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Summary 
 

Crew transfers, surveillance duties and {security, rescue, interception} operations at 
sea typically require high-speed craft. Aluminium is quite often selected as hull 
structure material because of its weight save potential in comparison to steel. The 
fatigue strength, however, may become a point of concern because of the decreased 
Young’s modulus. Bottom slamming is identified as a dominant type of repeated 
loading, meaning fatigue is a governing limit state in aluminium high-speed craft 
design. Particular attention in that respect is paid to arc-welded joints connecting 
the hull structure components, {plates, shells}, since the weld geometry introduces 
notches; fatigue sensitive locations. 
 
Fatigue physics cover an extensive range of scales and modelling may require a 

multi-scale approach. Adopting a structural response parameter � available at FSS 
level using global information only, however, seems attractive since � controls 
plasticity – required to facilitate fatigue damage: crack initiation, growth, 
propagation and fracture – at macro (structural)- as well as meso and micro 
(material) scale, but  pays off in fatigue resistance data scatter and life time estimate 
uncertainty. Including physics at smaller scale, local information, improves the 
accuracy. A continuous increase of the considered scale range of physics as observed 
in fatigue assessment concepts developed over time – proposed to be classified 
according to approach, criterion, parameter and process zone – is however typically 
associated to increased (computational) effort and concept complexity. At the same 
time, similarity; proper scaling, meaning equal parameter values should yield the 
same fatigue resistance, seems still incomplete since all concepts available involve 
multiple fatigue resistance curves rather than one. From {MCF, HCF} design 
perspective, a local continuum mechanics approach seems sufficient and a total stress 
concept is proposed to balance accuracy, effort and complexity, improving similarity 
at the same time to obtain one aluminium arc-welded joint fatigue resistance curve. 
 
The weld geometry introduces at least a notch at the weld toe and depending on 

penetration level another one at the weld root. Cracks may initiate at both fatigue 
sensitive locations, grow principally in {plate, shell} thickness direction and continue 
to propagate in general either along or perpendicular to the weld seam through 
{plate, shell} because of the structure orthotropic stiffness characteristics, suggesting 
a {plate, shell} thickness based (detectable repair) criterion to be an appropriate 
fatigue design parameter. The total through-thickness weld notch stress distribution 
along the expected crack path {��

� , ���
� }, including both the ocean/sea waves 

induced cyclic remote mechanical loading- and welding process related quasi-
constant thermal residual part, is assumed to be a key element. The predominant 
remote mechanical loading mode-I contribution {��, ���} has been examined to 
distinguish the involved stress components. A self-equilibrating weld geometry 
stress – consisting of a local V-shaped notch- and weld load carrying  part – and 
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equilibrium equivalent global structural field stress are identified; a refinement of a 
well-known definition. The semi-analytical formulations are related to the welded 
joint far field stress, calculated using a relatively coarse meshed {plate, shell} FE 
model as typically available for fatigue design purposes. Exploiting (non-)symmetry 
conditions, a generalised formulation demonstrating stress field similarity has been 
obtained and extends to the welding induced thermal residual stress distributions 
{��

�, ���
�}. Fatigue scaling requires both the (zone 1) peak value and (zone 2 

notch affected and zone 3 far field dominated) gradient to be incorporated, 
meaning a damage criterion should take the complete distribution into account.  
 
The SIF 	 seems to meet this criterion, though, the intact geometry related 

notch stress distributions should be correlated to crack damaged equivalents; 
fatigue is assumed to be a crack growth (dominated) process. At the same time, 
hull structure arc-welded joints inevitably contain flaws or crack nuclei (defects) at 
the weld toe- and root notches, i.e. using the damage tolerant mode-I parameter  
	
 seems justified since fatigue associated to the {MCF, HCF} life time range at 
both locations will predominantly be a matter of micro- and macro-crack growth. 
The zone 3 related equilibrium equivalent stress contribution has been used to 
obtain a far field factor, distinguishing different type of cracks related to (non-) 
symmetry conditions for both (quasi) 2D- and 3D configurations. A notch factor 
incorporates the zone {1, 2} governing self-equilibrating stress. Remote mechanical 
weld toe- and weld root stress intensities show the zone {1, 2} notch affected- and 
zone 3 far field dominated parts define a micro- and macro-crack region, turning 
the stress field similarity into a stress intensity similarity. Each stress component 
dominates a certain crack length range: the notch stress the micro-crack region, the 
structural field stress the macro-crack region; the weld load carrying stress 
determines the transition (i.e. apex) location. The welding induced and 
displacement controlled mode-I residual stress intensity factor 	


� is acquired for 
both weld toe and weld root notches to complete the total weld notch stress 
intensity similarity factor formulation 	


� . 
 
Cyclic remote mechanical- and quasi-constant thermal residual loading turn  

	

�  into a crack growth driving force ∆	


�  and defects may develop into cracks. 
The crack growth rate (d�/d�) of micro-cracks emanating at notches show 
elastoplastic wake field affected anomalies, i.e. monotonically increasing or non-
monotonic behaviour beyond the material threshold. Modifying Paris’ equation, a 
two-stage micro- and macro-crack growth law similarity is proposed to include both 
the weld notch- and far field characteristic contributions, elastoplasticity as well as 
remote mechanical- and thermal residual mean stress effects. Small/short crack 
growth data obtained using standard specimens including {SEN, DEN, CEN} in 
crack configuration – representing weld root notch geometries at the same time –
available in literature has been reinvestigated for the alternating material zones in 
(aluminium) arc-welded joints: WM and HAZ zone containing respectively the weld 
root- and weld toe notch fatigue damage location, as well as BM for comparison. 
Fatigue testing series have been developed to identify crack growth behaviour at 
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weld toe notches in aluminium arc-welded joints, adopting a typical fillet weld DS 
T-joint geometry. Using DIC, the required far field- and notch region parameters 
are obtained. Spatial displacement fields are estimated on a general kinematic basis 
using commercial DIC software (Istra4D, Dantec Dynamics). A posteriori, as a 
mechanical filtering process, the displacement fields are decomposed onto a selected 
kinematic basis, i.e. an Airy stress function. The displacement amplitudes, least 
squares solutions, present in a one-to-one correspondence the crack growth governing 
parameters: linear far field stress distribution, SIF and crack tip location. A sequence 
of images provides the temporal solution; weld toe crack growth data series showing 
both far field characteristics and notch affected (non-monotonic) anomalies. 
 
Crack growth model integration yields a (MCF) single slope resistance relation, 

a joint �� -�  curve correlating arc-welded joint life time �  and the total stress 
parameter �� ; a line (equivalent point) criterion to estimate hull structure 
longevity ensuring {SSS, LSS, FSS} welded joint fatigue resistance similarity. A 
dual slope (i.e. random fatigue limit) formulation has been adopted to incorporate 
HCF taking the transition in fatigue damage mechanism (i.e. growth dominant 
turns into initiation controlled for decreasing load level), a slope change, into 
account. Regression analysis (i.e. a likelihood approach) is adopted to estimate 
model parameters, managing both complete- and right-censored data; failures and 
run-outs. Artificial fatigue test data of DS T-joints is investigated to determine the 
��  parameter quality. The fatigue life uncertainty is about a factor 2 (�� ≈ 1: 1.2). 
As-welded SSS (T-T) CA data available in literature has been used to establish a 
family of (damage tolerant engineering) joint �� -�  fatigue resistance design curves 
to be able to estimate the fatigue life time �  of welded joints (production quality is 
average) knowing the joint geometry and far field structural response. The MCF life 
time uncertainty bandwidth increases up to a factor 6, i.e. (�� ≈ 1: 1.6). In the hull 
structure (HCF) design region uncertainty is significant, predominantly because of 
lacking complete data. Full scale structure representative {T-T literature, T-C} CA 
LSS data has been examined to verify a SSS data scatter band fit. Since CA {SSS, 
LSS} fatigue resistance is principally used to estimate a VA FSS value adopting the 
Palmgren-Miner hypothesis, VA SSS data available in literature is examined and a 
scatter band fit is observed. The involved equivalent total stress parameter �� ,�� is 
obtained adopting an extended rain flow counting algorithm to capture the damage 
cube. Last but not least, hourly fatigue damage estimates �ℎ are obtained for some 
frame-stiffener connections in the slamming zone of an aluminium high-speed craft, 
using the FSS response as measured for several trials at the North Sea. The wave 
(loading) statistics induced �ℎ uncertainty is about a factor 2.5 comparing the 
measurement- and simulation structural response based values; quite close to the 
MCF fatigue design resistance value of 3 (R99Cxx – R50Cxx). 
 
The TS concept is implemented in a high-speed craft fatigue design tool, available 

to all research partners. Using the welded joints geometry- and loading induced far 
field structural response information, the fatigue damage estimate �(�� ) of all 
notch locations is calculated and the governing one identified to obtain life time � . 
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Samenvatting 
 

Het overzetten van bemanning, het uitvoeren van surveillance taken en 
{beveiligings-, reddings-, onderscheppings-} operaties op zee vereisen typisch 
hogesnelheidsschepen. Vaak wordt er gebruik gemaakt van aluminium als 
constructiemateriaal voor de romp i.v.m. gewichtsbesparing t.o.v. staal. De 
vermoeiingssterkte vraagt in dat geval extra belangstelling vanwege de lagere 
elasticiteitsmodulus. Bodem impact is geïdentificeerd als een karakteristieke 
repeterende belasting, zodat vermoeiing een bepalend bezwijkmechanisme is voor 
het ontwerp van aluminium hogesnelheidsschepen. In dat verband wordt er veel zorg 
besteed aan booglasverbindingen van de rompconstructie onderdelen, {platen, 
schalen}, omdat de lasgeometrie vermoeiingsgevoelige locaties introduceert; 
zogenaamde kerven.  
 
De vermoeiingsfysica omvat verschillende schalen en modelvorming vraagt 

daarom eigenlijk een multi-schaal benadering. De keuze voor een constructierespons 
parameter � die beschikbaar is op FSS niveau en alleen gebruik maakt van globale 
informatie lijkt echter aantrekkelijk omdat � plasticiteit – een vereiste voor 
vermoeiingsschade: scheurinitiatie, groei, propagatie en uiteindelijk breuk – 
controleert op macro (constructie) schaal en dientengevolge ook op meso en micro 
(materiaal) schaal. De rekening wordt evenwel betaald in termen van spreiding van 
de vermoeiingsweerstand en onzekerheid van de geschatte levensduur. Het 
toevoegen van fysica op kleinere schaal, lokale informatie, verhoogt de 
nauwkeurigheid. Het alsmaar betrekken van meer fysica op (nog) kleinere schaal 
zoals waargenomen bij de vermoeiingsbeoordeling concepten die de afgelopen 
decennia zijn ontwikkeld – er wordt voorgesteld om deze te classificeren op basis 
van benadering, criterium, parameter en proces zone – gaat echter typisch gepaard 
met een toename van de te leveren inspanning (voor het uitvoeren van 
berekeningen) en concept complexiteit. Tegelijkertijd lijkt similariteit; het correct 
schalen, zodat identieke parameter waarden dezelfde vermoeiingsweerstand 
opleveren, nog incompleet. Alle ontwikkelde concepten bevatten tot op heden nog 
steeds meerdere vermoeiingsweerstand curves in plaats van één generieke. Vanuit 
{MCF, HCF} ontwerp perspectief lijkt een lokale benadering op continuüm 
mechanica niveau toereikend en er wordt een totaalspanningsconcept voorgesteld 
om een balans te vinden tussen nauwkeurigheid, te leveren inspanning en 
modelcomplexiteit, waarbij tegelijkertijd de similariteit wordt verbeterd om 
uiteindelijk één vermoeiingsweerstand curve voor aluminium booglasverbindingen te 
kunnen genereren.  
 
De lasgeometrie introduceert tenminste een kerf aan de teen van de las en 

afhankelijk van laspenetratiediepte nog één aan de wortel van de las. Scheuren 
kunnen initiëren op beide vermoeiingsgevoelige locaties, groeien in principe in 
{plaat, schaal} dikterichting en propageren vervolgens grofweg langs of loodrecht op 
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de lasnaad door de {plaat, schaal} vanwege de orthotrope stijfheidskarakteristiek 
van de (romp)constructie. Dit suggereert dat een op {plaat, schaal} dikte gebaseerd 
(detecteerbaar reparatie) criterium een geschikte parameter voor vermoeiingsontwerp 
kan zijn. De totale door-de-dikte laskerfspanningsverdeling langs het veronderstelde 
scheurpad {��

� , ���
� }, inclusief de golfbelasting geïnduceerde cyclisch extern 

mechanische bijdrage alsook de lasproces gerelateerde quasi-constante thermische 
restspanning, wordt verondersteld een belangrijk element te zijn. De dominante 
extern mechanische mode-I bijdrage {��, ���} is onderzocht om de betrokken 
spanningscomponenten te kunnen onderscheiden. Een lasgeometrie afhankelijke 
spanning die intrinsiek in evenwicht is – bestaande uit een lokale V-vormige kerf- 
en lasdragend deel – en een evenwicht equivalente globale constructie veldspanning 
zijn geïdentificeerd: een verfijning van een welbekende definitie. De semi-analytische 
formuleringen zijn gerelateerd aan de verre veldspanning van de lasverbinding, 
berekend m.b.v. een relatief grofmazig {plaat, schaal} FE model wat typisch 
beschikbaar is voor vermoeiingsontwerp doeleinden. Gebruik makend van (niet-) 
symmetrie condities is een gegeneraliseerde formulering verkregen dat een 
spanningsveld similariteit vertoont, wat zich uitstrekt naar de lasproces 
geïnduceerde thermische restspanningsverdelingen {��

�, ���
�}. Correct schalen van 

vermoeiing vereist dat zowel de (zone 1) piekwaarde als de (zone 2 kerf beïnvloede 
en zone 3 verre veldspanning gedomineerde) gradiënt worden meegenomen, wat 
betekent dat een schade criterium de gehele door-de-dikte spanningsverdeling in 
rekening dient te brengen. 
 
De SIF 	 lijkt aan dit criterium te voldoen, hoewel de intacte geometrie 

gerelateerde kerfspanningsverdeling dient te worden gecorreleerd aan een door een 
scheur beschadigd equivalent; vermoeiing wordt verondersteld een scheurgroei 
gedomineerd proces te zijn. Tegelijkertijd bevatten lasverbindingen in de romp-
constructie onvermijdelijk gebreken, scheurkernen (defecten) aan de kerf van de las 
{teen, wortel}. Ofwel, gebruik van een schade tolerante mode-I parameter 	
 lijkt 
gerechtvaardigd omdat vermoeiing geassocieerd met het {MCF, HCF} levensduur 
bereik voor beide locaties voornamelijk een kwestie is van micro- en macro-
scheurgroei. De zone 3 gerelateerde evenwicht equivalente bijdrage is gebruikt om 
een verre veldfactor te formuleren, waarbij onderscheid is gemaakt tussen 
verschillende type scheuren die gerelateerd zijn aan de (niet-)symmetrie condities 
voor zowel (quasi) 2D- als 3D configuraties. Een kerffactor brengt de intrinsieke 
evenwichtscomponent in rekening die zone {1, 2} domineert. De extern mechanische 
spanningsintensiteit van de las {teen, wortel} vertoont dan ook een zone {1, 2} kerf 
beïnvloede- en zone 3 verre veld gedomineerd deel, waarbij een micro- en macro-
scheurgebied wordt gedefinieerd. De veldspanning similariteit is hierbij omgezet in 
een spanningsintensiteit similariteit. Elke spanningscomponent domineert een 
bepaald scheurlengte gebied: de kerfspanning het micro-scheurgebied, de constructie 
veldspanning het macro-scheur gebied; de lasdragende spanning bepaald het 
transitie punt. De las geïnduceerde- en verplaatsingsbepaalde mode-I restspanning 
intensiteitsfactor 	


� is onderzocht voor de kerf van de las {teen, wortel} ter 
completering van de totale laskerfspanningsintensiteit 	


� . 
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De cyclisch extern mechanische belasting en quasi-constante thermische 
restspanning, veranderen 	


�  in een scheurgroei stuwende kracht ∆	

�  en 

defecten kunnen zich ontwikkelen tot scheuren. De scheurgroeisnelheid (d�/d�) van 
micro-scheuren die ontstaan bij kerven vertonen afwijkingen onder invloed van 
elastoplasticiteit in het spoor van de kerf, d.w.z. monotoon stijgend of niet-
monotoon gedrag boven de materiaal drempelwaarde. Middels het wijzigen van de 
Paris’ vergelijking wordt een twee fasen micro- en macro-scheurgroei 
similariteitswet voorgesteld dat zowel de laskerf- als de verre veld karakteristieke 
eigenschappen, elastoplasticiteit alsook de gemiddelde waarde van de extern 
mechanische- en thermische restspanning in rekening brengt. Groeidata van korte 
scheuren verkregen m.b.v. standaard proefstukgeometrieën inclusief {SEN, DEN, 
CEN} in scheurconfiguratie – die tegelijkertijd de laswortel geometrie 
vertegenwoordigen – zoals beschikbaar in de literatuur is opnieuw geanalyseerd 
voor de verschillende materiaal zones in (aluminium) gelaste verbindingen: WM en 
HAZ zone die respectievelijk de vermoeiingsschade locatie van de kerf aan de las 
{wortel, teen} bevatten, evenals BM ter vergelijking. Een serie vermoeiingstesten is 
ontwikkeld om het scheurgroei gedrag aan de kerf van een teen van de las in 
aluminium gelaste verbindingen te identificeren m.b.v. een dubbelzijdige T-
verbinding geometrie voorzien van een typische hoeklas. Met behulp van DIC zijn 
de vereiste parameters van het verre veld- en kerfgebied verkregen. Ruimtelijke 
verplaatsvelden zijn geschat m.b.v. een generieke kinematische basis, gebruik  
makend van commerciële software (Istra4D, Dantec Dynamics). Vervolgens zijn, als 
in een mechanisch filtering proces, de verplaatsingsvelden opgespannen in een 
specifieke kinematische basis; een Airy spanningsfunctie. De amplitudes van de 
verplaatsingen, kleinste kwadraten oplossingen, vertegenwoordigen één-op-één de 
scheurgroei bepalende parameters: de lineaire verre veldspanningsverdeling, de SIF 
en de scheurtip locatie. Een serie foto’s verschaft de oplossing in de tijd; scheurgroei 
data series aan een teen van de las die zowel de verre veld- als de (niet-monotone) 
kerf beïnvloede afwijkingen zichtbaar maken. 
 
Integratie van het scheurgroeimodel levert een (MCF) weerstandsrelatie met 

enkelvoudige helling, een �� -�  curve die de levensduur �  van booglasverbindingen 
en de totaalspanningsparameter ��  correleert; een lijn (equivalent punt) criterium 
om de levensduur van de rompconstructie te kunnen schatten, waarbij men van 
{SSS, LSS, FSS} vermoeiingsweerstand similariteit verzekerd is. Een dubbele 
hellingsformulering is gebruikt om HCF op te nemen waarbij de transitie in 
vermoeiingsmechanisme (groei gedomineerd gaat over in initiatie bepaald voor een 
afnemend belastingniveau), een helling verandering, wordt meegenomen. Regressie 
analyse (een likelihood benadering) is gebruikt om de model parameters te 
schatten, waarbij zowel complete als incomplete data is verwerkt; gefaalde en niet 
gefaalde booglasverbindingen. Artificiële vermoeiingsdata van dubbelzijdige T-
verbindingen is onderzocht om de kwaliteit van ��  te bepalen. De onzekerheid van 
de vermoeiingslevensduur bedraagt ongeveer een factor 2 (�� ≈ 1: 1.2).  
Onbewerkte booglasverbindingen in SSS (T-T) CA data zoals beschikbaar in de 
literatuur is gebruikt om een familie van (schade tolerante engineering) �� -�  
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vermoeiingsweerstand curves voor booglasverbindingen – productiekwaliteit is 
gemiddeld – te bepalen, zodat de levensduur �  kan worden geschat, uitgaande van 
bekende verbindingsgeometrie en verre veld constructierespons. De bandbreedte van 
de MCF levensduuronzekerheid is toegenomen tot een factor 6, (�� ≈ 1: 1.6). In  
het rompconstructie (HCF) ontwerpgebied is de onzekerheid enorm, voornamelijk 
vanwege het gebrek aan complete data. CA LSS {T-T literatuur, T-C} data van 
een representatieve ware grootte constructie is met succes onderzocht ter verificatie 
van de SSS data spreidingsband match. Omdat CA {SSS, LSS} 
vermoeiingsweerstand in de regel wordt gebruikt om een VA FSS waarde te 
schatten m.b.v. de Palmgren-Miner hypothese, is VA SSS data zoals beschikbaar in 
de literatuur onderzocht met een spreidingsband match als resultaat. De betrokken 
equivalente totaalspanningsparameter �� ,�� is bepaald m.b.v. een uitgebreide versie 
van het regenstroom tel algoritme ter vaststelling van de schade. Ten slotte is de 
vermoeiingsschade per uur �ℎ geschat voor een aantal frame – verstijver 
verbindingen in de impact zone van een aluminium hogesnelheidsschip, op basis van 
de FSS respons zoals gemeten tijdens verschillende trials op de Noordzee. De 
golf(belasting) statistiek geïnduceerde onzekerheid van �ℎ bedraagt ongeveer een 
factor 2.5 wanneer de resultaten op basis van de gemeten en gesimuleerde 
constructierespons worden vergeleken. Dit is nagenoeg gelijk aan de MCF 
vermoeiingsweerstand ontwerpwaarde van 3 (R99Cxx – R50Cxx). 
 
Het TS concept is geïmplementeerd in vermoeiingsontwerp software voor 

hogesnelheidsschepen en beschikbaar voor alle onderzoek partners. Met behulp van 
de geometrie en belasting geïnduceerde verre veld constructierespons van de 
booglasverbindingen wordt de geschatte vermoeiingsschade �(�� ) van alle kerf 
locaties berekend en de maatgevende geïdentificeerd om levensduur �  te bepalen.  
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Nomenclature 
 

Latin symbols 
 
� {crack growth, fatigue} resistance constant / scaling factor 
��� weld load carrying stress coefficient 
� (total) fatigue damage 
�ℎ hourly fatigue damage 
�(⋅) complete elliptical integral of the 2nd kind 
� bulk modulus of elasticity 

(�, ) cumulative distribution function 

� force at node � 
� shear modulus 
� Hessian 
�� significant wave height 
��  notch crack growth integral 
�  strain energy release rate 
�(⋅) complete elliptical integral of the 1st kind 
� stress intensity factor 
�′ work hardening coefficient 
�� fracture toughness 
��  notch factor 
�� mode-I stress intensity factor 
��  notch stress intensity factor 
��
�  mode-I notch stress intensity factor 

���
�  mode-II notch stress intensity factor 

��
� mode-I residual stress intensity factor 

��
�  mode-I total stress intensity factor 

��� additional stress concentration factor 
�� theoretical stress concentration factor 
�� strain concentration factor 
  likelihood 
 � normalised/relative parameter profile likelihood 
ℒ log-likelihood 
"#$ Battelle notch factor 
%  (total) number of cycles until failure (i.e. through-thickness crack) 
%(�, ) Normal distribution 
%& cycle coalescence point  
%' number of cycles corresponding to crack growth  
%� number of cycles corresponding to crack initiation  
2%  (total) number of reversals 
) stress range / stress structural response parameter 
)& stress coalescence point 
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)* effective (notch) stress range 
)ℎ hot spot stress range 
)$ nominal stress range 
)� Battelle structural stress range 
)�  total stress range 
)∞ fatigue limit 
,- response scatter range index 
,�  lifetime range index 
.� ship speed 
/  energy range / energy structural response parameter 
/(�, ) Weibull distribution 
0�  far field factor 
0�

� residual field factor 
0�� far field factor bending component 
0�1 far field factor membrane component 
0�� weld reinforcement affected far field factor 
0$ notch factor 
0$2 linear unit stress notch factor 
0$� root notch factor 
0$

� residual notch factor 
 
3 crack size 
30 critical crack size 
3& coalescence (crack) size 
3* effective crack size 
3�  final crack size / fictitious crack size 
3� (real) defect- or initial crack size 
3$ (root) notch size 
3� crack transition size 
5 cyclic fatigue strength exponent 
5� base plate and weld reinforcement equivalent thickness 
5& cross plate and weld reinforcement equivalent thickness 
56 plate and weld reinforcement equivalent thickness 
7 cyclic fatigue strain exponent / half width of semi-elliptical crack 
8$ notch depth / undercut 
9 strain range / strain structural response parameter 
9* effective (notch) strain range 
: frequency 
:(�, ) probability density function 
:� line force at finite element � 
:1 line membrane force 
:� line shear force 
:; line membrane force in <-direction 
:= line membrane force in >-direction 
? notch stress intensity weight function 
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?1 mode-I notch stress intensity weight function 
?2 mode-II notch stress intensity weight function 
B& cover plate length 
B� finite element length (along weld seam) 
B� weld leg length 
ℎ� weld leg height 
D fatigue resistance slope 
D1 fatigue resistance HCF slope 
D2 fatigue resistance MCF slope 
D� line bending moment 
D�� bending moment induced weld load carrying line bending moment 
D�1 membrane force  induced weld load carrying line bending moment 
DE line bending moment about F-axis 
G number of cycles / elasto-plasticity coefficient 
G′ work hardening exponent 
G* notch elasto-plasticity coefficient 
H�  Battelle crack face pressure 
H� Battelle structural pressure 
H� Battelle structural pressure ratio 
I(′) radial coordinate 
I0 radial distance coordinate system origin to notch root 
I2 remote mechanical load ratio 
I6 plastic zone size 
I� structural bending stress ratio 
I�� structural bending root stress ratio 
I� Battelle notch-far field transition depth 
K notch support factor 
L6 plate thickness 
L6′ artificial plate thickness 
L� base plate thickness 
L�′ artificial base plate (related) thickness 
L& {connecting, cross, cover} plate thickness 
L&′ artificial cross plate (related) thickness 
L� weld throat thickness 
M displacement vector 
N� I-displacement 
NO P-displacement 
NE F-displacement 
N; <-displacement 
F′ local Cartesian coordinate (along weld seam) 
<′ local Cartesian coordinate (perpendicular to weld seam) 
>′ local Cartesian coordinate (through-thickness direction) 
 
 
 



xx Nomenclature 

 

Greek symbols 
 
Γ(⋅) (complete) Gamma function 
∆�� mode-I crack growth driving force 
∆��

�  mode-I notch crack growth driving force 
∆��

�  total mode-I crack growth driving force 
∆��  far field crack growth driving force component 
∆��ℎ crack growth threshold 
∆8= out-of-plane displacement range 
∆H pressure range 
∆�S micro-strain range 
∆ stress range 
∆� structural stress range 
∆T fatigue/endurance limit (general) 
∆0 fatigue/endurance limit (plane geometry) 
Ρ (co-)variance or correlation matrix 
Ψ basis function vector 
Ω basis function vector 
 
X (half) notch angle 
Y stress angle 
Z load ratio coefficient / welded joint cross plate angle 
[ data type {complete = 1, censored = 0} 
S residual 
S* elastic strain component 
S� ′ cyclic fatigue strain coefficient 
S6 plastic strain component 
S�� radial strain component (polar coordinates) 
S�O shear strain component (polar coordinates) 
SOO tangential strain component (polar coordinates) 
SEE normal strain component in F -direction (Cartesian coordinates) 
SE; shear strain component in Fy -plane (Cartesian coordinates) 
S;; normal strain component in < -direction (Cartesian coordinates) 
{]�, ]�} first blunt body eigenvalue of (anti-)symmetry part 
_ stress concentration coefficient 
` parameter vector 
P angular coordinate 
a Kolosov’s constant 
b eigenvalue 
b� eigenvalue (asymptotic solution) 
{b�, b�} first eigenvalue of (anti-)symmetry part 
� mean 
{��, ��} stress amplitude of (anti-)symmetry part 
�� stress component amplitude 
c Poisson ratio 



Nomenclature  xxi 

 

{d1, d2} (auto)correlation radii 
e (real) notch radius 
e* effective notch radius 
e�  fictitious notch radius 
e�f correlation coefficient 
e� reference notch radius 
e∗ micro-structural support length 
 stress / standard deviation 
� structural bending stress component 
�� structural bending root stress component 
�� weld load carrying stress distribution 
�  {structural, welded joint far} field stress distribution 
� ′ cyclic fatigue strength coefficient 
�� structural field root stress distribution 
ℎ hot spot stress (amplitude) 
1 mean stress / structural membrane stress component 
1� structural membrane root stress component 
1�E (zone 1) peak stress 
$ nominal stress (amplitude) / weld toe notch stress distribution 
$

� weld toe notch residual stress distribution 
$

�  total weld toe notch stress distribution 
$� weld root notch stress distribution 
$�

� weld root notch residual stress distribution 
$�

�  total weld root notch stress distribution 
6 principal stress 
�� radial stress component (polar coordinates) 
�O shear stress component (polar coordinates) 
OO tangential stress component (polar coordinates) 
� structural stress (amplitude) 
�

� Battelle structural stress 
�* self-equilibrating stress part 
�*� self-equilibrating root stress part 
�� structural root stress (amplitude) 
h� material ultimate strength 
EE normal stress component in F -direction (Cartesian coordinates) 
E; shear stress component in Fy -plane (Cartesian coordinates) 
;; normal stress component in < -direction (Cartesian coordinates) 
;(�) material yield stress / strength 
i Airy stress function 
{j�, j�} first eigenvalue coefficient of (anti-)symmetry part 
j� eigenvalue coefficient of asymptotic solution 
{k�, k�} first blunt body eigenvalue coefficient of (anti-)symmetry part 
 
 
 



xxii Nomenclature 

 

Abbreviations 
 
AIC Akaike’s information criterion 
AW as welded 
BC boundary condition 
BEA boundary element analysis 
BM base material 
BS British standard 
BSS Battelle structural stress 
CA constant amplitude 
CB confidence bound 
CC centre crack 
CI confidence interval 
CT compact tension 
CDF cumulative distribution function 
CEN Comité Européen de Normalisation 
CL clamped 
CN centre notch 
DC displacement controlled 
DEC double edge crack 
DEN double edge notch 
DFT discrete Fourier transformation 
DIC digital image correlation 
DoF degree(s) of freedom 
DS double sided 
ERAAS European recommendations for aluminium alloy structures 
EV extreme value 
FAT fatigue class 
FE finite element 
FEA finite element analysis 
FP fully penetrated 
FSS full scale structure 
HAZ heat affected zone 
HCF high cycle fatigue; life time range % = m(5 ⋅ 106…109)  
HS hot spot 
IIW International Institute of Welding 
ISSC International Ship and offshore Structures Congress 
LEFM  linear elastic fracture mechanics 
LB lower bound 
LC load carrying / load controlled 
LoF lack of fusion 
LoP lack of penetration 
LS least squares 
LSS large scale specimen 
M specimen series far field stress: membrane 
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MBN specimen series far field stress: membrane and bending (non-monotonic) 
MBM specimen series far field stress: membrane and bending (monotonic) 
MCF medium cycle fatigue; life time range % = m(104…5 ⋅ 106)  
MLE maximum likelihood estimate 
NLC non-load carrying 
NSIF notch stress intensity factor 
PDF probability density function 
PL profile likelihood 
PP partially penetrated 
RCT round compact tension 
RFL random fatigue limit 
RSIF residual stress intensity factor 
SCF stress concentration factor 
SEC single edge crack 
SEN single edge notch 
SG strain gauge 
SIF stress intensity factor 
SNR signal to noise ratio 
SR stress relieved 
SS single sided / simply supported 
SSS small scale specimen 
TS total stress 
T-C tension – compression 
T-T tension – tension 
UB upper bound 
UIT ultrasonic impact treatment 
VA variable amplitude 
WM weld material 
X-FEM extended finite element method 
ZOI zone of interest 
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1 
Introduction 

 
 

A good scientist is a person with original ideas. A good engineer is a person who 

makes a design (assessment concept) that works with as few original ideas as possible. 

Freeman Dyson (1923, physicist) 

 

1.1 Motivation 

Crew transfers, surveillance duties and {security, rescue, interception} operations at 
sea typically require high-speed craft (Fig. 1.1). Aluminium is quite often selected 
as hull structure material, e.g. because of its weight saving potential in comparison 
to steel aiming for a reduction of installed power and fuel consumption. The fatigue 
strength, however, may become a point of concern because of the decreased Young’s 
modulus. 
Impact, bottom slamming in particular, is identified as a dominant type of 

repeated loading (i.e. remote mechanical load ratio �� ~ 0), meaning fatigue – a 
cyclic loading induced local, progressive, structural damage mechanism (Schijve, 
2009) – is a governing limit state in aluminium high-speed craft design. Particular 
attention in that respect is paid to arc-welded joints connecting the hull structure 
components, i.e. {plates, shells}, since the weld geometry introduces notches; 
fatigue sensitive locations. 

 

Figure 1.1: Damen high speed craft, {Stan Patrol 1204, Fast Crew Supplier 1605}. 
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Overview 
Fatigue physics cover an extensive range of scales (Fig. 1.2) and modelling may 
require a multi-scale approach. Notwithstanding, typically a structural response 
parameter {�, 	,
}; a continuum mechanics based {stress, strain, energy} macro-
scale fatigue resistance engineering criterion, is adopted since {�, 	,
} controls 
plasticity at macro (structural)- as well as meso and micro (material) scale, required 
to facilitate fatigue damage: crack initiation at microscopic stress concentrations  
(i.e. to move dislocations, to develop (persistent) slip bands and to introduce micro-
cracks), growth (up to macro scale), propagation and fracture. Macroscopic stress 
concentrations, hot spots (e.g. at weld notches), facilitate the microscopic ones. 
 
 
 
 
 
 
 
 
 
 
 
 

                         Figure 1.2: Fatigue physics range of scales. 

 
Because of material imperfections and welding induced flaws, defects, the hull 
structure welded joint fatigue design strategy is principally fail safe or even damage 
tolerant. Life time is typically expressed in a number of cycles �  and estimates are 
generally required in the {medium, high} cycle fatigue (MCF, HCF) range; i.e.  
� = �(104 …109). Different {�, 	,
}-�  assessment concepts and corresponding 
resistance curves have been developed over time and reviewed (Cui, 2002; Fricke, 
2003; Maddox, 2003; Radaj, Sonsino and Fricke, 2006; Hobbacher, 2009a; Rizzo, 2011; 
Radaj and Vormwald, 2013), proposed to be classified according to (Fig. 1.3): 

 

• {global, local} approach 
 

• {stress (intensity), strain (intensity), energy (density)} criterion 
 

• {intact, crack damaged} geometry parameter 
 

• {point, line, area/volume} process zone. 
 

The parameter scale relative to the hot spot defines the approach. Depending on {work 

hardening, elastoplasticity, multi-axiality} examinations an appropriate criterion 
can be established. Model philosophy assumptions, i.e. is initiation (crack nucleation 
and micro-crack growth) governing or is (micro- and macro crack) growth dominant, 
determine if the parameter will be an intact geometry- or crack damaged one. Notch 
effectivity (size effects; scaling) considerations define the adopted process zone. 

10-10 10-8 10-6 10-4 10-2 100 102 

engineering scale 

scale of physics micro- macro- meso- 

continuum mechanics modelling scale 

SSS {LSS, FSS} 

atom crystal grain continuum detail structure 

[m] 
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                     Figure 1.3: Fatigue assessment concept overview. 

 
Nominal stress concept 
Evaluating the {MCF, HCF} resistance of welded structural details using a global 
approach involves typically a nominal stress range criterion �� = ∆�� (Fig. 1.4); a 
structural detail reference- and intact geometry parameter, assuming the major 
part of life time �  is related to crack initiation (i.e. is spent in the weld notch 
affected region) rather than crack growth. Constant amplitude (CA) fatigue 
resistance information is commonly obtained using small- or large scale (beam) 
specimen (SSS, LSS) and expressed in terms of FATigue classes. Theoretically, an 
infinite number of different structural details exist, although in hull structures it 
might be rather a matter of varying dimensions than the actual diversity in welded 
joints. The number of defined FAT classes is limited to ~80 (CEN: Eurocode 9, 
2007; IIW recommendations: Hobbacher, 2009b). 
As long as geometry, loading (generally a membrane component only), failure 

location (weld toe- or weld root notch) and quality (metallurgical and {offset, 
angular} imperfections) fit the FAT class description, computational effort is 
limited and concept complexity is relatively low. However, (local) dimension 
variations are not explicitly considered paying off in terms of fatigue resistance 
accuracy (i.e. estimated life time uncertainty) since �� is processed as point 
criterion, as ‘local’ nominal stress, meaning (stress gradient induced) size effects are 
not taken into account. In case the structural detail configuration identified in the 
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full scale structure (FSS) is running out the classified one, i.e. does not perfectly 
match the FAT class geometry, the ‘local’ nominal stress requires identification     
of stress concentration components already incorporated and missing ones. 
Complications increase if the ‘local’ �� has to be extracted from a finite element 
(FE) model of a relatively complex (hull) structure. 
Although a spatial description of a {load, structural response} cycle requires 2 

parameters, e.g. a range and remote mechanical load ratio, �� = (����/����) =
(����/����) is not explicitly considered since the FSS stress level in the notch 
affected region is assumed to be highly tensile anyway (at yield magnitude) because 
of the welding induced residual stress component. Any {SSS, LSS} fatigue test 
result obtained at relatively low load ratio has been translated to �� ~ 0.5 using a 
far field mean stress correction. The Basquin (type of) relation �� = {�!

′ ⋅
(2�)%, & ⋅ ��} provides the ��-(2)�  fatigue resistance curves involving the FAT 
class characteristic fatigue strengths {�!

′, &}; the damage mechanism is assumed 
to be similar for all structural details, meaning the slopes {(,)} are invariant. 
 

Structural hot spot stress concept 
Local approaches provide the opportunity to reflect explicitly geometry and loading 
contributions. A criterion like the structural hot spot stress range �ℎ = ∆�ℎ 
(Niemi, Fricke and Maddox, 2006); an intact geometry parameter, involves the 
equilibrium equivalent far field stress (Fig. 1.4) solving the ‘local’ nominal stress 
issue. However, the local geometry parameter {+%, +,, -., ℎ., 0�, 1} affected self-
equilibrating part is not considered, meaning the number of fatigue resistance 
curves is theoretically still infinite. Since the self-equilibrating stress defines up to 
what extent the notch is load carrying, in terms of fatigue resistance the extremes 
have been defined: non-load carrying (NLC) and load-carrying (LC); 2 FAT classes; 
2 �ℎ-�  curves, Basquin (type of) relations. Selection is based on engineering 
judgement. 
A hot spot stress concept based fatigue assessment is limited to weld toe induced 

failures; a design principle because of weld root fatigue detection issues. Originated 
from strain gauge (SG) measurements, �ℎ is typically a FE (non-) linear surface 
extrapolation calculated – fictitious – stress that cannot be measured itself. 
Alternatively, through-thickness linearisation can be used to obtain �ℎ, meaning no 
model limitation exist to determine �ℎ for weld root notches as well. Note �ℎ is a 
point criterion, i.e. size effect corrections are still required. Any {offset, angular} 
imperfections affecting the far field stress should explicitly be included. Residual 
stress considerations remain unchanged in comparison to the nominal stress 
concept. Generally speaking, life time estimate uncertainty should decrease because 
of reduced scatter, at the price of increased structural response modelling time and 
local {geometry, loading} information; increased effort and concept complexity. 
However, uncertainty may not be so much related to a �  estimate as well to �ℎ FE 
type and mesh size sensitivity, meaning the FE recommendations associated with 
the �ℎ-�  curve have to be used. 
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            Figure 1.4: PP DS T-joint weld (toe) notch stress distribution. 

 
Effective notch {stress, strain} concept 
The (as-)weld(ed) notch radius is typically small (1 → 0) and the theoretical stress 
concentration is not fully effective, meaning a (local) peak stress fatigue resistance 
criterion ���� = ∆���� (Fig. 1.4) would be too conservative. Adopting a micro-
structural notch support hypothesis, the notch stress is averaged along the 
(presumed) crack path over a material characteristic micro-structural length 1∗ to 
include the notch stress gradient contribution. The real 1 value is artificially 
enlarged employing a fictitious component 1! = 4 ⋅ 1∗ to obtain the effective one 
15 = 1 + 1!  and the corresponding notch stress range �5 = ∆�5 = ∆��7 =
∆����(15) of the original geometry (Neuber, 1937; Sonsino et al., 2012); an intact 
geometry parameter and line (equivalent point) criterion (Fig. 1.5). 
Support factor 4 depends predominantly on loading mode (uni-axial, mixed i.e. 

multi-axial), response condition (plane stress, plane strain), notch angle (28 =
{59/4, 29} for respectively idealised fillet weld toe- and weld root notches), notch 
shape (blunt hyperbolic, root hole or blunt circular for the weld toe; elliptic, key-
hole or U-hole for the weld root) and last but not least the adopted strength 
criterion (e.g. an equivalent one like Von Mises). Values are in the range (1, 10).  
Micro-structural length 1∗ is typically obtained in an implicit way. Using fatigue 

test data, �5-�  curve parameters can be estimated. Assuming the data correlation is 
at maximum for the actual 1∗, its most likely value can be identified. Although 1∗ 
is a material characteristic parameter, {HAZ, WM} effects for respectively weld toe 
and weld root notches are generally ignored. A most likely 15 (engineering) value can 
be established directly as well, meaning average {1, 1!} contributions are involved. 
For engineering applications, one fatigue resistance curve (i.e. Basquin type of 

relation �5 = & ⋅ ��) corresponding to one reference radius 1; = 15 = 1 [mm] has 
been proposed (for both steel and aluminium weld {toe, root} notches) because of 
the simplifications (regarding notch angle, elastoplasticity, notch acuity, etc.) w.r.t. 
the original concept. The 1; value requires plate thickness +< ≥ 5 [mm] because of 
artificial cross-sectional weakening in case of weld root notches. Strengthening of 
weld toe notches is ignored. In both cases structural stress corrections should be 
applied. Concerning notch shape, root notches are obviously critical and {key, U}-
hole configurations are respectively classified as {conservative, non-conservative} 
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based on a Round Robin (Fricke et al., 2013), although main criterion should be 
that the adopted shape as used to obtain the fatigue resistance curve and the one 
employed for fatigue assessment are in agreement. Note that only the absolute notch 
acuity has been taken into account, meaning size effects still have to be corrected 
for. Reference radius 1; is proposed to be replaced by a relative one (Schijve, 2012), 
although – at least for weld toe notches – involving the plate thickness, (1/+<), 
seems a better solution than a weld leg length. In case +< < 5 [mm], 1; = 0.05 [mm] 
has been selected based on a completely different hypothesis, i.e. the relationship 
between the stress intensity factor (SIF) and notch stress as well as crack tip 
blunting. At the same time, it is a compromise w.r.t. FE modelling and calculation 
of a reasonable local stress component (Sonsino et al., 2012). 
Embedded in an elastic far field condition, the weld notch structural response is 

typically elastoplastic, introducing the cyclic stress-strain (hardening) curve 
(C5 + C<) = (�/D) + (�/E′)1/�′; the Ramberg-Osgood equation, turning the fatigue 
resistance curve into a (two-slope) Coffin-Manson-Basquin relation: (C5 + C<) =
{(�!

′ − ��)/D} ⋅ (2�)% + C!
′(2�),. Morrow’s mean stress correction is included. 

Adopting a macro- and micro-structural notch support hypothesis to relate the 
effective notch stress- and strain concentrations to the far field stress, an 	5-(2)�  
curve can be obtained. 
 

Notch stress intensity concept 
For decreasing 1, the linear elastic notch stress becomes asymptotic and rather than 
a(n effective) local stress Williams’ notch stress solution �(�, I)  based weld notch 
stress intensity factor (NSIF) can be introduced (Verreman and Nie, 1996); an 
intact geometry parameter and notch stress gradient (area/volume) criterion: 
EJ = lim ;→0+{�(�, I)/(28 ⋅ �)O−1} turning into the SIF E definition for a weld 
root notch in crack configuration. The NSIF can be rewritten: EJ = P�+<

1−O 
(Lazzarin and Tovo, 1998) taking (only) the plate thickness based absolute notch 
acuity into account. The curve fitted weight function P is remote mechanical 
loading and joint geometry dependent. For a weld root notch EJ → E = P�0�

1−O. 
Note the eigenvalue is notch angle dependent Q(28), meaning both the {NSIF, SIF} 
units and the scaling parameter for weld toe and weld root notches (respectively 
+<

1−O and 0�
1−O) are different. Combining fatigue resistance data involving hot 

spots with different notch angles (i.e. weld toe and weld root induced failures) to 
obtain one EJ -�  or ∆EJ -�  curve; a Basquin type of equation, is impossible. 
 
