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Executive summary

The existing hydrodynamic models consider full physics approaches to calculate storm surge at coastal regions. 
However, due to the complexity of the equations that model these processes, the computational time and power 
required to run them can be large, compared to models that consider simplified equations. By contrast, simpli-
fied hydraulic models lack physical background, what leads to a minor accuracy in the surge estimations with 
respect to hydrodynamic models. In this project, a stochastic model has been developed with the objective to 
estimate surge at the coast of Mississippi (United States) at a reasonable accuracy and time, without solving 
equations that represent complex physical processes.

The stochastic model needs to be trained by means of hurricane data, including surge levels. This information 
must be generated beforehand, by simulating a limited number of hurricanes with an hydrodynamic model. In 
this project, the hydrodynamic model Delft3D Flexible Mesh has been used for this purpose. The approach 
followed to build the stochastic model has been based on three main steps. The first step has been setting 
up and validating the hydrodynamic model in Delft3D FM. Hurricane Katrina (2005) has been simulated to 
calibrate the input parameters of the model, by comparing the maximum simulated water levels at 41 stations 
along the shoreline of Mississippi to the high water marks observed at the same locations during the event. 
Tide, surge and wave setup have been considered in the validation. An unstructured mesh with a maximum 
resolution of 200 meters at the shoreline of Mississippi has been used. This mesh comprises the entire Gulf of 
Mexico and presents open sea boundaries at the Yucatan Channel and the Florida Strait, where an astronomical 
tide has been imposed. The adaptation of the Holland model made by Veltcheva [81] is applied to generate the 
hurricane forcing. The wind drag has been prescribed based on the model of Makin [47]. The results of the 
validation show a line best fit slope from the origin of 0.912 and an R2 of 0.996. At Gulfport, the absolute error 
of the surge estimation is 19 centimeters, equivalent to a relative error of 2.5%.

The second step in the construction of the stochastic model has been the generation of a historical hurricane data 
base. The hurricane best tracks have been retrieved from the HURDAT2 data base. The variables considered 
have been the forward speed and the forward direction of the hurricane at landfall, the wind speed at landfall, 
the distance from landfall location to a reference point (Galveston Bay) and the maximum storm surge during 
the hurricane. In this case, only the hurricane forcing is considered as external action. The storm surge has 
been recorded at Gulfport Harbour (central coast of Mississippi). The values of the surge have been obtained 
by using the validated model to simulate the historical hurricanes making landfall in a rectangular domain of 
600 kilometers, being Gulfport Harbour the center of the rectangle. Due to the scarce number of hurricanes 
making landfall in this region, the tracks of the hurricanes making landfall in the North of the Gulf of Mexico 
but outside the rectangular domain have been shifted inside the domain, in order to generate a su�ciently large 
data base to train the stochastic model. A data base with 140 hurricanes has been built, from which the 85%
(119 hurricanes) have been used for the training of the stochastic model and the other 15% (21 hurricanes) have 
been used for the validation of the stochastic model.

The third and last step has been the setup and validation of the stochastic model, by comparing the storm surge 
obtained from the stochastic model to the surge obtained from the hydrodynamic simulations. The stochastic 
model used to estimate storm surge has been a Bayesian Network that assumes normal copulas to represent 
the joint distribution between nodes of the network. The Bayesian Network provides the uncertainty of the 
estimation by giving a normal distribution of the surge. The calculated slope of the best fit line for the mean 
surge values has been 0.861, with an R2 of 0.885. Moreover, the average standard deviation of the estimations 
is 1.16 meters. These results indicate a reasonable estimation of the surge by means of the Bayesian Network. 
This estimation can be made in the order of seconds.
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CHAPTER 1

Introduction

1.1 Motivation
Global cities are the engine for the economic development of the countries and the global economy. Most of the
global cities are located close or on the coast, what has enhanced their commercial relationships with the rest
of the world and contributed to their wealth [10]. Many of these cities are also located close to river mouths,
benefiting also from the trade flowing in and out of the inland waterway network. However, coastal regions are
vulnerable to climate hazards, particularly those cities located in tropical areas, due to the occurrence of tropical
cyclones. Amongst the natural hazards, flooding has been reported as the most catastrophic, in monetary terms
[52] and in life terms [75].

Coastal flooding due to the storm surge generated by hurricanes has particularly drawn the attention of in-
surance companies and funds, due to the severity of the consequences of these extreme events. For instance,
the Hurricane Katrina hit the Atlantic coast of the United States in August 2005, triggering itself more flood
insurance claim payments by the National Flood Insurance Program (NFIP) than the payments made over the
life of the program to that point ($16 billion) [42].

Despite the uncertainty in the connection between tropical cyclone frequency and climate change declared by
the scientific community, warmer ocean temperatures and higher sea levels are expected to intensify the im-
pact of tropical cyclones [7]. In these circumstances, the improvement of the estimations of storm surge and
coastal flood in cyclone-prone areas is an issue of current interest in the coastal engineering field. Moreover, an
additional challenge regarding this topic is the reduction of the time of simulation to estimate these water levels.

The flood risk is defined as the product of the probability of occurrence of a flood event and the consequences
[38]. The recent increase of the flood risk in tropical areas is due to two reasons:

• Increase of probability of occurrence of flood events: As mentioned in [7], there is no sign that
indicated that the frequency of tropical cyclones is increasing due to climate change, but records indicate
that there is a progressive intensification of the tropical cyclones., Therefore, there are more tropical
cyclones causing floods, what boosts the probability of flooding, together with the sea level rise. The
tropical cyclone intensity (i.e. more precipitation) is enhanced by the rise of the seawater temperature.
This phenomenon accelerates the evaporation of sea water, what leads to more accumulation of water in
the clouds and therefore heavier rainfall events. On the other hand, several recent studies suggest that
the sea level rise by 2100 can reach the 2 meters [33].

• Aggravation of the consequences of flood events: The concentration of population and the eco-
nomical activity in coastal regions aggravate the consequences of flooding, due to the larger exposure of
lives and property to flood.

1.2 Problem definition and research questions
Hydraulic models are used to assess the e�ects of a flood event in a specific domain. The ideal hydraulic model
should be able to predict surge and flooding in a short time span and with high accuracy. However, the existing
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models either require large computational time and power to simulate these hydraulic phenomena or they are
capable of estimating flood in a shorter time but with larger uncertainty. This fact makes each model suitable for
di�erent objectives. For rough estimations of flood, the bucket-fill approach is commonly used. The advantage
of this method is the fast speed of calculation. However, the method uses simplifications of the physical laws,
what leads to achieve a limited level of accuracy in the results. On the other hand, hydrodynamic models such
as Delft3D Flexible Mesh are very accurate due to their strong physical background, but computationally more
expensive.

The objective of this project is to develop a model that finds a trade-o� between computational time and
accuracy in the results. To meet this purpose, a stochastic model is developed. The stochastic model needs to
be trained by means of hurricane data, including surge levels. This information must be generated beforehand,
by simulating a limited number of hurricanes with an hydrodynamic model. Based on this approach, a main
research question is formulated:

Is it possible to estimate storm surge at reasonable accuracy and time in the coast of Mississippi by using a
stochastic model?

The research question can be answered by responding several sub-questions:

• How should the di�erent input of the hydrodynamic model be calibrated to simulate surge at high fidelity?

• How should the hurricane data scarcity be tackled in order to generate a su�ciently large data set for the
training of the stochastic model?

• What is the accuracy of the surge estimation and the time of computation of the stochastic model?

By answering these questions, the following objectives will be fulfilled:

• Setup and validation of an hydrodynamic model for the coast of Mississippi.

• Generation of a hurricane database, including storm surge levels.

• Setup and validation of a stochastic model capable of estimating storm surge at the coast of Mississippi.

1.3 Research location

According to the objectives outlined above, this project is a first step in the development of a high-fidelity
stochastic model that can predict storm surge and coastal flood worldwide. In this project, the area of study is
the coast of Mississippi, in the United States (Figure 1.1). Three main reasons have led to select this region as
research site:

• Coastal morphology: The assumption of alongshore uniform coast in the Mississippi state is reasonable,
what simplifies the elaboration of the stochastic model by neglecting the influence of coastal morphology.

• Absence of flood defences: The Mississippi coast is characterized by the absence of coastal defences.
Consequently, the complex 3D e�ects on the flow (such as vertical turbulence) that result from the failure
of levees or other coastal defences do not need to be considered in the model, simplifying the model setup.

• Societal interest: Due to the economic development of the region and the frequent occurrence of hurri-
canes, the relevance of the research on surge estimation in the area is high.

• Data availability: The North Atlantic historical catalogue of hurricanes provided by the National Hurri-
cane Center of the United States (HURDAT2) is extensive and accessible, what guarantees the statistical
significance of the hurricane sample.
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Figure 1.1: The storm surge is modelled for the Mississippi coast, which is shown in this figure.

1.4 Structure of the report
This report starts with an introduction to the project (Chapter 1). The objective of this chapter is to explain
the motivation of the project, to define the problem and the research questions to be tackled and to justify the
location where the research focuses.

The report proceeds reviewing the state of the art on storm surge modelling, in Chapter 2. First, there are
described the physical processes that govern hurricanes and storm surge. Subsequently, the physical modelling
and the stochastic modelling of storm surge due to hurricanes is reviewed. For the physical modelling approach,
it is gathered information about the inputs to be implemented in Delft3D FM . For the stochastic modelling
of surge, relevant theory on Bayesian Networks is summarized. In Chapter 3, it is explained the methodology
followed to achieve the stochastic model. The explanation of the methodology is complemented with a flow chart.

Chapter 4 is dedicated to the setup and validation of the physical model. For the calibration and validation of
the model, Hurricane Katrina (2005) is simulated. The resulting water levels from the simulations in Delft3D
FM are compared to real data . Once the model is validated, the storm surge generated by a finite number
of hurricanes can be modelled, and a hurricane data base can be elaborated. This procedure is explained in
Chapter 5. In Chapter 6, a Bayesian Network is trained and validated by using the the hurricane catalogue.
In Chapter 7 the results of the physical and stochastic modelling are discussed. The limitations of the models
are described. Finally, Chapter 8 gathers the conclusions on the results achieved, by giving answers to the
research question and sub-questions formulated at the beginning of the project.





CHAPTER 2

Literature review

To build a stochastic model capable of predicting storm surge due to hurricanes, it is essential to understand
beforehand the physical phenomena that govern the generation and development of these atmospheric events.
Chapter 2.1 includes a review of concepts related to hurricanes, the anatomy process and the life phases of
hurricanes. The e�ects of the hurricane in the sea water level (storm surge) are also explained.

The prediction of the dimension of storm surge and coastal flood events and their related damage is possible
thanks to models. The accurate representation of the physics behind the hydraulic processes has been tradi-
tionally the main interest of hydraulic engineers. A wide range of physical models are available in literature
for this end. To date, there is a growing interest in complementing (or even substituting) the use of physical
models by data driven and stochastic models, due to their high speed of calculation. In Chapter 2.2, several
physical and probabilistic models are reviewed.

2.1 Description of the physical processes
The subject of study of this project is the identification of the relationship between the variables that describe
an atmospheric phenomenon (tropical cyclone) and the subsequent hydraulic phenomenon (storm surge and
coastal flooding). The first step in the process is the generation of a low-pressure atmospheric system in the
open sea. If the conditions are adequate for its formation, a tropical cyclone is originated (Chapter 2.1.1). The
tropical cyclone progresses along the ocean until it makes landfall, where it can provoke a rise in the sea water
level, commonly known as storm surge (Chapter 2.1.2). The abnormal height of the sea water level can lead
to the flood of coastal areas when the tropical cyclone reaches the coastline, causing property and life damage
(Chapter 2.1.3).

2.1.1 Hurricanes
2.1.1.1 Definition

Tropical cyclones are rotating low-pressure weather systems that develop over the warm water of the oceans,
typically between the latitudes of 30 degrees Nord and 30 degrees South [48]; [84]. These systems rotate in
counterclockwise direction in the northern hemisphere and in clockwise direction in the southern hemisphere,
due to the Coriollis force [20]. The generic name tropical cyclones may be used anywhere worldwide for tropical
storms with peak wind speed exceeding 17 m/s (1-minute average, 10-minute average or gust wind are used
depending on the region).

The definition of several concepts related to tropical cyclones are given below [62]:

• Best track: representation of a tropical cyclone location and intensity over its lifetime. The best track
contains the cyclone eye latitude, longitude, maximum sustained surface winds, and minimum sea-level
central pressure at 6-hourly intervals. Best track positions and intensities, which are based on a post-storm
assessment of all available data, may di�er from values contained in storm advisories. They also generally
will not reflect the erratic motion implied by connecting individual center fix positions.
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• Center: the vertical axis of a tropical cyclone, usually defined by the location of minimum wind or
minimum pressure. The cyclone center position can vary with altitude. In advisory products, refers to
the center position at the surface.

• Eye: the roughly circular area of comparatively light winds that encompasses the center of a severe
tropical cyclone. The eye is either completely or partially surrounded by the eyewall cloud.

• Eyewall or wallcloud: an organized band or ring of cumulonimbus clouds that surround the eye, or
light-wind center of a tropical cyclone.

• Hurricane season: the portion of the year having a relatively high incidence of hurricanes. The hurricane
season in the Atlantic, Caribbean, and Gulf of Mexico runs from June 1 to November 30. The hurricane
season in the Eastern Pacific basin runs from May 15 to November 30. The hurricane season in the Central
Pacific basin runs from June 1 to November 30.

• Inter-Tropical Convergence Zone: a zonally elongated axis of surface wind confluence of northeasterly
and southeasterly trade winds in the tropics.

• Landfall: the intersection of the surface center of a tropical cyclone with a coastline. Because the
strongest winds in a tropical cyclone are not located precisely at the center, it is possible for a cyclone
strongest winds to be experienced over land even if landfall does not occur. Similarly, it is possible for a
tropical cyclone to make landfall and have its strongest winds remain over the water.

• Maximum sustained surface wind: the standard measure of a tropical cyclone intensity. When the
term is applied to a particular weather system, it refers to the highest one-minute average wind (at an
elevation of 10 meters with an unobstructed exposure) associated with that weather system at a particular
point in time.

• Radius of maximum winds: the distance from the center of a tropical cyclone to the location of the
cyclone’s maximum winds. In well-developed hurricanes, the radius of maximum winds is generally found
at the inner edge of the eyewall.

2.1.1.2 Classification

Di�erent names have been traditionally given to tropical cyclones, depending on the world zone where they
occur. In the Northwestern Pacific ocean, the tropical cyclones whose peak winds speeds exceed 33 m/s are
called typhoons. In the North Atlantic and the Northeastern Pacific ocean, the tropical cyclones whose peak
winds speeds exceed 33 m/s are referred as hurricanes. Finally, in the South Pacific and Indian ocean these
events are known as cyclones. Since the location of study for this project is the coast of Mississippi, from now
on the term hurricane will be used. The Sa�r-Simpson scale is a scale that classifies the hurricanes according
to their maximum sustained winds (1-minute average and 10 meters above the ground) (Table 2.1).

Category
Wind speeds

(1-minute max. sustained winds
m/s kn km/h mph

1 33-43 64-83 119-154 74-96
2 43-50 83-96 154-178 96-111
3 50-58 96-112 178-209 111-130
4 58-70 113-137 209-252 130-157
5 Ø 70 Ø 137 Ø 252 Ø 157

Table 2.1: Sa�r-Simpson Hurricane Scale [68]
.

Out of the Sa�r-Simpson Hurricane Scale, the tropical storms are still considered hurricanes (the maximum
sustained wind velocity is between 17 and 33 m/s). The tropical depressions are those events whose maximum
sustained velocity falls below 17 m/s.
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2.1.1.3 Anatomy of the tropical cyclone

Several structural elements are commonly found in all hurricanes: the boundary layer inflow, the eyewall, the
cirrus shield, the rainbands and the upper tropospheric outflow. Moreover, a central eye of the storm grows
when the intensity of the storm increases. It is possible to observe the eye of the storm by means of satellite
photographies [43].

Several phenomena are present in the spiral rainband, depending on the vertical position in the structure. In
the lower levels of the tropical cyclone, the wind flows inward cyclonically, while it flows upwards in the zones
of deep convection (central eyewall and spiral rainbands), following an helicoidal trajectory. Finally, the wind
reaches a region just below the tropopause, where the absolute vorticity is reduced and the cyclone is dispersed
to form the cirrus cloud shield.

The eye of the tropical cyclone is a clear region in the center of the cyclone, which is relatively calm, with light
winds and with the lowest surface pressure of the system. The storm center is surrounded by an organized band
of thunderstorms. This region is called the eyewall, and the strongest winds in the system can be found in the
inner flank of the thunderstorm ring.

Figure 2.1: Conceptual model of the main structural elements of hurricanes [43].

2.1.1.4 Development of the tropical cyclone

The lifetime of a tropical cyclone can be divided into three phases: cyclone genesis, cyclone propagation and
cyclone decay. The first sign of cyclone genesis is the appearance of a group of thunderstorms over the tropical
oceans, called tropical disturbances [25]. The generation of tropical disturbances always involve the convergence
of surface winds, and can develop in three ways. The first way of development is the convergence of Northern
and Southern hemisphere easterly trade winds near the equator, what provokes numerous thunderstorms in the
inter-tropical convergence zone (ITCZ) daily. A second way of formation of hurricanes is the convergence of air
along the boundary between masses of warm and cold air. However, the most common mechanism of generation
of hurricanes is the African easterly wave, a weather disturbance wave that travels along the tropical Atlantic.
This disturbance is formed due to a kink in the jet of air that flows out of the African tropical region. The
kink is formed due to the large di�erence in temperature between the Sahara Desert and the Gulf of Guinea.
The warm air over the Sahara rises and subsequently it flows towards the south, to the cooler air over the Gulf
of Guinea. The rotation of the Earth leads these winds to move westwards. The convergence of these winds
generates thunderstorms, which can develop into hurricanes.

[26] identified six necessary (but not su�cient) features for tropical cyclogenesis:

• Su�cient ocean thermal energy: the sea surface temperature should be larger than 26 degrees Celsius to
a depth of 60 meters.

• Enhanced mid-troposphere (700 hPa) relative humidity.
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• Conditional barotropic instability occurring that breaks down the ITCZ and the associated monsoon
breakdown: vortices can be created, either forming groups of several hurricanes or developing one larger
hurricane.

• Weak vertical shear of the horizontal winds at the genesis site.

• In most of the cases, the locations at which the cyclons develop are displaced at least 5 degrees latitude
away from the equator.

If the conditions are adequate, a unified system is formed and the tropical cyclone is developed. hurricanes
intensify when condensation of water vapor in rising air releases heat energy into the storm, setting o� a chain
reaction. The heat makes the surrounding air more buoyant, causing it to rise further. To compensate for the
rising air, surrounding air sinks. The sinking air is compressed by the weight of the air above it, and it warms.
The pressure rises at the top of the layer of warmed air, pushing air outward. As the air spreads outward, the
total air pressure at the surface drops. The more the pressure drops, the more the winds intensify, drawing more
heat and moisture from the ocean surface, what leads to more thunderstorms. This process is retro alimented,
triggering stronger winds.

