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ABSTRACT   

High-power lasers are useful instruments suitable for applications in various fields; the most common industrial 
applications include cutting and welding. We propose a new application of high-power laser diodes as in-bulk heating 
source for food industry. Current heating processes use surface heating with different approaches to make the heat 
distribution more uniform and the process more efficient. High-power lasers can in theory provide in-bulk heating which 
can sufficiently increase the uniformity of heat distribution thus making the process more efficient. We chose two media 
(vegetable fat and glucose) for feasibility experiments. First, we checked if the media have necessary absorption 
coefficients on the wavelengths of commercially available laser diodes (940-980 nm). This was done using 
spectrophotometer at 700-1100 nm which provided the dependences of transmission from the wavelength. The results 
indicate that vegetable fat has noticeable transmission dip around 925 nm and glucose has sufficient dip at 990 nm. Then, 
after the feasibility check, we did numerical simulation of the heat distribution in bulk using finite elements method. 
Based on the results, optimal laser wavelength and illuminator configuration were selected. Finally, we carried out 
several pilot experiments with high-power diodes heating the chosen media.   
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1. INTRODUCTION  
Modern food industry makes use of a lot of advanced technologies. However, heating of various substances is mostly 
carried out by transferring thermal energy from hot surfaces heated by steam. In such processes, it is necessary to 
transfer the heat from the hot surface and distribute it in the volume, or make the heated substance in the thin films in 
order to increase the contact area with the hot surface. There are other means of heating, like well-known microwave 
technology (see [1], for example), or infrared heating [2]. UV light [3] and ultrasonic [4] are also common in food 
processing but in the case of food heating mostly as auxiliary technologies.  In this article we suggest a new way of 
heating foodstuffs – near IR laser heating. This method has a number of advantages for food industry. It is clean, non-
contact and compact, it has short response times, and IR laser radiation can be easily focused or diffused to desirable 
extent to achieve desirable temperature distribution in the heated medium. Two substances common in food industry – 
vegetable fat and glucose syrup were investigated in respect of possibility of heating with commercially available near 
IR laser diode.      

 

2. EXPERIMENTS 
In our study we investigated the possibility of laser heating for two substances: glucose syrup and vegetable fat. In order 
to determine the absorption of the substances in 940-980 nm range, transmission spectra were measured on Shimadzu 
UV-3600 spectrophotometer working in 700-1100 nm range with 1 nm step. The spectra were measured for two different 
thicknesses (1 mm and 3 mm) for both substances. Obtained transmission data was used for calculation of the absorption 
coefficients for both substances at wavelengths 940-980 nm. Calculated absorption coefficients were included in 
numerical simulation of laser heating. 
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(a) 

 
                                                    (b) 

Figure 1. Transmission spectra for (a) 1 mm and 3 mm of glucose syrup and (b) 1 mm and 3 mm of vegetable fat. 

Experimental investigation of laser heating for the two substances was carried out using laser diode. Before the laser-
heating experiments, the spectrum and power of laser diode radiation were measured. The obtained laser spectrum is 
shown in Fig. 2. It can be seen that the laser radiation spectrum has the peak at 962 nm (for temperature 25°C), and 
FWHM of the spectrum was equal to 2,6 nm. The laser diode used in our study allowed for shifting of the position of the 
peak with heating/cooling of the diode. The temperature shift coefficient was equal to 0.3 nm/°C. The power provided by 
the laser diode was also measured using Ophir Nova II power meter. The laser diode power was equal to 10.35 W with 
30 A current flowing through the diode.  
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The transmission spectra were used for calculation of absorption coefficients which then were used in numerical 
simulation. For all the cases described in section 3, the modeling was done until the average temperature of the medium 
became equal to 45°C. Temperature distributions for the simulated cases are shown in Fig. 3. 

The obtained distributions show that for laser heating the medium is heated more uniformly. Root mean square deviation 
of temperature is equal to 19°C for gas heating in metal container, 7°C for laser heating with no back-wall reflector 
(single propagation) and 3.3°C, i.e. laser heating with single propagation is 2.5 times more uniform and laser heating 
with double propagation is 5.8 times more uniform than heating by gas heater.  

 

 
Figure 4. Results of experiments with laser heating of vegetable fat with and without reflection from back wall. 

 
Figure 5. Experimental dependencies of glucose syrup temperature from time of laser heating (with and without reflection 
from back wall). 
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After transmission spectra measurements and numerical modeling, the experiments with the substances heated by the 
laser were conducted. Obtained heating curves for vegetable fat acquired with and without back-wall reflector are shown 
in Fig. 4.  

It can be seen that in the first few seconds the temperature rises rapidly and after that significantly slows down. Also the 
heating slows down earlier and temperatures achieved are lower when there is no reflector at the back wall of the cell. 
Abrupt slowdown of the heating can be explained by considerable amount of thermal energy flowing out through the 
walls of the quartz cell at higher temperatures. At relatively small temperatures, the amount of energy absorbed by the 
medium exceeds the loss of heat through walls and surface of the medium. But as the temperature rises, heat loss also 
rises whereas the absorbed energy remains the same. This also explains why the achieved temperatures are higher and 
the heating slows down later when there is a reflector at the back wall of the cell. Laser radiation passes through the 
medium twice when there is a reflector, so there is 1.6 times more absorbed energy. 

Fig. 5 shows the dependencies obtained for laser heating of glucose syrup. It can be seen from the Fig. 5 that the glucose 
syrup is heated slower than vegetable fat, but temperatures achieved are higher. Considering that heat capacity for 
glucose syrup (1.2 kJ/(kg·К)) is less than for vegetable fat (1.8 kJ/(kg·К)), such difference in heating rate can be 
explained by difference in mass of the samples. Equal volumes of the two substances were used in experiments, but the 
density of vegetable fat (0.9 g/cm3) is less than the density of glucose syrup (1.5 g/cm3), so the amount of energy 
necessary to heat 1 cm3 is 1.13 times more for glucose syrup than for vegetable fat. Also, the transmission spectra show 
that absorption coefficient of 962 nm radiation for vegetable fat is 2.2 times smaller than for glucose syrup. This 
difference in absorption can explain lower temperatures achieved in heating of vegetable fat, since the amount of energy 
absorbed per second is smaller, it cannot exceed heat loss through the walls and surface of the medium.   
   

5. CONCLUSIONS 
The results obtained in our study show the possibility for application of near IR laser heating in food industry. Two 
common substances – glucose syrup and vegetable fat were investigated by means of numerical simulation and 
experimental study. The experimental dependencies show that both substances can be heated with near IR laser radiation. 
The results also indicate the possibility of changing the amounts of the energy absorbed in the heated medium by 
changing of distribution of radiation inside the medium. Reducing the rate of energy losses can also be an area for further 
studies.  
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