 
 
 
 
 
 
 
 

                            Figure 1.5: Weld notch process zones. 
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Strain energy density concept 
To be able to incorporate work hardening, elastoplasticity, multi-axiality and mean 
stress effects, local {stress, strain} components should be involved and a hot spot 
energy criterion can be adopted: 
 = >(��S, C�S). In case (1 → 0), 
  should be 
averaged to incorporate notch effectivity, introducing the energy density 
̅̅̅̅̅ =
(
/W). Using Williams’ asymptotic solution �(�, I) and a constitutive relation 
C�S = >(��S), 
̅̅̅̅̅ = >(E�

J(�),W); an intact geometry parameter and area (or volume 
averaged point) criterion (Fig. 1.5). Area W = 28 ⋅ R, meaning radius R becomes 
the material characteristic micro-structural support parameter. A most likely value 
can be obtained using test data and a (Basquin type of) fatigue resistance relation, 
minimising the error. Alternatively, an R value can be retrieved using (∆� = ∆�0), 
i.e. the plane geometry fatigue limit estimate. For weld root notches, the (N)SIF 
should turn into the crack growth threshold ∆EJ → ∆EXℎ as well. Although 

̅̅̅̅̅ = >(E�

J(�),W) solves the (N)SIF units problem, the scaling issue still exists, 
meaning it is still not feasible to combine weld toe- and weld root induced failures 
and establish a 
̅̅̅̅̅ -�  or ∆
̅̅̅̅̅ -�  fatigue resistance curve as has been proposed 
(Livieri and Lazzarin, 2005). 
 

Battelle structural stress concept 
The structural response for relatively complex hull structures is typically obtained 
using finite element analysis (FEA); welded joint fatigue life times are estimated 
using the structural hot spot stress concept. To reduce the �ℎ element type and 
mesh size sensitivity, nodal forces have been proposed to be used to obtain the far 
field stress distribution along the weld seam, including a virtual node procedure to 
accommodate weld ends. Assuming hull structure welded joints inevitably contain 
defects, a Battelle structural stress (BSS) criterion has been developed; a crack 
damaged- rather than intact geometry parameter (Dong and Hong, 2004). 
The intact geometry through-thickness weld notch stress distribution has been 

bi-linearly approximated and translated to a crack damaged equivalent; the SIF E. 
A two-stage (notch affected micro- and far field dominated macro-) crack growth 
model has been proposed and turned into an equivalent (effective) stress criterion 

�Y incorporating the absolute and relative crack acuity, i.e. proper scaling. Fatigue 
resistance master curve(s), MCF �Y-�  Basquin type of relations, have been derived 
for steel as-welded joints; toe and root induced failures separately, predominantly 
because of a far field stress inconsistency. 
 

Developments 
From engineering perspective, adopting a structural response parameter {�, 	,
} 
using only global information and available at FSS level seems attractive, but pays 
off in fatigue resistance data scatter and life time estimate uncertainty. Including 
physics at smaller scale, local information, improves the accuracy. Physics not 
considered typically appear as fatigue influence factors (ISSC proceedings, 2012). 
Approaching the continuum mechanics scale lower bound (i.e. defect size order of 
magnitude), intuitively a multi-scale approach might be considered as next step. 
Correlating {�, 	,
} to the netherworld (i.e. to meso- or even micro-scale models) 
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however is a challenge; to prove the hypotheses experimentally in particular. The 
remaining question is whether a popular multi-scale parameter like the Dang Van 
criterion (Dang Van, 1993) – a safe life parameter – is applicable. Providing a 
‘Danger’ criterion rather than lifetime estimate, it is impossible to characterise arc-
welded joint {MCF, HCF} resistance, although still applied in engineering (Dang 
Van et al., 2001). The only way out seems to incorporate the {MCF, HCF} normal- 
and shear fatigue resistance rather than the estimated(!) fatigue limits. Since the 
Dang Van (point) criterion applied to notched geometries does not include scaling, 
a notch effectivity hypothesis is required anyway. The translation from a meso- to 
macroscopic response distinguishing hydrostatic- and deviatoric components remains 
unaffected, meaning a multi-scale parameter seems a possibility indeed… 
A continuous increase of the considered scale range of physics (including even 

granular mechanics) as observed in fatigue assessment concept development over 
time to increase accuracy, however, is typically associated with increased 
(computational) effort requirements and concept complexity (Fig. 1.6). 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6: Typical fatigue assessment concept {accuracy, effort, complexity} relation. 

 
At the same time, similarity; proper scaling, meaning equal {�, 	,
} should yield 
the same fatigue resistance (i.e. number of cycles �), seems still incomplete since 
all concepts available still involve multiple fatigue resistance curves rather than one.  
 

1.2 Research objective 

Looking at the scale of physics already considered and the accuracy achieved, the 
fatigue resistance data scatter and estimated life time uncertainty seem hard to 
improve. Different parameters defined at the same scale provide similar accuracy 
levels (modifications disappear in uncertainties) and – provided the micro-
structural material imperfections and welding induced flaws level of scale as well as 
stochastics do not change – continuing the decrease of fatigue scale of physics seems 
inefficient. From {MCF, HCF} design perspective, a local continuum mechanics 
approach seems sufficient and focus will be on developing a fatigue assessment 
concept to balance accuracy, effort and complexity (Fig. 1.7).   
 
 

accuracy 

ef
fo
rt
 

global approach 

local approach 



Chapter 1. Introduction  9 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                Figure 1.7: Three Intersecting Planes (M.C. Escher),                     
                                i.e. {accuracy, effort, complexity} cross roads. 
 
Although a hull structure longevity estimate – welded joints fatigue strength and 
life time – require a {loading, structural response} analysis and fatigue resistance 
assessment, emphasis will be on fatigue resistance design in relation to the 
structural response. In order to improve similarity (generalising the fatigue 
resistance parameter at the same time) and to obtain one aluminium arc-welded 
joint fatigue resistance curve, a total stress concept is proposed (Fig. 1.8 and 1.9). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     Figure 1.8: Elements of the total stress concept. 
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                                Figure 1.9: Research road map. 
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Thesis outline 
To calculate the global hull structural response for fatigue design purposes, a 
relatively coarse meshed shell- and plate FE model should be sufficient. The local 
weld geometry is not included, meaning that corresponding notch information is 
missing. However, the remote mechanical loading induced (linear) predominant 
mode-I far field stress distribution �!(�Y, �Y) in each cross-section along the weld 
seam is available and will be related to the corresponding through-thickness weld 
{toe, root} notch stress distribution formulations {��, ��;} along the expected (2D) 
crack path: an assumed key element in defining an appropriate fatigue design (and 
detectable repair) criterion. Exploiting (non-)symmetry conditions, a generalised 
formulation is aimed for to demonstrate stress field similarity (Chapter 2) and 
should extend to the welding induced thermal residual stress distributions 
{��

;, ��;
;}. A linear superposition of the two distributions provides {��

Z , ��;
Z }; 

the total ones. 
Fatigue scaling requires both the peak value and gradient to be incorporated, 

meaning a damage criterion should take the complete distribution into account. The 
stress intensity (similarity) factor (SIF) E seems to meet this criterion, though,  
the intact geometry related notch stress distributions {��

Z , ��;
Z } should 

consistently be correlated to a crack damaged equivalent (Chapter 3); the (total) 
mode-I weld (toe and root) notch stress intensity similarity parameter E[

Z . At the 
same time, assuming that arc-welded joints inevitably contain flaws, defects at    
the weld toe- and root notches, fatigue damage at both locations will primarily be a 
matter of notch affected micro- and far field dominated macro-crack growth, 
justifying a damage tolerant parameter like the SIF. 
Cyclic remote mechanical- and quasi-constant thermal residual loading turn  

E[
Z  into a crack growth driving force ∆E[

Z and defects may develop into cracks. 
The crack growth rate (d0/d]) of micro-cracks emanating at notches show 
elastoplastic wake field affected anomalies. Modifying Paris’ equation, a two-stage 
micro- and macro-crack growth law similarity is proposed (Chapter 4) to include 
both the weld notch- and far field characteristic contributions. 
Crack growth model integration will provide a (MCF) single slope resistance 

relation, a joint �Z -�  curve (Chapter 5) correlating life time �  and total stress 
parameter �Z  (Fig. 1.3); a line (equivalent point) criterion to ensure {small, large} 
scale specimen and full scale structure (SSS, LSS, FSS) welded joint fatigue 
resistance similarity. A (random) fatigue limit model, a dual slope formulation, has 
been adopted to incorporate HCF taking the transition in fatigue damage 
mechanism (i.e. growth dominant turns into initiation controlled for decreasing load 
level), a slope change, into account. 
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2 
Weld Notch Stress Distributions 
 
 

There has to be a mathematical explanation for how  

elegant weld notch stress distributions look like. 

 

2.1 Introduction 

In aluminium high-speed craft, {MCF, HCF} is a governing design limit state. Arc-
welded joints connecting the hull structure stiffened (curved) panel assembly 
components, (thin) plates and shells, are a matter of concern in that respect 
(Chapter 1). The weld geometry introduces at least a notch at the weld toe and 
depending on penetration level another one at the weld root. Cracks may initiate  
at both fatigue sensitive locations, grow principally in {plate, shell} thickness 
direction and continue to propagate in general either along or perpendicular to the 
weld seam through {plate, shell} because of the structure orthotropic stiffness 
characteristics, suggesting a {plate, shell} thickness based (detectable repair) 
criterion to be an appropriate fatigue design parameter. The total through-
thickness weld notch stress distribution, including both the ocean/sea waves 
induced cyclic remote mechanical loading- and welding process related quasi-
constant thermal residual part, is assumed to be a key element. 
 

Outline 
Typical hull structure welded joints will be identified first and classified taking  
weld type, notch location and geometric symmetry into account (Paragraph 2.2). 
The predominant remote mechanical loading mode-I induced through-thickness 
weld notch stress distributions {��, ���}, e.g. at a base plate related weld toe    
and weld root for respectively a partial penetrated double sided T-joint and butt 
joint; plate thickness �� = �
 and ��′ = �
′, will be examined to distinguish the 
contributing stress components. A weld geometry stress – consisting of a local V-
shaped notch- and weld load carrying component (Paragraph 2.3 and 2.4) – and 
global structural field stress (Paragraph 2.5) are identified and a generalised 
formulation demonstrating stress field similarity (Fig. 2.1) will be obtained. 
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For increasing notch radius �, the notch peak stress value ��� decreases meaning 
the corresponding zone 1 size increases, shifting its (right) boundary to the right. The 
other way around, if � decreases ��� will increase; the boundary moves left and its 
influence reduces. The limit case: � → 0 and zone 1 becomes infinitesimally small. 
The weld geometry stress defined zone 2 size increases for increasing notch angle 2�; the V-shaped notch stress is modified. The upper limit case 2� = 2� is the 
crack configuration as typically turns up at a weld root. Zone 2 as well as zone 1 
vanish for the lower limit case 2� = �; a plane geometry. At the same time 2� 
increases the notch stress gradient increases as well; the weld dimensions {��, ℎ�} 
and root notch size/length �� dependent weld load carrying stress contribution 
defines the final value. The linear(ised) structural (root) field stress {�� , ���(��)} 
gradient – either positive or negative – determines the zone 3 boundary location. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.1: Generalised weld notch stress distribution {��/�� |�=0, ���/���|�′=0}. 
 

The fatigue resistance of a welded joint depends on its dimensions, meaning an 
appropriate scaling parameter is required. The zone 1 peak stress and zone {2, 3} 
stress gradients provide important information in that respect, i.e. the highly 
stressed material volume around the notch is defined, explaining why linear elastic 
(deformations are presumed to be small), semi-analytical, parametric remote 
mechanical loading induced through-thickness notch stress distribution formulations {��, ���} are developed for the weld toe as well as weld root (Paragraph 2.6 and 
2.7). Size effects of {weld dimensions, notch radius, plate thickness} are investigated 
and include the possibility to optimise the weld geometry (Paragraph 2.8). 
The {��, ���} distributions are related to the joint far field stress, calculated 

using a relatively coarse meshed {plate, shell} FE hull structural design model in a 
weld seam analysis procedure (Paragraph 2.9). The opportunity to take proportional 
far field multi-axiality into account adopting an equivalent stress is provided. 
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Observation of numerical simulation- and {neutron, synchrotron} diffraction 
measurement results indicate how welding process induced (thermal residual) notch 
stress distributions may look like (Paragraph 2.10). Comparison of the remote 
mechanical- and thermal residual stress parts shows that the generalised formulation 
and stress field similarity can be extended. Finally, the total stress concept will be 
derived (Paragraph 2.11). 
 

2.2 Welded joint classification 

Theoretically, an infinite number of different welded joints exist. However, for a 
typical hull (i.e. bottom) structure (Fig. 2.2) it is rather a matter of varying 
dimensions than the actual diversity in welded joints. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2: Damen high-speed craft bottom structure. 

 
Four – quasi 2D – commonly applied welded joints in double sided (DS) and single 
sided (SS) configuration are identified and selected, linking a continuous base plate 
– thickness �
 – and {connecting, cross, cover} plate – thickness �$ (Fig. 2.3). The 
remote mechanical line forces {-,.
, -/} should satisfy static equilibrium, 
although for each notch location and corresponding through-thickness stress 
distribution only the relevant mode-I membrane and bending components  {-,.
} 
are taken into account; the shear line force -/ (mode-II component) is disregarded. 
For the butt joints (Fig. 2.3 a, b) �
 and �$ may be different and the off-set between 
the plate centre lines can be non-zero. The centre lines for the T-joint (Fig. 2.3 c, d) 
and cruciform joint (Fig. 2.3 e, f) need not necessarily to be perpendicular to each 
other; the SS configurations (Fig. 2.3 d,f) are mainly a result of chain or staggered 
intermittent welding. An attachment with out-of-plane thickness - �$ - will introduce 
3D effects, to be taken care of using {-,.
}. The cover- or double plate is a special 
one with in-plane thickness �$ (Fig. 2.3 g, h); the base plate may be discontinuous. 
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a) DS butt joint b) SS butt joint 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
c) DS T-joint d) SS T-joint 

 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

e) DS cruciform joint f) SS cruciform joint 
 
 
 
 
 

 
 
 

 
 

 
 
 

 
 
 

g) DS attachment / cover plate  h) SS attachment / cover plate  
 

Figure 2.3: Commonly applied welded joints (incl. mode-I cracks) in hull structures. 
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Characteristic features defined from geometry and through-thickness weld notch 
stress distribution perspective include: 
 

• weld type; groove- (Fig. 2.3 a, b) and fillet welds (Fig. 2.3 c-h) are 
distinguished, ideally assumed to be respectively arc- and tri-angular shaped. 

 
• notch location; potential loading mode-I fatigue sensitive weld toe- and weld 
root notches are identified and numbered for convenience (Fig. 2.3). 

 
• symmetry with respect to (��/2), either �� = �
 or �� = �$; a pre-requisite to 
obtain the correct stress gradient and appropriate scaling. 

 
• the structural hot spot (HS) classification (Fricke, 2002); restricted to weld 
toe notches, is proposed to be generalised (Fig. 2.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                  Figure 2.4: Hot spot type classification. 

 
� HS type 7: notch along the weld seam.  

 
� HS type 8 or 9: notch at the weld end.  

 
Any particular notch in a cross-section of an arbitrary joint (Fig. 2.3 a-f) is 
defined as HS type 7, including the cover plate (Fig. 2.3 g, h); using half the 
attachment geometries – HS type 8 specials – the generalised weld end     
HS types {8,9} can be obtained (Fig. 2.5). Examples are the weld ends at 
respectively a (soft toe) bracket and bulkhead-bottom stiffener connection 
(Fig. 2.6). The weld toe HS type 9 plate thickness ��′, defined along the weld 
seam, is artificial – a through-thickness criterion does not necessarily mean 
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through plate thickness – like for a weld root HS type 7 either along a weld 
leg or weld throat. To incorporate 3D weld end effects, particularly important 
for (weld toe) HS’s type 8, the line forces {-,.
} have to be used to 
obtain an equivalent structural field stress �� . 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 

                      a) DS weld end                     b) SS weld end  
 

        Figure 2.5: Generalised hot spot type {8,9} incl. mode-I cracks. 
 
The weld penetration level, full (FP) or partial (PP), is a useful denotation from 
production point of view, although strictly speaking the former is a PP limit case, 
i.e. �� = 0; the general cases are shown (Fig. 2.3). Defining welds as load carrying 
(LC) or non-load carrying (NLC), e.g. the DS cruciform joint (Fig. 2.3e) from 
respectively �
 or �$ perspective, seems inappropriate. All welds are load carrying 
up to some extent. The {LC, NLC} qualification just represents the extremes and is 
considered to be incomplete.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 Figure 2.6: Weld end HS type {8,9} in hull structures. 
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With respect to the stress concepts widely used nowadays, the welded joint 
selection (Fig. 2.3 and 2.5) includes a significant part of the nominal stress concept 
related detail categories (CEN: Eurocode 9, 2007; IIW recommendations: 
Hobbacher, 2009b) and significantly increases the number of considered notch 
locations in comparison to the weld toe analysis limited structural hot spot stress 
concept (Niemi, Fricke and Maddox, 2006). 
 

2.3 V-shaped notch stress 

Using linear elastic continuum mechanics, an Airy stress function : in polar 
coordinates has been introduced (Williams, 1952) to obtain the (singular) stress 
distribution at a V-shaped notch with notch radius � = 0, i.e. the zone 1 peak 
stress and zone 2 stress gradient contribution (Fig. 2.1) for a fillet weld- or groove 
weld geometry (Fig. 2.7): 
 

 
: = (;+1 ⋅[71 cos{(B + 1)D} + 72 cos{(B − 1)D} +

 73 sin{(B + 1)D} + 74 sin{(B − 1)D}]  (2.1) 

 
Equilibrium (body forces are assumed to be zero) and compatibility requirements   
– deformations without any gaps or overlaps – are identically satisfied, i.e. the bi-
harmonic equation ∇4: = ∇2(∇2:) = 0 with 
 

 ∇2: = J2:J(2 + 1( J:J( + 1(2
J2:JD2  (2.2) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               Figure 2.7: a) V-shaped notch locations and b) parameters. 
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Airy stress function : (Eq. 2.1) consists of two symmetric cos(⋅)- and two anti-
symmetric sin(⋅) terms. By definition, the {radial, tangential, shear} stress 
components yield: 
 

 

��� = 1( J:J( + 1(2
J2:JD2

�LL = J2:J(2

��L = − JJ( (1( J:JD)
 (2.3) 

 
The boundary conditions to be applied at the traction free surfaces: 
 

 
�LL|L=O  = 0                      ��L|L=O  = 0
�LL|L=−O = 0                      ��L|L=−O = 0   (2.4) 

 
Substitution of : (Eq. 2.1) into the stress components (Eq. 2.3) subjected to the 
boundary conditions (Eq. 2.4) yield four equations. After adding and subtracting 
the two equations for each surface, two independent systems of equations – two 
eigenvalue problems – can be obtained for {71, 72} and {73, 74}; the amplitudes  
of respectively the symmetric and anti-symmetric terms:  
 

 [(B + 1) sin{(B + 1)�}  
(B + 1) cos{(B + 1)�}

(B − 1) sin{(B − 1)�}
(B + 1) cos{(B − 1)�}]{7172

} = {0
0} (2.5) 

 

 [(B + 1) cos{(B + 1)�}
(B + 1) sin{(B + 1)�}  

(B − 1) cos{(B − 1)�}
(B + 1) sin{(B − 1)�}]{7374

} = {0
0} (2.6) 

 
Non-trivial system (Eq. 2.5 and 2.6) solutions can be found solving respectively: 
 

 B sin(2�) + sin(B2�) = 0 (2.7) 
 

                                           ∀   (B > 0, B ≠ 1)  
 

 B sin(2�) − sin(B2�) = 0 (2.8) 
 

System (Eq. 2.7 and 2.8) solutions should satisfy B > 0 because of the energy 
criterion: the strain energy must be finite (Barber, 2002). The eigenvalue B = 1 is an 
unfeasible one since a null-form is obtained for the last : term (Eq. 2.1): 74 sin(0), 
meaning the Airy stress function should be modified. In a graphical presentation 
(Fig. 2.8), the solutions – the intersections between the sin(⋅) term and the linear 
terms – are shown for a few notch angles 2�. The intersections with the continuous 

⎭}}
⎬}
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lines (positive slope) correspond to the eigenvalues for the symmetric part; the 
intersections with the dashed lines (negative slope) to the eigenvalues for the non-
symmetric part. For 2� = 1.17� [rad] and 2� = 1.25� [rad], the symmetric part 
contains only one eigenvalue. For the anti-symmetric part principally two 
eigenvalues can be found, however, the first one is unfeasible: B = 1. The slope of 
the dashed line decreases for increasing notch angle up to 2� ≈ 1.43� [rad]; a   
limit case without feasible eigenvalue solution, in terms of a fillet weld geometry 
corresponding to a flank angle arctan(ℎ�/��) ≈ 77.4 [deg]. Continuing the 2� 
increase, the slope of the dashed line will increase and feasible B values are 
obtained again. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                        Figure 2.8: System (Eq. 2.7 and 2.8) solutions. 
 

For all weld toe notch angles, at least one valid eigenvalue for the symmetric 
(mode-I) and anti-symmetric (mode-II) part, B/ and B�, exists. In case of multiple 
values, only the first (feasible) one for each part will be considered (Fig. 2.9); (0.5 ≤ B/,1 < 1) and (0.5 ≤ B�,1 < 2) for (� ≤ 2� ≤ 2�). Starting in half-plane 
configuration, 2� = �, no (feasible) eigenvalue solutions exist: no notch, no 
singularity. Increasing 2�, a V-shaped notch develops and {B/,1, B�,1} decrease 
monotonically up to B/,1 = B�,1 for 2� = 2� [rad]. 
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Rewriting the 2nd equation of both systems (Eq. 2.5 and 2.6) in terms of {72, 74} and substitution in : (Eq. 2.1), the stress components (Eq. 2.3) for a 
particular stress angle D = K become: 
 

 

��� ( (��) = −�/ {( (��)
;g−1 h/B/[(B/ + 1) cos{(B/ + 1)K} −

                                       i/(B/ − 3) cos{(B/ − 1)K}] +
 

 

                        ( (��)
;j−1 h�B�[(B� + 1) sin{(B� + 1)K} −

                             i�(B� − 3)sin{(B� − 1)K}]}    

(2.9) 
 
 
 
 
 

 
 
 

 
 

 

�LL ( (��) = �/ {( (��)
;g−1 h/B/(B/ + 1)[cos{(B/ + 1)K} −

                                                 i/ cos{(B/ − 1)K}] +
 

 

                       ( (��)
;j−1 h�B�(B� + 1)[sin{(B� + 1)K} −

                                            i� sin{(B� − 1)K}]}    

(2.10) 
 
 
 
 
 

 
 
 

 
 

 

��L ( (��) = �/ {( (��)
;g−1 h/B/[(B/ + 1) sin{(B/ + 1)K} −

                                       i/(B/ − 1) sin{(B/ − 1)K}] −
 

 

                   ( (��)
;j−1 h�B�[(B� + 1) cos{(B� + 1)K} −

                                 i�(B� − 1) cos{(B� − 1)K}]}    

(2.11) 
 
 
 
 
 

 
 
 

 
with the eigenvalue coefficients  
 

 i/ = cos{(B/ + 1)�}cos{(B/ − 1)�} ,                 i� = sin{(B� + 1)�}sin{(B� − 1)�}  

 
 
 



Chapter 2. Weld Notch Stress Distributions  23 

 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.00 

0.25 

0.50 

0.75 

1.00 

1.25 

1.50 

1.75 

2.00 

2,/: [ - ]

6
s

,
6
a

[
-

]

 

 

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0.00 

0.25 

0.50 

0.75 

1.00 

1.25 

1.50 

1.75 

2.00 

2,/: [ - ]

6
s

,
6
a

[
-

]

6s

6a

The amplitudes h/ = (71��;g−1/�/) and h� = (73��;j−1/�/) replaced respectively 71 and 73 to achieve a far field parameter dependent (Paragraph 2.5) – i.e. 
structural stress �/ related – formulation including dimensionless coordinates (( → (/��). The plate thickness �� = �
 for a base plate notch and �� = �$ for a 
{connecting, cross, cover} plate related one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                    Figure 2.9: Eigenvalue solutions {B/ = B/,1, B� = B�,1}.  
 

For 2α = 2π [rad], the crack configuration as typically encountered at weld root 
notches, the (asymptotic) solutions of both eigenvalue problems are similar: 
 

 B/,m = B�,m = Bm = (o2) ,   o =  1,3,5,7,9,… (2.12) 

 
Substituting the 1st equation of system (Eq. 2.5) and the 2nd one of system (Eq. 2.6) 
in terms of {72, 74} into (Eq. 2.1), the stress components (Eq. 2.3) denote: 

 

 

��� ( (′��′) = −�/� ∑{( (′��′)
;s−1 Bm(h1m[(Bm + 1) cos{(Bm + 1)K} −�

m=1
                                                  im(Bm − 3) cos{(Bm − 1)K}] +

 
                                                 h3m[(Bm + 1) sin{(Bm + 1)K} −
                                                  (Bm − 3)sin{(Bm − 1)K}])} 

(2.13) 
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�LL ( (′��′) =    �/� ∑{( (′��′)
;s−1 Bm(Bm + 1)(h1m[cos{(Bm + 1)K} −�

m=1
                                                              im cos{(Bm − 1)K}] +

 
                                                           h3m[sin{(Bm + 1)K}  −
                                                            sin{(Bm − 1)K}])}  

(2.14) 
 
 
 
 
 
 

 

 

 

��L ( (′��′) =    �/� ∑{( (′��′)
;s−1 Bm(h1m[(Bm + 1) sin{(Bm + 1)K} −�

m=1
                                                      im(Bm − 1) sin{(Bm − 1)K}] −

 
                                                h3m[(Bm + 1) cos{(Bm + 1)K} −
                                             (Bm − 1)cos{(Bm − 1)K}])} 

(2.15) 
 
 
 
 
 
 

 

 
with the eigenvalue coefficients 
 

 i1,m = im = (Bm + 1)(Bm − 1) ,   i3,m = 1  

 
To distinguish the weld toe and weld root notch coordinate system, ( → (′; the 
artificial plate thickness ��′ substitutes ��. Amplitudes {h1m = (71,m��;s−1/�/�),  h3m = (73,m��;s−1/�/�)} replaced {71, 73}. Note that only the first stress terms 
show (square root) singular behaviour. 
 

2.4 Weld load carrying stress 

The weld geometry causes a local change in stiffness; a shift in neutral axis (Fig. 2.10), 
meaning the weld becomes load carrying up to some extent. In case the structural 
discontinuity shows linear behaviour, the response is a bending moment. The 
corresponding bending stress formulation �
�((/��) depends on type of joint, notch 
location and symmetry with respect to half the plate thickness, either (��/2) =(�
/2) or (��/2) = (�$/2). Considering a weld toe notch as typically encountered in 
a PP DS T-joint at the base plate �
 without symmetry (Fig. 2.10a), a counter-
clockwise bending moment is introduced for - pointing to the right and clockwise .
 and the weld load carrying (bending) stress distribution – a loading mode-I 
component contributing in particular to the zone 2 stress gradient (Fig. 2.1) – yields: 
 

 �
� ( (��) = �/7
� {2( (��) − 1} ∀ {0 ≤ ( (��) ≤ 1} (2.16) 
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The structural stress �/ is a far field parameter. Approximate 7
� values can be 
obtained using beam finite element (FE) models. If geometric symmetry with 
respect to (��/2) is detected, like for a PP DS butt joint (Fig 2.10b), �
� is defined 
for half the plate thickness only: 
 

 �
� ( (��) = �/7
� {4( (��) − 1} ∀ {0 ≤ ( (��) ≤ (12)} (2.17) 

 
 
 
 
 

 

 
 

                Figure 2.10: Weld geometry induced shift of neutral axis. 
 

Weld toe notches may demonstrate non-linear structural behaviour in case the weld 
dimensions are relatively small and the root notch size �� large, like for 
(discontinuous) cross plates related ones of PP T-joints and PP cruciform joints 
meaning the contribution of another (non-linear) weld load carrying component is 
required. Its formulation is based on engineering judgement and related to 7
� as 
well. For non-symmetry: 
 

 �
� ( (��) = �/7
� [{2( (��) − 1} + 12({( (��) − 12}
2 − 112)] (2.18) 

 
and symmetry: 
 

 �
� ( (��) = �/7
� [{4( (��) − 1} + 6({( (��) − 12}
2 − 112)]  (2.19) 

 
The 1st and 2nd order polynomial terms are force self-equilibrating. Note that the 
considered linear and non-linear weld load carrying behaviour is in agreement with 
the structural hot spot stress concept related (non-)linear surface extrapolation 
procedures. The formulations (Eq. 2.16 to 2.19) principally hold for weld root 
notches, replacing the structural stress �/ and plate thickness �� with the root 
equivalents �/� and ��′. However, �
� is naturally included using the non-singular 
terms of Williams’ asymptotic solution for the crack configuration (Eq. 2.13 to 2.15). 
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               a) PP DS T-joint           b) PP DS butt joint 
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2.5 Structural field stress 

The linearised structural field stress distribution in the cross-section at a weld toe 
(Fig. 2.11), in compliance with the fracture mechanics defined far field stress 
(Niemi, 1995; Dong, 2001), is characterised using the structural stress �/ and 
structural bending stress ratio (/: 
 

 �� ( (��) = �/ {1 − 2(/ ( (��)} ∀ {0 ≤ ( (��) ≤ 1} (2.20) 

 
Loading mode-I is assumed to be dominant, since the hull structure is a stiffened 
(curved) panel assembly with orthotropic stiffness properties consisting of (thin) 
plates and shells with �� as governing parameter, i.e. the remote mechanical or far 
field loading predominantly consists of a membrane and bending stress component {�, �
} normal to the weld seam. The structural stress �/ can be obtained using 
the line forces - (either -w or -x), .
 (.�) and plate thickness �� (�
 or �$): 
 

 �/ = � + �
 (2.21) 
 
with 
 

 � = -�� ,  �
 = 6 ⋅ .
��2  

 
  
 
 
 
 
 
 
 

 
 
 

Figure 2.11: Far field load case dependent structural field (root) stress distributions. 
 
The line forces – .
 is clockwise positive – are computed using shell FE model 
calculated nodal forces and corresponding element sizes. Note the y-axis is defined 
along the weld seam. The structural bending stress ratio (−∞ < (/ ≤ 1) represents 
the relative contribution of �
 to �/, i.e. the zone 3 far field stress gradient: 

a) PP DS T-joint b) PP DS butt joint 
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 (/ = �
�/ (2.22) 

 
Rewriting {�, �
} in terms of �/ (Eq. 2.21) and (/ (Eq. 2.22) yield: 
 

 
� = �/(1 − (/)   �
 = (/�/ 

(2.23) 

 
The structural field root stress distribution ���((′/��′), either along weld leg or 
weld throat, is far field stress dependent (Fig. 2.11). Its formulation is similar to ��  
(Eq. 2.20) replacing {�/, (/} with the root equivalents {�/�, (/�}. The corresponding 
membrane and bending stress components {��, �
�} are obtained first applying 
equilibrium conditions to the cross-sectional nodal (line) forces: coarse (9 node 
Lagrange element) meshed parametric solid plane strain FE model solutions. 
 

2.6 Weld toe notch stress distribution 

The remote mechanical loading controlled mode-I based linear elastic through-
thickness notch stress distribution at the weld toe (Fig. 2.12) – along the expected 
(2D) crack path – is assumed to be a linear superposition of an equilibrium 
equivalent stress part (the linear structural field stress, equal to the welded joint 
global far field stress; Paragraph 2.5) governing in zone 3 and a self-equilibrating 
stress part (the weld geometry stress consisting of the local non-linear notch stress- 
and weld load carrying stress components; Paragraph 2.3 and 2.4) dominating zone 
{1, 2}. It is a refinement of a well-known definition (Niemi, 1995; den Besten and 
Huijsmans, 2010). 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             Figure 2.12: Weld toe notch stress distributions at location 1. 
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The expected crack path is in agreement with experimental observations, as shown 
for a FP DS T-joint (� > 0; Fig. 2.13b) obtained using digital image correlation 
based crack growth measurements (Chapter 4) and turns out to be similar to a 
predicted one (Fig. 2.13a) captured using FRANC2D crack growth modelling 
software (Cornell Fracture Group, 2010). Note that for simulations only the cyclic 
remote mechanical loading has been taken into account; experiments include the 
welding process induced quasi-constant residual stress contribution as well. 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

               Figure 2.13: FP DS T-joint weld toe crack path similarity. 
 
Given the notch location, (geometric) non-symmetry and symmetry with respect to (��/2) can be distinguished. To involve the weld type classification criteria, both 
the fillet weld- (PP DS and SS T-joint, DS cover plate, PP DS cruciform joint) and 
groove weld geometry (PP DS butt joint) will be used for illustration purposes. 
 

2.6.1 Non-symmetry 

The weld notch stress distribution for the non-symmetry case has been obtained 
employing the weld flank angle induced tangential notch stress component �LL (Eq. 
2.10), the weld load carrying stress �
� (Eq. 2.16 – shown – or 2.18) and structural 
field stress formulation ��  (Eq. 2.20): 

a) FRANC2D simulation b) experimental observation, 
    (/ = 0 
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�� ( (��) = �/ [( (��)
;g−1 h/B/(B/ + 1)[cos{(B/ + 1)K}  −

                                                i/ cos{(B/ − 1)K}] +
 

 

                     ( (��)
;j−1 h�B�(B� + 1)[sin{(B� + 1)K} −

                                               i� sin{(B� − 1)K}] +   
 

 

                     7
� {2( (��) − 1} − 2(/ ( (��)] 

(2.24) 
 
 
 
 
 
 
 
 
 
 

 
Although principally the V-shaped normal notch stress component in Cartesian 
coordinates is required, a transformation does not affect the formulation: �ww = ���cos2(K) + �LLsin2(K) − ��Lsin(K)cos(K) = h/′((/��);g−1 + h�′((/��);j−1 
and �LL has been used. The symmetric as well as anti-symmetric �LL terms are 
incorporated, i.e. both loading mode-{I, II} are involved since the local stress state 
is multi-axial by definition. The (unit) weld geometry stress, the self-equilibrating 
stress part + 1, is scaled and projected – using �/ and (/ – onto the structural field 
stress. For (/ > 0 the weld notch stress distribution will be monotonic; in case (/ ≤ 0 non-monotonic. The amplitudes {h/, h�} will be determined using force and 
moment equilibrium (boundary) conditions in a weak form (Eq. 2.25), meaning �� 
(Eq. 2.24) is the same for both plane {stress, strain} structural response conditions, 
since all boundary conditions are expressed in terms of tractions (i.e. free surface 
and far field stress) rather than displacements. If the compatibility equation is 
expressed in terms of the stress function :, the Young’s modulus } and Poisson 
ratio ~ appear in every term, meaning the stress field for the considered simply 
connected elastic body is independent of material properties (Barber, 2002). 
 

 

∫ {�� ( (��)}d ( (��)
1

0
       = ∫ �/ {1 − 2(/ ( (��)}d ( (��)

1
0

∫ {�� ( (��)}( (��)d ( (��)
1

0
= ∫ �/ {1 − 2(/ ( (��)}( (��)d ( (��)

1
0

 (2.25) 

 
Executing the integral operators yield: 
 

 [711 712721 722
]{h/h�} = {�1�2} (2.26) 

 
with 
 
 



30 Chapter 2. Weld Notch Stress Distributions 

 

 

711 = (B/ + 1)[cos{(B/ + 1)K} − i/cos{(B/ − 1)K}]
712 = (B� + 1)[sin{(B� + 1)K} − i�sin{(B� − 1)K}]
721 = B/[cos{(B/ + 1)K} − i/cos{(B/ − 1)K}]
722 = B�[sin{(B� + 1)K} − i�sin{(B� − 1)K}]
�1  = 1
�2  = (12 − 7
�6 )

  

 
Solving the system (Eq. 2.26) denote: 
 

 

h/ =   7
�(B� + 1) + 3(B� − 1)6(B� − B/)[cos{(B/ + 1)K} − i/cos{(B/ − 1)K}]
h� = − 7
�(B/ + 1) + 3(B/ − 1)6(B� − B/)[sin{(B� + 1)K} − i�sin{(B� − 1)K}]

 (2.27) 

 
Note that �� (Eq. 2.24) becomes K independent. The weld load carrying (bending) 
stress �/7
� is assumed to be a linear superposition of a structural field membrane 
and bending stress induced component: 
 

 
�/7
� = �7
 + �
7


          = �/{7
 − (/(7
 − 7

)} 

(2.28) 
 

 

 
with 
 

 7
 = .
 ( 6��2)
�/(1 − (/) ,      7

 = .

 ( 6��2)

�/(/   

 
The bending moments {.
,.

} are the calculated FE beam model nodal forces 
at the weld toe cross-section as shown for a PP DS T-joint (Fig. 2.14). Note that 
only weld toe notch locations 1 and 2 show non-symmetry with respect to (��/2). The 
cross plate element thickness in between the welds is reduced to �$ − 2��. For 
relatively small weld dimensions, rigid connections (dashed lines) are introduced. 
The notch angle � and stress angle K in terms of the fillet weld leg length �� and 
weld leg height ℎ� denote respectively: 
 

 � = 12{� + arctan (ℎ��� )} (2.29) 

 

 K = � − �2 (2.30) 
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The weld element thickness �� equals the throat size: 
 

 �� = ��sin(� + 2�) (2.31) 
 
 
 
 
 
 
 
 
 
 

    Figure 2.14: a) PP DS T-joint parameters, b)  notch loc. 1 FE beam model. 
 

Monotonic through-thickness weld toe notch stress distributions at location 1 are 
shown (Fig. 2.15 and 2.16) for a pure bending ((/ = 1) and combined load case ((/ = 1/3); the bending moment is applied clockwise. Non-monotonic ones are 
shown for a pure membrane ((/ = 0) and (different) combined load case ((/ = −1) 
with counter-clockwise bending moment (Fig. 2.17 and 2.18). The joint dimensions 
are arbitrary but realistic for aluminium high-speed craft. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.15: PP DS T-joint weld notch stress distr. (loc. 1), (/ = 1. 
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Figure 2.16: PP DS T-joint weld toe notch stress distr. (loc. 1), (/ = (1/3). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       Figure 2.17: PP DS T-joint weld toe notch stress distr. (loc. 1), (/ = 0. 
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      Figure 2.18: PP DS T-joint weld toe notch stress distr. (loc. 1), (/ = −1. 

 

Comparing the weld toe notch stress- and far field stress distribution indicates that 
equilibrium is satisfied indeed. Converged solid FE solutions at node locations 
(Gauss point extrapolations) – rather good �� estimates – are displayed for 
convenience using dots to represent its discrete nature rather than mesh size; data 
points in between are disregarded in favour of a clear plot. 
Generally speaking, the weld geometry contribution – the self-equilibrating stress 

part, assumed to be important for crack initiation at the considered notch location – 
decreases for ((/�
) → 0.1 in case the weld load carrying level is low, explaining 
why a bi-linear approximation ��
 has been introduced (Dong, Hong and Cao, 
2003); an important element of the Battelle structural stress (BSS) concept. The 
transition depth (� for through-thickness stress distributions and non-symmetry 
with respect to (��/2) is defined at 10 [%] of the plate thickness, i.e. 0.1�� relative 
to the notch; a scaling criterion distinguishing a notch- and far field dominated 
stress part. Note that it seems to be a better approximation for a monotonic notch 
stress distribution than for a non-monotonic one. The bi-linear formulation is 
obtained using solid FE model solutions (either nodal forces or stresses), equilibrium 
conditions and a traction continuity requirement. The stress at the weld toe         
is finite, even for � = 0; the singular case. It should be emphasised that, rather 
than estimating the (structural) hot spot stress, i.e. the stress at the weld toe ((/�
 = 0) without weld geometry effects; quite often subject to an incorrect 
interpretation (Poutiainen, Tanskanen and Marquis, 2004a; Radaj, Sonsino and 
Fricke, 2006), the bi-linear formulation is meant to obtain the fracture mechanics 
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related notch stress intensity. For the same reason, the weld toe notch stress 
distribution �� (Eq. 2.24) with the characteristic singularity for (� = 0) is 
formulated, however, without solid FE modelling, transition depth assumption and 
compromised zone 2 stress gradient. 
To get an idea about the weld load carrying (bending) stress contribution, ��((/��) is shown (Fig. 2.19 and 2.20) with and without 7
� term for respectively 

a monotonic ((/ = 1) and non-monotonic case ((/ = 0). Like for all continuous 
(base) plate related weld notch stress distributions at location 1, the notch angle 
component �LL((/�
) dominates the self-equilibrating stress part: 
 

 �/� = �� ( (��) − �� ( (��) (2.32) 

 
The �
� component is quite small and will increase slightly for increasing weld 
dimensions {��, ℎ�}; �� sensitivity is negligible. Although small, neglecting this 
term is considered to be no option at the moment as it eliminates a welded joint 
and notch specific stress component. 
The far field bending induced 7
� contribution turns out to be larger in 

comparison to the far field membrane case as expected, since the weld is more 
effective in the neutral axis shift induced stress redistribution. For decreasing notch 
affected zone size, 7
� sensitivity will increase even if the weld load carrying stress �
� is relative small. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.19:  PP DS T-joint loc. 1 7
� contribution to ��((/�
), (/ = 1.          
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Figure 2.20:  PP DS T-joint loc. 1 7
� contribution to ��((/�
), (/ = 0.d 
 

For a discontinuous (cross) plate related weld toe notch like location 2 of a PP SS 
T-joint (Fig. 2.21) in loading mode-I, the weld load carrying force increases and the 
stress distribution will be inaccurate if only the 1st order �
� component is included. 
Adding the 2nd order term (Eq. 2.18) to the weld notch stress formulation (Eq. 
2.24) does not affect the system (Eq. 2.26) and {h/, h�} remain unchanged. 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.21:  a) PP SS T-joint parameters, b)  notch loc. 2 FE beam model. 

 
The FE beam model nodal forces ({.
,.

}; Fig. 2.21) have been used to 
approximate both the 1st and 2nd order term. For decreasing weld dimensions, rigid 
connections will be introduced, like for the DS T-joint (Fig. 2.14) with decreasing {��, ℎ�}. The cross plate element thickness at the weld is equal to (�$ − ��). 
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However, even if a weld is significantly load carrying, it does not necessarily 
mean that the notch affected zone size increases. If 7
� becomes negative, i.e. 
counteracts the far field stress like for location 2 of the PP- SS T-joint (Fig. 2.22), 
the notch affected zone size may significantly reduce and the stress state even turn 
into a compressive one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.22:  PP SS T-joint weld toe notch stress distr. (loc. 2), (/ = 0. 

 
In comparison to the FE solution, the 2nd order �
� term improves the notch stress 
distribution (Fig. 2.22), especially the stress gradient. At the same time however, ��((/��) is running up against the model limits in this particular case, i.e. the 
number of contributing stress components is restricted and boundary conditions are 
satisfied using a weak formulation. The bi-linear approximation already has passed 
the limits. Non-monotonic distributions ��((/��) require particular attention in 
that respect. 
 

2.6.2 Symmetry 

Weld toe notches appear at both sides of a plate if stress distribution symmetry 
with respect to (��/2) is detected, as shown for a PP DS butt joint (Fig. 2.23). The 
weld geometry related self-equilibrating stress part components {�LL, �
�},  
assumed to be important for crack initiation at the considered notch location only, 
will be ignored for the symmetry part. For a pure far field membrane load case, (�/ = �) and (7
� = 7
), the notch stress formulation with 1st order weld load 
carrying stress (Eq. 2.17) becomes: 
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�� ( (��) = �/ ⋅ - ( (��) 
 

           = �/ ⋅ [( (��)
;g−1 h/B/(B/ + 1)[cos{(B/ + 1)K}  −

                                                   i/ cos{(B/ − 1)K}] + 

                          ( (��)
;j−1 h�B�(B� + 1)[sin{(B� + 1)K}  −

                                                    i� sin{(B� − 1)K}] +   
 

 

                        7
� {4( (��) − 1}]∀ {0 ≤ ( (��) ≤ 1} 

(2.33) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
It is assumed that no �
� correction is required for {1/2 < ((/��) ≤ 1} since the far 
field stress component dominates this region. 
 
 
 
 
 
 
 
 
 

Figure 2.23:  a) PP DS butt joint parameters, b)  notch loc. 1 FE beam model. 
 