The cyclone decay can occur for several reasons. When the tropical cyclone moves onto regions of cool waters,
warm and moist air is not available for the formation of thunderstorms and strong winds in the eyewall inner
flank. In the same way, the source of warmth and moist is lost when the cyclone makes landfall. The tropical
cyclone also dissipates when moving onto a region of strong winds high in the atmosphere, since these disperse
the latent heat, what reduces the warm temperatures above and increases the surface pressure.

In the present research, special attention is given to the development of the tropical cyclone when it makes
landfall, since it can influence the extent of the flood. In this sense, apart from the loss of ocean energy source,
the increased friction due to the greater roughness of the land surface compared to the sea surface also induces
a reduction of the wind strength. The friction e�ect is larger in mountainous areas than in flat (riverine and
deltaic) areas, and also in forest areas rather than in swamp areas. In the case of presence of water, the weak-
ening e�ects can be delayed and even storms can temporarily intensify [43].

hurricanes can trigger other physical phenomena that can represent a hazard for hinterland areas [43]. For
instance, tornadoes can be generated due to the strong moisture gradient between the storm and the landfall
environment, combined with the vertical wind shear profile. Landslides have also occurred as a consequence
of the topographic enhancement of the already intense rainfall associated with the storm provoking numerous
casualties, such as in Hurricane Mitch in 1998 [31].

2.1.2 Storm surge
2.1.2.1 Definition

Storm surge is an abnormal rise of water generated by a storm above the predicted astronomical tide, mainly
driven by wind stress and to a lesser extent by falling atmospheric pressures. Storm surges have wave periods
ranging from a few minutes to a few days and, as tidal waves, are categorised as long gravity waves [55].

The genesis of the storm surge is produced when the cyclone is far from the coast, in deep waters. The drop
of the atmospheric pressure in the center of the eye causes a slight rise in the water level, of the order of 1
centimeter per hPa fall in the air pressure [50]. However, the large depth in these regions makes possible the
development of a counter current below the water surface that counters an attempt by the wind to build up the
surge [37] (Figure 2.2).

When approaching the coast, the water depth is progressively reduced and the excess of water volume built up
by the central pressures in the eye cannot dissipate in the depth, due to the presence of the sea bed (Figure
2.3). At the same time, the force of the winds swirling around the storm push the water towards the coast,
generating surge. The level of storm surge that can be reached in a particular area also depends on the slope
of the continental shelf. Coastal regions with shallow continental shelf slopes are prone to undergo flooding
due to surge, while regions with steeper continental shelf are prone to su�er flooding due to large breaking waves.
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Figure 2.2: Top view of the sea surface and cross section of the sea when a storm travels over deep waters [37].

2.1.2.2 Factors influencing the storm surge

Storm surge is often the greatest threat to life and property from a tropical storm or hurricane event. Storm
surge values do not correspond well to the hurricane wind categories (of the Sa�r-Simpson Hurricane Wind
Scale) that range from 1 to 5. These categories are based only on winds and do not account for storm surge.
Tropical storms, category 1 or 2 hurricanes, major (category 3 to 5) hurricanes, and post- hurricanes can all
cause life-threatening storm surge [58]. The factors influencing the water levels reached during storm surge
events are [63]:

• Central pressure: as previously mentioned, the drop in the air pressure can lead to higher surge, of the
order of 1 centimeter per hectopascal. However, the contribution to surge of pressure drop is relatively
small compared to other factors.

• Storm intensity: as also mentioned before, the wind intensity has a main role in the storm surge
phenomenon, since water is pushed towards the coast causing the rise in the water level. This phenomenon
is particularly important in shallow waters, where the continental shelf is wide.

• Storm forward speed: the coastal morphology plays an important roile in this factor. If the coast is
open, a storm progressing faster will cause more storm surge than a storm progressing slower, since in
the former case water piles up at the coast and does not have time to move aside. If the coastal region
is located in an enclosed body such a bay or a sound, water flow aside of the surge body. In this case, a
slower motion of the storm would provoke higher storm surge levels.

• Angle of approach to the coast: a storm approaching perpendicularly to the shoreline would cause
higher storm surge than a storm that progresses at an oblique angle or parallel to the coast. If the storm
approaches perpendicularly to the shoreline, the water is pushed towards the shore by the swirling wind,
but also by the forward speed of the storm.

• Storm size: the winds in a larger storm push on a larger area of the ocean moving a larger volume of
water, what leads to generate higher values of surge and to a�ect a larger stretch of coastline.

• Shape of the coastline: storm surge will be higher when a hurricane makes landfall in a curved-inward
coastline, rather than in a curved-outward coast, due to possibility to pile up water in a curved-inward
coastline.

• Width and slope of the ocean bottom: the influence of the width and the slope of the ocean seabed
on the storm surge has also been introduced previously. Higher storm surge happens in wide, gently
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Figure 2.3: Top view of the sea surface and cross section of the sea when a storm makes landfall [37].

sloping continental shelves, rather than in narrow steeply sloping shelves. The coast of Louisiana and
Mississippi is particularly prone to high storm surges because of their gentle and wide seabed slopes.

• Local features: local features of every specific region can also contribute more or less to the flow of water
and the storm surge. As mentioned in [27], barrier islands can constitute a first line of defence against
hurricane impacts since they reduce the incoming storm surge and the wind waves.

2.1.2.3 Other phenomena contributing to the rise of the water level

Storm surge can have a major impact in coastal areas when combined with astronomical tides, wind waves and
rainfall [63]. The combination of these four elements build up the concept of total water level:

• Astronomical tides: The gravitational pull of the moon and the sun causes the rise and fall of the water
levels along the coast. Tidal waves are considered long waves, due to their long period (generally around
12 hours). The restoring force that dampens the tidal wave motion is gravity, although these waves are
also influenced by the Coriolis force. The characteristics of the tide vary globally. The tidal environments
can be classified by two parameters: the magnitude of the tide, which can be characterized by the vertical
distance covered by the tide (tidal range), and the tidal character, which which can be determined by the
relative influence of diurnal with respect to semi-diurnal tidal components.

The tidal range and the tidal amplitude are influenced by the local di�erences in water depth (slope and
width of the continental shelf) and the location and shape of the land masses (Figure 2.4). When tidal
wave approaches the coast and enters an area with steep continental shelf, the wave length is reduced and
the amplitude is increased, due to the concentration of energy in the wave. This e�ect is comparable to the
shoaling e�ect that wind waves undergo when approaching shallow waters. If the slope of the continental
shelf is shallow, the water depth is small and the width of the continental shelf is large, a great amount
of wave energy can be dissipated due to bottom friction, leading to small tidal amplitudes.

The location and shape of land masses can also influence the tidal amplitude. Resonance may occur in
basins where the eigen period of the tidal wave and the basin are similar. Moreover, the presence of islands
and other land entities at the entrance of a basin can dissipate the energy of the tidal waves, leading to a
small tidal range and amplitude.
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Figure 2.4: World distribution of the mean spring tidal range (MHWS-MLWS) [9]. The emplacement of the
project is indicated by a red rectangle.

The tidal character di�ers also along the globe, governed by a combination of geography and latitude of
each location. The declination of the Earth axis introduces the so-known daily inequalities in the tide,
by which the water levels during the two high tides within a day di�er. This di�erence is produced by
the interaction of diurnal components of the tide with semi-diurnal components. The daily inequality in-
creases with the latitude. However, it can also be large in the equator when the diurnal tidal components
excites one of the resonance modes of a basin or bay. This is the reason why several areas in the equator
undergo diurnal tidal character, such as in the Gulf of Mexico.

• Wave setup: Wave setup is the additional elevation of the water level due to the e�ects of transferring
wave related momentum to the surf zone [19]. Momentum is transferred from winds to waves in the
wave generating area and then is conveyed to shore by the waves. A main di�erence between energy and
momentum is that energy is dissipated in the surf zone whereas momentum is transferred to the water
column. This transfer is equivalent to a shoreward-directed “push” on the water column that causes a tilt
of the water surface. The wave setup is small and negative seaward of the surf zone (setdown) and begins
to rise in the surf zone due to the transfer of momentum. If only one wave of a constant height and period
were present, the wave setup would be steady.

Wave setup increases with steeper beach slopes and smaller wave steepness. Steeper profiles accumulate
more momentum in the water water column when approaching the coastline. The shorelines exposed to
large and long period swells are particularly susceptible to experience large wave setups, which can account
for up to 10% of the deep water wave height, in the case of waves of low steepeness. FEMA proposes a
guidance to account for wave setup based on the wave steepness and the bottom slope (Figure 2.5).

• Rainfall: Heavy rainfall ahead of the hurricane can cause the increase in the river water levels. This
situation can be aggravated by the wind setup of the water levels due to a hurricane. The presence of
levees and the friction along the wetland overbanks block or hinder the lateral flow, what aggravates the
storm surge generated by the hurricanes, as well as the orientation of the river with respect to the storm
track [40].

The combination of storm surge and astronomical tide is known as storm tide and achieve their maximum levels
during high tides.

2.1.3 Coastal flooding
The storm surge generated by a tropical cyclone can lead to severe flooding in coastal regions, in case of
insu�cient protection against this type of extreme events. However, storm surge is not just an immediate
coastal threat. It can a�ect inland communities, including some areas that are many miles from the coastline.
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Figure 2.5: Relationship between deep water wave steepness, bottom slope and wave setup [18].

2.1.3.1 Parameters influencing the coastal flooding extent

Several factors can influence the amount, the extent and the impact of tropical cyclone flooding [43]:

• Antecedent precipitation: the level of saturation of the soil can influence critically the filtration ca-
pacity of the terrain. If recent rainfall occurred in the region a�ected by the tropical cyclone, the soil
pores might be saturated, increasing the runo� and therefore the flooding impact.

• Speed of movement of the cyclone: the slower the forward speed of the cyclone in the hinterland
direction, the longer the time that the storm surge holds at the coast line. Therefore, the lower the speed
of movement of the cyclone the larger the flooding e�ects.

• Orographic enhancement: in regions of higher elevation, additional moist air is lifted up, increasing
the precipitation volume.

• Intensification due to synoptic forcing: the simultaneous occurrence of a cyclone and other midlat-
itude synoptic systems can aggravate the floods caused by the storm surge, either due to the additional
reduction of lower pressures or due to the increase of precipitation.

• Hydrology: narrow river basins are more prone to flood than wide and flat river basins.

• Land use: the presence of building foundations in urban areas reduce the soil filtration and enhances
the runo� volumes and velocities. Therefore, urban land uses are more exposed to flash floods. Hill
slopes without a vegetation cover are more prone to su�er landslides than hill slopes that are covered by
vegetation, whose roots increase the stability of the soil.

• Soil characteristics: the permeability of the soil depends on the grain size. Impermeable soil materials
contribute to larger runo� and flooding.

2.2 Modeling of the physical processes

2.2.1 Hurricane modeling
The trajectory and the features of the hurricanes are gathered in the so-called best tracks records. These data
sets contain information about the coordinates of the eye of the tropical cyclone, the maximum sustained wind
speeds, the minimum sea-level pressure in the eye and the size of the tropical cyclone at 6-hourly intervals. The
best tracks of a tropical cyclone are based on post-storm assessments of available data.
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2.2.1.1 The HURDAT2 database

The most complete record of hurricanes occurring in the Gulf of Mexico has been elaborated by the United
States National Oceanic and Atmospheric Administration (NOAA) and is known as Atlantic Hurricane Database
(HURDAT2) [60]. The Atlantic HURDAT2 database is included in a global tropical cyclone database that has
also been developed by NOAA, known as IBTrACKS [61]. These databases are two typical sources to retrieve
tropical cyclone best-track data. In this project, the HURDAT2 database has been used, which includes the
best track of 1864 hurricanes for the period 1851-2018 (Figure 2.6).

The National Hurricane Center (NHC) is a division of the NOAA dedicated to the elaboration of the HURDAT2
data base [44]. This data base includes a post-storm analysis of each tropical cyclone to determine the o�cial
assessment of the cyclone history. Among other uses, the HURDAT database is used for the analysis of potential
losses for insurance and business interests [49].

The post-storm assessment is key to elaborate a high fidelity data set. Many types of meteorological data ar-
rive with some latency (e.g., microwave imagery, scatterometer data, and Advanced Microwave Sounding Unit
(AMSU) data), and some data do not become available until well after a storm is over. Furthermore, knowing
what happened subsequent to a given point in time can be instrumental in the correct assessment of what was
occurring at that point in time.

The precision of the parameters of the best track of a tropical cyclone is 5 kt for the intensity (1 kt =
0.514 m/s), 1 hPa for the central pressure, 0.1¶ for the position (latitude and longitude) and 5 nmi for the
size (1 nmi = 1.852 km) being the cyclone size the maximum extent of winds of 34, 50 and 64 kt in each of the
four quadrants about the center [45]. Best track intensity and position estimates are provided for every synoptic
time (00:00, 06:00, 12:00 and 18:00 UTC) for all tropical storms, hurricanes and subtropical storms since 1956.
Before this year, tropical cyclone information was only recorded once or twice a day and interpolation was
used to obtain best track estimates for the remaining synoptic times when the HURDAT database was con-
structed in the early 1980s. Central pressure estimates for every synoptic time have been included since 1979.
Before 1979, only the observations that could be used explicitly as best track value were included into HURDAT.

Cyclone size records have been included in the database since 2004. The database used in this project is the
second generation HURDAT database (HURDAT2), which is an adaptation of the HURDAT database. Apart
from the data described, the HURDAT2 database includes also asynoptic points in order to capture landfall and
peak intensities that occurred at times other than the synoptic hours. HURDAT2 also includes non-developing
tropical depressions.

Figure 2.7 (top) shows the distribution of the 1864 storms of the HURDAT2 database by intensity (Sa�r-
Simpson Scale). Figure 2.7 (bottom) shows the distribution of the events per year. A trend showing that the
number of events has increased in the last 50 years can be observed.

2.2.1.2 The Holland model

Parametric wind models are widely used instead of full physics mesoscale models, due to the extensive resources
required to run full physics models. Parametric models are used to simulate wind fields, which can be used as
hurricane forcing for storm surge modelling. The hurricane data is commonly given in so-known best tracks (as
explained in Chapter 2.2.1.1). This data is used as input for the wind parametric model in order to generate 2D
fields of wind and pressure. One common model to describe the time and space varying wind and pressure is
the Holland model [34]. The outcome of the model can be written in spiderweb format, which is represented by
a grid in polar coordinates, being the radius and the angle the parameters of the grid (Figure 2.8). Each point
of the spiderweb includes information about the wind speed, the wind direction and the pressure drop. The eye
of the hurricane is the origin of the coordinate system. This format is specially devoted to the representation
of cyclonic winds.

The forward speed (FS) and the forward direction (FD) of the tropical cyclone at each time step are calculated
as follows:

FS = d

t
t

≠ t
t≠1

=


�x2 + �y2

t
t

≠ t
t≠1

(2.1)
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Figure 2.6: Hurricanes included in the HURDAT2 database for the period 1851-2018 (371 hurricanes). The
colors indicate the variation in the intensity along the tracks.

FD = ≠atan2(�y, �x) + 90 (2.2)

�x and �y are the variation in the longitude and latitude coordinates between two points of the best track
trajectory of the tropical cyclone (coordinates of the eye) and are defined in Figure 2.10. The expressions given
for �x and �y are only applicable if the angles ◊Õ and ÏÕ are su�ciently small. In such a case, the infinitesimal
equivalence ◊Õ ¥ sin(◊Õ) applies (analogous for ÏÕ). t

t

and t
t+1 are the times at the best track point t and t + 1.

It is noted that FD is calculated in degrees and taking the North as reference (Figure 2.11).

[34] observed that the parametric profiles of the normalized pressures of nine hurricanes in Florida (as recorded
by [69] resembled a family of rectangular hyperbolas, which could be approximated by:

rB ln
A

p
n

≠ p
c

p ≠ p
c

B
= A (2.3)

where A and B are scaling parameters, p is the pressure at radius r, p
c

the minimum pressure at sea level in
the eye of the tropical cyclone and p

n

the ambient pressure. Rearranging terms, it is obtained:
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c
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B
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Using the gradient wind equations [70], the wind gradient (W
grad

) can be expressed by:
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where fl is the air density and f is the Coriolis parameter. This expression indicates that the Coriollis force
generated by the Earth rotation, the pressure gradient caused by the pressure drop and the centrifugal force
originated from the cyclonic rotation of the wind are in balance. At the region of maximum winds, the Coriolis
force is small compared to the pressure gradient and the centrifugal force. In this situation, the air is in
cyclostrophic balance. The wind speed in this region (i.e. cyclostrophic wind) is (W

c

):
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Figure 2.7: Distribution of the hurricanes included in the HURDAT2 database by category, according to the
Sa�r-Simpson scale (top), and distribution of the hurricanes included in the HURDAT2 database by year
(bottom).

Matching the derivative of W
c

in function of the radii to 0, it is obtained the radius of maximum winds (R
max

):

R
max

= A1/B (2.7)

which gives an expression relating the parameter A and B of the Holland model. The parameter A determines
the location of the hurricane with respect to the origin, while the parameter B determines the profile shape
of the tropical cyclone. Substituting Eq. (2.7) into Eq. (2.6) and rearranging terms, the parameter B can be
written in function of the maximum sustained wind speed (W

max

) and the pressure in the eye of the hurricane:

B =
A

fleW 2
max

p
n

≠ p
c

B1/2

(2.8)

The e�ect of the parameter B of the Holland model in the sea pressure profile and the gradient wind profile is
shown in Figure 2.12.

W
max

can be written in a general way as:
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Figure 2.8: Spiderweb grid definition [13].

Figure 2.9: Earth reference system. ◊ represents the longitude and „ represents the latitude.

W
max

= C(p
n

≠ p
c

)x (2.9)

expression that follows a commonly-used formulation for pressure-wind models [32]. The coe�cient C is obtained
empirically and the exponent x is adjusted to the observed hurricanes in the region of interest. In the North
Atlantic region, [17] proposed a tabular pressure-wind model that relates the W

max

and p
c

, which can be very
closely fitted to:

W
max(NA) = 3.92(1015 ≠ p

c

)0.644 (2.10)

where 1015 is the ambient pressure in hPa assumed by Dvorak in the North Atlantic region and the velocity is
expressed in m/s. The HURDAT2 database does not include p

c

values before 1989. However, W
max

is available
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Figure 2.10: Graphical representation of the distance between two points of a hurricane best track.

