaal veertype a 3
[MPa| [GPa] [kg/m’] [J/kg]
Schroefveer
verenstaal op trek 1/4
1200 210 7850 220
belast
hout bladveer 1/6
7 2 730 6
natuurrubber trekveer 12
27 0,002 925 200000
carbon bladveer 1/12 (
800 110 1550 310
polyester bladveer 1/12 (
65 32 1220 90
glasvezel-
i bladveer 1/12
composiet 190 22 1860 75

Figuur 9.27 Vergelijkingstabel van energiedichtheid (energieopslag per massa) in verenstaal en
enkele niet-metalen veermaterialen [Ansys, 2014]. Bij composietveren is het veervolume voor slechts
50% met vezels gevuld. Daardoor verandert de waarde van o = 1/6 in 1/12.

Vooral de veren opgebouwd uit glasvezels zijn uitzonderlijk licht. In sommige automobielen
worden dergelijke veren voor de achterasvering gebruikt. Dankzij de geringe massa hebben
de veren een — vaak gunstige — hoge eigen frequentie, zie ook § 12.4.3 Eigenfrequentie
en § 11.5.4 Gedempte massa-veer systemen. Een bijkomend voordeel van dit type veren
is hun corrosiebestendigheid.

9.6 Samenvatting

Veren zijn een van de meest toegepaste constructie-elementen, omdat ze veel verschillende
functies kunnen hebben. In dit hoofdstuk is eerst de karakteristick van een enkele veer
beschouwd inclusief zijn stijfheid. Daarna is de stap gemaakt naar samenwerkende veren
en een diepere beschouwing van de voorspanning in een veer en de noodzaak hiervan in
bepaalde constructies. Zoals aangegeven hebben alle materialen een bepaalde elasticiteit
en kunnen dus energie opslaan en weer vrijgeven. Uitgebreid is stilgestaan bij de verschil-
lende veertypen en hun energieopslag per volume en massa. Formules zijn gegeven om
de meest voorkomende veertypen uit te rekenen en handige constructies zijn beschouwd
om door middel van vormverandering en hefboomwerking gunstigere waarden voor de
energieopslag per volume te verkrijgen of te zorgen dat de inbouwruimte beperkt blijft.
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Hoofdstuk 10
Aandrijving

10.1 Inleiding

De veel voorkomende situatie dat een motor een last aandrijft, is schematisch voorgesteld
in Figuur 10.1. De motor kan een verbrandingsmotor zijn, een water- of stoomturbine,
een windmotor, een elektromotor, maar ook een hydraulische zuiger-cylinder of een elek-
trisch relais. De motor levert mechanische energie in roterende of translerende vorm. Het
aangedreven apparaat (de last) kan een pomp of ventilator, dynamo of scheepsschroef
zijn, maar ook een landbouwwerktuig, een hijsinstallatie, een voertuig of een mechanisch
schrijfsysteem. De last moet mechanische energie in roterende of translerende vorm toe-
gevoerd krijgen.

mechanische
motor . last
overbrenging

Figuur 10.1 Algemeen schema van een motor die via een transmissie een last aandrijft.

Een directe koppeling van de motoras met de last-as geeft doorgaans geen optimale
aandrijving . Het is dan gewenst een overbrenging (tandwielen, v-riem, ketting, hefboom)
aan te brengen. In dit hoofdstuk is aangeven hoe een dergelijke overbrenging gekozen
moet worden. De laatste paragraaf behandelt het dynamisch gedrag van een motor-last
combinatie en de invloed van de overbrenging daarop.

10.2 Karakteristieken

Elk mechanisch werktuig dat in staat is energie (vermogen) te leveren kan als motor
beschouwd worden. De meeste motoren zijn roterende motoren. Roterende motoren
hebben een as die met een zeker toerental ronddraait en die een koppel kan leveren. De
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uitgangssignalen zijn koppel en toerental. Deze uitgangssignalen zijn niet onafhankelijk.
Daarom is het gewenst — zoals in het hoofdstuk Modelvorming (H2) is aangegeven — om
de twee uitgangssignalen tegelijkertijd te beschouwen. Zie Figuur 10.1.

Het is gebruikelijk de twee uitgangssignalen in een grafiek tegen elkaar uit te zetten. Het
toerental langs de horizontale as van de grafiek; het koppel langs de verticale as. Zie
Figuur 10.2. Er ontstaat een zogenaamde koppel-toeren-grafiek. Als de schaalverdeling
langs de assen is aangebracht kunnen al lijnen van constant vermogen worden ingetekend.
Immers het product van koppel T' en toerental n is een maat voor het geleverde vermogen
P volgens P =T -w =T -n-7/30. De lijnen van constant vermogen P = ¢ worden
dus gevormd door de hyperbolen T' = ¢ - 30/(w - n). Indien in plaats van het toerental
n de hoeksnelheid w wordt uitgezet, ontstaat voor de lijnen van constant vermogen de
eenvoudige betrekking T' = c/w.

moment T [N

1000W

500W
200w
100w

4 4 4 4

0 1000 2000 3000 toerental n (1/min)

= T T T -
0 100 200 300 hoeksnelheid w (rad/s)

Figuur 10.2 Een motorkarakteristiek of een lastkarakteristiek is in te tekenen in een diagram waar
het geleverde of gevraagde moment langs de verticale as en het toerental langs de horizontale as
is uitgezet. Het is van voordeel als het diagram reeds voorzien is van de hyperbolen van constant
vermogen.

10.2.1 Motorkarakteristicken

Figuur 10.3 geeft de koppel-toeren-karakteristiek van een motortje met inwendige ver-
branding voor een modelvliegtuig. Met behulp van de getekende hyperbolen van constant
vermogen is direct af te lezen dat het maximale vermogen (P = 180 W) bereikt wordt
bij w = 900 rad/s (n ~ 8600 omw/min.).
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Indien het koppel als functie van w in analytische vorm bekend is, is het punt van maximaal
vermogen ook door berekening te vinden. Nulstellen van het differentiaalquotiént:

dP _ d[T (w) - w]

Pl 10.1
dw dw (10.1)

levert de hoeksnelheid waarbij P, optreedt. Een curve-fitting programma geeft als
eenvoudige mathematische benadering voor de kromme van Figuur 10.3:

T=027+1-100%w—-2-10""-w? (10.2)
Voor het vermogen P geldt dan: P =0,27-w+1-107%.w? —-2.107" - u?

Het vermogen is maximaal als: 0,27 +2-107%-w —6-10""w? =0

Deze laatste vergelijking heeft als oplossing w = 860 rad/s. De motor levert bij deze
hoeksnelheid zijn maximale vermogen P, = 179 Watt. De berekende waarden stem-
men goed overeen met de uit de grafiek afgelezen waarden.

moment T [Nm]

0 400 800 1200 1600
hoeksnelheid w [rad/s:]

Figuur 10.3 Karakteristiek modelvliegtuigmotor.

Elke motor heeft zijn eigen karakteristiek. In Figuur 10.4 zijn de karakteristieken van een
aantal motortypen weergegeven. Daarbij is ook de karakteristiek van een dierlijke spier
opgenomen. Omdat het een translerende motor betreft, zijn langs de assen de geleverde
kracht F' en snelheid v uitgezet. Ook in de F' — v-grafiek zijn op overeenkomstige wijze
hyperbolen van constant vermogen te tekenen.
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TA benzinemotor TA windmotor TA wisselstroommotor

q

>

_/'\
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T A hydr. motor T‘ stoomturbine E A dierlijke spier

|
4

w
Figuur 10.4 Motorkarakteristieken.

10.2.2 Lastkarakteristieken

Voor de aandrijving van een (roterende) last is een koppel T bij een toerental n benodigd.
Ook hier zijn T' en n niet onafhankelijk. Zij moeten tegelijkertijd beschouwd worden. De
grafische afbeelding levert de lastkarakteristiek. Deze zijn op dezelfde wijze opgebouwd
als motorkarakteristieken. Ook in de lastgrafiek zijn lijnen van constant vermogen (bij een
motor betreft dat het geleverd vermogen; bij een last is het juist het opgenomen vermogen)
te tekenen. In Figuur 10.5 zijn de T — w-karakteristieken van twee luchtschroeven, beide
geschikt voor modelvliegtuigjes, gegeven. In elk punt van de karakteristiek vraagt een
luchtschroef een bepaald vermogen om met de bijbehorende snelheid te kunnen worden
rondgedraaid. De gevraagde vermogens zijn met behulp van de ingetekende hyperbolen
af te lezen.

Elk type last heeft een eigen bijzondere vorm van de lastkarakteristiek. In Figuur 10.6
zijn een aantal verschillende lastkarakteristieken opgenomen. Voor het geval dat de last
een translerende beweging uitvoert, is de lastkarakteristiek in een kracht-snelheid-grafiek
getekend.
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Figuur 10.5 Karakteristieken van twee modelluchtschroeven. Bij eenzelfde moment draait de lucht-
schroef B met een hoger toerental. Het benodigde vermogen is dan ook groter

botsingsverliezen

leidingweerstand

1A glijlager F 1} luchtweerstand 1A centrifugaal- /

pomp /

2 / opvoerhoogte
-
/————’- fa=m. —

w \' w

FA verspanen FA hijskraan FA viskeuze wrijving
Vv v v

Figuur 10.6 Lastkarakteristieken.
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10.3 Motor-last-koppeling

10.3.1 Directe koppeling

Met een directe koppeling is bedoeld dat de motoras en de last-as met elkaar zijn ver-
bonden zonder dat een vertraging is tussengebouwd. De motoras en de last-as draaien
dus met hetzelfde toerental. Er geldt nmotor = Miast- Een directe verbinding heeft ook tot
gevolg dat Tiotor = Tiast- Het door de motor afgegeven koppel is gelijk aan het door de
last opgenomen koppel, zie Figuur 10.7.

]
Tm 1 Te
motor 1 last
"m iwoony

Figuur 10.7 Voor elke as geldt: toegevoerde koppel = afgenomen koppel. Bij een directe motor-
last-koppeling dus Ty, = T;. Uiteraard geldt ny,, = n;.

Om te bepalen hoe aan de beide voorwaarden is te voldoen, is het handig de motor-
karakteristiek en de lastkarakteristiek in dezelfde grafiek te tekenen. In Figuur 10.8 is
dat gedaan voor de karakteristieck van het modelvliegtuigmotortje (Figuur 10.3) en de
lastkarakteristiek van de luchtschroef A (Figuur 10.5). Alleen voor het snijpunt van de
twee karakteristieken geldt Tiotor = Tjast €N Wmotor = Wiast- De direct op de motoras
gemonteerde luchtschroef zal dus bij w = 480 rad/s (n ~ 4600 omw/min) gaan draaien.
Dit wordt het bedrijfspunt genoemd.

A lastkarakteristiek
Tm,Te luchtschroef A
\ . R
[:Nm] \\ \ \\ \ \\
03 - RV
bedrijfspunt AN
oy ) N
\ \ N
\ \ N AN
02 + A N Do ~
\ AN ~ >~
\\ N ~ métorkarakteristiek
~
N AN ~ P-200W
o1 + N S~ ~—
- -~ — P=130W
\\\\ \ " — P=100W
0 } ; } ——
0 400 800 1200 1600

Wiasts Pmotor Ba d/SJ

Figuur 10.8 De luchtschroef A van Figuur 10.5 is gemonteerd op het motortje van Figuur 10.3.
Het snijpunt van de beide karakteristieken geeft de evenwichtstoestand = stationaire toestand aan.

274



Aandrijving 10.3 Motor-last-koppeling

Uit de figuur is af te lezen dat bij dit bedrijfspunt (T = 0,27 Nm; w = 480 rad/s) de
motor een vermogen P = 130 W aan de luchtschroef afgeeft.

Bij directe koppeling van de luchtschroef B (Figuur 10.5) aan de motoras ontstaat de
situatie van Figuur 10.9. Het bedrijfspunt ligt nu bij 7' = 0,2 Nm en w = 900 rad/s.
Het motortje levert nu zijn maximale vermogen van 180 Watt aan de luchtschroef. De
combinatie motor-luchtschroef B is gunstiger. Als de luchtschroeven A en B hetzelfde
rendement bezitten, verkrijgt het modelvliegtuigje een hogere snelheid wanneer lucht-
schroef B is gemonteerd.

Indien de motor- en de lastkarakteristiek in analytische vorm bekend zijn, is het snijpunt
van de karakteristieken ook door berekening te bepalen.

Tm /T2 ‘
Bd |44 AL
031 \ bedrijfspunt mety\ lastkarakteristiek
! Iuch/tschroef A luchtschroef B
N AN
\ N N
\ \ bedrijfspunt met
0,2 + \ \ w_luchtschroef B
\ N\ \t\
RN
\\ N ~ > P=200W
o1+ N ~ ~~P=180W
\\
S ——P=100W
motorkarakteristiek\— __
0 ; ; t ——
] 400 800 1200 1600

Djasty Dmotor [rad/sg]

Figuur 10.9 De luchtschroef B uit Figuur 10.5 levert met het motortje uit Figuur 10.3 een beter
bedrijfspunt dan de luchtschroef A. Het modelvliegtuigje zal sneller vliegen.

Er moet onderscheid gemaakt worden tussen stabiele en labiele bedrijfspunten. Figuur
10.10 toont een stabiel bedrijfspunt. Als de motor-last-combinatie bij een lager toerental
draait dan het bedrijfstoerental npeqrijr, levert de motor een groter moment dan de last
nodig heeft. Er resteert dan een aandrijvend moment dat de motor-last-combinatie zal
doen versnellen. Ten gevolge van deze versnelling zal het toerental weer toenemen tot-
dat het bedrijfstoerental weer is bereikt. Heeft de combinatie een hoger toerental dan
het bedrijfstoerental dan is het lastmoment groter dan het aandrijfmoment en zal een
toerentalverlaging optreden totdat het evenwicht is hersteld.

Een systeem met een labiel bedrijfspunt reageert heel anders. Bij een toerenafwijking naar
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beneden (boven) vanaf het bedrijfspunt wordt het lastmoment groter (kleiner) dan het
motormoment waardoor het toerental nog verder zal verminderen (vermeerderen). Een
labiel bedrijfspunt is praktisch onbruikbaar. Het komt doorgaans voor in combinatie met
een stabiel bedrijfspunt. Zie Figuur 10.10.b.

7 T

last motor

N e
labiel xstabiel

last

motor

1
|
|
|
I
1
|
I
I
!
|
4
+

<abiel Mbedrijf abiel
stabie
a. b. abie

Figuur 10.10 Afhankelijk van de wijze waarop de motor- en de lastkarakteristiek elkaar snijden,
ontstaat een stabiel of een labiel werkpunt. Een systeem met een stabiel werkpunt zal na een
verstoring uit zichzelf in de evenwichtstoestand terugkeren.

10.3.2 Koppeling via een overbrenging

In § 10.3.1 is die luchtschroef gekozen die het meest geschikt was om het modelvliegtuigje
aan te drijven. Meestal is de situatie echter z4, dat én de last én het motortype gegeven
zijn. Voor een optimale motor-last-combinatie zal het dan nodig zijn om een overbrenging
aan te brengen tussen motor en last.

Figuur 10.11.a geeft schematisch de situatie voor het geval dat een tandwielvertraging is
aangebracht. Figuur 10.11.b geeft het bijbehorende blokschema. De motorkarakteristiek
T\ — wm, en de lastkarakteristiek 7; — w; hebben nu betrekking op verschillende assen
en daarom kan niet rechtstreeks het snijpunt van de karakteristiecken worden bepaald. Er
zijn nu in principe twee mogelijkheden:
1. De overbrenging wordt beschouwd als tot de last behorend. Op de primaire as
van de overbrenging is dan een koppel 7] = T/i benodigd en een hoeksnelheid
w] = wy - 4. Zie Figuur 10.11.c. De motorkarakteristiek moet worden gesneden met
de getransformeerde lastkarakteristiek T} — wj.

2. De overbrenging wordt beschouwd als tot de motor behorend. Op de secundaire as
van de overbrenging is dan een koppel T),, = T,, -i beschikbaar en een hoeksnelheid
Wi, = wp,/i. Zie Figuur 10.11.d. De getransformeerde motorkarakteristiek T, —w,

moet worden gesneden met de lastkarakteristiek T; — wy.

Doorgaans wordt de onder 1 genoemde mogelijkheid uitgevoerd. De lastkarakteristiek
wordt getransformeerd naar de motoras.
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Figuur 10.11 Om het bedrijfspunt van een aandrijfsysteem met overbrenging (a) te kunnen bepalen
moet de overbrenging hetzij als bij de last behorend (c), hetzij als bij de motor behorend (d) worden
beschouwd.

In Figuur 10.12 is de transformatie uitgevoerd. Elk punt van de originele lastkarakteristiek
is met behulp van T} = T} /i en w; = wj - i omgezet in een punt van de getransformeerde
lastkarakteristiek.

Het punt A’ van de getransformeerde lastkarakteristiek is op deze wijze bepaald uit het
punt A. Omdat T} - w; = T} - wj liggen de punten A en A’ op een lijn van constant
vermogen. Dat geldt ook voor de punten B en B’, C en C’.

De getransformeerde lastkarakteristiek kan gesneden worden met de motorkarakteristiek,
immers deze twee karakteristieken hebben betrekking op dezelfde as. Het snijpunt levert
het bedrijfspunt van de motor. Het bedrijfspunt van de last is door terugtransformatie
naar de werkelijke lastkarakteristiek te bepalen. Dit is nader toegelicht in § 10.3.3.

Het transformeren van de lastkarakteristiek naar de motoras moet punt voor punt ge-
schieden. Dat is niet erg handig. Deze bewerking is te vereenvoudigen door gebruik te
maken van dubbel-logaritmisch grafiekpapier. Zie Figuur 10.13. Daarin worden de lijnen
van constant vermogen weergegeven door rechte lijnen onder 45°. Dat betekent dat een
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transformatie kan worden uitgevoerd door een eenvoudige verschuiving onder 45° van een
karakteristiek.

lastkarakteristiek
T( T

N getransformeerde
~ lastkarakteristiek

/1
TL'i—Tg_ 1

—

Figuur 10.12 Door van elk punt van de lastkarakteristiek de momentwaarde door i te delen en het
toerental met i te vermenigvuldigen ontstaat de getransformeerde lastkarakteristiek.

T (Nm)
100
10
P=10W
1
103w
102w
0.1 10W
1 10 100 1000 © (rad/s)

Figuur 10.13 Logaritmisch koppel-toeren-diagram. In dit diagram ontstaan rechte lijnen van con-
stant vermogen.

In Figuur 10.14 is de lastkarakteristiek van de luchtschroef A uit Figuur 10.5 getransfor-

meerd. Daarbij is verondersteld dat er een tandwielvertraging met overbrenging i = 2
aanwezig is.

Opmerking. In het voorgaande is aangenomen dat voor een tandwielvertraging geldt
T; =i-T;. Dat is niet helemaal juist. Door de optredende verliezen zal T; < i-T}]. Voor
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een goed uitgevoerde tandwielvertraging geldt echter T; ~ 0,95 - i - T]. De aangegeven
werkmethode is dan voldoende nauwkeurig. Als de verliezen van te voren bekend zijn kan
de transformatie daarmee worden gecorrigeerd.

Bij tandwielvertragingen geldt exact w; = w;/i. Voor andere typen overbrengingen, zoals
bijvoorbeeld hydraulische koppelomvormers, treedt slip op en is w; < w;/i. Ook hiervoor
is in principe te corrigeren.

lastkarakteristiek
luchtschroef A

T (Nm)
04 |
]\
0,3
N
N getransformeerde
| [|lastkarakteristiek
0,2 3
AN
N
AN
N
0,1
k\ /
/ N
/ /
<
0,05
0,04 7
200 300 400 500 1000 2000 « (rad/s)

Figuur 10.14 De linker kromme is de lastkarakteristiek van de luchtschroef A, overgenomen uit
Figuur 10.5. Door evenwijdige verschuiving onder 45° ontstaat een getransformeerde lastkarakte-
ristiek. De figuur is getekend voor een overbrenging i = 2.

10.3.3 Keuze overbrengingsverhouding

Het bedrijfspunt van de motor wordt bepaald door het snijpunt van het motorkarakteristiek
en de getransformeerde lastkarakteristiek . Daarmee ontstaat de mogelijkheid om de
bedrijfsconditie van de motor te kiezen. Vaak zal het bedrijfspunt zodanig worden gekozen
dat de motor zijn maximale vermogen kan leveren. Ook kunnen andere condities zoals
maximaal rendement of een zo groot mogelijk motormoment gewenst zijn.

Figuur 10.15 toont de koppel-toeren-karakteristiek van een motor. Deze motor moet een
ventilator aandrijven. De ventilatorkarakteristiek is gegeven in Figuur 10.16.

De ventilator moet ongeveer 500 omw/min draaien. Daarbij vraagt de ventilator een
aandrijfmoment 7; = 15 Nm en dus een aandrijfvermogen P = T-w = 15 - (7/30) 500 =
750 Watt. Uit de motorkarakteristiek blijkt dat de motor dat vermogen juist kan leveren
bij n,, = 1500 omw/min. Dan is het nodig dat de lastkarakteristiek naar dat
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Figuur 10.15 Karakteristiek van motor
voor de ventilator van figuur 4.13.

punt getransformeerd wordt. Zie Figuur 10.17.

Figuur 10.16 Lastkarakteristiek
van de ventilator.

Dat wordt dan het bedrijfspunt van de

motor (T, = 5 Nm, n,, = 1500 omw/min). Het bedrijfspunt van de last moet op de
lastkarakteristiek liggen én op de constant-vermogen-hyperbool die door het bedrijfspunt

van de motor gaat, zie Figuur 10.17.

1
Tm,Te T |
\\ lastkarakteristiek
15 4— bedrijfspunt
\ last
;\ getransformeerde
1\ lastkarakteristiek
10 I\
& A
\
| \
| 2
| bedrijfspunt
ST 1 2R motor
| | N~
| ! s lijn van con
| —~__ i stant
| | vermogen (P = 750W)
o + t ! + ' —
o] 1000 2000 3000
N, Mg N

Figuur 10.17 Als een overbrenging is gemonteerd hebben de motor en de last ieder hun eigen
bedrijfspunt. Het quotiént van de beide bedrijfstoerentallen levert de benodigde overbrengingsver-

houding.
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De gewenste overbrengingsverhouding volgt uit:

. bedrijfstoerental motor

10.3
bedrijfstoerental last ( )

Met de gegevens uit Figuur 10.17 dus i = 3.
Figuur 10.18 demonstreert het gebruik van een dubbel-logaritmisch diagram. Het punt van

maximaal motorvermogen is eenvoudig te vinden. De getransformeerde lastkarakteristiek
ontstaat door een eenvoudige verschuiving van de werkelijke lastkarakteristiek.

lastkarakteristiek

T Tm, To. Tg bedrijfspunt last getransformeerde
(Nm) \\ lastkarakteristiek
10 e
~ 7
R
74 N
5 >\bedrijfspunt motor
4
3
2
\ motorkarakteristiek
/]
1 T
100 200 300 400 500 1000 2000 3000

nm, ng, ng (omw/min)
Figuur 10.18 Als Figuur 10.17 op logaritmische assen.

10.3.4 Veranderende lastkarakteristieken

Voertuigen moeten kunnen rijden bij sterk wisselende wegcondities. Er is een versnel-
lingsbak (eigenlijk vertragingsbak) gemonteerd om onder andere de motor-karakteristiek
aan de veranderende lastkarakteristiek te kunnen aanpassen. In zo'n geval is het handig
om de lastkarakteristiek te transformeren naar de voertuigsnelheid. Zie Figuur 10.19. Bij
een drieversnellingsbak ontstaan zo drie (getransformeerde) motorkarakteristieken. In de
figuur is tevens een drietal lastkarakteristieken getekend.

De chauffeur kan door keuze van de ingeschakelde versnelling de motorconditie aanpassen
aan de veranderde lastkarakteristieck. Soms heeft de chauffeur de keuze tussen twee of
drie versnellingen. Deze keuze zal afhangen van de toegestane motorbelasting maar ook
van een gewenst voertuiggedrag, zoals bereikbare voertuigversnelling. Dit aspect wordt
in de volgende paragraaf besproken.
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1
motor

beschikbaar motormoment
benodigd aandrijfmoment

voertuigsnelheid

Figuur 10.19 Karakteristieken van een voertuig en zijn belasting. 1/2/3 = aandrijvend moment in
respectievelijk de eerste/tweede/derde versnelling. a) Weerstandsmoment van vlakke weg, windstil.
b) Weerstandsmoment van vlakke weg, met tegenwind. c) Weerstandmoment van helling.

10.4 Dynamisch gedrag

Het bedrijfspunt geeft de toestand waarin een motor-last-combinatie uiteindelijk terecht
komt. Zolang de stationaire toestand nog niet bereikt is zal het motortoerental (en daar-
mee het lasttoerental) nog veranderen. De snelheid waarmee het uiteindelijke bedrijfs-
toerental bereikt wordt, is vaak van belang. In het volgende is een eenvoudige grafische
methode gegeven om het snelheidsgedrag tegen de tijd te bepalen.

f J S ——

1

bedrijf

Figuur 10.20 Als het beschikbare moment groter is dan het benodigde moment zal de motor-last-
combinatie versnellen.
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Figuur 10.20 geeft een willekeurige motor- en (getransformeerde) lastkarakteristiek. Als
het motortoerental de waarde n; heeft, levert de motor een moment 7;,; en vraagt de
last een moment T};. Het verschilmoment is beschikbaar voor versnellen. Als het totaal
te versnellen traagheidsmoment J bedraagt, dan geldt:

Tml—TH:J-%:%-J-% (10.4)
Als de motor- en de lastkarakteristiek mathematisch geformuleerd kunnen worden, is met
deze betrekking het toerentalverloop tegen de tijd te berekenen. Op grafische wijze is snel
bij benadering een toerentalverloop te bepalen. Verdeel hiertoe het toerentalgebied n4
tot Npedrijf in €en aantal gebiedjes An, en neem aan dat in elk van deze gebiedjes An het
verschilmoment T,,, — T; constant blijft. Zie Figuur 10.21. Het verschilmoment verloopt
dan zoals aangegeven.