To calculate {h/, h�}, half the plate thickness is considered. Using force and 
moment equilibrium only is not sufficient and a symmetry condition is added as 3rd 
equation: 
 

 

∫ {�� ( (��)}d ( (��)
12

0
    = ∫ �/ d ( (��)

12
0

∫ {�� ( (��)}( (��)d ( (��)
12

0
= ∫ �/ ⋅ ( (��)d ( (��)

12
0

d�� ( (��)
d ( (��) ∣∣∣

∣  

( (��) = (12)       =  0
 (2.34) 
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Executing the integral operators yield: 
 

 

⎣⎢
⎡711 712721 722731 732⎦

⎥⎤ {h/h�} =
⎩{⎨
{⎧�1�2�3⎭}⎬

}⎫ (2.35) 

 
with 
 

 

711 = (12)
;g (B/ + 1)[cos{(B/ + 1)K} − i/cos{(B/ − 1)K}]

712 = (12)
;j (B� + 1)[sin{(B� + 1)K} − i�sin{(B� − 1)K}]

721 = (12)
;g+1 B/[cos{(B/ + 1)K} − i/cos{(B/ − 1)K}]

722 = (12)
;j+1 B�[sin{(B� + 1)K} − i�sin{(B� − 1)K}]

731 = (12)
;g−2 B/(B/ + 1)(B/ − 1) ⋅

         [cos{(B/ + 1)K} − i/cos{(B/ − 1)K}]
732 = (12)

;j−2 B�(B� + 1)(B� − 1) ⋅
         [sin{(B� + 1)K} − i�sin{(B� − 1)K}]

�1  = 12
�2  = 18 − 7
�24
�3  = −47
�

  

 
For the (over determined) system (Eq. 2.35) a least squares solution can be 
obtained. However, it has been found that allowing some relaxation, ignoring 
moment equilibrium, already show quite accurate results. Solving the reduced 
system provides: 
 

 

h/ =   (12) B�(B� − 1) + 7
�7/[cos{(B/ + 1)K} − i/cos{(B/ − 1)K}]
h� = − (12) B/(B/ − 1) + 7
�7�[sin{(B� + 1)K} − i�sin{(B� − 1)K}]

 (2.36) 
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with 
 

  7/ = (12)
;g (B/ + 1){B�(B� − 1) − B/(B/ − 1)}

7� = (12)
;j (B� + 1){B�(B� − 1) − B/(B/ − 1)}

  

 
To acquire the pure bending notch stress distribution ��
((/��|�/ = �
, 7
� = 7

) 
in a similar formulation as for non-symmetry (Eq. 2.24), i.e. including a far field 
bending stress projection, ��((/��) needs to be shifted first by {1 − -((/�� = 1/2)} 
in order to meet the condition ��
((/�� = 1/2) = 0. To satisfy anti-symmetry, the ��
 gradient at ((/�� = 1/2) should be equal to the far field bending value -2. 
Subtracting the shift in terms of a bending stress gradient −2{1 − -((/�� = 1/2)} 
from the unit stress 1, the obtained formulation needs to be scaled according to {2-((/�� = 1/2) − 1} and becomes: 
 

 

��
 ( (��) = �/ {2- ( (�� = 12) − 1} ⋅
              [- ( (��) + {1 − - ( (�� = 12)} − 2( (��)]

 
(2.37) 

 
 
 

 
with 
 

 - ( (�� = 12) = (B� − B/)(B/B� − 27
�)B�(B� − 1) − B/(B/ − 1) + 7
� (2.38) 

 
Finally, adopting a linear superposition principle, the mode-I through-thickness 
weld toe notch stress distribution for symmetry in terms of {�/, (/} can be obtained 
using the membrane- and bending formulation (Eq. 2.33 and 2.37) and structural 
stress relations (Eq. 2.23): 
 

 

�� ( (��) = �/ ([1 − 2(/ {1 − - ( (�� = 12)}]- ( (��) +
               (/ {2- ( (�� = 12) − 1}[{1 − - ( (�� = 12)} − 2( (��)])

 
(2.39) 

 
 
 

 
The PP DS butt joint groove weld (Fig 2.23a) is assumed to be arc-shaped and the 
notch angle � in terms of weld length �� and weld height ℎ� denotes: 
 

 � = (12){� + arctan ( 4��ℎ���2 − 4ℎ�2)} (2.40) 
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Stress angle K depends on � only (Eq. 2.30). The weld geometry and structural 
field stress affected weld load carrying stress coefficient 7
� (Eq. 2.28; �� = ��/2)   
is approximated using an FE beam model (Fig. 2.23b). Although the weld is of the 
PP type, the base- and connecting plate element in between the weld reinforcements 
are joined; thickness is reduced to (�
 − 2��). The weld elements – thickness equal 
to ℎ� – are connected to the base plate at the weld toe using rigid connections 
(dashed lines); the elements in extension of the notch – thickness equal to �� – 
ensure sufficient stiffness in |-direction. 
Monotonic through-thickness weld toe notch stress distributions �� at location 1 

for the far field load cases {(/ = 1, (/ = 1/3} are shown (Fig. 2.24 and 2.25) as well 
as non-monotonic ones (Fig. 2.26 and 2.27); {(/ = 0, (/ = −1}. Observation of the 
weld toe notch stress- and far field stress distributions show that for {0 ≤ ((/�
) ≤(1/2)} equilibrium conditions are (approximately) satisfied as imposed. The root 
notch size �� is relative small and using the linear �
� component only is sufficient. 
For the symmetry part {(1/2) ≤ ((/�
) ≤ 1}, the (anti-)symmetry condition ensures 
a stress gradient close to (/; the self-equilibrating stress part definition is lost here. 
The former, however, is more important from notch stress intensity point of view.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2.24: PP DS butt joint weld toe notch stress distr. (loc. 1), (/ = 1. 
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Figure 2.25: PP DS butt joint weld toe notch stress distr. (loc. 1), (/ = (1/3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.26: PP DS butt joint weld toe notch stress distr. (loc. 1), (/ = 0. 
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Figure 2.27: PP DS butt joint weld toe notch stress distr. (loc. 1), (/ = −1. 
 

The {�/, (/} structural field stress distribution (Dong, 2001) as applied in the BSS 
concept is defined for {0 ≤ ((/�
) ≤ (1/2)} considering notch location 1 and has 
some serious modelling consequences. First of all, {�/, (/} does not comply anymore 
with the far field stress as defined in the fracture mechanics context. For the ((/ = 1) case, a reasonable {�/, (/} approximation can be obtained using a 
shell/plate FE model (Dong, 2004) as shown (Fig. 2.24), but generally speaking 
solid elements have to be used. Accordingly, the bi-linear approximation is defined 
for {0 ≤ ((/�
) ≤ (1/2)}. The transition depth, distinguishing a notch and far field 
stress dominated region, is defined at 10 [%] of the ‘considered’ plate thickness. For 
symmetry cases, it is equal to (��/2), meaning a transition depth at 0.1(��/2). The 
notch stress intensity that is aimed for might be rather insensitive to transition 
depth as long as the appropriate zone 3 far field stress gradient (/ is captured 
(Dong, Hong and Cao, 2003), but in comparison to the non-symmetry case at least 
a double standard is introduced concerning zone 2 (Fig. 2.28). Even more 
important: the plate thickness as scaling parameter has been used inconsistently. 
Comparing the self-equilibrating stress part for a DS T-joint and its symmetry 
equivalent (the DS cruciform joint), the stress gradient turns out to be more 
pronounced in the notch dominated region (zone 2) for the non-symmetry case. The 
bi-linear approximation shows in fact the opposite behaviour. 
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Figure 2.28:  Self-equilibrating stress part comparison regarding symmetry using 
       a PP DS T-joint and PP DS cruciform joint (loc. 1), (/ = 0. 

 
Using the structural hot spot stress concept, weld geometry effects are – by 
definition – not considered explicitly. However, to take the load carrying effects 
(implicitly) into account for fillet welds, FAT classes are defined for the non-load 
carrying and full load carrying case, i.e. the extremes. An additional stress 
concentration factor (SCF) �/� has been introduced (Poutiainen and Marquis, 
2004b; 2006) to deal with partial load carrying fillet welds as well. 
In case of symmetry with respect to (��/2), a modified weld size dependent 

multi-linear through-thickness structural (field) stress distribution has been 
proposed, meant to obtain the additional weld load carrying induced structural 
stress at the hot spot; the weld toe. The average normal stress component in the 
weld throat cross-section as shown for a DS cover plate (Fig. 2.29a), obtained using 
relatively coarse meshed solid FE models, is considered to be a criterion for the level 
of weld load carrying effectiveness and translated to a bending stress contribution 
in terms of �/� in the cross-section at the weld toe (Fig 2.30). The weld load 
carrying affected zone is related to the weld length �� rather than the adopted 
symmetry condition (Eq. 2.17), i.e. the structural field stress transitions are defined 
at (��/��) and {1 − (��/��)} if {�� < (��/2)}; a tri-linear formulation that turns 
into a bi-linear one for {�� ≥ (��/2)} with the transition at (��/2). Far field force 
equilibrium is maintained, meaning the plate thickness is involved as well and it is 
claimed that �/� includes size effects since the stress gradient is involved. 
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Figure 2.29: a) DS cover plate parameters, b)  notch loc. 1 FE beam model 
 

Depending on the far field load case, either one or both FE beam model cover plate 
centre nodes (Fig. 2.29b) are constrained in |-direction to prevent for bending 
induced deformation across the base plate. 
For the considered example (Fig. 2.30), �/� ≈ 1.34 [-]; not really close to (1 + 7
�) ≈ 1.11 [-]. In terms of weld load carrying stress the former predicts a 

value more than twice as large. Even if the base plate is discontinuous (Fig. 2.31), the 
difference persists: �/� ≈ 1.74 [-] and (1 + 7
�) ≈ 1.30 [-]. Though, the normal weld 
stress is weld load carrying stress �
� as well as notch stress �LL induced; after all, 
both are �/� components representing the weld geometry effect. The notch stress, 
however, is not supposed to be part of the structural hot spot stress in the first place. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.30: DS cover plate – continuous base plate – (loc. 1) weld toe  
                 notch stress distribution; (1 + 7
�) ≈ 1.11, (/ = 0.        d 
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Figure 2.31:  DS cover plate – discontinuous base plate – (loc. 1) weld toe  

                      notch stress distribution; (1 + 7
�) ≈ 1.30, (/ = 0.         d 
 

The transition depth dividing the notch affected zone and the far field dominated 
region is principally �/� defined, i.e. includes a �LL and �
� contribution. If 
artificially imposed in case of bi- or tri-linearisation assuming only weld size 
dependency (Poutiainen et al., 2006), turns out to be a limited measure. Adopting 
a plate thickness dependent criterion (Dong, Hong and Cao, 2003), i.e. {0.1��, 0.1(��/2)} for respectively non-symmetry and symmetry w.r.t. (��/2), seems 
restricted to (�
� → 0) cases. 
The weld load carrying stress for the DS cover plate in discontinuous base plate 

configuration (Fig. 2.31) is quite substantial: its magnitude is approximately 30 [%] 
of the far field stress. Using the linear �
� term only is considered to be sufficient, 
although the model limit is coming closer. Generally speaking, the extremes are 
obtained for a cross plate related weld toe notch of a PP DS cruciform joint (Fig. 
2.32). The cross plate finite element thickness in between the welds is reduced to (�$ − 2��). Adding a nonlinear term (Fig. 2.33), �/� ≈ 1.83 [-] and (1 + 7
�) ≈ 1.40 

[-] using the DS cover plate dimensions. 
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Figure 2.32: a) PP DS cruciform joint parameters, b)  notch loc. 5 FE beam model 
 

For the same joint in FP configuration (�� = 0), another extreme can be found: �/� ≈ 1.16 [-] and (1 + 7
�) ≈ 1.01 [-]. In terms of weld load carrying stress         
– using the linear term only is sufficient – the difference is about one order of 
magnitude and the normal weld stress is predominantly �LL rather than �
� 
determined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.33: PP DS cruciform joint (loc. 5) weld toe notch stress  
                            distribution; (1 + 7
�) ≈ 1.40, (/ = 0.  
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Adding the 2nd order term (Eq. 2.19) to the weld notch stress formulation (Eq. 2.33), 
the force element (Eq. 2.35) yields �2 = (1/8 − 7
�/24 + 7
�/32). Solving the 
corresponding system of equations, the equilibrium coefficients {h/, h�} can be 
obtained. Note that the solutions allowing bending moment relaxation (Eq. 2.36) 
do not change. 
 

2.7 Weld root notch stress distribution 

For fabrication reasons, welds are only partial penetrated to a great extent and in 
some cases not penetrated at all, i.e. show a lack of penetration (LoP) introducing 
a root notch (size ��); both notch locations, weld toe and weld root, become fatigue 
sensitive. In fact, fully penetrated welds may initiate fatigue cracks at both locations 
as well because of the welding process induced risk of a non-fused root face (LoF). 
 

 
 

 
 
 
 
 

 
 

 
 
 

Figure 2.34:  PP DS cruciform joint weld root crack path similarity. 
 
Generally speaking, fillet weld root cracks start to grow at the notch root along the 
weld leg (mode-I) and continue by tearing (mode-II) through the weld throat 
(Frank and Fisher, 1979). Assuming that crack initiation (i.e. micro-crack growth) 
dominates the total fatigue life time, the weld leg section is the favourable crack 
path for weld root damage evaluation. Crack growth simulations show that if the 
(remote mechanical) far field loading predominantly consists of a membrane and 

a) FRANC2D simulation b) experimental observation, (/ = 0 
    (Maddox and Webber, 1978)    
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bending component, the entire crack path is closer to the weld leg section than to 
the weld throat (Fig. 2.34a), simply because the stress state in the weld leg section 
is membrane and bending dominated as well; the (average) shear stress contribution 
is insignificant (Fricke, Kahl and Paetzold, 2005; Fricke and Kahl, 2008; Hong, 
2010). Note that an experimentally obtained crack (Fig. 2.34b), including both 
remote mechanical membrane loading and welding induced residual stress, has been 
developed similarly. In conclusion, the weld leg section is adopted as root crack 
path for fillet welds, associated with the {��, ��, ℎ�, ��} dependent artificial plate 
thickness ��′. The weld throat section is the most likely one for groove welds (Fig. 
2.35a); ��′(��, ℎ�, ��). It is loading mode-I dominated as well. 
The linear superposition principle and (non-)symmetry considerations as presented 

for weld toe notch stress distributions hold for the weld root. However, joint symmetry 
with respect to (��/2), either (�� = �
) or (�� = �$), does not necessarily mean that 
the (weld) root notch stress distributions require symmetry conditions as well (Fig. 
2.35b). The only relevant geometry is the double edge notch (DEN) standard crack 
growth specimen (Fig. 2.35c); for the selected welded joints it is no issue.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.35:  Far field stress dependent weld root notch stress distributions.      
 

To illustrate the (weld) root notch stress formulations in case of (non-)symmetry, 
the PP SS butt joint, PP DS cruciform joint and DEN specimen will be used. 
 
 
 

a) PP DS butt joint b) PP DS cruciform joint 

c) DEN crack growth specimen 
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2.7.1 Non-symmetry 

To acquire the weld root notch stress distribution ���((′/��′) in case of non-
symmetry, the �LL component of Williams’ truncated solution for the crack 
configuration (Eq. 2.14) can be used. The number of terms included is based on 
engineering judgement; 5 terms have been found effective in comparison to FE 
solutions. The first term is the notch angle induced square root singular one; the 
following (non-singular) terms include the weld geometry- and root notch size 
induced weld load-carrying and structural root field stress contributions. For both 
fillet- and groove welds, the assumed root crack path is an extension of the notch ��, meaning K = 0 for all cases and �LL (Eq. 2.14) reduces to:  
 

 

��� ( (′��′) = �LL ( (′��′)

           ≈ �/�  ∑{( (′��′)
;s−1 hmBm(Bm + 1)(1 − im)}5

m=1

 
(2.41) 

 
 

 
 

 
The coefficients (hm = h1m) will be determined using equilibrium conditions as well 
as (strong) constraints. The former requires the structural root field stress 
distribution ���((′/��′); the equilibrium equivalent stress part, characterised by {�/�, (/�} and obtained using the nodal forces along the assumed root crack path of 
a coarse (9 node Lagrange element) meshed parametric solid plane strain FE 
model. Applied loading is the far field stress distribution. The latter uses three 
stress points ���(m)((′(m)/��′) determined with the same FE model. The system of 
equations to be solved yield: 
 

 [711 ⋯ 715⋮ ⋱ ⋮751 ⋯ 755
] {h1⋮h5

} = {�1⋮�5
} (2.42) 

 
with:  
 

 

71m = (Bm + 1)(1 − im)                          �1 = 1 − (/�
72m = Bm(1 − im)                                  �2 = 1 − (/�2 − (/�6
73m = Bm(Bm + 1)(1 − im)((1��′)

;s−1          �3 = ���1�/�
74m = Bm(Bm + 1)(1 − im)((2��′)

;s−1          �4 = ���2�/�
75m = Bm(Bm + 1)(1 − im)((3��′)

;s−1          �5 = ���3�/�
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The (weld) root notch stress distribution (Eq. 2.41) is far field stress dependent (Fig. 
2.35). Separate zone 2 and zone 3 stress gradient related terms cannot be identified 
like for �� (Eq. 2.24) and requires calculation of the self-equilibrating stress part first: 
 

 �/�� = ��� ( (′��′) − ��� ( (′��′) (2.43) 

 
For a PP SS butt joint (Fig. 2.36), the weld root notch stress distribution at 
location 3 is shown for a far field bending load case (/ = 1 (Fig. 2.37); the bending 
moment is applied counter-clockwise. The cross-section is of the same size as the 
base plate thickness, i.e. �� = ℎ�, and ���((′/��′) remains a pure bending 
formulation.  
  
 
 
 
 
 
 
 
 
Figure 2.36: a) PP SS butt joint parameters, b)  notch loc. 3 FE solid model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.37: PP SS butt joint weld root notch stress distr. (loc. 3), (/ = 1.  
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Figure 2.38: PP SS butt joint weld root notch stress distr. (loc. 3), (/ = (1/3). 
 
The notch dominated region demonstrates (non-singular term induced) relaxation, i.e. 
an increased notch affected region and smaller zone 2 stress gradient, in comparison 
to a combined load case (/ = (1/3) showing, on the other hand, concentration (Fig. 
2.38). However, this behaviour is not reflected in the bi-linear approximation. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.39:  a) PP DS cruciform joint parameters, b)  notch loc. 9 FE solid model. 
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Even more important: for the bi-linear approximation it is relatively easy to make 
the notch effect completely disappear and from weld notch fatigue perspective a 
fixed transition depth at 10 [%] of the ‘considered’ thickness asks for improvement. 
An example will be shown for a PP DS cruciform joint (Fig. 2.39). The location 9 
weld root notch stress distribution (Fig. 2.40) is far field bending induced; (/ = 1. 
The self-equilibrating stress part (Eq. 2.43) shows in comparison to its bi-linear 
approximated equivalent even opposite behaviour in the notch affected region: 
tensile versus compressive. 
Note that the weld root field stress distribution ���((′/��′) equals the {�/, (/} 

Battelle structural field stress distribution (Dong, 2001), meaning that the fracture 
mechanics context (welded joint) far field stress definition is violated like for the 
weld toe notch stress distributions including symmetry with respect to half the 
plate thickness (��/2).  
In case the BSS concept is adopted and a fillet weld geometry is involved, it is 

recommended to use the weld throat section as root crack path if no detailed root 
notch size information is available (Hong, 2010). For �� = (��′/2), a very common 
assumption, the root structural stress �/� for the weld throat section exceeds its 
weld leg equivalent; a conservative approach. However, �/� cannot be related to the 
welded joint far field stress, for it does not meet the loading mode-I criterion, 
explaining why the linearised weld throat stress distribution is selected as far field 
stress instead. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.40: PP DS cruciform joint weld root notch stress distr. (loc. 9), (/ = 1. 
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The far field stress definition seems to be a matter of modelling principles. Being 
consistent, the welded joint far field stress and structural field stress distribution 
should be in agreement, rather than adopting the equilibrium equivalent stress part 
along the considered crack path as remote loading induced far field stress like for 
the BSS concept, meaning that (notch) symmetry effects with respect to (��/2) are 
ignored by definition. All stress distributions are related to a single edge notch 
(SEN) configuration, ignoring the DEN and centre notch (CN) configurations, 
naturally corresponding to respectively several weld toe notch stress distributions 
for symmetry (e.g. DS cruciform joint, loc. 1 and 2) and weld root notch stress 
distribution for non-symmetry (e.g. DS butt joint, loc. 5 and 6). 
 

2.7.2 Symmetry 

The DEN geometry (Fig. 2.41), used in standard crack growth specimen, is 
symmetric with respect to (�
/2) and requires a symmetry condition to obtain the 
root notch stress distribution. 
  
 
 
 
 
 
 
 
 
Figure 2.41: a) DEN(T) specimen parameters, b) notch loc. 1 solid model. d 
 

For ((′/��′) → {(′/(��′/2)} the weld root notch stress formulation (Eq. 2.41) still 
applies, meaning that only the 2nd equation in the system (Eq. 2.42) has to be 
replaced like for the weld toe notch stress distribution including symmetry; moment 
equilibrium is ignored. The matrix and vector coefficients 7m� and �m become:  
 

 

71m = (Bm + 1)(1 − im)                             �1 = 1 − (/�
72m = Bm(Bm + 1)(1 − im)(Bm − 1)                �2 = 0
73m = Bm(Bm + 1)(1 − im)( (1��′/2)

;s−1          �3 = ���1�/�
74m = Bm(Bm + 1)(1 − im)( (2��′/2)

;s−1          �4 = ���2�/�
75m = Bm(Bm + 1)(1 − im)( (3��′/2)

;s−1          �5 = ���3�/�

 (2.44) 

 
The most common load case for DEN(T) crack growth testing ((/ = 0; tensile 
loading) provides a non-monotonic stress distribution (Fig. 2.42). 

�
′2  
1 �
2  

{�/, (/} �/ = � 

� 
�� (1 (2 (3 
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Figure 2.42: DEN(T) specimen root notch stress distr. (loc. 1), (/ = 0.  

 
Comparing the (root) field stress distribution ���((′/��′) and the {�/, (/} Battelle 
structural field stress distribution (Dong, 2001) illustrates the difference for a DEN 
and SEN based formulation. The former takes crack growth at both notches into 
account while the latter ignores (non-conservatively) the effect of a crack growing 
at the same time in the symmetry part. Although crack initiation may hardly be 
influenced, the macro-crack growth behaviour will definitely be affected. 
 

2.8 Size effects 

Changing welded joint geometry dimensions modifies the notch stress distribution 
zone 1 peak value and zone {2, 3} gradients. Fatigue scaling requires these size 
effects to be taken into account. The nominal stress- or structural hot spot stress 
range {��, �ℎ} fatigue resistance measures, respectively a global and local (zone 1) 
point criterion, are incomplete in that respect and the IIW (Niemi, Fricke and 
Maddox, 2006) and CEN (Eurocode 9, 2007) introduced a plate thickness 
correction factor to incorporate a zone 2 stress gradient correction. The effective 
notch stress range ��, an equivalent local zone {1, 2} line criterion, includes a 
fictitious notch radius component to deal with size effects. Common denominator is 
the selection of a single geometry parameter, supposed to be dominant given 
certain modelling assumptions, meaning incomplete scaling anyway.  
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However, rather than looking for a governing parameter to include scaling, the 
contribution of the different stress components to the analytical weld notch stress 
distribution formulations involving all geometry parameters will be used to 
investigate and illustrate the peak value- and gradient consequences for varying 
weld dimensions {�, ��, ℎ�, ��}, notch radius � and plate thickness ��. 
 

2.8.1 Weld dimensions 

The local weld geometry related V-shaped notch stress �LL (Eq. 2.10), a component 
of the self-equilibrating stress part �/� (Eq. 2.32), incorporates the weld notch angle 2�. For (ideal) groove- and fillet welds, the 2� dependent weld toe flank angles   
are different affecting the �/� distributions as shown for some extreme values, (��/ℎ�) variations (Fig. 2.43). Results are joint independent, since the weld load 
carrying bending stress component (7
� = 0) is omitted to focus exclusively on 
flank angle effects first. It turns out that predominantly the {0 ≤ ((/��) ≤ 0.1} 
region is affected. Differences between zone 2 stress gradients are relative small. For ((/��) → 0 the notch stress increases for increasing flank angle as expected, 
although at the same time the notch affected region decreases since self-equilibrium 
requires compensation; for the symmetry case even in a stronger degree if compared 
to its non-symmetry equivalent.  
 
 

 
 
 

 

 
 

 
 
 
 
 
 
 
 
 
 

 Figure 2.43: Self-equilibrating stress at different weld flank angles, (7
� = 0).  
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 Figure 2.44: SS cover plate (non-sym.) and DS cover plate (sym.) – continuous      
                  base plate – loc. 1 self-equilibrating stress at different fillet weld         
                  flank angles and constant weld throat size �� = 4 [mm], (/ = 0.  
 

Including the other self-equilibrating stress part component, the {��, ℎ�} dependent 
weld load carrying stress �
� (Eq. 2.16 or 2.18), amplifies this behaviour as shown 
for notch location 1 of a SS and DS cover plate (Fig. 2.44). At the same time, it 
explains reasonably well why the geometric 1 [mm] stress concept (Xiao and Yamada, 
2004) has been introduced: the notch stress contribution vanishes at this distance 
and the corresponding stress value that keeps the stress gradient induced size effects 
to a minimum is preferred rather than a parameter that will take scaling explicitly 
into account. However, it is an absolute criterion, meaning that for increasing tp 
the notch affected region will be entered. The range of application in terms of plate 
thickness seems limited to prevent for scaling issues. The BSS concept related bi-
linear notch stress approximation (Dong, Hong and Cao, 2003) incorporates the 
notch angle and weld dimension effects in a rather crude and implicit way. 
The structural hot spot stress does not include local weld geometry effects 

explicitly. The same FAT class is assigned to both groove- and fillet weld toes (Niemi, 
Fricke and Maddox, 2006) and the weld flank angle – put under restrictions – is 
implicitly taken into account, i.e. it is left in the fatigue resistance data scatter just 
like the symmetry effect. Obviously, the influence of notch angle 2� is supposed to 
be small. The (��/ℎ�) dependent weld load carrying effectiveness has been proposed 
to be included using an additional SCF �/� (Poutiainen and Marquis, 2004b; 2006); 
in fact a local weld geometry stress related parameter. Although not directly 
comparable to (1 + 7
�); �/� contains both �LL and �
� contributions, behaviour 



Chapter 2. Weld Notch Stress Distributions  57 

 

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1
0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

<se/<s [ - ]

r/
t b

[
-

]

tb = 12.0, tc = 12.0, an = 6.0, ; = 0.00 [mm]

 

 

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 1.2 1.5 1.8 2.1
0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

<se/<s [ - ]

r/
t b

[
-

]

tb = 12.0, tc = 12.0, an = 6.0, ; = 0.00 [mm]

lw = hw = 7.1

lw = hw = 11.3

lw = hw = 17.0

lw = hw = 17.0 FE

should be similar and Table 2.1 shows the results for notch location 1 of a PP DS 
cruciform joint with varying weld dimensions; far field load cases {(/ = 0, (/ = 1}. 
For increasing weld size, on the one hand �/� decreases exponentially for the 
membrane as well as bending load case. On the other hand, (1 + 7
�) increases for 
increasing weld size, since the zone 2 notch stress gradient increases for ((/�
) → 0 
(Fig. 2.45); the weld becomes more load carrying. Its values are quite small because 
of the continuous base plate. The �LL component turns out to dominate �
� for 
decreasing weld size. The far field membrane induced weld load carrying 

effectiveness exceeds the bending contribution; a zone 3 stress gradient effect. 
 

far field load case weld dimensions [mm] �/� [-] 1 + 7
� [-] (/ = 0 �� = ℎ� =  7.1 1.11 1.02 (/ = 1 �� = ℎ� =  7.1 1.06 1.00 (/ = 0 �� = ℎ� = 11.3 1.06 1.03 (/ = 1 �� = ℎ� = 11.3 1.02 1.00 (/ = 0 �� = ℎ� = 17.0 1.03 1.07 (/ = 1 �� = ℎ� = 17.0 1.01 1.01 
 
 

Table 2.1: PP DS cruciform joint (�
 = �$ = 12, �� = 6) weld load carrying factors 
              �/� and (1 + 7
�) at loc. 1; far field stress and weld dimension effects. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.45: PP DS cruciform joint loc. 1 self-equilibrating stress for varying          
                   fillet weld dimensions and constant flank angle, (/ = 0.  
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Figure 2.46: PP DS cruciform joint loc. 5 weld notch stress distribution for different 
                 root notch sizes, (/ = 0.  
 
Generally speaking, continuous plate related weld toe notch stress distributions are 
hardly root notch size �� affected. At a discontinuous plate, e.g. location 5 of a PP 
DS cruciform joint (Fig. 2.3), the weld load carrying induced bending stress 
component �
� however significantly increases for increasing �� (Fig. 2.46), 
approximately up to half  �/ for a relative small full load carrying weld (�� = 6) as 
shown in Table 2.2, meaning both stress values are of the same order of magnitude. 
Important fact: �� cannot be detected using visual inspection. 
Note that the linear as well as non-linear weld load carrying stress component 

(Eq. 2.19) is included, explaining (1 + 27
�). Both weld load carrying factors �/� 
and (1 + 27
�) show the same trend; �
� tends to dominate �LL for increasing ��. 

 

 
 
 

notch size �� [mm] �/� [-] 1 + 27
� [-] 
3.0 1.29 1.19 
4.5 1.35 1.27 
6.0 1.44 1.48 

 
 

Table 2.2: PP DS cruciform joint weld load carrying factors �/� and (1 + 7
�)   
                at loc. 5; influence of root notch size, (/ = 0. 
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Self-equilibrating stress part distributions are notch location-, welded joint 
geometry- and far field stress dependent. For the weld root, the notch angle is 
reasonably assumed to be the same in any case: (2� = 2�). A joint independent 
representation of 2� effects like for weld toe notches is impossible since the non-
singular stress terms (Eq. 2.41) contain both the weld load carrying stress- as well 
as the structural field stress component, i.e. 7
� is implicitly included. To prevent 
for any bending contribution, a far field membrane loaded PP reinforcement removed 
SS or DS butt joint should be adopted and root notch size �� → 0. At the same 
time, however, the notch disappears. Note: a microscopic notch is considered to be a 
flaw; defect (size �m). The high degree of variety in zone 2 notch stress gradient is   
a result of different weld leg lengths {��, ℎ�}, but predominantly of root notch size �� as shown for some DS and SS butt joint extremes (Fig. 2.47). The notch affected 
region does not exceed ((′/��′ = 0.1), although �/�� is more pronounced in 
comparison to the weld toe cases (Fig. 2.44). The order of magnitude is the same. 
For weld toe notches, varying weld dimensions predominantly affects the zone 2 

stress gradient; the zone 3 stress gradient is structural field stress dependent and 
the weld geometry is not involved. However, {��, ℎ�, ��} variations for weld root 
notches influence both zone {2, 3} stress gradients since at the same time the 
structural field stress is modified (Fig. 2.48). Note it is principally a plate thickness 
effect as well: ��′ = -(��, ��, ℎ�, ��). Increasing the root notch size �� increases 
predominantly the structural root stress �/�, meaning for a far field bending loaded 
SS butt joint the root notch stress distribution ��� remains more or less unaffected.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.47: PP DS butt joint (loc. 5) and PP SS butt joint (loc. 3) self-               
                  equilibrating stress for different root notch sizes, (/ = 1.  
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    Figure 2.48: PP DS butt joint (loc. 5) and SS butt joint (loc. 3) weld 
                      notch stress distribution for different root notch sizes, (/ = 1.  
 

The FAT28 class assigned to weld root fatigue for the structural (hot spot) stress 
concept – linearisation of the stress distribution along weld leg should replace the 
weld toe related surface extrapolation to obtain a structural interpolated(!) stress 
omitting the notch component – drops considerably in comparison to the LC weld 
toe FAT36 class (Fricke, 2013). Quite remarkable from geometry point of view, 
since it is the self-equilibrating stress part that should explain the difference. 
However, similar distributions for weld toe and weld root have been observed (Fig. 
2.44 and 2.47). It has been argued (Brandt, Lawrence and Sonsino, 2001; Ribeiro 
and De Jesus, 2011) that weld root fatigue predominantly consists of crack growth 
rather than crack initiation. Passing the question why, if so, still a crack initiation 
related intact geometry parameter is selected, it seems confusing that a weld root 
notch and crack share the same square root singular behaviour. The adopted crack 
growth models ignore the notch specific behaviour (Paragraph 2.11). Besides, the �-¢  curve slopes are the same, meaning a different fatigue mechanism – governing 
initiation or growth – is out of question. The weld quality could be different 
because of an increased weld root fatigue test data scatter, although the effective 
notch stress concept guideline (Fricke, 2012), another IIW report, applies the same 
– average – fictitious notch radius (Zhang, Sundermeier and Sonsino, 2012) and 
FAT class to weld toe and weld root notches for the same welded joints. 
 
 



Chapter 2. Weld Notch Stress Distributions  61 

 

2.8.2 Notch radius 

Remote mechanical loaded weld geometries introduce stress concentrations, meaning 
the linear elastic notch stress distributions {��, ���} contain a peak stress at {((/��) = 0, ((′/��′) = 0}. It is related to the far field (reference) stress using the 
theoretical SCF ��; an intact geometry related crack initiation zone 1 parameter, 
independent of material properties. However, for a notch radius � = 0 an artificial 
(worst) limit case is identified: �� → ∞. To eliminate this singularity and obtain a 
meaningful zone 1 value, � > 0 is required. Except the real � component, the notch 
radius is the parameter to be used to include micro-structural support – a notch 
stress gradient hypothesis (Sonsino et al., 2012) – and is the only one to 
incorporate the statistical weld volume effect adequately, since investigation of 
actual weld seams shows that � is widely scattered along the weld length (Lassen et 
al., 2005; 2006). 
Using Kolosoff-Muskhelishvili’s method based on complex Airy stress functions 

and conformal mapping, the stress components {���, �LL, ��L} for (� > 0) can be 
obtained (Lazzarin and Tovo, 1996; Atzori, Lazzarin and Tovo, 1997), a solution 
that has been improved significantly for increased opening angles 2(� − �) and a 
relative small notch radius � (Filippi, Lazzarin and Tovo, 2002) in particular, as 
typically encountered in welded joints. In this blunt body case (Fig. 2.49), the stress 
components (Eq. 2.9 to 2.11) include additional terms (Appendix A, Eq. A1 to A3). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.49: Blunt V-shaped notch parameters. 
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The coordinate system origin will be transformed (£′′ → £) and {��, ���} will be 
formulated in the corresponding cross-section. At ((/�� = 0), the maximum 
(principal) notch stress location, the crack is most likely to be initiated. The non-
linear transformation – keeping the polar axis parallel to the original one – yields: 
 

 ((′′�� )2  = ( (��)
2 + 2cos(K − D�)((���)( (��) + ((���)

2 (2.45) 

 

 tan(K′′) = ( (��) sin(K) + ((���) sin(D�)
( (��) cos(K) + ((���) cos(D�) (2.46) 

 

with 
 

 (� = (0 = � (1 − �2�) ,     D� = 0  

 
The stress angle has been approximated (K′′ ≈ K) and the weld toe notch stress 
distribution for the non-symmetry case and 1st order �
� becomes: 
 

 

�� ( (��) = �/ [h/ {((′′�� );g−1 B/(B/ + 1)[cos{(B/ + 1)K} −
                                              i/ cos{(B/ − 1)K}] +
                         ((′′�� )¤g−1 ((0��);g−¤g B/

(2�� )   
4 {(2�� ) − 1} ⋅

                                            [§/1 cos{(¨/ + 1)K}   +
                                   §/2(¨/ + 1) cos{(¨/ − 1)K}]} +

 

                  h� {((′′�� );j−1 B�(B� + 1)[sin{(B� + 1)K} − 
                                                i�sin{(B� − 1)K}] +
                        ((′′�� )¤j−1 ((0��);j−¤j B� 14(¨� − 1) ⋅
                                             [§�1 sin{(¨� + 1)K}  +

                               §�2(¨� + 1) sin{(¨� − 1)K}} +
                  7
� {2( (��) − 1} − 2(/ ( (��)]

 

(2.47) 
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Figure 2.50: PP DS T-joint weld toe notch stress distribution (loc. 1) for different   
                 notch radii, (/ = (1/3).  
 

The notch radius is assumed to be relatively small and scaling of �� and �/ 
according to the increased cross-section is ignored. The blunt body eigenvalues {¨/, ¨�}, corresponding eigenvalue coefficients {§/1, §/2, §�1, §�2} and the system of 
equations to be solved for {h/, h�} can be found in appendix A (Eq. A.4 and A.5). 
Changing the notch radius modifies the peak stress value as well as the zone 2 

stress gradient, like shown for the weld toe notch stress distributions of a PP DS T-
joint (Fig. 2.50). Using {���, �LL, ��L}, i.e. (Eq. A1 to A5), the 1st principal stress ��1 based SCF �� can be calculated. Note that ��1,2 are invariant, i.e. independent 
of coordinate system: 
 

 

��1,2 =
⎩{⎨
{⎧�LL (( �� = 0) + ��� (( �� = 0)

2 ⎭}⎬
}⎫ ±

         
⎷
√√√√
√

⎩{⎨
{⎧�LL (( �� = 0) − ��� (( �� = 0)

2 ⎭}⎬
}⎫2

+ {��L (( �� = 0)}2
 

(2.48) 
 
 
 

 
 

 
Results are compared to FE solutions (Table 2.3). Although the notch stress 
components {���, �LL, ��L} have been developed to be applied for a relative small 
notch radius �, the error increases for decreasing notch radius – no doubt it is a 
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result of the way it has been used – and �� is predominantly (somewhat) 
underestimated. Tsuji’s boundary element analysis (BEA) based curve fitted 
formulae (Iida and Uemura, 1996) are added for convenience and show errors 
having the same order of magnitude and bandwidth, although �� is mainly 
(conservatively) overestimated. The SCF increases for decreasing � like it should be, 
implying a decreased fatigue resistance from crack initiation point of view. 
 (�/�
) 

[-] 
�� [-]  
FEA 

 �� [-]  
(Eq. 2.48)  

error 
[%] 

�� [-] 
(Iida et al, 1996) 

error 
[%] 

0.01 4.19 3.89 -7.2 4.12 -1.7 
0.05 2.51 2.40 -4.4 2.54  1.2 
0.10 2.03 1.99 -2.0 2.13  4.9 
0.20 1.67 1.69  1.2 1.83  9.6 

 
 

Table 2.3: PP DS T-joint weld toe (loc. 1) SCF’s for different notch radii; (/ = (1/3). 
 

For the weld toe symmetry case – 1st order weld load carrying stress – including �, ��
 (Eq. 2.37) can be used with:  
 

 

- ( (��) = h/ {((′′�� );g−1 B/(B/ + 1)[cos{(B/ + 1)K} −
                                        i/ cos{(B/ − 1)K}] +
                    ((′′�� )¤g−1 ((0��);g−¤g B/

(2�� )   
4 {(2�� ) − 1} ⋅

                                     [§/1 cos{(¨/ + 1)K}   +
                            §/2(¨/ + 1) cos{(¨/ − 1)K}]} +

 

            h� {((′′�� );j−1 B�(B� + 1)[sin{(B� + 1)K} − 
                                          i�sin{(B� − 1)K}] +
                  ((′′�� )¤j−1 ((0��);j−¤j B� 14(¨� − 1) ⋅
                                       [§�1 sin{(¨� + 1)K}  +

                         §�2(¨� + 1) sin{(¨� − 1)K}} +
         7
� {4( (��) − 1}

 

(2.49) 
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To obtain -((/�� = 1/2), the coordinate system transformation (Eq. 2.45, 2.46) 
have to be used; simplifications like for the (� = 0) case (Eq. 2.38) seem impossible. 
Appendix A provides the system (Eq. A.6) required to solve for the constants {h/, h�}. 
Comparing the loc. 1 weld toe notch stress distributions for a PP DS T-joint 

(Fig. 2.50) and PP DS cruciform joint (Fig. 2.51) with the same dimensions, the 
symmetry condition at (��/2) for the latter forces a more pronounced notch 
affected region, i.e. increased SCF’s. Table 2.4 shows the corresponding �� values 
as well as results obtained using curve fitted formulae: availability and application 
is limited because of typical restrictions like {�
 = �$,  �� = ℎ�} and a lack of far 
field bending formulations. 
 (�/�
) 

[-] 
�� [-]  
FEA 

 �� [-]  
(Eq. 2.48)  

error 
[%] 

�� [-] 
(Iida et al, 1996) 

error 
[%] 

0.01 4.69 4.65 -0.9 5.64  20.2 
0.05 2.76 2.78  0.7 2.78   0.0 
0.10 2.21 2.25  1.8 2.18  -1.4 
0.20 1.81 1.84  1.7 1.78  -1.7 

 
 

Table 2.4: PP DS cruciform joint weld toe (loc. 1) SCF’s at different notch radii; 
              (/ = (1/3). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.51: PP DS cruciform joint weld toe notch stress distribution (loc. 1) for    
                  different notch radii, (/ = (1/3).  
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Figure 2.52: PP DS cruciform joint weld toe notch stress distribution (loc. 5) for    
                 (� = 1.00) and varying root notch size, (/ = 0.  
 
The cross plate related weld toe notches, e.g. loc. 5 of a PP DS cruciform joint 
(Fig. 2.52), are significantly �� affected for (ℎ� < �$). Both the 1st and 2nd order 
weld load carrying stress components are included. The considered geometry may 
look familiar; it has been used as example in the fatigue assessment guide line for 
the effective notch stress concept (Fricke, 2012) and is included for comparison. 
 
 �  
[mm] 

�� 
[mm]  

�� [-]  
FEA 

 �� [-]  
(Eq. 2.48)  

�� [-], (error [%]) 
(Radaj et al, 1990) 

�� [-], (error [%]) 
(Anthes et al, 1993) 

0.5 3.0 3.77 3.91 (-0.9) 4.97 (31.8) 3.76 (-0.3) 

0.5 4.5 4.54 4.43 (-2.4) 5.24 (15.4) 4.53 (-0.2) 

0.5 6.0 5.49 5.74 ( 4.6) 5.44 (-0.9) 5.79 ( 5.5) 

1.0 3.0 3.08 3.12 ( 2.7) 3.79 (23.1) 3.15 ( 2.3) 

1.0 4.5 3.70 3.52 (-4.9) 3.99 ( 7.8) 3.82 ( 3.2) 

1.0 6.0 4.51 4.52 ( 0.2) 4.15 (-8.0) 4.91 ( 8.9) 
 
 

Table 2.5: PP DS cruciform joint weld toe (loc. 5) SCF’s for different root notch  
               size  and notch radii; (/ = 0. 
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Welding practice shows that like the notch radius, the root notch size is not easy to 
control and varies a lot along the weld seam; (�� = �$/2) is a conservative 
assumption. Decreasing � at the same time (Table 2.5), the fatigue resistance 
reduces quite efficiently; a worst case scenario easily doubles ��, not to mention the 
reduction in fatigue life. Obviously, the range of application for the curve fitted 
formula (Radaj and Zhang, 1990) is limited; for (Anthes, Köttgen and Seeger, 1993) 
results are close to the FEA estimates, but a geometry restriction requires (�
 = �$). 
The weld root notch stress distributions including � contribution – both non-

symmetric and symmetric – can be obtained as well. Appendix A provides the 
corresponding V-shaped notch stress components (Eq. A.7 to A.9) as well as the 
system (Eq. A.11) to be solved for hm and ��� (Eq. 2.41) becomes: 
 

 

��� ( (′��′) = �/� ∑hm [((′′��′)
;s−1 Bm(Bm + 1)(1 − im) +5

m=1
                               ((′′��′)

¤s−1 ((0��′)
;s−¤s ⋅

                                           (Bm2 ) {§1m + §2m(¨m + 1)}]
 

(2.50) 
 
 
 
 
 

 
with 
 

 ((′′��′)
2  = ( (′��′)

2 + 2((���′)( (′��′) + ((���′)
2  

 
and 
 

 (� = (0 = (�2)  

 
 �  
[mm] 

�� 
[mm] 

�� [-] 
FEA 

�� [-] 
(Eq. 2.48) 

�� [-], (error [%]) 
(Radaj et al, 1990) 

�� [-], (error [%]) 
(Anthes et al, 1993) 

0.5 3.0 4.65 4.34 (-6.7) 5.23 (12.5) 4.50 (-3.2) 

0.5 4.5 5.85 5.77 (-1.4) 6.23 ( 6.5) 5.98 ( 2.2) 

0.5 6.0 7.31 7.57 ( 3.5) 7.05 (-3.6) 7.57 ( 3.6) 

1.0 3.0 3.57 3.45 (-3.4) 4.04 (13.2) 3.46 (-3.1) 

1.0 4.5 4.48 4.62 ( 3.1) 4.82 ( 7.6) 4.60 ( 2.7) 

1.0 6.0 5.64 6.13 ( 8.7) 5.45 (-3.4) 5.83 ( 3.7) 
 
 

Table 2.6: PP DS cruciform joint weld root loc. 9 Stress Concentration Factors for  
               different root notch size and notch radii; (/ = 0. 
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Figure 2.53: PP DS cruciform joint weld root notch stress distribution at loc. 9 for  
                 (� = 0.50) and varying root notch size, (/ = 0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.54: PP DS but joint weld root notch stress distribution (loc. 5) for           
                  (� = 0.50) and varying root notch size, (/ = 0.  