Figure 2.11: Graphical representation of FD in local coordinates (x-y in the Earth surface plane), symbolized
by the angle –Õ. The y-axis heads the North in the local coordinates.

before this year. Eq. (2.10) can be inverted and used to calculate p
c

:

p
c

= 1015 ≠ exp
3

ln(W
max

) ≠ ln(3.92))
0.644

4
(2.11)

[67] derived a practical expression for R
max

in the Gulf of Mexico which is directly related to the W
max

:

R
max

= 62.4 ≠ 0.41W
max

(2.12)
It is noted that although this model improves the available models for the prediction of R

max

(e.g. [41] and par-
ticularizes the estimation for the Gulf area, the analysis of the goodness of fit of the model proposed by [67] shows
relevant inaccuracies (Mean Absolute Error of 21.1% and R2 = 0.28). The reasons for such inaccuracies might
be the several interactions of the tropical cyclone with land, before making landfall in a region of the Gulf Coast.
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Figure 2.12: E�ect of varying the parameter B of the Holland model on the sea level pressure profile (top) and
the gradient wind profile (bottom) [34].

The Holland model is a symmetric model. However, real hurricanes hardly ever present a symmetric structure.
Asymmetric hurricanes can lead to great errors in the estimation of the surge levels when compared to symmetric
hurricanes, in some cases in the order of 15% [85]. One of the main factors that contribute to asymmetry is the
hurricane system motion, represented by the forward speed (FS) and the forward direction (FD) of the system.
[81] adapts the Holland model to introduce these contributions, in order to consider the hurricane asymmetries
in the 2D wind field. The geostrophic wind speed is (W

g

):
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The combination of cyclostrophic and geostrophic wind speed, FS and FD is considered in the calculation of a
parameter “:

“ = 1
2

A
FS sin(◊Õ)

W
c

+ W
c

W
g

B
(2.14)

where ◊Õ is the di�erence between FD and the angle between the origin and the position of the cell. Finally,
the total tangent velocity of the hurricane is found (W ):

W = W
c


“2 + 1 ≠ “ (2.15)

Based on the expressions previously developed, the best track of a hurricane can be used to generate a 2D wind
and pressure field in spiderweb format.

2.2.2 Storm surge and coastal flood modeling
2.2.2.1 Introduction

Since the beginning of the civilization, the understanding, assessment and prediction of flood events and their
impact has been a main concern for the populations settling close to rivers and the sea. Flood inundation models
are therefore developed to accomplish these purposes. As flooding accounts for a significant proportion of the
total number of reported natural disasters occurring in the world, and over the last 30 years this proportion
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has been increasing [21], the development and application of storm surge and flood models has become a global
endeavor. Specially since the 1970s, the research community has been involved in the improvement of storm
surge and flood models [77]. Since the present research focuses on storm surge modeling, the characteristics of
the hydraulic models presented focus mainly on storm surge.

Generally, the interest in any modeling process is focused on the output variables of interest and their time
and space scales, the required accuracy of the output and the computational e�ciency of the model. In the
case of storm surge modeling, applications may require a quick run time and real-time data assimilation. Based
on these considerations, the flood modeler can sensibly select a model balancing their demands against model
complexity and data requirements.

2.2.2.2 Overview of the main storm surge models

Nowadays, storm surge can be modeled by means of several softwares. In this report, four of the most commonly
used models to represent storm surge are described:

• ADCIRC: The ADvanced CIRCulation model is capable of solving the equation of motion for a fluid in a
global scale. ADCIRC can be run as a two-dimensional depth integrated model or as a three-dimensional
model. The model assumes hydrostatic pressures and includes the Boussinesq approximation to solve the
Navier Stokes equations. The water elevation is the solution of the depth-integrated continuity equation in
Generalized Wave-Continuity Equation form [16]. The velocity is obtained from the solution of the 2D or
3D momentum equations. These equations are discretized in space using the finite element method (FEM)
and in time using the finite di�erence method (FDM). This model can be run in Cartesian or spherical
coordinate system. ADCIRC boundary conditions include water elevation, discharge, slip conditions for
velocity, external and internal barrier overflow, surface stress (wind/wave radiation stress), atmospheric
pressure and Sommerfield conditions. It can be run in parallel computers to enhance the operative e�-
ciency of the simulations.

ADCIRC enables the use two types of grids, depending on the discrete approach used to reach the solution.
If a structured (cell-based) grid is used, the solution is reached by means of the finite di�erence method.
The solution is obtained by approximating the derivatives in the governing equations. The structured
grid is generally e�cient and easy to implement, but it is di�cult to fit arbitrary geometries and to refine
critical regions. However, it is also possible to implement an unstructured grid. In this case, the solution is
approached by the finite element method, this is, approximating the unknowns over discrete elements and
minimizing the global error of the solution. This type of grid enables variable resolution and flexibility,
what leads to accuracy in the solution, but is computationally more expensive.

ADCIRC has been validated for very di�erent hydraulic phenomena, including storm surge due to hur-
ricanes [1]. ADCIRC can be coupled to SWAN (Simulating WAves Nearshore) in order to include wind
waves in the surge simulation.

• MIKE21 Flexible Mesh: MIKE21 FM also solves the Navier Stokes equations to calculate the water
elevation and the flow velocity. However, this model uses the finite volume method (FVM) to reach the
solution. This method applies the conservation of mass law to obtain the value of the variable of interest.
In MIKE21 FM, it is possible to use structured grids (simple rectilinear grids), multiple rectilinear nested
grids that enable to focus the grid resolution in specific locations, and unstructured (flexible) grids, which
gives flexibility to adapt the grid resolution to the model domain. As ADCIRC, MIKE21 can be run
in multiple cores to reduce the computational time of the simulations. The advantage of MIKE21 with
respect to ADCIRC is that it is modular. This modular nature enable the coupling of several phenomena
in one simulation, within the own software. Among others, it is possible to couple modules to simulate
hydrodynamic phenomena, transport of substances, sediment transport or waves.

• Delft3D Flexible Mesh: Delft3D FM is a multi-dimensional (1D, 2D and 3D) hydrodynamic simulation
program that calculates non-steady flow and transport that results from tidal and meteorological forcing
on structured and unstructured, boundary fitted grids [13]. The solution to the Navier-Stokes equations
are obtained by means of the finite volume method (FVM). It is developed by Deltares, which is an
independent institute for applied research in the field of water and subsurface [12]. As MIKE21 FM,
Delft3D FM is a modular software in which di�erent processes can be integrated, such as hydrodynamics,
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waves, coastal morphology, transport of particles and sediment transport. These coupled models can be
managed from a main interface called DeltaShell, from which the integrated models can be run. The
model has been thoroughly validated for the simulation of storm surge [14].

• SLOSH: SLOSH stands for Sea, Lake and Overland Surge from Hurricanes. It is a model developed by
the National Weather Services (NWS) to estimate in real-time storm surge heights and winds resulting
from historical, hypothetical or predicted hurricanes. This model is simpler than ADCIRC, MIKE21 FM
or Delft3D FM, since it does not incorporate advective terms in the shallow water equations. Several
non-linear terms are also neglected. The hydraulic processes that it includes are simple, specially those
related to flooding. Many of the physical parameters are just empirical and not physically justifiable. The
accuracy in the calculation is reduced for the sake of the speed of calculation. The model accounts for
astronomical tides by specifying an initial tidal level, but does not include rainfall amounts, riverflow or
wind-driven waves.

2.2.2.3 Modeling storm surge with Delft3D Flexible Mesh

Delft3D FM has been tested and verified under tropical cyclone conditions to represent accurately storm surge
and coastal flooding. This makes Delft3D FM a suitable software to model storm surge in this project. The
DeltaShell interface makes possible the implementation of model inputs and the graphical visualization of the
model. The model can be set up by clicking on the di�erent tabs shown in the DeltaShell interface. The same
actions can be done by giving the orders via scripting, thanks to the IronPython application included in the
interface. The latest option enables the simulation of di�erent scenarios by removing and adding input files to
the model through the script, what automatizes the simulation process.

Delft3D FM solves the Navier-Stokes equations for an incompressible fluid under the shallow water and the
Boussinesq assumptions, in two (depth-averaged) and three dimensions. The system of equations solved by
the model are the momentum equations in horizontal direction and the continuity equation [13]. Delft3D FM
includes mathematical formulations that represent many di�erent physical processes, such as the e�ect of the
Earth rotation (Coriolis force) and the e�ect of wind driven flows in the water level (including tropical cyclone
winds), which are specially important for the modeling of storm surge. The model also solves an algorithm to
simulate the drying and flooding of tidal flats that enables the simulation of coastal flooding.

The mathematical formulations that represent the physical phenomena take into consideration several assump-
tions. The most relevant one consists in assuming hydrostatic pressures in the vertical axis, which is justified by
the fact that the depth in the model domain is much smaller than the horizontal length scale. This assumption
is also commonly known as shallow water assumption, and implies that the vertical momentum equation is
reduced to the hydrostatic pressure relation. Another consequence is that vertical accelerations are neglected
since they are much smaller than the acceleration due to gravity. Further information about the assumptions
taken in Delft3D FM is given in [13].

To model the storm surge caused by hurricanes, the following input is required:

• Coordinate Reference System (CRS): all the input files should be written in the same CRS. The
model CRS can be adjusted in the General Settings of DeltaShell.

• Unstructured mesh: It is possible to create unstructured meshes in Delft3D FM. This makes possible
to couple regions of large resolutions with regions of small resolutions with much greater freedom, using
triangles, pentagons and hexagons. Generally, smaller cell sizes are required in regions of shallow waters
with large bathymetry gradients due to the influence that the bathymetry slope can have on the devel-
opment of the storm surge. However, in deep waters the cell size can be larger due to the relatively low
development of the surge in these regions. Therefore, a flexible mesh enables to optimize the computa-
tional time of the simulations, increasing the detail in shallow by means of smaller cells and increasing
the size of the cells in deep waters. Unstructured meshes can be imported (format net.nc) or created
in the mesh generator of Delft3D FM (RGFGRID). To create an unstructured mesh, first several regular
meshes with di�erent resolutions are created, then the meshes are transformed to irregular meshes and
finally they are connected by generating meshes among them.

• Bathymetry: The bathymetry is the depth of the water bodies. It is implemented by means of a raster
in format .xyz. Once the bathymetry is imported in the model, it must be interpolated to the unstructured
mesh. The bathymetry can have a di�erent spatial resolution than the unstructured mesh. It is noted
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that the bathymetry raster should be larger than the computational mesh, so as all the cells of the mesh
get information about the water depth.

• Initial and boundary conditions: Delft3D FM solves numerically the shallow water equations, in
order to calculate water levels and the velocities in the problem domain. The solution of the di�erential
equations is the sum of a transient and a particular solution [86]:
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To solve these equations, it is necessary to implement boundary conditions and initial conditions.

– Initial conditions: The initial conditions are necessary to start a time-dependent simulation and
consist of a water level and a flow velocity:
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The transient solution is dissipated in a certain period, called spin-up time. In terms of physics,
the transient solution represents waves with eigen frequencies of the model domain. The reflec-
tion of these waves on the boundaries can generate standing wave patterns. These waves might be
dissipated by the bottom friction and viscosity terms or let them move outside the domain. The
disappearance of these waves is the spin-up time. Generally, the consistency of the initial condi-
tions with the boundary conditions is only relevant if the simulation period has a similar duration
than the spin-up time. If the initial conditions imposed are close to the boundary conditions, the
spin-up time is reduced. Therefore, to avoid the influence of the initial conditions in the particu-
lar solution, either the initial conditions should be su�ciently accurate or the simulation must start
earlier in order to dissipate the transient solution before the e�ects of the surge wave become relevant.

– Boundary conditions: The model reaches an equilibrium state after the dissipation of the initial
condition e�ect. At this stage, the solution reaches a steady state, only governed by the forcing
imposed by the boundary conditions. Therefore, the particular solution of the shallow water equations
only depends on the boundary conditions:
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Since the interest lies on identifying the e�ect of the boundary conditions in the domain, the starting time
of the simulation should be set so as the steady state is reached several days before the hurricane makes
landfall.

Initial conditions on the water level are imposed. These can be obtained from a previous run, in whose
case it is considered that the simulation has a hot start, or from a user-prescribed (space varying or
uniform) input fields, in whose case it is considered that the simulation has a cold start. Delft3D FM
enables the implementation of a smoothing period parameter that enables the gradual adjustment of the
boundary conditions, reducing the spin-up time of the simulations. Spatially varying initial conditions
can be imported in the model in format .csv, while a constant initial condition can be prescribed directly
in DeltaShell.

The imposition of flow boundary conditions on the model is made in two steps. First, the geometry
of the boundaries of the model is created. This can be done by drawing polylines in DeltaShell, whose
vertices correspond to boundary support points. In this project, water levels are imposed in the open
sea boundaries, by prescribing the amplitude and the phase of the astronomical constituents of the tide.
However, it is also possible to impose water level time-series and also Q-h relations in the case of water
level boundary conditions. Other flow boundary conditions that Delft3D FM supports are discharges,
flow velocities, water level gradients and Sommerfeld conditions on reflective boundaries. The boundary
conditions are imposed at each of the support points, except for the discharge boundary conditions, which
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are imposed along the boundary lines. Apart from flow initial and boundary conditions, in case of surge
modelling due to hurricanes it is also required to impose atmospheric initial and boundary conditions,
given by air pressure constant values. The format of the geometry of the boundary conditions is .pli and
the format of the files containing all the information about the boundary conditions is .bnd.

• Physical parameters: The physical parameters of the model are the roughness, the viscosity and the
di�usivity. They can be specified as a uniform value or as a spatially varying field (raster in format .xyz).
In case the latter is used, the rasters should be interpolated to the unstructured mesh.

– Roughness: For 2D depth-averaged flow, the shear-stress at the bed induced by a turbulent flow
(·

b

) is assumed to be given by a quadratic friction law:

·
b

= fl
w

gU |U |
C2 (2.18)

where fl
w

is the water density (1025 kg/m3), g is the acceleration due to gravity (9.81 m/s2), U
is the depth-averaged horizontal velocity and C is the Chézy coe�cient. C can be related to the
Manning number (n) according to the Manning equation:

C = R1/6

n
(2.19)

In this project, the Manning number is used. However, there are other friction formulations available
in Delft3D FM, such as the White-Colebrook and the Z0 formulations. The values of the Manning
number depend on the type of soil and the land use (in the case of overland flooding).

– Viscosity and di�usivity: In Delft3D FM the 3D turbulent eddies are bounded by the water
depth. The vertical eddy viscosity and di�usivity coe�cients determine their contribution to the
vertical exchange of horizontal momentum and mass. For 3D shallow water flow the stress tensor is
anisotropic, and the horizontal viscosity and di�usivity coe�cients are much larger than the vertical
coe�cients. The horizontal eddy viscosity and di�usivity combine the e�ect of the 3D turbulent
eddies and the horizontal motions that cannot be resolved by the horizontal grid [13].

• Wind: Wind forces can induce variations in the flow field. The wind force is coupled to the Delft3D FM
flow equations as a shear stress, represented by the quadratic expression:
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where fl
a

is the air density (1.205 kg/m3), C
d

is the wind drag coe�cient (dependent on U10) and U10 is
the wind speed at 10 meters above the free surface (time and space dependent).

When hurricanes are considered, U10 is given by a 2D wind field in spiderweb format (Figure 2.8). The
location of each point of the spiderweb is given in geographical coordinates. Each point includes the
information of three variables: wind speed at 10 meters above the free surface, wind direction and the
pressure drop at MSL. The 2D wind field is imported in Delft3D FM in spiderweb format (.spw). The
spiderweb is generated by means of the Holland model, according to the equations described in Chapter
2.2.1.2. The wind field is given on a polar grid with the center (eye) of the hurricane being the origin of
the polar coordinate system. Since the hurricane progresses with time, one spiderweb is given per time step.

Recent research suggests that the sea conditions, fetch shoaling, wave breaking and sea spray may also
have an influence on C

d

[3]. Many formulations simplify these influences by proposing relationships be-
tween C

d

and U10. The simplest manner to impose C
d

is assuming a constant drag value. A more detailed
description of C

d

is given by [73], [8] and [66].

Smith and Banke (1975) represented the drag coe�cient as a linearly varying or piecewise linearly varying
function (Figure 2.13). When only A is defined the relationship is considered constant. When A and B
are given, the relationship is linearly varying. When A, B and C are defined, the relationship is piecewise
linearly varying. The breaking points vary for the di�erent wind models.
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Figure 2.13: Dependence of the drag coe�cient on the wind speed according to [73] [13].

The drag coe�cient remains constant until wind speed reaches the value at the point A. From this value,
the drag starts to increase until reaching a maximum value at point B. The physical meaning of this
increase in the drag is that the resistance increases when the wind speed increases, due to the contact of
the wind with more water particles. For higher speeds, the resistance levels o� or decreases due to the
e�ect of sea-spray droplets in suspension generated by breaking waves [47]. From approximately 50 m/s,
the entire sea surface is covered by a foam layer and the drag coe�cient remains constant (point C).

The [8] formulation is also widely applied when modelling the wind drag. It is based on the assumption
that the wind flow over the water surface is a fully developed turbulent boundary layer. In this formulation
the friction velocity, wind speed (at 10 meters above the water surface), and friction of the water surface
are needed as input. [8] assumes a logaritmic wind speed profile:

U10
uú

= 1
Ÿ

ln
A

z10
z0

B
(2.21)

with Ÿ de Von Kárman constant (0.4), z10 the distance to the water surface (10 meters) and uú the friction
velocity. The drag coe�cient is defined as:

C
d

= u2
ú

U2
10

(2.22)

[8] proposed to represent the friction of the water surface as z0 according to:

z0 = bu2
ú

g
(2.23)

where b is a specific constant (0.025). Since the above expression is implicit for uú, the system is solved
iteratively.

In Figure 2.14, it is shown the relationship between C
d

and U10 according to [8] and [47] (solid lines).
The approximation of these models can be done in Delft3D FM by means of the model proposed by [73]
(dashed lines).

[66] investigated the azimuthal dependence of the wind drag coe�cient during hurricanes, determined
from mean GPS sonde wind speed profiles. Based on his research, the storms can be separated into three
regions. The first region is the left front of the storm, where the swell travels across the wind, the second
region is the right front where the swell and the wind coincides and the third region is the left rear, where
the sea is more confused and at times has winds going against the waves. In Figure 2.15, it is shown a
real example of application of this wind model.

The results of the research were not clear to a�rm that azimuthal drag dependence exists for near coastal
ares. However, deep water wind profiles showed that C

d

increases in sectors where the wind blows across
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Figure 2.14: C
d

as a function of U10 according to Charnock’s relation using the Charnock’s constant value equal
to 0.025 (solid, red) and the new parameterization following [47] (solid, blue). The dashed lines represent the
approximations used in Delft3D FM. Observational data by [65] are indicated by diamonds. Figure from [80].

Figure 2.15: Schematization of the azimuthal wind drag, showing the relationship between C
d

and U10 according
to the azimuthal sector relative to the direction of the storm [66].

or in opposite direction of the waves. This explains the larger values reached on the front left region of
the storm than on the right front and the rear region of the storm for wind speeds between 25 m/s and 33
m/s. When the storm reaches the hurricane category, the strength of the wind exceeds the e�ect that the
waves can cause in the drag coe�cient, and the right sector (in the Northern Hemisphere) reaches larger
values of C

d

than in the other two sectors.