Tl
Tm
\\\
ERS
T ||T

Nbedrijt N

t

|

Figuur 10.21 De grootte van het verschil tussen aandrijfmoment en lastmoment bepaalt de snelheid
waarmee het toerental verandert. Bij een (stapsgewijze) benadering van het verschilmoment door
een constante waarde is het toerentalverloop eenvoudig te bepalen.

De gegeven vergelijking gaat dan over in de differentievergelijking:

T An
T, —T=T=—.j.22 10.
m 30 7 AL (10.5)
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of: A

0 n
RETRRY
Bij een gekozen waarde van An zijn de versnellingsmomenten T bekend en zijn de At-
waarden te berekenen. Met bijvoorbeeld An = 100 omw/min en J = 0,1 kgm? volgt
At ~ 1/T. In het onderste deel van Figuur 10.21 zijn de aldus gevormde At-waarden
achter elkaar uitgezet, waarmee het gewenste verloop van het toerental tegen de tijd
bekend is.

At (10.6)

Is een overbrenging aanwezig tussen de motor en de last, dan moet het motormoment
niet alleen het lastmoment overwinnen maar ook de massatraagheidsmomenten van de
motoras J,,, en van de last J; versnellen. In formule:

dw,
T = Tl/ +Jm dt + Ti/ dynamisch (107)
Awm Jl Awl .
— / - — —_— — =
Th =T+ Jm At A " met Aw,, = iAw, (10.8)
Jl Aw
T = vy —/m
Ty — T (Jm + Z_2> N (10.9)

Het totaal in rekening te brengen traagheidsmoment bestaat dus uit het massatraagheids-
moment van de motoras plus het traagheidsmoment van de last gedeeld door het kwadraat
van de overbrengingsverhouding.
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Hoofdstuk 11

Dynamische systemen

11.1 Inleiding

Een systeem heeft een ingangssignaal en een uitgangssignaal. In het algemeen zal een
(snelle) verandering van het ingangssignaal niet direct door het uitgangssignaal kunnen
worden gevolgd. Een thermometer, die plotseling in een ruimte met een andere tempera-
tuur wordt gebracht heeft enige tijd nodig voordat hij kan worden afgelezen. Een motor
die wordt ingeschakeld is niet direct op toeren. Een parachutist bereikt niet meteen zijn
uiteindelijke valsnelheid.

Bij al deze systemen is er geen direct tijdonafhankelijk verband tussen het ingangssignaal
en het uitgangssignaal. Het uitgangssignaal is slechts te bepalen als niet alleen de mo-
mentane waarde van het ingangssignaal is gegeven, maar ook het vroegere verloop van
het ingangssignaal bekend is. In dat geval spreken we van dynamische systemen.

Het verloop van het ingangssignaal in de tijd is zeer belangrijk voor de modelvorming
van een systeem. Als het ingangssignaal snel in de tijd verandert komen de dynamische
eigenschappen van het systeem doorgaans duidelijk tot uiting. Bij langzaam veranderende
ingangssignalen zijn dynamische effecten vaak nauwelijks of niet te onderkennen. Als dat
het geval is dan wordt van een statisch systeem gesproken. Zoals reeds in § 1.2.3 is toe-
gelicht is de naam statisch systeem onterecht. Er bestaan geen echte statische systemen.
Het is alleen soms mogelijk (bij langzaam veranderende ingangssignalen) om systemen
als statisch systeem (het quotiént uitgangssignaal/ingangssignaal is tijdonafhankelijk) te
beschouwen.

In dit hoofdstuk wordt vooral aandacht besteed aan het inschatten van de grenzen: wan-
neer is een systeem als statisch systeem te beschouwen en wanneer niet meer.
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11.2 Signalen voor dynamische systemen

Zoals is beschreven kan het uitgangssignaal van een dynamisch systeem alleen worden
berekend als het verloop van het ingangssignaal in de tijd bekend is. In principe moet
het ingangssignaal in de periode —co < ¢ < t; zijn gegeven om het uitgangssignaal op
het tijdstip 1 te kunnen berekenen. Voor de onderlinge vergelijking van systemen is het
handig om steeds een zelfde ingangssignaal te beschouwen. Daarvoor zijn twee geheel
verschillende ingangssignalen algemeen in gebruik: de sprongfunctie en het sinusvormig
veranderende ingangssignaal. Zij worden in het volgende toegelicht.

11.2.1 De sprongfunctie

Een veel gebruikt ingangssignaal, zowel voor het testen als voor het beschrijven van het
dynamisch gedrag is de sprongfunctie. Zie Figuur 11.1.

t=0 t

Figuur 11.1 Sprongfunctie. Een sprongfunctie wordt aangeboden aan de ingang van een systeem.
Daarbij wordt verondersteld dat het systeem in rust verkeert als de sprongvormige verandering
begint.

Op een gekozen tijdstip (hier ¢ = 0) vindt een sprongvormige verandering van het in-
gangssignaal plaats. Daarvoor (—oco < t < 0) heeft het ingangssignaal lange tijd de
waarde 0 gehad. In die lange tijd is het systeem volledig tot rust gekomen. Ook al is
dat vaak niet zo nadrukkelijk aangegeven; er wordt steeds verondersteld dat het systeem
bij het begin van de sprongvormige verandering geheel in rust is. Na de sprongvormige
verandering bij t = 0 kan het systeem weer tot rust komen bij een ingangssignaal u = a.
In de periode direct na de sprong (¢t > 0) wordt het systeem-gedrag bestudeerd. Dan
blijken de dynamische eigenschappen van het systeem.

Systemen kunnen heel verschillend reageren op een sprongfunctie. Het uitgangssig-
naal van een systeem wordt responsie genoemd. Het uitgangssignaal ten gevolge
van een sprongfunctie in het ingangssignaal heet sprongresponsie. De sprongresponsie
geeft dus aan hoe een systeem zich gedraagt als het van de ene rusttoestand naar de
andere overgaat. In Figuur 11.2 zijn een aantal mogelijke sprongresponsies gegeven. Zij
karakteriseren de beschouwde systemen.
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uy y uy

Figuur 11.2 Sprongresponsies van verschillende systemen. Een systeem is te karakteriseren door
zijn sprongresponsie.

11.2.2  Sinusvormige signalen

Een klasse van systemen — de lineaire systemen — heeft de eigenschap dat als het in-
gangssignaal sinusvormig verandert, het uitgangssignaal dat ook doet. De uitgangssinus
heeft dan bovendien dezelfde frequentie als de ingangssinus. Systemen die deze eigenschap
niet hebben worden niet-lineaire systemen genoemd. Veel systemen zijn niet-lineair. In
de techniek worden vooral lineaire systemen gebouwd omdat deze toegankelijk zijn voor
berekening. Als er niet-lineariteiten voorkomen, dan worden ze vaakverwaarloosd. In het
volgende zullen — tenzij anders vermeld — alleen lineaire systemen worden beschouwd.
De onderliggende gedachte bij het toepassen van sinusvormige signalen voor systeembe-
schrijving is een andere dan bij de sprongfuncties. Het sinusvormig veranderende ingangs-
signaal wordt verondersteld al oneindig lang met een vaste frequentie en een constante
amplitude aanwezig te zijn. Het systeem is volledig ‘ingeslingerd’. Het uitgangssig-
naal verandert ook sinusvormig met dezelfde frequentie en heeft eveneens een constante
amplitude. Het systeem is niet in rust zoals bij de sprongfunctie, maar het systeem ver-
keert in een stationaire toestand waarbij de signalen sinusvormig veranderen rondom een
evenwichtsstand.

Het sinusvormig veranderende ingangssignaal krijgt achtereenvolgens een aantal waarden
voor de hoekfrequentie w. Bij elke hoekfrequentie worden de ingangssinus en de uitgangs-
sinus met elkaar vergeleken onder de aanname dat het systeem volledig is ‘ingeslingerd’.

Stel dat het ingangssignaal u sinusvormig verandert met de amplitude @ en de hoekfre-
quentie w. Er geldt dan (zie Figuur 11.3):

u =1 - sin (wt) (11.1)

Het uitgangssignaal y is dan ook een sinus met dezelfde frequentie w echter met een
amplitude 7 en met een faseverschil ¢ ten opzichte van de ingangssinus. Voor het uit-
gangssignaal geldt:

y =7 -sin (wt + ¢) (11.2)

Voor positieve waarden van ¢ is er een fasevoorsprong. Meestal heeft ¢ een negatieve
waarde. Dan loopt het uitgangssignaal achter ten opzichte van het ingangssignaal; er is
fase-achterstand.
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Figuur 11.3 Aan de ingang van een systeem wordt een sinusvormig veranderend ingangssignaal
met amplitude U aangeboden. Als het systeem lineair is, dan verandert het uitgangssignaal ook
sinusvormig met dezelfde frequentie w. De amplitude bedraagt y en de faseverschilhoek ¢. De
amplitudeverhouding o = /4 en de faseverschilhoek ¢ = wAt karakteriseren het systeem.

Het systeem wordt nu beschreven door de amplitudeverhouding:

o= en de faseverschilhoek ¢. (11.3)

D)

De waarden van « en ¢ zijn afhankelijk van de frequentie w. Bij elke w-waarde behoren
een waarde van « en .

Figuur 11.4 Frequentiekarakteristieken van verschillende systemen.

Het is gebruikelijk de resultaten in twee bij elkaar behorende grafieken te presenteren.
De a — w-karakteristiek die amplitudekarakteristiek wordt genoemd, en de ¢ — w-
karakteristiek die fasekarakteristiek wordt genoemd. De schaalverdelingen van « en
w langs de assen worden steeds logaritmisch gekozen. De schaalverdeling van ¢ is steeds
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lineair. Het samenstel van amplitudekarakteristiek en fasekarakteristiek heet frequentie-
karakteristiek of bode-diagram . In Figuur 11.4 staan een aantal mogelijke frequentie-
karakteristieken.

11.3 Systeembeschrijving in blokschema’s

Voor de beschrijving van de dynamische eigenschappen van systemen zijn twee extra blok-
ken nodig: een integrator en een differentiator . Zij worden in het volgende besproken.

11.3.1 Integrerende systemen

In Figuur 11.5.a is een waterleiding met regelklep getekend boven een cilindrisch vat.
Door de klep stroomt een waterstroom ®. De grootte van de waterstroom @ is in te
stellen met de stand van de klep u. Er geldt ® = k - u. Het totaal van klep en vat wordt
als systeem beschouwd. De stand van de klep u is het ingangssignaal; de niveauhoogte h
van het water in het vat is het uitgangssignaal.

u
—>
%u
| i
(o]
Ih
a. t
dh
dt
|’]0
L A B +i t
RN EL Ry N TR "
| 1 LA |
P |
klep vat ho
c. b. t

Figuur 11.5 De door een klep stromende vloeistof wordt in een vat opgevangen (a). Met de
klepstand w als ingangssignaal ontstaat een integrerend systeem. Het blokschema (c) bevat een
integrerend blok, aangeduid met I. In (b) zijn de verschillende systeemsignalen getekend bij een
ingangssignaal u.

Op het tijdstip t = 0 is de niveauhoogte in het vat hg. Vanaf dat moment heeft het in-
gangssignaal de veranderende waarde u, bijvoorbeeld zoals aangegeven in Figuur 11.5.b.
In een tijdje dt stroomt in het vat de hoeveelheid dV = ® - dt. Als het vat een opper-
vlakte A heeft dan veroorzaakt deze hoeveelheid dV een niveaustijging dh = dV/A. De
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stijgsnelheid van het niveau bedraagt dus:

dh @
pril (11.4)
De niveauhoogte h volgt uit de integratie van de stijgsnelheid dh/dt. Dit is in het
blokschema van Figuur 11.5.c aangegeven door een blok met de hoofdletter I. Uiteraard
moet de vloeistofhoogte h(y op het tijdstip ¢t = 0 in een optelpunt worden toegevoegd.
Het blokschema van het systeem klep + vat is een serieschakeling van een integrator
en blokken met een vermenigvuldigingsfactor. Dat betekent dat het uitgangssignaal van
het systeem is te berekenen door integratie van het ingangssignaal. Het systeem klep +
vat (klepstand u ingangssignaal; niveauhoogte h uitgangssignaal) wordt een integrerend
systeem genoemd.

De snelheid waarmee het niveau stijgt is afhankelijk van de oppervlakte A van het vat
en van de doortocht k van de klep. Bij eenzelfde ingangssignaal u, zal het niveau in een
systeem met een klein oppervlak en een grote doortocht veel sneller stijgen dan in een
systeem met een groot oppervlak en een kleine doortocht. Er is onderscheid tussen snelle
en langzame integrerende systemen.

Waarschuwing: Het is niet juist om te zeggen dat het systeem klep + vat een inte-
grerend systeem is. Dat is alleen juist bij de gekozen in- en uitgangssignalen. Bij andere
signalen behoort een andere systeembeschrijving. Als bijvoorbeeld de klepstand u en de
niveau-stijgsnelheid dh/dt als in- en uitgangssignalen worden gekozen, dan geldt:

k

=—. 115

>ou (11.5)
Dan bestaat er een tijdonafhankelijke relatie tussen het ingangssignaal u en het uitgangs-
signaal y. Bij die signaalkeuze is het systeem als een statisch systeem te beschouwen.

11.3.2 Differentiérende systemen

In Figuur 11.6 is een hydraulische demper getekend. Bij een verplaatsing du van de

zuigerstang wordt een volume dV = A-du van de rechts naar links van de zuiger verplaatst.

Dit volume moet door het smalle kanaal stromen dat in de zuiger is aangebrachte. Voor
de stroming ® door dit kanaal geldt:

av du

Ap=k-o=k-— =k - A—

P dt dt

De benodigde drukval Ap ontstaat door een kracht F,, op de zuigerstang uit te oefenen.

Er geldt:

(11.6)

d
FuzA-Apzk-AQdi: (11.7)

Indien de verplaatsing u van de zuigerstang als ingangssignaal wordt beschouwd, en de op
de zuigerstang uit te oefenen kracht F), als uitgangssignaal, dan gedraagt de hydraulische
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demper zich als een differentiérend systeem . Immers, het uitgangssignaal ontstaat
uit de afgeleide van het ingangssignaal vermenigvuldigd met een constante. Zie het
blokschema van Figuur 11.6.b.

du
K u NN @
u Fu — — ‘L
—> > | )
F. ‘
A Ap
a b.
F, .
1 A
A l b
1
k
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u ! A ®
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Figuur 11.6 Een differentiérend systeem. Met een verplaatsing u als ingangssignaal en de daarvoor
benodigde kracht F, als uitgangssignaal gedraagt een hydraulische demper (a) zich als een diffe-
rentiérend systeem. Dat blijkt direct uit het blokschema van (b). Bij een andere keuze van in- en
uitgangssignaal ontstaat een beschrijving als integrerend systeem (c).

Het is ook mogelijk andere in- en uitgangssignalen te kiezen. Indien de kracht op de zuiger
als ingangssignaal wordt beschouwd en de verplaatsing van de zuiger als uitgangssignaal,
dan moet de hydraulische demper als een integrerend systeem worden beschreven. Zie
Figuur 11.6.c.

11.3.3 Massawerking

In § 2.2 is het blokschema van een hefboom besproken. Daarbij is de hefboom massa-
loos verondersteld. Zie Figuur 11.7.b. Als de massa van de hefboom niet mag worden
verwaarloosd, dan geldt het blokschema van Figuur 11.7.c. De kracht F,, is nu niet meer
helemaal beschikbaar voor het leveren van de uitgangskracht F,. Een gedeelte moet
gebruikt worden om de hefboom te versnellen. Er geldt:

M, — My, =M, (11.8)
Waarin: M,, = F, -a, M, = F, -b en waarin M, het versnellingsmoment is volgens

M, = J-d*p/dt* (J = massatraagheidsmoment).
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M, is dus te verkrijgen door ¢ tweemaal te differentiéren en daarna met J te vermenig-
vuldigen. Zie het blokschema en let op de tekens! Als M, > M, moet M, en dus ook ¢
in dezelfde richting positief gerekend worden als M,,.

Er is ook een blokschema op te stellen met de ingangsverplaatsing w als onafhankelijke
variabele. Zie Figuur 11.7.d, waarin dezelfde relaties gelden als in het schema van Figuur
11.7.c. De beide blokschema's zijn mathematisch identiek, maar zijn wel opgesteld vanuit
verschillende gedachten. Het schema van Figuur 11.7.c geeft weer dat de ingangskracht
F, niet geheel beschikbaar is voor het leveren van de uitgangskracht F}. Het moment
M = F,,-a moet eerst verminderd worden met het voor versnelling benodigde moment M.
Dezelfde gedachte is in het blokschema van Figuur 11.7.d anders geformuleerd. Daarin
wordt weergegeven dat F, niet alleen de kracht F, moet tegenwerken, maar bovendien
het benodigde versnellingsmoment M, moet leveren.

F, My =M, Fy
F, Fy ——>| a >
¢
a

T =

T =

'IE FV L 1 ' ¢ b 4\/)
‘J —

[

J D

de de
,“ dt? dt
D D

do

dt
D
F
d a % Y ?—y

¢

C.

Figuur 11.7 In (a) is een hefboom getekend. Als de hefboom star en massaloos is, geeft (b) het
blokschema. In (c) is een blokschema getekend, waarbij de massatraagheid in rekening is gebracht.
Het blokschema bevat twee differentiatoren. Een alternatief blokschema met u als onafhankelijk
ingangssignaal heeft eveneens twee differentiatoren (d).
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Het systeem hefboom met massa is in de blokschema’s van Figuur 11.7.c en Figuur
11.7.d weergegeven met behulp van differentiatoren. Hetzelfde systeem is ook weer te
geven in een blokschema met integratoren. Dat is gedaan in Figuur 11.8. Dit schema is
rechtstreeks afgeleid van de vectorvergelijking voor de versnelling. Het voor versnelling
beschikbare moment M, = F, - a — F, - b levert een versnelling d2(p/dt2 = M,/J.
Na tweemaal integreren ontstaat daaruit de hoekverdraaiing ¢. Bij het toepassen van
integratoren moeten de begincondities dp/dt en ¢ bij t = 0 worden toegevoegd. In veel
praktische gevallen is het gebruikelijk om dy/dt = 0 en ook ¢ = 0 te kiezen bij ¢ = 0. In
dat geval kunnen de begincondities uit het schema worden weggelaten. Het blokschema
van Figuur 11.8 is veel beter geschikt voor computersimulatie dan de schema’s van Figuur
11.7.c en Figuur 11.7.d.

F. M, M, F,
—> a —+—>®<T b |——
M,

1
J

de
dt?
I
do
dt
I
u 1 y
a 0 b

Figuur 11.8 Een hefboom met massa is ook weer te geven in een blokschema met integratoren.
Vergelijk Figuur 11.7

11.4 Grafische systeembeschrijving

De eigenschappen van dynamische systemen worden vaak gerepresenteerd door hun spron-
gresponsie en (vooral) door hun frequentiekarakteristieken. In deze paragraaf zullen een
integrerend systeem en een differentiérend systeem op deze wijze worden behandeld.

11.4.1 Integrerend systeem

De in § 11.3.1 beschreven integrator is minder geschikt om hier te worden toegelicht,
omdat het waterniveau in de bak alleen maar kan stijgen en niet kan dalen. Het systeem
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kent dan alleen positieve waarden van de waterstroom ®. We zullen eerst een systeem
bespreken waarvan het uitgangssignaal zowel groter als kleiner kan worden.

In Figuur 11.9 is een mechanische integrator getekend. De onderste schotel wordt met
een constante hoeksnelheid p om een verticale as rondgedraaid. Deze schotel drijft een
wiel aan dat op een afstand u van de draaiingsas kan worden geplaatst. De verplaatsing u
is het ingangssignaal. Als u = 0 staat de bovenliggende rol stil. De rotatiehoek van de rol
is het uitgangssignaal y. Bij een uitwijking u van de rol krijgt het wiel een omtreksnelheid
v = u - p. Datis ook de omtreksnelheid van de rol. De hoeksnelheid dy/dt van de rol
wordt dan: dy/dt = v/r =u-p/r (2-r = d = roldiameter). De rol is verdraaid over een
hoek y = [ (dy/dt) dt. Er geldt dus:

r

t
y = "3-/ udt. (11.9)
0

Op het tijdstip ¢t = 0 staat het wiel in het centrum van de schotel; u = 0. Het wiel staat
stil. De rol is op dat moment een hoek y = y verdraaid. Op het tijdstip t = 0 verandert
het ingangssignaal sprongvormig. In Figuur 11.9.c is de sprongresponsie getekend. Daaruit
blijkt duidelijk het integrerende karakter van het systeem. Het uitgangssignaal is ook te
berekenen. Voor een sprong met grootte a geldt: y = (p/r) - a - t.

Vwiel = Vrol dl +| Yo
R d Y u 1 [t + y
T ‘ I — P e
/D)

uy
— Y

C.

Figuur 11.9 Mechanische integrator. De draaiende beweging van de schijf wordt via een wiel
overgebracht op een rol. De hoeksnelheid van de rol hangt af van de positie u van het wiel. De
verdraaiingshoek y van de rol is de integraal van u. Zie het blokschema in (b) en de sprongresponsie

in (c).

Het uitgangssignaal van een integrerend systeem is te berekenen uit de integraal van het
ingangssignaal. Dat is nog eens toegelicht in Figuur 11.10. Het ingangssignaal verandert
driemaal sprongvormig. Het uitgangssignaal is in dezelfde figuur getekend. De responsie
verduidelijkt twee belangrijke eigenschappen van integrerende systemen:

294



Dynamische systemen 11.4 Grafische systeembeschrijving

- Het uitgangssignaal van een integrator heeft een constante waarde als het ingangs-
signaal nul is. Anders geformuleerd: een integrator is slechts dan in rust als zijn
ingangssignaal nul is.

Dit leidt tot de conclusie: Als een dynamisch systeem in rust is, dan hebben alle
integratoren in dat systeem een ingangssignaal nul.

- Als een integrator in rust is, heeft het uitgangssignaal een bepaalde waarde. De
waarde daarvan hangt af van het voorafgaande verloop van het ingangssignaal.
Kort geformuleerd: Het uitgangssignaal van een integrator in rust hangt af van de
voorgeschiedenis.

uy

Figuur 11.10 Responsie van een integrerend systeem op sprongvormig veranderend ingangssignaal
u. Merk op dat: 1) Een integrerend systeem is alleen in rust als u = 0; 2) Een integrerend systeem
in rust kan elke uitgangswaarde y bezitten.

Voor de bepaling van het frequentiegedrag is aangenomen dat het ingangssignaal al heel
lang een sinusvormig verloop heeft. Op het tijdstip ¢ geldt uw = @ - sin (w - t). Voor de
besproken integrator geldt dan:

o~

p u
==-— t 11.10
y="2 2 cos (i) (11.10)

Dit leidt met 5 = (p/r) - (¥/w) tot:

y =7 -sin (wt— g) (11.11)

Het systeem wordt beschreven door de amplitudeverhouding oz = /@ en de fase-verschil-
hoek . Er geldt dus:

ik

(11.12)

_7T
=73

1
w
In Figuur 11.11 zijn de amplitudekarakteristieck en de fasekarakteristiek van het inte-

grerende systeem gegeven. Daarin is aangegeven dat de amplitudeverhouding van een
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integrerend systeem afneemt met de frequentie. Beide assen hebben een logaritmische
schaalverdeling. Bij een n-maal zo grote frequentie behoort een n-maal kleinere amplitu-
deverhouding. De fase-achterstand van een integrerend systeem is altijd 7, onafhankelijk
van de frequentie.

o (log)
(lin)

ki
2

Figuur 11.11 Amplitudekarakteristiek en fasekarakteristiek van een integrerend systeem. Met de
bijgeschreven waarde voor w zijn de karakteristicken geldig voor de mechanische integrator van
Figuur 11.9.

11.4.2 Differentiérend systeem

De sprongresponsie van een differentiérend systeem zal hier niet worden behandeld. Wel
zullen de frequentiekarakteristieken van de hydraulische demper uit § 11.3.2 worden afge-
leid.

Indien de ingangsverplaatsing u sinusvormig verandert volgens v = u - w cos (wt) dan is
de ingangssnelheid du/dt = —u - wsin (wt).

Dan verandert de kracht F, (het uitgangssignaal) volgens y = —k - A% - 4 - wsin (wt).
De amplitudeversterking o = 7/ = k - A% - w.

Voor w = 1/(/{'142) wordt o = 1. De faseverschilhoek bedraagt ¢ = +7 voor alle
frequenties.

De beide karakteristieken zijn getekend in Figuur 11.12.
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Figuur 11.12 Amplitudekarakteristiek en fasekarakteristiek van een differentiérend systeem. Met de
bijgeschreven waarde voor w zijn de karakteristieken geldig voor de hydraulische demper van Figuur
11.6.

Een differentiérend systeem heeft fasevoorsprong (¢ is positief). Dat is bijzonder, want
gebruikelijk is dat systemen fase-achterstand hebben. De amplitudeversterking neemt
lineair toe met de hoekfrequentie w. Dat geeft problemen bij hoge frequenties. Die pro-
blemen zijn veroorzaakt door de modelvorming. Systemen met een zuiver differentiérend
karakter komen in de praktijk niet voor. Een differentiérende werking is alleen te bereiken
in een beperkt frequentiegebied.