Chapter 2. Weld Notch Stress Distributions  69 

 

Still considering the same PP DS cruciform joint, �� results can be obtained for 
the weld root, location 9, as well (Table 2.6). Comparing the weld toe and weld 
root SCF’s (Table 2.5 and 2.6), the weld root is governing, meaning a bad welded 
joint design anyway since weld root fatigue damage is hard to detect. 
It is typical for moderate �� sizes that the weld root notch stress distributions 

(Fig. 2.53) remain approximately the same since the structural root field stress 
parameters {�/�, (/�} change linear accordingly. The notch radii applied denote the 
fictitious ��(�) values for aluminium welded joints, respectively �� = 1.0  [mm] and ��� = 0.5  [mm] for weld toe and weld root (Zhang, 2012; Zhang, Sonsino and 
Sundermeier, 2012), as proposed for the effective notch stress concept. For 
decreasing root notch size, weld root fatigue shows a typical lower bound hole-in-
plate solution (Table 2.7): �� = 3.0 [-], as shown for a PP DS butt joint (Fig. 2.54). 
Note that a fictitious notch radius – after all, fatigue is a real life problem – in FE 
models artificially modifies the structure and may introduces some peculiarities, e.g. 
for relative small weld dimensions the structural stiffness is reduced quite a lot. 
Although the analytical weld notch stress formulations are not explicitly meant to 
be used to obtain SCF’s as crack initiation parameter – a competition with FE 
results in terms of accuracy will be lost a priori, it may still be useful if the effective 
notch stress concept is adopted for fatigue design. From efficiency point of view, �� 
estimates are similar or even better in comparison to results obtained using 
available curve fitted formulae.  

 
 � 

[mm] 
�� 
[mm] 

�� [-]  
FEA 

 �� [-]  
(Eq. 2.48)  

error 
[%] 

0.50 1.0 3.69 3.46 -6.2 
0.50 1.5 4.50 4.53  0.7 
0.50 2.0 5.36 5.68  6.0 
1.00 1.0 3.00 2.92 -2.7 
1.00 1.5 3.56 3.85  8.2 
1.00 2.0 4.25 4.89 15.1 

 
 

Table 2.7: PP DS butt joint weld root (loc. 5) SCF’s at different notch radii; (/ = 0. 
 

Note that weld (toe) notch stress distributions for � > 0 can be used to explain 
(partially) the effects of a post-welding improvement procedure like weld toe 
grinding. At the same time, an undercut or notch depth ®� appears reducing the 
effective plate thickness and increasing the structural stress parameters {�/, (/}. 
However, one important weld geometry parameter, the initial crack size �m, is not 
taken into account in a crack initiation based concept and – whatever the as-welded 
(AW) value might be – it will definitely be different after the grinding procedure 
and affects the fatigue life up to a large extent. 
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2.8.3 Plate thickness 

Although experimental research shows that the fatigue resistance of a welded joint 
depends on all its dimensions, it is often reduced to a plate thickness �� effect 
(Gurney, 1991; Maddox, 1995; van Straalen and Soetens, 1995; Atzori and 
Meneghetti, 1998). For some reason it is considered to be a weld toe related issue 
only. Point of concern is the decrease in fatigue resistance for increasing �� because of: 
 

• The increased welded material volume involved. Although the defect size 
remains more or less unaffected, the probability of present defects increases 
as well as the fatigue damage likelihood; a statistical effect. 

 

• The increased restrained material volume. The welding induced residual 
stress level increases and surface quality reduces, decreasing the welded joint 
fatigue resistance; a welding technology effect. 

 

• The increased highly stressed material volume or notch affected region; a 
remote mechanical loading induced (zone 2) stress gradient effect. 

 
The latter is commonly assumed to be the dominating factor (Niemi, 1995) and will 
be examined since geometry and far field stress dependent scaling is involved. The 
well-known thickness correction or scaling factor – as required for the global and 
local zone 1 nominal stress and structural hot spot stress fatigue resistance measures 
– turning up in the IIW recommendations (Niemi, Fricke and Maddox, 2006) and 
CEN design handbook (Eurocode 9, 2007) is (��,���/��)¯, with {0 < ° < 1} and {�� > ��,���}, showing a detrimental effect on fatigue life for increasing ��. Common 
applied curve fitting based exponential values for mixed groove- and fillet weld 
configurations include ° = {0.25, 0.30}. Assuming the crack will grow along the bi-
sector (K = 0), the zone 2 symmetric V-shaped notch stress exponent, eigenvalue B/, has been adopted (Atzori and Meneghetti, 1998): ° = (1 − B/) and values quite 
close to the curve fitted ones have been obtained, i.e. for a 30 and 45 [deg] flank 
angle, the exponent becomes respectively ° ≈ {0.23, 0.33}. The adopted reference 
plate thickness denotes ��,��� = 25 [mm]. The specimen plate thickness of the 
experimental data used to obtain a fatigue design curve yield (�� ≤ ��,���). The 
involved standard deviation already includes the related scaling induced scatter. 
For a continuous base plate related weld toe notch, e.g. location 1 of a PP DS 

T-joint, non-symmetric stress distributions for increasing �
 are shown (Fig. 2.55). 
The weld- and cross plate dimensions are reasonably assumed to scale accordingly. 
The relative size of the highly stressed material volume turns out to be constant, 
justifying a scaling parameter like ((/��) = 0.1 (Dong, Hong and Cao, 2003) to 
define a transition depth and distinguish a notch affected- and far field dominated 
region. The {��, ℎ�} induced �
� contribution is limited, even if {��, ℎ�, �$} are 
fixed, meaning the stress distribution in the notch affected region is the same for 
varying plate thickness. Since the zone 2 stress gradient is hardly affected, the 
nominal stress- and structural hot spot stress concept related correction factor is 
very useful. Different far field loading conditions will not change this behaviour.  
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Figure 2.55: Plate thickness effect on ��((/�
) of a PP DS T-joint (loc. 1), (/ = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 2.56: Plate thickness effect on ��((/�
) of a PP DS T-joint (loc. 1), (/ = 0. 
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(Poutiainen et al., 2006)

Using the effective notch stress concept, a constant �� value has to be applied 
taking only the absolute notch acuity is taken into account. However, for increasing �
 the relative notch acuity changes (��/�
), meaning that except the zone 1 peak 
stress the zone 2 stress gradient – in average already included – is affected as well 
(Fig. 2.56). Although mentioned that scaling is incorporated (Fricke, 2012), it 
seems to be incomplete. 
Symmetry cases show similar behaviour, even if the weld toe notch is related to 

a discontinuous plate as shown for a PP DS cruciform joint (Fig. 2.57). The root 
notch size �� is scaled accordingly to keep the weld load-carrying behaviour similar. 
The structural hot spot stress concept related additional SCF (Poutiainen and 
Marquis, 2004b; 2006) remains constant as well, �/� = 1.15 [-], meaning �� effects 
are not involved at all. In fact, it is already excluded by definition since �/� = 1.0 
[-] for a non-load carrying weld no matter the plate thickness. The original 
correction factor (��,���/��)¯ still has to be applied. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.57: Effect of �� on ��((/�
) of a PP DS cruciform joint (loc. 5), (/ = 0. 
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Figure 2.58: Effect of �� on ���((′/�
′) of a PP SS butt joint (loc. 3), (/ = 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.59: Effect of �� on ���((′/�
′) of a PP SS butt joint (loc. 3), (/ = 1. 
 



74 Chapter 2. Weld Notch Stress Distributions 

 

For a weld root notch, e.g. location 3 at a PP SS butt joint, principally no changes 
appear as long as all other geometry parameters scale accordingly (Fig. 2.58). If 
not, both zone {2,3} stress gradients may be adjusted (Fig. 2.59). 
Generally speaking, if an incomplete fatigue scaling parameter like the nominal- 

or structural hot spot stress is adopted, the well-known plate thickness correction 
factor is very useful for both weld toe and weld root fatigue as long as the other 
geometry parameters scale accordingly – a reasonable assumption – since the zone 2 
stress gradient remains unaffected. Modifying the notch related plate thickness 
only, the correction factor becomes incomplete. Effects might be limited for 
continuous plate related notches; for discontinuous plate related ones – both weld 
toe and weld root – effects may become significant. For the latter, the zone 3 stress 
gradient might even be affected.  
 

2.9 Weld seam analysis 

Hull structures may contain £(103) metres weld seam. A fatigue assessment of all 
(identified critical) weld notch locations, hot spots, is a challenging task. The 
nominal stress as fatigue resistance measure often applied for welded joint fatigue 
design uses global loading and geometry information only, meaning the required 
effort is relatively low and calculated fatigue strength- and life time estimate 
uncertainty is limited. Adding local (structural hot spot- or notch stress) 
information improves the result. Effort increases, however, in particular for the 
typically FEA calculated structural response. Challenge is to reduce 
(computational) effort maintaining accuracy, i.e. use the remote mechanical loading 
induced welded joint far field stress obtained employing relatively coarse meshed 
plate/shell FE models – excluding weld geometry, the (idealised) welded joint 
geometry parameters and the semi-analytical formulations (Eq. 2.24, 2.39, 2.41) to 
construct the mode-I through-thickness weld notch stress distributions along the 
weld seam. The procedure will be illustrated for the different type of hot spots {8,9,7} using small scale specimen (SSS) as generally involved to obtain fatigue 
resistance information. 
In a quasi-2D cross-sectional approach along the weld seam – HS’s type 7 – of 

the first specimen (Matic et al., 2005; Fig. 2.60), the SS cover plate can be 
identified; one of the classified welded joints (Fig. 2.3). An offset has been used to 
model the cover plate in the shell FE model. To obtain the welded joint far field 
stress (Eq. 2.21), line forces -m rather than stresses are proposed to be used (Dong, 
2004) to reduce mesh-size sensitivity. The required nodal forces �m however are 
typically calculated in a global Cartesian coordinate system and need to be 
translated using a rotation matrix to the local weld coordinate system, i.e. {y′, {′}-
axis respectively along and perpendicular to the weld seam and |′-axis in thickness 
direction (Fig. 2.61). Depending on the element formulation order, -m can be 
determined; i.e. in a 1st order (linear) case using: 
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(2.51) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.60: Solid (coarse mesh shown for convenience) and shell  FE model of  
                   SS cover plate SSS (Matic et al., 2005). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.61: Local coordinate system at node along the weld seam in FE model. 
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The (element) length �m denotes the distance in between 2 consecutive nodes om and om+1; the (line) force vectors contain either the membrane forces or the bending 
moments, {� = � ∨ � = ´
} and {- = - ∨ - = .
}. 
The specimen (Fig. 2.60) is constrained as cantilever; loading is applied at the 

free end in terms of displacement, meaning the response is bending dominated. The 
obtained semi-analytical formulation (Fig. 2.62) in the critical location along the 
weld seam is compared to a solid FE model result; stresses in the notch affected 
region are missing since the mesh size is a trade-off between accuracy and 
calculation time. Note the shell/plate FE model does not contain the weld 
geometry as it is local information to be included using the semi-analytical 
formulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.62: PP SS cover plate weld notch stress distr. (loc. 1) at critical  

                       location; loading according to test setup (Matic et al., 2005). 
 

Another HS type 7 example is a SSS tubular SS T-joint (Mann, 2006; Fig. 2.63). 
The brace has been loaded in bending, i.e. the weld toe in the corner at the chord 
is the governing fatigue sensitive location. The corresponding far field stress 
distribution consists predominantly of bending as well (Fig. 2.64). The semi-
analytical solution overestimates the far field stress gradient a little. 
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  Figure 2.63: Solid (coarse mesh shown for convenience) and shell FE model of  
                  tubular SS T-joint SSS (Mann, 2006). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.64: PP SS T-joint weld notch stress distr. (loc. 1) at critical  

                         location; loading according to test setup (Mann, 2006). 
 

The weld ends require particular attention. Using solid FE models, for HS’s type 8 
principally the same procedure as for HS type 7 can be applied. However, in case 
of shell/plate FE models the procedure changes because of the 1 node weld end 
presentation. If the element size is relatively small, i.e. ≤ (��, ℎ�), the average line 
force along the weld end length {�
 + 2��, �$ + 2ℎ�} can be adopted and should be 
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calculated using the nodal forces along the weld end perpendicular to the weld 
seam as shown for a DS attachment (Haagensen et al., 1998; Fig. 2.65). However, if 
the element size is relatively large, i.e. ≫ (��, ℎ�), the virtual node method can be 
adopted (Dong, Hong, Osage and Prager, 2002; Fig. 2.66). Using static equilibrium, 
the nodal forces {�1, �2} of the element next to the weld end are redistributed over 
its length �, assuming the line force -1 is constant over the weld end length �1 and 
decreases linearly over (�1 − �): 
 

 

-1 = �1(�1 + �) + �2(�1 − �)�1 ⋅ �
-2 = �1(�12 + �2) + �2(�12 − 2�1 ⋅ � − �2)�1 ⋅ �(�1 − �)

 (2.52) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.65: Solid (coarse mesh shown for convenience) and shell FE model of 
                   DS attachment SSS (Haagensen et al., 1998).  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.66: Weld end HS type 8 equivalent line force using virtual node. 
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Figure 2.67: PP DS attachment weld notch stress distr. (loc. 1); loading  

                       according to test setup (Haagensen, 1998). 
 

Comparing the results obtained using a semi-analytical formulation and a solid FE 
model, the weld load carrying stress turns out to be in agreement since the match 
is perfect at ((/�
) = 0.5; FE stresses in the notch affected region are not available 
because of a relative coarse mesh size (Fig. 2.67). 
For weld end HS’s type 9, an artificial crack length ��′ has to be defined. 

Typically, ��′ = �� is adopted. The mode-I nodal forces �m along the presumed crack 
path as shown for a DS gusset plate (Daniels, 2001; Fig. 2.68) have been used to 
calculate the far field stress components: 
 

 

� = ∑(�m)�� ⋅ ��′
 �
 = 6{∑(�m ⋅ ym) − � ⋅ (��′)2

2 }
�� ⋅ (��′)2

 (2.53) 

 
Obviously the origin of the �� coordinate system is adopted. Although the DS 
gusset plate shows symmetry w.r.t. half the specimen width, (��′ < ·�) meaning  �� is non-symmetric (Fig. 2.69). The bending contribution, i.e. 7
�, is somewhat 
underestimated. 
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Figure 2.68: Solid and shell (coarse meshed) FE model of DS gusset plate SSS 
                   (Daniels, 2001). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.69: PP SS attachment weld notch stress distr. (loc. 1); loading  

                       according to test setup (Daniels, 2001). 
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2.10 Residual stress distribution 

Welding, a material fusion process, introduces thermal loading to the plates and 
shells being joined. After cooling down however, residual stresses around the weld 
seam are still present because of (local) material yielding and (global) structural 
deformation restraints. Rapid advances in computational modelling introduced the 
possibility to simulate the welding process and investigate the residual stress 
characteristics. Except for modelling of the temperature dependent material 
properties (phase transformations), the way the arc-welding torch is modelled, e.g. 
using Goldak’s heat source (Ferro, Berto and Lazzarin, 2005), as well as the degree 
of far field displacement constraints have been found to be governing parameters. 
Concerning the latter, the through-thickness mode-I distributions along the expected 
crack path have been classified as “bending” and “self-equilibrating” type as shown 
for a PP SS T-joint (Dong and Hong, 2001; Fig. 2.70). The qualification may be 
suitable for pipe girth welds (Song, Dong and Zhang, 2011), for welded joints in hull 
structures however the “bending” type should be replaced by “equilibrium” type. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.70: Quasi-2D mode-I residual stress distributions for a PP SS T-joint,  
                   obtained using numerical simulation (Dong and Hong, 2001).  

 
Like the remote mechanical loading induced notch stress, the “equilibrium” type 
residual stress distribution (Fig. 2.70a) is assumed to be a linear superposition of 
an equilibrium equivalent- and self-equilibrating part. The former may contain both 
a membrane and bending component, i.e. the “bending” type definition has become 
incomplete. The involved (full) displacement constraints physically represent the as- 
welded (AW) joint embedded in the ship structure far field material. Without 
displacement constraints the equilibrium equivalent stress part tends to become 
zero and the residual stress distribution will be of the “self-equilibrating” type (Fig. 
2.70b). The same type appears for a constrained joint subjected to a post-welding 
stress relieving (SR) procedure; an heat treatment for example. 

+ = 

a) displacement constraints b) no displacement constraints 
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Figure 2.71: PP DS T-joint weld notch residual stress distr. (loc. 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.72: PP DS T-joint weld root notch residual stress distr. (loc. 6). 
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Measurements performed using neutron or synchrotron diffraction – sufficient 
density in plate thickness direction is required – confirm the “equilibrium” type 
residual stress distribution at the weld toe for a DS attachment (Nitschke-Pagel 
and Dilger, 2011). Actually, the loading and geometry considerations introduced for 
the remote mechanical loading controlled stress at weld toe and weld root seems to 
hold for the thermal loading induced residual stress, meaning both distributions 
show the same stress field similarity (Fig. 2.1). 
The equilibrium equivalent residual stress part magnitude depends on level of 

heat input including the number of weld passes and axial displacement constraint; 
the zone 3 stress gradient is predominantly a matter of rotational displacement 
constraint and joint symmetry with respect to (��/2). The self-equilibrating stress 
part however is principally weld geometry dependent. The V-shaped notch stress 
component �LL (Eq. 2.10) for remote mechanical loading will not change for steady 
state thermal loading (Ferro, Berto and Lazzarin, 2005). In comparison to the 
welding process transient thermal loading induced notch stress, differences are quite 
small. Assuming the weld load carrying stress behaves similarly means the self-
equilibrating stress part for both remote mechanical and welding induced thermal 
loading is approximately the same.  
Simulations for a full displacement constrained PP DS T-joint (Barsoum and 

Lundbäck, 2009) show residual stress distributions of the (approximately) “self-
equilibrating”- and “equilibrium” type for a weld toe and weld root, respectively a 
symmetry and non-symmetry case (Fig. 2.71 and 2.72). Because of an involved 
simplified heat source formulation, i.e. a constant flux rather than Goldak’s heat 
source or equivalent, the residual stress in the notch affected region is 
underestimated using a semi-analytical formulation. 
The residual stress is often assumed to be highly tensile, about yield magnitude. 

However, following both the simulation and measurement results, it is limited to 
the notch affected region ((/��) → 0, i.e. zone {1,2}, in particular for the 
“equilibrium” type. A linear elastic residual stress formulation seems to be justified, 
although notch plasticity can be taken into account modifying the V-shaped notch 
stress formulation (Lazzarin, Zambardi and Livieri, 2001). At the same time, cyclic 
(over)loading induced stress redistribution effects will be limited to the notch 
affected region as well. Its influence can still be considerable if a significant part of 
the fatigue life is related to crack initiation. The “self-equilibrating” type on the 
other hand can be compressive in the notch affected region as shown for a PP SS 
T-joint (Fig. 2.70) as confirmed in a similar investigation (Ferro, Berto and 
Lazzarin, 2005) for a FP SS butt joint. If both the remote mechanical- and welding 
induced thermal loading related stress distributions contribute to fatigue damage at 
weld notches and crack initiation will be governing, the fatigue life time for a 
constrained AW joint – the equilibrium equivalent residual stress is irrelevant – is 
smaller in comparison to a non-constrained or SR joint for the same far field 
loading applied, as experimentally observed (Bertini, Fontanari and Straffellini, 
1998).  
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2.11 Total stress concept 

Fatigue is concerned with crack initiation and crack growth (Fig. 2.73). Governing 
parameter in the initiation period, a (near) surface phenomenon, is the SCF. Micro-
crack growth is typically included because of the low crack growth rate, although 
the initiation-growth transition definition is a qualitative one. If a crack penetrates 
into the material, the macro-crack growth resistance – a material bulk property – is 
taking over control. The stress intensity factor (SIF) is the crack growth period 
dominant parameter. Both SCF and SIF are defined as loading and (respectively 
intact and cracked damaged) geometry dependent. 
  
 
 
 
 
 
 
 
 
 
 

Figure 2.73: Quasi-2D fatigue and fracture scheme. 

 
The SCF �� is meant to be a loading and geometry controlled zone 1 similarity 
parameter, i.e. the (cyclic) remote mechanical loading induced linear elastic (peak) 
stress range � required to initiate a fatigue crack in an intact plane geometry like a 
FP reinforcement removed butt joint (�� = 1): � = ∆�, should be the same as for 
a notched geometry (�� > 1): � = ��∆�. However, the effective stress concentration 
often turns out to be smaller, similarity is violated and the fatigue- or endurance 
limit ∆�¹ related notch factor �� = {∆�¹(�� = 1)/∆�¹(�� > 1)} has been 
introduced. Assuming at least a significant part of the welded joint fatigue life in 
number of cycles ¢  is related to crack initiation rather than crack growth, the ��  
definition can be translated to any stress range ∆� in the medium and high-cycle 
fatigue region; �� = º�� ∈ (0 < º ≤ 1). Similarity requires ��  to consider loading 
(amplitude, gradient, load ratio (¼ ), geometry (absolute and relative notch acuity, 
i.e. notch radius �, notch angle �, root notch size �� and size effect) as well as 
material (i.e. quality, hardness, surface condition and elastoplastic notch behaviour); 
the latter in particular for ductile alloys like the aluminium 5xxx and 6xxx series.  
To estimate the ��  zone 2 stress gradient contribution, a micro-structural notch 

support hypothesis (Neuber, 1937; Sonsino et al., 2012) can be adopted, averaging 
the notch stress over a material-characteristic micro-structural support length �∗ 
and taking loading and geometry effects into account using a notch support factor ¾. 
Zone 3 stress gradient effects are included implicitly as far as the notch affected zone 
is concerned. The real notch radius � is artificially enlarged employing a fictitious 
one �� = ¾((¼, �,… ) ⋅ �∗ to obtain the effective notch stress of the original 
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geometry. At the same time, investigation of the actual weld seam shows however 
that � is widely scattered, meaning the statistical weld volume effect has to be 
incorporated as well. The effective notch radius �� = �(h, �) + ��(¾, �∗) and notch 
factor �� = ��(��) define the effective notch stress concept principle. Optimum �� 
values (i.e. average ones; ¾ is loading and geometry dependent) for weld toe and weld 
root have been obtained fitting �-¢  welded joint fatigue data in order to achieve a 
Basquin type of relation: log(¢) = 7 − . ⋅ log{�(�� ,∆�)}, an optimum standard 
deviation � and least squares solutions for the welded joint fatigue resistance 
constant 7 and curve slope ., incorporating the (quasi-constant) welding process 
induced thermal effects implicitly. The real notch radius component is assumed to be 
a worst case value (� = 0); � contains the statistical part. Based on �� estimates one 
reference value �� has been proposed to be used in engineering applications for both 

weld toe and weld root notches (Zhang, 2012; Zhang, Sonsino and Sundermeier, 
2012). However, things should be made as simple as possible, but not any simpler. 
Notch plasticity – whether a result of high remote mechanical loading, welding 
induced residual stress or both – introducing the (cyclic) work hardening exponent o, a material parameter, is ignored and ��  is limited to be used for a predominant 
linear elastic structural response. Although mentioned that size effects are included 
(Fricke, 2012), only the absolute notch acuity has been taken into account and ��  
as scaling parameter is still incomplete. The relative part has been proposed to be 
incorporated – without experimental validation – using one of the weld dimensions {��, ℎ�} rather than plate thickness �� (Schijve, 2012). For weld toe induced fatigue, 
however, the plate gets damaged and it seems obvious to adopt �� rather than {��, ℎ�}. The {��, ��, ℎ�, ��} dependent artificial plate thickness ��′ should be 
involved for the weld root; scaling is not exclusively a matter of weld size.  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.74: Notch and defect sensitivity correlation; endurance limit similarity.  
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The plane geometry fatigue- or endurance limit (∆�¹ = ∆�0) is a material 
parameter, a threshold value defining on the one hand an upper limit that cannot 
be exceeded (Fig. 2.74). On the other hand, a fully effective notch (�� = ��) 
defines the lower limit: ∆�¹ = (∆�0/��), a structure parameter. Decreasing  �� of 
a blunt notch, the notch sensitivity increases and the peak stress becomes 
conservative (�� < ��). At the same time, for decreasing � the notch factor ��(��) decreases as well until some point ��; �� may still increase although ��  
remains constant and the �� -�� relation becomes insufficient. For � → 0, the peak 
stress and zone 1 parameter �� approach infinity and become inapplicable; the 
lower limit ∆�¹ = (∆�0/��) → 0 and the zone 2 weld geometry stress becomes 
governing. If the sharp notch denotes a crack, i.e. (2� = 2�) and (�� = �), the KT 
diagram (Kitagawa and Takahashi, 1976; Fig. 2.74) is obtained. Continuing the �� 
decrease, a critical notch or crack size �0 (El Haddad et al., 1979) – a material 
defect sensitivity parameter having the same physical meaning as intact geometry 
parameter �∗ (Radaj et al., 2013) – appears. For (�� < �0) the root notch size 
hardly influences the endurance value and approaches the plane geometry upper 
limit: ∆�¹ → ∆�0, a zone 3 field stress parameter. For (�0 < �� < ��), the zone 2 
notch stress loading mode-I component �LL along the bi-sector (K = 0) is assumed 
to be dominant (Atzori and Lazzarin, 2000; Atzori, Meneghetti and Susmel, 2002) 
and the endurance limit scales according to ∆�¹��1−;g = 7, introducing similarity. 
A critical sized crack, (�� = �0) and {B/ = B1 = (1/2)}, yields the material crack 
growth threshold: ∆��ℎ�;1−1 = ∆�0�01−;1 .  
For a crack initiation dominated fatigue life, the notch stress gradient based 

endurance limit similarity can be translated to the medium- and high-cycle fatigue 
range, introducing the mode-I notch stress intensity factor (NSIF): �ÂÃ = (2�)1−;g ⋅lim �→0+{(1−;g�LL((, D = 0)}. In case of a crack �ÂÃ  turns into the SIF �Â definition, 
i.e. �ÂÃ  bridges the crack initiation- and crack growth parameter (Fig. 2.73), 
respectively ��(��) and �Â . Like the SCF, the NSIF is a remote loading dependent 
and intact geometry linear elastic response parameter, although notch elastoplasticity 
can be taken into account (Lazzarin, Zambardi and Livieri, 2001). Using the weld toe 
notch stress formulation (Eq. 2.10), the NSIF can be rewritten: �ÂÃ = °1�/��1−;g 
(Lazzarin and Tovo, 1998); ∆�ÂÃ = °1∆�/��1−;g , taking (only) the absolute notch 
acuity into account. The curve fitted remote loading and joint geometry dependent 
correction function °1 implicitly includes the zone 2 weld load carrying stress 
contribution as well as zone 3 stress gradient effects in the notch affected zone. For a 
weld root notch �ÂÃ = �Â = °1�/��1−;1 . However, like the NSIF and SIF units (B/ ≠ B1), the scaling parameter for weld toe and weld root notches, respectively ��1−;g and ��1−;1 , turn out to be different, meaning it is principally wrong to 
combine weld toe and weld root fatigue data; not even if {∆�ÂÃ ,∆�Â} are translated 
to energy density as proposed (Livieri and Lazzarin, 2005; Fricke, 2012) solving only 
the units part. Besides, the NSIF implies a sharp notch assumption (Fig. 2.74). 
Although a reasonable worst case scenario for welded joints – from physical point of 
view (� = 0) seems rather fictitious than (� = ��) – it is impossible to include weld 
volume effects and the corresponding uncertainty should be part of the Basquin 
relation {�ÅÆ(¢) = 7 − . ⋅ log(∆�ÂÃ)} residual, i.e. standard deviation �. 
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The total welded joint fatigue life ¢  consists of a crack initiation and crack 
growth contribution: ¢ = ¢m + ¢Ç (Fig. 2.73). Although not easy to distinguish 
because of the gradual transition, some two-stage parameter models have been 
proposed (Brandt, Lawrence and Sonsino, 2001; Lassen and Recho et al., 2005, 
2006 and 2009). Key element is an assumed(!) micro-crack coalescence size �$, 
respectively 0.25 and 0.10 [mm] based on different arguments: theoretical (e.g. 
fracture mechanics modelling restrictions), practical (e.g. detectability) as well as 
typical (�$ = �� ) but still artificial, affecting the (¢m/¢Ç) ratio up to a large 
extent. 
With respect to crack initiation, the linear elastic part of the Coffin-Manson 

equation including Morrow’s mean stress correction has been adopted: log(2¢m) =.1 ⋅ log{2(�� ′ − �)} − .1 ⋅ log{��∆�/}. The involved zone 1 parameter  ��(��) 
requires a notch radius �. Proposed values include either a micro-structural notch 

support hypothesis based worst case effective value �� = ��  similar for weld toe and 
weld root notches (Brandt, Lawrence and Sonsino, 2001) or an extreme value }È (��) including the real statistical component (Lassen and Recho et al., 2006), 
respectively obtained using notched weld (root) material specimen fatigue test �-¢  
data assuming (¢ ≈ ¢m) and weld geometry measurement results. The material 
parameters, fatigue strength coefficient �� ′ and curve slope .1, are determined 
using smooth hour-glass shaped weld (root) material specimen in strain controlled 
tests (Brandt, Lawrence and Sonsino, 2001) or material dependent empirical 
relations calibrated using welded joint �-¢m fatigue test data covering the number 
of cycles up to the micro-crack transition size (Lassen and Recho, 2009). The mean 
stress � is obtained using either cyclic stress-strain measurement data of the hour-
glass shaped specimens (Brandt, Lawrence and Sonsino, 2001) or is simply assumed 
to be at yield magnitude because of the welding induced residual stress (Lassen and 
Recho et al., 2006). 
For arc-welded joints it seems inevitable that crack nuclei (defects), already exist – 

at least in a worst but realistic case scenario – naturally introducing the linear elastic 
fracture mechanics (LEFM) crack damaged geometry parameter �Â (Fig. 2.73). 
LEFM can straightforward be applied for cracks (� > �0), provided the far field 
stress induced degree of notch plasticity is limited. To get some idea about order of 
magnitude: for Al5083 base material, �0 ≈ 30…40 [hm] independent of remote loading 
ratio (¼ (Kranenburg, 2000); the AW joint average heat affected zone and weld 
material value (Livieri and Lazzarin, 2005) �0 ~ 140 [hm]. The SIF �Â naturally 

allows to incorporate the total mode-I weld notch stress distribution. For a weld toe 
geometry �Â = É�(�/�, �)É�((/, �)�/(��)1−;1 . The weight function É�((/, �) and 
structural stress �/ represent the zone 3 macro-crack related equilibrium equivalent 
far field stress contribution; É�(�/�, �) the zone {1, 2} micro-crack associated self-
equilibrating stress part. A weld root notch �� introduces a geometric notch and 
crack similarity, turning the SIF into �Â = É�(É��, (/, �� + �)�/{�(�� + �)}1−;1 ; É�� takes the weld geometry into account. Note that a (virtual) crack path 
assumption is required what might be considered as disadvantage, although for 
weld {toe, root} notches in predominant orthotropic and mode-I governing hull 
structures it will likely be in plate thickness {��, ��′} direction. 
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The cyclic remote mechanical loading turns �Â into a driving force ∆�Â and 
may initiate crack growth. The sigmoidal shaped large/long (macro-)crack growth 
characteristic (d�/do)-∆�Â (Fig. 2.75) is divided into: 
 
• region-I (crack growth near threshold)  
• region-II (linear, steady state crack growth)  
• region-III (unstable crack growth up to final fracture).  
 

Below the threshold ∆��ℎ cracks principally do not grow. The region-III fatigue  
life time contribution is quite small because of the high crack growth rate (d�/do) 
and considered not that important from fatigue (design) point of view. Although 

micro-cracks emanating at notches show anomalous growth rates (Fig. 2.75)            
– explaining why ��(��) should include elastoplastic notch behaviour – for the two-
stage two-parameter models, ¢m is supposed to include region-I micro-crack growth 
and the region-II Paris equation  log(d�/do) = 7′ + .2 ⋅ log{∆�Â(∆�/, É� , �)} is 
sufficient to obtain the Basquin type of relation for the macro-crack growth part: log(¢Ç) = 7 − .2 ⋅ log{∫ -(∆�Â) d�}. Typically standard crack growth  specimens 
are used to acquire the macro-crack growth resistance coefficient 7′ and slope .2 
(Brandt, Lawrence and Sonsino, 2001; Lassen and Recho et al., 2005, 2006 and 
2009). Relative notch- or crack-acuity is not taken into account. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2.75: Anomalous growth rates for micro-cracks emanating at notches. 
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Intuitively, crack initiation and crack growth are different fatigue mechanisms, 
meaning the slopes {.1,.2} will likely be different. It seems obvious that up to a 
certain transition (coalescence) point ¢$(∆�$) crack initiation (i.e. micro-crack 
growth) dominates; macro-crack growth is governing beyond, justifying a two-stage 
model that – by the way – should apply to constant amplitude (CA) as well as 
variable amplitude (VA) loading. Question is whether a two-parameter concept is 
the best solution to include two-stage behaviour. Except for the micro-crack 
transition size �$, the actual AW joint fatigue test data is only used for calibration 
purposes of some crack initiation model parameters or not involved at all, assuming 
a series of initiation and growth similarity conditions for (standard) specimen and 
AW joints rather than a one-to-one correspondence between model life time 
estimates and �-¢  test data; a welded joint fatigue resistance similarity. Scaling 
issues are still unsolved. 
The one-stage one-parameter notch stress- and notch stress intensity factor 

concepts involve respectively the zone {1, 2} intact geometry parameters �� = ��(��) and �ÂÃ , assuming that crack initiation is governing. A two-stage 
two-parameter concept incorporates both initiation and growth, i.e.  ��  or �ÂÃ  as 
well as �Â . However, rather than a one-stage one-parameter or two-stage two-
parameter concept, a two-stage one-parameter concept using the total stress �Ì  is 
proposed. The complete remote mechanical loading controlled through-thickness 
weld toe- or weld root notch stress distribution {��((/��), ���((′/��′)} is taken into 
account, meaning all zone {1, 2, 3} governing stress components are involved. 
Limiting the structural response to linear elastic behaviour, stress field similarity 
(Fig. 2.1) – a modification of an existing representation (Atzori and Lazzarin, 2000; 
Atzori, Meneghetti and Susmel, 2002) – has already been demonstrated (Paragraph 
2.6 and 2.7) using linear superposition of an equilibrium equivalent and self-
equilibrating part. The latter, the weld geometry stress, controls zone {1, 2}; the 
former, the structural field stress, dominates zone 3. All welded joint geometry 
parameters {�
, �$, �$, ��, ℎ�, ��, �} are involved, i.e. the absolute notch acuity has 
been taken into account. Conceptually, the same stress field similarity has been 

observed for the thermal loading induced residual stress distribution (Paragraph 

2.10). Typical hull structure AW joints show displacement constraint control up to 
some extent, i.e. are considered to be of the “equilibrium” type. 
The total through-thickness weld {toe, root} notch stress distribution {��Ì , ���Ì } is a linear superposition of the cyclic remote mechanical- and quasi-

constant welding induced thermal part, often referred to as respectively the 
primary- and secondary stress component. Although the actual loading sequence is 
the other way around, the former involves a stress range with corresponding load 
ratio; the latter a residual mean stress. Looking at crack paths originated at both 
weld toe and weld root notches as shown for FRANC2D (Cornell Fracture Group, 
2010) simulations in comparison to experimental observations (Fig. 2.13 and 2.34), 
a crack path similarity has been identified. The former includes only the cyclic 
remote mechanical loading induced stress; the latter the quasi-constant welding 
induced thermal residual stress, a mean stress contribution, as well. Since the   
crack growth direction for the simulations is based on maximum (1st) principal 
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stress, the zone {2, 3} stress gradient seems hardly residual stress affected no matter 
the different conditions, respectively loading and displacement controlled. Using {��((/��), ���((′/��′)} only, it will be assumed that stress gradient induced scaling 
effects can be reasonably well estimated.  
The number of weld passes and restrained material volume increase for increasing 

plate thickness �� and weld dimensions {��, ℎ�}. The “equilibrium” type residual 
stress distribution has already been found highly tensile (Fig. 2.70) – in particular for 
the zone {1, 2} notch affected region – and its magnitude will increase even further, 
introducing a size- or welding technology effect. Remote mechanical (over) loading 

may shake down the thermal residual mean stress; its equilibrium equivalent part in 
particular, however, because of the stress distribution similarity the zone {1, 2} 
mean stress including both residual stress and remote load ratio effects is assumed 
to remain highly tensile anyway and the influence of residual stress scaling will be 
limited. For zone 3, the remote mechanical load ratio (¼ is taking over control. 
Assuming the total fatigue life predominantly consists of crack growth, the 

macro-crack growth parameter �Â will be adopted. Cracks emanating at weld toe- 
or weld root notches show however anomalous growth rates (d�/do). Depending on 
the degree of notch and/or crack tip elastoplasticity, small/short cracks (initially) 
may tend to grow slower or faster in comparison to cracks in plane geometries for 
the same ∆�Â and accelerate or decelerate respectively to the large/long crack 
growth characteristic; similarity – the same crack growth rate for similar crack 
driving force – is violated (Fig. 2.75). A significant part of the welded joint fatigue 
life time is expected to be related to anomalous micro-crack growth because of the 
low (d�/do). The linear superposition of the predominantly elastic remote 
mechanical- and welding induced thermal notch stress distribution may significantly 
increase the total stress level and the possibility of notch and crack tip plasticity, 
introducing the (cyclic) work hardening exponent o as material parameter. Rather 
than introducing an effective (initial) crack size (El Haddad et al., 1979), the zone 
{2, 3} stress gradient of the cyclic remote mechanical part that has been found to 
be crack path direction governing, will be employed to estimate the anomalous 
micro-crack growth elastoplastic behaviour as well, in particular the weld geometry 
stress, i.e. the self-equilibrating stress part {�/�, �/��} that contains the notch 
characteristic properties. A two-stage micro- and macro-crack growth region-{I, II} 
model is proposed to achieve similarity, modifying the Paris equation:  
 

 
log (®�®o) = 7′ + o ⋅ log{É�(�/�, �)} +
                     .2 ⋅ log[-{∆�/, É�((/, �), �}]   

(2.54) 
 
 

 
The 2nd term yields the micro-crack growth behaviour in the notch affected region; o denotes a notch stress elastoplasticity correction (Filippi, Ciavarella and 
Lazzarin, 2002). Straightforward integration still yields a Basquin type fatigue 
resistance relation, since the total stress parameter �Ì  (i.e. an equivalent line 
criterion) includes the anomalous micro-crack growth behaviour: 
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 log(¢) = 7 − .2 ⋅ log(�Ì )   (2.55) 
 
with 
 

 �Ì = ∆�/
��(′)2−222 ÐÃ 12

    

 
and 
 

 ÐÃ = ∫ - {É� ( ���(′)) ,É� ( ���(′) , (/) ,( ���(′)) ,o,.2} ® ( ���(′))
( �Ñ�Ò(′))

( �s�Ò(′))
    

 
The geometry-, zone 1 peak stress- and zone {2, 3} stress gradient dependent notch 

crack growth integral ÐÃ  is proportional to ¢ , meaning it is quite easy to determine 
how much of the total fatigue life is involved reaching a certain (relative) crack 
length.  
Starting in the medium-cycle fatigue range, for decreasing �Ì (∆�/) the notch 

affected micro-crack growth behaviour may turn (gradually) from elastoplastic into 
elastic. The elastoplastic o value as well as its implicitly required transition point 
to elastic behaviour is unknown in advance and might be solved for. Another way 
to deal with elastoplasticity is to estimate the (average) MCF o value and apply an 
elastoplasticity induced HCF slope correction, introducing a two-slope formulation: 
 

 

log(¢) = 7 − .2 ⋅ log(�Ì ) −
{(.2.1) − 1} ⋅ log[1 + exp{log(�Ì ) − log(�$)}−1 ]

   (2.56) 
 
 
 

 
It is non-linear on log-log scale (Fig. 2.76). Beyond the total stress transition point �$ notch elastoplasticity is governing; below it becomes elastic. The model may be 
simplified applying the Paris equation separately to the medium- and high-cycle 
fatigue range. The slopes {.1,.2} will both be corrected for the missing 
elastoplastic micro-crack growth behaviour. The total stress parameter definition �Ì  remains unaffected; the notch crack growth integral ÐÃ  will be modified. For (.1 → ∞) the two-slope formulation (Eq. 2.56) will turn into a (random) fatigue 
limit formulation: 
 

 log(¢) =  7 − .2log(�Ì − �∞)  (2.57) 
 

The total stress parameter �Ì  requires an initial crack or defect size �m (assumption). 
It is often argued to be a critical parameter (Schijve, 2012) and for a two-stage 
model two-parameter concept it is indeed. However, if the total fatigue life is 
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involved and welded joint fatigue resistance similarity will be satisfied, within 
certain limits it can be any value since predominantly the fatigue resistance 
constant 7 will be affected, shifting the �Ì -¢  curve up or down. The real value 
includes a statistical component �m(h, �), required to include the weld volume effect 
because of a significant scatter along the weld seam. In comparison to the effective 
notch radius ��, artificial enlarging may be required for (� < �0) (Smith and Miller, 
1978; El Haddad et al., 1981) and the effective (initial) crack size yields: �� =�m(h, �) + �� . Note the �� and �� similarity. At the same time, a difficulty may be 
introduced that needs to be resolved. The total stress parameter �Ì  includes � as 
well as �. Both parameters contain a real-, fictitious- and statistical component, 
respectively assumed to be governing for the micro- and macro-crack growth 
governing parameters ��  and �Â . Besides, � affects the elastoplastic behaviour in 
the notch affected region as well. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.76: Medium and high-cycle fatigue joint �Ì -¢  curve. 
 
To include the relative (notch) crack acuity, it seems obvious to select the plate 
thickness {��, ��′}. This parameter is naturally introduced for the weld notch stress 
distribution and SIF because of the crack path. Last but not least, in terms of 
welded joint fatigue resistance similarity it is a parameter that small- and large 
scale laboratory specimen as well as full scale hull structures have in common. Note 
that the relative defect size (�m/��(′)) in that respect is considered to be the 
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explanation for the plate thickness correction factor (Maddox, 1987). For decreasing (�m/��(′)), the notch crack growth integral ÐÃ  tend to show asymptotic behaviour 
(Maddox and Webber, 1978; Dong and Hong, 2004) for (�m/��(′)) → £(10−3), i.e. 
for (� → 0) the total stress �Ì  becomes an endurance limit parameter. Although 
difficulties may be introduced with respect to physical interpretation and LEFM 
modelling limitations, an asymptotic ÐÃ(�m/��(′)) value would be an engineering 
solution and �� would be the remaining parameter to deal with notch effectivity 
(although the stress gradient is incorporated already) and statistical effects. In 
terms of geometric notch and crack similarity, the absolute and relative (notch) 
crack acuities may be taken into account using ��(′), (�(�)/��(′)) and (�(�)/��(′)). 
The resistance formulations (Eq. 2.55, 2.56 and 2.57) are principally joint �Ì -¢  

curves (Fig. 2.76): medium- and high-cycle fatigue damage at notches in the 
classified (aluminium) arc-welded joints can be calculated. A �Ì  based welded joint 
fatigue resistance similarity will be assumed between model estimates and actual 
test data concerning small scale- and large scale laboratory specimens (SSS and 
LSS considering respectively the welded joint only and including some neighbour 
structural members as identified in stiffened panels, frames or trusses) as well as 
full scale hull structures (FSS) to estimate the fatigue life ¢ , meaning the fatigue 
damage should be the same. The classification {SSS, LSS, FSS} is not related to 
welded joint dimensions as well up to what extent neighbour structural members 
are involved. The remote-mechanical stress is principally not affected; the residual 
stress part is and may require correction. 
The total stress parameter �Ì  definition and two-slope �Ì -¢  relation is 

principally argued from welded joint geometry and (cyclic) remote mechanical 
loading similarity point of view. The parameters {7,.1,.2, �$} or {7,.2, (�∞)}, 
material properties, will be obtained fitting SSS fatigue test data and include the 
(quasi-constant) welding process related thermal effects, i.e. the (mean) residual 
stress effects as well as (WM and HAZ) material structure, i.e. hardness, cyclic 
hardening coefficient, etc. The average {defect size, notch radius} might be 
obtained optimising the residual uncertainty. Since the stress gradient and notch / 
crack tip elastoplasticity are explicitly taken into account, the optima might be 
real- rather than effective values, since the fictitious components have become 
obsolete. The statistical component (distribution) should be determined using 
direct measurements anyway and can be used to deal with different weld qualities 
as well. Using LSS should achieve the same results. For FSS’s similarity is supposed 
to be maintained; validation in a measurement campaign is usually limited to the 
stress field (distribution). 
To deal with FSS production tolerances, i.e. offset- and angular misalignments, 

(zone 3) far field knock down factors {�,�
} have to be introduced for 
adequate fatigue life time estimates, since SSS and LSS misalignment induced far 
field stress corrections are aimed for to be taken into account in order to identify 
uncertainties rather than arriving at an uncertain residual uncertainty.  
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2.12 Conclusions 

Remote mechanical loading induced through-thickness weld toe- and weld root 
notch stress distributions {��, ���} have been examined to distinguish the involved 
stress components. A self-equilibrating weld geometry stress – consisting of a local 
V-shaped notch- and weld load carrying  part – and equilibrium equivalent global 
structural field stress are identified; a refinement of a well-known definition. The 
obtained semi-analytical formulations are related to the welded joint far field stress, 
calculated using a relatively coarse meshed {plate, shell} FE model as typically 
available for fatigue design purposes. Exploiting (non-) symmetry conditions, a 
generalised formulation demonstrating stress field similarity has been observed and 
extends to the welding induced thermal residual stress distributions {���, ����}.  
Fatigue scaling requires both the (zone 1) peak value and (zone 2 notch affected 

and zone 3 far field dominated) gradient to be incorporated, meaning a damage 
criterion should take the complete distribution into account; a prelude to {crack 
growth, welded joint fatigue resistance} similarity and finally a total stress concept. 
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3 
Weld Notch Stress Intensities  

 
 

Symmetry, as wide or narrow its meaning may be defined, is one idea that through  

the ages has been used to comprehend and create order, beauty and perfection. 