• Time frame and time step: To run the model, it is necessary to specify a reference date, a start date
and a stop date of simulation. The reference date should correspond to a date before the starting date of
the simulation. The start time should coincide with the first time step of the spiderweb representing the
2D wind field. The user time step is the time step of the wind field imposed in the model. Delft3D FM
applies linear interpolation to implement the spiderweb values in the model, in case the user time step
does not coincide with the time interval of the spiderweb. Delft3D FM uses an explicit advection scheme
to compute the numerical solution of the problem. Therefore, to achieve a stable numerical computation,
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the time step of the simulation is automatically limited based on the Courant-Friedrichs-Levy (CFL)
condition, which is necessary (but not su�cient) to guarantee the stability of the computation:

C Ø u�t

�x
(2.24)

It is advised to use a Courant number of 0.7 or lower to compute the time step size from the CFL
criterion, in order to ensure the stability of the numerical solution of the hydraulic problem. This time
step is computed automatically by Delft3D FM, by solving Eq. (2.24).

2.2.3 Skill metrics for the model validation
The model is validated by quantifying the goodness of fit of the simulation in Delft3D FM. The following skill
metrics where used to this end: Coe�cient of Determination (R2, which describes how well a regression line
fits a set of data, with an ideal value of one), Slope of the best fit line (m, with an ideal value of one), Mean
Normalized Bias (Bias, which is a measure of the model’s magnitude of overprediction or underprediction
normalized to the observed value, with an ideal value of zero) and the Scatter Index (SI, which is the standard
deviation normalized by the mean observed value, with an ideal value of equaling zero). If O is the observed
value, E is the error in terms of modeled minus observed, and N is the number of data points, the equation for
Mean Normalized Bias is:
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1
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and the equation for the Scatter Index (SI) is:
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2.2.4 Probabilistic modeling
The implementation of machine learning and artificial intelligence techniques in the hydraulic engineering field
has enabled the reduction of the computational time required to run traditional hydraulic models. Two of the
most developed methods to predict water levels are the Artificial Neuronal Networks (ANN) and the Bayesian
Networks (BN). [36] proved that storm surge can also be estimated accurately by means of Surge Response Func-
tions (SRF). These functions are scaling laws derived from high-resolution numerical simulations. By means of
these functions, it is possible to make fast estimations of the probabilistic maximum surge due to hurricanes.

In the last decade, BN and ANN have been used to solve a wide range of coastal engineering problems. BN
have been applied to estimate coastal flood hazard due to waves on coral reef-lined coasts [64], the coastal
vulnerability due to sea level rise [28] and the modeling of hydraulic boundary conditions for hurricane flood
risk analysis [71]. ANN have been used to evaluate the response of a harbour to long waves [46], rubble-mound
breakwater stability [6], the estimation of swell conditions in coastal regions [2] or wave run-up and overtopping
at coastal structures [82] and also in storm surge estimation due to hurricane [83].

BNs allow to represent the dependencies among hurricane variables graphically. This feature facilitates the
understanding of the physical processes that rule storm surge. Apart from enabling the estimation of surge, it
is possible to infer values in the BN in a certain number of variables of the network to generate synthetic data.
For instance, it is possible to estimate hurricane wind speeds by inferring surge values in a BN. Given these
characteristics, it is considered adequate to approach this project by means of BNs.

2.2.4.1 Bayesian Networks (BN)

BN are graphical models that allow for the representation of a probability distribution over more than one
variable [53]. BN consist of nodes, which represent random variables, and arcs of connection among the nodes,
which indicate the dependence between the variables (Figure 2.16). The lack of connection between nodes
shows the independence between two variables. The joint distribution of several variables can be represented
by Directed Acyclic Graphs (DAG). These graphs will determine the causal relationships between variables and
the sampling order. Therefore, the DAG shows the variables from which we need information first in order
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to obtain information about another variable that succeeds them. The direct predecessors and successors of a
variable are called parents and children, respectively.

Figure 2.16: Basic structure of a BN.

The joint probability density of the children can be computed as the product of the conditional probabilities on
the parents:

f(x1, ..., x
n

) =
nŸ

i=1
f(x

i

|x
P a(Xi)) (2.27)

where x
P a(Xi) is the set of parent nodes of X

i

, with i = 1, ..., n. The marginal probability density is used for
the nodes without parents.

Depending on the nature of the variables (discrete or continuous), discrete and non-parametric Bayesian Netorks
(NPBN) are distinguished. Since in this project it is dealt exclusively with continuous variables, only the features
of NPBN are reviewed in this chapter. Typically, the dependence between continuous variables in a NPBN
can be quantified by means of copulas or multivariate distributions. Copula models di�er from multivariate
distributions in the fact that in the case of copulas the marginal distributions of each individual variable does not
characterize the behavior of the joint distribution [23]. Since in many occasions the marginal distributions of the
variables involved in the Bayesian Network are not known, it is advisable to use copulas instead of multivariate
distributions in order to avoid the influence of the marginal distributions chosen in the final relationship between
variables.

2.2.4.1.1 Copula fitting

Copulas are functions that represent the joint distribution of several variables, whose marginal distributions
have been transformed to uniform ranked distributions. The use of rank correlations coe�cients to assess the
dependence among variables measures monotone dependence, rather than just linear (as is the case when using
marginal distributions when using the Pearson correlation coe�cients). Moreover, due to this transformation
process, the copula model is independent of the marginal distribution of the individual variables. The joint
cumulative distribution function H(x, y) of any pair of continuous random variables (X, Y ) can be written as
[23]:

H(x, y) = C(F (x), G(y)), x, y œ Re (2.28)

where F (x) and G(y) are the marginal distributions and C œ [0, 1] ◊ [0, 1] is the copula function.

The fitting process of a copula model to a data set is made in four main steps:

1. Transformation of the marginal distributions to uniform on [0,1]: To build the empirical copula,
first the marginal distributions should be transformed to uniform ranked distributions. Therefore, the
sample is transformed as follows:

(X1, Y1), ..., (X
n

, Y
n

) æ (R1, S1), ..., (R
n

, S
n

) (2.29)

where X, Y represent the values of the sample of study, R, S are the ranked values of the variables of
study and n the length of the sample.
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2. Construction of the empirical copula: The empirical formula (C
n

) is constructed as follows:

C
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(u, v) = 1
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n + 1 Æ v

4
(2.30)

The empirical copula can be seen as a square matrix of dimension j, where j is the number of equidistant
points between 0 and 1 that represent the domain of u and v. This number of points is arbitrary. The
value of every component of this matrix corresponds to the number of pairs of ranked variables R

i

, S
i

that after being normalized by n + 1 are smaller or equal than u and v, respectively. The copula model
is expected to be more statistically significant for larger samples, but the significance of the model is
not influenced by the number of equidistant points chosen between 0 and 1, this is, the dimension of the
matrix that corresponds to the theoretical copula.

3. Fit specific copula models to the empirical copula: The existing copula models can be grouped in
three main families: Archimedian copulas, extreme value copulas and meta-elliptical copulas. Apart from
these families, there are other copula models that cannot be classified under the previous families, but are
out of the scope of this research. In this project, the goodness of fit of Gaussian (meta-elliptical), Clayton
(Archimedian) and Gumbel (Archimedian) copulas will be tested, due to their common use in Hydraulic
Engineering applications.

Figure 2.17: Example of randomly generated samples of Gaussian, Gumbel and Clayton copulae.

The functions representing these theoretical copula models are shown below. The Gaussian copula is:
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where x1, x2 œ R, µ
i

and ‡
i

are the mean and the standard deviation of x
i

and fl is the parameter of the
Gaussian copula. As mentioned before, u, v are in [0, 1]2. The Gumbel copula has the following expression:

CGumbel

◊

(u, v) = exp
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where ◊ œ [1, Œ). ◊ is the parameter of the Gumbel copula. The expression of the Clayton copula is
writen as follows:

CClayton

—

(u, v) = (u≠— + v≠— ≠ 1)≠1/— (2.34)

where ◊ œ [≠1, Œ) ≠ {0}. — is the parameter of the Clayton copula.
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The di�erence among the Gaussian, the Clayton and the Gumbel copula models is on the tail dependence
(Figure 2.17). A distribution shows tail dependence when the correlation grows when approaching the
extremes of the distribution. While Gaussian copulas do not show tail dependence and are symmetric,
Gumbel copulas present larger dependence among high values of the variables (upper right corner of the
plots in Figure 2.17) than among the low values of the variables (down left corner of the plots in Figure
2.17). In contrast, Clayton copulas presents larger dependence among low values of the variables.

The copula models explained are defined by one parameter, by which the theoretical copulas are fitted
to the empirical copula. The value of this parameter can be estimated by di�erent methods. Examples
of these methods are the estimation based on the Kendall tau, based on the Spearman rho or based on
the maximum pseudolikelihood. If ◊ is real, one of the methods to obtain the rank-based estimator of
the copula parameter is by means of the Kendall tau, which measures the dependence between pairs of
variables based on ranks. The empirical value of the Kendall tau is (·

n

):
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the Kendall estimator of ◊. A small adaptation of Proposition 3.1 of [24] implies that:
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being n the size of the sample, ·
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the estimator of the population value of the Kendall tau · and S the
sample standard deviation:
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Applying the Slutsky’s theorem (also referred as Delta method) implies that as n æ Œ:
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being gÕ the first derivative on ◊ of the function g. The 100 ◊ (1 ≠ –)% confidence interval for ◊ is given
by:
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where z
–/2 is the value of the inverse standard normal distribution for a probability of 1 ≠ –/2, being

alpha an arbitrary value.
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4. Assessment of the goodness of fit of the copula models to the data: The fit of the copula models
is assessed using semi-correlation and Cramer-von-Mises tests [71]:

• Semi-correlations: This metric is used to test how well a chosen copula fits the tails of a data set.
To do so, the overall correlation (fl) for the normal transform of the original data (Z

⁄

) is compared
to the semi-correlation in the tail quadrants. Generally, if the absolute value of the semi-correlation
is larger than the overall correlation, then the data is considered to be tail dependent.

The semi-correlations are calculated according to the following expressions:
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where (Z
i

, Z
j

) are the standard normal transforms of X
i

and X
j

.
• Cramer-von-Mises statistic (CM): The CM statistic is the sum of the squared di�erences between

the empirical copula and the fitted copula model (Gaussian, Gumbel, Clayton) for a given number
of samples. Generally, the copula with the lowest CM statistic is the best estimate for the data set.
The CM statistic is computed as follows:
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Æ u) is the empirical copula and C
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fitted to the data. Based on the assessment of the goodness of fit, it is selected the copula model
that better represents the joint probability distribution of the variables of interest.

2.2.4.1.2 Construction and validation of the Bayesian Network

The NPBN is built by adding arcs between variables only if their rank correlation is larger than a threshold
value, which is application dependent and imposed by the user. The result of introducing arcs to capture causal
or temporal relationships is called a skeletal NPBN. The constructed NPBN should overcome two validation
steps: the first tests validates that the normal copula adequately represents the data set used and the second
tests verifies that the NPBN is an adequate model of the saturated graph, this is, that the assumed conditional
independencies are valid for the data set given. For the first validation there are distinguished two determinants.
DER is the determinant of the empirical rank correlation matrix. DNR is the determinant of the empirical
normal rank correlation matrix, which is the rank correlation matrix obtained by transforming the marginals to
standard normals, and then transforming the product moment correlations to rank correlations. A statistical
test for the suitability of DNR for representing DER is to obtain the sampling distribution of DNR and check
whether DER is within the 90% central confidence band of DNR. [30] proposes the following procedure to do
so:

1. Compute DER by first transforming marginals to uniforms and then calculating the product moment
correlation of the transformed variables.

2. Construct the normal version of each variable using the marginal distributions and the standard normal
distribution (Z

i

= „≠1(F
Xi(Xi

))) and calculate the product moment correlation matrix.

3. Compute DNR using the relationship between the rank correlation and the product moment correlation
given by Pearson’s transformation:
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4. Re-sample the normal data to obtain the empirical distribution of DNR and extract the 5th and the 95th
quantiles of this distribution.

5. Compare DER with the quantities from step 4. If DER is within these bounds, do not reject the joint
normal copula, otherwise reject this hypothesis.
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It should be noted that for small data sets, the normal copula assumption is rarely rejected on the basis of this
test. This occurs also when assuming other copulas as well. By contrast, this test is quite severe for large data
sets. Even when it is not a perfect fit, normal copulas present important advantages with respect to other copula
models and therefore even when rejected in the case of large data sets, they can represent well multivariate
data, but this is only true for applications where tail dependence is not expected.

For the second validation step, it is introduced the determinant of the rank correlation matrix of a NPBN using
the normal copula (DBN). The procedure to validate the NPBN structure is similar to the first validation step:

1. Construct a skeletal NPBN.

2. Re-sample to obtain the distribution of DBN.

3. If DNR is within the 90% central confidence band of DBN, then stop, else continue with the following
steps.

4. Find the pair of variables such that the arc between them is not in the DAG and their rank correlation
is greater (in absolute value) than the rank correlation of any other pair not in the DAG. Add an arc
between them and recompute DBN together with its 90% central confidence band.

5. If DNR is within the 90 % central confidence band of DBN, then stop, else repeat step 4.

The data mining scheme to generate DER, DNR and DBN is shown in Figure 2.18.

Figure 2.18: Data mining scheme followed to compute DER, DNR and DBN to validate the NPBN [29].

In the present research, it is used a standalone uncertainty analysis software package called UniNet [78], which
facilitates the manipulation of NPBN. UniNet assumes that the joint probability between the variables of the
BN can be represented by normal copulas. This is the fastest way of performing inference in a NPBN. Since
joint normal distributions are used exclusively, any conditional distribution will also be normal, what allows
to perform inference analytically. If arbitrary copulas are used, sampling or similar methods must be used to
perform inference. In such case, the inference process can become computationally expensive, specially whether
the BN includes undirected cycles, since multiple integrals should be solved for each sample and for any condi-
tionalization [53].



CHAPTER 3

Methodology

This Chapter describes the research approach followed to satisfy the objectives of the MSc Thesis described in
Chapter 1.

3.1 Theoretical framework
The objective of this project is to develop a stochastic model capable of estimating surge at the coast of Mis-
sissippi. To do so, a Bayesian Network needs to be trained and validated by means of a hurricane data set
consisting of a finite number of hurricanes. Each hurricane of the data set is described by five variables: forward
speed (FS) and forward direction (FD) of the hurricane, wind speed (WS), distance from landfall to a specific
recording station (LF) and maximum surge at this recording station (SS). The values of the first three variables
mentioned correspond to the values at landfall. FS, FD, WS and LF are obtained from the hurricane best
tracks. However, the value of the storm surge at a specific tidal elevation station is not available. To get the
storm surge values, each of the hurricanes of the data set is simulated in Delft3D FM and the surge is recorded
at an observation station.

The stochastic model needs to be trained by means of hurricane data, including surge levels. This information
must be generated beforehand, by simulating a limited number of hurricanes with an hydrodynamic model. In
this project, the hydrodynamic model Delft3D Flexible Mesh is used for this purpose. The approach followed to
build the stochastic model is based on three main steps. The first step consists of setting up and validating the
hydrodynamic model in Delft3D FM. Hurricane Katrina (2005) is simulated to calibrate the input parameters
of the model, by comparing the maximum simulated water levels at a finite number of locations stations along
the shoreline of Mississippi to the high water marks observed at the same locations during the event. Tide,
surge and wave setup have been considered in the validation. The inputs of the model are the unstructured
mesh, the bathymetry and topography, the hydraulic roughness, the hurricane forcing, the wind drag coe�cient
and the boundary conditions. For the latter, an astronomical tide has been imposed. A maximum wave setup
has been assumed.

The second step in the construction of the stochastic model is the generation of a historical hurricane data
base. The hurricane best tracks are retrieved from the HURDAT2 data base. The variables considered are the
forward speed and the forward direction of the hurricane at landfall, the wind speed at landfall, the distance
from landfall location to a reference point (Galveston Bay) and the maximum storm surge during the hurricane.
In this case, only the hurricane forcing is considered as external action. The storm surge is recorded at Gulfport
Harbour (central coast of Mississippi). The values of the surge are obtained by using the validated model to
simulate the historical hurricanes making landfall in a specific domain surrounding Gulfport Harbour. Due to
the scarce number of hurricanes making landfall in this region, the tracks of the hurricanes making landfall in
the North of the Gulf of Mexico but outside the rectangular domain are shifted inside the domain, in order
to generate a su�ciently large data base to train the stochastic model. A data base with a finite number of
hurricanes is built, from which the 85% is used for the training of the stochastic model and the other 15% have
been used for the validation of the stochastic model.

The final step is the setup and validation of the stochastic model, by comparing the storm surge obtained
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Figure 3.1: Workflow of the project.

from the stochastic model to the surge obtained from the hydrodynamic simulations. The stochastic model
used to estimate storm surge has been a Bayesian Network that assumes normal copulas to represent the joint
distribution between nodes of the network. The Bayesian Network provides the uncertainty of the estimation
by giving a normal distribution of the surge.



CHAPTER 4

Physical model setup and validation

Delft3D FM is an hydrodynamic model that has been validated for a wide range of physical conditions, includ-
ing storm surge, according to the quality assessment guidelines included in [11]. However, the quality of the
simulation results depends on the adequacy of the available data, the suitability of the model chosen by the end
user and the designated model parameters. As stated in [14], in order to obtain useful and accurate results for
a particular application, the use of high-quality modeling tools is necessary but not su�cient. For this reason,
to guarantee the goodness of the database generated to train the stochastic model, it is essential to ensure that
the model to generate storm surge is adequately calibrated.

The objective of using Delft3D FM is to generate a catalogue of high-fidelity storm surge levels, given the
best tracks of a list of historical hurricane events. The quality of Delft3D FM output will condition the ac-
curacy of the stochastic model for storm surge prediction, since the probabilistic model will be trained with
the database generated with the physical model. The purpose of this chapter is to set up the surge model and
validate it. To do so, it is simulated an historical event in Delft3D FM and the resulting storm surge is compared
to observed data recorded during the real event. Hurricane Katrina (2005) has been chosen to do the validation.

4.1 Historical hurricane used for validation: Hurricane Katrina (2005)

4.1.1 Description of the event
Hurricane Katrina was one of the strongest storms to impact the coast of the United States during the last 100
years. According to the [56], the storm began as tropical depression over the southeastern Bahamas on August
23, 2005. On August 24, the cyclone became tropical storm, receiving the name Katrina. It is estimated that
Katrina reached hurricane status on August 25, 2005. Katrina made its first landfall very close to Miami as a
Category 1 hurricane on the Sa�r-Simpson Hurricane Scale, with maximum sustained winds of 70 knots (130
km/h). At that moment, the hurricane headed the southwest. It spent only 6 hours over land and weakened to
a tropical storm with maximum sustained winds of 60 knots (111 km/h) as it emerged into the Gulf of Mexico.
Katrina continued northward over the Gulf of Mexico, quickly regaining hurricane status and strengthening to a
Category 5 hurricane on the morning of August 28, 2005. Katrina attained its peak intensity of 150 knots (278
km/h) about 275 km southeast of the mouth of the Mississippi River. Katrina remained a significantly large,
sustained storm and impacted a broad area of the Gulf Coast. By the morning of August 29, Katrina weakened
to a Category 3 storm, making landfall near Buras (Louisiana), with estimated maximum sustained winds of 110
knots (177 km/h). Heading northward, Katrina downgraded to a tropical depression in the state of Tennessee
and dissipated on August 31 in southeastern Canada. The Hurricane Katrina storm track is shown in Figure 4.1.