11.5 Scheidingsfrequenties

Het komt veelvuldig voor dat systemen zich bij hoge frequenties anders gedragen dan
bij lage frequenties. Zo zijn er bijvoorbeeld systemen die zich bij lage frequenties ge-
dragen als een statisch systeem (waarbij de amplitudeverhouding a onafhankelijk is van
de frequentie) en zich bij hoge frequenties gedragen als een integrerend systeem. Het is
dan zinvol om te weten in welk frequentiegebied de ene systeembeschrijving geldig is en
in welk frequentiegebied de andere. Of anders geformuleerd: welke frequentie vormt de
grenswaarde tussen de beide systeembeschrijvingen?

11.5.1 Eigenfrequentie

In een machine wordt een blok met massa m aangedreven door een kruk-drijfstang me-
chanisme. Bij de verplaatsing van het blok wordt een veer gespannen. Het mechanisme
is schematisch getekend in Figuur 11.13. De kruk draait eenparig rond met een hoek-
frequentie w, de straal van de kruk bedraagt . De bij de beweging optredende wrijving
wordt verwaarloosd. Als de lengte van de drijfstang groot is ten opzichte van de krukstraal
r, dan is de beweging van het blok met goede benadering sinusvormig. Er wordt gesteld
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u = r - sin (wt). Figuur 11.13.b geeft het benaderde mechanisme. Het blokschema van
dit systeem is gegeven in Figuur 11.13.c.

Av u Av
massa m |

/r{\ D
du

avall e

a. D
c
— du
dt?
m
u=rsin@t) Fy, F,
—_—— > f€«— F
a
b. C. Av +
F + F

Figuur 11.13 In (a) is de opstelling getekend. Een kruk-drijfstang mechanisme verschuift een massa
m die door een veer wordt tegengehouden. De op de massa werkende uitwendige krachten zijn
getekend in (b). Het bijbehorende blokschema is gegeven in (c). Een sinusvormige veranderende
verplaatsing u veroorzaakt een in fase veranderende veerkracht F,. De benodigde versnellingskracht
Fo =m - is in tegenfase met u. Als |F,|= |Fy| of als mw? = ¢, dan is er geen bedieningskracht
F,, benodigd.

De te leveren ingangskracht F), bestaat uit de som van de veerkracht F, en de voor
versnelling van het blok benodigde kracht F,,. Er geldt F,, = F,,+ F,. Het ingangssignaal
verandert volgens u = r - sin (wt). In het blokschema is aangegeven welke vorm de
verschillende signalen in het schema hebben. Als u sinusvormig verandert dan doet de

veerkracht F, dat ook. Er geldt F,, = ¢-r -sin(w-t). Er is geen faseverschil tussen
F, en u. Verder geldt du/dt = r - w - cos (wt), en de versnelling van het blok bedraagt
d*u/dt?> = —r - w?sin (wt). De voor versnelling benodigde kracht F, = m - d?u/dt?

verandert dus ook sinusvormig en heeft een faseverschilhoek van m met het signaal .
Bij het optelpunt moeten de twee sinusvormige signalen F,, en F, die in tegenfase zijn,
gesommeerd worden.

Een bijzondere situatie treedt op als de amplitude van F, gelijk is aan de amplitude van
F,. Dan wordt F,, = 0. Dat wil zeggen dat een sinusvormige verplaatsing u kan blijven
bestaan, zonder dat daar een kracht F, voor benodigd is. Hoe dat mogelijk is blijkt
duidelijk uit het alternatieve blokschema van Figuur 11.14 waar F, als onafhankelijke
variabele is gekozen.
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- v
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Figuur 11.14 Twee alternatieve blokschema’s voor een ongedempt massa-veer systeem. In (a) is
de verplaatsing w als onafhankelijke variabele gekozen, en in (b) is de kracht F., als onafhankelijke
variabele gekozen. In beide schema’s is het verloop van één periode van de verschillende signalen
aangegeven. Het schema (a) is overeenkomstig Figuur 11.13.c. Uit het schema (b) blijkt duidelijk
dat het signaal ‘rondloopt’.

Op de veer wordt de bedieningskracht F,,, verminderd met de voor versnelling benodigde
kracht F,, uitgeoefend: F, = F,, — F,. Met F, = 0 wordt F,, = —F,.

F, is dus in tegenfase met F,,. Het signaal —F, is dan precies hetzelfde (amplitude gelijk;
faseverschil 0) als het signaal F,.

Een signaal kan in de getekende kring blijven ‘rondlopen’. De bijzondere frequentie waarbij
een systeem zichzelf in trilling houdt, wordt ‘eigenfrequentie’ genoemd. De eigenfrequentie
wordt afgegeven met het symbool wy. Bij de eigenfrequentie wy geldt |F,|= | Fy|, dus:

cor=m-wi-r (11.13)

Voor massa-veer systemen geldt:

wg:% of w0:1/% (11.14)

Het is belangrijk de eigenfrequentie (eventueel eigenfrequenties) van een systeem te ken-
nen. Het maakt veel uit of een systeem onder of boven zijn eigenfrequentie wordt gebruikt.
Dat wordt toegelicht in de volgende paragraaf.
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11.5.2 Eigenfrequentie als scheidingsfrequentie

Voor de volgende beschouwing van het dynamisch gedrag van een massa-veer systeem
wordt uitgegaan van het blokschema van Figuur 11.13. De bedieningskracht F), ontstaat
uit de som van de veerkracht F,, en de in tegenfase daarmee werkende massakracht Fj,.
Voor de systeembeschrijving is F, als uitgangssignaal gekozen, en de verplaatsing u als
ingangssignaal. Het systeem wordt beschreven met de overbrengingsverhouding:

H(w) = (11.15)

In het volgende zal worden nagegaan hoe het systeemgedrag verandert als functie van de
frequentie van het ingangssignaal. De ingangsverplaatsing behoudt daarbij een constante
amplitude. Dat betekent dat ook de amplitude van de veerkrachtF, constant blijft.
Voor zeer lage frequenties w = 0 is de massakracht F, gering ten opzichte van de veer-
kracht F,,, en kan worden verwaarloosd. Voor zeer lage frequenties bepaalt de veer het
systeemgedrag. Er geldt met grote benadering:

—c (11.16)

Voor zeer lage frequenties is de amplitudeverhouding van het systeem frequentie-onafhankelijk.
Het systeem is als een statisch systeem te beschrijven. Er geldt:

amplitudeversterking o = ¢; faseverschilhoek ¢ =0 (11.17)

Als de hoekfrequentie w toeneemt, neemt ook de massakracht F, toe. De massakracht
zal verwaarloosd kunnen blijven zolang |F,|< |F,|/10, dus zolang m - w? - 7 < ¢ - r/10.
Met ¢/m = w3 luidt deze voorwaarde w? < w3/10. Een massa-veer systeem is als een
statisch systeem te beschrijven indien 0 < w < wp/3.

Als w verder toeneemt, dan neemt de massakracht verder toe. Voor w = wy is ﬁa = ﬁv
en is er geen bedieningskracht nodig. Voor w > wy is de amplitude van de massakracht
groter dan die van de veerkracht. Indien F, > 10 - F,, kan de veerkracht verwaarloosd
worden ten opzichte van de massakracht. Dan geldt met grote benadering F,, = F,.
Daarbij moet bedacht worden dat F, in tegenfase is met u. Voor hoge frequenties geldt
dus:

= —mw (11.18)
Anders geschreven:
2. faseverschilhoek ¢ = —m (11.19)

amplitudeversterking o = m - w

Deze systeembeschrijving is geldig als F,, > 10 - F},, dus als w > 3 - wy.
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De beide afgeleide systeembeschrijvingen zijn weergegeven in de frequentiekarakteristiek
van Figuur 11.15. Voor het tussenliggende frequentiegebied wo/3 < w < 3wy is geen
systeembeschrijving opgesteld. Merk op dat de verlengde amplitudekarakteristieken el-
kaar snijden bij w = wp. Dat is in Figuur 11.15 met een stippellijn aangegeven. Deze
eigenschap vergemakkelijkt het schetsen van de amplitudekarakteristiek van het totale
systeem.
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Figuur 11.15 De frequentiekarakteristiek van een massa-veer systeem. Voor w > 3 - wqg is de mas-
sawerking maatgevend; de veer kan worden verwaarloosd. Voor w < wq/3 is alleen de veerwerking
belangrijk. In het gebied wo/3 < w < 3 - wq is geen systeemgedrag bepaald. De stippellijn geeft
aan dat de karakteristieken elkaar bij w = 0 snijden.

Bij massa-veer systemen met weinig demping treedt de eigenfrequentie wy op als schei-
dingsfrequentie. ‘Boven’ de eigenfrequentie is het systeem duidelijk een dynamisch sys-
teem. Voor w > 3-wy is alleen de massawerking belangrijk; de veer kan worden weggelaten.
‘Onder’ de eigenfrequentie zijn dynamische eigenschappen van het systeem nauwelijks te
herkennen. Het systeem is als een statisch systeem te beschouwen.

De werkelijke amplitudekarakteristiek kan in het gebied wp/3 < w < 3-wy zeer sterk van
de stippellijn afwijken. Indien geen enkele wrijving of demping aanwezig is, dan wordt
a = 0 bij w = wp. Als veel demping aanwezig is, zie dan de beschouwing van § 11.5.4.

In het behandelde voorbeeld is de amplitudeverhouding @ = |Fu/u| gekozen voor de
beschrijving van het systeem. Veel massa-veer systemen worden niet door een verplaatsing,
maar door een kracht aangedreven. Dan is de amplitudeverhouding o« = u/ F3, van belang.
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Bij deze signalen is het massa-veer systeem te beschrijven met:

1
a=- =0 voorw< % (11.20)

a=—— @=-m  voorw>3-wp (11.21)
m-w

Figuur 11.16 geeft de amplitude- en fasekarakteristieken bij deze signaalkeuze. Dit zijn de
gebruikelijke frequentiekarakteristieken voor de beschrijving van een massa-veer systeem.
Bedenk dat de amplitudekarakteristiek een logaritmische schaalverdeling langs de assen
heeft. Daarom helt de karakteristiek van Figuur 11.16 met dezelfde hoek naar beneden
als de karakteristiek van Figuur 11.15 naar boven helt. De logaritmische verdeling langs
de frequentie-as zorgt ervoor dat de frequentie wy precies midden tussen de frequentie
wo/3 en 3 - wy ligt.
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Figuur 11.16 De gebruikelijke frequentiekarakteristieken van een massa-veer systeem met weinig
demping. In het frequentiegebied wo/3 < w < 3 - wo kunnen grote afwijkingen van de gestippelde
lijnen optreden.

11.5.3 Veer-demper systemen

De veer-demper systemen vormen een heel andere groep dan de massa-veer systemen.
Het onderscheid is fundamenteel. Een massa en een veer zijn beide elementen waarin
energie kan worden opgeslagen. Een massa die beweegt, vertegenwoordigt een hoeveelheid
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kinetische energie; een ingedrukte veer bezit potentiéle energie. De combinatie van deze
twee elementen heeft de mogelijkheid om de twee soorten energie uit te wisselen. Dit
geeft een massa-veer systeem zijn unieke eigenschappen.

In een demper kan geen energie worden opgeslagen. Een demper zet mechanische energie
om in warmte. Er kan daarom geen uitwisseling van energie plaatsvinden. Een veer-
demper systeem heeft daarom andere eigenschappen dan massa-veer systemen. Wel is
er sprake van een frequentiegebied waarin de veer maatgevend is voor het gedrag en een
ander frequentiegebied waarin de demper het gedrag bepaalt. In het volgende zal de
scheidingsfrequentie van deze gebieden worden bepaald.

Figuur 11.17 toont een systeem dat is opgebouwd uit een veer en een demper. Voor de
veer geldt F,, = ¢ - u, voor de demper geldt F; = k - du/dt. Het blokschema geeft het
systeemgedrag weer:

u
D
u Fu du
’ ’ - dt ¢
= k
Fd +
Fy +F

Figuur 11.17 Een veer-demper systeem. De ingangskracht F,, moet de tegenwerkende krachten
van de veer en van de demper overwinnen: F,, = F, + Fy

Als de ingangsverplaatsing u = @ - sin (wt), dan wordt de door de veer geleverde kracht
F, =c-u-sin(wt).

De demper oefent een kracht Fy = k-4 - w - cos (wt) uit.

Als |Fy|< |F},/10] dan is de demperkracht te verwaarlozen ten opzichte van de veerkracht.
Dat is het geval wanneer w < 0,1 - ¢/k.

Indien de demperkracht groot is ten opzichte van de veerkracht, dus als |Fy|> |10 - F,|,
dan mag de veer uit het systeem worden weggelaten. Dat is het geval bij w > 10 - ¢/k.

In Figuur 11.18 zijn de frequentiekarakteristieken van het beschouwde systeem gegeven.
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Wiskundig is het systeem te beschrijven met:

w c
_ | Fu| —0 0.1-¢ 11.22
a ’u’ c @ voor w < 0,1+ ( )
F, 1
a=|Cl=pw gpzfg voorw>10~% (11.23)

In het tussenliggende gebied 0,1 - ¢/k < w < 10 - ¢/k moet met de invioed van de veer
en de demper beide rekening worden gehouden.
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Figuur 11.18 De frequentiekarakteristieken voor het veer-demper systeem van Figuur 11.17. De
scheidingsfrequentie wordt doorgaans opgegeven door een tijdconstante T = 1/ws. In het gebied
1/10 - 7 < w < 10/7 wijken de werkelijke karakteristieken slechts weinig af van de stippellijn.

In de figuur zijn de karakteristieken van de buitenliggende frequentiegebieden gestippeld
doorgetrokken. Zij snijden elkaar bij ws = ¢/k. Dit is precies de frequentie waarbij de
demperkracht F,; en de veerkracht F,, aan elkaar gelijk zijn. Deze frequentie wordt als
scheidingsfrequentie aangehouden. Het is echter ongebruikelijk bij veer-demper systemen
om de scheidingsfrequentie zelf op te geven. Bij dit type systemen wordt altijd de reciproke
waarde van de scheidingsfrequentie 7 = 1/w; opgegeven. Deze reciproke waarde 7 wordt
de tijdconstante van het systeem genoemd. Een veer-demper systeem met een hoge
waarde voor 7 heeft dus een lage scheidingsfrequentie. Dan is al bij vrij lage frequenties
de demper maatgevend voor het systeemgedrag.11.5.4. Gedempte massa-veer systemen.
Een gedempt massa-veer systeem is een massa-veer systeem waarin ook nog een demper
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Dynamische systemen 11.5 Scheidingsfrequenties

voorkomt. Een mogelijke opstelling is getekend in Figuur 11.19.a en het bijbehorende
blokschema in Figuur 11.19.b.

|
D
l
D
|

k
Fy Faé; Fa+Fe Jgd
a. b. : +

Figuur 11.19 Een massa-veer systeem met demper. In de opstelling (a) staat de veer parallel aan
de demper. Het blokschema (b) verduidelijkt dat F,, = Fo + Fgq + Fy

De kracht F), is nu samengesteld uit drie componenten: de veerkracht F),, de demper-
kracht Fy, en de versnellingskracht F,. Er geldt: F,, = F, + F4; + F,. Een eenvoudige
schatting van het belang van de verschillende componenten is gegeven in Figuur 11.20. In
deze figuur is de frequentie lineair uitgezet. De veerkracht F), is frequentie-onafhankelijk,
de amplitude van de demperkracht F; verandert lineair met de frequentie, de amplitude
van F, verandert kwadratisch met de frequentie.

Figuur 11.20.a geldt wanneer een demper met een kleine k-waarde is aangebracht. De
scheidingsfrequentie ws; = ¢/k (dan is F, = Fy) is veel groter dan de eigenfrequentie

wo = /= (danis F, = F,).

Voor frequenties w < wy is de veerkracht (F,) de grootste kracht; voor frequenties w > wy
is de versnellingskracht F, de grootste. De demperkracht F; heeft weinig invloed. Dit zijn
de lichtgedempte systemen. Zolang de scheidingsfrequentie ws > wy blijft de invioed
van de demper gering.

Het grensgeval treedt op voor w, = wp. Systemen met wy < wp (of: ¢/k < /=) zijn
gedempt of zwaargedempt.

In figuur 11.20.b is het verloop van de drie krachten F),, Fy en F, getekend bij een
zwaargedempt massa-veer systeem. Er is nu een duidelijk gebied waar de demperkracht
de grootste kracht is. Dit frequentiegebied is gegeven door: ¢/k < w < k/m. De
bovenwaarde van dit frequentiegebied is berekend uit de gelijkstelling van de demperkracht
Fy aan de versnellingskracht F,.
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11.5 Scheidingsfrequenties Dynamische systemen

Figuur 11.20 samengevat: In (a) is de demperkracht F,; klein en speelt geen rol. Der-
gelijke systemen zijn lichtgedempt. Als ws < wp heeft de demperkracht veel invloed. In
zwaargedempte systemen is de invioed van wy niet herkenbaar. De grens tussen licht- en
zwaargedempte systemen ligt bij ws = wg of kK = y/c-m. Zowel bij (a) als bij (b) zijn
per frequentiegebied de vervangingsschema's voor het systeem aangegeven.

F F, F |
(log) (log)
|
|
Fq |
Fveer ? :
| | | |
| | |
| | | |
| | L |
(O o (log) [OR 0y | o (log)
| | |
| | |
| | |
F,>>F, [ Fa>>F, Fo>>Fy>F, 1Fg>F Fy>F, 1 Fo>>Fy>F,
| |
a. Fv: Fa b- Fv:Fd Fd:Fa

Figuur 11.20 Vergelijking van de optredende krachten in een massa-veer systeem. In (a) een
lichtgedempt systeem, in (b) een zwaargedempt systeem.

In Figuur 11.21 zijn de frequentiekarakteristieken van een (zwaar)gedempt massa-veer
systeem getekend. Zij geven het systeemgedrag in de gebruikelijke vorm met een kracht
als onafhankelijke variabele.

Het is gebleken dat het systeemgedrag sterk afhankelijk is van de verhouding wg/ws =

k/\/cm.

In de systeemtheorie is het gebruikelijk om het relatieve belang van de demperkracht in
het systeem aan te duiden met de factor 8. Er geldt 28 = k/\/c-m.

De waarde 8 = 0,5 geeft de grens aan tussen licht- en zwaargedempte systemen. Figuur
11.21 is uitsluitend geldig voor massa-veer systemen met 3 > 0,5 (of ws < wp).
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Figuur 11.21 Frequentiekarakteristiek van een zwaargedempt (3 > 0,5) massa-veer systeem.

11.6 Voorbeelden

11.6.1 Meetsystemen

Bij het ontwerp en het gebruik van meetsystemen is de behandelde theorie goed toe te
passen. Een universeel meetinstrument is in een groot frequentiegebied bruikbaar en heeft
daarbij een grote gevoeligheid. Deze eisen zijn tegenstrijdig. Dat wordt in het volgende
voorbeeld toegelicht.

Voorbeeld Figuur 11.22 geeft een principeschets van een drukmeter met een elektrisch
uitgangssignaal.

4 elektrische

\ mm voedingsspanning
1

_—— vem— J

drukaansluiting ? 1 kern
_Kﬁ ‘ L elektrische

AN meetspanning

verend membraan

Figuur 11.22 Opbouw van een drukopnemer met een elektrische meetspanning.

Bij toelaten van een hydraulische of pneumatische druk in de drukkamer van het instru-
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11.6 Voorbeelden Dynamische systemen

ment zal het membraan doorbuigen. De doorvering van het membraan wordt elektrisch
inductief gemeten. Hiertoe is het noodzakelijk dat een ijzeren kerntje aan het membraan
is bevestigd. Er is een massa-veer systeem ontstaan. De bewegende massa wordt ge-
vormd door de massa van het kerntje en een deel van de massa van het membraan; de
veerstijfheid wordt bepaald door het membraan.

De dynamische eigenschappen van het gevormde massa-veer systeem beperken het sys-
teemgedrag van het meetinstrument. Bij alle frequenties moet eenzelfde druk-amplitude
eenzelfde membraanverplaatsing (dus eenzelfde elektrisch uitgangssignaal) opleveren. De
verhouding @/l?‘u moet constant zijn, of wat hetzelfde is: het massa-veer systeem moet
zich als een statisch systeem gedragen. Dat is alleen het geval als het massa-veer systeem
bij lagere frequenties dan zijn eigenfrequentie wy wordt gebruikt. Volgens § 11.5.2 is de
onnauwkeurigheid minder dan 10% zolang w < wy/3.

Nu blijkt de tegenstrijdigheid. Voor een grote gevoeligheid moet ’y\/ﬁu = 1/c groot zijn.
Een grote gevoeligheid wordt verkregen met een lage veerstijfheid van het membraan.
Een groot frequentiegebied vereist een hoge waarde van de eigen-frequentie wy = ¢/m;
dus een hoge veerstijfheid. Als een slap membraan wordt aangebracht, dan ontstaat een
meetinstrument dat gevoelig is, maar dat slechts in een klein frequentiegebied bruikbaar
is. Naarmate de veerstijfheid van het membraan toeneemt, vermindert de gevoeligheid
en wordt het bruikbare frequentiegebied groter. In een korte formulering: een gevoelig
meetinstrument is in een klein frequentiegebied bruikbaar.

Voorbeeld Een opnemer moet krachten meten in het bereik van 20-100 N. De toelaat-
bare onnauwkeurigheid is 2%. De kleinste verplaatsing die elektrisch kan worden gemeten
bedraagt 1pym. Het toe te passen meetsysteem bezit een bewegende massa van 5 g. In
welk frequentiegebied kan met de gegeven nauwkeurigheid worden gemeten?

De nauwkeurigheid die wordt vereist is dat 0,02-100 = 2 N nog te meten moet zijn. Hier-
voor is een weg ter beschikking van 1 um. De veerstijfheid mag dan maximaal 2:10° N/m
bedragen. Samen met de massa van 5 g volgt hieruit de maximale eigenfrequentie:

[c [ 2-106 —

De opnemer is dus bruikbaar in het frequentiegebied w < wy/3 &~ 1000 Hz. Een grotere
gevoeligheid is te verkrijgen met een slapper membraan. Dan daalt de eigenfrequentie en
daarmee het bruikbare frequentiegebied.

11.6.2 Trillingsisolatie

Indien een apparaat of machine trillingen veroorzaakt is het doorgaans ongewenst dat
deze trillingen aan de omgeving worden doorgegeven. Zie bijvoorbeeld Figuur 11.23 waar
schematisch een trillings-isolerende opstelling is getekend. De trillende machine wordt
bevestigd op een zwaar fundatieblok (totale massa m) dat verend wordt ondersteund.
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trillende
—“— machine
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Figuur 11.23 De trillingen veroorzakende machine is op veren opgesteld. Ter voorkoming van grote
uitslagen is ook nog een demping aangebracht. In de rechter figuur is het dynamisch model van
het systeem getekend. In het model is de demper weggelaten.

Veronderstel dat de trillingskracht F, is te beschrijven door F,, = F, - sin (wt). Aan de
vloer wordt de kracht F, = Ay - sin (wt + ¢) doorgegeven. Bij een goede trillingsisolatie
moet a = ﬁy/ﬁu klein zijn. De wy van het massa-veer systeem moet dus veel lager
gekozen worden dan de trillingsfrequentie w. Een kleine wp-waarde is te bereiken door
een slappe veer en een grote massa te kiezen.

De keuze van veerstijfheid ¢ en massa is niet geheel vrij. De veren moeten de massa
ondersteunen. Zij zijn daardoor belast door de zwaartekracht G = mg.

Figuur 11.24 Voorbeelden van handelsuitvoeringen van trillingsdempers. In de linker figuur is het
rubber op druk belast. In de rechter figuur is het rubber op afschuiving belast.

Bij een belastingkracht van enkele honderden of enkele duizenden newton (m = 100 kg)
bedraagt ¢ ~ 1000 N/m. Daarmee wordt wy = /c/m = /1000/100 ~ 3 rad/s of 0,5
Hz. Een lagere wg-waarde wordt zelden bereikt. Meestal is wg = 10 rad/s. Voor enige
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11.6 Voorbeelden Dynamische systemen

krachtreductie moet w veel hoger dan wy gekozen worden. Bij w = 3wy is ﬁy/ﬁu ~ 0,1;
bij w = 10wy is F,/F, ~ 0,01.

In de praktijk worden vaak rubberveren als trillingsisolatie toegepast. Door de aanwezige
inwendige demping bij rubber behoeven geen afzonderlijke dempers te worden aange-
bracht. Figuur 11.24 laat twee handelsuitvoeringen van trillingsdempers zien.

11.6.3 Motor en vliegwiel

Bij het inschakelen van een motor komt het motormoment 7, ter beschikking. In eerste
instantie wordt T,, gebruikt voor het versnellen van het motoranker en voor het versnellen
van de last. In Figuur 11.25 is de algemene situatie getekend waarbij tussen de motor en
de last een vertraging met overbrengingsverhouding ¢ is opgenomen.