Hermann Klaus Hugo Weyl (1885-1955, mathematician) 

 

3.1 Introduction 

The remote mechanical loading induced mode-I through-thickness weld notch  
stress distributions {��, ���}, including a (local) zone 1 peak value and zone         
2 stress gradient in the notch affected region as well as a (global) zone 3 structural 
field stress gradient, proved to be generalised formulations and stress field similarity 
has been demonstrated exploiting symmetry (Chapter 2). Conceptually, the same 
applies to the welding process related residual stress distributions. 

Scaling of welded joint fatigue damage requires a total stress parameter definition 
taking all zone {1, 2, 3} remote- and residual stress contributions into account. The 
stress intensity (similarity) factor (SIF) � seems to meet this criterion, though, the 
intact geometry related notch stress distributions should be correlated to crack 
damaged equivalents; fatigue is assumed to be crack growth (dominated) process. 
At the same time, hull structure arc-welded joints inevitably contain flaws or crack 
nuclei (defects) – assumed to be mechanically or physically small – at the weld toe- 
and root notches, i.e. using the damage tolerant parameter � seems justified, since 
fatigue associated with the medium and high-cycle life time range at both locations 
will predominantly be a matter of {micro, macro}-crack growth. 

 
Outline 
Identifying the different contributions for remote loading controlled mode-I SIF’s at 
weld toe- and weld root notches, the corresponding �� definitions will be considered 
first (Paragraph 3.2). The zone 3 associated equilibrium equivalent stress contribution 
will be used to obtain a far field factor, distinguishing different type of cracks 
related to (non-) symmetry conditions (Paragraph 3.3) for both (quasi) 2D- and 3D 
configurations. A notch factor incorporates the zone {1, 2} governing self-equilibrium 
equivalent stress (Paragraph 3.4). Weld toe- and weld root notch stress intensities 
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are derived and illustrated (Paragraph 3.5 and 3.6) in order to investigate a notch 
affected micro- and far field dominated macro-crack region. Using a parameter 
sensitivity study of weld dimensions, including notch radius and plate thickness, 
size effects have been investigated (Paragraph 3.7). Finally, the welding induced 
and displacement controlled mode-I residual stress intensity factor (RSIF) ��� is 
acquired for both weld toe and weld root notches (Paragraph 3.8) to complete the 
total weld notch stress intensity similarity factor formulation ��	 = �� + ���. 

 

3.2 Definition 

The linear elastic stress field at an infinitely sharp crack tip (Eq. 2.13 to 2.15) 
shows square root singular behaviour for (′/��′) → 0. To quantify its magnitude, 
the SIF � – a loading and geometry dependent LEFM similarity parameter – has 
been defined. The stress field components {���, ���, ���} correspond respectively to 
the linear independent crack surface displacement opening mode-I, sliding mode-II 
and tearing mode-III (Fig. 3.1). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.1: Crack surface displacement modes (Janssen et al., 2002). 
 
Sliding mode-II becomes irrelevant in case of a thin {plate, shell} assumption  since 
through-thickness shear forces are neglected, meaning any hull structure multi-axial 
far field stress distribution is at most a bi-axial one. Opening mode-I however is 
considered to be dominant because of the stiffened (curved) panel induced 
orthotropic stiffness characteristics. The corresponding SIF �� is a 1st order damage 
tolerant parameter, i.e. only the 1st (singular) ��� term (Eq. 2.14) is incorporated. 
The linear elastic principle and quasi-2D infinite plane solution for a remote 
mechanically loaded crack (Fig. 3.2), size 2�, yields: 

 

 
�� = (2�)1−�1 lim�′→0+{(′)1−�1���,1(′, ' = 0)}

= �)
√��

 (3.1) 
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The singular ��� behaviour has been eliminated (Gross and Mendelson, 1972); (2�)1−�1  refers to the mode-I intensity for 2+ = 2�. To obtain the SIF for groove- 
and fillet weld geometries, weight functions (Albrecht and Yamada, 1977) will be 
introduced. Consistently using the intact geometry related weld notch stress 
distribution �� superposition (Paragraph 2.6), �� includes for weld toe cracks {,�, ,-}; a size/length dependent notch- and far field factor: 

 

 �� = �),�,-
√�� (3.2) 

 
The equilibrium equivalent stress part related far field factor ,-  incorporates the 
remote mechanical loading- and crack related geometry effects, i.e. both the 
membrane and bending component for finite plane dimensions (plate thickness) and 
free surface behaviour. The non-square root singular notch behaviour is taken into 
account using the self-equilibrating stress part induced notch factor ,�.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.2: Mode-I remote mechanically loaded crack in an infinite plane. 
 
 

Weld root cracks initiate at a notch in crack configuration (size ��), meaning the 
crack tip and root notch share the same square root stress field singularity and the 
SIF �� will be computed for a fictitious crack length (�� + �). The far field factor 
should take the weld reinforcement geometry into account ,-(,-.):  

 

 �� = �),-(,-.)√�(�� + �) (3.3) 
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Obviously ,� ≠ 1, although a separate notch contribution is not involved since   
the SIF already includes the square root singular behaviour. Adding the notch 
induced component would require a SIF redefinition since �� would become 
singular again. The weld geometry induced SIF contribution for a weld toe and 
weld root turns out to be respectively notch- and far field dominated.  

 

3.3 Far field factor 

The linear far field stress distribution in the fracture mechanics context is consistent 
with the one defined for the welded joint (Eq. 2.20). A superposition of the involved 
membrane and bending zone 3 component translated to the (unit) structural stress 
formulation (Eq. 2.21 to 2.23) applies to the far field factor as well. For a weld toe: 

 

 ,- = ,-2 − )(,-2 − ,-5) (3.4) 

 
The intact welded joint geometries (Fig. 2.3 and 2.5) should be related to crack 
damaged equivalents to obtain ,- , taking the characteristic features: notch location, 
symmetry and HS type into account (Paragraph 2.2). Single- and double edge crack 
geometries match respectively the weld toe non-symmetry and symmetry cases with 
respect to (��/2); the single edge- and centre notch geometries correspond to the 
weld root notch induced (non-)symmetry cases. Including the weld reinforcement 
contribution to comply with the welded joint far field stress definition yield: 

 

 ,- = ,-.{,-2 − )(,-2 − ,-5)} (3.5) 

 
To continue the quasi-2D approach adopted for HS’s type 6, weld notches along 
the seam (Paragraph 2.2 and 2.9), ,-  should be dealt with similarly. At the weld 
ends, HS’s type 7 require a 2D formulation by definition (Fig. 2.4); 3D effects have 
to be incorporated for HS’s type 8 only. Both HS type {8,7} appear to be 
predominantly weld toe notches.  

 

3.3.1 Single edge crack 

Weld toe notches along the weld seam – quasi-2D HS’s type 6 – showing non-
symmetry with respect to (��/2), require far field stress induced plate thickness and 
free surface effects to be taken into account with respect to the principle solution 
(Eq. 3.1): a single edge crack (SEC) geometry correction, like identified at location 
1 of a DS T-joint or SS butt joint (Fig. 3.3a).  
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Figure 3.3: Single edge crack at a) weld toe- and b) at (weld) root notch. 
 

Fortunately, a SEC geometry is often encountered in standard crack growth 
specimen, meaning handbook solutions are available (Tada, Paris and Irwin, 2000). 
The far field membrane and bending component {,-2, ,-5} are mentioned to be 
better than 0.5 [%] for any (�/��) in comparison to FE results, provided the far 
field stress distance criterion (9�/��) ≥ 1 is satisfied. 

 

 

,-2 (���) = √(2�) tan (�2 ⋅ ���) ⋅
0.752 + 2.20(���) + 0.370{1 − sin (�2 ⋅ ���)}3

√(���) cos (�2 ⋅ ���)

 (3.6) 
 
 

 
 
 

 

 

,-5 (���) = √(2�) tan (�2 ⋅ ���) ⋅
0.923 + 0.199{1 − sin (�2 ⋅ ���)}4

√(���) cos (�2 ⋅ ���)

 (3.7) 
 
 
 

 
 

 
The only geometry parameter involved turns out to be the plate thickness ��, 
meaning {,-2, ,-5} are basically welded joint independent. Crack growth specimen 
however typically contain – like a PP SS butt joint (Fig. 3.3b) – a single edge notch 
(SEN) with, i.e. a (weld root) notch in crack configuration (size ��) where the 
crack is supposed to initiate and the fictitious crack length becomes (�� + �): 

 

 (���) = (��Q� ) + (��′Q� )( ���′) (3.8) 

� 

9� 

� 

9� 
��′ Q� �� 
�� 

9. 

9� �2 + �5 �2 + �5 
9� 

ℎ. 

�� 

a) b) 
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For a SEN crack growth specimen (Q� = ��) and (��′ = �� − ��), meaning ,-  does 
principally not change. A weld geometry introduces a reinforcement to be included; (Q� = �� + ℎ.) and (��′ = �� + ℎ. − ��) for root notch location 3 of a SS butt 
joint. To maintain compliance with the far field stress definition, ,-  needs to be 
modified using a weld geometry component ,-.. Parametric curve fitted ,-. 
solutions available are quite often limited concerning welded joint dimensions. 
Using the coarse meshed FE models as applied for the weld root notch stress 
distributions (e.g. Fig. 2.36), �� is obtained for different (�/��′) adopting a 
stiffness derivative technique rather than the S -integral (Banks-Sills, 1991). Both 
methods require a virtual crack extension and are equivalent in terms of accuracy. 
The former however just needs the displacement field; the latter requires a strain 
field, derivative(!) information. The crack tip adjacent nodes are moved to the 
isometric (1/4) and (3/8) positions – the latter for the centre node only – to 
introduce the square root singular crack tip behaviour. The calculated weld geometry 
far field function ,-. is a curve fitted 4th order polynomial approximation: 

 

 

,-. (���)= ���)
√��,-

= T0 + T1 (���) + T2 (���)
2 + T3 (���)

3 + T4 (���)
4
 (3.9) 

 
 
 
 

 
With respect to the non-symmetric (weld root) notch stress distribution in the 
cross-section of the crack, the structural field root- or equilibrium equivalent stress 
part is included implicitly.  

For weld end HS’s type 7, predominantly weld toe notches, ,-  as obtained for 
the HS’s type 6 (Eq. 3.4 and 3.5) can still be used, since a 2D edge crack 
formulation is required by nature. Only the plate thickness notation needs to be 
modified: (�� → ��′). 

Like the 3D far field stress effects (Paragraph 2.9), the weld toe related semi-
elliptical crack formulations are required to incorporate 3D crack shape effects at 
weld end HS’s type 8, introducing the crack aspect ratio (�/T) as illustrated (Fig. 
3.4). Handbook solutions are available (Newman and Raju, 1981; Murakami, 1987); 
the latter has been adopted because of the (�/��) range of application. 

 

 ,-2 (���) = V1 + V2 (���)
2 + V3 (���)

4

Φ  (3.10) 

 

 ,-5 (���) = {1 + Y1 (���) + Y2 (���)
2},-2 (���) (3.11) 

 
with 
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V1 =    1.13 − 0.09(�T)
V2 = −0.54 + 0.890.2 + (�T)
V3 =    0.50 − 10.65 + (�T)   + 14{1 − (�T)}24

Y1 = −1.22 − 0.12(�T)
Y2 =    0.55 − 1.05(�T)

0.75 + 0.47 (�T)
1.50

  

 
and 
 

 

Φ = ∫ √1 − {1 − (�T)
2}2 sin2(b) dbd2

0
 ≈ (�2)[1 − (14){1 − (�T)

2}   −      ( 364){1 − (�T)
2}2 −

             ( 51024){1 − (�T)
2}3 − ( 17565536){1 − (�T)

2}4]

 
 

 
The elliptical integral of the 2nd kind Φ has been approximated using a Maclaurin 
series expansion considering the first 5 terms only. The far field component 
formulations (Eq. 3.10 and 3.11) are mentioned to be accurate within 5.0 [%] for {(�/��) ≤ 0.8} and {0.0 ≤ (�/T) ≤ 1.0} in comparison to FE results. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Semi-elliptical edge crack. 

� 2T �2 + �5 

�� 
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3.3.2 Double edge crack 

Considering the weld toe notch locations of a DS cruciform joint, DS cover plate or 
DS butt joint (Fig. 3.5a), quasi-2D HS type 6 examples, ,-  requires except the 
plate thickness and free surface corrections a symmetry condition with respect to (��/2) to be satisfied as well, introducing the double edge crack (DEC) geometry. 

 
 
 

 
 
 

 
 
 
 

Figure 3.5: Double edge crack at a) weld toe notches and at b) root notches in       
                crack growth specimen. 
 
The handbook solution is limited to ,-2 (Tada, Paris and Irwin, 2000). In terms of 
accuracy it is better than 0.5 [%] for any (�/��) in comparison to FE results, 
provided the far field stress distance criterion (9�/��) ≥ 1 is satisfied. The far field 
bending component ,-5 is a FE curve fitting result as well. Note that for () = 1) 
induced cyclic remote mechanical loading the cracks are alternately loaded in 
tension and compression mode. 

 

 

,-2 ⎩{⎨
{⎧ �

(��2)⎭}⎬
}⎫ = 1

⎷
√√√
√

1 −
⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫ ⋅

⎣⎢
⎡1.122 − 0.561

⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫  

− 0.205
⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫2

+ 

           0.471⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫3

+ 0.190
⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫4

 
⎦⎥
⎤

 (3.12) 
 
 
 
 
 
 
 
 
 
 

 

� 

9� 9� 

�� 
�2 + �5 

� 
��/2 
��/2 

� ��′/2 
Q� 

�� 
��′/2 

9� 

�2 + �5 

9� 

= 

�� 
� �� 

a) b) 
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,-5 ⎩{⎨
{⎧ �

(��2)⎭}⎬
}⎫ = 1

⎷
√√√
√

1 −
⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫ ⋅

⎣⎢
⎡1.123 − 1.358

⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫  

+ 5.553
⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫2

− 

           9.687 ⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫3

+ 8.776
⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫4

    
⎦⎥
⎤

 (3.13) 
 
 
 

 

 
 
 
 
 
 

 
Cracks initiating at weld root notches in symmetry configuration with respect to (��/2), introduce a double edge notch (DEN) geometry as often applied in standard 
crack growth specimen, i.e. �� = Q� (Fig. 3.5b) with: 

 

 

⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫ =

⎩{⎨
{⎧  �� 

(Q�2 )⎭}⎬
}⎫ +

⎩{⎨
{⎧(��′2 )

(Q�2 )⎭}⎬
}⎫

⎩{⎨
{⎧  � 

(��′2 )⎭}⎬
}⎫ (3.14) 

 
The welded joint selection (Fig. 2.3 and 2.5) does not contain similar quasi-2D HS 
type 6 weld root notches along the weld seam, just like weld notches of HS type 7. 
Because rarely needed, double edge semi-elliptical surface crack formulations 
required for HS’s type 8 are not available; the SEN ,-  will be used instead.  
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3.3.3 Centre crack 

Only (weld) root notches facing symmetry with respect to (��/2), either in a quasi-
2D standard crack growth specimen, PP DS T-joint, PP DS cruciform joint or PP 
DS butt joint (Fig. 3.6), may develop a centre crack (CC) at the root notch (size 2��) already present; a centre notch (CN) geometry.  

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

Figure 3.6: Centre crack a) in plate and b) at (weld) root notches. 
 
In case of far field bending, alternately half the crack is loaded in tension mode; the 
other half in compression, like for the DEC geometry. The {,-2, ,-5} handbook 
solutions, better than 1.0 [%] for any (�/��) in comparison to FE results if the far 
field stress distance criterion (9�/��) ≥ 1 is satisfied, yield (Murakami, 1987; Tada, 
Paris and Irwin, 2000):  

 

 

,-2 ⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫ =    

⎷
√√√
√

sec
⎩{⎨
{⎧�2 ⋅  � 

(��2)⎭}⎬
}⎫ ⋅

⎣⎢
⎡1 − 0.025

⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫2

+ 0.06
⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫4 

⎦⎥
⎤

 (3.15) 
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,-5 ⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫ =      2

⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫ ⋅ ⎷

√√√
√

1 − 2
⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫    
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⎡ 1 − 8

⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫3 

⎦⎥
⎤

⋅

⎣⎢
⎡1 +

⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫  

+    1.5
⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫2

−

   5.5⎩{⎨
{⎧  � 
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+ 7.424
⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫4 

 
⎦⎥
⎤

 (3.16) 
 
 

 

 
 
 
 
 

 
with 
 

 

⎩{⎨
{⎧  � 

(��2)⎭}⎬
}⎫ =

⎩{⎨
{⎧  �� 

(Q�2 )⎭}⎬
}⎫ +

⎩{⎨
{⎧(��′2 )

(Q�2 )⎭}⎬
}⎫

⎩{⎨
{⎧  � 

(��′2 )⎭}⎬
}⎫  

 
Because of the weld geometry, the Q� size denote either Q} = (�} + 29. − 2��) or Q5 = (�5 + 2ℎ. − 2��). The reinforcement correction ,-. needs to be involved  (Eq. 
3.5) to satisfy the far field stress definition. The solutions available in literature, 
e.g. (Frank and Fisher, 1979; Noblett and Andrews, 2000) and (Sonsino, Radaj, 
Brandt and Lehrke, 1999) for respectively a PP DS cruciform joint and PP DS butt 
joint, are obtained using parametric geometry variations and curve fitting of the 
calculated SIF results. However, the former requires (9./ℎ.) = 1 and (�}/�5) = 1; 
for the latter ,-. is available for membrane far field loading only. Since the weld 
root SIF is quite sensitive to geometry parameter variations, in particular the (9./ℎ.) ratio (Al-Mukhtar, Biermann, Henkel and Hübner, 2009), the coarse 
meshed FE models (e.g. Fig. 2.39) have been used in a similar procedure as applied 
for the SEC at SEN geometries to prevent for limitations. 

Centre crack HS type {8,7} formulations are not required, although an 
embedded elliptical crack handbook solution is available (BS7910, 2005) if 3D 
effects should be included. 
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3.4 Notch factor 

The self-equilibrating stress part �)~(/��), an intact weld toe geometry dependent 
distribution along the assumed or virtual crack path (Fig. 3.7), will be applied as 
unit crack face traction – the formulation ,�,-  rather than (,� + ,-) has been 
adopted – to obtain ,�, the linear �) dependent notch SIF zone {1, 2} contribution, 
using the weight function approach (Bueckner, 1987). 

 

 

,� = (2�)∫ {�)~ ( ��) + 1}√�2 − 2 d�
0

 = (2�)∫ {�)~ (� ⋅ ���) + 1}
√1 − (  � )2 d (�)1

0

 (3.17) 
 
 
 
 

 

The through-thickness crack coordinate (�/��) naturally replaced the through-
thickness stress coordinate (/��). Note that ,� is assumed to be a (quasi) 2D effect, 
even if combined with the 3D affected semi-elliptical far field factor formulations, 
since in front- and aft of the considered cross-section (i.e. along the weld seam) the 
same notch stress concentration exists. Only in thickness direction the stress level 
decreases, defining the (crack) path of least resistance accordingly. In case of 
symmetry, ,� incorporates the corresponding notch stress contribution assumptions 
(Paragraph 2.6.2). 

  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.7: Self-equilibrating stress part applied as unit crack face traction at weld  
                toe notches for a) non-symmetry and b) symmetry w.r.t. (��/2). 

 

The SIF includes the crack tip characteristic square root singular behaviour by 
definition. However, a weld root notch in crack configuration (Fig. 3.8), shows 
similar behaviour and to extract the notch effect, the root notch size �� should be 
involved: 
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�� 
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 ,� = ,��,��  (3.18) 

 
with 
 

 ,�� = (2�)∫ {�)~� (′ − ����′ ) + 1}
√(�� + �)2 − ′2 d′��+�

��
  

 
and 
 

 

,�� = (2�)∫ 1√(�� + �)2 − ′2 d′��+�
��

 = 1 − (2�)arcsin
⎩{{
⎨{
{⎧ (��Q� )

(��Q� ) + (��′Q� )( ���′)⎭}}
⎬}
}⎫

 
 

 
Note that the (linear) unit stress notch factor ,�� is shown for a non-symmetry case 
like a SEN geometry (Fig. 3.7); in case of symmetry, e.g. a CN geometry, (Q� → Q�/2) and (��′ → ��′/2). In agreement with the weld toe notch related intact 
geometry formulation, ,��(�� = 0) = 1 and (,� = ,��).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.8: Self-equilibrating stress part applied as unit crack face traction at weld  
                root notches for a) non-symmetry and b) symmetry w.r.t. (��/2). 
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3.5 Weld toe notch stress intensity factor 

The non-square root singular behaviour to be taken into account using the weld 
geometry stress induced ,� is a key feature of weld toe notch SIF’s. A notch angle 
different from the crack configuration value (0 < 2+ < 2�) and a stress angle (� > 0) 
means that for a remote mechanical loading controlled mode-I based far field stress 
distribution �-  and increasing crack size �, the governing axis will change (Fig. 3.9) 
from notch dominant (� ~ 0+) to crack controlled (� ≫ 0).  

 
 

 

 
 

Figure 3.9: Increasing the crack size at a weld toe notch changes the governing axis. 
 

Adding the {SEC, DEC} far field contribution ,-  allows to deal consistently with 
geometric non-symmetry and symmetry with respect to (��/2) and to obtain the 
weld toe notch characteristic stress intensity ,�,- . The same examples used in 
Paragraph 2.6 for illustration purposes will be considered to involve the weld type 
classification criteria, i.e. the fillet weld- (PP DS and SS T-joint, DS cover plate, 
PP DS cruciform joint) and groove weld geometry (PP DS butt joint).  

 

3.5.1 Non-symmetry 

The unit crack face traction needs �)~(/��) + 1, i.e. the weld toe notch stress 
distribution (Eq. 2.24) excluding the structural stress �) and far field bending 
stress projection 2)(/��). Using the ,� definition (Eq. 3.17) yield:  

 

 

,� (���) = (2�)
⎣⎢
⎡(���)

��−1 �) (√�2 ) Γ (�)2 )
Γ (�) + 12 )�)(�) + 1) ⋅

               [cos{(�) + 1)�} − �) cos{(�) − 1)�}] +
 

 

                    (���)
��−1 �� (√�2 ) Γ (��2 )

Γ (�� + 12 )��(�� + 1) ⋅
                                    [sin{(�� + 1)�} − �� sin{(�� − 1)�}] + 

 
 

                       65. {2(���) − �2}] 

(3.19) 
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Note that the notch factor (Eq. 3.19) and the weld toe notch stress distribution 
(Eq. 2.24) show similar singular behaviour (den Besten and Huijsmans, 2011). The 
integral solutions introduce Γ(⋅); the (complete) gamma function. 

The non-monotonic weld toe notch stress intensities ,�,-  for location 1 of the 
PP DS T-joint, a HS type 6, as a result of the 4 far field load cases applied (Fig. 
2.14 to 2.18), are shown (Fig. 3.10 to 3.13). Quasi-2D SEC geometry formulations 
(Eq. 3.6 and 3.7) have been adopted to describe the far field effect ,- . For welds 
showing limited load carrying behaviour, i.e. 65. is rather small, ,� turns out      
to be governing for {0 < (�/��) ≤ 0.2}; the zone {1, 2} weld geometry stress 
(concentration) affected micro-crack region in which crack size � is considered to be 
technically small. It is divided into respectively a notch dominated and a weld load 
carrying controlled part. The apex shifts to the left for decreasing ), meaning the 
micro- and macro-crack region respectively increases and decreases at the same 
time.  Far field factor ,-  rules the zone 3 far field stress related macro-crack region {0.2 < (�/��) ≤ 1.0}, meaning that all 3 defined stress components (Paragraph 2.3 
to 2.5) are decisive in a certain crack length region. The FE solutions, obtained for 
plane strain conditions, prove to be rather good ,�,-  estimates.  

Comparing the pure bending () = 1) and pure membrane () = 0) far field load 
case results (Fig. 3.10 and 3.12), the notch induced behaviour for {(�/��) → 0} is 
similar because of the same weld angle; the  65. affected weld load carrying region 
shows smaller values in case of bending. The difference in macro-crack behaviour is 
quite large in favour of bending as a result of the zone 3 far field stress gradient. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.10:  PP DS T-joint SIF far field- and notch contribution (loc. 1), ) = 1. 
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Figure 3.11:  PP DS T-joint SIF far field- and notch contribution (loc. 1), ) = (1/3). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.12:  PP DS T-joint SIF far field- and notch contribution (loc. 1), ) = 0. 
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Figure 3.13:  PP DS T-joint SIF far field- and notch contribution (loc. 1), ) = −1. 
 

Applying a bending moment clockwise or counter clockwise makes a big difference, 
i.e. the combined far field load cases () = 1/3) and () = −1) show for a 
monotonic weld notch stress distribution the notch affected micro-crack region is 
twice as large. Note that ,�,-  for the () = −1) case is 65. sensitive at {0.1 <(�/��) ≤ 0.2}, like the corresponding notch stress distribution (Fig. 2.18).  

Although general handbook solutions for weld toe notch SIF’s do not exist, some 
FE solution based curve fitted formulations are available (Maddox, Lechocki and 
Andrews, 1986; Hobbacher, 1993). The former is outlined in the British Standard 
(BS7910, 2005). The considered joint geometry does not encounter inconvenience 
from the fixed 45 [deg] weld flank angle limitation. Except for the pure bending 
case (Fig. 3.10), the notch affected micro-crack region estimates seem however 
rather conservative (Fig. 3.11 to 3.13); none of the far field load cases show a good 
match. A plate and weld size dependent transition in curve fitting function 
constants introduces a small step, identified at {(�/�5) ≈ 0.07}. In comparison to 
other calculation results, the macro-crack region BS7910 far field effects diverge for {(�/�5) > 0.65} because of different ,-  formulation (Fig. 3.10 and 3.11). 

One of the BSS concept features is that the bi-linear notch stress approximation ��5 (Paragraph 2.6) has been used to obtain �� (Dong, Hong and Cao, 2003; 
2004). Relating the involved transition depth to the crack size (� = �) is    
supposed to yield a crack face traction �- = �){1 − 2�(/�)} ∈  = [0, �]. For 
varying �, equilibrium is maintained using the structural traction and associated 
bending traction ratio; �)(�, ��, ��5) = (�2 + �5) and ��(�, ��, ��5) = (�5/�)), 
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meaning that for (� → ��) the notch stress affected SIF solution converges 
(approximately) to the BSS �)� = (�2� + �5�) induced one and �){1 − 2�(/�)} → �)�{1 − 2)�(/��)}. Rewriting {�)� , )�} of the �-�  based SIF in terms of the structural 
traction parameters {�), ��}, i.e. {�) = �), ) = (��/�)��}, a blend notch and 
structural field factor ,�,- � has been obtained since �� = �)�,-()�)√�� turns into �� = �){,-2 − (��/�)��(,-2 − ,-5)}√��. Note that �)�  is not equal to the welded 
joint far field stress �) by definition (Chapter 2); the notch affected region upper 
bound previously identified turns out to be in between the BSS concept- and 
BS7910 value: {0.1 < (�/��)�� < 0.3}. Although notch stress intensities are in 
agreement with the FE solutions (Fig. 3.10 to 3.13), ,�,-  is consistently 
overestimated for {(�/��) < 0.1}. However, it is not a matter of a notch radius (� > 0) applied to the FE model as explained for several examples (Dong, Hong and 
Cao, 2003; 2004; Dong, 2008), neither a consequence of the bi-linear notch stress 
approximation nor the result of assumed transition depth; the SIF estimation 
procedure has proven to be robust (Dong, Hong, Osage and Prager, 2002). It is a 
peculiarity that seems to be a result of incorporating the notch characteristic 
behaviour as far field contribution; ,-  corresponds to a crack length � invariant 
through-thickness linear- rather than an � dependent bi-linear (notch) stress 
distribution. The crack face traction definition (Eq. 3.17) has been ignored and the 
(normalised) SIF consequences are serious as shown for the considered welded joint 
notch location and far field load cases (Fig. 3.14 to 3.17).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.14:  PP DS T-joint SIF (loc. 1), ) = 1. 
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Figure 3.15:  PP DS T-joint SIF (loc. 1), ) = (1/3). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.16:  PP DS T-joint SIF (loc. 1), ) = 0. 
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Figure 3.17:  PP DS T-joint SIF (loc. 1), ) = −1. 
 

The non-monotonic �� distribution is explained to be a higher order SIF effect, 
important for small cracks (Dong, Hong and Cao, 2003). However, since the notch 
stress intensities ,�,-  are qualified as good estimates in comparison to (1st order) 
FE results (Dong, Hong. and Cao, 2004), it is surprising that the actual SIF would 
include higher order effects. The singular behaviour for {(�/��) → 0} seems 
fictitious anyway. By definition, �� is a 1st order damage tolerant parameter (Eq. 
3.1), taking the dominant crack(!) tip stress field singularity into account. Non-
singular higher order terms (Eq. 2.14) may add a finite contribution at most as 
been illustrated (Ritchie, Yu, Holm and Blom, 1988), even if the notch(!) induced 
singularity becomes governing (Fig. 3.10 – 3.13). Regardless the non-monotonic  ,�,-  behaviour, i.e. {�), ��} ≥ 0.5 (Fig. 2.9), the SIF should remain a 
monotonically increasing function because of the 1st order 

√�� factor. 
The SIF’s (Eq. 3.2) in normalised formulation (��/�)) perfectly match the FE 

solutions as shown (Fig. 3.14 to 3.17). If a significant part of the fatigue life time is 
related to the weld geometry affected micro-crack region {0 < (�/�5) ≤ 0.2}, 
ignoring the notch contribution ��/(�),�) would have substantial consequences of 
the non-conservative type.  

Using the crack initiation and growth bridging intact geometry parameters {��� ,����}, NSIF’s, the notch SIF �� can been obtained as well (Atzori, Lazzarin 
and Tovo, 1999; Atzori, Lazzarin and Meneghetti, 2008). The mode-II component 
should be involved since �� has to be calculated for (' = �). Using the notch stress 
components (Eq. 2.10, 2.11), the symmetry and anti-symmetry related NSIF’s denote: 
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���= (2+)1−�� lim�→0+{1−�����(, ' = 0)}
= (2+)1−���)��1−���)�)(�) + 1)(1 − �))
= �1�)��1−��

 (3.20) 
 

 

 
 

 

 

����= (2+)1−�� lim�→0+{1−�����(, ' = 0)}
= (2+)1−���)��1−������{(�� + 1) − ��(�� − 1)}
= �2�)��1−��

 (3.21) 
 
 

 

 
 

Rewriting {��� ,����} in terms of the equilibrium coefficients {�), ��} and 
substitution into {���, ���}, i.e. (Eq. 2.10 and 2.11) yield the notch stress 
components in terms of the NSIF’s {���(���), ���(����)}. If applied as crack face 
traction, a linear superposition returns the notch factor ,�(��� ,����) and the notch 
SIF ��(��� ,����) can be calculated. The required NSIF’s can easily be obtained 
using the parametric joint geometry and remote loading dependent {�1, �2} 
formulations (Eq. 3.20, 3.21); curve fitted FE results limited to a 45 [deg] weld 
flank angle (Lazzarin and Tovo, 1998; Lazzarin and Livieri, 2001). For the 
considered examples (Fig. 3.14 to 3.17), the SIF’s are overestimated in the micro-
crack region. Application of the ��(��� ,����) formulations is mentioned to be 
limited to {0 < (�/��) ≤ 0.3}. Although the small SEC far field factor (,- = 1.12) 
has been replaced by an extended formulation (Eq. 3.4) to improve the results in 
the macro-crack region, still some non-conservative behaviour is observed because {,�(��� ,����) < 1}; defining an engineering constraint (,� ≥ 1) like for the BS7910 
solution increases the performance. Although {�), ��} have been calculated taking 
only ���(' = �) into account, the notch stress distribution can be used alternatively 
to approximate the required NSIF’s (Eq. 3.20 and 3.21) as well. The {��� ,����} 
values for the two approaches are very different; however, the �� based solutions 
show better agreement. The {��� ,����} definition (Eq. 3.20 and 3.21) has been 
modified to meet the one adopted for the NSIF concept (Lazzarin and Tovo; 1998) 
to stick to the ��(��� ,����) formulations (Atzori, Lazzarin and Meneghetti, 2008). 
For one reason or another, the crack configuration related (2�)1−�1  factor has been 
used rather than the generalised {(2+)1−�� , (2+)1−��} formulation; depending on 
the notch angle, {��� ,����} values may become significantly different. 

The ,� weld geometry 65. contribution turns out to be larger for far field 
bending (Fig. 3.18) in comparison to the membrane case (Fig. 3.19) as already 
identified for the weld notch stress distributions (Fig. 2.19 and 2.20); a matter of 
weld effectiveness. 
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Figure 3.18:  PP DS T-joint SIF notch 65. effect (loc. 1), ) = 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.19:  PP DS T-joint SIF notch 65. effect (loc. 1), ) = 0. 



Chapter 3. Weld Notch Stress Intensities  117 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

a/tc [ - ]

Y
f
,Y

n
,Y

n
Y

f
[
-
]

tb = 8.0, tc = 6.0, lw = 4.0, hw = 4.0, an = 1.5, ; = 0.00 [mm]

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

a/tc [ - ]

Y
f
,Y

n
,Y

n
Y

f
[
-
]

tb = 8.0, tc = 6.0, lw = 4.0, hw = 4.0, an = 1.5, ; = 0.00 [mm]

Yf

Yn

YnYf w/ 2nd order Cbw

YnYf w/o 2
nd order Cbw

YnYf (Dong et al., 2003)

FE solution

The PP SS T-joint (Fig. 2.21) needs an additional (2nd order) weld load carrying 
term ,�,5. to improve the notch stress intensity (Eq. 3.19) in the micro-crack 
region (Fig. 3.20). Although �� (Fig. 2.22) shows some error in comparison to the 
FE solution, its gradient is still good explaining the ,� accuracy.  

 

 ,�,5. = (2�)65. [� {3(���)
2 + 1} − 12(���)] (3.22) 

 
As expected from the bi-linear notch stress approximation, the corresponding ,�,-  
solution (Dong, Hong and Cao, 2003) becomes negative for (�/��) → 0. BS7910 
formulations are not available, nor NSIF based notch SIF estimates (Atzori, 
Lazzarin and Meneghetti, 2008). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.20:  PP SS T-joint SIF notch 2nd order 65. effect (loc. 2), ) = 0. 
 

Considering the DS T-joint again, although this time a FP one developing a semi-
elliptical surface crack rather than SEC, 3D effects will be investigated. The 2D 
weld notch stress distributions still have been used to obtain ,�, a reasonable 
approximation since for respectively a pure bending and membrane far field load 
case {) = 1, ) = 0} it seems to be predominantly a ,-  (Eq. 3.4, 3.10 and 3.11) or 
macro-crack effect (Fig. 3.21 and 3.22). Results are related to the deepest crack 
point (Fig. 3.4). Differences in the macro-crack region for the different ,�,-  
formulations is because of the different ,-  formulations involved.  
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Figure 3.21:  FP DS T-joint SIF (loc. 1) semi-elliptical crack {(�/T) = 0.25}, ) = 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.22:  FP DS T-joint SIF (loc. 1) semi-elliptical crack {(�/T) = 0.25}, ) = 0. 
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Far field bending induced compressive stress decreases the stress intensity for 
increasing crack size (Fig. 3.21). Insufficient curve fitting may cause (,- < 0) for (�/�5) → 1 meaning crack arrest and is important to keep in mind for crack growth 
calculations.  

The ,�,-  (Dong et al., 2003) micro-crack region overestimation as already 
identified before seems no coincidence, although the FE solutions (Bell, 1976) 
include a non-zero notch radius; � = 0.6 [mm] for the considered examples, not 
taken into account for the moment. 

 

3.5.2 Symmetry 

Any influence of another crack at a weld toe notch in the plane of symmetry at (��/2) is assumed to be a macro-crack effect, i.e. considering one notch at the time 
is sufficient. Subtracting the far field bending stress projection 2)(/��) from the 
corresponding notch stress distribution �� (Eq. 2.39) yields approximately �)~(/��) + 1. If applied as (unit) crack face traction, the notch factor involving the 
linear weld load carrying component becomes: 

 

 

,� (���) = (2�)([1 − 2) {1 − � (��� = 12)}]� (���) +
         ) {2� (��� = 12) − 1}[{1 − � (��� = 12)}(�2) −
         2(���)] + 2) (���))               

 
(3.23) 

 
 
 
 
 
 

 
with 
 

 

� (���) = (���)
��−1 �) (√�2 ) Γ (�)2 )

Γ (�) + 12 )�)(�) + 1) ⋅
             [cos{(�) + 1)�} − �) cos{(�) − 1)�}] +

 

 

        (���)
��−1 �� (√�2 ) Γ (��2 )

Γ (�� + 12 )��(�� + 1) ⋅
                          [sin{(�� + 1)�} − �� sin{(�� − 1)�}] + 

 
 

              65. {4(���) − �2} 

 
 
 

 
 
 
 
 
 
 
 
 

 
and 
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 � (��� = 12) = � ( �� = 12) = (�� − �))(�)�� − 265.)��(�� − 1) − �)(�) − 1) + 65.  

 

To obtain the non-monotonic weld toe notch stress intensities ,�,-  for location 1 of 
a PP DS butt joint, a HS type 6, as a result of 4 different far field load cases (Fig. 
3.23 to 3.26), the quasi-2D DEC geometry formulations (Eq. 3.12 and 3.13) have 
been adopted to include the far field effects. The non-symmetry defined micro- and 
macro-crack region definitions appear still to be the same, although related to half 
the plate thickness because of the symmetry induced DEC configuration. Although 
weld load carrying stress dependent, generally speaking ,� dominates the micro-crack 
region {0 < �/(��/2) ≤ 0.2}; ,-  the macro-crack region {0.2 < �/(��/2) ≤ 1.0}. 
The ,�,-  estimates and FE plane strain solutions match fairly good. The stress 
state becomes compressive (Fig. 3.26) for {(�/��) > 0.7} in case () = −1).   

The BSS concept formulation ,�,-  (Dong et al., 2003)  has been defined for half 
the plate thickness only (Fig. 2.23 to 2.27). Consequences regarding symmetry in 
terms of notch stress distribution (a ,� governing issue) – � is defined at 0.1(��/2) 
– and presence of another crack right across (predominantly a ,-  matter) are 
ignored. Deviations in the macro-crack region are the result of adopting a SEC- 
rather than DEC far field description (Fig. 3.24 to 3.26); in any case, a combination 
of membrane and bending. For comparison reasons, ,�,-  (Dong et al., 2003) 
includes the scale factor (�)�/�)) to deal with the BSS definition for symmetry 
(Dong, 2004). Generally speaking, the notch stress intensity is still consistently 

overestimated in the micro-crack region, in particular for (�/��) → 0.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.23:  PP DS butt joint SIF far field- and notch effect (loc. 1), ) = 1. 
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Figure 3.24:  PP DS butt joint SIF far field- and notch effect (loc. 1), ) = (1/3). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.25:  PP DS butt joint SIF far field- and notch effect (loc. 1), ) = 0. 
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Figure 3.26:  PP DS butt joint SIF far field- and notch effect (loc. 1), ) = −1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.27:  PP DS butt joint SIF (loc. 1), ) = 1. 
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Figure 3.28:  PP DS butt joint SIF (loc. 1), ) = (1/3). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.29:  PP DS butt joint SIF (loc. 1), ) = 0. 
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Figure 3.30:  PP DS butt joint SIF (loc. 1), ) = −1. 
 

The normalised SIF’s (��/�)) and FE solutions have a close match (Fig. 3.27 to 
3.30). While the () = −1) case (Fig. 3.26 and 3.30) may suggest crack arrest, the 
notch in the symmetry plane experiences () = 1/3), meaning fatigue in the 
considered cross-section is still an issue. Ignoring the notch contribution ��/(�),�) 
underestimates the SIF substantially in the micro-crack region. The BSS concept 
SEC based (��/�)) estimates (Dong et al., 2003) show rather conservative 
behaviour and include the characteristic singularity and non-monotonic behaviour. 
To ensure a level playing field, it is normalised using �) as well rather than the BSS 
defined �)�  value, related to half the plate thickness (Dong, 2004). 

Although inconsistent from symmetry perspective, a probably more realistic 
SEC approach – as adopted for the British Standard (BS) – can be applied as well. 
Likely, one of the weld toe notches contain a governing defect or initial crack size that 
justifies the one in the symmetry plane to be ignored. Since at {0.5 < (�/��) ≤ 1} 
far field stress equilibrium conditions are not satisfied and a weld load carrying 
stress correction is disregarded, the DEN based notch factor ,� introduces some 
error in this region, i.e. (small) deviations from the equilibrium value 1. 
Notwithstanding, the ,�,-  estimates and FE solutions are nearly the same in both 
micro- and macro-crack region since 65. is rather small (Fig. 3.31 to 3.34). Given 
the BS limitation, i.e. a general �� induced PP modification to the ideal fillet weld 
based notch factor, the ,�,-  (BS7910, 2005) estimates are conservative as shown 
for the non-symmetry examples (Fig. 3.10 to 3.13), mainly because of the 
membrane far field component. 
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Comparing the DEC and SEC ,�,-  estimates (Fig. 3.23 to 3.26 and 3.31 to 
3.34), the far field membrane component results are rather different; for bending 
approximately the same. However, in absolute terms it seems to be the other way 
around. The DEC micro- and macro-crack region sizes are half the SEC related 
ones and the membrane results appear to be comparable; for bending different. For 
both a DEC and SEC assumption the ,� formulation is the same, meaning a crack 
growing at the same time in the symmetry part is indeed a macro-crack effect. The 
SEC case turns out to be the conservative one. Which one to adopt is a matter of 
choice, provided consistency is preserved. Select either plate thickness �� and its 
corresponding weld notch stress distribution no matter symmetry and a SEC based 
SIF formulation, or relate �� and SEC; (��/2) and DEC, for respectively non-
symmetry and symmetry. In any case, the far field stress relation should be 
maintained. Fatigue relevance is questioned (Radaj, Sonsino and Fricke, 2006) 
concerning the bi-linear notch stress approximation, as defined for symmetry cases 
(Dong, 2004) considering half the plate thickness (��/2) only (Paragraph 2.6). In 
case of a DEC assumption however, it is very useful to obtain ,�. Though, because 
of the coupled ,�,-  (Dong et al., 2003) formulation, the far field stress relation is 
lost and a SEC formulation must be adopted. Mixing things up seems to be the 
actual problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.31: PP DS butt joint ,-  SEC formulation (loc. 1), ) = 1. 
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Figure 3.32: PP DS butt joint ,-  SEC formulation (loc. 1), ) = (1/3). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.33: PP DS butt joint  ,-  SEC formulation (loc. 1), ) = 0. 
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Figure 3.34: PP DS butt joint ,-  SEC formulation (loc. 1), ) = −1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.35:  ,� symmetry effect (PP DS T-joint and cruciform joint; loc. 1), ) = 1. 
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Figure 3.36:  ,� symmetry effect (PP DS T-joint and cruciform joint; loc. 1), ) = 0. 
 