The measurement of the storm surge produced by Hurricane Katrina along the states of Louisiana and Missis-
sippi was complicated, mainly because the majority of the tidal gauges available failed during the event. The
data recorded by the tidal gauges that resisted was complemented with the high watermarks (HWM) obtained
by visual inspection in several structures located in flooded areas. The HWM collection campaign was organized
by the Federal Emergency Management Agency (FEMA) and the US Army Corps of Engineers (USACE), and
tables that include this data can be found in [56]. The HWM records show that the storm surge was about 7.5 to
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Figure 4.1: Hurricane Katrina track (2005).

8.5 meters along the Mississippi coast with respect to the vertical datum NAVD88, in the vicinity of Bay Saint
Louis. At this location, the di�erence between the NAVD88 and the Mean Sea Level (MSL) is 6 centimeters
[57]. The maximum observed HWM was located at Pass Christian, where the surge reached 8.5 meters. From
Gulfport to Pascagoula, in the east coast of Mississippi state, the surge reached from 5 to 7 meters. In terms of
extension, the surge spread at least 10 kilometers inland in many locations of coastal Mississippi and up to 20
kilometers inland in bays and rivers. The records also show that the surge crossed the Interstate 10 highway in
several locations [56].

The exceptional flood extent provoked by Hurricane Katrina is mainly attributed to the great hurricane hor-
izontal size, being the water level additionally enhanced by the waves generated when the hurricane reached
category 5 the day before making landfall. Additionally, 200 to 250 mm of rainfall were reported in southwest
Mississippi during landfall. In inland locations of the Mississippi state, lower levels of precipitation were ob-
served, ranging from 100 to 200 mm.

4.2 Model setup
The Delft3D FM model aims to represent the storm surge provoked by hurricanes as close as possible. Reaching
a high accuracy in the simulation comes at a price of a large computational time, since the resolution of the
mesh should be small enough to capture the bathymetry and topography gradients and the time step small
enough to capture the progress of the surge. Due to time limitations, it is key to find a tradeo� between the
accuracy and the computational time, since it is desired to simulate enough hurricanes to generate a stochastic
model that is su�ciently trained.

The model calibration process is iterative. During this process, it is evaluated what is the accuracy of the
simulation output and what is the sensitivity of the model to variations in the input. It is also assessed what
is the computational time and the variation of the results for di�erent time steps. In the following paragraphs,
the input archives used to set up the model and the output format is described.

4.2.1 Model input
The mesh used in Delft3D FM is known as ULtralite-Levee-Removed mesh (ULLR), which is formed by 417,642
nodes and 826,866 triangular elements (Figure 4.2). This mesh has been widely used in ADCIRC models for
storm surge and flood modelling. The domain of the mesh is restricted to the Gulf of Mexico, with open sea
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boundaries at the Strait of Florida and the Yucatan Channel. These boundaries are intersected by Cuba. This
mesh has a resolution of 8-30 km in the deep waters of the Gulf of Mexico, 2-8 km in the continental shelf, reaches
a resolution of approximately 500 m in the floodplains and 100 m in the rivers Mississippi and Atchafalaya.
This mesh can be used to evaluate storm surge and overland flooding. The refined mesh has 460,296 nodes. The
mesh has been refined to reach 200 meters of resolution in the shoreline. The ULLR mesh has been converted
from the ADCIRC format (fort.14 ) to the Delft3D FM format by means of an Open Earth Tool developed by
Deltares that is called adcirc2dflowfm. The bathymetry used in the Delft3D FM model is extracted from the
General Bathymetric Chart of Oceans [22] and it has a uniform resolution of 15 arc-second (cell size of roughly
460 meters by 460 meters) (Figure 4.3).

Figure 4.2: Unstructured mesh ULLR, as represented by [35]. The easternmost open sea boundary is the Strait
of Florida and the southernmost boundary is the Yucatan Channel.

The model is forced at the open sea boundaries located at the Strait of Florida (segment connecting the co-
ordinates 79.3930¶W 22.7721¶N and 80.2665¶W 25.3130¶N) and the Yucatan Channel (segment connecting
the coordinates 86.7685¶W 21.0826¶N and 84.5170¶W 21.7772¶N) by imposing tidal potential functions. The
Eastcoast2001 tidal database is used [54] to determine the amplitude and phases of the tidal constituents at
these boundaries. The Eastcoast2001 was derived from a 90-day simulation run with the K1, O1, Q1 diurnal
and the M2, S2, N2, K2 semidiurnal astronomical tidal constituents forced on the open ocean boundary (60¶W
meridian). Eastcoast2001 was validated by comparing the simulation results to the tidal constituents obtained
from an harmonic decomposition at 101 tidal elevation stations along the entire model domain. In Appendix
B.1, it is shown the comparison between the modelled and the Eastcoast2001 predicted amplitude and phase of
the 7 tidal constituents, at the Gulfport Harbour tidal elevation station (89.0817¶W 30.3600¶N), at the central
coast of Mississippi. The error falls within the 10% for almost all components.

The astronomical tidal constituents considered in the Delft3D model are K1, O1, Q1 (diurnal) and the M2,
S2, N2, K2 (semidiurnal). The amplitude and the phase angle of the constituents are very site specific. By
means of a Fortran program developed by [76], it is possible to calculate the amplitude and phase of the tidal
constituents at any location covered by the Eastcoast2001 database. In Table 4.1, these characteristics are spec-
ified for the Florida Strait and the Yucatan Channel. The time-series of the tide during the time of the arrival
of Hurricane Katrina at the middle point of the Florida Strait and the Yucatan Channel are shown in Figure 4.4.
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Figure 4.3: Bathymetry and topography of the Gulf of Mexico up to 25 meters above the MSL. Data extracted
from GEBCO (2019).

Yucatan Channel Florida Strait
West point Middle point East point North point Middle point South point

a (m) „(¶) a (m) „(¶) a (m) „(¶) a (m) „(¶) a (m) „(¶) a (m) „(¶)
Q1 0.0092 19.86 0.0121 5.04 0.0105 346.80 0.0079 308.58 0.0100 359.79 0.0111 9.74
O1 0.0323 40.27 0.0470 19.46 0.0405 354.40 0.0344 311.43 0.0404 13.43 0.0450 22.37
K1 0.0120 51.13 0.0298 10.42 0.0301 322.40 0.0293 278.72 0.0287 9.72 0.0333 18.02
N2 0.0128 91.27 0.0126 5.64 0.0138 91.89 0.0706 4.07 0.0532 2.92 0.0544 17.45
M2 0.0509 100.66 0.0525 89.20 0.0559 96.17 0.3203 21.53 0.2493 22.06 0.2647 33.66
S2 0.0269 45.88 0.0287 95.13 0.0329 52.04 0.0696 47.01 0.0625 52.91 0.0676 70.29
K2 0.0069 11.27 0.0070 52.68 0.0083 25.18 0.0165 51.79 0.0154 56.28 0.0170 74.63

Table 4.1: Amplitude (a) and phase („) of the seven tidal constituents considered at the open sea boundaries
of the model.

A good approximation of the wind drag coe�cient consists of using di�erent linear piecewise expressions in
function of the velocity, as shown in the parametrization of [47] (Figure 2.14). Explanations on the model of
[47] are given in the review of wind drag model included in Chapter 2.2.2.3. An approximation with the linear
piecewise function of three points proposed by [73] is used to represent C

d

in Delft3D FM (Figure 4.5).

The 2D windfield for Hurricane Katrina is generated by running the Holland model in Matlab. The modified
Holland model proposed by [81] is used [34] to generate the 2D wind and pressure fields in Matlab. The hurricane
forcing consists of a 2D field that includes three variables: wind speed (W

x

, W
y

), wind direction (◊) and air
pressure at MSL (p). The windfield is given on a polar grid with the center (eye) of the hurricane being the
origin of the polar coordinate system. The position of the eye and the associated wind field (spiderweb) varies
in time. The shape of the spiderweb is given in Figure 2.8. The grid has a radial resolution of 1 km, and the
domain of the radius covers from 1 m to 3,000 km away from the origin. The angular resolution of the spiderweb
is fi

12 radians (15 degrees), and the domain of the angle covers from 0 to 2fi radians. Note that the reference of
the angle heads the north direction on the horizontal plane. Therefore, using (2.4) and Eq. (2.6), the pressure
and the wind speed can be computed (Eq. (2.4) and Eq. (2.6)):

I
W = f(R, ◊)
p = f(R, ◊)

(4.1)

where [R, ◊] œ [1, 3 · 106] ◊ [0, 2fi). The units of R, ◊, W and p are meters, radians, meters per second and
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Figure 4.4: Time-series of the tide during the arrival of Hurricane Katrina to the coast of Mississippi (24th to
31st August 2005) at the middle point of the Florida Strait (top) and the Yucatan Channel (bottom), as read
by Delft3D FM.

Figure 4.5: Approximation of the wind drag coe�cient in Delft3D FM, based on [47].

Pascals, respectively. W can be decomposed in components (x-component heading the east and y-component
heading the north in the plane) (Figure 4.6):
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I
W

x

= W sin(◊)
W

y

= W cos(◊)
(4.2)

Figure 4.6: Separation of the wind velocity (W ) in components in x-direction and y-direction (W
x

, W
y

) for an
arbitrary point of the spiderweb.

The 2D wind and pressure fields for Hurricane Katrina some hours before landfall (29th August of 2005 at 14.45
h) as read by Delft3D FM are shown in Figure 4.7.

The sea bed and topography friction is computed by using the Manning formulation, which applies spatially
variable coe�cients based on land cover databases [5]. These values have been extracted from the Mississippi
Gap Analysis Program (Appendix C). The Manning coe�cient varies from 0.025 at the sea to 0.2 in dense forest
areas.

4.2.2 Running the model

After defining the input for the hydrodynamic simulation in Delft3D FM for each of the hurricanes of the
catalogue, the computation can be executed either using DeltaShell (on Windows) or using batch scripts (on
Linux and Windows). If DeltaShell is used, the status of the computation and messages on the execution of the
model are visible on a message window. If batch scripts are used, all the messages are written in the diagnostics
file (.dia). It is possible to run a work in the DeltaShell while running a simulation if batch scripts are used to
run the model.

In this project, both approaches have been used. DeltaShell includes an interface for Python Scripting, by
which it is possible to set up and execute Delft3D FM models. This tool has been used to run several scenarios
in series. On the other hand, batch scripts have been used on Linux to execute works. In this case, the High
Performance Computing 11 (HPC11) cluster from the Delft University of Technology has been used to run
simulations in 1 node (in series) and 2 nodes (in parallel and in series). This cluster uses the server CentOS7
and has a total of 20 nodes and 400 CPUs. The name of the commandline executable for the model in Linux
is dflowfm. These executables call libraries that are included in the program files of Delft3D FM to execute the
simulations.
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Figure 4.7: 2D visualization of the air pressure (top) and the wind velocities in y-direction (bottom) close
when Hurricane Katrina is reaching the coast of Mississippi and Louisiana. Pressures are in Pascals and wind
velocities are in meters per second.

4.2.3 Model output

Delft3D FM enables the possibility to write two types of output files: history files and map files. History files
include time-series of the di�erent variables at specific locations that can be specified beforehand by implement-
ing observation points (manually or by importing a .csv file) and map files include time-series of the di�erent
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Figure 4.8: Values of the Manning coe�cient in the sea and overland domain of Mississippi.

variables for each cell of the unstructured grid. These files are created in .nc format, and therefore they can be
manipulated with external programming interfaces. In this project, the .nc files were treated with R language.
The writing time step of the results in history and map files should be proportional to the user time step of the
2D wind field.

For the sake of the computational e�ciency, map files are written at a lower frequency than history files (2
hours and 15 minutes, respectively), since they will only used for general visual verification of the results. The
development of the 2D fields of water levels and wind can be visualized by means of QUICKPLOT, which is
a useful tool that can be opened in Delft3D FM. It is also possible to check the results in the canvas of the
DeltaShell, by selecting the desired variable and activating the Time Navigator or in R.

4.3 Wave setup

The water level also rises due to the contribution of waves, which transmit momentum to the water column
when they break. During Hurricane Katrina, Mississippi coast experienced relatively small wave breaking in-
duced setup (approximately 0.3 meters, Figure 4.9). The Mississippi coast is located far from the edge of the
continental shelf and the bed slope is gentle, what leads to dissipate the energy of the breaking waves before
reaching the shoreline.

The barrier islands reduced the wave energy of the o�shore waves and dissipated up to 85% of their energy.
Behind the barrier islands, there were generated fetch and depth-limited waves that barely reached heights
between 2.5 and 3.8 meters along the coast of Mississippi [72]. Therefore, using the plot of Figure 2.5, the wave
setup might be between 10% and 14% of this wave height, which is approximately the assumed value of 0.3
meters. This contribution is added to the water levels caused by surge and tide.

The influence of waves can be quantified with hydraulic models such as Delft3D FM or the coupled model
SWAN+ADCIRC, as applied in [15], which may require large computational times. Due to the relatively small
influence of the waves on the total water levels, it is considered practical to assume a maximum wave setup of
0.3 meters along the coast of Mississippi.
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Figure 4.9: E�ect of waves on the maximum water levels (m) during Hurricane Katrina [4].

4.4 Validation of the tide
A 37-day tide simulation has been run for a time step of 1 second, by imposing the tidal constituents shown in
Table 4.1 at the Yucatan Channel and the Florida Strait. The period of simulation was from the 24th July to
the 31st August 2005. The water levels have been recorded at three NOAA tidal elevation stations, for which
the predicted tides for the period of Hurricane Katrina are available: Waveland (ID: 8747766; 89.3667¶W ,
30.2817¶N), Gulfport Harbour (ID: 8745557; 89.0817¶W , 30.3600¶N) and Pascagoula Point (ID: 8741196;
88.5333¶W , 30.3400¶N). These stations have been chosen for the validation because they are at the western
border, the middle and the eastern border of the coast of the Mississippi state, in order to represent the adequate
modeling of the tides along the study area. The SI and the Bias of the results at each station are calculated
according to Eq. (2.26) and Eq. (2.25) and summarized in Table 4.2.

Waveland Gulfport Harbour Pascagoula Average
SI 0.389 0.190 0.303 0.294

Bias -0.246 -0.342 -0.008 -0.199

Table 4.2: SI and Bias of the water levels obtained from the simulation of the tide at Waveland, Gulfport
Harbour and Pascagoula.

The low values of the SI (0.19 to 0.39) and the Bias (-0.01 to -0.34) show the good performance of the model
to represent the tides at the coast of Mississippi. The slight underestimation of the tide shown by the negative
values of the Bias (particularly in Waveland) might be explained by the di�culty to capture fine-scale details
of the bathymetry with the 200-meter resolution mesh and the 460-meter resolution bathymetry.

4.5 Validation of the storm tide
The strong wind and high surge that hit the coast of Mississippi during Hurricane Katrina damaged all the
NOAA tidal stations present in Mississippi that record the water levels. Consequently, there are not available
continuous time-series of the water levels in the coast of Mississippi. However, FEMA and USACE gathered
HWMs from buildings, trees and other sites in order record the overland water depths and the flood extent.
The HWMs are used to do the validation of the Delft3D FM model.
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Figure 4.10: Comparison of the predicted tides by NOAA and the simulated tides in Delft3D FM at Pascagoula
Point, Gulfport Harbour and Waveland tidal elevation stations, in the coast of Mississippi.

The total water levels achieved during Hurricane Katrina include the surge, the tide and the wave setup. The
surge and the tide are simulated together in Delft3D FM, by implementing the input explained in Chapter 4.2.1.
The maximum water level of each cell is extracted from the water level time series of every cell, and the wave
setup is added to the maximum values. These values, which can be considered simulated HWMs, are compared
to the HWMs recorded by FEMA for the coastal areas of the state of Mississippi [79]. The unstructured mesh
used for the simulation is too coarse to capture the presence of road levees, such as the Interstate 10 highway.
Consequently, only HWMs that are immediately close to the water are considered. A total of 41 HWMs from
FEMA have been used for the validation. Figure 4.11 (top) shows a scatter plot comparing the measured and
the computed HWMs at the 41 stations and Figure 4.11 (bottom) displays the absolute error for each of the 41
stations considered along the coast of Mississippi.
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Figure 4.11: Top: Scatter plot showing the comparison between computed and measured HWMs at the 41
FEMA locations. The green circles show a di�erence between the simulated and the measured water levels
lower than 0.5 meters, white circles show di�erences between 0.5 and 1 meter and red circles show di�erences
of more than 1 meter. Bottom: Error of the simulation at the 41 HWM locations provided by FEMA along the
coast of Mississippi. The green circles show a di�erence between the simulated and the measured water levels
lower than 0.5 meters, white circles show di�erences between 0.5 and 1 meter and red circles show di�erences
of more than 1 meter. The maximum error is 1.48 meters.

The value of the R2 for a fitted line that passes through the origin is 0.995 and the best fit for the slope is 0.912.
The average absolute error is 0.64 meters, which represents an average relative error of 9.5%. These values
confirm the reasonably good representation of the phenomena that induces storm tide. The absence of coastal
protection structures in the areas where the water levels are recorded facilitates the modelling of nearshore
overland flood. The breach of dikes and other structures induce vertical turbulence and other phenomena that
adds complexity to the modelling.

Despite the limited error in the estimation of the HWMs, in Figure 4.11 it is observed that the majority of the
HWMs obtained in Delft3D FM reach higher values than the HWMs recorded by FEMA. In particular, 28 out
of 29 points that have an error larger than 0.5 are overestimating the flood levels. This has an influence on the
slope of the fitted line, whose value is smaller than 1.

The main point of interest for this validation is located at the Gulfport Harbour NOAA station (ID: 8745557;
89.0817¶W , 30.3600¶N), since this location will be used to record the surge obtained from the simulations of
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the historical hurricane catalogue. These data will be used to feed the Bayesian Network. In Figure 4.12 (top),
the values of the simulated storm surge reached at the Gulfport Harbour, the coastal flooding simulated at the
station KMSC-07-14 from the FEMA and the HWMs recorded by FEMA at the same station are compared.
At the bottom of Figure 4.12, the simulated wind speeds in x and y-directions and the air pressure at MSL at
station KMSC-07-14 are represented.

Figure 4.12: Top: Time-series of the variation of the water level during Hurricane Katrina, as simulated in
Delft3D FM. Bottom: Time-series of the wind speed in x and y-direction and the air pressure at MSL during
Hurricane Katrina, as simulated in Delft3D FM.