Tm + Tmi . Té'l
|

Tma ;(

J 1

m J,

motor o,
last b I
a ©p, . W,
C.
e et R e e e [
N 1To T 4 min o T T, [
+ T Ty [
T I Trah = 1 I - \
—>> : | I I |
[ I I [
[ I I I i [
[ =l | [ ERN L
=] T2 el 2]
Jy [ I I [
| D | 11| D |
b. [ I I [
1O, I I [
<t T T — i — T |
[ I I [
- - e S |
motor over- last
d. brenging

Figuur 11.25 a) Een motor-last combinatie. b) Tussen de motor en de last is een overbrengings-
verhouding i aanwezig. Als alleen de versnellingen beschouwd worden dan geldt de schematische
opstelling van (b) en het blokschema (c). De voorwaarde voor maximale energie-overdracht leidt
tot Jm = J;/i%. d) In werkelijkheid moet vaak rekening worden gehouden met een toerental-
afhankelijk motormoment en lastmoment.
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Zolang alleen de versnellingen worden beschouwd geldt het schema van Figuur 11.25.b.
Het motormoment versnelt het massatraagheidsmoment J,,, van de motor en via de over-
brenging het massatraagheidsmoment J; van de last. Dit is schematisch weergegeven in
het blokschema van Figuur 11.25.c. Aan de motoras is het moment 7T;,,; beschikbaar; dat
is het moment 7;,, verminderd met het moment T, dat nodig is voor het versnellen van
het anker. Er geldt: T},,; = T, — Thna-

Het moment Tj; = 1+ Ty wordt gebruikt om de last te versnellen. Er is maximale energie-
overdracht als [H]= 1. In dit geval dus als J,,, - D - I -i%/J; = 1 of J,,, -i%/J; = 1.
Meestal wordt deze uitdrukking geschreven in de vorm:

Ji

Voor maximale versnelling moet J,, = —.
i

(11.25)
Dit voorschrift houdt in dat voor maximale versnelling de overbrenging ¢ zodanig moet
worden gekozen dat het traagheidsmoment van de motor gelijk is aan het op de motoras

getransformeerde traagheidsmoment van de last.

Het genoemde voorschrift wordt in praktijksituaties vaak toegepast. Daarbij wordt zelden
bedacht dat het voorschrift is afgeleid onder de aanname dat het dynamisch gedrag van
het systeem bepaald wordt door de massatraagheidsmomenten van motor en last. Bij de
afleiding is geen rekening gehouden met:

- het feit dat het motormoment T, snelheidsafhankelijk is. Dit is aangegeven in het
blokschema van Figuur 11.25.d. In eenvoudige gevallen met een lineaire motorka-
rakteristiek kan gesteld worden dat T, = Ty — Z,, - w;

- het snelheidsafhankelijke lastkoppel. In Figuur 11.25.d is een lineaire snelheids-
afhankelijkheid verondersteld: T; = Z; - wy.

Bij een veronderstelde lineaire snelheidsafhankelijkheid van het motormoment en het last-
moment is de voorwaarde voor maximale energie-overdracht:

Zm+ D - Jp,

2o 11.26
Zi+D-J " (11.26)

Indien de motor-last combinatie een stationaire toestand bereikt (bedrijfspunt; T;,, = i-T;
dan zijn geen versnellingskrachten meer aanwezig. Dan is D = 0 en volgt de optimale
overbrengingsverhouding uit:
Zm
— it =1. 11.27
> (11.27)

11.6.4 Compensatie bij dynamische systemen

In § 6.7 is compensatie genoemd als methode voor krachtversterking. In die paragraaf
zijn de statische effecten van massacompensatie en veercompensatie besproken. Hier zal
blijken dat voor dynamische systemen de veercompensatie voordeel biedt.
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11.6 Voorbeelden Dynamische systemen

In Figuur 11.26 is een hefboom getekend. Voor de eenvoud van de berekeningen zijn
de hefboomarmen even lang gekozen. Aan het ene uiteinde bevindt zich een massa,
aan het andere einde wordt de hefboom bewogen. De massa moet een afstand y = s
verplaatsen. Dus ook u = s. Steeds moet de op de massa werkende zwaartekracht worden
tegengewerkt. In Figuur 11.26 is dat de kracht F = mg. Deze kracht is voldoende voor
het in positie houden van de massa m.

FU
F
I b Reemgl [F I
.
|_ t
iu N f 2,
lmg u=y
Va V4
Iu_&t
m 1
t
u=y
s:itf
m

Figuur 11.26 Hefboom met gelijke hefboomarmen. De hefboom is belast met een geconcentreerde
massa m. In (b) is het verloop van de verplaatsing afgeleid bij een sprongvormig veranderende
ingangskracht F,. De figuur is geldig voor v/l << 1.

Voor het bewegen van de massa moeten versnellingskrachten worden toegevoerd. Voor
een snelle beweging is een blokvormig verloop van de versnellingskrachten gekozen. In de
periode 0 < t < t; is een constante versnellingskracht +F,, aanwezig; in de periode t; <
t < 2ty zorgt een kracht —F, voor de noodzakelijke vertraging. Op het tijdstip 2¢; heeft
de massa zijn gewenste verplaatsing y = s bereikt. Daarna wordt geen versnellingskracht
meer toegevoerd. De benodigde waarde voor F, max is in drie gevallen berekend:

- de hefboom zonder compensatie
- de hefboom met massacompensatie
- de hefboom met veercompensatie.

Deze gevallen zijn vergeleken onder de voorwaarde dat de massa m in een tijd 2¢1 over een
afstand s verplaatst. Dat betekent dat bij het gekozen blokvormige versnellingsverloop
de optredende versnellingskracht F, = m - s/t3. In Figuur 11.27.a is de hefboom zonder
compensatie gegeven. Er is altijd — ook in de stationaire situatie als y = 0 en y = s — een
ingangskracht F = mg nodig. Tijdens de beweging geldt: F,, = Fu£+F, =m (g + s/t%).

Het krachtverloop van F, is ook in de figuur getekend voor s/t = g.
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Bij het gebruik van een compensatiemassa levert die massa de kracht Fy. Die hoeft dan
niet meer extern te worden toegevoerd. Er zijn echter wel grotere versnellings-krachten
nodig. In Figuur 11.27.b is de compensatie op een afstand [ van het draaipunt geplaatst.
Dan heeft de compensatiemassa een grootte m. Voor de ingangskracht geldt F,, =
+2.m - s/t? (= £2 mg bij de gekozen waarde s/t? = g).
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Figuur 11.27 Vooor het bewegen van een massa is een bedieningskracht F,, nodig. In de linkerkolom
zijn de hefboom, het blokschema en de signalen u en F,, getekend. In de middelste twee kolommen
is de gewichtsinvloed gecompenseerd met een massa. Er treedt alleen verbetering op bij langzame
bewegingen, als a/ t% < g. De bedieningskracht wordt kleiner als de compensatiemassa dicht bij de
as wordt geplaatst. De figuur is getekend voor p/l = 1/4. De beste resultaten worden bereikt met
veercompensatie (rechterkolom).
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In Figuur 11.27.c is de compensatiemassa op een afstand p van de as geplaatst, en krijgt
dan de grootte m-[/p. Daardoor verminderen de benodigde versnellingskrachten. Zie het
blokschema van Figuur 11.27.c. De ingangskracht wordt F,, = £ (1 + p/l) - mg.

De veercompensatie van Figuur 11.27.d geeft de kleinste ingangskracht. Met een veer-
stijfheid ¢ = 0 geldt voor de ingangskracht F,, = +=mg. In § 5.7.2 is aangegeven op welke
wijze een veerstijfheid ¢ = 0 is te realiseren.

Bij vergelijken van de verschillende opstellingen blijkt dat de volgende uitspraken kunnen
worden gedaan (zie Figuur 11.28):

Bij veercompensatie zijn de benodigde bedieningskrachten het kleinst.

Het toepassen van een dicht bij de as geplaatste compensatiemassa vraagt nauwe-
lijks grotere bedieningskracht dan bij veercompensatie.

Bij grote versnellingen (s/t% > g op/l) ontstaan kleinere ingangskrachten wanneer
geen compensatiemassa wordt aangebracht.

Bij kleine versnellingen (s/t2 < g) en niet-gecompenseerde massa wisselt de bedie-
ningskracht niet van teken.

De bovenstaande uitspraken zijn geldig voor willekeurige bewegingen u = y. Bij sinusvor-
mige bewegingen met constante frequentie kan veercompensatie de bedieningskrachten
nog veel verder verkleinen.

massacompensatie

Fumax
ongecompenseerd
3mg
veercompensatie (c = 0)
2 mg
Fo=mg

0 9 29 s

Figuur 11.28 De benodigde bedieningskrachten voor de drie gevallen van figuur 11.27 als functie
van de optredende versnelling s/t3.
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Hoofdstuk 12
Comparologie

12.1 Inleiding

De comparologie of gelijkvormigheidsleer gaat over schaalwetten en schaalfactoren en be-
treft vooral de onderlinge vergelijking van technische of fysische processen. Hierbij worden
steeds groepen van variabelen samengenomen en het te bestuderen probleem wordt in deze
groepen van variabelen uitgedrukt. Het zal blijken dat op deze wijze met uiterst eenvou-
dige mathematische hulpmiddelen sommige ingewikkelde problemen snel tot een oplossing
zijn te brengen.

Vooral bij de bestudering van technische of fysische processen op een andere - veel klei-
nere of veel grotere - schaal is het van essentiéle betekenis om te weten hoe de op schaal
verkregen resultaten moeten worden vertaald naar het werkelijke proces. Voorbeelden zijn
het doen van proeven in een windtunnel voor het bestuderen van vliegtuigvleugels die op
kleinere schaal zijn gebouwd of proeven in een sleeptank waar het gedrag van bootvormen
op schaal bij een bepaalde golfslag wordt bestudeerd. Zoals zal blijken, leidt toepassing
van de comparologie tot ontwerp-regels of constructieve eisen.

In alle gevallen levert een toepassing van de gelijkvormigheidsleer een beter inzicht in de
samenhang van verschillende onderwerpen en interactie van variabelen in de werktuig-
bouwkunde.

12.2 Schaalfactoren

Schaalfactoren geven de verhoudingen weer tussen het originele systeem of werktuig en
zijn model. Veel fysische grootheden van het model kunnen afwijken van die van het
origineel, zoals bijvoorbeeld de schaalfactor voor geometrie en de schaalfactor voor tijd.
Voor de fysische grootheden kunnen evenzoveel schaalfactoren worden gevormd. Er be-
staan schaalfactoren voor snelheid, versnelling, massa, kracht, spanning, druk, energie,
dichtheid, geleidingscoéfficient, viscositeit, enzovoorts. Hier volgen enkele voorbeelden
om het begrip schaalfactor toe te lichten.



12.2  Schaalfactoren Comparologie

Bij de vergelijking van twee voorwerpen dient zowel de vorm als de grootte te worden
bestudeerd. De vorm van een lichaam is te beschrijven door één of meer vormfactoren
die de verhoudingen van de geometrie weergeven.

Voorbeeld Voor de balk van Figuur 12.1 bepalen de twee vormfactoren h, /¢, en b,/{,
de vorm van de balk. Indien naast deze twee vormfactoren de grootte van karakteris-
tieke lengte ¢, bekend is, dan is de vorm van de balk geheel bepaald. De afmetingen
hebben de index o ter aanduiding van ‘origineel’. Indien een model m van het origineel
o wordt gemaakt en origineel en model bezitten dezelfde vormfactoren h,, /¢, = ho /L,
en by, /4y, = b/, dan is het model gelijkvormig met het origineel. De geometrische
schaalfactor Sy is dan de verhouding tussen twee overeenkomstige afmetingen.

Figuur 12.1 Links: Een originele balk met afmetingen {,, ho, bo. Rechts: Een model van de balk
met afmetingen £y, hm, by die gelijkvormig is met de originele balk.

Sp=T == (12.1)

Q
Q
Q

In de scheepsbouw bijvoorbeeld is Sy < 1, het model is dan kleiner dan het origineel. Bij
micro-elektromechanische systemen is het model meestal groter dan het origineel en dan
is Sp > 1.

Het is niet alleen mogelijk een experiment met een model uit te voeren op een andere
geometrische schaal; het is ook mogelijk het experiment met een model sneller of langza-
mer te laten plaatsvinden dan in werkelijkheid met het origineel gebeurt. Dit komt neer
op het invoeren van een tijdschaalfactor S; = t,, /t,.

Indien een bepaald proces in het origineel een tijd ¢, vergt en dit proces speelt zich in het
model af in een kortere tijd ¢,,, dan is Sy < 1 en is het experiment versneld. Versnelde
experimenten bij kleinere afmetingen komen veelvuldig voor bij waterloopkundige onder-
zoekingen zoals bijvoorbeeld sedimentatie-onderzoek.

Het is niet mogelijk alle schaalfactoren onafhankelijk van elkaar te kiezen. Stel dat de
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geometrische schaalfactor Sy = ¢,,, /¢, gekozen is en ook de tijdschaalfactor S; = t,,/t,
bepaald is, dan ligt de schaalfactor voor snelheid S, vast. Er geldt dan:

4
Vm, tm gm tO SE
Sp= 2= T 0 12.2
Y Vo f—; [0 tm St ( )

In een kinematische constructie kunnen dus niet onafhankelijk van elkaar schaalfactoren
voor verplaatsing, voor tijd en voor snelheid worden gekozen. Indien twee van deze
schaalfactoren zijn bepaald dan ligt de waarde van de derde vast.

12.3 Statische schaalwetten

Schaalwetten zeggen iets over veranderingen van eigenschappen van een systeem wanneer
het groter of kleiner gemaakt wordt. Schaalwetten maken het mogelijk een constructie
groter of kleiner uit te voeren zonder alles opnieuw uit te rekenen. Voor het toepassen
van de schaalwetten zijn de schaalfactoren uit § 12.2 nodig. Voor veel voorkomende
eigenschappen van systemen worden nu voorbeelden gegeven van hoe een schaalwet werkt.

12.3.1 Belasting door uitwendige krachten

Stel dat een lichaam met karakteristieke lengte ¢, is belast met een uitwendige kracht F,.
Bij evenredige verkleining of vergroting van het lichaam kan de schaalfactor Sy = £4,,, /¢,
worden ingevoerd, zie Figuur 12.2. Een willekeurige oppervlakte of doorsnede A van het
lichaam wijzigt nu met de schaalfactor S4 = S7. Ook voor de krachten is een schaalfactor
in te voeren Sp = F,,,/F,. Voor de materiaalspanning (kracht per oppervlakte) geldt

nu dus S, = g—i = g—‘; Zie voor meer uitleg over materiaalspanning H7 Spanningen en
£

vervormingen. Is het gewenst dat de materiaalspanning in het model dezelfde is als in het
origineel dan moet dus S, = 1 zijn. Uit de gegeven formule is dit alleen te bereiken indien
Sp = S7. Bezit een model bijvoorbeeld de halve grootte van het origineel dan moeten,
voor het optreden van gelijke materiaalspanningen in model en origineel, de optredende
krachten vier keer zo klein zijn.

12.3.2 Belasting door zwaartekracht

Wordt een lichaam alleen door zijn eigen gewicht belast dan is de optredende (zwaarte)kracht
evenredig met het volume en dus evenredig met £3. Verder is de zwaartekracht evenredig
met de soortelijke massa p en de versnelling g. Er geldt dus Sp = S, - S, - S7. Voor de
materiaalspanningsschaalfactor S, uit § 12.3.1 is nu te schrijven:

Sy -8, S

_SF _ — 8,5, S (12.3)

RO B
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Figuur 12.2 Twee gelijkvormige staven belast op trek door uitwendige krachten.

We nemen aan dat S; = 1 is. Indien twee vormevenredige constructies uit hetzelfde
materiaal zijn samengesteld is ook S, = 1 en vereenvoudigt de formule tot:

S, = S (12.4)

In gelijkvormige constructies die door hun eigen gewicht belast zijn, verandert de spanning
met alleen de afmetingen.

Voorbeeld Bij het ontwerp van een brug is het eigen gewicht het belangrijkste deel
van de totale belasting. Als de spanningen gelijk moeten blijven, dan moeten de karak-
teristieke lengten dat ook. Het ontwerp voor een brug met een grote overspanning kan
niet door gelijkvormige vergroting uit een ontwerp voor een kleinere overspanning worden
verkregen, omdat S, door één karakteristieke lengteschaalfactor bepaald wordt.

Voorbeeld Een ander voorbeeld zien we in het dierenrijk. Globaal gezien kunnen ver-
schillende dieren wel als vormevenredig worden beschouwd. Ook zijn dieren uit hetzelfde
materiaal opgebouwd. Volgens de schaalwet zullen nu de beenderen en spieren van dieren
naarmate ze groter worden door de zwaartekracht hoger worden belast. Dat betekent dat
er minder reserve is voor het weerstaan van andere externe belastingen op het dier. Een
groot dier kan daarom relatief minder last dragen dan een klein dier. Het zal hieruit met-
een duidelijk zijn waarom kinderen met vrij groot gemak een vriendje op de rug dragen,
terwijl het voor volwassenen een hele opgave is om datzelfde te doen bij hun vrienden.
Kortom met de schaalwet kunnen de schijnbaar ontzaglijke prestaties van kleine dieren
worden verklaard. Volgens de literatuur kan een oogstmier 52 maal, een bij 24 maal en een
neushoornkever zelfs 850 maal zijn eigen gewicht tillen (1). In pseudo-wetenschappelijke
lectuur worden deze prestaties dan omgerekend naar de mens waarbij de schaalwet dus
niet goed wordt toegepast met als resultaat dat de mens eigenlijk in staat zou moeten
zijn een zware oorlogstank op te tillen. De afgeleide schaalwet zoals hierboven afgeleid
laat zien dat een dergelijke omrekening niet toelaatbaar is.

In het voorgaande is aangetoond dat bij vergroting van de afmetingen de materiaal-
spanning stijgt. Uiteraard is de materiaalspanning begrensd door zijn maximaal toelaat-
bare waarde en daarmede zijn de maximale afmetingen van een bepaalde constructie ook
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gegeven (zie H7. Spanningen en vervormingen voor meer uitleg). Beschouw ter illustratie
hiervan een prismatische staaf met doorsnede A, en lengte ¢, die is opgehangen aan één
uiteinde, zie Figuur 12.3. De staaf is alleen belast door zijn eigen gewicht G. De grootste
spanning zal optreden nabij de ophanging. Hier heerst de materiaalspanning:

7o = PR — g, (125)
M oA
AN
|
2, |
|
; G

Figuur 12.3 Prismatische staaf, opgehangen aan uiteinde. De staaf wordt alleen belast door zijn
eigen gewicht.

Voor het model geldt evenzo:

waarmee de schaalwet nogmaals is aangetoond. Hier is echter de bijzonderheid dat alleen
evenredigheid van de lengte vereist is voor schaling. Een dikkere staaf levert bij gelijke
lengte een zelfde trekspanning. In dat geval is geen volledige geometrische gelijkvormig-
heid vereist; het prismatisch zijn van de staaf (overal gelijke doorsnede) is voldoende.
Vergelijk deze situatie met een manometer of een vloeistofdrukmeter, daar heeft de buis-
diameter geen invloed op de druk die uitgeoefend wordt door de vloeistofkolom p = pgh).
De prismatische staaf kan verlengd worden totdat deze breekt onder de belasting van zijn
eigen gewicht. De lengte waarbij dit gebeurt wordt de breuklengte ¢, genoemd. Uit de
formule volgt:

6, =2t (12.7)

Pg

waarin o, de breukbelasting van het materiaal voorstelt. Voor werktuigkundige construc-
ties wordt steeds gerekend met de maximaal toelaatbare spanning van het materiaal &.
De maximaal toelaatbare lengte ¢ wordt dan:

7= 1.

p (12.8)

< | Ql
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Figuur 12.4 a) De grafiek geeft de beide belangrijke grootheden & /p en E/p (logaritmische scha-
len) van een aantal materiaalgroepen weer [Ansys, 2020]. Opvallend zijn de matige mechanische
eigenschappen van elastomeren.

b) In de tabel zijn van een aantal in de techniek toegepaste materialen de mechanische eigen-
schappen weergegeven [Ashby ea, 2010]. Terwijl de meeste metalen (met koper en zink als uit-
zonderingen) dezelfde specifieke stijfheid E/p bezitten, lopen hun & /p waarden uiteen. Dankzij
de chemische bestendigheid en de goedkope vormgevingstechnieken worden de polymeren ondanks
hun matige mechanische eigenschappen veelvuldig toegepast. De variatie in eigenschappen bij de
natuurlijke materialen is minder ten opzichte van de fabrieksmatig geconstrueerde materialen.
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Hier treedt een gecombineerde materiaaleigenschap (de specifieke sterkte) @/p op. In
vele technische toepassingen zal het werken met gecombineerde materiaaleigenschappen
uiterst zinvol blijken. In de werktuighbouwkunde komt de grootheid @ /p veel voor, omdat
constructies geoptimaliseerd worden naar minimaal gewicht met nog steeds voldoende
sterkte De reden hiervoor is dat het prijstechnisch gunstig is, maar ook minder milieu-
belastend en in veel de gevallen de prestatie van het werktuig bij dynamische belasting
bevordert. Voor een maximale stijfheid van lichte constructies (belangrijk bij het ontwer-
pen van vliegtuigen, ruimtevaart-onderdelen, maar ook prothesen) is de specifieke stijfheid
E/p van groot belang. Figuur 12.4.a geeft de beide belangrijke grootheden G/p en E/p
voor een aantal materiaalsoorten weer. Opvallend zijn de superieure eigenschappen van
de moderne vezelmaterialen en de matige mechanische eigenschappen van polymeren. In
de tabel van Figuur 12.4.b zijn getalsmatig de mechanische eigenschappen van een groot
aantal in de techniek toegepaste materialen weergegeven.

Waarschuwing In de literatuur wordt soms het symbool p gebruikt voor ‘soortelijk ge-
wicht'. De grootheden o/p en E/p krijgen dan een andere dimensie!

12.3.3 Belasting door pneumatische of hydraulische drukken

Bij de evenredige vormverkleining van een constructie-element worden de in- en uitwen-
dige oppervlakten kwadratisch kleiner. Dit betekent dat bij blootstelling van het verkleinde
onderdeel aan dezelfde in- en uitwendige druk, de hieruit resulterende krachten eveneens
kwadratisch kleiner zijn geworden, immers F' = p - A). Er geldt dus Sp = S7, want
Sp=1 omdat de druk hetzelfde blijft. Deze kwadratisch verkleinde krachten veroorzaken
in eveneens kwadratisch verkleinde oppervlakten constant blijvende spanningen.

Voorbeeld 12.1 Met behulp van Figuur 12.5 wordt als voorbeeld de materiaalspanning
in de zuigerstang van een hydraulische pomp berekend.

Figuur 12.5 Hydraulische pomp. Voor evenwicht is het noodzakelijk dat de kracht F' gelijk en
tegengesteld is aan de door de druk p op de zuiger veroorzaakte kracht p - (%) D2.

De op de zuigerstang uit te oefenen kracht F' moet gelijk zijn aan de door de druk p op
de zuiger uitgeoefende kracht. Dus F' = p- (%) D?. De spanning o in de zuigerstang
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wordt dan: (z) 2 )
F p(7)D (D)
Azuigerstang (%) d? b d ( )
of
St
Sy =8, 2L =8, (12.10)
Sl

Hiermee is aangetoond dat bij evenredige geometrische vergroting/verkleining de materi-
aalspanning in de zuigerstang niet verandert. Dat is mooi om te weten als je modelproeven
op schaal wilt doen.

Voorbeeld 12.2 Ook in de cilinder van de hydraulische pomp in Figuur 12.5 blijven
de materiaalspanningen gelijk bij schaalvergroting of -verkleining. Zie hiervoor Figuur
12.6, waarin de optredende spanning in de langsnaad van de cilinder door een verdeelde
belasting met pijlen is aangegeven.

Figuur 12.6 Optredende spanning weergegeven door pijlen in de langsnaad van een cilinder onder
de inwendige druk p.

De grootte van de in totaal door de druk p veroorzaakte kracht F' in de langsnaad
bedraagt:
F=D-t-p (12.11)

Deze kracht wordt opgenomen door twee langsnaden met een totaal oppervlak A =2-¢-£
(zie figuur 12.6). De optredende spanning wordt:

F D-A-p D
= = = _ 12.12
TTAT 2 Tl (1212)
of ook:
Se = Sp, onafhankelijk van Sy (12.13)

In evenredig verkleinde cilinders met dezelfde in- of uitwendige druk treden dezelfde ma-
teriaalspanningen op.
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Voorbeeld 12.3 Patiénten met bekrachtigde prothesen moeten een energievoorraad met
zich mee dragen. Bij pneumatische bekrachtiging bestaat deze energievoorraad uit een
met COs gevulde cilinder. Uit het oogpunt van draagcomfort voor de patiént moeten
deze voorraadcilinders bij zo weinig mogelijk eigen gewicht zoveel mogelijk CO5 bevatten.
De vraag kan gesteld worden welke afmetingen van de cilinder optimaal resultaat geven.
Voor de massa van de cilinder m. kan bij benadering geschreven worden:

Me=pc-m-D-1-¢ (12.14)
waarin:

pe = soortgelijke massa materiaal cilinder
D = diameter cilinder

t = wanddikte cilinder

£ = lengte cilinder.

De massa CO; die de cilinder kan bevatten, my, is gelijk aan het volume V' van de cilinder
vermenigvuldigd met de soortelijke massa p,. De meest gunstige situatie ontstaat dus
wanneer mgy/m. maximaal is:

— ==L 12.15
Me pem Dt ( )

Met het in voorbeeld 12.2 gevonden verband t = D - £ - o is dit te herleiden tot:
Mg _ 9 Py (12.16)

De cilinderafmetingen komen in deze betrekking niet voor, en kunnen dus willekeurig
gekozen worden. Een grotere cilinder kan meer COy bevatten maar weegt evenredig
meer. Dit blijkt ook uit de onderstaande tabel (Figuur 12.7) waarin opgeslagen massa en
gewicht van enkele kleine COs-cilinders zijn vergeleken.

type massa cilinder massa CO, massa CO,
in grammen in grammen massa cilinder
1 22 8 0,36
2 40 15 0,37
3 120 33 0,27
4 400 120 0.3

Figuur 12.7 Vergelijking van enkele CO2-flessen t.b.v. pneumatische prothese-aandrijving.