Notch symmetry effects for a PP DS T-joint and its symmetry equivalent, the PP 
DS cruciform joint, at notch location 1 can be identified (Fig. 3.35 and 3.36). The 
pure bending far field case shows that the ,� gradient is more pronounced for non-
symmetry; it is the other way around if pure membrane far field loading is applied: 
a matter of (anti-)symmetry induced load carrying effectiveness. For the BSS 
concept coupled ,�,-  formulation, the notch factor V�� is defined as the ratio of �� with notch- and �� without notch effect (Dong, Hong and Cao, 2003). The self-
equilibrating stress part related ,� (Eq. 3.17) satisfies this definition as well. 
Comparing V�� and ,� with respect to (non-)symmetry, the same behaviour is 
identified for () = 1). If () = 0), it is in fact the opposite as already observed for 
the weld toe notch stress distributions (Fig. 2.28); a consequence of the bi-linear 
notch stress approximation. 

If the weld becomes more effective, significantly load carrying, as regularly 
encountered in case of symmetry like for a DS cover plate in discontinuous base 
plate configuration (Fig. 2.29), 65. increases and ,� (Eq. 3.23) needs the 2nd order 
component (Eq. 2.19) to be included: 

 

 ,�,5. = (2�)65. (12)[� {3(���)
2 + 1} − 12(���)] (3.24) 
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A consistent use of the symmetry based ,� DEN and ,-  DEC formulation pays off 
in accurate ,�,-  estimates (Fig. 3.37). Although ,� does not include the notch in 
the symmetry plane, the involved (anti-)symmetry condition at {(/��) = (1/2)} 
and correct 65. value are important. The notch affected- or micro-crack region is 
considerably increased up to {�/(��/2) = 0.5}, e.g. in comparison to a ,�,-  case 
with substantial smaller 65. (Fig. 3.25), meaning that the micro- and macro-crack 
region transition, the apex location, is principally 65. determined and shifts 
towards the right for increasing weld load carrying behaviour. Note that ,�,-  
(Dong et al., 2003) still limits the notch affected region to {0 < �/(��/2) ≤ 0.1} 
because of the transition depth assumption. If the weld is hardly weld load-
carrying, it seems a reasonable assumption; for increasing 65., the estimated notch 
contribution is rather non-conservative. 

Inconsistency, i.e. adopting a ,� DEN and ,-  (SEC) assumption, comes at a 
price, in particular for significantly weld load carrying welds (Fig. 3.38). Obviously, ,� is responsible since SEN based unit equilibrium is hard to identify because of 
the (anti-)symmetry condition at {(/��) = (1/2)} and the far field equilibrium lost 
in the symmetry part. The error already introduced in the micro-crack region 
continues to increase in the macro-crack region. Although the DEC and SEC 
assumption was supposed to be predominantly ,-  induced, for increasing 65. the 
DEN based ,� considering symmetry is the bottleneck and a SEN formulation 
should be used to recover consistency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.37:  DS cover plate (loc. 1) – discontinuous base plate – SIF notch effect    
                  including 2nd order 65. contribution, ) = 0. 
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Figure 3.38:  DS cover plate (loc. 1) – discontinuous base plate – ,-  SEC far field    
                  effect and 2nd order 65. notch contribution, ) = 0. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.39:  DS cover plate (loc. 1) – discontinuous base plate – ,-  SEC               
                  formulation and 2nd order 65. notch contribution, ) = 0. 
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The corresponding normalised SIF’s (Fig. 3.39) show the same behaviour. The 
NSIF and SEC based ��/�) (Atzori et al., 2008) estimate is added for convenience. 
The involved {�1, �2} formulations (Eq. 3.20, 3.21); curve fitted FE results 
(Lazzarin and Tovo, 1998), are derived for a continuous base plate explaining the 
large deviation. Results are improved using the �� based NSIF. 

 

3.6 Weld root notch stress intensity factor 

Partial weld penetration introduces a root notch (Fig. 2.34), principally in crack 
configuration, meaning that an infinitely sharp root notch and crack initiating at 
that location share the same square root singular behaviour. Besides, the assumed 
crack path is an extension of the weld root notch, i.e. the governing axis (� = 0) is 
the same for both root notch and crack (Fig. 3.40) and the SIF (Eq. 3.3) does – by 
definition – not include an explicit notch related contribution. An isolated ,� 
formulation however can be obtained (Eq. 3.18) if separate notch and crack induced 
components are required, like for a 2-stage crack growth model. Anyway, ,� ≠ 1. 

 
 

 
 
 

Figure 3.40: The weld root notch- and crack governing axis is one and the same. 
 

The SEN and {CN, DEN} related far field components ,-(,-.) include the weld 
reinforcement correction to satisfy the welded joint far field stress definition for 
respectively non-symmetry and symmetry with respect to (��/2) and represent the 
weld root notch crack characteristic SIF behaviour. For illustration purposes, the 
PP SS butt joint (non-symmetry) and PP DS cruciform joint (symmetry) will be 
considered using the same dimensions as selected for the weld root notch stress 
distributions (Paragraph 2.7).  

 

3.6.1 Non-symmetry 

Although no explicit part of the weld root notch SIF, the root notch factor ,�� will 
be determined first in order to calculate ,� (Eq. 3.18). The notch stress 
distribution ��� (Eq. 2.41) needs the root field bending stress projection to be 
subtracted to obtain the unit crack face traction. Using: 

 

+ 
� 

+ 
� 

+ 
�� 

� 

�� �� 
� � � 
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�)~� (′ − ����′ ) + 1 =  ∑{(′ − ����′ )� −1 �¡�¡(�¡ + 1)(1 − �¡)} +5
¡=1

   2)� (′ − ����′ )
 (3.25) 

 

 
 

 
the root notch factor denotes: 
 

 

,�� = (2�)
⎣⎢
⎢⎡∑{¢¡ ⋅ �¡�¡(�¡ + 1)(1 − �¡)}5

¡=1
+ (�£Q�)

(�£Q�)
  2)�
(��′Q� )⎝⎜

⎜⎜⎛√(��′Q� ⋅ ���′)(2 ⋅ ��Q� + ��′Q� ⋅ ���′) − (�£Q�)
(�£Q�)  

            (��Q� )
⎣⎢
⎢⎡(�2) − arcsin

⎩{{
⎨{
{⎧ (��Q� )

(��Q� + ��′Q� ⋅ ���′)⎭}}
⎬}
}⎫

⎦⎥
⎥⎤

⎠⎟
⎟⎟⎟⎞

⎦⎥
⎥⎤

 (3.26) 
 

 
 
 
 
 
 
 
 

 
with 
 

 

¢1 =         �1    
(��′Q� )−12

 

�(ª)

¢2 = −      �1�2
(��′Q� )12 {�(ª) − «(ª)�3 }

¢3 =       �1�2
3(��′Q� )32 {�4�(ª) − �5 «(ª)�3 }

¢4 = − �1�2
15(��′Q� )52 {�6�(ª) − �7 «(ª)�3 }

¢5 =  �1�2
105(��′Q� )72 {�8�(ª) − �9 «(ª)�3 }
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and 
 

 

�1 = √2
(��Q� + ��′Q� ⋅ ���′)

�2 = (2 ⋅ ��Q� + ��′Q� ⋅ ���′)

�3 = 1 −   (��′Q� ⋅ ���′)
2(��Q� + ��′Q� ⋅ ���′)

 

 

 

 

�4 = (4 ⋅ ��Q� + ��′Q� ⋅ ���′)

�5 =  4(��Q� )

�6 = {32(��Q� )2 + 18(��Q� ⋅ ��′Q� ⋅ ���′)+   9(��′Q� ⋅ ���′)
2}

 

 

 

�7 = {32(��Q� )2 + 26(��Q� ⋅ ��′Q� ⋅ ���′)+   9(��′Q� ⋅ ���′)
2}

�8 = {48(��Q� )2 + 58(��Q� ⋅ ��′Q� ⋅ ���′) + 25(��′Q� ⋅ ���′)
2}(8 ⋅ ��Q� + ��′Q� ⋅ ���′)

�9 = {24(��Q� )2 + 26(��Q� ⋅ ��′Q� ⋅ ���′) + 13(��′Q� ⋅ ���′)
2}(16 ⋅ ��Q� )

 

 
The complete elliptical integrals of respectively the 1st and 2nd kind {�(ª),«(ª)} 
are expressed as function of parameter ª rather than the elliptical modulus �; (�2 = ª), with:  

 

 ª =   (��′Q� ⋅ ���′)
2(��Q� + ��′Q� ⋅ ���′)
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The ,� distributions for a PP SS butt joint (loc. 3) in {) = 1, ) = (1/3)} far field 
loading conditions (Fig. 3.41 and 3.42) reflect the self-equilibrating root stress part 
induced crack face traction, i.e. an increased notch affected region for the pure 
bending case as could be expected based on the weld root notch stress distributions 
(Fig. 2.37 and 2.38). 

The SEN based ,-(,-.) root stress intensities show good agreement with      
the FE solutions. Since the far field stress definition should be maintained and (�5 < Q5) as shown (Fig. 3.3), {,-(,-.) < 1} may be identified for smaller crack 
sizes, like typically encountered for the () = 1) far field case (Fig. 3.41); the stress 
state in the weld throat cross-section is pure bending as well. Adding a membrane 
component increases the bending contribution and overrules this kind of behaviour 
(Fig. 3.42).  

The BSS concept consistently uses a SEC assumption for weld root notches as 
well (Hong, 2010), meaning that the  ��� induced stress intensities ,�,-  (Dong et 
al., 2003) as shown for comparison (Fig. 3.41 and 3.42) include an explicit notch- 
and far field contribution like the weld toe formulations; ,�,-(,-.) would show 
comparable non-monotonic SIF behaviour. At first glance, the far field contribution 
seems similar for far field bending (Fig. 3.41). However, it is because the 
equilibrium equivalent part of the weld root notch stress equals the welded joint far 
field stress; {�)�, )�} = {�), )}. The former, i.e. the structural root stress 
distribution, has been adopted as far field stress, satisfying its definition for a SEC 
if and only if the crack is considered not to be a weld root notch extension. From 
SIF perspective, the root notch geometry introduces the notch behaviour at an 
intact geometry, similar to the weld toe notches. It is considered beneficial that ,-. 
has become obsolete. For the sake of a proper comparison, the BSS solutions 
include the scale factor (�)�/�)), i.e. (�)�/�)). Obviously, (�)� ≫ �)) for the ) = (1/3) far field load case (Fig. 3.42). Modelling consequences can be explained 
as well using the �) normalised SIF’s (Fig. 3.43 and 3.44). Results excluding the 
notch contribution ��/(�)V��) visualise that the �� crack like behaviour is 
ignored in contrast to the SEN based solution, i.e. {��(�/�5′ = 0)/�) ≠ 0}. Taking 
the notch effect into account, ��/�) (Dong et al., 2003) still shows the artificial 
and singular stress intensity behaviour for (�/�5′) → 0. Even if a shared stress field 
singularity for crack tip and root notch from stress intensity point of view would 
not last and explicit notch and crack induced far field contributions should be 
considered; a matter of definition. The SIF �� = �),�,-(,-.)√�� as 1st order 
parameter must still be finite and monotonically increasing. The BSS SIF estimates 
are rather non-conservative in comparison to the FE solutions. Obviously, the SEN 
and SEC based far field crack stress intensity gradients are similar. 

 
 
 
 
 
 
 



Chapter 3. Weld Notch Stress Intensities  135 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

a/(tb’) [ - ]

Y
f
(Y

fw
)
,Y

n
[
-
]

tb = 6.0, lw = 8.0, hw = 2.0, an = 2.0, ; = 0.00 [mm]

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

a/(tb’) [ - ]

Y
f
(Y

fw
)
,Y

n
[
-
]

tb = 6.0, lw = 8.0, hw = 2.0, an = 2.0, ; = 0.00 [mm]

Yf (Yfw)

Yn

YnYf (Dong et al., 2003)

FE solution

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

a/(tb’) [ - ]

Y
f
(Y

fw
)
,Y

n
[
-
]

tb = 6.0, lw = 8.0, hw = 2.0, an = 2.0, ; = 0.00 [mm]

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

a/(tb’) [ - ]

Y
f
(Y

fw
)
,Y

n
[
-
]

tb = 6.0, lw = 8.0, hw = 2.0, an = 2.0, ; = 0.00 [mm]

Yf (Yfw)

Yn

YnYf (Dong et al., 2003)

FE solution

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.41:  PP SS butt joint SIF far field- and notch effect (loc. 3), ) = 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.42:  PP SS butt joint SIF far field- and notch effect (loc. 3), ) = (1/3). 
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Figure 3.43:  PP SS butt joint SIF (loc. 3), ) = 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.44:  PP SS butt joint SIF (loc. 3), ) = (1/3). 
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3.6.2 Symmetry 

Since the weld root notch stress formulation ��� (Eq. 2.41) applies to non-
symmetry as well as symmetry with respect to (��/2), the root notch factor ,�� 
(Eq. 3.26)  is principally the same for both cases as well, except that symmetry 
requires the plate thickness related parameters to be modified: (Q� = Q�/2) and (��′ = ��′/2). 

Notches in crack configuration facing symmetry include the DEN- (Fig. 3.5) and 
CN geometry (Fig. 3.6). The latter is a special one. Although the notch geometry 
demonstrates symmetry, a ,-  effect, non-symmetry is involved concerning ��� (e.g. 
Fig. 2.42) – ,�� accordingly – as shown for a {) = 1, ) = (1/3)} remote 
mechanical loaded PP DS cruciform joint at location 9 (Fig. 3.45 and 3.46); a kind 
of hybrid case.  

The ,-(,-.) estimates and matching FE solutions show that from weld root 
fatigue perspective far field bending reduces relatively speaking fatigue life time 
just slightly if the root notch size �� is not too large; obviously, the membrane 
component is governing. The geometry property (�}/2 < �}′/2) and crack stress 
intensities ,-(,-.) < 1 are in agreement. Involving the notch component ,� would 
cover both a notch and crack contribution, meaning ,�,-(,-.) would include the 
characteristic non-monotonic behaviour. The ,� governing micro-crack region  
turns out to be rather small for pure far field bending in comparison to the ) = (1/3) case. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.45:  PP DS cruciform joint SIF contributions (loc. 9), ) = 1. 
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Figure 3.46:  PP DS cruciform joint SIF contributions (loc. 9), ) = (1/3). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.47:  PP DS cruciform joint SIF (loc. 9), ) = 1. 



Chapter 3. Weld Notch Stress Intensities  139 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

a/(tc’/2) [ - ]

K
I
/ <

s
[
√
m
m
]

tb = 12.0, tc = 12.0, lw = 10.0, hw = 10.0, an = 3.0, ; = 0.00 [mm]

 

 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

a/(tc’/2) [ - ]

K
I
/ <

s
[
√
m
m
]

tb = 12.0, tc = 12.0, lw = 10.0, hw = 10.0, an = 3.0, ; = 0.00 [mm]

KI /<s

KI /<s (Dong et al., 2003)

KI /(<sMkn) (Dong et al., 2003)

FE solution

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.48:  PP DS cruciform joint SIF (loc. 9), ) = (1/3). 
 
An available British Standard (BS7910, 2005) CN solution for PP DS cruciform 
joint weld root notch SIF’s includes only the crack contribution ,-(,-.); a FE 
results based curve fitted function. 

If the BSS bi-linear root notch stress approximation is adopted, the notch effect 
disappears for far field bending because of the small notch affected region (Fig. 
2.40) and ,�,-  (Dong et al., 2003), scaled because structural stress definition, 
becomes negative for �/(��′/2) → 0 (Fig. 3.45). The far field behaviour is different 
since the SEC rather than CN geometry has been selected. In case the fillet weld 
throat section is assumed to be the crack path – a conservative recommendation if 
weld root notch size information is not available (Hong, 2010) – rather than a weld 
leg section, the �� induced crack-like behaviour must be ignored if a SIF mode-I 
approach should be adequate. The crack will be no extension of the weld root notch 
and would introduce a mode-II component. The structural weld throat stress 
distribution, a solid FE model calculation result, becomes the far field stress. The 
weld root SIF’s (Fig. 3.47 and 3.48) show that as long as notch behaviour with 
moderate accuracy is included, the SEC based ��/�) (Dong et al., 2003) estimates 
are rather conservative. 
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Although no commonly applied welded joints (Fig. 2.3) contain symmetry with 
respect to (��′/2) from both notch and root stress perspective, a DEN standard 
crack growth specimen does. The ,�� formulation (Eq. 3.26) and modified plate 
thickness related parameters still apply since ��� takes care of the symmetry 
conditions (Eq. 2.44). For the common crack growth testing (tension) load case, ) = )� = 0, ,-  (Eq. 3.12 and 3.14, Fig. 3.49) – ,-. is not involved – and 
corresponding ��/�) (Fig. 3.50) prove to be good estimates in comparison to FE 
solutions. Using ,� as reference, ,�,-  (Dong et al, 2003) contains a smaller notch 
contribution because of the bi-linear notch stress related transition depth 
assumption: 0.1(��′/2).  

Since the SEC induced BSS �� estimates in case of symmetry with respect to {(��/2), (��′/2)} for weld toe- and weld root notches are not very accurate (Fig. 
3.50), a different approach has been adopted for crack growth specimen involving 
notch symmetry (Dong, Hong and Cao, 2003), i.e. the CN and DEN geometry, to 
obtain improved experimental data analysis results (Chapter 4). The presumed crack 
face traction �-� = �)�[1 − 2��{(′ − ��)/�}] is imposed using the weight function 
approach (Eq. 3.18), meaning that a crack damaged geometry- rather than intact 
geometry stress distribution {�)~� ((′ − ��)/(��′/2)) + 1} is involved to acquire ,��. Results are clearly improved in the macro-crack region, although the way the 
BSS SIF is calculated has lost its consistency. The BSS notch factor V��, ratio of  ��  with- and without notch effect, i.e. (�),��,-√�� + �)/(�)�,��,-√�� + �), needs ,�� to be calculated first. It has been obtained applying the structural field stress �)�{1 − 2)� ((′ − ��)/(��′/2))} as crack face traction (Dong, Hong and Cao, 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.49:  SIF contributions DEN(T) crack growth specimen; ) = 0. 
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Figure 3.50:  SIF contributions DEN(T) crack growth specimen; ) = 0. 

 
Although strictly speaking the weight function definition is violated, �- =�){1 − 2��(/�)} could (consistently) be imposed as crack face traction for weld 
notches as well. The SEC induced SIF including notch effects would simply become �� = �){1 − (2/�)2�},-

√��. The (artificial) notch affected region results change 
up to some extent. However, it is considered quite well within the range in 
comparison to the implications of all the model assumptions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



142 Chapter 3. Weld Notch Stress Intensities 

 

3.7 Size effects 

Modification of the intact geometry notch stress distributions ��(�) for changing 
weld dimensions – to be taken into account for appropriate fatigue scaling – has 
already been investigated and illustrated (Paragraph 2.8). Consequences for the 
crack damaged equivalent, i.e. notch SIF �� , will be shown varying the same weld 
dimensions {+, 9., ℎ., ��}, notch radius � and plate thickness ��. 

 

3.7.1 Weld dimensions 

For (ideal) groove- and fillet welds, the flank angle influences ,� in a similar way �)~ has been affected (Fig. 2.43), as shown for some extreme {9., ℎ.} variations 
(Fig. 3.51). Decreasing (�/��) → 0, the notch factor increases for increasing flank 
angle, for symmetry even in a stronger degree in comparison to its non-symmetry 
equivalent. Since the weld load carrying stress increases for increasing flank angle, 
the weld becomes more effective, as shown for a SS and DS cover plate with 
continuous base plate (Fig. 3.52). The BSS notch stress intensity V�� (Dong, 
Hong, and Cao, 2003) becomes conservative for (�/�5) → 0 in any case. 

 

 
 
 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

 Figure 3.51: Notch factor ,� at different weld flank angles, (65. = 0).  
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 Figure 3.52: SS cover plate (non-sym.) and DS cover plate (sym.) – continuous      
                   base plate – loc. 1 notch factor ,� at different fillet weld flank angles 
                  and constant weld throat size �� = 4 [mm], ) = 0.  

 
For partial penetrated welds, except {9., ℎ.} the root notch �� forces the weld to 
carry more load, meaning the notch stress intensity ,�,-  increases in the micro-
crack region as shown for a PP DS cruciform joint developing a SEC (Fig. 3.53). 
The consequences of a DEN based ,� in combination with a SEC induced ,-  is 
obvious: a respectively conservative and non-conservative stress intensity estimate 
in the micro- and macro-crack region because of the high weld load carrying level. 
The BS7910 estimate includes a √�}/�. correction reasonable at {0 < (�/�5) <0.1}. However, because the notch contribution converges very slowly to 1, at least 
not in agreement with the actual one, the macro-crack growth region estimate is 
quite conservative. 

Increasing the root notch size �� increases predominantly the structural root 
stress �)�, meaning for a far field bending loaded SS butt joint the (fictitious) notch 
stress intensity ,�,-(,-.) remains more or less unaffected like the root notch stress 
distribution. Even if ��� changes, in particular in the far field dominated region 
(Fig. 2.48), the zone 3 stress gradient can be approximately the same as shown for 
a DS butt joint, meaning the macro-crack stress intensity is similar (Fig. 3.54). 
Because {(��′ /2) > (��/2)}, the weld geometry correction {,-(,-.) < 1}. The FE 
solution does not include the notch contribution because of the shared crack tip 
and notch singularity. 
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 Figure 3.53: PP DS cruciform joint SEC notch stress intensity (loc. 5), ) = 0.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.54: PP {DS, SS} butt joint {loc. 5, loc. 3} stress intensity, ) = 1.  
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3.7.2 Notch radius 

For cracks emanating at notches (Fig. 3.55) satisfying (� > 0), the SIF can be 
approximated over the crack size range (� > 0) using an asymptotic interpolation 
solution (Wormsen, Fjeldstad and Härkegård, 2006; Liu and Mahadevan, 2009) and 
involves an equivalent crack length: 

 

 �� = �),-√� (µ� [1 − exp {− ( �µ�)(��2
,- 2 − 1)}] + �) (3.27) 

 
with the two extremes 
 

 
�� = �)��,-

√��        for  (µ/��) → 0 
�� = �),-√�(µ� + �)  for  (µ/��) → ∞  

 
The first one involves a micro-crack in the notch affected region; a simplified 
expression obtained using the 1st order (Maclaurin) series expansion, exp{⋅} = 1 −(�/��)(��2 − 1). In comparison to the �� formulation as previously defined for 
groove- and fillet weld geometries (Eq. 3.2), the SCF �� representing the zone 1 
peak stress has replaced the notch factor ,�(�/��). Note that �� (Eq. 3.27) 
approximates the zone 2 notch stress gradient using the exp{⋅} function. The 
second extreme concerns a macro crack in the far field dominated region. At the 
same time, for sharp notches (� → 0), the SCF (�� → ∞) and the asymptotic 
solution (Eq. 3.27) reduces to �� = �),-√�(µ� + �) as well. The notch depth 
equals the notch length (µ� = ��) in case of a weld root, although the crack tip 
stress intensity does not include a notch contribution because of shared singularity. 
On the other hand, for a weld toe it is not obvious how µ� should be defined – 
introducing the same kind of peculiarities as identified for the NSIF ���  
(Paragraph 1.1 & 2.11) – but the SIF includes a notch component; i.e. application 
to weld notches is controversial anyway. 

 
 
 
 
 
 
 
 
 
 
 

Figure 3.55: Crack emanating at notch; (� > 0). 
 

µ� � 
� 
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Using the notch stress formulation (Eq. 2.47) and crack face traction definition (Eq. 
3.17), ,� in case of non-symmetry becomes for 1st order �5.: 

 

 ,� = (2�)∫ {�)~ (′′�� ) + 1}√�2 − 2 d�
0

 (3.28) 

 

 

,� = (2�)[�) {º�� (���) ⋅ �)(�) + 1)[cos{(�) + 1)�} −
                                          �) cos{(�) − 1)�}] +
                   º¼� (���) ⋅ (0��)��−¼� �)

(2+� )   
4 {(2+� ) − 1} ⋅

                                       [¿)1 cos{(À) + 1)�}   +
                              ¿)2(À) + 1) cos{(À) − 1)�}]} +

 

             �� {º�� (���) ⋅ ��(�� + 1)[sin{(�� + 1)�} − 
                                           ��sin{(�� − 1)�}] +
                     º¼� (���) ⋅ (0��)��−¼� �� 14(À� − 1) ⋅
                                       [¿�1 sin{(À� + 1)�}  +

                         ¿�2(À� + 1) sin{(À� − 1)�}} +
           65. {2(���) − (�2)}]

 

 

 
with 
 

 ºÁ (���) = ∫ {(� ⋅ ���)
2 + 2cos(�) (���)(� ⋅ ���) + (���)

2}Á−12

√1 − (  � )2 d (�)1
0

 
 
 
 
 
 

 
and 
 

 Â = {�), ��, À), À�}  
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The 4 integrals ºÁ have to be calculated numerically for each crack step. Because of 
the involved boundary singularity, a Gauss-Kronrod integration scheme is adopted. 
In case of symmetry, the original formulation (Eq. 3.23) has be used with �(�/��) = ,� (Eq. 3.28) and modified �5. contribution: 65.{4(�/��) − (�/2)}. For 
root notches involving non-symmetry: 

 

 

,�� = (2�)
⎣⎢
⎢⎡∑�¡ [º�  (���) ⋅ �¡(�¡ + 1)(1 − �¡) +5

¡=1
(���)
(���)

                        º¼  (���) ⋅ (0��′)
� −¼  ⋅

                                     (�¡2 ) {¿1¡ + ¿2¡(À¡ + 1)}] + (���)

              2)�
(��′Q� )⎝⎜

⎜⎜⎛√(��′Q� ⋅ ���′)(2 ⋅ ��Q� + ��′Q� ⋅ ���′) − (�£Q�)
(�£Q�)

                           (��Q� )
⎣⎢
⎢⎡(�2) − arcsin

⎩{{
⎨{
{⎧ (��Q� )

(��Q� + ��′Q� ⋅ ���′)⎭}}
⎬}
}⎫

⎦⎥
⎥⎤

⎠⎟
⎟⎟⎟⎞

⎦⎥
⎥⎤

 

(3.29) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
with 
 

 ºÁ (���) = ∫ {√( ��)
2 + 2(���)( ��) + (���)

2 − (���� )}Á−1

√(�� + �) − 2 d()��+�
��

 
 
 
 
 
 

 
and 
 

 Â = {�¡, À¡}  
 

The symmetry case requires only the plate thickness related parameters to be 
modified: (Q� = Q�/2) and (��′ = ��′/2). The linear unit stress notch factor ,�� does 
principally not change since �� already includes the � correction (Fig. 3.55). 

For increasing �, the zone 1 peak stress reduces as well as the zone 2 stress 
gradient, meaning predominantly the micro-crack region is affected. The ,� 
contribution for respectively a non-symmetry- (PP DS T-joint; Fig. 3.56) and 
symmetry case (PP DS cruciform joint; Fig. 3.57) is similar, although the symmetry 
condition forces ,� to be more pronounced. 
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 Figure 3.56: PP DS T-joint notch stress intensity (loc. 1), ) = (1/3). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.57: PP DS cruciform joint notch stress intensity (loc. 1), ) = (1/3). 
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 Figure 3.58: PP DS T-joint SIF (loc. 1) semi-elliptical crack {(�/T) = 0.25}, ) = 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.59: PP DS cruciform joint SIF (loc. 5), ) = 0. 
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 Figure 3.60: PP DS butt joint SIF (loc. 5), ) = 0. 
 

Reanalysis of the semi-elliptical crack stress intensity (Fig. 3.22) including � effect 
emphasizes the difference in comparison to the the BSS estimate (Fig. 3.58). 

The SIF for an extreme (non-linear) load carrying weld of a PP DS cruciform 
joint (Fig. 3.59) is principally overestimated, although not to the extent of the 
asymptotic interpolation solution (Eq. 3.27); the fictitious notch depth is defined as µ� = cos[{� − atan(9./ℎ.)}/2] ⋅ (9.2 + ℎ.2)0.5.  

Since the PP DS butt joint weld root notch stress distribution remains 
approximately the same for varying ��, �� shifts with increasing structural root 
stress �)� (Fig. 3.60). 

 

3.7.3 Plate thickness 

The weld notch stress distributions already reveiled that as long as all welded joint 
dimensions scale according to ��, {��, ���} hardly change (Paragraph 2.8.3). Focus 
on the deviating cases shows for weld toe and root notches the same effect: scaling 
is incomplete. One example is a fixed (effective) notch radius as shown for (non-) 
symmetry (Fig. 3.61 and 3.62). The relative notch acuity (�/��) decreases for 
increasing �� and ,�(� > 0) → ,�(� = 0), meaning the weld notch stress intensity 
in the �� zone {1, 2} related micro-crack region changes. The conservative estimate 
compared to the FE solution in case of symmetry is a matter of inaccurate 65.; a 
weakness of the way it has been obtained (using an FE beam model). 
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 Figure 3.61: PP DS T-joint SIF plate thickness effect (loc. 1), ) = 0.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 3.62: PP DS cruciform joint SIF plate thickness effect (loc. 5), ) = 0.  
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3.8 Residual stress intensity factor 

For the welding induced and displacement (constraints) controlled residual stress 
distribution showing conceptually the same stress field similarity as the remote 
mechanically loading induced one (Paragraph 2.10), the mode-I quasi-2D residual 
stress intensity factor (RSIF) ��� can be obtained using the weight (Green’s) 
function approach (Tada and Paris, 1981; Bueckner, 1987). Applying both the 
equilibrium equivalent- and self-equilibrating residual stress part as crack face 
traction, the weld toe notch formulation denotes: 

 

 ��� = �)� ,- �√�� + ,�� √�� (3.30) 

 
with 
 

 

,- � = (2�)∫ {1 − 2)� ( ��)}√�2 − 2 d�
0

 = {1 − (4�) )� (���)}

  
 
 
 
 

 
and 
 

 ,�� = ,� − 1  
 

In comparison to the SIF �� (Eq. 3.2), ��� is expressed as superposition since the 
residual stress distribution ��� can be of the self-equilibrating type if no constraints 
are involved, meaning (�)� = 0). Assemblies like hull structures typically include 
constraints. The residual notch factor formulation ,��, principally equal to the 
unit-stress related ,�, has been modified accordingly. Residual stress simulations 
should be available to obtain 65.�, simply using the equilibrium equivalent bending 
stress for (/��) ∈ (0, 1/2). One ��� example of the (approximately) self-
equilibrating type is identified at loc. 3 of a DS T-joint (Barsoum et al., 2009; Fig. 
2.71); a symmetry case. 

Like for ��� (Fig. 2.71), ,�� turns out to be conservative in the zone {1, 2} 
notch affected region {0 < �/(�}/2) < 0.2} for this particular case (Fig. 3.63) 
because of an involved simplified heat source formulation, i.e. a constant flux rather 
than Goldak’s heat source or equivalent, and alternatively a cosine function or 2nd 
order polynomial – self-equilibrating by definition – can be adopted: 
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n cosine formulation

Y r
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,�� = (2�)∫ cos (2� ⋅ ��)√�2 − 2 µ�
0

 = S0 (2� ���)

 (3.31) 
 
 
 
 

 

or 
 

 

,�� = (2�)∫ 6{( �� − 12)2 − 112}√�2 − 2 µ�
0

 = 3(���)
2 − (12� )(���) + 1

 (3.32) 
 
 
 
 

 
The cosine formulation (Eq. 3.31) introducing the Bessel function of the 1st kind S0(⋅) already improves the approximation; the 2nd order polynomial however shows 
even a better fit. Note that the amplitude has been scaled using the structural 
residual stress corresponding to half the plate thickness. The RSIF plot (Fig. 3.64) 
includes the crack induced square root behaviour as well. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.63: ,�� formulations for a PP DS T-joint (loc. 3). 
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Figure 3.64: ��� formulations for a PP DS T-joint (loc. 3). 

 
Interesting to mention is that the BSS concept applies the residual self-equilibrating 
stress as crack face traction (Dong, 2008) in contrast to the remote loading induced 
part (Paragraph 3.5), meaning the ‘higher order SIF effect’ is considered to be 
typically far field stress related. However, in case of (theoretically) similar stress 
distributions – either mechanical- or thermal loading induced – an inevitable 
question arises and is still open…  

For loc. 6 of the same joint, ��� is related to a weld root notch. If the self-
equilibrating stress part shows singular square root behaviour, its contribution is 
already included in the residual field part formulation. Adding the root notch 
contribution, the RSIF becomes:  

 

 ��� = �)� ,- �√�(�� + �) (3.33) 

 
The weld root notch residual stress distribution (Barsoum et al., 2009; Fig. 2.72) is 
of the “equilibrium” type and shows a negligible self-equilibrating residual stress �)~�, i.e. the residual field component ,- � defines ��� (Fig. 3.65 and 3.66). Note 
that in fact no simulation data is available for the ,��  governing region!  
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Figure 3.65: {,��, ,- �} formulations for a PP DS T-joint (loc. 5). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.66: ��� formulation for a PP DS T-joint (loc. 5). 
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To obtain the FE simulation result for the equilibrium equivalent residual field  
stress only, ���� has been applied as crack face traction in total first; then ,��  
containing the theoretical square root behaviour has been subtracted. 

The total weld notch stress intensity factor is a superposition of the far field 
loading- and welding induced contribution, i.e. ��	 = �� + ���. However, it is 
popular to turn the residual stress part into a crack size dependent mean stress 
effect )(�)�(�/��) to correct the crack growth formulation (Dong, 2008; Liljedahl et 
al., 2009; Paragraph 5.4.2). 

 

3.9 Conclusions 

The remote mechanical loading induced intact geometry weld notch stress 
distribution has been translated into a crack damaged equivalent exploiting (non-) 
symmetry conditions. The zone {1, 2} notch affected- and zone 3 far field 
dominated parts defined a micro- and macro-crack region, turning the stress field 
similarity into a stress intensity similarity. Each stress component dominates a 
certain crack length range: notch stress ��� the micro-crack region, structural field 
stress �-  the macro-crack region; weld load carrying stress �5. determines the 
transition position, i.e. apex location. 
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4 
Crack Growth at Notches 

 
 

Growth means change and change involves 

risk, stepping from the known to the unknown. 

George Shinn (1941, former baseball team owner) 

 

4.1 Introduction 

Fatigue damage of arc-welded joints in hull structures is hypothesised to be a crack 
growth dominated process. Crack nucleation – a significant part of the crack initiation 
process – is not required to develop (near) surface microscopic stress concentrations 
since welding induced ones (a result of defects) are assumed to exist already (Fig. 4.1). 

Cyclic loading as involved in the fatigue damage process requires the spatial 
remote mechanical mode-I weld notch stress distribution (Chapter 2), in particular 
the far field stress definition, to be extended using one more parameter, e.g. the 
load ratio �� specifying the cycle degree of symmetry relative to zero: ��(��, ��) →��(∆��, ��, ��). The stress range (∆�� = 2��) substitutes the amplitude ��. 
Temporally, a sinusoidal shape is assumed for both linear and non-linear (impact) 
types of ocean/sea wave induced loading as governing for high-speed craft. 

For (�� → ∆��), the mode-I (weld notch) stress intensity � (Chapter 3) 
becomes a crack growth driving force ∆� and defects may grow into small/short 
cracks. If the size � is comparable to the scale of the microstructure, one grain, � is 
defined as micro-structurally small/short. Crack growth however involves the mode-
II mechanism, meaning it is still slip band related and considered to be part of the 
initiation process. A crack size up to a few grains is denoted as mechanically 
small/short; mode-I already becomes governing and the (notch affected) crack tip 
plastic zone size �� is significant. For negligible ��, the crack turns into a physically 
small/short one (Suresh and Ritchie, 1984; Krupp, 2007). Although crack size 
criteria are predominantly assigned using absolute numbers; �(10�), relative ones 
(e.g. with respect to grain size, notch size or plate thickness) would make more 
sense. For a small/short crack exceeding one grain in size, the far field stress 
amplitude will be responsible for the qualification “mechanical” or “physical”. 
Welding induced defects are assumed to belong to one of both categories. 



158 Chapter 4. Crack Growth at Notches 

 

Concerning crack growth at notches, another definition will be added: � is 
considered to be technically small/short in the notch affected micro-crack region; 
beyond, in the macro-crack region, � is identified as large/long. 

Growth, a process of stepwise increments in crack size, both physically – 
considering fatigue striations – as well as numerically to obtain a fatigue life time 
estimate � , starts at a relatively low crack growth rate (d�/d�) and may suggest 
fatigue is predominantly related to technically small/ short crack growth. Assuming 
the involved crack growth driving force components can be formulated at macro-
structural (continuum mechanics)- rather than at meso- or even micro-structural 
scale, an adequate crack growth law similarity will be defined using the weld notch 
stress distribution- and intensity similarities. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1: Fatigue fracture surface showing defects near a weld  
          toe notch of a DS T-joint (Sidhom et al., 2005). 

 
Outline 
A common feature of small/short crack growth is however the anomalous behaviour 
in comparison to the sigmoidal shaped large/long crack (d�/d�) - ∆� curve. The 
(notch dependent) elastoplastic crack tip stress wake field size and shape is 
assumed to be an important parameter (Schijve, 1988), suggesting the (total weld) 
notch stress distribution should be involved. The equilibrium equivalent- and self-
equilibrating remote mechanical- and thermal residual stress parts used to define 
the mode-I weld notch SIF, reveal a notch affected micro-crack- and far field 
dominated macro-crack region. Using the corresponding crack growth driving force 
components, it seems obvious to adopt a two-stage crack growth model (Paragraph 

4.2). Far field stress-, notch geometry-, elastoplasticity- as well as remote 
mechanical and thermal residual mean stress effects will be taken in to account. 

Weld toe- and weld root notches are both principally V-shaped; difference is 
only a matter of notch angle. The latter is a special one in crack configuration, 
meaning weld root notch and crack (tip) share the same stress field singularity. The 
crack size/length � generally includes the notch size/length ��, e.g. (Brandt, 
Lawrence and Sonsino, 2001; Lassen, Darcis and Recho, 2006; Fischer and Fricke, 
2013), suggesting that no notch specific contribution is involved at all. The 

100 [��] 



Chapter 4. Crack Growth at Notches  159 

 

conclusion that crack growth would dominate the – large/long crack region-II 
characteristic estimated – fatigue life in contrast to initiation that would be governing 
for weld toe notches (e.g. Ribeiro and De Jesus, 2011), is simply not true and even 
wrong. In fact, small/short crack growth data obtained using standard specimens 
including {SEN, DEN, CEN} in crack configuration – representing weld root notch 
geometries at the same time – shows anomalous behaviour. Some data available in 
literature will be reinvestigated for the alternating material zones in (aluminium) 
arc-welded joints (Fig. 4.2): weld material (WM) and heat affected zone (HAZ) 
containing respectively the weld root- and weld toe notch fatigue damage location, 
as well as base material (BM) for comparison (Paragraph 4.3). 

 
 
 
 
 
 
 
 
 

 Figure 4.2: Alternating material zones for FP DS T-joint and FP SS butt joint. 
 

Fatigue testing series have been developed to identify crack growth behaviour at 
weld toe notches in aluminium arc-welded joints (Paragraph 4.4), adopting a typical 
fillet weld DS T-joint geometry. Using digital image correlation (DIC), the required 
far field- and notch region parameters are obtained. Spatial displacement fields are 
estimated on a general kinematic basis using commercial DIC software (Istra4D, 
Dantec Dynamics). A posteriori, as a – mechanical – filtering process, the 
displacement fields are decomposed onto a selected kinematic basis, i.e. an Airy 
stress function. The displacement amplitudes, least squares (LS) solutions, present 
in a one-to-one correspondence the crack growth governing parameters: linear far 
field stress distribution, SIF and crack tip location. A sequence of images provides 
the temporal solution; crack growth data series. 

 

4.2 Two-stage crack growth model 

The well-known Paris equation (Eq. 4.1; Paris and Erdogan, 1963) is a large/long 
crack region-II characteristic of the sigmoidal shaped crack growth rate curve (Fig. 
4.3). Assuming the crack tip wake field is predominantly elastic, the crack growth 
driving force ∆�(∆��,  � , �) incorporates (only) the 1st order square root singular 
term including geometry and cyclic loading mode-I far field effects. 

 

 log (d�d�) = log(') + � ⋅ log(∆�)  ∀  (∆+ℎ < ∆� < .) (4.1) 

 
with 

HAZ 
 

WM 
 

BM 
WM 

BM 

HAZ 

Ribeiro, 1993 
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∆� = ∆� = ∆�� �

√0�
 

 

 
However, crack nuclei (flaws) or defects – either a result of crack initiation or 
welding process induced and assumed to be physically small/short – in materials or 
structures (at a notch location), show different subcritical growth behaviour; (∆� < .). Depending on crack(tip) and/or notch stress distribution and 
magnitude including its degree of elastoplasticity, small/short cracks (initially) may 
tend to grow slower or faster and accelerate or decelerate respectively to the 
large/long crack growth characteristic, meaning similarity – the same crack growth 
rate (d�/d�) for similar crack growth driving force ∆�  – is violated and 
anomalous behaviour can be identified (Fig. 4.3). 

To incorporate small/short crack growth behaviour at blunt notches (1 > 0),  � (Eq. 3.27) and ∆� have been modified (El Haddad, Smith and Topper, 1979; 
Liu and Mahadevan, 2009), introducing the SCFt + and an effective crack 
size/length �3 = (�� + �0 + �) to include respectively a notch-, material defect 
sensitivity- and real crack contribution: 

 

 

∆� = ∆�� � ⋅
√0 (�� [1 − exp {− (�0 + ��� )(+2

 � 2 − 1)}] + �0 + �)
 (4.2) 

 
with the two extremes 
 

 
∆� = ∆��+ �√0(�0 + �)      for  (�/��) → 0 
∆� = ∆�� �√0(�� + �0 + �)  for  (�/��) → ∞  

 
Both crack(tip) and notch are supposed to behave predominantly linear elastic. For (�/��) → 0 and decreasing �, the effective crack size/length becomes even 
fictitious: (�3 → �0). If at the same time the remote mechanical loading is reduced 
up to plane geometry fatigue endurance limit level, (∆�� → ∆�0), the crack  
growth driving force turns into the structural threshold, a lower bound and region-I 
parameter (Paragraph 2.11): ∆� → +∆�,+ℎ = ∆�0+ �√0�0, Obviously, 
small/short crack growth behaviour observed at notches may be monotonically 
increasing similar to a large/long crack in region-I, although beyond the material 
threshold ∆+ℎ (Fig. 4.3); a region-II anomaly. To take crack(tip) and notch 
plasticity into account, the F -integral and strain concentration factor (SCFε) H 
have respectively been used (El Haddad, Dowling, Topper and Smith, 1980). 
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              Figure 4.3: Anomalous small/short crack growth at notches. 
 

Load ratio ��, the 2nd parameter involved in defining cyclic far field stress, provides 
the tension-compression ratio affecting crack opening and closure. In case (�� > 0), 
a crack may still be partially closed around the minimum of a far field stress cycle 
and a crack closure phenomenon has been introduced (Elber, 1971). The crack 
growth driving force is hypothesised to be not fully effective: ∆� → ∆�,3�� = I{∆�3��(∆��, �K, �),  � , �}. The yield strength �K is incorporated, since reduced 
effectivity has been assumed to be a result of plastic wake field deformations at the 
crack tip. Over time, the load ratio �� became explicitly involved, as well as work 
hardening- and structural response condition {plane stress, plane strain} parameters 
(Sehitoglu, Gall and García, 1996); an attempt to obtain a conclusive model. 
Rather than an effective crack size/length, crack closure; an effective SIF range ∆�,3��, has been used to explain non-monotonic small/short crack growth 
behaviour (Fig. 4.3) at (blunt) notches as well, i.e. ∆�3��(+,∆��, �K, �): the 
plastic wake field would not yet be fully developed (Schijve, 1988), meaning 
initially a lower level of crack closure and increased crack growth rate (d�/d�). 
Anomalous growth is however identified well beyond the plastic zone; obviously at 
least another contributor is involved (Sehitoglu, Gall and García, 1996). 