The oscillations on the simulated water level (dark blue) shown at the top plot on Figure 4.12 represent the
astronomical tide that arrives to the Gulfport Harbour station, before the hurricane makes landfall. When the
hurricane approaches the shoreline at the West of Mississippi, the water level increases to a maximum of 7.16
meters + MSL. Adding up the 0.3 meters of wave setup, the maximum water surge level reaches 7.46 meters +
MSL. According to the simulation, the station KMSC-07-14 is dry until approximately the moment of landfall.
The water level then increases to 7.26 meters + MSL (cyan). The contribution of waves increases this flood
level to 7.56 meters + MSL (red dot). As could be expected beforehand, the increase in the Manning roughness
when the surge wave passes from the sea to overland leads to a slight increase in the overland water level, due to
the transformation of kinetic energy of the wave into potential energy. The HWM recorded by FEMA reaches
7.37 meters + MSL at the KMSC-07-14 station (green dot), which is only 19 centimeters less than the simulated
HWM at the same station (relative error of barely 2.5%). Therefore, it is considered that the model that has
been set up is skilled to do suitable estimations of water levels in Gulfport Harbour.



CHAPTER 5

Generation of the hurricane data base

The validation of the model guarantees the capability of the model to simulate hurricane events in the region of
study and generate accurate storm surge data. The next step in the project is the generation of a storm surge
catalogue, by simulating a catalogue of historical hurricanes in Delft3D FM. Ideally, the storm surge catalogue
would be extensive, in order to have a long data set to provide the stochastic model with an optimal training.
However, there are several challenges that arise at this point. First, the historical catalogue of hurricanes contain
a limited number of events that occurred in the domain of study. Second, the computational time required to
generate the model input (i.e. the spiderweb) or to run the simulation can be a limiting factor in the number
of events considered, due to the time limitation of the project. The purpose of this chapter is to explain the
strategies followed to elaborate e�ciently a storm surge database by means of a physical model.

5.1 Hurricane selection
The 2D wind and pressure fields can be generated by applying the Holland model to the hurricane best tracks
retrieved from the HURDAT2 database, as done for Hurricane Katrina. The HURDAT2 database includes best
tracks for 1864 historical events developing in the Atlantic (and Gulf of Mexico) basin of the United States, for
the period 1851-2018. Two conditions must be satisfied by the events of the HURDAT2 data base to be selected
for the hurricane catalogue of this project:

1. Hurricane category: The hurricane must have reached at least Category 1 in the Sa�r-Simpson scale
at some point of its track. This means that tropical depressions and tropical storms are left out from the
catalogue (wind events with maximum speeds lower than 33 m/s). The reason to leave these events out
is that they might cause negligible surge, what can introduce noise in the stochastic model.

2. Number of hurricane best track points: Only hurricanes that have more than 15 best track points
in the HURDAT2 database are considered for the catalogue. In case this number is lower, it is considered
that the information of the best track is not su�ciently complete to achieve the desired accuracy in the
storm surge simulation.

An observation station has been located in Gulfport Harbour (89.0817¶W , 30.3600¶N) in order to record the
surge caused by each of the hurricanes of the catalogue. This location has been chosen due to its centered posi-
tion in the coast of Mississippi. Initially, only hurricanes making landfall in a radius of 120 kilometers around
Gulfport Habour were considered. This criterion was established considering the average swath of hurricane
intensities in hurricane events, which is 240 kilometers according to [39]. From the 1864 historical events in
the HURDAT2 database, only 371 reach the category of hurricane. From this amount, 356 have at least 15
hurricane best track points. Out of the 356, only 22 hurricanes made landfall in the mentioned 240-kilometer
alongshore region. In Appendix E, the landfall domain and the hurricane tracks of the 22 hurricanes that fall
in the region are shown.

A sample of 22 hurricanes is small to train a stochastic model. As a result, the sample should be increased. A new
bounding box of 600 kilometers alongshore (300 kilometers at each side of Gulfport Harbour) was considered.
The domain of the new bounding box is (Eq. (5.1)):

45
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I
long œ [≠91.795, ≠86.405]
lat œ [28.500, 31.000]

(5.1)

There are 48 hurricanes falling in the new bounding box, which is still a low number of hurricanes for the
training of a stochastic model. To increase further the number of hurricanes of the catalogue, the tracks of
the hurricanes satisfying a condition imposed on the angle (forward direction of the hurricane) at landfall in
the Gulf of Mexico are shifted inside the bounding box. The range of angles of the hurricanes making landfall
in the bounding box varies from 201.84¶ to 349.30¶, considering an axis pointing to the East as reference and
the increase of the angle in clockwise direction. Hence, the hurricanes that make landfall outside the bounding
box but whose angle at landfall is within the specified domain are shifted inside the bounding box. There are
92 hurricanes satisfying the condition on the angle at landfall. This elevates the number of hurricanes for the
catalogue to 140 events, which is already an acceptable number to train the Bayesian Network.

To shift the tracks of the hurricanes making landfall outside the bounding box it is followed a specific procedure.
To start, it is generated a simplified coastline that represents the coastline within the bounding box. To do so,
it is created a shapefile of lines in QGIS, which is divided into segments of 500 meters (v.split using the GRASS
toolbox). The vertices of the segments of the line are extracted, generating a shapefile of points. Subsequently,
it is assigned to each hurricane a random point from the extracted vertices in which the simplified coastline
is divided (in this case, the total number of points was 1146), considering that landfall locations to the west
and to the east of Gulfport Harbour are assigned alternatively, in order to have the same number of hurricanes
making landfall at both sides of the observation station (this is applied only to the shifted hurricanes). The
coordinates of each point can be extracted by using the raster calculator in QGIS. Subsequently, it is assigned
one random point of the simplified shoreline to each of the 140 hurricanes. Moreover, the landfall coordinates
of each hurricane are known, since they are given in the best track. Consequently, if the hurricane must make
landfall in the point assigned, all the points of the historical hurricane must be shifted a distance (in degrees):

I
�x = lon

point

≠ lon
hur,real

�y = lat
point

≠ lat
hur,real

(5.2)

where lon
point

and lat
point

are the longitude and the latitude of the random point assigned to a historical
hurricane at the simplified coastline, and lon

hur,real

and lat
hur,real

are the longitude and the latitude of the
landfall location of the hurricane. In Figure 5.1, there are shown the original tracks of the hurricanes of the HUR-
DAT2 database (top) and the tracks of the hurricanes after being shifted to the specified bounding box (bottom).

As mentioned in Chapter 2.2.1.2, the minimum pressure in the hurricane eye (p
c

) is only available since 1979.
p

c

is needed to generate the wind and pressure spiderwebs by means of the Holland model. For the hurricanes
occurring prior to 1979, p

c

can be calculated in function of the maximum sustained wind at 10 meters above
the MSL (Eq. (2.11)), which is equal to the cyclostrophic wind. It is recalled that in the radius of maximum
winds the Coriollis force is small with respect to the pressure gradient and the centrifugal forces and the air is
in cyclostrophic balance (the geostrophic component of the wind is negligible). After applying this expression,
the Holland model can be used to generate the spiderwebs for each of the hurricanes. In order to gain e�ciency
in the spiderweb generation, it is developed a Matlab script that can run the Holland model for n iterations. It
is noted that Delft3D FM do not read spiderwebs dated prior to 1900. To solve this issue, 200 years have been
added to the hurricanes occurring before 1900 before running the Holland model to generate the spiderwebs of
each hurricane.

5.2 Simulation of the selected hurricanes
Since the interest lies strictly on estimating storm surge, neither wave setup nor tides are included in the simu-
lation of the hurricane catalogue. As mentioned before, tides and wave setup were included in Katrina just for
the sake of validation. Therefore, the initial and boundary conditions on water levels are 0 for all the simulated
hurricanes (the boundary and initial conditions do not change from hurricane to hurricane). This is specified
by imposing an astronomic tide with just the constant tidal constituent A0 = 0 at the open sea boundaries of
the model. The rest of the parameters of the model that have been calibrated in the validation remain the same
for all the simulated hurricanes, except for the spiderweb, which is di�erent for each hurricane. The reference
time, the start time and the end time of the simulation also change for the simulation of each historical hurricane.
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Figure 5.1: Original tracks of the hurricanes of the HURDAT2 database (top) and tracks of the hurricanes after
being shifted to the location of study (bottom). The color of the tracks indicate the intensity reached along the
lifetime of each hurricane.

The spiderweb file (.spw) is called by means of the external forcing file (.ext), which in turn is called by the
Flow FM model file (.mdu). The information regarding the dates is included in the .mdu. When running the
hurricane catalogue in batch, the .ext and the .mdu files have been generated in R beforehand, together with
the .sh, which are the Linux shell executable files to run each hurricane simulation. When using the Python
Scripting tool in the DeltaShell interface, the .mdu and .ext files are overwritten at each iteration with the
information of the hurricane entering the loop.

5.3 Analysis of the results of the simulations

To check that the results of the simulations are reasonable, it is plotted the storm surge, the wind speed and
the pressure drop recorded at the location of the tidal station in function of time. In the following paragraphs,
the results for two random simulated hurricanes are analyzed.
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• Hurricane Cindy (AL032005, 2005): Hurricane Cindy approached the shoreline of Louisiana in a
slight oblique direction to the coast, passing over the Mississippi Delta before making landfall in the
Mississippi State. The maximum value of the simulated surge during Hurricane Cindy is 2.53 meters
(Figure 5.2, top). This is approximately the value that was reached in reality which was 5.5 feet above
the normal tidal level [74]. Considering a tide normal tide of 1 feet and wave setup of 1 feet (as seen in
the validation)), the actual value of the water level might have reached 8 feet (2.44 meter). As seen in
Figure 5.2 (top), the track of the hurricane (red) passed by the East of the recording station (yellow). In
Figure 5.2 (bottom), the plot shows a pressure drop of approximately 18 hPa with respect to the normal
atmospheric pressure (1015 hPa) that practically coincides in time with the maximum surge.

The x and y-components of the wind speed are 0 at the start of the simulation because the only wind-
field in the domain of study considered in the simulation is the spiderweb. For the same reason, both
components also converge to 0 when the hurricane moves away from the observation point (Figure 5.2,
bottom). The x-component of the wind speed is negative when the hurricane approaches the coast, but it
becomes positive when the hurricane progresses further from the longitude of the observation station. Due
to the Coriollis force, the swirling winds rotate in counterclockwise direction in the Northern hemisphere.
Accordingly, when the hurricane is heading the North and right before making landfall, a station located
to the North with respect to the hurricane eye feels strong winds with x-component heading the West.
Similarly, right after the eye of the hurricane passes through the location of the station, the x-component
of the wind recorded at the station will head the East.

The counterclockwise direction of the swirling wind due to the Coriollis force also explains the behavior of
the y-component of the windspeed. In this case, the hurricane passes by the West side of the observation
station and then moves obliquely to the East. Because of this movement, initially the y-component of the
wind becomes positive, but once it leaves the station behind, it becomes negative. This negative wind
speed in y-direction pushes the water o�shore, causing slightly negative water levels after the hurricane
passes through the observation point (Figure 5.2, bottom).

• Hurricane AL021950 (1950): This case is di�erentiated from the Hurricane Cindy in the behavior
of the y-component of the wind speed (Figure 5.3, bottom). Due to the perpendicular approach of the
hurricane to the coastline, the hurricane arrives to the shore and moves away from eat by the same side
of the observation station. Consequently, the sign of the y-component of the wind speed does not vary.
Since the hurricane is moving to the East of the observation station, the station undergoes North-South
winds along the whole duration of the event, this is, the sign of the y-component of the wind speed is
negative. Due to the fact that the hurricane made landfall to the East of the observation point, the storm
surge recorded at the observation station and the regions of West Mississippi and Louisiana was lower
than at the coast of Alabama and Florida.

5.4 Data set for the training and validation of the Bayesian Network
Five hurricane variables are considered in the Bayesian Network: forward speed and forward direction of the
hurricane (Eq. (2.1) and Eq. (2.2), denoted as FS and FD respectively), maximum sustained wind speed (WS),
distance from landfall location to a reference point located at the Galveston Bay (LF ) and maximum storm
surge level (SS). The values of the first three variables are taken at landfall. FD and FS are calculated when
generating the spiderwebs, by using the di�erence in position and time between consecutive best track points
6 hours before landfall. WS is given directly in the hurricane best track data. The maximum storm surge for
each hurricane at Gulfport Harbour is obtained from the simulations in Delft3D FM. It is noted that the radius
of the hurricane is not used in the stochastic model due to the reduced number of hurricanes in the catalogue
including this variable (this variable is only included in the best tracks since 2004).

To calculate the distance between the landfall location and Galveston Bay (LF ), it is used the simplified coastline
created beforehandto assign random landfall locations to hurricanes that originally made landfall outside the
defined bounding box. Since the random points of the simplified coastline were already assigned to shift the
historical hurricanes, the landfall position of each hurricane is known. The ID of the points of the simplified
coastline are in ascending order along the line (from West to East) and the segments between points measure
500 meters. Hence, it is possible to calculate the distance between each point and Galveston Bay by calculating
the distance along the lines in QGIS or R (Figure 5.4).



Chapter 5. Generation of the hurricane data base 49

Figure 5.2: Top: Track of the Hurricane Cindy (2005) and observation point (in yellow) at Gulfport Harbour,
where surge, wind speed and pressure is recorded during the simulation. Bottom: Storm surge, wind speed in
x-direction, wind speed in y-direction and air pressure registered in Gulfport Harbour during the simulation of
Hurricane Cindy (2005).

The data set generated consists of 140 hurricanes, each of them characterized by the 5 hurricane variables: WS,
FD, FS, LF and SS. In Figure 5.5, it is shown the histogram of each of the variables of interest mentioned.
Table 5.1 gives the range of values, the mean and the standard deviation of the hurricane variables.
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Figure 5.3: Top: Track of the Hurricane AL0121950 (1950) and observation point (in yellow) at Gulfport
Harbour. Bottom: Storm surge, wind speed in x-direction, wind speed in y-direction and air pressure registered
in Gulfport Harbour during the simulation of Hurricane AL021950 (1950).

The range of values observed for all the variables are reasonable. The values for the wind speed start from 65
km/h, which is the case for hurricanes which achieved higher intensities in deep waters and weakened when they
approached the coast. The maximum values on the data base reach approximately 280 km/h, which correspond
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Figure 5.4: Representation of the simplified coastline and landfall location of the hurricanes of the catalogue.
The dashed lines represent the western and eastern edges of the bounding box.

Units Range Mean Standard deviation
Wind Speed (WS) [km/h] 64.76-277.56 147.11 39.57

Forward Direction (FD) [degrees] 201.80-348.69 280.17 40.32
Forward Speed (FS) [km/h] 7.87-61.42 24.86 12.08

Landfall Distance (LF) [km] 347.46-915.46 635.86 164.64
Maximum Surge (SS) [m] 0.03-7.52 3.11 1.62

Table 5.1: Range, mean and standard deviations of the hurricane variables used in the stochastic model.

to Category 5 hurricanes in the Sa�r-Simpson scale. The histogram shown in Figure 5.5 shows that the majority
of the hurricanes reach maximum wind speeds up to 200 km/h, meaning that the Hurricanes up to Category 3
are the most common in the data base.

The restriction in the angle of landfall impose a condition to the values of the forward direction of the hurricane
at landfall beforehand, being this angle in the range 202¶ to 349¶. The histogram of the FD (Figure 5.5) shows
that the most repeated values are around 300¶ although the average value is 280¶.

The Hurricane Research Division from [59] analyzed the forward speed of the hurricanes of the HURDAT
database based on the latitude. The average forward speed for latitudes between 25¶ and 30¶ was 20.1 km/h
and between 30¶ and 35¶ was 27.1 km/h. The average forward speed of the hurricanes of the data base for this
project is 24.86 km/h (Table 5.1), which falls in the range of the values obtained in the NOAA analysis. The
histogram shown in Figure 5.5 shows that the most common values for FS are in the range from 10 km/h to 30
km/h.

Due to the alternative assignment of landfall locations to the shifted hurricanes to each side of the Gulfport
Harbour, the distribution of the landfall location shown in Figure 5.5 is quite uniform between 350 km and 950
kilometers. The average value of the landfall location is 636 kilometers from the Galveston Bay, which is close
to the center of the bounding box (669 kilometers from Galveston Bay, along the simplified coastline).

Finally, the storm surge values that result from the simulations in Delft3D FM present an average in 3.11 meters
+ MSL (Table 5.1), which is a reasonable value considering that only those events that reached the category of
hurricane were considered in the simulations.
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Figure 5.5: Histograms of the variables of interest considered in the stochastic model.



CHAPTER 6

Stochastic model setup and validation

In recent times, stochastic models have been under extensive research to solve hydraulic engineering problems,
especially due to the fast speed of computation of these models compared to computational modelling. More-
over, the statistics skip any complex process that might be behind a physical phenomenon, since the solution
can be approached by just analyzing data and recognizing the dependencies between variables and the patterns
that the data sets follow. However, as in the current case, a physical model is necessary to generate part of the
data set to train the stochastic model, since part of the data might not be available.

The identification of the dependencies among the di�erent hurricane variables has two main interests. On the
one hand, it enables the fast prediction of the hurricane parameters in a span of seconds. The immediacy in the
forecast enables the application of emergency measures in case a hurricane approaches a specific area. On the
other hand, it enables the generation of a synthetic hurricane catalogue linked to probabilities of occurrence,
by inferring di�erent combinations of hurricane parameters.

In this chapter, it is analyzed the dependence among the hurricane parameters discussed in the previous chapter,
which are the wind speed, the forward speed and the forward direction of the hurricane, the landfall location
and the maximum storm surge. With the information of 140 hurricanes, it is built a Bayesian Network based
on the model of [71] to estimate hurricane variables in Mississippi. These results are validated, by inferring
the hurricane variables of several events and comparing the results to the Delft3D FM output. To do so, the
hurricane data set is divided into a training data set comprising 85% of the data (119 storms) and a testing
data set comprising 15% of the data (21 storms). The storms that take part of the training and the testing
data set have been selected randomly.

6.1 Bayesian Network developed by [71] to estimate storm surge
levels

The assessment of the dependencies among hurricane variables can be done by pairs. In this project, bivariate
copulas are used to model the dependence between pairs of variables. This mathematical entity enables the
calculation of the joint probability of two variables. However, it might occur that more variables are involved
in the dependence relationships. In such a case, the probability of one variable might be conditioned on one or
more other variables and those, in turn, being conditioned by other variables. This increase in the degree of
complexity of the structure leads to the construction of larger entities. One of the methods to solve this type of
problems are the Bayesian Networks (BN). BN are used to calculate the conditional probability of one parameter
by applying the Bayes Theorem on a predefined network, which is formed by nodes that are interrelated by
arcs. For further information about the principles of a BN, it is referred to Section 2.2.4.1.