Bovenstaand resultaat was ook direct uit de schaalwet te verkrijgen geweest. Immers,
bij evenredige verkleining bij dezelfde druk blijven de materiaalspanningen dezelfde. Bij
evenredige verkleining wijzigen het volume en het gewicht beide met de derde macht
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van een lengteafmeting. Hieruit volgt dat de m,/m.-verhouding ongewijzigd blijft bij
evenredige verkleining.

Met behulp van de gasconstante R en de absolute temperatuur T is de afgeleide formule
ook te schrijven als: . .

mg o

- o BT (12.17)
De meest gunstige cilinder ontstaat wanneer deze wordt gebouwd uit het materiaal met
de hoogste o /p-waarde. Volgens de tabel van Figuur 12.4 hebben aluminium en staal
ongeveer dezelfde specifieke sterkte, en leveren dus een vergelijkbaar resultaat. Dit wordt
vaak uitgedrukt in de (niet algemeen geldende) stelling: ‘bij gelijke belasting zijn con-
structies van staal en aluminium even zwaar’. Om kostprijsredenen wordt vaak staal
gekozen (oriénterende kostprijzen in euro/kg zijn: constructiestaal en gereedschapstaal
0,7; roestvaststaal 2,8; aluminiumlegering 2,3) [Ansys, 2020].

Voorbeeld 12.4 Voor de aandrijving van een pneumatisch bekrachtigde prothese moet
een zuiger-cilinder-motor worden gemaakt. De benodigde kracht is 100 N bij een slag van
30 mm. De werkdruk is 600 kPa. Hoe moet de cilinder worden vervaardigd om een zo
licht mogelijk resultaat te krijgen?

A

t

helling lijn aluminium
3x groter dan lijn staal

5{33\
t =01
min ' P - — 21]
S |
Ql=— — S
aluminium levert Dyxr  aluminium en staal geven D
de lichtste cilinder vergelijkbare resultaten

Figuur 12.8 Bij een gegeven inwendige druk en bekende toelaatbare materiaalspanning is de wand-
dikte t van een cilinder een lineaire functie van de diameter. Deze relatie wordt verstoord door
beperkte fabricagemogelijkheden. Het maken van cilinders met een wanddikte kleiner dan 0,1 mm
is bezwaarlijk. In de figuur is Gstaar = 3 T ajuminium getekend.

Uit de in voorbeeld 12.3 gegeven redenering zou volgen dat naar wens aluminium of
constructiestaal zou kunnen worden gekozen. Hier ontstaat echter een extra begrenzing
door de fabricagemogelijkheden. Het maken van cilinders met een wanddikte van minder
dan 0,1 mm is bezwaarlijk. Indien deze maat als grens wordt aangehouden ontstaat
de grafiek van Figuur 12.8. De lijnen door de oorsprong geven het verband tussen de
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wanddikte ¢ en de cilinderdiameter D volgens de in voorbeeld 12.2 afgeleide formule.
Voor diameters kleiner dan Dy, is een cilinder gemaakt uit aluminium lichter dan uit staal.
Met & = 300-10° N/m? wordt:

% 2-0,1-1073-300 - 10°
Dy = 20 2201 10772300107 _ 4 1~ 100 mm (12.18)
p

600 - 103

De gevraagde kracht wordt geleverd bij een cilinderdiameter:

F 100
D=2 —=2/———— =0,015m=15 12.19
P 600 - 103 m mm (12.19)

Omdat D < Dy, levert een aluminium cilinder het lichtste resultaat.

12.3.4 Belasting op knik

Het verschijnsel van knik treedt op bij drukbelasting van slanke kolommen. Volgens Euler
geldt hiervoor de formule (zie § 7.1 Spanningen):

772Elmin
A2

Op=mn (12.20)
waarin Fj de toelaatbare kniklast, F de elasticiteitsmodulus , Iy, het minimale opper-
vlaktemoment van de doorsnede en ¢; de kniklengte van de staaf aangeeft. De uit de
belastingskracht F}, resulterende knikspanning bedraagt:
F

o = Zk (12.21)
waarin A de doorsnede van de kolom voorstelt.
Bij samenvoegen van de beide formules kan geschreven worden (n = 1):

Imin F
ok:"A VE- 75 (12.22)

De factor ¥ min is uitsluitend afhankelijk van de vorm van de doorsnede en verandert
niet bij evenredige vergroting of verkleining. De factor E is bepaald door het gekozen
materiaal.

De formule laat zien dat bij een constant blijvende verhouding F},/¢2 de knikspanning niet
verandert. Ook voor knikbelasting is de afgeleide schaalwet Sp = S7 dus toepasbaar.
Bij het ontwerpen en construeren is het belangrijk om zo weinig mogelijk materiaal te
gebruiken, omdat dit de constructie lichter maakt waardoor kosten bespaard kunnen wor-
den en minder milieubelasting optreedt. De massa m van een kolom met doorsnede A en
lengte ¢ die belast wordt met de axiale kracht Fj}, bedraagt:

m:p~A-€:p-ﬂ-Z (12.23)

Ok
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Indien de kniklast F en de lengte ¢ gegeven zijn is m klein te maken door oy /p groot te
kiezen. Met behulp van de gegeven formule is hiervoor te schrijven:

\/Imin @ Fk:

% =R (12.24)
k

Een minimale massa van de op knik belaste drukstaaf is dus te verkrijgen zowel door het
kiezen van een materiaal met een zo groot mogelijke E/p-waarde als door het kiezen van
een vorm van de doorsnede met een zo groot mogelijke I,/ A-verhouding.

Met betrekking tot de materiaalkeuze blijkt aluminium een betere keuze dan staal. De
elasticiteitsmodulus E van aluminium is weliswaar ongeveer drie maal kleiner dan die van
staal, maar de soortelijke massa p ook (zie tabel 12.4.b), en daardoor is de verhouding
E/p voor beide materialen ongeveer gelijk. Het quotiént \/E/p is voor aluminium echter
het grootst (zie tabel 12.4.b). Dit blijkt ook uit Figuur 12.9 waar twee profielen met
verschillende dwarsdoorsneden uitgevoerd in aluminium en staal vergeleken worden. Alu-
minium geeft steeds een hogere specifieke knik-sterkte en daarmee is een lager gewicht
nodig om dezelfde prestatie te genereren.

% (]

3 | T ]

N
lichte kolommen

-
zware kolommen

102 10° 10 10° R
—— 5 [N/m]
22
lange lichtbelaste kolommen korte hoogbelaste kolommen
- —=

Figuur 12.9 Toelaatbare G, /p voor drukstaven met verschillende dwarsdoorsnede en materiaal. In
vergelijking met staal heeft aluminium een hogere specifieke sterkte. Dit heeft als resultaat dat voor
de verschillende dwarsdoorsneden een drukstaaf uitgevoerd in aluminium een lagere massa heeft.
Uiteraard kan een drukstaaf niet hoger belast worden dan de maximaal toelaatbare drukspanning.
Deze is in de figuur aangegeven met een horizontale lijn.
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Als niet de massa van de constructie de meest belangrijke factor is, maar de kostprijs van
het grondstofmateriaal, dan kan waarschijnlijk beter constructie- of gereedschapsstaal
worden gekozen dat 3 a 5 keer minder kost dan aluminium. Hierbij moet echter bedacht
worden dat aluminium meestal corrosievrij is en dus geen oppervlaktebehandeling en ook
geen onderhoud behoeft, waarmee een kostenvergelijking weer veel ingewikkelder wordt.

12.3.5  Stijtheid

Van mechanische constructies is niet alleen de sterkte van belang. Soms speelt de stijfheid
de beslissende rol bij het ontwerp. Het is daarom zinvol om na te gaan op welke manier de
stijfheid wijzigt bij schaalverandering. Voor een materiaal in het proportionaliteitsgebied
geldt voor de relatieve verlenging (zie §7.2 Vervormingen, wet van Hooke):

A/ o F

€ =
waarin o de materiaalspanning, F de elasticiteitsmodulus, F' de belasting en A het belaste
oppervlak voorstelt. Hieruit blijkt dat de stijfheid ¢, dat is de verhouding tussen de
opgelegde kracht F' en de daardoor veroorzaakte vervorming, wordt:

F AE
Bij schaalverandering geldt dan:
2
5. =245 _ SiSe _g g, (12.27)
Se Sy

Bij schaalvergroting worden constructies van hetzelfde materiaal (zelfde elasticiteitsmo-
dulus E) dus evenredig stijver.

Voorbeeld 12.5 De grotere stijfheid van een evenredig grotere constructie blijkt bij ver-
gelijking van een fietszadelveer (veerdiameter D,,, &~ 35 mm, veerdraaddiameter d ~ 4,5
mm, 4 windingen) met een tien keer zo grote schroefveer van een treinwagon (D,, =
350 mm, d ~ 45 mm, 4 windingen) (zie §9.3.4 Veerberekening voor berekenen van de
veerstijfheid met behulp van geometrie en toelaatbare schuifspanning). Terwijl de enkele
zadelveer 25 mm ingedrukt kan worden door een kracht van 500 N is voor dezelfde indruk-
king van de treinveer een kracht van 5000 N nodig. De grotere veer is dus evenredig stijver.

Bij het minimaliseren van het gewicht van constructies moet ook met de afgeleide schaal-

wet rekening worden gehouden. Met behulp van de gegeven wet is een schaalfactor voor
de stijfheid per massa te berekenen. Deze luidt:

¢\ _Se _SSw_Sp 1 _(E) 1
S(E>*Sm’spsg’s,, Sgs<p> S2 (12.28)
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Nu is voor de meeste in de techniek gebruikte materialen de waarde E/p dezelfde, zie
tabel 12.4.b.

Bij gelijkblijvende grootte van een constructie (S, = 1) zal de specifieke stijtheid, gedefi-
nieerd als het quotiént van de veerstijfheid en de massa ¢/m dezelfde blijven. Een lichtere
constructie zal dan ook een geringere stijfheid bezitten.

Voorbeeld 12.6 Een frame van een racefiets (massa m; =~ 2 kg) is in vergelijking met
een normaal herenfietsframe (massa ms ~5 kg) inderdaad slapper, het bezit een geringere
stijfheid. Beide frames zijn gelijkvormig en even groot (S; = 1). De twee gebruikte
staalsoorten zijn weliswaar verschillend van sterkte maar bezitten dezelfde E/p-waarde.
Het racefietsframe zal bij vergelijkbare belastingen dus een factor mo/m; = 5/2 = 2,5
meer elastisch moeten doorbuigen. In de praktijk blijkt de stijfheid inderdaad deze factor
kleiner te zijn. Daarom wordt beter materiaal gebruikt voor het racefietsframe (hoge
o-waarde, bijvoorbeeld composieten zie Figuur 12.4.a, zodat bij gebruik geen blijvende
vervormingen optreden.

12.4 Dynamische schaalwetten

In het voorgaande zijn uitsluitend schaalwetten opgesteld voor statische belastingssitua-
ties, zoals die vooral optreden in gebouwen, bruggen, hijskranen en dergelijke.

In de werktuigbouwkunde bestaan werktuigen echter vooral uit bewegende onderdelen.
Hier veroorzaken de bewegende massa's dynamische krachten die nu nader zullen worden
bekeken.

12.4.1 Heen en weer gaande massa’s

Bij allerlei mechanismen, maar vooral bij zuigermachines (zuigerpompen, zuiger-compressoren,
zuigermotoren) zijn oscillerende massa’s aanwezig. De hierdoor veroorzaakte spanningen
zullen worden geanalyseerd.

In Figuur 12.10 is schematisch een zuigermachine getekend. De kruk draait met de
omtreksnelheid v, de krukstraal bedraagt . Voor de verticale zuigerpositie = geldt met
goede benadering (verwaarlozen invloed lengte drijfstang):

z=rsinwt met w=-— (12.29)
r

Hieruit is direct af te leiden wat de tangentiéle snelheid en versnelling zijn, door respec-
tievelijk de afgeleide en de dubbele afgeleide van de zuigerpositie te nemen:

& =rwsinwt en #=—rw’sinwt (12.30)

Voor de maximale waarde van de zuigerversnelling geldt dat deze maximaal is als de sinus
een waarde 1 heeft, met als gevolg:

2
|Emazl= 1 w? = (12.31)
,
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Met een oscillerende massa m veroorzaakt dit een traagheidskracht ' met een grootte:
F=m-&=—— (12.32)

De kracht F' wordt door de drijfstang geleverd. Indien deze kracht F' door een drijfstang-
oppervlak A moet worden opgenomen ontstaat hierdoor de materiaalspanning o

F 2
o=—= ’Z”r (12.33)
Omgezet in schaalfactoren ontstaat:
S,8352
S, = gzifgf =S,-52 (12.34)
‘

Het blijkt dat de optredende spanningen onafhankelijk zijn van de grootte van de machine.
Slechts het gekozen materiaal (grootte van de dichtheid p) en de ‘karakteristieke snelheid’
v bepalen de grootte van de optredende spanning.

- zuiger

cilinder

krul; \ )
\\___/

Figuur 12.10 Schema van een zuigermachine waar de kruk, zuiger, drijfstang en cilinderhuis sche-
matisch zijn weergegeven.

Het is goed te bedenken dat het toerental wel in de uitdrukking voorkomt, omdat deze
direct gerelateerd is aan de omtreksnelheid v, net als de straal r. Dat wordt duidelijk als
de formule wordt geschreven in de vorm:

Sy =298,-8%.52 (12.35)
In deze vorm geschreven komt ook de afmeting in de formule terug.

Een a maal zo grote machine veroorzaakt slechts dan eenzelfde spanning indien het toe-
rental a maal zo klein wordt gekozen. Deze invloed is verdisconteerd in de omtreksnelheid
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v van de krukstraal die als karakteristieke snelheid is geintroduceerd. Vanwege de een-
voudige notatie wordt de formule meestal in de vorm S, =S, - S2 geschreven.

Opmerking. In het bovenstaande is bij de afleiding de maximale zuigersnelheid gebruikt.
Het uiteindelijke resultaat was gelijk geweest indien (bijvoorbeeld) de gemiddelde zuiger-
snelheid was gebruikt. Van betekenis is slechts dat bij vergelijking van machines met een
verschillende grootte bij beiden dezelfde karakteristieke snelheid wordt gebruikt.

Voorbeeld 12.7 De afgeleide schaalwetten kunnen met voordeel gebruikt worden bij het
ontwerpen van zuigermotoren. Bij deze machines treden niet alleen traagheidskrachten
op, ook treden er krachten op ten gevolge van de verbrandingsdruk p in de cilinderruimte.

In §12.3.3 Belasting door pneumatische of hydraulische drukken is afgeleid dat de druk
een materiaalspanning o veroorzaakt die voldoet aan de schaalwet S, = 5.

De traagheidskrachten veroorzaken een materiaalspanning volgens de schaalwet S,o =
S, - 52, zoals in het vorige voorbeeld is afgeleid.

De verbrandingsdruk p is bij zuigermotoren van één type steeds gelijk, dus S,; = 1.

Indien zuigermotoren worden beschouwd van dezelfde materialen (S, = 1) en eenzelfde
karakteristiek snelheid (S, = 1), dan volgt uit bovenstaande schaalwetten dat ook de
materiaalspanningen door traagheidskrachten gelijk zijn, dus S,o = 1.

Bij gelijkblijvende deelspanningen o1 en o9 zal ook de totaalspanning gt = 01 + 02
hetzelfde blijven. Onder voorwaarde dat S, =1, S, =1 en S, = 1 geldt dus dat Syiot
=1.

Opmerking. Het zal uit de bovenstaande afleiding duidelijk zijn dat schaalfactoren niet
mogen worden gesommeerd. Het is onjuist te stellen: Sgiot = So1 + Soo. Er geldt:

So’tot = S(Jl +o'2)-

Vanuit bovenstaande kan de totaalspanning worden afgeleid en vandaaruit de schaalwetten
voor de andere kenmerkende grootheden van de zuigermotoren: draaimoment (koppel),
vermogen, en toerental. De totaalspanning o;,; correspondeert met een totaalkracht F'
waarvoor voor een cilinder geldt:

Sp = Sotot - 57 (12.36)

Het door één cilinder geleverde draaimoment T volgt uit het product van kracht en arm.
Er geldt dus:

St =8F-S; = Sotot Sg’ = S,? (de laatste term geldt alleen, indien

. . . (12.37)
Sp=1,5,=1,8, =1, zoals hier is afgeleid voor zuigermotoren).

Het geleverde vermogen P van een cilinder is te berekenen uit het product van kracht en
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snelheid. Dus:
Sp=Sp-S,=5; (indien S, =1,5,=1,5, =1) (12.38)

Voor het toerental n van de motor geldt:

60
n=g_w (12.39)

of g )
S,=8,=""2=— S, =1 12.40
S, ~ 5, ( ) (12.40)

In Figuur 12.11 is aangegeven hoe de schaalfactoren voor vermogen, draaimoment en
materiaalspanning afhangen van de geometrische schaalfactor Sj.

origineel model
lengte 2 Se%
volume Vo SQ3V0
massa mg SQ3m0
kracht Fo S¢F,
spanning gg Op
moment To SQ:’T0
vermogen Po SQ2 Py
toerental ng 8—1- No

y

Figuur 12.11 Bij schaalvergroting van zuigermotoren onder de voorwaarde van gelijke verbrandings-
drukken (Sp = 1), gelijke materialen (S, = 1) en gelijke karakteristieke snelheden (S, = 1), blijkt
het draaimoment met de derde macht, het vermogen met het kwadraat en het toerental omgekeerd
evenredig met de geometrische schaalfactor Sy te veranderen. Dit geldt uiteraard alleen voor mo-
toren met een gelijk aantal cilinders.

Combineren van de schaalfactor voor vermogen met de schaalfactor voor toerental levert:

Sp = —F=— (12.41)

Bij evenredige vergroting bij gelijkblijvende materiaalspanningen (S, = 1) en bij gelijkblij-
vende karakteristieke snelheid is het toelaatbare toerental van een zuigermotor omgekeerd
evenredig met de wortel uit het cilindervermogen.

Zie ter illustratie tabel 12.1
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Zuigermotor type Diameter | Slag Vermogen | Sp = Sp- | Vermogen/
[mm] [mm] | [kW] S, = S% | referentie-
Fig. vermogen
12.1 kleinste
motor

Vier cilinder 904 102 130 136 1 1

Vier cilinder 924 106 130 150 1.08 1.10

Vier cilinder 1000 110 135 170 1.25 1.25

Zes cilinder 906 102 130 205 1 1

Zes cilinder 926 106 136 240 1.18 1.17

Zes cilinder 1000 110 135 260 1.25 1.27

Tabel 12.1 Tabel geeft klassiek viertakt dieselmotoren [Rolls-Royce, 2015]. Door schaalvergroting e
ontstaat een serie bruikbare motoren. Het verband tussen afmetingen en vermogen, bij gelijkblijvend
toerental (2200 rpm) en materiaal is theoretisch af te leiden met behulp van Figuur 12.11.

Voorbeeld 12.8 Bij dieren die in kuddeverband leven is het van grote betekenis dat in
ogenblikken van gevaar de jonge dieren even hard kunnen rennen als de oudere. Nu zijn
alle leden van de kudde uit hetzelfde materiaal opgebouwd (S, = 1) en er heerst geo-
metrische similariteit. Bij het rennen moeten de poten versneld en vertraagd worden; de
schaalwet voor translerende massa's kan dus toegepast worden. De spieren van alle dieren
zullen ongeveer dezelfde spanning kunnen verdragen (S, = 1). Daaruit volgt dat de snel-
heid van alle dieren ook dezelfde zal zijn. Let op dat deze afleiding een versimpelde versie
is van de werkelijkheid, want een aantal factoren hebben ook invloed op deze afleiding.
Dit wordt in de volgende opmerkingen toegelicht.

Opmerking 1. Bij grote snelheden zal het overwinnen van de luchtweerstand een aan-
zienlijk deel van de spierspanning opeisen. Een a maal zo groot dier zal echter een a?
maal grotere weerstandskracht ondervinden, die door een spier met een eveneens a? gro-
tere doorsnede zal kunnen worden opgenomen. Het overwinnen van de luchtweerstand
komt dus neer op een voor alle dieren gelijke vermindering van de totaal beschikbare
spierspanning, zodat voor versnellen en vertragen gelijke delen spierspanning overblijven.

Opmerking 2. Een afwijking ontstaat doordat de spieren van een ouder dier meer ge-
traind zijn en daardoor een hogere spanning kunnen opwekken. In de natuur is hiervoor
gecompenseerd doordat de jongere dieren in verhouding langere poten hebben dan oudere.

Opmerking 3. Bij volledige geometrische similariteit van alle diersoorten zou de wet
algemeen moeten gelden. Dit zou betekenen dat alle dieren even hard zouden moeten
kunnen rennen. Ruwweg bezien is dit ook ongeveer juist.

Voorbeeld 12.9 Ook pompen die een pulserende vloeistofstroom opwekken moeten
een (vloeistof)massa versnellen en vertragen. Het hart met de pulserende bloedstroom
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valt onder de schaalwet. In Figuur 12.12 is de hartfrequentie gegeven als functie van
de lichaamsgrootte. Bij gelijke spierspanning o en gelijk materiaal zou moeten gelden

S, =S, =1/S,. Omdat 1/S, ook te schrijven is als m geldt:

De figuur laat zien dat de schaalwet een goede beschrijving geeft.

- |
£ \
E
£ a3l .
= 10 T g muis
| T~
e |
£ |
(7]
3 2 mens
Z 10 -
£ &~ paard
& o ____ olifant
2 .. _
s werkelijke schaalwet
< 10+
j theoretische schaalwet
t t e t —
1072 107 1 10 10 103

10
lichaamsmassa [kg]

Figuur 12.12 Vergelijking van de hartslagfrequentie van een aantal dieren ten opzichte van hun

massa. De theoretisch bepaalde schaalwet S,, = W blijkt niet geheel overeen te komen met
de in werkelijkheid aanwezige schaalwet. '
De werkelijkheid is beter te beschrijven door Sy, = W. Gebaseerd op [Schmidt-Nielsen, 1960].

12.4.2 Roterende massa

Voor de spanning, veroorzaakt door een roterende massa geldt dezelfde schaalwet als
voor een translerende massa. Dit is ook wel aannemelijk indien bedacht wordt dat de
formule voor de centrifugaalkracht (F. = m-w? - R) dezelfde gedaante heeft als die voor
de traagheidskracht van een translerende massa. Ook voor roterende massa’s geldt de
schaalwet:

Sy =28, S? (12.43)
Voorbeeld 12.10 De eerste vraag bij het ontwerpen van een centrifuge is hoe hoog het
toerental kan worden opgevoerd. Direct uit de schaalwet volgt:

S, = 1/5(%) (12.44)

Allereerst blijkt hieruit dat de toelaatbare (omtrek)snelheid van een centrifuge onafhan-
kelijk is van de afmetingen. De grootste snelheid treedt op aan de omtrek en wordt
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bepaald door de materiaalconstante o/p. Zie de tabel in Figuur 12.4.b. Bij een gewij-
zigde grootte, uitgevoerd in hetzelfde materiaal zal de omtreksnelheid eenzelfde waarde
moeten hebben. Oftewel een grotere centrifuge zal dus langzamer moeten draaien. Het
scheidend vermogen van een centrifuge wordt bepaald door de optredende radiale versnel-
ling ar. Nu is bij een straal  van de centrifugetrommel a, = v?/r. Bij schaalvergroting
geldt:

Sar = g (12.45)

Tezamen met de reeds afgeleide schaalwet ontstaat:

1
Sor = S(%) . ?@ (12.46)
Voor een goed scheidend vermogen moet dus een centrifuge worden gebouwd van een
materiaal met een hoge o/p-waarde. Bovendien moet een kleine trommeldiameter wor-
den toegepast. Vanwege de kleine afmetingen zal deze trommel snel kunnen draaien. Ook

hier bepaalt de toelaatbare omtreksnelheid het maximale toerental.

Voorbeeld 12.11 De afgeleide schaalwet geldt uiteraard ook voor vliegwielen. Vlieg-
wielen worden gebruikt voor de opslag van energie en het is van betekenis dat per eenheid
van vliegwielmassa een zo groot mogelijke hoeveelheid energie kan worden opgeslagen.
Voor de schaalfactor voor de opgeslagen energie E geldt Sg = S,, - S? waarin S, de
schaalfactor voor de vliegwielmassa voorstelt. Met behulp van de schaalwet voor roterende
massa’s is hieruit de schaalfactor voor de energie per massa op te stellen:

2
S(%) = E =5, ZS(%) (12.47)
De keuze van het ‘beste’ vliegwiel hangt dus uitsluitend af van de materiaalkeuze. Volgens
de Figuur 12.4.a hebben de composieten de hoogste o/p-waarde. Tegenwoordig worden
dan ook pogingen ondernomen om met behulp van vliegwielen bestaande uit koolstofvezels
een superieure energieopslag te verkrijgen. Echter een beperking van deze techniek is dat
een klein scheurtje in het vliegwiel het direct uit elkaar doet spatten, en het onderhoud
van de lagers een probleem is. Deze manier van energie opslaan is beperkt tot enkele
megawatt.

12.4.3 Eigenfrequentie

Van veel componenten en instrumenten wordt de goede werking bepaald door hun tril-
lingsgedrag. Daarbij is vooral de grootte van de eigenfrequentie wy van betekenis. In
werktuigkundige systemen ontstaat een trilling bij aanwezigheid van een massa en een
veer. Zo'n systeem gaat in zijn eigenfrequentie trillen als het systeem uit zijn evenwichts-
toestand wordt gebracht en daarna losgelaten wordt. De eigenfrequentie wg volgt dan uit
wo = \/¢/m , waarin ¢ de veerstijfheid is en m de trillende massa.
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In § 12.3.5 Stijfheid is afgeleid dat voor de veerconstante geldt S. = S, - Sg. Voor de
massa geldt S,, = S, - S7. De schaalfactor voor de eigenfrequentie is dus (met Sg = 1
en S, =1):

1
=3
Hieruit volgt dat kleine afmetingen belangrijk zijn voor het verkrijgen van een grote eigen-
frequentie. Een meetinstrument dat snel moet meten (hoge eigenfrequentie) moet klein
zijn. Indien een lage eigenfrequentie gewenst is, worden de afmetingen groot. Een piano
en een contrabas (lage tonen en dus kleine wy) zijn relatief grote muziekinstrumenten ten
opzichte van bijvoorbeeld een viool.