Physically small/short cracks, either in plane geometries or at notches 
(respectively materials or structures), show similar growth behaviour if along      
the (presumed) crack path the same stress distribution is involved, suggesting (non-
monotonic region-II) anomalies to be a result of missing crack driving force 
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components rather than a matter of crack closure or even micro-structural effects 
(Krupp, 2007) and a total crack driving force ∆� = ∆�,+N+ (Sadananda and 

Vasudevan, 1998) has been formulated. In addition to elastoplastic wake field size; 
the SCFt or SCFε {+,H} in case of blunt notches, its shape is taken into account 
as well. For the remote mechanical cyclic loading part of weld notches, both the far 
field (equilibrium equivalent stress) and weld notch geometry (self-equilibrating 
stress) contributions have to be included: ∆�,+N+ = ∆�( � , �) + ∆�( �, �), 
even for a sharp weld root notch in crack configuration {1 = 0, Q = 0}, meaning 
notch and crack share the same local stress field. Note that ∆�( � , �) includes 
the 1st order (crack) singular term only; ∆�( �, �) incorporates the   non-singular 
higher order (notch) terms as well. The crack growth similarity definition has been 
refined (Sadananda and Vasudevan, 1998): equal crack driving forces yield the same 

crack growth rates, provided the growth mechanism is the same. 
Although the response condition in the structural field stress dominated zone    

3 should be exclusively elastic, in the (weld) notch stress governing zone {1, 2} 
however it may vary from predominantly elastic up to fully plastic. Inevitably, the 
crack growth mechanism will be affected and a dual slope formulation (Dong, Hong 
and Cao, 2003; Dong and Hong, 2004), the BSS two-stage crack growth model; a 
modified elastic far field stress governing Paris equation, has been introduced: 

 

 log (d�d�) = log(') + 2log(RS�) + �log(∆�) (4.3) 

 
In terms of crack size, growth rate behaviour from physically- to technically 
small/short is distinguished from technically small/short to large/long using 
respectively RS� and ∆� . The notch magnification factor RS� is defined as ratio 
of the SIF with- and without notch contribution because of the blend notch and 
structural field factor  � � + (Paragraph 3.5) and includes the wake field shape 
along the assumed crack path; using the total stress (TS) concept, (RS� =  �). Its 
exponent, an elastoplastic wake field size parameter, that proved to be an average 
value applicable to several data sets for different – base – materials, environments 
(temperature, water) and all types of crack geometry (single edge-, double edge- 
and centre cracks) is suggested to be notch plasticity related (Dong, Hong and Cao, 
2003; Dong and Hong, 2004) since (�K ∝ �2); actually a first order crack tip 
plasticity parameter, at least related to square root singular crack/notch behaviour. 
Focus is on non-monotonic small/short crack growth at sharp (weld) notches only, 
i.e. monotonic structural threshold affected behaviour is ignored. 

Comparing Paris’ large/long crack region-II characteristic (Eq. 4.1) to other 
formulations developed over time, a crack growth law similarity has been identified 
(Paris and Erdogan, 1963), i.e. (d�/d�) = '(∆�)U��. For � = (�/2), the quasi 2D 
infinite plane SIF solution for a remote mechanically loaded crack (Eq. 3.1) is 
obtained. Using dimensional analysis, it has been shown that the crack growth rate 
should be proportional to the crack size/length: (d�/d�) = '(∆�)U�, as confirmed 
for several crack growth observations; � = 1 does the F&D model (Frost and 
Dugdale, 1958) appear. Since all formulations imply (partially) straight lines on 
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log-scale, however, an apparent agreement of different- or even contradictory laws 
can be identified for the same test data; the ‘correct’ one should correlate a wide 
range of test data rather than a single one (Paris and Erdogan, 1963). 

The F&D model has particularly proved to be able to characterise growth of 
physically small cracks – at sharp notches in crack configuration – at low (linear 
elastic) stress intensity (Molent et al., 2006), i.e. is capable to collapse 

monotonically increasing crack growth (rates) in region-I and the lower part of 
region-II of the sigmoidal shaped curve into a single (near) straight line (Fig. 4.4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.4: Near threshold monotonically increasing crack growth rate behaviour 
                (Eq. 4.6) collapsed into a (near) straight line (Eq. 4.5). 

 
Using dimensional analysis and a fractal geometry concept, the Paris law coefficient ' should be crack size dependent according to a power function (Spagnoli, 2005), 
turning the Paris characteristic (Eq. 4.1) into: 

 

 
log (d�d�)= log{'(�)}                   + �log(∆�)

= log(')    + �log{I(�)} + �log(∆�)
 (4.4) 

 

 
The crack growth law similarity has been generalised at the same time; far field SIF 
contributions are included as well. One of the solutions is the generalised F&D 
model (Jones, Molent and Pitt, 2007a): 
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log (d�d�)= log(')    + �log ( ��0)  + �log(∆�)  

= log('0)   + �log  (�)    + �log(∆�)
∀  (�0 < � < �.) (4.5) 

 
 

 
with 
 

 � = (1 − �2 )  

 
To eliminate the ∆�  1st order crack tip singularity, � includes (−�/2). An explicit 
notch contribution is not taken into account; only the crack configuration has been 
investigated. The critical crack/defect size �0 (only) became explicitly involved rather 
than the crack growth driving force material threshold ∆+ℎ(�0,  � , �0). Note that 
crack growth similarity – the same crack growth rate for similar crack driving force 
– is violated in contrast to a modified Paris (Eq. 4.1) region-{I, II} formulation: 

 

 log (d�d�) = log(') + �log(∆� − ∆+ℎ)  ∀  (∆+ℎ < ∆� < .) (4.6) 

 
For (� = 2), McEvily’s model is obtained. The 1st order crack tip plasticity  
relation (�K ∝ �2) and crack growth rate – crack size/length proportionality (d�/d� ∝ �) are identically satisfied at the same time; �log(∆� − ∆+ℎ) has 
replaced log(∆� U − ∆+ℎU) to achieve in average a better fit in the near 
threshold region for multiple data sets (McEvily, 1983); an engineering solution. 
Plasticity induced crack closure, i.e. {∆� = ∆�,3�� ,∆+ℎ = ∆+ℎ,3��}, has been 
introduced to deal  with crack growth anomalies (McEvily and Minakawa, 1984). 

Note that anomalous crack growth at notches (Fig. 4.3), often illustrated below 
the (large/long crack) threshold; e.g. (Ritchie et al., 1988; Janssen et al., 2002), is 
suggested to be a result of missing crack growth driving force (correction) 
components like + or  �. Threshold ∆+ℎ might be considered as a compressive 
driving force (Eq. 4.6) preventing for crack growth; a material parameter for both 
small/short and large/long cracks. 

In order to be able to model generalised region-{I, II} crack growth behaviour 
(both monotonically increasing and non-monotonic) at notches concerning structural 
field response (membrane and bending contribution for thin plates and shells), 
notch acuity (both sharp and blunt) as well as crack tip and/or notch stress condition 
(exclusively elastic up to fully plastic), all involved crack growth driving force 
components – stress distributions – along the (assumed) crack path should be taken 
into account, since crack tip wake field shape and size are assumed to be decisive. 

The remote mechanical loading induced weld notch stress distributions (Chapter 
2) have already been found important to define the weld notch SIF’s (Chapter 3). 
Using the far field stress controlled equilibrium equivalent- and notch stress 
dominated self-equilibrating part {�� , ��3}, the stress intensity far field- and notch 
factor { � ,  �} are determined; linear elastic SIF weight functions incorporating 
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the stress wake field shape of cracks at weld toe- and weld root notches. Reflected 
in micro- and macro crack growth,  � should be governing for cracks increasing in 
size/length from physically- to technical small/short in the notch affected region; 
from technically small/short to large/long, the far field induced  �  is assumed to be 
in charge. Correlating micro- and macro crack growth, a total stress (TS) concept 
based two-stage model satisfying similarity, I(�) =  �, a modified Paris equation, is 
proposed: 

 

 
log (d�d�)= log(') + �log{I(�)} + �log(∆�)

= log(') + �log{  � } + �log(∆�)
 (4.7) 

 

 
with 
 

 � = (�3 − �2 )  

 
Incorporating notch affected micro-crack growth using a two-stage model is not so 
much a peculiarity (Radaj, Sonsino and Fricke, 2006), as it is based on the 
reasonable hypothesis that all crack growth driving forces should be taken into 
account (Sadananda and Vasudevan, 1998), rather than the introduction of non-
similarities (Jones, Chen and Pitt, 2007b) or dismissed as micro-structural aspects. 

The scaling factor log(') represents the material crack growth strength as      
usual. Assuming 1∗ and �0 have the same physical meaning (Paragraph 2.11), the 
Ramberg-Osgood equation Y = (�/Z) + (�/′)1/�′ and Coffin-Manson-Basquin 
relation (∆Y/2) = (�′�/Z) ⋅ (2�)^ + Y′�(2�)_, respectively the intact geometry 
stabilised cyclic stress-strain- and fatigue resistance curve, can be used to prove  log(') = I(′, �′, �′� , Y′� , `, a); a true material parameter (Jones, Molent and Pitt, 
2007a; Noroozi et al., 2005). The cyclic strength coefficient and work hardening 
exponent {′, �′}, fatigue strength- and ductility coefficients {�′� , Y′�} as well as 
fatigue strength and ductility exponents {`, a} can be solved for using cyclic stress-
strain- and life time data satisfying compatibility for the elastic and plastic parts 
(Nieslony et al., 2008). Cyclic stress intensity ∆�  still controls the wake field size 
or magnitude ∆�� because of the involved equilibrium equivalent stress part. With 
respect to shape, ∆�  incorporates the linear elastic (sharp) crack tip 1st order 
square root singular term as well as geometry and zone 3 cyclic loading mode-I far 
field stress effects governing in the macro-crack growth region. Slope �, a material 
parameter, characterises the corresponding crack growth mechanism. 

The zone {1, 2} governing self-equilibrating notch stress part dominates the wake 
field shape in the micro-crack growth region, meaning for  � the ∆�  included 
square root singular crack tip behaviour should be subtracted: � = (�3 − �/2)    
for (b1 − 1) = (−1/2). The introduced notch elastoplasticity coefficient �3 should 
satisfy the criterion (�3 ≥ 1.0). In case the notch stress distribution is elastic, (�3 = 1.0); if plasticity becomes involved, (�3 > 1.0). Like argued for cracks (Irwin, 
1957; Janssen et al., 2002), it is assumed that because of plasticity the notch 
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behaves as if it were larger/longer than its actual physical size (Guo, Wang and 
Rose, 1998), meaning the effective notch size/length includes a plasticity induced 
fictitious component: ��3 = �� + ���  and  � = ∑'f(�/g�)hi−1 turns into  �3 = ∑'f�i(�/g�)hi−1. For unknown ��3, the effective notch factor will be 
approximated using:  �3 ≈ {∑'f(�/g�)hi−1}�k =  ��k . Although the order of 
singularity, the zone 2 stress gradient, should decrease for increasing level of 
plasticity (Lazzarin, Zambardi and Livieri, 2001; Filippi, Ciavarella and Lazzarin, 
2002), using the elastic contribution only it will increase since ��3 increases. 

For a positive elastoplasticity coefficient (� > 0) a non-monotonic crack growth 
rate can be identified; a monotonically increasing one if (� ≤ 0), i.e. near (structural) 
threshold behaviour is observed for (�3 < �/2) involving two material parameters. 
Small cracks, either at notches or in plane geometries, show even similar growth 
behaviour for respectively the same notch and crack tip elastoplasticity (Li and 
Zhang, 2001);  � =  _ using the asymptotic stress distribution for a notch in crack 
configuration and includes the higher-order terms as well. 

To achieve a crack growth rate proportional to crack size/length (d�/d� ∝ �), 
notch elastoplasticity coefficient �3 = (−2 + 3�/2). In case (� = 3), a curve fitted 
value for different materials (Jones et al., 2007a; 2007b), still the exclusively elastic 
notch or crack tip distribution – a (generalised) F&D model assumption – is 
involved since � = 1. 

In comparison to the BSS two-stage crack growth model,  � and RS� serve the 
same purpose although obtained in different ways (Paragraph 3.4). Rather than a 
constant plasticity related coefficient (� = 2) and focus on non-monotonic crack 
growth at notches at the same time, crack growth behaviour may change from 
predominantly non-monotonic in the MCF- to monotonically increasing in the (near 
threshold) HCF region in terms of fatigue life time; � should be variable. 

The large/long crack growth region-{I, II, III} definitions do not apply one-to-
one to notch emanated cracks in welded joints. Notch affected micro-crack growth 
can be identified as near structural threshold region-I (monotonically increasing) as 
well as region-II (non-monotonic) behaviour. Anyhow, far field dominated macro-
crack growth is a region-II phenomenon. If a through-thickness crack – a design and 
detectable repair criterion – has been developed, it is still assumed to be stable and 
will continue to propagate either along or perpendicular to the weld seam. In 
parallel systems like hull structure stiffened panels, a load shedding mechanism      
– stress redistribution – may become involved (Xu and Bea, 1997) because of local 
stiffness loss. At some (region-III) point, the crack will become unstable and may 
cause fatigue induced failure. In terms of fatigue life time, the number of cycles in 
region-III is limited.  

 

4.2.1 Far field stress 

Hull structures are predominantly orthotropic stiffened (curved) panel assemblies 
consisting of (thin) plates and shells. The remote mechanical loading of arc-welded 
joints, the linear elastic far field stress, mainly consists of a membrane and bending 
stress component defining the zone 3 far field stress gradient; the structural 
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bending stress ratio �� varies in between the limits (−∞ < �� ≤ 1). Similar to the 
weld notch stress distributions (Paragraph 2.6 & 2.7) and -stress intensity factors 
(Paragraph 3.5 & 3.6), differences in terms of crack growth rate (d�/d�) =I[∆�{ �(��)}] as well as fatigue life time �  are expected to be at maximum 
between a pure bending (�� = 1)- and combined membrane-bending case (�� → −∞); a principle matter of notch stress distribution (non-)symmetry with 
respect to half the plate thickness (g�/2), a {SEN, CN} or DEN geometry (Fig. 3.3, 
3.5 and 3.6). 

Concerning macro-crack growth in non-symmetric {SEN, CN} geometries, far 
field bending remains bending in the cross-section along the (assumed) crack path 
for increasing macro-crack size/length. Far field membrane loading on the other 
hand introduces an additional (dominant) bending term, meaning  �(��) increases 
for (��|=1 → −∞) as well as (d�/d�) = I[∆�{ �(��)}] along the crack growth 
rate curve in region-II (Fig. 3.10 to 3.13 and Fig. 4.5); the material macro-crack 
growth strength and mechanism parameters, i.e. scaling factor log(') and slope �, 
do not change. Since in case of symmetry, a DEN geometry, no membrane loading 
induced bending term is involved,  �(��) and (d�/d�) = I[∆�{ �(��)}]  shows  
in fact the opposite behaviour (Fig. 3.23 to 3.26 and Fig. 4.5), i.e. decreasing for (��|=1 → −∞). 

 
 
 

 
 

Figure 4.5: Far field stress effects in micro- and macro-crack growth region in         
                case of a) non-symmetry and b) symmetry. 
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 Micro-crack growth however is affected at the same time (Fig. 4.5). The  � �   
apex, dividing the notch affected micro- and far field dominated macro crack 
region, shifts for (��|=1 → −∞) to the left in case of non-symmetry (Fig. 3.10 to 
3.13), decreasing the notch affected zone size and reducing the micro-crack growth 
contribution – material parameter � remains unaffected. The apex shift is to the 
right for (��|=1 → −∞) if symmetry is involved (Fig. 3.23 to 3.26). Increasing the 
notch affected zone size ensures more pronounced micro-crack growth rates. 

Comparing one load case to another for either non-symmetry or symmetry (Fig. 
4.5a or 4.5b), obviously, straightforward conclusions in terms of fatigue life time are 
inappropriate. Both micro- and macro crack growth are affected and (d�/d�) 
consequences are different. Generally speaking, for any (non-)symmetric geometry �  decreases for {��, ��|=1 → −∞}, despite the crack growth behaviour and 
naturally expected considering the far field stress gradient. On the other hand, 
because of the opposite crack growth behaviour, (�|�� = 1) for a {SEN, CN} 
geometry (slightly) exceeds its DEN equivalent; the DEN value is (somewhat) 
larger in comparison to the {SEN, CN} one for (�|�� → −∞), provided the non-
symmetric and symmetric geometries are similar. 

 

4.2.2 Notch geometry 

The way key parameters like notch angle and -radius {2Q, 1} influence the (micro-) 
crack growth rate (d�/d�), is principally like the self-equilibrating stress part ��3(q) 
(Paragraph 2.8) and notch factor  � (Paragraph 3.7) are affected (Fig. 4.6). 

 Starting in half-plane configuration (2Q = 0), any crack growth in plane 
material is basically identified as a long-crack region-II characteristic. For 
increasing notch angle 2Q, micro-crack growth behaviour becomes more pronounced 
up to (2Q ≈ 1.220); close to an ideally assumed 45 [deg] fillet weld toe angle 
configuration. Continuing the 2Q increase up to (2Q ≈ 1.430); the eigenvalues {b�, bs} become tangent sin(b2Q) solutions (Fig. 2.8), the notch induced (d�/d�) 
contribution decreases. For a persistent 2Q increase up to the crack configuration (2Q = 20), micro-crack growth becomes pronounced again. 

The notch angle effect on monotonically increasing and non-monotonic (d�/d�) 
is the opposite. The former shows e.g. for increasing notch angle (0 < 2Q < 1.220) 
initially smaller micro-crack growth rates to be accelerated in time to macro-crack 
growth level; the latter larger (d�/d�) to be decelerated. The same type of 
behaviour can be identified for (1.430 < 2Q < 20); the other way around if (1.220 < 2Q < 1.430), a principal zone 2 stress gradient effect. 

In terms of fatigue life time � , assuming crack growth is governing and 
monotonically increasing, weld toe notches in approximately ideal fillet angle- and 
weld root notches in crack configuration show the best results. The undulating �  
estimate for increasing notch angle is however in contradiction – a phenomenon 
that applies only to 2Q – to crack initiation based values; i.e. for increasing notch 
angle (0 < 2Q < 0.750), the SCF or notch factor �(+), a(n effective) zone 1 peak 
stress parameter, monotonically increases for increasing 2Q. Quite interesting to 
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note is that for non-monotonic (residual stress amplified) tensile notch stress 
induced crack growth both configurations are actually the worst. 

To be able to deal with sharp cracks at both sharp and blunt notches, the TS 
concept based two-stage crack growth model (Eq. 4.7) includes the notch radius 1 
as it affects the zone 2 stress gradient and controls the zone 1 peak stress. For 
increasing 1, the peak value as well as stress gradient reduce in the notch affected 
region, meaning the level of acceleration or deceleration for respectively 
monotonically increasing- and non-monotonic crack growth rates reduces (Fig. 4.6); 
i.e. micro-crack growth behaviour becomes less pronounced. 

Like for crack initiation dominated fatigue, the life time estimate �  for non-
monotonic crack growth governing fatigue increases for increasing 1. In the 
monotonic case �  reduces, since the self-equilibrating stress part – compressive in 
the notch affected region either thermal residual or structural threshold induced 
since the far field induced component must be tensile by definition – preventing for 
crack growth, i.e. zone 1 peak stress and zone 2 stress gradient, should be as large 
as possible, meaning for increased 1 a reduced fatigue life time estimate. 

Note that using a bi-linearised (weld) notch stress distribution includes 1 effects 
implicitly, since its peak value will be finite by definition (Paragraph 2.6 and 2.7). 
However, the way RS� has been derived (Paragraph 3.5) ensures {RS�|(�/g� →0) → ∞}, meaning the BSS two-stage crack growth model (Eq. 4.3) cannot take 
the actual 1 contribution into account. 

 

 
 

Figure 4.6: Notch geometry effects in the micro-crack growth region for varying      
                a) notch angle- and b) radius; 1′ = (1/y) with l a characteristic length. 
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                Figure 4.7: Crack growth effects for varying notch length; 
                               ��′ = (��/y) with l a characteristic length. 

  
The notch size/length ��, a (weld) root notch parameter, affects both micro- and 
macro crack growth because of ��q amplitude- and zone {2, 3} ��(q) gradient 
changes; (d�/d�) = I{ �( �z, �� + �),  �( �q,  ��, �� + �)}. The curve  principally 
shifts along the region-II long crack growth characteristic (Fig. 4.7) since the 
amplitude contribution dominates. 

 

4.2.3 Elastoplasticity 

For {MCF, HCF}, the far field stress condition is assumed to be predominantly 
elastic. In the notch affected region however the zone 1 peak stress and zone 2 stress 
gradient may vary from exclusively elastic up to fully plastic, influencing micro-
crack growth (Fig. 4.8). Whether (d�/d�) is either monotonically increasing or non-
monotonic depends on the macro-crack growth slope as well; �(�3,�). Starting at 
the notch elastoplasticity coefficient lower bound (�3 = 1) – the elastic case – and a 
common (average) slope value (� = 3), it is monotonically increasing. For 
increasing �3, plasticity becomes involved and at some point the crack growth rate (d�/d�) becomes non-monotonic. Note this explanation is in contrast to the one 
based on crack closure: the plastic wake field would not yet be fully developed, 
referring to a lack. Continuing the �3 increase means (d�/d�) becomes more 
pronounced and acceleration increases. The SIF related crack correction (−�/2) 
remains linear elastic by definition. 
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         Figure 4.8: Elastoplasticity effects in the micro-crack growth region. 
  

Elastoplastic notch crack behaviour is highly structural response condition 
dependent. It is plane stress at the (notch) surface, the crack initiation- or physically 
small/short crack location, meaning a reduced yield stress �K and increased (cyclic) 
plastic zone size �� in comparison to the �K bulk value for a plane strain condition 
that becomes governing for increasing crack size/length �. The involved transition 
explains why micro-crack growth behaviour is more pronounced in thin plate 
specimen (Newman et al., 2000; Li and Zhang, 2001) and complicates the �� 
calculation. In case (1 = 0), using the mode-I NSIF (Eq. 3.20) a 1st order            �� estimate for V-shaped notches as identified at weld toe and weld root denote:  

 

 �� = { 1(20)1−h{
∆�}'�2�K}

11−h{  
(4.8) 

 

 
with 
 

 
∆�}= (20)1−h{ limq→0+{�1−h{���(�, � = 0)}

= (20)1−h{∆��g�1−h{��b�(b� + 1)(1 − ��)
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 �� = { 1(20)1−h1
∆�}q
'�2�K}

11−h1   
(4.9) 

 

 
with 
 

 
∆�}q= (20)1−h1 limq→0+{�1−h1���(�, � = 0)}

= (20)1−h1∆��q(g�′)1−h{�1b1(b1 + 1)(1 − �1)
 

 

 
In case of crack tip plasticity: �}q = � . Similar formulations can be obtained for (1 > 0) using the corresponding notch stress distribution formulations (Eq. 2.47, 
2.49 and 2.50). The plastic constraint factor for plane stress denotes: '� = 1. Using 
Von Mises’ yield criterion and assuming the Poisson ratio � = (1/3), in plane strain '� = 3 for a notch in crack configuration (b1 = 1/2), meaning �� is 9 times smaller 
in comparison to the plane stress value. In thin plates and shells it is considered to 
be a lower bound and an intermediate plane strain value ('� = √3) has been 
proposed (Irwin, 1957). 

Note that notch radius 1 and elastoplasticity coefficient �3 are pushing the same 
button: for increasing 1 plasticity reduces and micro-crack growth becomes less 
pronounced. 

 

4.2.4 Mean stress 

Of all factors that may influence fatigue, mean stress has proved to be an 
important one (Maddox, 1975; Obrtlík, Man and Polák, 2004), although it is (still) 
rarely reported up to what extent micro- as well as macro crack growth at notches 
– in particular in the context of arc-welded joints – is affected. All contributions 
including the cyclic remote mechanical- and quasi-constant thermal residual stress 
part have to be taken into account. 

 
Far field contribution 
A remote mechanical loading induced far field structural stress cycle (Fig. 4.9) is 
unambiguously defined using two independent parameters, e.g. {∆��, ��,Us�}, 
suggesting crack growth involves 2 driving force components as well (Walker, 1970; 
Sadananda and Vasudevan, 1998): ∆�(∆��) and �,Us�(��,Us�). An effective  
one – different from the original- and modified plasticity induced crack closure 
formulation, e.g. (Donald and Paris, 1999; Gavras, Lados and Donald, 2013) – can 
be determined taking the log-relative contributions into account: 

 

 ∆�,3�� = (∆�)�(�,Us�)1−�    ∀    (0 ≤ � ≤ 1) (4.10) 

 
Assuming � to be {∆��, ��,Us�} invariant, mean stress independent, Paris’ far 
field geometry and loading dependent region-II characteristic (Eq. 4.1) becomes: 
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 log (d�d�) = log(') + �log{(∆�   )�(�,Us�)1−�} (4.11) 

 
Crack growth similarity requires macro-cracks to grow at the same rate for similar {∆� ,�,Us�} and material; (�,Us� > 0) is mandatory for crack growth  
anyway. Hypothesising at the same time that the negative part of a far field stress 
cycle (Fig 4.9); in fact ∆� − (Kujawski, 2001), does not contribute: 

 

 log (d�d�) = log(') + �log{(∆� +)�(�,Us�)1−�} (4.12) 

 
The involved effective structural stress range ∆��,3��  can be rewritten in terms of ∆�� = (��,Us� − ��,Uf�) and the remote load ratio �� = (��,Uf�/��,Us�); a far   
field mean stress factor defining the cycle degree of symmetry: 

 

 

∆��,3�� = (∆��+)�(��,Us�)1−� = ∆��(1 − ��)1−�     ∀    (�� ≥ 0)
∆��,3�� = (∆��+)�(��,Us�)1−� =   ∆��    (1 − ��)      ∀    (�� < 0)

 (4.13) 

 
As a matter of fact, on log-scale �,3��(∆��, ��) simply shifts the crack growth 
relationship. Introducing a load ratio coefficient �: 

 

 
log (d�d�)= log(') + �log { ∆�(1 − ��)1−�}

= log(') + �log(     ∆�      ) − �(1 − �)log(1 − ��)
  (4.14) 

 
 

 
with 
 

 
� = �    ∀    (�� ≥ 0)
� = 0    ∀    (�� < 0)   

 
Although two crack driving forces are involved, �,Us� is in control for a negative 
load ratio �� since (� = 0); for increasing positive �� values ∆�  becomes  
governing. A geometric mean for (�� ≥ 0) can be adopted (Smith, Watson and 
Topper, 1970), i.e. the load ratio coefficient � = � = 0.5 [-]; effects of (cyclic) 
material properties including fracture toughness (ductile; (� > 0.5) meaning ∆�  
dominates like for aluminium 5xxx and 6xxx alloys, or brittle; (� < 0.5) for 
governing �,Us�) and environment are disregarded – whether negligible or not.  
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        Figure 4.9: Structural stress cyclic parameters in case of respectively  
                       a) a positive- and b) negative load ratio ��. 

 
The generalised non-similitude F&D model (Eq. 4.5) has been modified as well to 
include the effective crack growth driving force ∆�,3�� , (Jones, Molent and Pitt, 
2007a; Jones and Molent, 2010): 

 

 log (d�d�) = log(') + (1 − �2 ) log(�) + �log{(∆�)�(�,Us�)1−�} (4.15) 

 
Although dedicated to model growth of physically small/short cracks, ∆�,3�� =∆�,3��  since the crack size/length induced non-similitude imposes the effective 
crack growth driving force principally to be considered as a far field restricted 
large/long growth contribution. 

 
Weld notch contribution 
In the notch affected region however, ��3 causes an increased local mean stress. 
Though, it is still remote loading induced meaning the corresponding local load 
ratio, (+��,Uf�)/(+��,Us�)  for a blunt notch, equals the equilibrium equivalent 
stress related ��. Given a small/short crack, the notch affected mean stress converges 
for increasing crack size/length to the far field value (Fig. 4.10) as naturally 
included using RS� in the BSS- or  � in the TS two-stage crack growth model (Eq. 
4.3 and 4.7). Taking both crack growth driving forces {∆� ,�,Us�} into account, 
the BSS formulation (Kim and Dong et al., 2006) has become: 
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 log (d�d�) = log(') + 2log { RS�(1 − ��)1−�} + �log(∆�) (4.16) 

 
Coefficient � = 0.5 for �� ≥ 0; � = 0 for �� < 0. At first glance the remote loading 
induced mean stress, i.e. �,Us�(∆��, ��), might seem to contribute only to micro-
crack growth in the notch affected region; macro-crack growth is however influenced 
as well. Most important is the modelling assumption that mean stress is (notch) 
plasticity related. The far field stress should be elastic by definition, suggesting to use �,3��  (Eq. 4.12). For the two-stage crack growth model (Eq. 4.7), �3(��,Us�, �K) is 
principally �� independent although some correlation will be involved because of the ��  elasticity requirement. Both the (∆��, ��) micro-crack (implicitly)- as well as 
macro-crack growth contribution (explicitly) are proposed to be incorporated: 

 

 

log (d�d�)= log(') + �  log( �) + �log {        ∆�                (1 − ��)1−�}

= log(') + �3log( �) + �log { ∆�
( �)12(1 − ��)1−�}

 (4.17) 
 
 
 

 

 
For (�3 = 1), notch and/or crack tip behaviour is elastic and (structural) threshold 
induced anomalous crack growth, monotonically increasing, is principally �� invariant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Figure 4.10: Mean stress effects in the micro-crack growth region. 
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To achieve notch and/or crack tip elastoplasticity  (�3 > 1) for decreasing ��, the 
stress range ∆�� should increase, implying the local mean stress increases as well. 
For increasing crack size/length, the mean stress reduces to the far field value, 
meaning plasticity induced anomalous crack growth, i.e. non-monotonic behaviour, 
becomes more pronounced for decreasing �� and is predominantly identified for  
small (impact related) positive and negative values (Fig. 4.10) since (�� < �K). 

 
Residual stress 
A total weld notch stress distribution ��+ consists of a (cyclic) remote mechanical- 
and thermal loading induced (quasi-constant) residual part {��, ��q} showing  
stress field similarity (Paragraph 2.11).  

Using load-displacement records (Lados, Apelian and Donald, 2007; Gavras, 
Lados and Donald, 2013), the RSIF affected �,Us�(�q) can be obtained in a 
similar way as the plasticity induced crack closure related effective crack growth 
driving force component ∆�,3��  and the total effective one becomes  ∆�,+N+,3�� =(∆�,3��)�(�,Us�)1−�.  

To include the displacement (constraints) controlled residual stress contribution 
exploring a residual load ratio, it should be crack size/length dependent because of 
the involved ��q redistribution: ��q(�/g�). Using one parameter incorporating both 
the remote mechanical- and thermal residual mean stress component, the load ratio 
may be defined as ��(�/g�) = (�,Uf� + �q)/(�,Us� + �q) like included in the 
BSS two-stage crack growth model (Dong, 2008): 

 

 log (d�d�) = log(') + 2log(RS�) + �log [ ∆�{1 − ��(�/g�)}1−�] (4.18) 

 
For (�q = 0), only the remote mechanical mean stress is considered. In 
comparison to the preceding formulation (Eq. 4.16), mean stress has changed over 
time to a pure macro-crack growth effect. 

In case the residual stress distribution is tensile in the notch affected region, ��(�/g�) turns out to be approximately constant and may be included in the crack 
growth strength coefficient log('); if compressive, ��(�/g�) rapidly decreases to a 
significant negative value in the micro-crack region, will gradually increase for 
increasing crack size/length and converges up to a constant in the macro-crack 
region (Dong, 2008). Taking a closer look to the compressive case, in terms of load 
ratio the obviously lower local residual stress (at yield magnitude) dominated value 
naturally converges for increasing crack size/length to the higher far field governing 
one; the higher the residual compressive stress in the notch affected region or the 
higher the remote mechanical �� value, the more pronounced the monotonically 
increasing anomalous behaviour will be (Fig. 4.10). In fact, monotonic crack growth 
rate behaviour as ignored in the cyclic remote mechanical loading based BSS two-
stage model (Eq. 4.16), is included using ��(�/g�) as far as residual stress is 
concerned. 
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The TS concept crack growth formulation (Eq. 4.7 and 4.17) already contains � 
to include cyclic remote mechanical loading induced non-monotonic and 
monotonically increasing (d�/d�). Since ��q is estimated at or even beyond yield 
magnitude – either in tension or compression – in the notch affected region, the 
(elastic) remote mechanical �� contribution to the total stress intensity is relatively 
small; i.e. assumed to negligible. Crack size dependent tensile residual stress in the 
notch affected micro-crack growth region would simply increase the elastoplasticity 
coefficient: �3 → �3′. To allow for a governing compressive crack size dependent 
one, a cyclic elastoplasticity coefficient (�3′ ≤ 1) will be accepted as well. 
Anomalous behaviour will be pronounced anyway;  � remains the same because of 
the weld notch remote mechanical- and thermal residual stress distribution 
similarity.  

Quasi-constant residual mean stress effects in the macro-crack growth region 
either tensile or compression – if any, depends on displacement constraint, i.e. 
“equilibrium” or “self-equilibrating” type (Paragraph 2.10 & 3.9) – will be included 
in the crack growth strength coefficient, log(') → log('′), since quantative values 
are unknown (from design perspective) and the TS concept two-stage crack growth 
model denotes: 

 

 

log (d�d�)= log('′) + �′  log( �) + �log {      ∆�              (1 − ��)1−�}

= log('′) + �3′log( �) + �log { ∆�
( �)12(1 − ��)1−�}

 (4.19) 
 
 
 

 

 
Formulations (Eq. 4.17 and 4.19) are similar and represent respectively cases with- 
and without welding induced residual stress effects, i.e. in terms of arc-welded joint 
material zones respectively a BM and {WM, HAZ} dedicated model to be used for 
weld toe- and weld root notches. 

To achieve crack growth involving 2 driving force components {∆�(∆��),   �,Us�(��,Us�)} or ∆�(∆��, ��) may suggest at the same time existence of 2 
thresholds {∆�,+ℎ,�,Us�,+ℎ}; violating only 1 value would already be sufficient 
(Sadananda, 1998 and 2004). Generally speaking, the cyclic one ∆�,+ℎ is 
considered to be small, in particular for aluminium as applied in high-speed craft, 
meaning  �,Us�,+ℎ is assumed to decisive. However, since �,Us� includes a remote 
mechanical- and (predominantly tensile) thermal residual contribution, aluminium 
arc-welded joint threshold values would be violated in almost any sea state. 
Though, question is still whether threshold values truly exist as a constant(!), at 
least for metallic materials (Bathias et al., 2001; Pyttel et al., 2011). Well-
established crack growth threshold {∆�,+ℎ,�,Us�,+ℎ}- as well as (random) fatigue 
limit ∆�(� → ∞) values in the HCF region seem to be in contrast to experimental 
data and is considered to be an important reason to prevent for formulations like 
(Eq. 4.6), including the (extended) McEvily model (Wang, Cui, Wu, Wang and 
Huang, 2008), explicitly involving a threshold parameter as material constant. 
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4.3 Crack growth at (weld) root notches 

Standard specimens containing notches in crack configuration to emanate cracks 
and acquire growth data, principally represent arc-welded root notch geometries at 
the same time; specimen width `� turns into plate thickness g� (Fig. 3.3, 3.5 and 
3.6). Data available in literature will be reinvestigated for small/short crack related 
anomalies, limited to far field stress constant amplitude (CA) series; i.e. the crack 
growth driving force ∆� will increase for increasing crack length � and the remote 
load ratio �� remains fixed. The material focus is on {WM, HAZ, BM} aluminium 
5xxx (plates) and 6xxx (extrusions) as typically applied in high-speed craft, 
although some crack growth data in aluminium 7xxx and steel will be used as well 
to demonstrate TS two-stage crack growth model features. For the different type of 
notches, {SEN, DEN, CN} related to (non-)symmetry conditions (Paragraph 3.3), 
mean stress-, elastoplasticity- and notch geometry {1|2Q = 20} effects will be 
examined; far field stress is limited to the membrane case.  

 

4.3.1 Single edge notch 

Employing aluminium Al5083-H321 FP DS butt joints, SEN crack growth data 
(Fig. 4.11) has been obtained using multiple specimens – explaining the scatter 
band –  for BM and HAZ in L-T configuration (crack path normal to grain rolling 
direction). The MIG welding procedure has been applied using filler wire 5356 
without pre-heating; one pass on each side. The weld reinforcement is not removed 
and may introduce (limited, ignored) 3D effects. Constant amplitude tests at load 
ratio �� = 0.1 [-] and frequency I = 10 [Hz] have been conducted in air (Shankar 
and Wu, 2002).  

The crack growth rates (da/dn) are monotonically increasing beyond the 
material threshold, i.e. ∆+ℎ ≈ 60 [MPa√mm] for BM, suggesting notch (structural 
threshold) related anomalies are involved. Rewriting the two-stage crack growth 
model (Eq. 4.7) to a multi-log-linear formulation (Eq. 4.20), regression analysis has 
been used to obtain the parameter LS estimates {log('),�, �3,f}. 

 

 log (d�d�) = log(') + �log {∆�
( �)12} + ∑{�3log( �)}f (4.20) 

 
In agreement with modelling considerations (Paragraph 4.2), all BM notch 
elastoplasticity coefficients turn out to be the lower bound value (�3,f ≈ 1.0), i.e. 
the cyclic remote mechanical loading induced notch behaviour is predominantly linear 
elastic as confirmed by the average notch plastic zone size amplitude; (�� ≈ 0.03) 
for �K = 240 [MPa] in plane strain. The HAZ data includes welding induced residual 
stress ��q as well. The SEN crack growth specimens, free bodies, do not contain 
displacement constraints, meaning ��q is of the self-equilibrating type. If compressive 
in the notch affected region (Fig. 2.70), the local residual load ratio is smaller than 
the remote loading induced one (��q < ��), i.e. (�3,f < 1.0) and may explain the 
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HAZ crack growth behaviour to be monotonically increasing as well (Fig. 4.11). 
The HAZ (cyclic) notch elastoplasticity coefficients however approximately equals 
the BM value: (�3,f ≈ 1.0), suggesting the ��q contribution is limited. To visualise 
the results, a two-stage single slope presentation might be useful (Fig. 4.12); the 
better the log-log linearity, the better the data fit and model capabilities seems to 
be. At normal scale, the multi-log-linear formulation (Eq. 4.20) becomes: 

 

 {(d�d�) ( ��k)f⁄ } = ' ⋅ {∆�
 �12 }U (4.21) 

 

Note that to justify the development of a new fatigue model in comparison to 
available (competitive, alternative) ones, preventing for curve fitting to obtain 
model coefficients is sometimes used as argument since it would lack a physical 
base. The misunderstanding seems that although curve fitting itself has no physical 
meaning, the parameters do, meaning the argument is simply invalid. Agree to 
disagree concerning modelling philosophies. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.11: SEN Al5083-H321 large/long crack growth data presentation (Shankar 
                and Wu, 2002) and two-stage models (Eq. 4.3 and 4.7); �� = 0.1 [-]. 
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    Figure 4.12: SEN Al5083-H321 crack growth data (Shankar and Wu, 2002)  
                     in TS two-stage single slope presentation; �� = 0.1 [-]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Figure 4.13: SEN Al5083-H321 crack growth data (Shankar and Wu, 2002)  
                     in BSS two-stage single slope presentation; �� = 0.1 [-]. 
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Comparing {BM, HAZ} data, the average slope values � = {2.48, 3.15} prove that 
cracks grow faster in the HAZ; principally a matter of different bulk material 
properties affecting (d�/d�). The crack growth strength in terms of scaling factors, log('(′)) = {−10.31,−12.01}, is in favour of BM. 

Application of the BSS model (Eq. 4.3) including non-monotonic crack growth 
behaviour only – a SEC approach is adopted for any SEN geometry like for weld toe 

and weld root notches (Paragraph 3.5 and 3.6) and �� is no far field stress anymore – 
seems inappropriate here as shown for the HAZ data mean (Fig. 4.11); a binary 
approach (� = 1 ∨ � = 2) might be a solution to incorporate elastic notch and/or 
crack tip behaviour as well. In two-stage single slope presentation, however, an 
apparent agreement of the contradictory TS and BSS formulation has been 
identified (Fig. 4.12 and 4.13). Differences are hardly visible and relying on a two-
stage single slope presentation only (Dong, Hong and Cao 2003; Dong and Hong 
2004) may suggest a better correlation than it actually is. 

Micro-crack growth BM data (L-T config.) for varying notch radius 1 has been 
obtained for BS4360 steel grade 50B (Shin and Smith, 1988). The SEN specimens 
are stress relieved to ensure no ��q component is involved. Constant amplitude 
tests are performed at �� = 0.005 [-], I = 5 or 10 [Hz] and ambient temperature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      Figure 4.14: SEN BS4360 steel grade 50B large/long crack growth data  
                       presentation (Shin and Smith, 1988); �� = 0.05 [-]. 
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Non-monotonic behaviour is identified beyond the material threshold  ∆+ℎ ≈ 180 
[MPa√mm]; note the Z-modulus and ∆+ℎ bulk material property ratios of steel 
and aluminium is approximately equal. The notch induced micro-crack growth 
anomaly reduces for increasing 1 (Fig. 4.14), increasing notch acuity (1/��), as 
included in the TS two-stage crack growth model (Eq. 4.7). Since macro-crack 
growth data is limited, the slope value (� = 3.50) is based on other test results 
(Shin and Smith, 1988). To obtain {log('), �3,f}, the �log{∆�/( �)1/2} term is 
moved to the left hand side in the multi-log-linear relation (Eq. 4.20). Plasticity is 
involved; (�3,f ≈ 1.88) in average, meaning {(�3,f − �/2) > 0} as expected. A 
crack growth data TS two-stage single slope presentation shows a good correlation 
(Fig. 4.15). The 1st order notch plastic zone size exceeds the aluminium 5083-H321 
BM data value by one order of magnitude, i.e. (�� ≈ 0.74) for �K = 350 [MPa] in 
plane stress condition; a specimen thickness related assumption, confirming that for 
a far field stress below �K plasticity induced non-monotonic micro-crack growth is 
predominantly limited to thin specimen. For notches at arc-welded joints however a 
plane strain condition seems obvious… 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 4.15: SEN BS4360 steel grade 50B crack growth data (Shin and Smith, 
                   1988) in TS two-stage single slope presentation; �� = 0.05 [-]. 

 
For the same type of specimen (non-symmetric with respect to (`�/2); Fig. 3.3b) 
and dimensions – only the thickness is adapted to 3 [mm] – in BS1470 aluminium 
1200 (S1C), similar results have been obtained (Shin and Smith, 1988; Fig. 4.16 
and 4.17). The slope value (� = 2.7) is a long crack growth data set value; curve 
fitting provides �3,f = {1.55, 1.49, 1.39}.  
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  Figure 4.16: SEN BS1470 aluminium 1200 (S1C) large/long crack growth data  
                   presentation (Shin and Smith, 1988); �� = 0.05 [-]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.17: SEN BS1470 aluminium 1200 (S1C) crack growth data (Shin and Smith, 
                1988) in TS two-stage single slope presentation; �� = 0.05 [-]. 
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To limit SEN specimen dimensions, a Compact Tension (CT) configuration has 
been developed. Crack growth behaviour is established for {BM, WM, HAZ} in 
aluminium 6062-T651 (Ribeiro and De Jesus, 2011; Fig. 4.18) using MIG filler wire 
5356 welded FP DS butt joints. The weld reinforcements have been removed. 
Constant amplitude data at I = 15 [Hz] in lab conditions is obtained for 2 remote 
load ratios: �� = {0.10, 0.50} [-]. Although the notch affected micro-crack growth 
contribution is limited – monotonically increasing beyond ∆+ℎ as expected based 
on remote loading, self-equilibrating residual stress and specimen thickness – the 
data allows to investigate mean stress effects, i.e. cases with- and without welding 
induced residual component. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Figure 4.18: SEN CT Al6062-T651 large/long crack growth data 
                             presentation (Ribeiro and De Jesus, 2011). 
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Least squares estimates {log('(′)),�, �′, �3,f(′)} have been obtained for each 
material zone using regression analysis, rewriting the TS two-stage crack growth 
models (Eq. 4.17 and 4.19) for respectively BM and {WM, HAZ}: 

 

 

log (d�d�) = log('(′)) + �log {∆�
( �)12} + �′log(1 − ��) +

                                      ∑{�3(′)log( �)}f

 (4.22) 
 
 

 
with 
 

 � = �′� + 1  

 
The obtained �� coefficients � = {0.70, 0.73, 0.87} are beyond the geometric mean, 
i.e. the crack growth contribution of the cyclic component ∆� dominates �,Us�. 
Although large values are no exception (Mann, 2007), the {BM, WM} ones are 
typical (Dowling, Calhoun and Arcari, 2009). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 4.19: SEN CT Al6062-T651 crack growth data (Ribeiro and De  
                         Jesus, 2011) in TS two-stage single slope presentation. 
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The Al6061-T651 {WM, HAZ} crack growth strengths  log('(′)) = {−14.30,−14.65} 
and slopes � = {4.07, 4.27} are approximately equal (Fig. 4.19); a prerequisite to 
combine weld root and weld toe induced fatigue resistance data. The BM slope is 
obviously smaller (� = 2.97). Generally speaking, � values closer to the Al5083-
H321 one have been found as well (Mann, 2007). If micro-crack growth behaviour is 
ignored and all data is incorporated to obtain �, the Paris region slope is 
overestimated (e.g. Ribeiro and De Jesus, 2011) and (artificially) large. 