The BN constructed by [71] is used as a reference in this project (Figure 6.1), given the similarity of the case.
In [71], a BN based on Gaussian copulas is applied to calculate the boundary conditions for hurricane flood
risk analysis in the Galveston Bay (Texas, US). The variables considered in the BN are the wind speed, the
forward speed and the forward direction of the hurricane, the radius of maximum winds, the landfall location,
the precipitation and the storm surge. It is noted that in the present project the precipitation and the radius to
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maximum winds of the hurricane are not considered in the BN. The reason for not considering precipitation is
that in this project it is desired to assess exclusively storm surge. The radius of the hurricane is not considered
because no data is available before 2004 regarding the hurricane size, what makes this variable poorly defined,
given the short number of events occurring after 2004 in the hurricane database.

Figure 6.1: BN built by [71] used for the modeling of the hydraulic boundary conditions for hurricane flood risk
analysis at the Galveston Bay (Gulf of Mexico).

The construction of the model shown in Figure 6.1 followed a process of optimization and validation. First, it
was created a database of hurricanes and their features for the region of the Gulf of Mexico. The hurricanes
that made landfall in the coast of the Gulf of Mexico were selected from the IBTrACS database. Then, it was
found the intersection between the tracks and a simplified coastline in order to determine a landfall location.
The tracks of the hurricane included information relative to the wind speed, the radius of maximum winds and
the coordinates of every track point. The forward direction and the forward speed were calculated with the
coordinates of the track for each time step. Every cyclone had assigned these variables for typically six hours
before the landfall.

It is noted that the axis pointing to the east is taken as reference to calculate the forward direction of the
hurricane, which is the angle between the eastwards axis and the vector of the forward speed of the hurricane.
The reference to calculate the distance to landfall is Cancun (Mexico). The distance to landfall is calculated as
the distance between Cancun and the landfall location, following a generated simplified coastline.

The storm surge levels were obtained from tidal gauges located at the entrance of the Galveston Bay, which
had available predicted water levels at an hourly frequency. The maximum water level per day was calculated
by subtracting from the result the sea level rise. For each of the storms making landfall at the coast of the Gulf
of Mexico, the maximum water level at +/- 48 hours surrounding landfall was taken for the data set.

The third step in the process was the calculation of the average daily precipitation, for which six rainfall gauges
from the National Climatic Data Center (NCDC) surrounding the Clear Creek Watershed (Galveston Bay) were
used. To do so, it was used the Thiessen polygon method to spatially average the rainfall over the Galveston
area. The precipitation for each of the events was quantified as the five-day cumulative precipitation surround-
ing the date of the hurricane landfall. The decision on a five-day accumulation of precipitation is because in
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previous studies it was determined that the 90% of the total cumulative rainfall occurs during the first 72 hours
after landfall, when analyzed over a 10-day period.

Subsequently, the dependencies among hurricane variables were analyzed by means of copulas and a non-
parametric BN was built and validated. Given the advantages in computational e�ciency o�ered by Gaussian
copulas, it was queried the use of these type of copulas by comparing the goodness of fit to the data to Gaussian,
Gumbel and Clayton copulas. To do this comparison, the semicorrelations among hurricane variables and the
Cramer-von-Mises statistic for the Gaussian, Clayton and Gumbel copula were calculated (Table 6.1). The
conclusion that followed was that the Gaussian copula can represent an acceptable approximation of the de-
pendencies among the variables of the BN, because of the relatively low value of the Cramer-von-Mises statistic
and the similar semicorrelation values for many of the variable combinations.

fl fl
SW

fl
NE

fl
SE

fl
NW

CM
Gauss

CM
Clayton

CM
Gumbel

WS FD -0.11 -0.06 -0.35 0.14 0.16 0.31 0.43 0.44
WS SS 0.36 -0.07 0.31 0.12 0.28 0.41 0.91 0.40
FD FS 0.39 0.29 0.38 0.10 -0.21 0.21 0.46 0.18
FD LF 0.71 0.55 0.32 0.35 -0.26 0.24 0.86 0.44
FS LF 0.26 0.00 0.44 0.06 -0.12 0.33 0.66 0.25
LF SS -0.09 0.11 -0.09 0.54 -0.09 1.99 2.26 1.82

Table 6.1: Semicorrelations of the four quadrants for the hurricane variables of interest and values of the
Cramer-von-Mises statistic for the Gaussian, the Clayton and the Gumbel copulas [71].

After validating the normal copula assumption, it was created a Non-Parametric Bayesian Network by means
of the software package UniNet. To maximize the number of samples used to build the network, the NPBN was
built using the empirical distribution and the joint data for six variables: wind speed, forward speed, forward
direction, precipitation, landfall location and storm surge. The radius of maximum winds was added as a user-
defined random variable (log-normal distribution) due to the incompleteness of the data (only available since
2004). Initially, was generated a saturated graph in order to obtain all the possible combinations in the BN.
Subsequently, the rank correlation coe�cients were calculated. The arcs having a correlation coe�cient lower
than 0.1 were eliminated, since it was assumed that two variables are practically independent if this value is
not reached. This process resulted in the BN showed in Figure 6.1.

To make sure that the Gaussian copula assumption is valid for the data base used, it was checked that the
DER is within the central 90% confidence interval of the DNR. The validity of the NPBN structure was also
inspected by checking that the DNR falls in the central 90% confidence band of the DBN. The DBN, the DNR
and the DER were calculated as described in 2.2.4.1. The two validation tests were satisfactory. In the next
two sections, the results of the model described are compared with the BN built for the present project.

6.2 Analysis of the dependence among hurricane parameters: bi-
variate copulas

Leaving the radius to maximum winds (R
max

) and the precipitation apart from the BN proposed by [71], five
hurricane variables are linked as shown in Figure 5.1. A total of six pairs of variables representing the links are
analyzed. To find the copula that fits a data set, several steps should be followed. The first step in the process
is the transformation of the data set to a uniform ranked data set and the construction of the empirical copulas.
This is done using Eq. (2.30). The second step is fitting several theoretical copulas to the empirical copula.
In this case, the Gaussian, the Gumbel and the Clayton copula models are tested. Finally, it is assessed the
goodness of fit of each of the copulas to the empirical copula by means of the calculation of the semi-correlations
and the Cramer von Mises statistic. The expressions of the Gaussian, Gumbel and Clayton copulas are given
in Eq. (2.31), Eq. (2.33) and Eq. (2.34). Following the same reference systems for the variables than the ones
used in [71], the correlation, semi-correlations and Cramer von Mises coe�cients are calculated for the hurricane
catalogue of Mississippi (Table 6.2):

The correlations (fl) summarized in Table 6.2 show that three out of six pairs of variables are positively cor-
related, meaning that the increase in the value of one variable is associated to the increase in the value of



56 Chapter 6. Stochastic model setup and validation

fl fl
SW

fl
NE

fl
SE

fl
NW

CM
Gauss

CM
Clayton

CM
Gumbel

WS FD -0.25 0.18 -0.21 -0.29 -0.10 3.64 10.93 10.93
WS SS 0.65 0.55 0.68 -0.62 -0.12 4.14 7.88 3.50
FD FS 0.31 0.17 0.54 0.25 0.20 4.26 7.99 2.87
FD LF 0.18 -0.06 0.00 -0.56 0.41 2.31 3.13 2.08
FS LF -0.13 -0.34 0.18 -0.28 0.24 3.93 4.95 4.95
LF SS -0.21 0.14 0.00 -0.09 0.33 5.39 11.35 11.35

Table 6.2: Calculated semicorrelations of the four quadrants for the hurricane variables of interest and values
of the Cramer-von-Mises statistic for the Gaussian, the Clayton and the Gumbel copulas.

the other variable of the pair. The other three pairs of variables are negatively correlated. WS-SS present a
strong positive correlation (fl = 0.65), while FD-FS and FD-LF show positive dependence but in a lower grade
(fl = 0.31 and fl = 0.18, respectively). It is observed negative dependence on the pair LF-SS, due to the back-
ward push of the water when the hurricane makes landfall to the East of the observation station, and therefore
lower surge levels for larger distances from Galveston Bay (fl = ≠0.21). The pairs WS-FD and FS-LF also show
negative dependence (fl = ≠0.25 and fl = ≠0.13). The pairs showing negative correlation can be represented by
means of the Clayton and Gumbel copulas by taking the complementary value of either U or V , and keeping
the original value of the other variable. This means that the points (U, 1 ≠ V ) or (U ≠ 1, V ) should be plot-
ted instead of the original set of points (U, V ) to represent negative correlations by means of these copula models.

The small di�erences among the semicorrelations on the quadrants of interest (bolded values in Table 6.2) and
the low values of the Cramer-von-Mises statistic (calculated with Eq. (2.43) and Eq. 2.44, respectively) for the
approximation by Gaussian copula indicate that the use of the Gaussian copula to represent the relationships
among the pairs of variables is acceptable. In four out of six pairs, the semicorrelations show similar values
for the diagonal quadrants in the standard normalized space of the ranks, with the same sign. According to
the Cramer-von-Mises values, despite the better performance of the Gumbel copula (lower values for positively
correlated pairs of variables), the values of the statistic obtained with the Gaussian copula are close enough to
take the Gaussian copula assumption as valid. The comparison among Cramer-von-Mises values for the model
of [71] and the current BN cannot be done in absolute terms, because the values obtained depend on the number
of points plotted. If more values are used when evaluating the copula, the CM values are larger, since more
error is accumulated. In this project, 14161 values were used to compare the empirical copula and the fitted
copula models.

As explained in Chapter 2.2.4.1, the use of Gaussian copulas in BN is very interesting from the computational
point of view, since there is no need to solve numerically a large number of integrals as a consequence of sampling
processes, what does happen when using other theoretical copulas.

6.3 Application of the Gaussian copula assumption to a Bayesian
Network (BN) in UniNet

The acceptance of the Gaussian copula assumption enables the construction of the BN in UniNet, which is a
package that facilitates the construction and edition of the BN structure, as well as the resolution of BN by
using normal copulas to solve the joint distribution among the nodes of the network. With Uninet, it is also
possible to validate the normal copula assumption or the BN structure. Values can be inferred in the network
to do estimations of the variables of interest.

Taking as a reference the model of [71], and leaving out the radius of maximum winds and the precipitation,
the model in UniNet looks as shown in Figure 6.4. The rank correlation coe�cient is indicated in the arcs and
the marginal distributions are visible in the nodes.

An interesting observation from the calculated correlations is that the absolute value of the correlation coe�cient
connecting the variables is larger than 0.1, which was the criterion that [71] established to assume conditional
independence in the BN proposed. Therefore, the structure proposed by [71] seems to be adequate also for
this project. This aspect is confirmed by performing a test in Uninet that evaluates the robustness of the BN
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Figure 6.2: Representation of the fitted normal copulas (blue dots) to the empirical copula (black dots) by
sampling.

structure. The use of Gaussian copulas to represent joint distributions between the variables of the network is
also tested in Uninet. The two tests mentioned are described in Chapter 2.2.4.1.2. The results of the validation
are successful, as shown in Figure 6.5, and therefore the assumptions made on Gaussian copula and the network
structure are valid.

The rank correlation coe�cients given by [71] and calculated for this project are compared in Table 6.3. These
results show that the relationships found in both databases are similar, coinciding the sign of the correlation
in five out of six cases. The rank correlation coe�cients are similar in the case of WS-FD, FD-FS and LF-SS,
with di�erences smaller than 0.15 in the rank correlation coe�cients. The rank correlation between WS and
FS shows a di�erence of 0.31, while in the case of FD-LF this ascends to 0.39. Finally, [71] finds a positive
correlation between FS and LF, while in this project these variables seem to be negatively correlated.
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Figure 6.3: Representation of the relationships between the hurricane variables in the standard normal space.

fl (Sebastian, 2017) fl (Prida, 2020)
WS FD -0.11 -0.25
WS SS 0.34 0.65
FD FS 0.37 0.31
FD LF 0.67 0.18
FS LF 0.25 -0.13
LF SS -0.07 -0.21

Table 6.3: Comparison of the rank correlation coe�cients for the BN proposed in [71] and the adapted BN for
this project.
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Figure 6.4: BN model relating hurricane variables at the coast of Mississippi.

6.4 Validation of the Bayesian Network
By means of Bayesain Networks it is possible to estimate values of specific nodes (i.e. variables) of the network
by inferring values on other of nodes. This process is not unidirectional, meaning that the children of the BN
(what we could call the output, which is the storm surge in this case) can be estimated by inferring values in
one or more parent nodes, but parents can also be estimated by inferring values in the children nodes. The BN
is easily and quickly updated in Uninet, providing new values for the variables interest after inferring values to
specific nodes. Two applications of Bayesian Networks related to hurricanes and surge can be storm surge es-
timation (also in real time) or the generation of synthetic hurricanes for the application in other fields or projects.

To validate the accuracy in estimation of the BN, it is used a testing set that includes 19 storms of the data
base. These storms have been selected randomly from the hurricane catalogue containing 140 storms. The
values of the surge estimated by the BN are compared to the surge values obtained in Delft3D FM. The values
of WS, FD, FS and LF are inferred in the BN for each event. Subsequently, the BN is updated and a normal
distribution of the surge is estimated, being this defined by a mean and a standard deviation. Figure 6.6 shows
an example of the inference and the updating of the BN for the storm AL252005. Figure 6.7 displays a scatter
plot including the surge distributions for the 21 events considered in the validation.

The BN provides a normal distribution, with a mean and a standard deviation of the estimation. The results
of the validation show that the mean of the normally distributed surge presents a best fit slope from the origin
of 0.861 and an R2 of 0.885. The average standard deviation is 1.16 meters.
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Figure 6.5: Probability density function of the DNR (top) and probability density function of the DBR (bottom).
The DER falls inside the 90% central band of the distribution, and therefore the structure of the BN is robust
to support the data. The DNR falls inside the 90% central band of the distribution, and therefore it is valid to
assume Gaussian copulas in the BN proposed.
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Figure 6.6: Estimation of the surge at Gulfport Harbour during the shifted storm AL252005, by means of
inference of the wind speed, forward speed, forward direction and landfall location. The surge obtained from
the simulation in Delft3D FM is 4.54 meters + MSL, while the BN estimates a surge with mean 4.55 meters +
MSL and a standard deviation of 1.3 meters.

Figure 6.7: Comparison between the surge obtained from the simulation of 21 storms in Delft3D FM and the
estimated surge by the Bayesian Network.





CHAPTER 7

Discussion

In modelling processes, the accuracy of the input data is critical to ensure the quality of the final outcome. This
project includes two successive modelling processes, in which the second process uses the output from the first
process. Therefore, it is necessary (but not su�cient) that the accuracy of the outcome of the first model is
good enough in order to achieve reliable results from the second model. In this chapter, the strategies followed
to build the physical and stochastic models and their limitations are discussed.

7.1 Physical modelling
The validation of the model based on HWMs did for Hurricane Katrina (2005) shows reasonably good results
along the coast of Mississippi, with an average relative error of 9.5% for the HWMs, with a best fit slope for the
HWM of 0.912 and an R2 of 0.995. These results are particularly good for Gulfport, which is the area at which
the surge for the generation of the surge data base was recorded. At this location, the relative error drops to
2.5% (19 centimeters for a maximum water level of 7.56 meters + MSL. These results demonstrate an adequate
calibration of the model input.

Along the calibration process, it has been observed a particular sensitivity of the modelled surge to the wind
drag coe�cient (C

d

). Several models could be used in order to represent this parameter, among others the model
of Powell (2006) and the model of Makin (2005). It has been observed that the linear piece-wise expression for
the wind drag in function of the wind speed is able to represent better the surge than the model of Powell. The
water levels obtained in Delft3D FM when applying the wind drag model of Powell (2006) for the front right
sector of the hurricane and the model of Makin (2005) for Hurricane Katrina (2005) are compared in Figure
7.1.

Both models consider that for hurricane wind speeds the momentum flux between wind and water starts to sat-
urate. Due to the breaking of the waves, a very stable boundary layer is formed close to the surface, formed by
spray droplets. For Powell, this layer provokes that C

d

remains constant for increasing hurricane wind speeds.
However, field data revealed the decrease of C

d

for increasing hurricane wind speeds [47]. The Charnock
parametrization is valid up to 33 m/s, but the overestimation made by the model of Powell increases specially
for high intensity hurricanes, due to the larger di�erence in C

d

. For hurricane Katrina, the drag given by the
Powell model reaches values that double the drag given by the Makin model. The modelled surge in Delft3D
FM when using the Powell model is 9.55 meters at Gulfport Harbour, which is approximately 1.4 meters more
than the validated surge (7.16 meters). This notorious di�erence in the modelled surge shows the importance
of performing a good calibration of the wind drag coe�cient.

The 2D wind and pressure fields generated by the modified Holland model play a central role in the estimation
of surge. Therefore, a great influence in the adequate calibration of the model is related to this input. Based
on the comparison of the simulation of Hurricane Katrina in Delft3D FM of the 2D wind fields (Figure 7.3,
left) and the high fidelity model H*Wind (Figure 7.3, right), it is observed that the modified Holland model by
Veltcheva is capable of representing the asymmetric structure of the hurricane.

The e�ect of the forward speed of the hurricane and its contribution to the asymmetry of the wind field has been
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Figure 7.1: Comparison between the surge obtained when using the formulation of Makin (2005) and the
formulation of Powell (2006).

observed by comparing the wind speed in function of the radius when applying the modified Holland model
of [81] and the original Holland model (Figure 7.3, top) and the resulting surge when applying (Figure 7.3,
bottom). For the wind comparison, it has been taken the section that includes the maximum wind speed within
the radius of maximum winds. This value has been found for South-North winds (locations on a line that forms
90 degrees from the North, when counting in clockwise direction). The original Holland model do not consider
the forward speed of the hurricane to calculate the wind velocity, and therefore it represents a symmetric wind
field.

The maximum wind speed modelled for the asymmetric and the symmetric structure in the case of Katrina
are 198.72 m/s and 190.08 m/s, respectively. This di�erence in the wind speed is barely 5%, which, which has
led to a di�erence in surge between asymmetric and symmetric structure of just 10 centimeters at Gulfport
Harbour. Therefore, in the validated case the asymmetry of the hurricane does not seem to have a relevant
influence in the surge level. However, this is just a particular case. It is noted that the e�ect of the asymmetry
can cause di�erences in water levels of up to 15% [85] and therefore the use of a parametric expressions (such
as the model of Veltcheva) to model hurricane asymmetry is recommended.

Additionally, [81] proposed a formula to consider the asymmetry in the 2D pressure field. However, due to
the relatively small e�ect that the pressure asymmetry induces in the water levels compared to the wind speed
and the complexity of the expression proposed, the modified formulation of the pressure has not been considered.
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Figure 7.2: Comparison between the 2D wind field generated with the Holland model as read in Delft3D FM
(top) and the 2D wind field as generated from post storm analysis data in H*Wind (bottom).

7.1.1 Limitations
The hydrodynamic model has been validated by comparing 41 observations of HWMs recorded after the event.
Despite taking HWM locations that are close to the shoreline, they can be separated from the coastline by
distances of the order of few kilometers. In inland regions, the topography becomes more complex than at the
sea, and therefore, the level of detail of the topography must be much higher in order to capture those features
that might alter the water flow.