Suo (12.48)

Opmerking. Het bovenstaande geldt ook voor mechanische uurwerken met een onrust.
Een onrust bestaat uit een (meestal uitgebalanceerd) wieltje, gekoppeld aan een spiraal-
veer, dat met heel nauwkeurig bepaalde eigenfrequentie heen en weer draait. Echter het
bovenstaande geldt niet voor klassieke uurwerken met een slinger. Een slinger werkt met
een ‘zwaartekrachtveer’, waarvoor S, = Sl? als S, = 1 en S; = 1. De eigenfrequentie
van een slinger volgt uit S, = 1/5.

12.5 Energetische schaalwetten

Voor veel technische apparaten is de mogelijkheid om warmte te kunnen afvoeren de
beslissende factor bij het ontwerp. Algemeen geldt voor de warmtestroom door een wand

de formule:
d=%k-A-AT (12.49)

waarin:

® = warmtestroom door wand

k = warmtedoorgangscoéfficiént

A = warmtedoorlatend oppervlak

AT = temperatuurverschil tussen binnen en buiten.

De grootte van de constante k is mede afhankelijk van de dikte en het materiaal van
de scheidingswand. In het verleden is ook bepaald via bijvoorbeeld experimenten dat de
maximale waarde van AT is afhankelijk is van het gekozen materiaal. Kortom als het
materiaal is gekozen, dan is de maximaal mogelijke warmtestroom & evenredig met het
warmtedoorlatend oppervlak A. Geschreven in de vorm van een schaalwet is dit:

SCP = Stg of S<I> = (Svolume)Q/3 (1250)

Een grotere ruimte is dus met relatief minder vermogen te koelen of op te warmen dan
een kleinere ruimte.
Voorbeeld 12.12 In een koelkast kan de lage temperatuur gehandhaafd blijven doordat

de naar binnen lekkende warmte weer verwijderd wordt door een koelaggregaat. Volgens
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de schaalwet moet de te verpompen warmte en daarmee het benodigde vermogen van het
koelaggregaat dan toenemen met het kwadraat van de lengteverandering of — wat hetzelfde
is — met het volume tot de macht 2/3. Figuur 12.13 geeft voor een aantal huishoud-
diepvrieskisten, die alle tot dezelfde temperatuur koelen, de geinstalleerde vermogens en
tevens de lijn die het verband vermogen-volume volgens de schaalwet aangeeft.

1400
1200

1000 /
800

600 //

400 / >,

200

0 T T T ‘ T
0 200 400 600 800 1000 1200

Inhoud [dm3]

\

Vermogen [W)]

Figuur 12.13 Motorvermogen van diepvriezers als functie van inhoud [Grootkeukenstore, 2015].

Voorbeeld 12.13 In de dierlijke cel moet voor het in stand houden van de levens-processen
een zekere temperatuur heersen. Deze temperatuur kan gehandhaafd blijven door de
verbranding van voedingsstoffen in de cel. Er moet echter niet meer warmte worden
geproduceerd dan door de huid kan worden afgevoerd. De geproduceerde warmtestroom
en daarmee de benodigde hoeveelheid voedsel per dag V' moet dus toenemen met het
kwadraat van de lichaamsafmetingen. In formulevorm is dat:

Sy = S? (12.51)

Voor de per dag per massa-eenheid levend weefsel benodigde hoeveelheid voedsel geldt
dan:
Sy S 1
Sm  S; S
Dit betekent dat grotere dieren per kg lichaamsmassa minder voedsel tot zich hoeven
nemen dan kleinere. Grote dieren springen dus relatief zuiniger om met hun voedsel dan

kleine.

(12.52)

Jonathan Swift laat in zijn boek Gulliver's reizen de 1,80 m lange Gulliver na een schip-
breuk aanspoelen op het eiland van de lilliputters. Deze lilliputters waren slechts ongeveer
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15 cm lang. Gulliver was dus 12x zo groot. De koninklijke rekenaars van de lilliputters
becijferden dat Gulliver, die 12x zo lang, 12x zo breed en 12x zo dik was als zij, per
dag een hoeveelheid voedsel zou verbruiken die 123 = 1728x zo groot was als zijzelf
verorberden. Deze berekening is echter onjuist omdat de schaalwet aangeeft dat het
voedselverbruik slechts met het kwadraat van de lengte toeneemt. Gulliver zou dus aan
122 = 144 x de dagelijkse portie van de lilliputters genoeg hebben gehad.

Voorbeeld 12.14 Ook in groter verband geldt de afgeleide schaalwet redelijk goed voor
het dierenrijk. De per dag verbrande hoeveelheid voedsel is goed te kwantificeren door de
per tijd door de lichaam opgenomen hoeveelheid zuurstof. Figuur 12.14 geeft het aantal
mm?3 verbruikte zuurstof per uur en per kg lichaamsmassa.

Volgens de schaalwet zou moeten gelden S(y/,,) = S[l.

Uit de figuur blijkt dat in werkelijkheid geldt S(y/m) = Sy */* = (Sh{)=3/4 = §,'/*.
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Figuur 12.14 Bij zoogdieren neemt de intensiteit van de stofwisseling af met toenemende lichaams-
grootte. Gebaseerd op [Schmidt-Nielsen, 1960].

Het verschil moet verklaard worden uit de verschillen in huiddikte, vetlaag en beha-
ring van de verschillende diersoorten waardoor afwijkende waarden voor de warmteover-
drachtscoéfficiént optreden.

Opmerking. Uit de in voorbeeld 12.14 gegeven experimenteel gecorrigeerde schaalwet
kan de uitkomst van voorbeeld 12.13 worden herzien. Gulliver zou per dag 129/ = 268x
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zoveel voedsel als de lilliputters nodig hebben gehad. Immers, Sy = S, - 523/4 =

53-8, =)/,

12.6 Vertakking en onderverdeling

In § 12.4.1 Heen en weer gaande massa's, voorbeeld 12.7, is de schaalfactor voor het
cilindervermogen van een zuigermotor berekend voor het geval dat S, = 1en S, = 1:

Sp =S¢ (12.53)

Dit vermogen neemt toe met het kwadraat van de geometrische schaalfactor . Dit feit
heeft nog een belangrijke toepassing bij mobiele motoren waar vooral het specifieke ver-
mogen, het vermogen per massa, P/m van betekenis is:

Sz o1

- 12.54

Sy =
Dit betekent dat het specifieke vermogen van zuigermotoren omgekeerd evenredig toe-
neemt met de verkleining van de afmetingen, bij gelijkblijvende karakteristieke snelheid.
Wel zullen - om eenzelfde oorspronkelijk vermogen te bereiken - meer cilinders benodigd
zijn, maar er blijft winst, omdat het specifiek vermogen groter wordt. Het specifiek ver-
mogen is niet afhankelijk van de grootte van het vermogen. Eén en ander wordt in het
volgende voorbeeld verduidelijkt.

Voorbeeld 12.15 Ter beschikking staat een motor met vermogen Py, karakteristieke
afmeting £y en massa mo = p - 3. Bij verkleining van de afmetingen met bijvoorbeeld
een factor 2 ontstaat een motor met karakteristicke afmeting /1 = %Eo, massa mj en
vermogen P;. De schaalfactor voor de afmeting is Sy = ¢1 /4y = % Voor het vermogen
geldt volgens de schaalwet:

Sp =S} (12.55)

Het vermogen P, van de kleinere motor wordt dus i van Py. Om hetzelfde oorspronkelijke
vermogen Py te bereiken zijn dus viermaal zoveel cilinders nodig. Hun totale massa wordt
nu vier keer de massa ml van de kleinere motor:
3 L3 1 3 1
4m1:4-p-€1:4-p-(§€0):§-p%0:§-m0 (12.56)
De totale massa wordt nu dus de helft van de oorspronkelijke motor. Het specifiek ver-

mogen:
P P
20 9. 20 (12.57)
47711 mo

is met een factor 2 vergroot. Zie verder de tabel in figuur 12.15.

Speciaal voor de autoracesport is de bouw van motoren met veel kleine cilinders dus

van voordeel. Immers, eenzelfde vermogen is dan te verkrijgen met minder kilogrammen
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massa. Constructief levert deze verkleining echter grote problemen op. Tegenwoordig
worden hoge specifieke vermogens eenvoudiger bereikt door de toepassing van motoren
met een turbocompressor.

Ook voor andere toepassingen geldt dat het onderverdelen in kleinere eenheden voordeel
kan opleveren. Bijvoorbeeld: bij tandwielkasten kan gekozen worden tussen een vertraging
in één trap of in meerdere trappen. Het is gebleken dat bij overbrengingsverhoudingen
groter dan 1:5 voordeel in volume en gewicht is te behalen indien meerdere trappen worden
toegepast. Een soortgelijke redenering is op te zetten voor turbines: een hogedruk-,
middendruk- en lagedruktrap toepassen om gewicht, volume en kosten te sparen.

1 motor 1 motor (S;z) motoren

met lengte & met lengte £, met lengte £,

en vermogen Py en vermogen P, en totaal vermogen P,
lengte 2 & = Se 2 = 8o,
massa 0203 p913 = Sﬁsona SQ_QPQ.IG = Ssngo3
vermogen Po Py = ngPo SQ.Q'P'I = P,
specifiek Py Pq g Po SQ_2'592P0 _«-1.Po
vermogen DQOS pQ13 Q 9;203 39_2'3939903 e -0903

Figuur 12.15 Het verhogen van specifiek vermogen is mogelijk door de toepassing van meerdere
kleinere motoren met een gezamenlijk vermogen Py dat gelijk is aan dat van de oorspronkelijke
motor. De tabel geldt voor motoren met een gelijk aantal cilinders.

12.7 Kental

12.7.1 Schaalwet en kental

De afgeleide schaalwetten zijn ook op enigszins andere wijze te interpreteren. Neem als
voorbeeld de in § 12.3.5 Stijfheid afgeleide schaalwet voor de stijfheid:
Se =S¢5k (12.58)

Indien weer, zoals in § 12.2 Schaalfactoren, de grootheden die op het model betrekking
hebben worden aangeduid met de index m en de grootheden die op het origineel betrekking
hebben met de index o, dan is de wet ook te schrijven als:

cm Am Em
om _Im Zm 12.
Co { K, ( 59)
of ook: c .
m o= _2 (12.60)
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Oorspronkelijk is uitgegaan van gelijkvormigheid tussen model en origineel. Hieruit volgde
de samenhang tussen de bestudeerde grootheden; in dit geval stijfheid, lengte en elastici-
teitsmodulus.

In het bovenstaande is de schaalwet omgevormd tot een combinatie van grootheden voor

Co

L . .
model en origineel elk, ;—=2— en 7%4-. De redenering kan nu ook omgekeerd worden.

Indien de waarde van de combinatie ¢/¢E van een bepaald lichaam gelijk is aan die van
een ander lichaam van overeenkomstige opbouw dan zullen die lichamen gelijkvormig zijn.
Dit is ook uit de formules af te leiden. Deze combinatie van fysische groot—heden die
soms vormbepalend is wordt een kental genoemd. Een kental is steeds dimensieloos.
Eenvoudige processen, zoals het gegeven voorbeeld van de stijfheid, worden door één
kental beschreven; voor ingewikkelde processen zijn een aantal kentallen benodigd. De
uitdaging is dan het vinden van een complete set kentallen.

Reeds gebleken is dat ¢ = A - E//£. Invullen hiervan geeft:

AmEm AOE() 7 Am A()
A mE O B (12.61)

Voor de vergelijking van de stijfheid van staven is dus geen strikte similariteit benodigd.
De vorm van de doorsnede is niet belangrijk, als de oppervlakte van de doorsnede maar
evenredig met de lengte in het kwadraat wijzigt.

Voor gelijke kentallen K (dezelfde ¢/¢- E-waarde) treedt dus gelijkvormigheid (similariteit)
op. Ongelijke kentallen duiden op afwijkingen van de similariteit. Maar dan is het ook
mogelijk met het kental een vormaanduiding te geven. Zie figuur 12.16 waarin voor een
aantal waarden van het stijfheidskental de bijbehorende vorm is gegeven.

Voor de centrifuge is in § 12.4.2 de volgende schaalwet gevonden:
Sy =5, S; (12.62)

Geschreven in de vorm van een kental wordt dit K. = o/p-v?. Beschouw nu de verhouding
van de totaal op de centrifuge werkende centrifugaalkracht F,. en de kracht F, in de
materiaaldoorsnede. Er geldt:

27 2

1

Fc:/ prsry dp=2-7-p-s-£-V° (12.63)
0

met s = wanddikte en £ = hoogte van de centrifugecilinder.
F,=0c-A=0c-s-{ (12.64)

en dus

F,, lo 1
_ _ 1K 12.65
F. 2mpv? 2rm ( )
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Het kental K. is niet vormbepalend. Het kental geeft de verhouding tussen de mate-
riaalkracht en de centrifugaalkracht. Omdat de materiaalkracht afhankelijk is van de
centrifugaalkracht heeft het kental K. een constante waarde. Voor andere toepassingen
(zie bijvoorbeeld §12.7.2. Kental en invloed van de vorm) zal het verhoudingsgetal van
twee optredende krachten een zinvol vormbepalend kental blijken te zijn.

100 A=2000

K=0,025

1=100

K=0,002

K=0,0001

Figuur 12.16 De waarde van het kental voor stijfheid is vormafhankelijk.

12.7.2 Kental en invloed van de vorm

Indien een voorwerp zich met een relatieve snelheid v verplaatst ten opzichte van een om-
ringend medium (gas of vloeistof) dan wordt er op dat voorwerp een kracht F uitgeoefend.
Deze kracht F, die bij beweging in de lucht de luchtweerstand heet, is evenredig met de
soortelijke massa van het medium p, evenredig met de voorwerpoppervlakte loodrecht op
de stroming A en evenredig met de gekwadrateerde relatieve snelheid 2. Er geldt:

1
F:cw~§-p~u2-A (12.66)

De evenredigheidsconstante c¢,, is afhankelijk van de vorm van het lichaam. Bij de stroming
van het medium om het voorwerp ontstaat een gemiddeld drukverschil Ap tussen voor-
en achterzijde. Uiteraard geldt Ap = F/A. Hiermede is de formule te schrijven in de

vorm:
Ap
3

= (12.67)

Cw
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De dimensieloze grootheid (kental) ¢,, is nu vormafhankelijk. Doordat het kental vorm-
afhankelijk is, kunnen nu niet alleen gelijkvormige uitvoeringen worden vergeleken, maar
kan ook de invloed van de vorm worden bestudeerd.

Figuur 12.17 geeft de weerstandscoéfficiént ¢, van een aantal voertuigen. Hoofdstuk 4
Wrijving en weerstand, gaat dieper in op de weerstandscoéfficiént.

»
o IE5

= 0,562 Kawasaki ¢y = 0.65

b0 b
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- @
Ford Probe IV C, = 0.15 Snelheidsrecordfiets Vector c, = 0,11

Figuur 12.17 De weerstandscoéfficiént c,, van een aantal verschillende voertuigen.

12.7.3 Stromingen in vloeistoffen en gassen

Bij veel werktuigkundige apparaten spelen stromende media een essentiéle rol. Hierbij valt
niet alleen te denken aan bijvoorbeeld turbines, pompen, ventilatoren, maar ook aan de
bijbehorende verbindingspijpen, filters, enzovoorts. Ook voor het ontwerpen van schepen,
vliegtuigen, onderzeeboten en raceauto’s is kennis van de wetten die de stroming rondom
deze voertuigen beheersen essentieel.

Indien een lichaam in een stromend medium is geplaatst of — wat hetzelfde is — indien
een lichaam beweegt in een stilstaand medium, ondervindt dit lichaam een resultante
weerstandskracht die opgebouwd is uit twee soorten krachten.

Er zijn de verdeelde krachten die veroorzaakt worden door de massawerking van de me-
diumdeeltjes en er zijn de verdeelde krachten die ontstaan door de viscositeit van het
medium. Viscositeit is de weerstand die verschillende mediumlagen op elkaar uitoefenen
als ze langs elkaar moeten schuiven; dikvloeibaarheid. De verhouding van de traagheids-
krachten en de viscositeitskrachten levert een grootheid op die het stromingsbeeld rondom
het lichaam beschrijft.
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Dit dimensieloze verhoudingsgetal staat bekend als het getal van Reynolds . Het wordt
aangeduid door Re. Er geldt:

Re =" (12.68)

waarin

p = de soortelijke massa van het medium,

v = karakteristieke snelheid van het lichaam ten opzichte van het medium,
{ = karakteristieke afmeting van het lichaam,

1 = viscositeit van het medium.

Reynolds heeft proeven gedaan met de stroming van media door buizen. Het bleek experi-
menteel inderdaad dat stromingen van verschillende media door buizen met verschillende
diameters eenzelfde gedrag vertoonden indien de Re-getallen eenzelfde waarde hadden.
Opgave van het getal van Reynolds is dus voldoende om de stroming door een pijp te
karakteriseren. Dit geldt ook voor de stroming in of rondom een ander voorwerp.

Bij hoge Re-waarden overheersen de traagheidskrachten in de stroming. De stroming heet
dan turbulent. De stroming in een buis is dan gekenmerkt door een min of meer uniforme
snelheidsverdeling over de gehele buisdoorsnede. Zie figuur 12.18.a. Voor gladde rechte
buizen is aangetoond dat dit type stroming ontstaat bij Re > 2300.

Voor lagere waarden van Re ontstaat een geheel andere type stroming waarbij de viskeuze
krachten dominant zijn. Zie figuur 12.18.b. Het snelheidsprofiel is nu parabolisch. Deze
stroming heet laminair.

Figuur 12.18 Stroming door een buis. a) Turbulente stroming ontstaat bij hoge Re-waarden. Het
snelheidsprofiel is uniform. b) Laminaire stroming ontstaat bij lage Re-waarden. Het snelheidsprofiel
is parabolisch.

De beide stromingsbeelden hebben een geheel verschillend karakter. Voor technische toe-
passingen wordt bijna altijd de turbulente stromingsvorm gekozen. Door de overheersende
invloed van de traagheidskrachten is de invloed van de (temperatuurafhankelijke) visco-
siteit te verwaarlozen. Voor de turbulente stroming geldt de in § 12.7.2 gegeven formule
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voor de weerstandskracht. Uiteraard is vergelijking alleen zinvol indien ook vormover-
eenkomst is bereikt tussen de te beschouwen systemen (bijvoorbeeld de buis). Voor de
vergelijking van twee stromingen moet dus aan twee eisen zijn voldaan:

1. vormsimilariteit en
2. gelijke Re-waarden.

12.8 Beperkingen bij modelproeven

Alhoewel de verschillende schaalwetten de regels geven waaraan bij modelproeven moet
worden voldaan, ontstaan dikwijls grote moeilijkheden bij de uitvoering ervan. Een aantal
beperkingen worden toegelicht.

Voorbeeld Het verkleinen of vergroten van een schaal voor het doen van experimenten
met modellen heeft beperkingen dus in de praktijk kan niet oneindig verkleind of vergroot
worden. Bij het geometrisch verkleinen van een onderdeel moet er aan gedacht worden
dat voor het behoud van een gelijke vormfactor alle afmetingen evenredig met een karak-
teristieke lengte moeten worden verkleind. Hiertoe behoort in principe ook een afmeting
als de oppervlakteruwheid. Deze grootheid is in de meeste gevallen zeer moeilijk mee te
verkleinen, waardoor afwijkingen in de schaalwet kunnen ontstaan.

Ook moet bedacht worden dat spelingen en toleranties met de schaalfactor mee moeten
worden verkleind. Een as van bijvoorbeeld 10 mm kan zonder grote moeite vervaardigd
worden met een onnauwkeurigheid van 10 ym (0,01 mm). Dat betekent dat de werkelijke
maat van de as bijvoorbeeld tussen 9,990 en 10,000 mm ligt. Indien deze as in een gat zou
moeten kunnen glijden, zal dit gat een afmeting hebben van bijvoorbeeld tussen 10,005
en 10,025 mm. Bij montage zal een speling ontstaan van maximaal 35 pm (0,035 mm)
en minimaal 5 pm.

Reeds een schaalverkleining met een factor S; = 1,,,/lp = 1/10 leidt tot moeilijkheden.
Niet alleen moeten de toleranties ook met een factor 10 verkleind worden, waardoor deze
een moeilijk te fabriceerbare grootte krijgen. Ook de uiteindelijk bereikte speling zal een
factor 10 kleiner worden, waardoor de afmetingen van grote stofdeeltjes benaderd worden
en een geheel ander glijgedrag mogelijk wordt. Bovendien zullen eventueel optredende
vervormingen nu relatief een veel grotere invloed hebben.

Voorbeeld Ook de gewijzigde invloed van belastingen bij veranderende dimensies is een
algemeen probleem bij modelproeven. Het probleem treedt duidelijk naar voren bij mo-
delproeven aan tandwielen. Alleen bij laagbelaste tandwielen is het zinvol een hoge tand-
nauwkeurigheid te vereisen. Voor hoogbelaste tandwielen is dat zinloos omdat onder
bedrijfsomstandigheden toch een andere tandvorm optreedt dan onbelast tijdens de fa-
bricage. Hierdoor ontstaat de moeilijkheid bij modelproeven op verkleinde schaal: de
schaalverkleining vereist hoge relatieve nauwkeurigheden, terwijl de optredende belasting
dat zinloos maakt. Dit geeft dus in sommige gevallen de noodzaak om dit soort tand-
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wielconstructies toch op ware schaal te testen.

Voorbeeld Naast dat steeds meer ontwerpen eerst gesimuleerd kunnen worden in een
virtuele omgeving, worden - om de kosten van het ontwerpen van vliegtuigen te drukken -
nog steeds veel modelproeven op verkleinde schaal uitgevoerd. Om het model, de krachten
die erop werken en de stroming er omheen goed te kunnen bestuderen is het gebruike-
lijk om het model stil te zetten en het medium (lucht) te laten stromen. Een installatie
hiervoor waarin (hoge) luchtsnelheden kunnen worden opgewekt heet een windtunnel.

Bij de uitvoering van de test zijn er aspecten waar rekening mee moet worden gehouden.
Om te beginnen zijn er de reeds in § 12.2 Schaalfactoren beschreven problemen bij het
verkrijgen van een exacte geometrische similariteit. Dan is er de uitdaging het realiseren
van een uniforme snelheidsverdeling in de luchtstroming. Ook moet de windtunnel zo
gedimensioneerd worden dat de invloed van de tunnelwanden tot een minimum beperkt
wordt.

Als aan deze voorwaarden redelijk is voldaan of correctieformules hiervoor zijn opgesteld,
moet de schaalwet toegepast worden. De schaalwet luidt dat Re = p - v - £/n eenzelfde
waarde moet bezitten voor het origineel en voor het model. Dit geeft problemen omdat
zowel het origineel als het model in lucht bewegen. Dan heeft namelijk p/n in beide
gevallen dezelfde waarde en kan alleen voor de kleinere afmetingen gecorrigeerd worden
door het opvoeren van de luchtsnelheid v, in de windtunnel. Hieraan zijn echter snel
praktische grenzen. Indien het origineel ontworpen is voor lage snelheid v, = 300 km/h
dan zou bij een windtunneltest met een model van schaal 10:1 (10 keer zo klein) van de
ware grootte een luchtsnelheid van 3000 km/h moeten worden bereikt. Nog afgezien van
de realiseringsmogelijkheid van een dermate hoge luchtsnelheid zouden nu geheel andere
condities zijn gecreéerd, omdat deze snelheid ver boven de geluidssnelheid ligt en daardoor
een geheel ander stromingspatroon veroorzaakt.

Het kiezen van een ander medium voor de modelproeven biedt ook geen oplossing. Water
lijkt op het eerste gezicht aantrekkelijk omdat de p/n-verhouding ongeveer 13 keer zo hoog
is als die van lucht. Nu zou echter in de tunnel een waterstroom met een snelheid van
10/13 van 300 km/h, dus ongeveer 230 km/h, opgewekt moeten worden. Deze opgave
is zo mogelijk nog moeilijker dan het creéren van een luchtstroom van 3000 km/h.

Eén oplossing om toch aan de schaalwet te kunnen voldoen - en die dus ook wordt toege-
past - bestaat uit het opvoeren van de druk in de windtunnel. Lucht onder verhoogde druk
heeft een evenredig verhoogde soortelijke massa, terwijl de viscositeit n niet toeneemt.
Deze oplossing is echter kostbaar omdat nu de wanden van de windtunnel bestand moeten
zijn tegen deze verhoogde druk. Van dit type windtunnel zijn vanwege de hoge kosten
slechts weinig exemplaren gebouwd.

De onderzoekers die niet een dergelijke hogedrukwindtunnel beschikbaar hebben, proberen
met allerlei correctieberekeningen de onder foutieve omstandigheden gemeten waarden te
corrigeren.
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12.9 Samenvatting

De comparologie betreft de onderlinge vergelijking van technische of fysische processen
bij opschaling in verschillende grootheden, maar wordt vooral toegepast bij geometrisch
verkleinen en/of vergroten. Om deze techniek te kunnen toepassen zijn voor veel voorko-
mende werktuigkundige processen en constructies statische en dynamische schaalwetten
afgeleid. Te zien is dat in sommige gevallen alleen het materiaal van invloed is en in andere
gevallen de afmetingen. Ook wordt veelvuldig in de stromingsleer gebruik gemaakt van
schaalwetten waarbij de wet zodanig is omgeschreven dat een kental (dimensieloos getal)
ontstaat. Het Reynolds getal is hier heet meest bekende voorbeeld van. Door gebruik te
maken van comparologie hoeven niet alle variabelen bij de schaling opnieuw te worden
berekend. Het toepassen van comparologie, zeker voor het doen van modelproeven ver-
dient de nodige aandacht omdat de schaling snel tegen fysische of praktische grenzen kan
aanlopen. De ontwerper dient zich hiervan bewust te zijn.
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Hoofdstuk 13
Energie

13.1 Inleiding

De zon, een ster van middelmatige grootte en temperatuur, straalt in totaal 300 - 1024

Watt vermogen uit. De aarde ontvangt hiervan slechts 170 - 10'® Watt. In Figuur 13.1 is
aangegeven hoe deze energiestroom ten slotte weer op de aarde wordt afgegeven.
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Figuur 13.1 Van de 173 - 10'® Watt die de aarde aan zonnestraling ontvangt, wordt ruim driekwart
direct weer afgestaan. Slechts een zeer klein deel is omgezet in de fossiele brandstoffen.



13.1 Inleiding Energie

Een (klein) deel van de vroegere zonnestraling is opgeslagen in de vorm van fossiele
brandstof.

Het huidige wereldenergieverbruik bedraagt ongeveer 2,5 - 102° Joule per jaar. Dit komt
neer op een gemiddelde energiestroom van 8 - 10'2 W. Deze uit hulpbronnen verkregen
energiestroom is reeds groot ten opzichte van de totaal door spierarbeid verkregen ener-
giestroom van naar schatting 0,5 - 1012 W. Figuur 13.2 geeft hiervan een overzicht. Al
vanaf de oudste tijden heeft de mens geprobeerd om zelf geen zware lichamelijke arbeid
te hoeven leveren. In het begin werden hiervoor slaven en dieren gebruikt. De hiermee op
te wekken krachten en snelheden, en de daarmee te verkrijgen vermogens waren echter te
gering. Later werd energie onttrokken aan wind- en waterstromen.

De hiermee beschikbare vermogens waren veel groter; maar nog niet groot genoeg en daar-
bij was vooral de constantheid van energielevering onvoldoende. Tegenwoordig worden
praktisch uitsluitend met fossiele brandstoffen aangedreven motoren gebruikt.
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Figuur 13.2 Overzicht van de door de wereld in de loop der jaren verbruikte energieén.

Motoren en andere energie-omzetters zijn in velerlei soorten en grootten verkrijgbaar.
Hierdoor worden de energiebehoeften van de moderne mens veroorzaakt. De energie-
behoefte is duidelijk gecorreleerd met inkomen. Zie Figuur 13.3.
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Energie 13.2  Warmteleer
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Figuur 13.3 Energiebehoefte naar bruto nationaal product.

Bij het verkrijgen en het gebruik van energie uit fossiele brandstoffen zijn een aantal
theoretische en werktuigkundige aspecten van belang. Deze worden in het volgende be-
sproken. Figuur 13.4 geeft een overzicht van de vermogens van een aantal kunstmatige
en natuurlijke energiebronnen en apparaten.

13.2 Warmteleer

13.2.1 Theorie

De in de werkelijkheid voorkomende processen worden theoretisch beschreven met de in
Figuur 13.5 gegeven toestandsveranderingen. In dit p-V-diagram zijn de beschrijvingen
van de toestandsverandering bij constante druk (isobaar) en die bij constant volume (iso-
choor) lijnen evenwijdig aan de codrdinaatassen. De adiabaat (geen warmte-uitwisseling
met omgeving) verloopt steiler dan de isotherm. Het oppervlak ingesloten tussen de door-
lopen kromme en de V-as is een maat voor de verrichte arbeid. Wordt de kromme naar
rechts doorlopen dan expandeert het medium en is door het medium arbeid verricht. Bij
volumeverkleining moet de compressie-arbeid aan het medium worden toegevoegd.

Theoretisch komt een proces na een heen- en een teruggang weer in de oorspronkelijke
toestand terecht. In werkelijkheid zijn er afwijkingen. Een omkeerbare adiabaat wordt
isentroop genoemd.
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Figuur 13.4 Vermogenstabel (1987)

De thermodynamica of warmteleer houdt zich bezig met energietransformaties, dat wil
zeggen: de omzetting van de ene energievorm (bijvoorbeeld thermische 6f elektrische 6f
mechanische energie) in een andere.

De twee belangrijke natuurwetten, die deze energietransformaties beschrijven, staan be-
kend als de eerste en de tweede hoofdwet van de thermodynamica:
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le hoofdwet. Energie kan niet uit niets ontstaan en niet verloren gaan. Deze wet
leidt tot energievergelijkingen.

2e hoofdwet. Het is mogelijk arbeid (mechanische energie) geheel in warmte om
te zetten, maar omgekeerd is het niet mogelijk om warmte geheel in arbeid om te
zetten.

Van de tweede wet bestaan nog andere formuleringen, die geheel anders luiden, maar wel
tot elkaar zijn te herleiden.

1
reservoir met hoge p f
temperatuur T,

s

Y

adiabaat

4\ A isotherm
reservoir met lage | 3
temperatuur T | Qg -
\"

Figuur 13.5 Verschillende toestandsveranderingen getekend in het p-V -diagram. Bij isotherme
compressie moet warmte worden afgevoerd om de temperatuur constant te houden. Bij adiabatische
compressie blijft deze warmte in het medium en veroorzaakt een hogere druk. Daarom verloopt de
adiabaat steiler dan de isotherm.

13.2.2 Carnot proces

Door Carnot is een model opgesteld van een proces waarmee continu arbeid is te verkrijgen
uit warmte. Hierbij is een medium gedacht dat, al rondstromende, warmte vanuit een
reservoir met hoge temperatuur T}, transporteert naar een reservoir met lage temperatuur
T,. Zie Figuur 13.6.

Tussen 1 en 2 expandeert het medium isothermisch. Hierbij wordt een hoeveelheid warmte
@}, uit het reservoir met hoge temperatuur opgenomen. Het medium stroomt vervolgens
(2 — 3) zonder warmte-uitwisseling (adiabatisch) naar het reservoir met lage temperatuur.

Tijdens 3 — 4 (isothermische compressie) geeft het medium een hoeveelheid warmte Q)
af aan dit reservoir met lage temperatuur. Vervolgens stroomt het medium in traject 4 —
1 (adiabatische compressie) zonder warmte toe- of afvoer terug naar het warme reservoir.
Bij 1 aangekomen is de temperatuur van het medium ten gevolge van de compressie weer
gelijk aan T},.
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! isobaar dp =0
‘ isotherm dT = 0
adiabaat dQ = 0
isochoor dV = 0

isobaar

isotherm

[ isochoor adiabaat

o

v

Figuur 13.6 Een kringproces opgebouwd uit twee adiabaten en twee isothermen heet een Carnot-
proces. Met een dergelijk proces wordt een maximale hoeveelheid arbeid uit een hoeveelheid warmte
gehaald. Het maximum wordt hoger naarmate de temperatuur Ty, en T; verder uit elkaar liggen.

In het p-V-diagram is het ingesloten opperviak een maat voor de door (of aan, bij linksom
doorlopen lus) het proces geleverde arbeid W. Toepassing van de eerste hoofdwet op het
kringproces geeft:

W =Qn—Q (13.1)

Het is blijkbaar zo dat een hoeveelheid arbeid W alleen verkregen kan worden door aan
een kringloopproces een hoeveelheid warmte @}, toe te voeren en een hoeveelheid warmte
@, af te voeren.

Carnot heeft aangetoond dat het beschreven kringproces bestaande uit twee isothermen
en twee adiabaten de meeste arbeid verkrijgt uit de minste warmte. Met het Carnot-proces
is op de meest gunstige wijze mechanische energie op te wekken uit warmte.

13.2.3 Eerste hoofdwet rendement

Het energetisch rendement 7 van een warmtemotor is gedefinieerd als de verhouding
tussen de verkregen arbeid W en de daardoor benodigde hoeveelheid warmte Q. Zie

ook Figuur 13.7.
W

= — 13.2
=0 (13.2)

Volgens de eerste hoofdwet moet gelden:
Qn=Qi+W (13.3)

Voor het rendement 7 geldt dus:
Q

=1- = 13.4
n on (13.4)
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Bij het Carnot-proces vinden de warmtetoevoer en -afvoer bij constante temperatuur
plaats. Onder invoering van de soortelijke warmte ¢, geldt per kg medium Q = c¢-T. De
formule voor het rendement wordt nu:

n=1-— (13.5)

Het Carnot-proces levert de grootst mogelijke hoeveelheid arbeid uit warmte en heeft dus
het maximaal mogelijke rendement. Uit de formule volgt meteen dat een zo hoog mogelijk
rendement ontstaat als de uiterste temperaturen Thoog €n Tiaag z0 ver mogelijk uit elkaar

liggen.

reservoir met
hoge temperatuur

Q
w
warmtemotor :>
Qe

reservoir met
lage temperatuur

Figuur 13.7 Een warmtemotor produceert een hoeveelheid mechanische energie W, als een warm-
tetoevoer QQp, en een warmteafvoer Q; plaatsvindt. Steeds geldt Qp, = W + Q.

Het Carnot-rendement blijft een theoretisch maximum. In werkelijkheid zal met een (veel)
lager rendement rekening moeten worden gehouden. De in werkelijkheid realiseerbare
processen wijken af van het Carnot-proces, zowel wat betreft de karakteristiek, als wat
betreft de theoretische eigenschappen. Bovendien hebben de bestaande machines nog
technische onvolkomenheden, zoals bijvoorbeeld verliezen in de vorm van wrijving.

13.3 Warmtemotoren

De technisch gerealiseerde processen, die warmte omzetten in arbeid zijn als volgt in te
delen.
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zuigermotor  turbine geen bewegende delen
ottomotor
dieselmotor | gasturbine straalmotor | raketmotor ramjet
wankelmotor
uitwendige - stoomturbine

- stirlingmotor .
verbranding gesloten gasturbine

inwendinge
verbranding

De indeling inwendige/uitwendige verbranding komt praktisch overeen met de indeling
open/gesloten systemen. Bij een gesloten systeem is er een medium dat al circulerend de
verschillende toestandsveranderingen ondergaat. Het is daarbij mogelijk dat het medium
beurtelings in de gas- en in de vloeistoffase verkeert. Een open systeem heeft een toevoer
en een afvoer, waardoor het medium wordt toe- dan wel afgevoerd. De stoomlocomotief is
een voorbeeld van een open systeem. Steeds wordt vers water toegevoerd; de afgewerkte
stoom (stoom die arbeid verricht heeft) verlaat door de schoorsteen de locomotief. Door
tussenschakeling van een condensor is van dit open systeem een gesloten systeem te
maken. De afgewerkte stoom wordt dan in de condensor gecondenseerd en vervolgens
weer als voedingswater aan de ketel toegevoerd.

In alle warmtemotoren zijn drie procesfasen te onderscheiden, namelijk: compressie, ver-
branding en expansie. Het principiéle verschil tussen een zuigermotor en een turbine zit
hierin dat bij een zuigermotor de drie fasen in dezelfde ruimte plaatsvinden, terwijl bij een
turbine de fasen in verschillende ruimten (compressor, verbrandingskamer, turbine) plaats-
vinden. Omdat bij de zuigermotor alles in dezelfde ruimte gebeurt moeten de fasen in
de tijd gescheiden worden. Hiervoor is een (meestal complex) kleppensysteem benodigd.
Ook moeten een toevoer en een afvoer aanwezig zijn. Bij een turbine kunnen alle fasen
continu doorlopen worden. Er is daar geen kleppenmechanisme aanwezig. Het proces als
geheel kent geen toevoer en afvoer van medium. In Figuur 13.8 zijn van de in de tabel
genoemde warmtemotoren de karakteristieken in het p-V-diagram gegeven.

13.3.1 Zuigermotoren

Bij de ottomotor (benzinemotor) is tijdens de compressie een brandbaar mengsel in de
cilinder. Om zelfontbranding te voorkomen kan de compressie niet hoog zijn. Na de
ontsteking stijgt de druk snel. Bij de dieselmotor wordt alleen lucht gecomprimeerd. De
compressie is daarom veel hoger te kiezen. De verbranding vindt meer geleidelijk plaats.

Zowel de ottomotor als de dieselmotor hebben een open cyclus, dat wil zeggen: er is
geen circulerend medium. De verwarmde gassen stromen uit in de atmosfeer en vanuit de
atmosfeer wordt een nieuw mengsel aangezogen. Het belangrijke gevolg van deze manier
van werken is dat geen koeler benodigd is om de uitlaatgassen tot aanzuigtemperatuur
terug te brengen. De afgifte van warmte is volgens de tweede hoofdwet onvermijdelijk
bij de werving van arbeid. Het vermijden van de terugkoeler bespaart gewicht. Deze
motoren leveren daarom een hoog vermogen per kg en zijn daarom aantrekkelijk voor
transportabele eenheden.
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Figuur 13.8 p-V-Diagram van een aantal warmtemotoren. a) Ottomotor, b) Dieselmotor , c)
Stirlingmotor, d) Carnot proces, e) Carnot proces (vloeistof/damp), f) Rankine proces (stoomke-
tel/stoomturbine), g) Brayton proces (gasturbine). De toestandsveranderingen zijn bijgeschreven
volgens Figuur 13.5. Met de pijlen is aangegeven waar warmte aan het proces wordt toegevoerd
(naar binnen gericht) en waar wordt afgevoerd (naar buiten gericht). Al deze kringprocessen worden
rechtsom doorlopen.
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Het in auto’s gemonteerde koelwatercircuit heeft weinig te maken met de beschreven on-
vermijdelijke warmte-afvoer naar een reservoir met lage temperatuur. Het koelwatercircuit
is aangebracht om enkele motoronderdelen niet te veel in temperatuur te laten stijgen.
Het is aangebracht om technologische redenen, niet om thermodynamische redenen. Als
een auto 100 kW levert, moet tegelijkertijd ongeveer 400 kW aan warmte worden afge-
voerd. Het overgrote deel van deze hoeveelheid gaat weg met de uitlaatgassen, slechts
een klein deel wordt via de radiator afgevoerd.

De stirlingmotor werkt wel met een gesloten systeem. In Figuur 13.9 is de werking
verduidelijkt. De motor bestaat uit tenminste twee cilinders die via een warmtewisselaar
met elkaar in verbinding staan. De linker cilinder wordt continu verwarmd en heeft de
temperatuur Thoog, de rechter cilinder heeft ongeveer de omgevingstemperatuur T},,g.

Bij 1 bevindt zich gasvormig medium (bij voorkeur waterstof of helium) in de linker cilinder.
Het expandeert bij gelijkblijvende temperatuur en drijft de linker zuiger naar beneden (1
— 2). Het gas neemt warmte op. Alleen tijdens deze expansie levert de motor arbeid.

Vervolgens beweegt de linker zuiger naar boven en de rechter naar beneden (2 — 3),
waardoor het gas bij constant volume door de warmtewisselaar stroomt. Het gas geeft
hierbij een deel van de opgenomen warmte af.

Tijdens 3 — 4 volgt isothermische compressie in de rechter cilinder. Het gecomprimeerde
gas wordt bij constant volume teruggebracht in de linker cilinder (4 — 1). Het gas neemt
daarbij warmte op uit de warmtewisselaar. De aanwezige warmtewisselaar vraagt extra
gewicht en volume, maar maakt de motor minder gevoelig voor het soort brandstof. Dit
type motor veroorzaakt relatief weinig luchtverontreiniging.

(=L
[o] IOI[‘E]
3. [ o]
= ==
H[M IOIHm

Figuur 13.9 Principe van de stirlingmotor

warmtewisselaar

[=—I

—_—

4.
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13.3.2 Turbines

De Rankine en Brayton processen maken beide gebruik van een turbine, maar verschillen
in het gebruikte medium. Bij de stoomturbine verkeert het werkende medium (water)
gedeeltelijk in het tweefasen-gebied. Bij de gasturbine blijft het medium gasvormig.
Voor een stoomproces is de in Figuur 13.8.e getekende kringloop mogelijk. Het proces
bestaat uit twee isothermen en twee adiabaten en lijkt dus op een Carnot proces (zie
Figuur 13.8.d), hoewel de p-V-karakteristiek verschillend is. De in het schema aange-
geven adiabatische compressie vindt plaats in het natte gebied. Omdat dit technisch
moeilijk uitvoerbaar is, wordt steeds de karakteristiek van Figuur 13.8.f gebruikt. De
geéxpandeerde stoom wordt geheel gecondenseerd en als vloeistof teruggepompt in de
ketel. Om technische redenen zijn de werkelijke Rankine processen gecompliceerder uit-
gevoerd. Zie Figuur 13.10 voor een eenvoudig schema.

Gasturbines bestaan zowel in stationaire als in mobiele eenheden. De grote stationaire
eenheden hebben een lager rendement dan de Rankine processen, maar zijn veel vlugger
in bedrijf te stellen en dientengevolge in gebruik voor het opvangen van piekvermogens.
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voedingspomp condensaatpomp

Figuur 13.10 Schema van stoominstallatie met ketel en turbine. Door over- en herverhitting heeft
de turbine steeds droge stoom. Het voedingswater wordt voorgewarmd zowel door aftapstoom als
door rookgassen.
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Mobiele Brayton processen zijn bekend onder de naam straalmotor. Zie Figuur 13.11. In
de raket en de ramjet ontbreekt de compressor. Bij alle straalmotoren is het van belang dat
de verbrandingsgassen met grote snelheid uitstromen. In Figuur 13.12 is nog aangegeven
dat er tussen de zuigermotor en de turbine allerlei hybride vormen bestaan.

raket turbojet

ramjet turboprop

Figuur 13.11 Verschillende vormen van straalmotoren. Bij alle straalmotoren stromen de uitlaat-
gassen met grote snelheid uit. De raket voert behalve brandstof ook oxydant mee. Bij de ramjet
ontstaat de luchtcompressie door de (veronderstelde) hoge snelheid. De turbomotoren hebben een
eigen compressor. Bij de turboprop wordt een deel van het motorvermogen aan een propeller afge-
geven.

Y

FE T —

— ———

b. d.

Figuur 13.12 a) Schematische tekening van een zuigermotor, die in (b) voorzien is van een inlaat-
compressor, voor het verkrijgen van een betere cilindervulling. c) De compressor is aangedreven
door een uitlaatgasturbine. Bij verdere vergroting van de turbine kan aan de turbine het gehele
vermogen worden afgenomen. d) Dan kan ook de zuigermotor vervangen worden door een verbran-
dingskamer en ontstaat het schema van een gasturbine.
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13.4 Warmtepompen

13.4.1 Koelprocessen

Het warmteproces van Figuur 13.7 is ook andersom te gebruiken. Bij de theoretische
afleiding is verondersteld dat alle toestandsveranderingen omkeerbaar verlopen. Dat geeft
eenzelfde karakteristiek die alleen andersom wordt doorlopen. De warmtemotor is dan
gewijzigd in een warmtepomp. Zie Figuur 13.13.

reservoir met reservoir met
hoge temperatuur hoge temperatuur

1 T

w
warmtemotor __b warmtepomp Q:]

IE i

reservoir met reservoir met
lage temperatuur lage temperatuur

Figuur 13.13 Bij een warmtemotor wordt een deel van de toegevoerde warmte QQj, omgezet in arbeid.
Het resterende deel Q; moet worden afgevoerd. Een warmtepomp is in staat om thermische energie
te onttrekken aan een reservoir met lage temperatuur. Dit alles is alleen mogelijk als een grotere
hoeveelheid warmte Qj, = Q; = W bij een hogere temperatuur wordt afgevoerd.

Met een warmtepomp wordt warmte vanuit een reservoir met een lage temperatuur over-
gebracht naar een reservoir met een hoge temperatuur. Een voorbeeld is de koelkast.
Figuur 13.14 geeft een uitvoering van een compressiekoelkast en de proceskarakteristiek
in het p-V-diagram. Er wordt gasvormig medium gecomprimeerd in de fase 3 — 4. Bij
het vloeibaar maken in de condensor (fase 4 — 1) wordt ), aan de omgeving afgege-
ven. In de verdamper onttrekt het circulerende medium de verdampingswarmte @); aan
de koelruimte. De totaal benodigde arbeid bedraagt W.

13.4.2 Rendement

Ook voor koelprocessen is een rendement 7) = resultaat / inspanning op te stellen. In dit
geval dus n = Q;/W. Onder invoering van de soortelijke warmte c is te schrijven:

1

N= g
o1

(13.6)
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In de meeste gevallen is Tj, /T; < 2, wat betekent dat het rendement groter dan 1 (100%)
is. Veel voorkomende praktische waarden zijn n = 4 a 7. Een lagere koeltemperatuur,
dus grotere T}, /T;-waarde, resulteert in een lagere 1. Een waarde ) = 4 betekent Q; = 4
W.

Het is dan mogelijk met een hoeveelheid (hoogwaardige) mechanische energie W een 4
maal grotere hoeveelheid (laagwaardige) thermische energie te onttrekken. De bij hogere
temperatuur weer af te geven hoeveelheid warmte bedraagt zelfs een vijfvoud (7 + 1) van
de toegevoerde mechanische arbeid W.

condensor

compressor

Figuur 13.14 Een koelkast. a) Functioneel schema. b) De geidealiseerde werkingscyclus in het
p-V-diagram. Het koelmedium (freon of ammoniak) wordt in de compressor gecomprimeerd (3
— 4). Het verdichte gas stroomt naar de condensor waar het door de warmteafgifte Qp, in de
vloeibare fase (1) komt. Na de expansie (1 — 2) vindt verdamping plaats (2 — 3) en wordt Q
aan de koelruimte onttrokken. In de gasvormige toestand (3) stroomt het medium weer naar de
compressor.

Hieruit volgt een interessante toepassing van de warmtepomp. De installatie kan effectief
gebruikt worden voor verwarming bij kleine verschillen tussen T}, en T;. Zie hiervoor §
13.4.4.

Bij dit alles blijft gelden dat de voor de warmtepomp benodigde hoogwaardige ingangs-
energie uiteindelijk weer verkregen is uit warmte met behulp van een warmtemotor.

13.4.3 Absorptie-koelsystemen

In water van lage temperatuur kunnen grote hoeveelheden ammoniakgas oplossen. Bij
verwarming van een oplossing komt dit ammoniakgas weer vrij. Op dit principe berust een
koelsysteem waaraan alleen warmte behoeft te worden toegevoerd. Principieel is het sys-
teem voor te stellen als een combinatie van warmtemotor en warmtepomp. Figuur 13.15
geeft het schema van een absorptie-koelkast. Het rendement van het absorptiesysteem is
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laag. De huidige toepassing ligt op het gebied van de zeer kleine vermogens: transporta-
bele koelkasten. Er liggen voorstellen om het systeem ook te gebruiken voor huishoudelijke
verwarmingsinstallaties met warmtepomp. Zie § 13.4.4. Het nadeel van het geringe ren-
dement weegt dan niet zwaar omdat de afvalwarmte nuttig gebruikt kan worden, terwijl
het systeem het voordeel van een geringere lawaaiproductie heeft.
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Figuur 13.15 Principeschema van een absorptiekoelkast. In de absorber neemt het water ammoni-
akgas op, dat in de generator weer ontwijkt. De ontwijkende damp neemt in een percolatorsysteem
wat vloeistof mee omhoog. De ammoniak condenseert in de condensor. De verdamper is in de
koelruimte geplaatst en onttrekt daaraan de verdampingswarmte. Vervolgens stroomt het gas terug
naar de absorber. Het aangebrachte waterstofgas heeft een functie in de noodzakelijke drukveref-
fening tussen het hoge-druk deel en het lage-druk deel.

13.4.4 Verwarming met warmtepomp

Met het samenstel van warmtemotor en warmtepomp is een zeer effectieve installatie
voor leefruimteverwarming te verkrijgen. Hierbij wordt zowel de afvalwarmte van de
warmtemotor als de opgepompte warmte van de warmtepomp benut voor verwarming.
Figuur 13.16 geeft het schema.

Het alternatief is de directe omzetting van de uit brandstof verkregen energie @Q; in
warmte voor verwarming. In het ideale geval (geen verliezen) is dan ook Q; beschik-
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baar voor verwarming. In het schema van Figuur 13.16 wordt een deel van ); omgezet in
(hoogwaardige) mechanische energie W, die gebruikt wordt voor de aandrijving van een
warmtepomp.

De pomp onttrekt een hoeveelheid ); aan de omgeving en geeft de warmte Q, = Q;+W
af aan de verwarmingsinstallatie.

Met Q, = Q; + W en Q; = Q, + W s te schrijven:

Qu=0Q;+Q (13.7)

Ten opzichte van de directe omzetting van de toegevoerde energie is nu dus de hoeveelheid
Q; méér voor verwarming beschikbaar. Voor het totaal rendement geldt:

Qu Q W Qi

Not = @ =1+ @ =1+ @ W = 1 + Nwarmtemotor * Tlwarmtepomp (138)

Met reéle waarden 7yarmtemotor = % €N Nwarmtepomp = 4 volgt voor het totale rendement
Neot = 2.

Praktische installaties hebben een lager rendement (warmteproductiegetal) 7or = 1,0-1,9.

toegevoerde opgepompte

warmte warmte
Q; Qo
w
warmtemotor warmtepomp
Q QL warmte voor
b verwarming
Qy

afvalwarmte warmtemotor

Figuur 13.16 Schema van verwarmingsinstallatie met warmtepomp. De door de warmtepomp op-
gepompte warmte wordt samen met de afvalwarmte van de warmtemotor gebruikt voor verwarming
bij lage temperatuur, zoals bijvoorbeeld voor gebouwen.