The spatial resolution of the model is controlled by the resolution of the unstructured mesh, since any other
input given in grid format is interpolated to it, adopting the resolution imposed by the mesh. The resolution
of the unstructured mesh reaches a maximum of 200 meters in the shoreline. Moreover, the resolution of the
bathymetry/topography and the hydraulic roughness is 500 meters. For storm surge, this resolution can be
acceptable, as long as the bathymetry gradients are moderated. However, this resolution might be too coarse to
achieve high accuracy in the simulation of overland flood, specially when coastal protection structures, highway
and railway dikes, and other elevated infrastructure are present. The absence of dikes in the shoreline of
Mississippi makes the surge validation at nearshore overland points acceptable.

7.2 Stochastic modelling

7.2.1 Observations
A previous step to the elaboration of the BN that is crucial in the process is the validation of the Gaussian
copula assumption. Updating the BN in this conditions is matter of seconds, as has been observed during the
validation of the surge estimations. This is due to the capability of the normal copula of performing inference
analytically. Due to the unfeasibility of solving other copula families, the normal copula is seen as the unique
copula capable of solving BNs in short times. This fact limits the accuracy in the modelling of tail dependencies
in BNs. However, in this case the semicorrelations have shown acceptable values for the majority of the cases (4
out of 6) and the values of the Cramer-von-Mises for the normal copula have shown lower or very similar values
to the values for the Gumbel copula. The relatively good fit of the copula has contributed to the reasonable fit
of the estimated surge by the BN to the modelled surge in Delft3D FM, indicated by the slope of the best line
fit of 0.861.

7.2.2 Limitations
The shifting strategy applied in Chapter 6 has led to increase the hurricane catalogue from 48 to 140 hurricanes.
From those, 119 hurricanes have been used for the training of the Bayesian Network. This sample size has been
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Figure 7.3: Comparison of the wind speed in function of the radius from the center of the hurricane, between a
symmetric and an asymmetric structure. The degrees are counted from the North and in clockwise direction.

considered to be su�cient to train the stochastic model.

From the 6 pairs of hurricane variables considered, the combinations WS-FD, WS-SS, FD-FS are not a�ected
by the shifting operation since the two values of the variables of the combination are not influenced by the
landfall location. Despite the shifting, the correlation between LF-SS is not altered by the change of landfall
location since the surge measurements are taken at a specific point.

However, the applicability of random shifting of tracks in the case of FS and LF should be further examined,
since the values of FS and FD can be inherent to specific areas of the region examined (North of the Gulf of
Mexico), due to the large extension of the area of study. In Figure 7.4 there are shown the original 140 tracks
of the data base with the values of the FD (top) and FS (bottom) represented by a colour bar.

In the case of FD, it is observed that the hurricanes making landfall at the Eastern region of the Gulf of Mexico
(e.g. Florida) generally have a larger angle of landfall than the hurricanes making landfall at the Western region
of the Gulf of Mexico (e.g. Texas). However, in the case of FS this pattern is not as clear. In order to analyze
further the relationship between angle and landfall location, the pairs FD-LF and FS-LF are plotted in the
standard normal space and the correlations are calculated (Figure 7.5).

The results shown in Figure 7.5 prove that the landfall location is notably correlated to the forward speed and
the forward direction of the hurricanes, with a correlation of 0.54 between FD and LF and a correlation of 0.23
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Figure 7.4: Original location of the landfall of the 140 hurricanes of the data set (before the shifting operation).
The color of the points indicate the forward direction (top) and the forward speed (bottom) of the hurricanes
at landfall.

Figure 7.5: Correlation between FS-LF and FD-LF shown in the standard normal space.

between FS and LF. Indeed, these results are closer to the results obtained by [71] (correlation of 0.71 between
FD and LF and correlation of 0.26 between FS-LF). In contrast, by assigning random landfall locations to the
hurricanes the correlation coe�cients obtained were considerably lower (0.18 for FD-LF and -0.13 for FS-LF).
The shift of hurricanes to the defined bounding box without considering the correlations between FS-LF and
FD-LF leads to the elaboration of a data set that is not fully representative for the area of study, what limits
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the accuracy of the results of the BN.



CHAPTER 8

Conclusions

In this chapter, the key findings and recommendations for future research are given. The chapter has been
divided into three sections, each of them giving an answer to each of the three research subquestions proposed
in the introduction of the project (Chapter 1):

• How should the di�erent input of the hydrodynamic model be calibrated to simulate surge at high fidelity?

• How should the hurricane data scarcity be tackled in order to generate a su�ciently large data set for the
training of the stochastic model?

• What is the accuracy of the surge estimation and the time of computation of the stochastic model?

By answering the research subquestions, the main research question is answered:

Is it possible to estimate storm surge at reasonable accuracy and time in the coast of Mississippi by using a
stochastic model?

The chapter ends proposing recommendations and potential research topics related to the project.

8.1 Key findings

8.1.1 Physical model setup and validation
In this project, a stochastic model has been developed with the objective to estimate storm surge at the coast of
Mississippi (United States) at a reasonable accuracy without solving complex equations that represent physical
processes. The approach followed to build the stochastic model has been based on three main steps. The first
step has been the setup of the model, in which the input parameters of the model have been adequately cali-
brated, based on the comparison to real observations of the water levels in the coast of Mississippi. The second
step has been the generation of a hurricane data base, in which the values of the surge have been obtained by
simulating a finite number of hurricanes making landfall at the North of the Gulf of Mexico. The hurricane
variables are recorded at Gulfport Harbour (central coast of Mississippi). The third and last step has been
the setup and validation of the stochastic model, by comparing the the storm surge given obtained from the
stochastic model with the surge obtained from the hydrodynamic simulations.

The Delft3D Flexible Mesh model has been used to hindcast the storm surge caused by hurricanes at the coast
of Mississippi. The Ultra-Levee-Removed unstructured mesh has been adapted from ADCIRC to Delft3D FM
format and has been refined at the area of study, obtaining a mesh of triangles (460,296 nodes) with maximum
resolution of 200 meters at the shoreline and overland regions of Mississippi. The domain of the unstructured
mesh comprises the entire Gulf of Mexico, taking as open sea boundaries the Yucatan Channel and the Florida
Strait. A bathymetry and topography of 460 meters of resolution has been adopted. A variable hydraulic
roughness has been applied based on the land cover, for which the Manning formulation has been used, A
Manning coe�cient of 0.025 has been used in open waters.
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Hurricane Katrina (2005) has been simulated to calibrate and validate the model. Apart from the storm surge
caused by the hurricane, the tide and the wave setup have also been considered, but only for validation pur-
poses. An astronomical tide has been imposed at the open sea boundaries of the model, for which seven tidal
constituents have been considered. The tide has been validated against tidal predictions made by NOAA for
three tidal stations along the Mississippi coast, obtaining an average Scatter Index of 0.294 and an average Bias
of -0.199, The sampling time of the simulation and the predicted tide was 15 minutes, being the total validation
time seven days coinciding with the period of development and arrival to the Mississippi coast of Katrina (24 to
31 August 2005). The wind drag has been parametrized by means of the model of Makin [47], which expresses
the wind drag coe�cient in function of the sustained wind speed at 10 meters + MSL. The hurricane forcing has
been obtained by applying the Holland model with the modifications of Veltcheva [81] to the best track data of
Hurricane Katrina retrieved from the HURDAT2 database. Due to the reduced contribution of the wave setup
compared to the storm surge and the important computational e�ort that modelling waves involve, a maximum
wave setup of 0.3 meters has been assumed based on [4].

Hurricane Katrina has been simulated in Delft3D FM by implementing the explained inputs into the model.
To validate the model, the simulated water levels have been compared to 41 high watermarks recorded by the
Federal Emergency Management Agency (FEMA) of the United States that were located along the coast of
Mississippi. The results of the validation show a best fit slope from the origin of 0.912 and an R2 of 0.996. At
Gulfport, the absolute error of the surge estimation is 19 centimeters, equivalent to a relative error of 2.5%. The
absence of flood defences and the relative proximity of the validation stations to the shoreline (few kilometers
at most) make possible to achieve a reasonable validation of the model for an unstructured mesh of 200 meters
of resolution.

The model shows considerable sensitivity to the wind drag coe�cient, which has been found to reach a maxi-
mum value of 0.003 for a wind speed of 33 m/s. The wind drag is reduced for increasing hurricane wind speeds
due to the formation of a spray boundary layer generated from the wave breaking. The drag remains constant
from a wind speed of 60 m/s at a value of 0.0015. The asymmetric structure of the hurricane is captured by
the Holland model with the modifications of Veltcheva, which also considers the forward speed of the hurricane.
The wind speeds obtained by the modified Holland model are compared to the original Holland model, which is
axisymmetric and does not consider the influence of the forward speed of the hurricane on the wind speed. The
results show that the maximum wind speed in the region of maximum winds is 9 m/s larger for the modified
model compared to the original model. However, this di�erence does not seem to a�ect noticeably the surge at
Gulfport Harbour (only 10 centimeters of di�erence between modified and original model).

8.1.2 Generation of the hurricane data base
The validated model has been used to simulate historical hurricanes (wind speed larger than 33 m/s at some
instant during the lifetime of the hurricane) that made landfall in the North of the Gulf of Mexico, whose
best tracks have been retrieved from the HURDAT2 database, which includes the best tracks of the historical
hurricanes occurring in the Atlantic basin of the United States for the period 1851-2018. A landfall domain
of 600 kilometers by 600 kilometers taking as center of the rectangle Gulfport Harbour has been delimited to
select the historical hurricanes. However, due to the scarcity in the number of hurricanes making landfall in this
region (48 hurricanes), hurricanes making landfall outside of the domain but in the Northern coast of the Gulf of
Mexico have been shifted to the rectangular domain, conditioning their selection to have a forward direction at
landfall that is within the range of angles of the hurricanes making landfall in the rectangular domain (201-349
degrees counting from the East and clockwise). A total of 140 hurricanes formed the data base, 92 of them
being shifted to the rectangular domain. These 92 hurricanes have been randomly split into 2 groups of 45
and 46 hurricanes. The hurricanes from the first group and the second group have been shifted to a random
location along a simplified coastline to the East and the West of Gulfport Harbour, respectively. The original
landfall track point has been used to shift the hurricane tracks to the new location along the simplified coastline.

The hurricane catalogue has been simulated by means of Python scripts in the DeltaShell interface of Delft3D
FM and running batch scripts on Linux. In the second case, the High Performance Computing 11 cluster from
TU Delft has been used to run simulations in parallel by using two nodes. The average time of simulation
of one hurricane has been approximately 45 minutes. Once the simulations have been completed, the data
base has been elaborated. The hurricane variables considered in the stochastic model have been the forward
speed and the forward direction of the hurricane, the wind speed, the distance from a reference point located
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in Galveston Bay to the landfall location and the maximum storm surge recorded at the observation point of
Gulfport Harbour. The values recorded at the moment of landfall have been considered for the forward speed,
the forward direction and the wind speed.

8.1.3 Stochastic model setup and validation
The stochastic model used to estimate storm surge is a Bayesian Network that assumes normal copulas to
represent the joint distribution between nodes of the network. From the 140 hurricanes of the data set, the 85%
(119 hurricanes) have been used for the training of the Bayesian Network and 15% (21 hurricanes) have been
used for the validation of the model. A similar network structure to the one proposed by [71] for the estimation
of surge at Galveston Bay has been considered to do the estimation. The normal copula assumption has been
validated by confirming that the determinant of the empirical normal rank correlation matrix (DNR) falls in
the centered 90% interval of the determinant of the empirical Bayesian Network rank correlation matrix (DBN).
On top of that, the semicorrelations of the transformed variables to ranks and to the standard normal space for
four out of six pair of variables show similar values on the diagonals. The Cramer-von-Mises statistic shows a
better performance than for the Gumbel and Clayton copulas for three out of six cases, while for the other three
the value is slightly larger than for the Gumbel and Clayton copulas. The structure of the Bayesian Network
has been validated by confirming that the determinant of the empirical rank correlation matrix (DER) falls in
the centered 90% interval of the determinant of the empirical Bayesian Network rank correlation matrix (DBN).

The rank correlation coe�cients for the Bayesian Network obtained for the developed hurricane data set have
been compared to the values obtained by [71]. The results show that the correlation coe�cients are similar,
except for the the correlation between forward direction and landfall location (0.67 for [71] and 0.18 for the
developed hurricane data base) and the correlation between forward speed and landfall location (0.25 for [71]
and -0.13 for the developed hurricane data base). By analyzing the original forward direction, forward speed
and landfall location data, it has been observed that the correlation between forward direction and the original
landfall location is 0.54 and the correlation between forward speed and the original landfall location is 0.23,
results that match the correlations calculated by [71]. Therefore, the shifting approach to generate a larger
sample of hurricane data is valid, but considering the original correlation between the three variables mentioned
would represent better the hurricane characteristics of the domain considered.

Finally, the Bayesian Network has been tested by comparing the values of the surge obtained in Delft3D FM
to the surge values obtained after inferring hurricane variables in the Bayesian Network. The storm surge has
been estimated for the 21 hurricanes of the validation data set. The Bayesian Network provides the uncertainty
of the estimation by giving a normal distribution of the surge. The slope of the best fit line for the mean surge
values is 0.861, with an R2 of 0.885. Moreover, the average standard deviation of the estimations is 1.16 meters.
These results indicate a reasonable estimation of the surge by means of the Bayesian Network. This estimation
can be made in the order of seconds.

8.2 Recommendations and further research
Based on the key findings and the limitations of the models described in the discussion, further research is
recommended in the following topics:

• Finer resolution of the unstructured mesh and topography when simulating overland flood:
In case coastal flood is simulated, it is recommended the use of high resolution Digital Terrain Models
for the topography (e.g. cellsize of 5 meter by 5 meter) and an unstructured mesh of similar resolution.
However, it should be noted that this resolution would increase noticeably the computational time of the
simulations.

• Size of the hurricane data set: In order to achieve a more robust Bayesian Network, the hurricane
data set should be extended. By analyzing the characteristics of the hurricanes at di�erent locations, it is
possible to develop an algorithm to generate synthetic hurricane tracks that are representative from each
region. Actually, one of the objectives of building the BN for this project was generating synthetic storms
, but also including the surge variable apart from wind and location parameters.

• Consideration of other physical variables in the BN: In view of the application of a BN to predict
storm surge in other world regions, additional variables could be included in the model. For instance, the
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bathymetry gradient is key for the enhancement of the storm surge.

• Alternative methods for the calculation of joint probabilities in a BN: The adequate representa-
tion of tail dependencies is limited when using normal copulas. Currently, the methods to solve joint distri-
butions that represent tail dependency are not feasible for a Bayesian Network (e.g. sampling).Therefore,
further investigation is encouraged in the development of methods to solve tail dependent copulas in a
shorter computational time, in order to improve the accuracy of the estimation in those joint distributions
that show tail dependence.

• Applicability of Dynamic BN in hurricane-induced surge problems:: Most of the physical phe-
nomena that can be observed in nature are not detected based on a particular point in time, but they
can be described by a multiple state of observations that yield a judgement of one complete final event
[51]. This is also the case of hurricanes. At a specific time step, the variation of one variable can influence
the value of another variable in the following time steps. This kind of relationships are only considered if
Dynamic Bayesian Networks are used, by which the temporal dimension is added to the BN.



APPENDIX A

Phase lag between simulations and
observations

During the simulation of di�erent hurricanes, it has been observed that the the simulations in Delft3D FM
present a time lag with respect to the observations at the tidal gauges (Figure A.1). In Table A.1, there are
shown the times at which the maximum surge was achieved at every station for observations and simulations,
for Hurricane Katrina and Hurricane Gustav. The time lags are also calculated.

Figure A.1: Storm surge validation at the Bay Waveland Yacht Club station (ID: 8747437) for Hurricane Gustav
(2008).

The time lag of the observations with respect to the simulations is explained by the faster propagation of the
hurricanes in the simulations than in reality, as a result of the linear interpolation of the hurricane forward
speed made by Delft3D FM. The data time interval of the hurricane input (best hurricane track) as given in
the HURDAT2 database is generally 6 hours, while the time step of the imposition of external forcing (User
time step) is 6 minutes. To show this phenomenon, general diagrams x ≠ t and v ≠ t are used (Figure A.2 and
Figure A.3).

As a result of the linear interpolation applied in the hurricane forward speed between two points of the hurricane
track, the slope of the forward speed in the simulation is constant (red line in Figure A.3). However, in reality
the forward speed of the hurricane increases more smoothly, as shown by the blue line in Figure A.3. Therefore,
the hurricane forward speed of the real hurricane is smaller than the forward speed of the simulated hurricane
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Hurricane Station Source Date & Time surge peak Time lag
Katrina 8760922 Observation 29/08/2005 09:30:00 36 minKatrina 8760922 Simulation 29/08/2005 08:54:00
Gustav 8760922 Observation 01/09/2008 11:36:00 0 minGustav 8760922 Simulation 01/09/2008 11:36:00
Gustav 8747437 Observation 01/09/2008 16:12:00 1 h 12 minGustav 8747437 Simulation 01/09/2008 15:00:00

Table A.1: Time lag between the maximum storm surge obtained from simulation and from the observations
for Hurricane Katrina and Gustav, at Pilots East Station (ID: 8760922) and Waveland Yacht Club Station (ID:
8747437).

Figure A.2: General diagram of the trajectory (x-t) of the simulated and the real hurricanes.

Figure A.3: General diagram of the velocity (v-t) of the hurricanes.

for a certain time span after the time step n. If the peak of the surge falls in this certain time span between
time step n and time step n+1, the simulated hurricane would arrive before than the real hurricane to a specific
station, causing the time lag �t shown in Figure A.3.

To corroborate this explanation, it is provided the information given on the HURDAT2 database with respect
to the best track of Hurricane Katrina. The time steps n and n + 1 correspond to the immediate time-step
before and after the storm surge peak:
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Pilots East Station (Katrina) =
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n
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(A.1)

The surge peak at Pilots East Station during Hurricane Katrina is registered on August 29, 2005 at 8.54 AM
for the simulation and at 9.30 AM for the observation. This record falls right in between the time step n (6.00
AM) and the time step n + 1 (11.00 AM). The time lag observed is 36 minutes.





APPENDIX B

Validation of the Eastcoast 2001
database at Gulfport Harbour

Figure B.1: Scatter plot with the comparison between the computed vs harmonic tidal constituents at the
Gulfport Harbor (central coast of Mississippi) by using the Eastcoast2001 database [54].
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Hydraulic roughness

Figure C.1: Hydraulic roughness values proposed by [5] for the coast of Mississippi and Louisiana.
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Development of Hurricane Katrina

D.1 Air pressure at MSL
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D.2 Wind speed (y-component)
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D.3 Water level
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APPENDIX E

Historical hurricanes making landfall in
Mississippi (22 hurricanes)

Figure E.1: Geographical domain considered for the selection of hurricanes (red shadowed rectangle).

Figure E.2: Hurricane best tracks of the 22 events that fall in the 120-kilometer alongshore region surrounding
Gulfport Harbour.
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