Figuur 13.17 geeft nog een analogon van de werking van een met een warmtepomp
uitgevoerde verwarmingsinstallatie.
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hooggelegen reservoir

turbine

ARARRN TR

laaggelegen reservoir

a. b.

Figuur 13.17 Hydraulisch analogon voor ruimteverwarming met warmtepomp. a) In een waterbak
stroomt een hoeveelheid water Q1 vanuit een hooggelegen reservoir. Uit de waterbak stroomt
eenzelfde hoeveelheid naar het laaggelegen reservoir. b) De verbeterde installatie: Aan het vallende
water wordt nog energie onttrokken met behulp van een waterturbine. De turbine drijft een pomp
aan die een hoeveelheid Q2 uit het laaggelegen reservoir eveneens in de waterbak pompt. In en uit
de waterbak stroomt nu de grotere hoeveelheid Q1 + Q2 > Q1.

Zoals vermeld in § 13.4.2 is het rendement van de warmtepomp hoger naarmate de uiterste
temperaturen dichter bij elkaar liggen. Daardoor is het zinvol grotere radiatoren met een
lage watertemperatuur of luchtverwarming toe te passen (dan wordt T}, laag). De variatie
in de buitentemperatuur T; veroorzaakt de spreiding in het opgegeven rendement. Bij
zeer lage buitentemperatuur is het te behalen voordeel gering.

13.4.5 Gecombineerde verwarmings- en koelinstallatie

Uit het eerder gegeven schema in Figuur 13.14 blijkt dat een koelinstallatie twee warmte-
wisselaars kent; de condensor en de verdamper. Bij omkeren van de stroomrichting in het
circuit verwisselen de functies van condensor en verdamper. Wat condensor was wordt nu
verdamper en die onttrekt nu warmte aan de omgeving. Deze warmte wordt in de nieuwe
condensor (was: verdamper) aan de (binnen)omgeving afgegeven. Op deze wijze kan op
eenvoudige wijze een verwarmingsinstallatie met warmtepomp omgeschakeld worden tot
een koelinstallatie, en omgekeerd. Zie Figuur 13.18.
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verwarmen koelen
condensor verdamper
binnen binnen F|—;r]|
Qq
verdamper |
[J
¢ condensor
Qg
compressor compressor
hoge druk
——— lage druk

Figuur 13.18 Door een eenvoudige verwisseling van de aansluiting van condensor en verdamper is
dezelfde installatie zowel voor verwarming als voor koeling van een (binnen)ruimte te gebruiken.

13.5 Vermogens en rendementen

13.5.1 Algemeen

Bij de energetische beschouwingen van alle werktuigkundige machines en apparaten zijn
onder andere de volgende algemene punten te onderscheiden:

1. De energiestroom van of door een apparaat heeft doorgaans een geheel verschillende
waarde, afhankelijk van het feit of het een continu leverbaar vermogen betreft of
een piekvermogen. Vele motoren — ook de dierlijke spier — kunnen kortstondig een
piekvermogen leveren dat enkele malen groter is dan het continu vermogen. Zie
Figuur 13.19.

Figuur 13.20 geeft nog de toename in de geleverde continuvermogens van een aantal
machines in de loop der jaren (figuur uit 1987).

2. Veelal is niet alleen het door een motor te leveren vermogen van belang, maar zijn
ook andere gegevens zoals gewicht, afmetingen, aanwezigheid van trillingen, lawaai-
niveau, enzovoorts van betekenis. Voor transportmiddelen zoals auto’s, vliegtuigen
en boten is niet alleen de te bereiken snelheid, maar ook de door de motor in te
nemen ruimte en massa belangrijk. Voor deze motoren wordt het specifiek vermo-
gen (dit is het per massaeenheid geleverde vermogen) opgegeven. Figuur 13.21 (uit
1987) geeft de bereikte verbeteringen in het specifiek vermogen van pneumatische
boorapparatuur.
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Figuur 13.19 Door de mens te ontwikkelen vermogen als functie van de tijdsduur waarin dit ver-
mogen is te leveren. Een vermogen van meer dan 1 kW kan niet langer dan ongeveer 1 s worden
geleverd. Voor langere tijd is slechts een vermogen van ongeveer 0,2 kW beschikbaar. Atleten
komen tot hogere prestaties. Zij bereiken veelal een veelvoud van de hier gegeven vermogens.
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Figuur 13.20 Toename van de geleverde vermogens van een aantal grote machines in de loop der
Jjaren (figuur is uit 1987).
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Figuur 13.21 Verbetering van het gewicht en het geleverde vermogen van pneumatische boorappa-
ratuur (1987): a) in de loop der jaren; b) de daaruit berekende specifieke vermogens.

3. Van steeds grotere betekenis wordt het rendement van een motor of apparaat. De
energievoorraden in de wereld zijn beperkt en dienen dus zo effectief mogelijk te
worden gebruikt. Het rendement van een machine is gedefinieerd en nader besproken
in de paragrafen 13.2.3 en 13.4.2.

De technische ontwikkeling van de laatste jaren heeft voor diverse apparaten een
aanzienlijke rendementsverbetering bereikt. Figuur 13.22 (uit 1987) laat zien hoe
het rendement van de stoomaandrijving is verbeterd van ongeveer nul tot bijna 50%.
Figuur 13.23 laat de rendementstoename van enkele andere energiebronnen zien.
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Figuur 13.22 Rendementstoename van stoomgedreven machines.
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Figuur 13.23 Rendementstoename in de tijd van enkele energiebronnen (figuur uit 1987).

4. In een aantal toepassingen is de snelheid waarmee van de ene bedrijfstoestand naar
de andere kan worden overgeschakeld belangrijk. Een elektrische centrale moet
voldoende snel aan een veranderende energievraag kunnen worden aangepast. Een
verwarmingsinstallatie die slechts lange tijd na inschakelen warmte afgeeft is on-
aanvaardbaar. Platenspelers en audio- en videorecorders bezitten veelal een ser-
vosysteem voor toerentalregeling. Een voldoende snelle toerentalcorrectie is alleen
mogelijk met een voldoende snel reagerende motor.

13.5.2 Tweede hoofdwet-rendement ¢

In het voorgaande is het rendement 7 van een machine gedefinieerd met 1 = (vermogen
uitgang)/(vermogen ingang). Deze alom gebruikte definitie is gebaseerd op de eerste
thermodynamische hoofdwet en geeft dus aan welk deel van de toegevoerde energiestroom
effectief kan worden gebruikt aan de uitgang van de machine. Toch zegt dit rendement
niet zo veel omdat het niet aangeeft of de toegevoerde energiestroom niet beter had
kunnen worden gebruikt.

Ter verduidelijking zijn in Figuur 13.24 twee warmtemotoren met elkaar vergeleken. Beide
motoren krijgen 100 eenheden warmte (per tijd) toegevoerd.

Motor A levert 15 eenheden arbeid (per tijd) en lijkt dus volgens de gegeven rendements-
definitie een betere motor dan motor B. Toch is dat schijn. De 100 warmte-eenheden van
motor A worden toegevoerd bij 1000 °C. Bij een omgevingstemperatuur T, = 20 °C zou
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motor A, volgens Carnot (zie 13.2.3), een rendement kunnen hebben n = 1 - (293/1273)
~ 77%.

Het maximaal mogelijk rendement van motor B bedraagt n = 1 — (2103/473) =~ 38%.
Motor B krijgt zijn 100 eenheden warmte-energie bij lagere temperatuur aangevoerd.
Daaruit zijn theoretisch niet meer dan 38 eenheden arbeid te verkrijgen.

Omdat motor B 10 arbeidseenheden levert is het een beter werkende machine dan motor
A die theoretisch 77 arbeidseenheden zou kunnen leveren en er maar 15 afgeeft.

Het eerste hoofdwet-rendement 1 zegt dus alleen iets over de verdeling van energiestromen
in een machine, maar zegt niets over de kwalitatieve prestatie van deze verdeling. Het
zou wenselijk zijn te kunnen aangeven in hoeverre een machine thermodynamisch goed
geconstrueerd is.

T,=1000 °C Ti=200 C

warmtemotor A :b warmtemotor B #

To=20°C To=20°C

Figuur 13.24 Vergelijking van twee warmtemotoren. Motor A heeft een thermisch rendement (eerste
hoofdwetrendement) van 15% tegen motor B 10%. Toch is motor B een beter technisch ontwerp.
Dat blijkt uit de vergelijking van de tweede hoofdwetrendementen; voor motor A 19% en voor
motor B 26%.

Daarnaast heeft het eerste hoofdwet-rendement 7 nog andere nadelen. Reeds genoemd
is (§ 13.4.2) dat bij koelprocessen rendementen groter dan 100% voorkomen. Daarmee
wordt een vergelijking van het thermodynamische gedrag van warmtepompen met warm-
temotoren onmogelijk.

Een derde bezwaar van het eerste hoofdwet-rendement is dat moeilijk uitspraken kunnen
worden gedaan over het rendement van installaties die zowel mechanische als thermische
energie leveren.

Aan al deze bezwaren wordt tegemoetgekomen door het tweede hoofdwet-rendement, dat
ter onderscheiding met de letter £ wordt aangegeven. Dit tweede hoofdwet-rendement
€ is op twee manieren te definiéren. In het ene geval wordt uitgegaan van de aan de
ingang van de machine toegevoerde energiestroom. Dan wordt berekend hoe groot de
uitgaande energiestroom theoretisch maximaal (volgens Carnot) zou kunnen zijn. Het
quotiént van de door de machine geleverde energiestroom en dit berekende theoretische

368



Energie 13.6 Vermogens en rendementen

maximum geeft het tweede hoofdwet-rendement . Ook is het mogelijk uit te gaan
van de door de machine geleverde nuttige energiestroom. Het quotiént van de daarvoor
theoretisch (volgens Carnot) benodigde energiestroom en de aan de machine toegevoerde
energiestroom levert ook het tweede hoofdwet-rendement ¢ op. Er geldt dan:

uitgaande energiestroom bij werkelijk ingaande energiestroom (13.9)
€= :
theoretisch maximaal mogelijke uitgaande energiestroom

of:

__theor. min. benodigde ingaande energiestroom bij werkelijk uitg. energiestroom

ingaande energiestroom
(13.10)

Voor de bovengenoemde motor A gold een thermisch rendement (eerste hoofdwet-rendement)
van 15%. Volgens Carnot zouden echter theoretisch 77 arbeidseenheden te winnen zijn
geweest. Het tweede hoofdwet-rendement van motor A bedraagt dus e 4 = 15/77 = 19%.
Voor motor B wordt dit e = 10/38 = 26%.

Het rendement ¢ is eigenlijk een technologisch rendement. Het geeft aan in hoeverre
de geleverde prestatie van een machine onder het theoretisch mogelijke blijft, en drukt
daarmee uit in hoeverre de ontwerper zijn vak verstaat. Met dit rendement zijn machines
en apparaten goed onderling vergelijkbaar. Uit de definitie van € volgt dat altijd ¢ < 1,
zowel voor warmtepompen als voor warmtemotoren. Daarmee worden ook deze apparaten
onderling vergelijkbaar. Voorts is het rendement ¢ ook bruikbaar voor installaties die zowel
warmte als arbeid leveren.

De tabel van Figuur 13.25 geeft een overzicht van de eerste en tweede hoofdwet-rendementen
van een aantal machines en apparaten uit 1987. Er blijkt uit dat toen alleen warmtepom-
pen, automotoren en elektrische centrales redelijk goed thermodynamisch functioneren.

n £
centrale 03-04 03-04
waterverwarming 0,6 0,03
oven 0,7 0,08
auto 0,2 0,1
warmtepomp 2,5 0,1-0,2
airconditioning 2,0 0,04
destillatie 0,01
vriesdroger 0,02
elektrodialyse 0,01
omgekeerde osmose 0,06

Figuur 13.25 Vergelijking van een aantal eerste en tweede hoofdwet-rendementen (1987).
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13.6 Energieopslag

De optredende verschillen tussen de energieproductie en de energieconsumptie maken het
wenselijk dat energie tijdelijk kan worden opgeslagen. De verschillende soorten energie
zijn elk op hun eigen wijze op te slaan. Zie ook de tabel van Figuur 13.26.

- Thermische energie. Warmte is op te slaan door verhitting van een massa. Materi-
alen met een hoge soortelijke warmte zijn in het voordeel. Ook is het mogelijk om
gebruik te maken van de smelt- en stollingswarmte. Bij opslag van warmte smelt
de gebruikte massa, bij stolling wordt die warmte weer afgegeven.

- Elektrische energie. Door een hoeveelheid water op een hoger niveau te brengen kan
potentiéle energie worden opgeslagen, die naderhand met behulp van waterturbines
is terug te winnen. Potentiéle energie is ook op te slaan door een vat te vullen
met een gecomprimeerd gas. Vliegwielen kunnen een hoeveelheid kinetische energie
opslaan.

- Chemische energie. De bekende energiedragers steenkool, olie, en gas behoren tot
dit type. Bij verbranding komt de opgeslagen energie vrij. Waterstof en methanol
zijn op industriéle schaal te produceren.

De tabel van Figuur 13.26 geeft de opslagcapaciteit van de verschillende soorten energie
per massa en volume. In de tabel zijn ook de aspecten waarop een opslag wordt beoordeeld
vermeld.

De beoordeelde aspecten:

- Gebruikscycli. De tabel geeft een beoordeling van het ‘vat’ waarin de energie wordt
opgeslagen.

- Levensduur. Ook dit heeft betrekking op het ‘vat’. Een benzinetank gaat bijvoor-
beeld langer dan vijf jaar mee en is als goed beoordeeld.

- Laad- en ontlaadsnelheid. De hieraan te stellen eisen zijn enigszins afhankelijk van
de toepassing.

- Ontladingsdiepte. Het is voordelig als alle opgeslagen energie weer kan worden
opgenomen. Een loodaccu gaat kapot bij diep ontladen. Thermische energie bij
lage temperatuur is onbruikbaar.

- Veiligheid. Een belangrijk aspect, helaas niet verder toegelicht.
- Rendement. Dit geeft aan welk deel van de toegevoerde energie weer is af te nemen.
- Opslagverlies. Ongebruikt weglekken van de energie bij opslag over langere tijd is

nadelig.
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Een bijzondere vorm van energie-opslag wordt gevormd door de energie, benodigd voor
de vervaardiging van materialen. Zoals uit de tabel van Figuur 13.26 (uit 1987) blijkt
vereisen de metalen (vooral aluminium) veel energie bij hun productie. De polymeren
vragen relatief zeer weinig energie, zelfs beduidend minder dan glas en karton.

3
%

3 b 3 $

ey 5 2 > - € =

i ¢ £ 0% & i

opslag _g & 3 = = '§ 2

Kikg  MI/m3| & 2 8 5 2 g o
temp. warmte 360 360| + + ar— - + + /+
smeltwarmte 1500 3000| + + O L= L= + /+
Ni-Cd-accu 800 200| O --/a 8 + - - ()
Pb-accu 600 150| + = (] s & = a
waterkracht 2 2| + + /+ + o/+ -/ +
gecompr. lucht 430 80| + L v+ ] v+ O +
vliegwiel 70 600| + ? ol + 0/+ + —=/0
supervliegwiel 360 600| + ? + + /+ + =/
steenkool 25000 40000 + -+ + + * + +
aardgas, 15MPa 50000 5000] + + + + O + +
aardgas, vloeibaar 50000 20000{ + + + + /] =] v+
stookolie 50000 40000| + + + + + + +
benzine 50000 30000 + + + + 0o+ + +
waterstof, 15MPa | 120000 1500| + + + + =] + +
waterstof, vioeibaar{ 120000 8600| + + + + . —_ &
waterstof, geabs. 1600 4700| + + O/+ + o/+ + +
methanol 20000 18000 + + + + —/0 + +

. . >105 >5 >85 >85 <03
waarderingsverklaring
10%-10° 3-5 70-85 70-85 0,3-1,0
- | <10 <3 <70 <70 >10
jaar % % %

Figuur 13.26 Theoretische opslagcapaciteit en bedrijfstechnische aspecten van een aantal energie-
dragers (1987).

13.7 Energietransport

Omdat brandstofwinning, energieproductie en energieverbruik niet op dezelfde plaats ge-
beuren is transport onvermijdelijk en daarmee samenhangend de transportkosten.
Elektrische energie kan met een hoog tot zeer hoog rendement in andere energievor-
men worden omgezet. Fossiele energieén kunnen alleen met een hoog rendement in
warmte worden omgezet. De omzetting van warmte naar andere energievormen gaat met
een rendement van ongeveer 30%. De laatste twee opmerkingen gelden voor het eerste
hoofdwet-rendement 7. Voor de tweede hoofdwet-rendementen zie §13.5.2.
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Hoofdstuk 14

Eenheden

In dit boek worden consequent alle fysische grootheden in de wettelijk voorgeschreven Sl-
eenheden uitgedrukt. Hoewel dit stelsel al in 1960 werd ingevoerd, zijn bepaalde eenheden
voor sommige lezers toch nog steeds onvoldoende bekend of ongebruikelijk. Daarom zijn
de gebruikte eenheden van de in dit boek voorkomende grootheden nader toegelicht. In
Figuur 14.1 is een tabel gegeven.

Indien namen van eenheden voluit worden vermeld, dan hoort dat altijd in enkelvoud en
helemaal in kleine letters (onderkast), ook als de naam van de eenheid van een bepaalde
persoon is afgeleid. Dus: meter, watt; niet METER, niet meters; niet watts, niet Watt.

Symbolen van eenheden worden geschreven met een kleine letter (ook als de overige tekst
in hoofdletter staat) behalve als de naam van de eenheid is ontleend aan de naam van een
bepaalde persoon. Achter een symbool komt geen punt (een symbool is geen afkorting).

Symbolen van gecombineerde eenheden worden steeds door een punt gescheiden. Voor
het moment van een kracht als eenheid N- m gebruiken en niet Nm; een traagheidsmo-
ment uitdrukken in kg- m? en niet kgm?.

Om de eenheden eenvoudiger te kunnen uitdrukken zijn voorvoegsels in gebruik. In het
Sl zijn de meest gebruikte:

n nano = 1079
p micro = 1076

m milli = 1073
k kilo = 103
M mega = 10°
G giga = 10°

De keuze van het voorvoegsel is afhankelijk van de numerieke waarde van de uit te drukken



14.0

Eenheden

grootheid. Algemeen wordt gestreefd naar eenheden waarbij niet meer dan drie of vier
cijfers voér de komma hoeven te staan en breuken in de maataanduiding vermeden worden.
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fysische grootheid Sl-eenheid

symbool naam symbool naam
lsa,... lengte m meter basiseenheden
m massa kg kilogram

f tijd 8 seconde

T temperatuur K kelvin

o hoek rad radiaal

a fp hoek @ booggraad
A oppervlak m

|4 volume, inhoud rn3

v snelheid m's

@ hoeksnelheid rad/s
f.o frequentie Hz hertz (1/s)

a, g versnelling m/s”

o soortelijke massa kgf’m3

FWNG,.. kracht, gewicht N newton (kg- mﬁsz)
M koppel N-m

a,7 materiaalspanning

E elasticiteitsmodulus N/m” = Pa pascal

P druk N/m” = Pa pascal

W, E QO energie, arbeid, warmte J joule (N-m)
P vermogen W watt (N-m/s)
LJ kwadratisch oppervlaktemoment m

W weerstandsmoment m’

I massatraagheidsmoment lig-m2

i dynamische viscositeit N-s/m” = Pa's

¢ veerconstante N/m

Figuur 14.1 Uit de vier vermelde basisgrootheden zijn alle andere grootheden af te leiden.
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Symbolen van voorvoegsels worden zonder spatie en zonder punt védér de symbolen van de
eenheden geplaatst. Dus: milligram = mg en niet m.g. Het symbool m- g zou een eenheid
van een kracht of van arbeid (meter-gram) kunnen zijn. Combinaties van voorvoegsels
moeten worden vermeden. 107 joule wordt geschreven 10 MJ en niet 1 daMJ (waarbij da
het voorvoegsel deca is, oftewel: 10).

Hieronder zijn korte definities van enkele grootheden gegeven.

- Alle krachten zijn in newton uitgedrukt. Een kracht van 1 newton (1 N) geeft aan
een massa van 1 kilogram (1 kg) een versnelling van 1 m/s%.
Andersom geldt, dat de versnelling van de zwaartekracht, gelijk aan 9,81 m/sZ, op
een massa van 1 kg een zwaartekracht (gewicht) uitoefent van 9,81 N. Deze waarde
is gelijk aan de vroeger gebruikte kilogramkracht ‘kgf’ of ‘kp’.

- Een materiaalspanning, elasticiteitsmodulus of druk van gas of vloeistof heeft een
dimensie van krachtsdichtheid, dus kracht per eenheid van oppervlakte: N/m?Z.
Deze eenheid heeft een officiéle benaming: pascal (Pa). Voor een betere overzich-
telijkheid is echter de eerste aanduiding (N/m?) gebruikt.

Voor materiaalspanning is de meest geschikte eenheid MN/m?, terwijl voor de elasti-
citeitsmodulus van metalen GN/m? beter bruikbaar is. Voor gas- of vloeistofdrukken
is vaak kN/m? in gebruik om breuken in de maataanduiding te vermijden.

De oude eenheid 1 atmosfeer is ongeveer gelijk aan 100kN /m?.

- De snelheid (de afgelegde weg per tijdseenheid) moet uitgedrukt worden in m/s.
Voor berekening van vermogen, energie of remweg is het gebruik van deze een-
heid onvermijdelijk. In dit boek is echter bij sommige grafieken voor een betere
voorstelbaarheid de snelheid ook in km/h aangegeven.

- De energie van 1 J is de arbeid die verricht moet worden om een voorwerp met een
kracht van 1 N een afstand van 1 m te verplaatsen (1 J =1 N-m). Het vermogen dat
daarbij geleverd moet worden is afhankelijk van de tijdsduur, waarin deze energie
vrij-gegeven wordt. De eenheid van vermogen is watt (1 W = 1 N-m/s). Alle
vermogens — ook de mechanische — worden in watts uitgedrukt. Deze eenheid is dus
niet slechts voorbehouden aan elektrische apparaten, zoals de algemene opinie nog
is. Het opgeven van vermogens van motoren gebeurt nog steeds niet consequent.
Bij verbrandingsmotoren is het vermelde vermogen altijd het aan de as afgegeven
vermogen. Bij elektromotoren is meestal het opgenomen vermogen vermeld.

- De soortelijke massa is de massadichtheid, dus de hoeveelheid massa per volume-
eenheid: kg/m3. De vroeger gebruikte eenheden zoals g/cm?® zijn voor berekeningen
minder geschikt.

- In berekeningen en grafieken wordt voor de frequentie van harmonische trillingen w
de eenheid voor hoeksnelheid gebruikt: rad/s. Omdat het aantal volledige trillin-
gen per seconde beter voorstelbaar is, wordt naast w ook de frequentie v = w/27
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gebruikt, uitgedrukt in hertz (1 Hz = 1/s).

Dezelfde redenering geldt voor de snelheid van draaiende toestellen. De hoek-
snelheid w is uitstekend geschikt om bijvoorbeeld vermogens direct uit te rekenen,
terwijl het aantal omwentelingen per minuut n = 30w/7 een eenvoudiger beeld van
de werkelijkheid geeft.

De radiaal is de hoek tussen twee stralen van een cirkel, die op de omtrek een boog
afsnijden waarvan de lengte gelijk is aan de straal. Voor hellingshoeken (bijvoor-
beeld bij schroefdraden, vliegtuigvleugels) is echter de booggraad (7 rad = 180
booggraden) meer gebruikelijk.

- Voor de temperatuur is in enkele gevallen gebruik gemaakt van graden Celcius (°C

= K = 273) in plaats van K. Dit ook weer om redenen van betere leesbaarheid.

Omdat in een deel van de literatuur en in opgaven van fabrikanten nog steeds oude, niet
meer toegestane, eenheden gebruikt worden, geeft de tabel van Figuur 14.2 de omreke-
ningsfactoren weer.

fysische grootheid omrekening naar SI-eenheid
kracht, gewicht 1 kgf=98=10N
materiaalspanning 1 kgfiem? = 0.1 MN/m?
elasticiteitsmodulus 1 kgfiem? = 0.1 MN/m?
druk I at = 100 kN/m” = 100 kPa
energie lcal=4271]

vermogen lpk=T736 W

Figuur 14.2 Omrekening van oude, niet meer toegestane eenheden naar de Sl-eenheden.

In bepaalde vakgebieden wordt veel Engelstalige literatuur geraadpleegd. De tabel van
Figuur 14.3 geeft de globale omrekeningsfactoren.

Enkele normen op het gebied van eenheden zijn:

- NEN-EN-ISO 80000 - deel 1 t/m 11: Grootheden en eenheden:

- NEN-EN-ISO 80000-1 Deel 1 Algemeen - 2013
- NEN-EN-ISO 80000-4 Deel 4 Mechanica - 2019

- NEN 3049 - Herleiding van eenheden tot Sl-eenheden - 1978 nl
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fysische grootheid engelse benaming of afkorting globale omrekening
1 inch =254 mm
lengte 1 foot =03m
1 mile = 1,6 km
oppervlak 1 square inch =6,5 em’
volume 1 cubic inch =16 cm’
1 ounce (0z) =28g
massa 1 pound (1b) =045kg
vermogen 1 horsepower (hp) =0,75 kW
spanning
elasticiteitsmodulus 1 psi (pound per square inch) =0,8 KN/m’
druk
temperatuur x°F 5/6 (x+460) K
soortelijke massa 1 Ib/in’ 28-10°kg/m’

Figuur 14.3 Tabel van globale omrekenfactoren voor eenheden uit Engelstalige literatuur.
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