Surprisingly, the {WM, HAZ} � coefficients are different. The only possible 
explanation seems to be unequal specimen residual stress, supported by the �- �3(′) 
correlation; �3(′) ≈ {1.38, 1.79} in average, showing plasticity (plane strain to a 
large extent) is involved in all cases, but dominant for HAZ. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Figure 4.20: SEN CT Al7075-T651 large/long crack growth data 
                            presentation (Zhao, Zhang and Jiang, 2008). 
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For (�� ≥ 0) and exponential load ratio coefficients (0.5 < � ≤ 1.0), a decision to 
neglect mean stress seems reasonable if the �� contribution disappears in the data 
scatter. However, as soon as (�� < 0) data becomes involved – representative for 
deck- (sagging condition) or bottom structures (hogging condition) – mean stress 
effects become significant as shown for high-strength aluminium BM 7075-T651 data 
(T-L configuration), obtained in air at I = 1…10 [Hz] depending on applied loading 
(Zhao, Zhang and Jiang, 2008; Fig. 4.20). The plate thickness is not the same for 
all specimen, but ensures a predominant plane stress condition in any case. The 
log-linear relation (Eq. 4.22) needs to be modified. 

 

 

log (d�d�) = log('(′)) + �
⎣⎢
⎢⎢
⎡log {     ∆�      

( �)12          } 
log { ∆�

( �)12(1 − ��)}
for �� ≥ 0
for �� < 0⎦⎥

⎥⎥
⎤

+

              �′ [ log(1 − ��)0   for �� ≥ 0
for �� < 0 ]            +

                  ∑{�3(′)log( �)}f

 (4.23) 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 4.21: SEN CT Al7075-T651 crack growth data (Zhao, Zang and  
                        Jiang, 2011) in TS two-stage single slope presentation. 
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Assuming only the tensile part of the stress cycle contributes to crack growth, is a 
reasonable one (Fig. 4.21); the remote load ratio coefficient is beyond the geometric 
mean (� = 0.69). Notch affected micro-crack growth data is limited. Both 
monotonically increasing- and non-monotonic behaviour is identified, showing   �3(′) should be determined for each individual crack growth data series indeed.  

Plasticity induced micro-crack growth at notches is predominantly related to a 
plane stress condition and becomes more pronounced for decreasing (negative) 
remote load ratio �� (Newman at al., 2000; Fig. 4.10), as shown for 1070 Steel data 
at a SEN in round compact tension (RCT) specimen configuration (Ding, Feng and 
Jiang; Fig. 4.22). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

           Figure 4.22: SEN RCT 1070 Steel large/long crack growth data 
                             presentation (Ding, Feng and Jiang, 2007). 
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Although (R)CT data is typically considered to be large/long crack related   
(Lados, Apelian and Donald, 2007) confusing notch- and crack size/length, non-
monotonic- as well as monotonically increasing anomalies can be identified. For (�� ≥ 0) the applied load range seems governing, since no load ratio effect is 
identified; the �� = {+0.1,+0.5} contribution has been ignored and � ≈ 1. 

The specimen thickness induced plane stress condition provides an increased 
plastic zone size �� compared to a plane strain case. To achieve notch and/or 
crack(tip) plasticity for decreasing load ratio, the stress range ∆�� should increase 
like has been done for (�� = −1.0) → (�� = −2.0). The non-monotonic micro-crack 
growth behaviour becomes more pronounced, since the increased local mean stress 
will gradually decrease to the far field value for increasing crack size; i.e. the 
significance of crack growth rate deceleration (Fig. 4.10 and 4.22) is up to some 
extent a self-fulfilling prophecy. Assuming that only the stress cycle tensile part 
contributes to crack growth seems still reasonable (Fig. 4.23). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        Figure 4.23: SEN RCT 1070 Steel crack growth data (Ding, Feng and  
                         Jiang, 2007) in TS two-stage single slope presentation. 

 
Obtained elastoplasticity coefficients �3,f = {4.55, 2.36, 1.64, 1.67} and slope (� = 3.47) show for (�� = −2.0) that the TS value {� = (�3 − �/2) ≈ 2.82} 
exceeds the BSS one (� = 2.0); model results are approximately the same (Fig. 
4.22). For (�� = −1.0), �3,f is halved with respect to the (�� = −2.0) case like the 
applied loading ∆� , meaning the elastoplasticity coefficient includes only a cyclic 
contribution for (�� < 0) since � is not involved by definition. At (�� = +0.1) the 
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load range has drastically been reduced again; �3,f may contain load ratio effects. 
The specimens notch length however, �� ≈ 15 [mm], increases the stress level and 
some plasticity is still involved. The crack growth rate has become monotonically 
increasing since {(�3 − �/2) < 0}. Increasing ∆�  as well as the load ratio up to (�� = +0.5), the level of plasticity increases slightly. Anomalous crack growth        
– either structural threshold or residual stress induced – is limited since the 
increased local mean stress is counteracted by the increased far field mean stress 
(i.e. increased ��).  

In the hull structure {WM, HAZ}, a plane strain condition at weld notches is 
expected, limiting the plastic zone size �� at one hand; residual stress distributions 
of the (tensile) equilibrium equivalent type (displacement constraints are involved) 
increasing the local mean stress and �� on the other hand. The far field stress range ∆�� seems to be decisive for the actual �� size and determine the crack growth 
behaviour to be either monotonically increasing or non-monotonic; �� determines 
how pronounced the anomalies will be. 

 

4.3.2 Double edge notch 

For the SEN symmetry equivalent with respect to (g�(′)/2) or (`�/2), a DEN 
geometry (Fig. 3.5); cracks should emanate at both sides with equal (d�/d�), 
micro-crack growth AISI 316 stainless steel BM data (L-T config.) has been 
obtained at different remote load ratios �� and notch radii 1 (Fig. 4.24 and 4.25; 
Shin and Smith, 1988). The specimens are stress relieved to ensure no ��q 
component is involved. Constant amplitude tests are performed at I = 5 or 10 [Hz] 
and ambient temperature. Macro-crack growth data is limited and the slope value (� = 5.50) is based on long crack growth test results (Shin and Smith, 1988). To 
obtain {log('), �′, �3,f}, the �log{∆�/( �)1/2} term is moved to the left hand 
side in the multi-log-linear relation (Eq. 4.22). 

Elastoplasticity reduces for the constant 1 and increasing �� series (Fig. 4.24) 
and crack growth behaviour has changed from non-monotonic – the specimen 
thickness ensures a plane stress condition – into monotonically increasing. A nearly 
perfect correlation between �3 = {3.00, 2.53, 1.98} and �� can be identified. 

Varying 1 at the same time (Fig. 4.25), the elastoplasticity coefficients become: �3 = {2.90, 2.41, 1.45}. If 1 decreases like for �� = {+0.05,+0.30}, the peak stress 
increases meaning the plasticity concentration increases as well, i.e. the plastic zone 
size and �3 decrease will decrease. The common case (�� = +0.65) �3 value however 
is different and suggests a considerable degree of data sensitivity. The remote load 
ratio coefficients are approximately the same: � ≈ 0.40 [-]. 
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Figure 4.24: DEN AISI 316 stainless steel large/long crack growth data (Shin and  
                 Smith, 1988)- and TS two-stage single slope presentation; constant 1. 
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Figure 4.25: DEN AISI 316 stainless steel large/long crack growth data (Shin and  
                 Smith, 1988)- and TS two-stage single slope presentation; varying 1. 
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Surprisingly, the BSS crack face traction ��  (Dong, Hong and Cao, 2003; Dong and 
Hong, 2004; Paragraph 3.5 and 3.6) for DEN geometries is included using the 
weight function approach (Eq. 3.17), in contrast to the SEC formulation adopted 
for SEN geometries; �� is still no far field stress. Consistency seems lost. Note that 
the region-II slope  (� = 5.5) is already taken into account (Fig. 4.25). 

 

4.3.3 Centre notch 

Weld root notches in PP DS butt- and cruciform joints, i.e. CN geometries (Fig. 
3.6), show – like DEN ones – symmetry w.r.t. (g�/2); the ��q distribution is 
however non-symmetric. Corresponding crack growth behaviour in aluminium 5083 
is established for {BM, WM} in T-L configuration (crack path parallel to grain 
rolling direction) using multiple MIG filler wire 5183 welded FP DS butt joints 
(Sonsino et al., 1999 and Brandt et al., 2001; Fig. 4.26) and provides a data scatter 
band. The weld reinforcements have been removed. Constant amplitude data is 
obtained in lab conditions for 2 remote load ratios: �� = {−1.0,+0.0} [-]. The WM 
specimens are stress relieved, i.e. annealed at 200 [°C] for 1 hr. without 
compromising the material hardness and to prevent for ��qq effects, explaining the 
very similar {BM, WM} crack growth behaviour; {log('(′)),�} are comparable. 
Notch affected micro-crack growth is monotonically increasing beyond ∆+ℎ for 
both data sets, in agreement with the applied remote mechanical loading, (cyclic) 
yield strength and specimen thickness. 

Typical analysis results (Brandt et al., 2001) include the Paris equation, 
obtained using all data no matter crack growth anomalies, affecting the region-II 
parameters (Fig. 2.75). However, adopting the two-stage crack growth model, an 
elastic notch affected crack tip structural response has been identified (�3 ≈ 1) as 
expected since �� is negligibly small. Taking the remote mechanical mean stress 
into account is rather a formality since (� = 0) in both cases (Fig. 4.27). The 
assumption that only the tensile part of the stress cycle contributes to crack growth 
seems reasonable. 

Using the BSS crack face traction ��  (Dong, Hong and Cao, 2003; Dong and 
Hong, 2004; Paragraph 3.5 and 3.6) and a weight function approach (Eq. 3.17), the 
stress intensity has been calculated inconsistently since ��  rather than ��q has been 
used. Together with the plasticity induced non-monotonic crack growth assumption, 
the single-slope presentation (Fig. 4.28) is obviously misleading. Mean stress effects 
have not been considered. 
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  Figure 4.26: CN aluminium 5083 long crack growth data (Brandt et al., 2001). 
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Figure 4.27: CN aluminium 5083 crack growth data in TS two-stage single slope     
                 presentation. 
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Figure 4.28: CN aluminium 5083 crack growth data in BSS two-stage single slope   
                 presentation. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.29: Shear lips in aluminium 5083 CN crack growth specimen for              
                   a) non-symmetry and b) symmetry w.r.t. half the plate thickness. 

 
Shear lip development, both non-symmetric and symmetric w.r.t. (g�/2), is a well-
known region-II crack growth phenomenon in standard aluminium specimens (Fig. 
4.29). The initially flat fracture surface turns gradually into a slant one and 
introduces a mixed mode-{I, III} loaded crack opening, meaning the slope (d�/d�) = I(∆�) changes at the same time up to the transition is completed as 
shown for aluminium 5083 BM CN test data for a range of �� values (Fig. 4.30). 

(Van Kranenburg, 2010) 
 

a) 

b) 

 

(Van Kranenburg, 2010) 
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Shear lips are usually associated with plane stress conditions at the material 
surface (i.e. become more important for increasing specimen thickness) and includes 
an environmental component as well (Schijve, 1988). Although in hull structures not 
so much related to through-thickness crack growth as well to continuing crack 
propagation, adequate mode-I region-II parameters require a SIF correction, in 
particular for the non-symmetry case; for symmetry the mode-III contributions 
neutralise each other. In the shear lip affected region, � may reduce (log)linearly 
up to �/√2  for a 45 [deg] slant angle; a geometry (increased, effective specimen 
thickness)- or loading (reduced, effective stress) correction. For the considered data, 
the actual (final) slant angle is unknown and an average reduction factor {(1 + √2)/2} has been adopted. Applying the TS concept as well (Fig. 4.31), the 
average slope � ≈ 3.5. is similar to the value obtained before (Fig. 4.27)  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.30: CN aluminium 5083 long crack growth data (Van Kranenburg, 2010). 

a) 
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Figure 4.31: CN aluminium 5083 crack growth data in TS two-stage single slope     
                  presentation including shear lip correction. 
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4.4 Crack growth at weld toe notches 

Fatigue testing series have been developed in a quasi-2D setup in order to    
identify CA crack growth behaviour at single edge weld toe notches (0 < 2Q < 20) 
as well. Aim is to investigate influence of mode-I far field loading combinations 
(membrane and bending), initial crack size effects and notch elastoplasticity 
consequences (den Besten, Kaminski and Huijsmans, 2013). 

 

4.4.1 Specimens 

Recognising that crack growth behaviour in arc-welded joints is a complex 

combination of properties in the alternating material zones {WM, HAZ, BM}, in a 
two-series approach 45 non-welded and welded small scale specimens (SSS) have 
been used. The specimen geometry (including initial crack size) as well as the far 
field loading is controlled to prevent for related uncertainties; i.e. the SIF is both 
geometry and loading determined. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 Figure 4.32: Non-welded and welded FP DS T-joint SSS geometry; g^ = g_ = 10, 
                  yz = ℎz = 6√2, 1 = 1 [mm].  

a) b) 
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The 1st
 series, (non-welded) FP DS T-joint geometries (Fig. 4.32a); no standard crack 

growth specimens, is milling machined from aluminium 5083H321, 10 [mm] sheet 
material. Hole eccentricity £ℎ [mm] has been used to achieve 3 different far field 
bending contributions affecting both { �,  �(��)}, i.e. £ℎ = {−0.625, 0.0, 1.111}  
corresponding to �� = {−0.6, 0.0, 0.4}; the {MBN, M, MBM} series, referring to the 
far field membrane and (non-)monotonic bending components. Chamfering has 
been applied to prevent for friction induced load contributions. 

A SEN specimen (2Q corresponding to an ideal fillet weld geometry) would 
provide crack growth information, but the fatigue resistance does not represent 
welded joint data. Applying far field bending is more difficult as well. 

To obtain the same geometry for the 2nd series, welded SSS’s, coarse contours are 
obtained first using a laser cutter machine. Fillet-welds are applied using MIG 
welding equipment and, subsequently, the T-joints are milling machined (Fig. 
4.32b). To prevent for weld root failure in any case, the coarse contour approach is 
preferred rather than FP welding of base and cross-plates. The latter may introduce 
large deformations and aim is to keep the weld material removal to a minimum. 
Any residual stress left is assumed to be of the self-equilibrating type; specimens 
are not ��q relieved.  

Finally, for both series predefined artificial cracks are applied at the weld toe 
(one side only) using a (YAG) laser engraving technique. The initial weld toe flaw 
or crack size/length �f is typically assumed (Lassen et al., 2006; Radaj, et al., 2006) 
to be in the range 0.10 … 0.25 [mm] and random numbers �f ~ ¤(�, �) have been 
generated (Fig. 4.33). The sharp flaws are wedge-shaped with a 6 [deg] top angle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.33: Randomly generated specimen weld toe initial crack sizes.  
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An artificial laser engraved crack is preferred rather than a (time consuming) pre-
cracked one. Size and shape control is defined as decisive. For a pre-cracked one it 
is uncertain at which notch the crack will appear first – in contrast to a laser 
engraved crack – and it is likely to have a non-constant size and shape over 
specimen width. Besides, for a laser engraved flaw the size can be verified after 
testing using a stereo microscope (Fig. 4.34). A possible influence of laser heat 
input, which eventually may simulate the welding process induced heat input up to 
some extent, is considered of secondary importance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 Figure 4.34: a) flaw geometry after YAG lasering process, b) typical flaw; stereo    
                      microscope image after specimen failure.  

 
The dark grey area below the flaw is the stable crack growth region (Fig. 4.34b). The 
(dashed) transition line to unstable crack growth (region-III) is approximately 
horizontal, meaning a quasi-2D edge crack has been developed indeed. 

 

4.4.2 Test setup 

To achieve full remote mechanical load control, the SSS fixtures contain Oiles sleeve 
bearings. Chamfered 12.9 fitting bolts have been used to mount the specimen in the 
machine grips (Fig. 4.35). Assuming the hinges work perfectly (i.e. frictionless), 
fixture misalignments; an offset puts the SSS under angle, will not affect the applied 
loading. Cyclic (sinusoidal) CA loading is applied at �� = 0.1 [-] and I = 10 [Hz]. 
Three load range levels [N] have been defined for respectively the non-welded and 
welded configuration: ∆¥� = {10500, 7500, 5000} and ∆¥� = {8500, 6500, 4500}, 
i.e. 5 specimens at each load range level for all {MBN, M, MBM} series. To capture 

a) b) 

flaw / initial crack 
 

specimen width 
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the SIF as governing crack growth parameter, its notch and far field information    
– respectively crack size/length (crack tip position) and (linear) stress distribution – 
is required and have been obtained using digital image correlation (DIC): a non-
destructive, non-contact, direct optical observation method and surface displacement 
field measurement technique. Images are taken once in every 500 cycles (Fig. 4.35b) 
at maximum and minimum load condition {¥Us�, ¥Uf�} using a stereo camera 
setup. To capture a notch affected crack growth anomaly like non-monotonicity – 
predominantly observed in plane stress condition – surface measurements seems an 
excellent choice indeed. SIF notch- and far field information (Fig. 4.35c) is 
recognised to be (already) available at different scales. However, aim is to capture 
all information from the same image, meaning the notch region requirements are 
governing. For a good spatial resolution, 5 MP cameras are used; the physical pixel 
size corresponds to ~6 [µm]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.35: a) Test setup, b) loading scheme, c) SSS notch- and far field region.  
 

The displacement field kinematic basis is a key issue to obtain accurate notch- and 
far field region information. As a first step in the analysis procedure, displacement 
fields are estimated on a general kinematic basis using commercial DIC software 

Istra4D (Dantec Dynamics). A posteriori, the displacement fields are decomposed 
onto a dedicated one, providing the far field stress, crack tip location and SIF. A note 
in advance: estimating the displacement field directly using the dedicated kinematic 
basis in an integrated approach may increase the accuracy (Roux and Hild, 2006)  
– in particular close to the specimen edges and around the crack(tip) – and is 
considered to be the next step, since out-of-plane displacements might be involved. 
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4.4.3 Digital image correlation principles 

Processing 2 digital images, 1 captured before and 1 after object deformation using 
a single or stereo camera setup, 2D or 3D displacements ¦(§) and displacement 
derivatives can be estimated by matching (correlating) the image textures I(§) and ¨(§); light intensity (grey level) distributions, if optical flow conservation is 
satisfied: 

 
 ¨(§) = I(§ + ¦(§)) (4.24) 

 
Areas with pixels (equivalent: subset, facet, zone of interest (ZOI), correlation 
window) rather than single pixels are used to perform the correlation process 
because a single pixel has no unique signature. The system (Eq. 4.24) is ill-
conditioned and require displacement field constraints, since ¦(§) has to be regular 
and smooth. Applying a low-pass filter is one option, but alternatively a subspace 
of suitable or even dedicated displacement functions ©(§) can be adopted, e.g. FE 
based formulations (Hild and Roux, 2006). In particular cases, Airy stress functions 
like Williams’ (generalised) asymptotic solution can be selected as well and operate 
as a mechanical filter. In order to ensure a unique grey level distribution for each 
subset, the texture should be random. If the observed (material) texture does not 
meet this criterion, an artificial random pattern must be applied. 

Selecting a single subset from a 2D image before deformation (the reference image), 
the image after deformation is searched for the same grey level distribution (Fig. 
4.36a). Assumption: the grey level distribution does not change during deformation, 
meaning a one-to-one correspondence exists. The displacement fields  ª�(«, ¬) and ªK(«, ¬) force the subset centre point �(«�, ¬�) to shift to � ∗(«�∗, ¬�∗): 

 

 {«�∗

¬�∗  == «� + ª�(«, ¬)
¬� + ªK(«, ¬)} (4.25) 

 

For a linear deformation approximation (the subset size should be small enough), 
the subset displacement gradients are constant and location («®, ¬®) in the same 
subset becomes ∗(«®∗, ¬®∗): 

 

 

⎩{{
⎨{
{⎧«®∗

¬®∗
 
=
=

 
«® + ª�(«, ¬) + ³ª�³«  d« + ³ª�³¬  d¬
¬® + ªK(«, ¬) + ³ªK³«  d« + ³ªK³¬  d¬⎭}}

⎬}
}⎫ (4.26) 

 

The 2 displacement components and 4 displacement gradients (providing strain 
information) have to be solved for. Note the subset deforms as a parallelogram. The 
adopted subset deformation approximation is basically a smoothness assumption, 
meaning each subset behaves as a low-pass filter. Higher order displacement 
gradients can be included to allow for more complicated subset deformations. 
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 Figure 4.36: a) Subset before and after deformation, b) sub-pixel interpolation.  

 
Generally speaking, {� ∗, ∗} are located in between pixel positions. Grey levels are 
not available at these points and interpolation is required. Adopting a bi-linear 
interpolation scheme; an affine transformation (alternatives: bi-cubic or spline 
interpolation schemes), the grey level ¨(«∗, ¬∗) between 4 surrounding pixels (Fig. 
4.36b) is obtained as: 

 
 ¨(«∗, ¬∗) = �0 + �1«′ + �2¬′ + �3«′¬′ (4.27) 

 
Note that ¨(«∗, ¬∗) is a continuous grey scale distribution. The constants �� are 
estimated using the locations and grey level values of the surrounding pixels. To 
represent the correlation for each subset, a least squares based correlation 
coefficient Φ is defined: 

 

 Φ = ∑{¨(«∗, ¬∗) − I(«, ¬)}2
pixel

 (4.28) 

 
and at image level: 
 

 Φ = ∑ {¨(§ + ¦) − I(§)}2
subset

 (4.29) 

 
Minimising Φ, an optimisation problem, the design variables (displacements and 
displacement gradients) can be obtained. 

a) b) 
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∆¬ 
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The subset size strongly influences measurement accuracy (Huang, 2012). For 
areas with small (uniform) displacement or strain distributions, like the far field 
region, the random- or statistical error (noise and illumination fluctuations) 
associated with subset quality dominates – generally speaking – the systematic 
error (e.g. DIC algorithm induced). It means that an increased subset size is 
preferred to reduce the random error as it contains more information in terms of 
grey level distribution. However, the accuracy close to the specimen edge decreases 
because of the increased chance of a mismatch between subset boundary and 
specimen edge. On the other hand, for the notch region containing relative large 
strains because of the (weld) geometry related strain concentration and a crack 
induced displacement field discontinuity, a smaller subset size is recommended 
because of the increased systematic error. Consequently, DIC is a trade-off between 
displacement (and strain) accuracy and spatial resolution. Increasing the subset size 
increases accuracy, correlation, but decreases spatial resolution. The same applies 
vice versa. 

 

4.4.4 Texture quality 

To estimate a priori the predominantly texture quality determined DIC 
displacement measurement performance, global and local quality indicators are 
introduced to analyse the notch and far field area using the reference image. 
Painting the specimens respectively satin white (using a spray can) and black 
(using an airbrush system), an artificial texture (Fig. 4.37 and 4.38) is obtained.  

The (8-bit depth) grey level distribution histogram, e.g. the one (Fig. 4.39) 
corresponding to the far field region (Fig. 4.37), is a global texture quality 
indicator: as wide as possible to employ the full dynamic grey level range 
maximising the grey level characteristic and without any (white colour) saturation 
to prevent for reflection. 

Considering the texture random character, each subset grey level distribution is 
unique. To evaluate whether a subset contains enough information for a proper 
analysis, the subset grey level standard deviation, a local quality and sensitivity 
indicator, has been introduced (Hild and Roux, 2008). Note: the higher its value, 
the better. Adopting the normal distribution �(�, �), a practical criterion has been 
found to be 1 [%] of the subset grey level range: for an 8-bit depth grey level 
distribution the subset grey level range should approximately be in between 11, i.e. �(� ± 2�), and 15, i.e. �(� ± 3�). Below, the grey level gradient is not enough to 
capture displacements. For the considered texture, all 5-pixel subsets already satisfy 
this criterion (Fig. 4.40); �U3s� ≈ 16 [pixel]. Although developed for the Q4-DIC 
procedure, a Q4 (bi-linear) FE based subset displacement formulation (Hild and 
Roux, 2008) and affine transformation (Dantec Dynamics) use the same number of 
constants to be estimated, i.e. the criterion is considered to be a general one since a 
linear kinematic basis approximation holds for many DIC procedures, regardless the 
different correlation procedures. 
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 Figure 4.37: Specified far field- and notch region in typical DIC (reference) image.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.38: Typical texture close up (far field centre Fig. 4.37).  
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 Figure 4.39: Typical (8-bit) grey level distribution histogram (far field Fig. 4.37).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.40: Typical subset grey level standard deviation (far field Fig. 4.37).  
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 Figure 4.41: Typical subset correlation radii passing criterion (far field Fig. 4.35).  

a) 

b) 
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Another significant criterion involves the subset (auto)correlation radii {Ã1, Ã2}; 
physically defining an ‘equivalent’ speckle size, a self-similarity measure. For each 
subset {Ã1, Ã2} should be as small as possible to ensure its texture grey level 
distribution is unique. A practical criterion has been found to be 25 [%] of the 
subset size (Hild and Roux, 2008). Approximate {Ã1, Ã2} values are obtained using  
a parabolic interpolation of the autocorrelation function at the subset centre and 
involves only the 8 neighbour pixels, i.e. the autocorrelation radii are the ellipse 
principal axis lengths in {«, ¬} direction. The ratio of the {Ã1, Ã2} values is a 
texture anisotropy measure and proved typically to be quite isotropic as preferred 
with some outliers (Fig. 4.41). For a subset size ≥ 21 [pixels] the adopted criterion 
is satisfied. 

 

4.4.5 Far field region analysis 

Following the a-priori texture quality analyses results, a subset size of 21 [pixel] has 
been selected and the displacement fields {ª�, ªK}  are obtained using Istra4D (Fig. 
4.42). Subsets close to the specimen edge are ignored because of the subset 
boundary and specimen edge mismatch induced inaccuracy. The observed 
displacement range is in the order of a few microns and some noise can be 
identified. 

The SIF related far field information, the linear far field stress distribution, 
requires strain. The amplitudes are expected to be very small. Sufficiently accurate 
and smooth strain fields can only be obtained using (mechanically) filtered 
displacement fields – disregarding an increased subset size for the moment. A 
polynomial filter, e.g. a Savitzky-Golay smoothing and differentiation filter or Airy 
stress function, has the important advantage that strain, spatial displacement 
derivatives, quite easily can be obtained. Selecting an appropriate Airy stress 
function: 

 
 Ä = '22¬2 + '33¬3 (4.30) 

 
the stress components �fÅ in Cartesian coordinates become by definition: 
 

 

���

�KK

��K

 
=
=
=

 
   ³2Ä³¬2

   ³2Ä³«2

− ³2Ä³«³¬

 
=
=
=

 
2'22 + 6'33¬
0
0

 (4.31) 

 
The bi-harmonic equation is identically satisfied. Introducing the stress-strain 
relations, Hooke’s law, assuming a plane stress condition – DIC is a surface 
measurement technique: 
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Y��

YKK

Y�K

 
=
=
=

 

(Æ + 1)��� − (3 − Æ)�KK8Ç
(Æ + 1)�KK − (3 − Æ)���8Ç
��K2Ç

 
=
=
=

    (Æ + 1)(6'33¬ + 2'22)8Ç
 − (3 − Æ)(6'33¬ + 2'22)8Ç
   0

 (4.32) 

 

with Kolosov’s constant 
 

 Æ = (3 − �)(1 + �)  

 

and the small strain-displacement relations 
 

 

Y��

YKK

Y�K

 
=
=
=

 

³ª�³«
³ªK³¬
12(³ªK³« + ³ª�³¬ )

  (4.33) 

 

the displacement field in complex coordinates is obtained 
 

 

¦(È) = ª� + ÉªK
¦(Ê) = ∑'SËSS¦(Ê) = '� + 'K ⋅ É + 'q ⋅ (É« − ¬) +

('22Ç ) ⋅ 2(Æ + 1)« − 2(3 − Æ)É¬8 +
('33Ç ) ⋅ −3(Æ + 1)É«2 + 6(Æ + 1)«¬ − 3(3 − Æ)É¬2

8

 

(4.34) 
 
 
 
 
 
 
 
 
 

 

including the rigid body terms. Assuming the Poisson ratio � = 0.33 [-], the 
Istra4D displacement field is decomposed onto the dedicated kinematic basis (Eq. 
4.34; Fig. 4.43). The amplitudes 'S have been obtained solving the system [Ë]{'} = {¦(È)Istra4Ï}. Since [Ë] is non-square (i.e. contains more rows than 
columns) and rank-deficient (rigid body motions are included), its inverse [Ë]−1 
does not exist. The pseudo inverse [Ë]+ is calculated containing some, but not all, [Ë]−1 properties. The system is overdetermined and provides least squares 
approximate solutions, i.e. min{.}‖[Ë]{'} − {¦(È)Istra4Ï}‖2, meaning {'} =[Ë]+{¦(È)Istra4Ï} is the most likely one out of the infinitely many available. 
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 Figure 4.42: Typical Istra4D displacement fields {ª�, ªK} including rigid body  
                   motions; M-series in maximum load condition (far field Fig. 4.35).  

 

b) 

a) 



212 Chapter 4. Crack Growth at Notches 

 

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0
-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

x [mm]

 

 

[m
m

]

y
[m
m
]

uy

0.059

0.060

0.061

0.062

0.063

-10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 10.0
-4.0

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

12.0

x [mm]

 

 

[m
m

]

y
[m
m
]

ux

0.155

0.156

0.157

0.158

0.159

0.160

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.43: Typical subspace displacement fields (Eq. 4.34) including rigid body   
                  motions; M-series in maximum load condition (far field Fig. 4.35).  
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 Figure 4.44: Typical displacement field error; M-series in maximum load condition 
                 (far field Fig. 4.35).  
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The relative displacement error (Fig. 4.44) ~ �(0, �) appears to be ≤ 0.5 [%]. The 
displacement field amplitude- and relative error ratios seem inversely proportional, 
i.e. the ªK error standard deviation is somewhat larger compared to the ª� value. 

Using direct numerical Istra4D displacement field {ª�, ªK} differentiation to 
obtain the strain fields {Y��, YKK, Y�K} without filtering is unreliable because of the 
noise amplification. In the adopted subspace, Y�� (Eq. 4.32; Fig. 4.45) shows a 
linear variation in ¬-direction, i.e. a small bending component can be identified. 

At the same time each image is taken, the applied force ¥� is measured. For the 
considered image, ¥� = 5462 [N]. Taking the actual specimen width Ñ = 9.65 [mm] 
and base plate thickness g^ = 10 [mm] into account, the membrane stress 
component can be calculated: �U = 57 [MPa] and the shear modulus Ç estimated 
using the stress formulations (Eq. 4.31): 
 

 Ç = �U2 ⋅ '02 (4.35) 

 
However, Ç = 25.2 [GPa], a plane stress value and small in comparison to an 
engineering plane strain value Ç = 26.3 [GPa]; approximately 4 [%] difference. Other 
images at maximum load condition for the considered specimen (∆¥� = 5000) 
provide the same result. The stress components (Table 4.1, including a few more 
results) would become �U = 58 [MPa] and �^ = 1 [MPa], meaning the structural 
stress and structural bending stress ratio turn out to be {��, ��} = {59, 0}. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.45: Typical subspace strain field Y��; M-series in maximum load condition 
                 (far field Fig. 4.37).  
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Because of the small far field bending components, geometric non-linear behaviour 
might be involved. Finite element analysis results and measurement values agree 
quite well. 

The solutions 'S are converged for a far field region width ≥ 1.5 [mm]. Normal 
approximated displacement amplitude confidence bounds (CB’s) are calculated 
using the covariance matrix [ËÒ Ë]+ to investigate the uncertainty. However, 
because of the limited number degrees of freedom (DoF), small grid spacing and 
significant far field region size, the two-sided 95 [%] CB’s basically equal the LS 
parameter estimate. 

 
 

case ¥� �U �U(th) �^ �^(th) �^(th non-lin) 

 [N] [MPa] [MPa] [MPa] [MPa] [MPa] 
  5000 M max    5462    58     57    1    0         1 
  6500 M max   7138    75     74    2    0         2 
10500 M max 11536   118   119    3    0         5 
 
 

Table 4.1: Some SSS M-series far field stress distribution parameters; a comparison 
              of DIC estimated- and theoretical calculated values. 

 
Together with the analysis results in minimum load condition, the far field stress 
information {∆��, ��, ��} can be obtained at all predefined load range levels for the 
non-welded and welded {MBN, M, MBM} series. Any sequence of 2 images can be 
used, although preferably in a stage the crack size is still small. Except meant to 
verify the imposed loading, {∆��, ��, ��} is very helpful to investigate the fatigue 
resistance as well (Paragraph 5.4.1). 
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4.4.6 Notch region analysis 

To obtain a reliable crack tip location and SIF estimate at the same time, the notch 
region is investigated as well. At a weld toe, � (Eq. 3.2) includes an explicit 
notch- and far field component { �,  �}, respectively related to the self-equilibrating 
and equilibrium equivalent stress part. In an attempt to be able to distinguish the 
separate  � contribution, the intact geometry based displacement field is defined 
first. Adopting Williams’ solution (Eq. 2.1) to include the V-shaped notch stress 
and selected terms of the general Michell solution in Polar coordinates (Barber, 
2002) to add the (linear) weld load carrying stress, the Airy stress function 
becomes: 

 

 

Ä = �h+1 ⋅ ['1 cos{(b + 1)�} + '2 cos{(b − 1)�}   +
         '3 sin{(b + 1)�} + '4 sin{(b − 1)�}]  +
Ô11�3cos(�) + Õ22�3sin(�)

 (4.36) 
 
 
 

 

 
The notch term amplitudes {'1, '2, '3, '4} can be related to {�} ,��}} by 
definition (Eq. 3.20 and 3.21). Using the (constitutive) linear stress-strain relations 

 

 

Yqq

Y��

Yq�

 
=
=
=

 

(Æ + 1)�qq − (3 − Æ)���8Ç
(Æ + 1)��� − (3 − Æ)�qq8Ç
�q�2Ç

  (4.37) 

 
and (kinematic) small strain-displacement formulations 
 

 

Yqq

Y��

Yq�

 
= 
=
=

³ªq³�
1� ³ª�³� + ªq�
12(1� ³ªq³� + ³ª�³� − ª�� )

  (4.38) 

 
the (1 = 0) notch displacement field in complex coordinates denotes: 
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¦(È) = '� + 'K ⋅ É + 'q ⋅ É(� ⋅ £f�) +
(�}Ç ) ⋅ �h{

2(20)1−h{b�(b� + 1)(�� − 1) ⋅
{��Æ ⋅ £fh{� − ��b� ⋅ £−f(h{−2)� + (b� + 1) ⋅ £−fh{�} +
(��}Ç ) ⋅ É ⋅ �hÖ

2(20)1−hÖbs{�s(bs − 1) − (b� + 1)} ⋅
{�sÆ ⋅ £fhÖ� + �sbs ⋅ £−f(hÖ−2)� − (bs + 1) ⋅ £−fhÖ�} + ( )
(Ô11Ç ) ⋅ (Æ ⋅ £f2� − 2)2 ⋅ �2 + (Õ11Ç ) ⋅ É ⋅ (Æ ⋅ £−f2� − 2)2 ⋅ �2

 (4.39) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In order to verify ¦ (Eq. 4.39), a SSS geometry (1 = 0) FE solution (Fig. 4.46 
including white Gaussian noise; SNR = 80) – grid spacing 0.02 [mm] and notch 
region radius 3.0 [mm] – has been decomposed (Fig. 4.47). The relative 
displacement error (Fig. 4.48) shows that when passing the weld toe cross-section 
(from right to left) the error slightly increases, i.e. to satisfy the boundary 
conditions (BC’s) in Quadrant-III higher order terms are required. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.46: Typical SSS geometry (1 = 0) Ansys notch displacement field ª� incl. 
                  white Gaussian noise; M-series in maximum load condition. 
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 Figure 4.47: Subspace displacement field ª�; M-series in maximum  load condition.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.48: Relative displacement field error; M-series in maximum load condition.  



Chapter 4. Crack Growth at Notches  219 

 

Similarly, using the blunt body notch stress formulations (Eq. A.1 to A.3), 
constitutive equations (Eq. 4.37) and kinematic relations (Eq. 4.38), the (1 > 0) 
displacement field can be derived: 

 

 

¦(È) = '� + 'K ⋅ É + 'q ⋅ É(�′′ ⋅ £f�) +
(�}Ç ) ⋅ 12(20)1−h{b�(b� + 1)(�� − 1) ⋅
[(�′′)h{{��Æ ⋅ £fh{� − ��b� ⋅ £−f(h{−2)� + (b� + 1) ⋅ £−fh{�} +
  �0h{−×{ ⋅ (2Q0 )   

4 {(2Q0 ) − 1} ⋅ (b�Ü�) ⋅
 (�′′)×{{−Ý�2Æ ⋅ £f×{� + Ý�2Ü� ⋅ £−f(×{−2)� + Ý�1 ⋅ £−f×{�}] +
(��}Ç ) ⋅ 12(20)1−hÖbs{�s(bs − 1) − (b� + 1)} ⋅
É ⋅ [(�′′)hÖ{�sÆ ⋅ £fhÖ� + �sbs ⋅ £−f(hÖ−2)� − (bs + 1) ⋅ £−fhÖ�} +
     �0hÖ−×Ö ⋅ 1   4(Üs − 1) ⋅ (bsÜs) ⋅
    (�′′)×Ö{−Ýs2Æ ⋅ £f×Ö� − Ýs2Üs ⋅ £−f(×Ö−2)� − Ýs1 ⋅ £−f×Ö�}] +   
(Ô11Ç ) ⋅ (Æ ⋅ £f2� − 2)2 ⋅ �2 + (Õ11Ç ) ⋅ É ⋅ (Æ ⋅ £−f2� − 2)2 ⋅ �2

 (4.40) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The V-shaped notch- and weld load carrying component coordinate system origin 
(Fig. 2.49) is respectively {�′′, �}. Although somewhat arbitrary (Lazzarin and 
Filippi, 2006), the crack initiation related (intact geometry) NSIF parameter 
definitions are unchanged, meaning the {�} ,��}} values remain the same for (1 > 0). SSS geometry (1 = 1) FE displacement field solutions (e.g. Fig. 4.49 to 
4.51) show comparable results with respect to the (1 = 0) case (Fig. 4.46 to 4.48). 
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 Figure 4.49: Typical SSS geometry (1 = 1) Ansys notch displacement field ª� incl. 
                  white Gaussian noise; M-series in maximum load condition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.50: Subspace displacement field ª�; M-series in maximum  load condition.  
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 Figure 4.51: Relative displacement field error; M-series in maximum load condition.  

 
Introducing nuclei or defects, cracks with initial size �f, a (sharp) crack tip 
displacement field – Williams’ asymptotic solution in complex polar coordinates –  
can be obtained as well (Mathieu, Hild and Roux, 2011): 
 

 ¦(È) = ∑{(Ý�Ç ) ⋅ ß�(È) + (à�Ç) ⋅ Ë�(È)}
�

 (4.41) 

 
with 
 

 ß�(È) = (−1)1−�2
2√20 ⋅ ��2 ⋅ [Æ ⋅ £f��2 − (�2) ⋅ £f(4−�)�2 + {(−1)� + �2} ⋅ £−f��2 ]  

 
and 

 

 Ë�(È) = É ⋅ (−1)1−�2
2√20 ⋅ ��2 ⋅ [Æ ⋅ £f��2 + (�2) ⋅ £f(4−�)�2 + {(−1)� − �2} ⋅ £−f��2 ]  

 
The amplitudes Ý0 and à0 associated with basis functions ß0 and Ë0 correspond to 
the rigid body translations; Ý2 and à2 coincide with the rigid body rotation and T-
stress component. Amplitudes Ý1 and à1, correlated to the stress field singular 
terms (Eq. 2.13 to 2.15), yield respectively the mode-I and mode-II SIF. 
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The displacement field of crack damaged geometries like a weld toe notch region 

(Fig. 4.32) may require both a notch- and crack tip contribution. Higher order sub-
singular crack tip terms (� > 2) accounting for effects like free surface BC’s should 

be omitted to prevent the notch contribution (identically satisfying the  BC’s) to 
become frustrated. The SIF’s (Eq. 4.41) are meant to reduce to the far field 
component {Ý1 → �� , à1 → ��� } and {�} ,��}} (Eq. 4.39 or 4.40) should provide 
the notch parts. However, both displacement formulations (Eq. 4.39 or 4.40 and Eq. 
4.41) are principally local ones and the coordinate system origins are quite close to 
each other, in particular for small cracks. Stable {�} ,��} ,�� ,��� } solutions have 
been found difficult to obtain, even if a notch/crack tip mask is applied.  

The adopted procedure to investigate the notch region is to estimate the remote 
mechanical loading induced SIF {� ,��} first using the crack tip displacement 
field (Eq. 4.41) including a sufficient number of sub-singular terms. The far field 
contribution can be reconstructed using {��, ��} and available handbook solutions 
(Eq. 3.4); the difference provides the notch component.  

For a subset size of 21 [pixel] – texture quality in notch- and far field region is 
similar – {ª�, ªK} is obtained using Istra4D (Fig. 4.52). To take the displacement 
discontinuity around the crack into account, the notch region requires a subset match 
with the crack tip and free edges. However, no crack(tip) information is involved 
meaning a mismatch and consequently less accurate displacement field estimates. 

A notch displacement field decomposition requires the crack tip position to be 
known. Assuming some location and introducing the first super-singular term, the 
amplitude Ý−1 can be used to estimate the (1st order) crack tip offset M with respect 
to the exact location (Roux, Réthoré and Hild, 2009), i.e. respectively along- and 
normal to the crack employing the real and imaginary part. 

 

 M = 2 ⋅ Ý−1Ý1  (4.42) 

 

Stable solutions (Fig. 4.53) have been obtained considering 1 sub-singular term 
only, (i.e. � = −1. . .3) and a notch region radius �� = 3.0 [mm]. The relative 
displacement amplitude error (Fig. 4.54) is quite small; ≤ 0.5 [%]. Crack tip 
position convergence has been verified (Fig. 4.55). Applying a small crack tip mask; 
radius �_ = 0.05 [mm], stabilises the procedure. Because of the bias between 
estimated offset and actual location, the procedure is iterative. The notch related 
eigenvalues {b�, bs} differ from the governing in crack configuration (b1 = 1/2). 

Alternatively, a (sub pixel) grid of crack tip positions is considered and the 
minimum global residual �æ location naturally provides the actual one (Fig. 4.56; 
Roux and Hild, 2006). 

 

 �æ = ∑‖ªf(È)|Istra4D − ªf(È)|subspace‖2
f

 (4.43) 

 

The optimum tip position (white cross) is principally similar to the Ý−1 estimate; 
0.52 [mm] for the considered image. For small cracks, the super-singular term 
provides better (consistent) results.  
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 Figure 4.52: Typical Istra4D displacement fields {ª�, ªK} including rigid body       
                   motions; M-series in max. load condition (notch Fig. 4.37; image 1001).  
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 Figure 4.53: Typical subspace displacement fields {ª�, ªK} including rigid body     
                  motions; M-series in max. load condition (notch Fig. 4.37; image 1001).  
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 Figure 4.54: Typical displacement field error; M-series in maximum load condition 
                 (notch field Fig. 4.37; image 1001).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.55: Typical crack tip offset estimate (notch field Fig. 4.35; image 1001).  
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 Figure 4.56: Typical crack tip position relative global residual grid; M-series in      
                  maximum load condition (notch field Fig. 4.37; image 1001).  

 
In case of increased crack size, the colour bands are quite pronounced and indicate 
the crack orientation as confirmed in ¦ (Fig. 4.57). Note a crack size dependent 
notch region radius is adopted; 1�q ∝ (� + 2.5), to create a level playing field and 
converged SIF solutions. Obtained � values including Normal approximated 95 
[%] CB’s show in comparison to (geometric non-linear) FEA results obtained for 
the same crack tip location some error (Table 4.2). In general, the DIC based SIF’s 
are overestimated because of the limited displacement DoF. The error distribution 
for a range of images is typically parabolic. Turning (gradually) the notch region 
into a crack tip region for macro-cracks (�/g� > 0.1) might reduce errors.  

 

case image ¥� � � � (th. non-lin.) error 

  [N] [mm] [MPa√mm] [MPa√mm] [%] 
5000 M max 0501 5459 0.277   086 ± 3         081 06 
5000 M max 1001 5518 0.515   106 ± 3         103 03 
5000 M max 1501 5492 0.892   129 ± 3         127 02 
5000 M max 2001 5511 1.212   158 ± 2         147 07 
5000 M max 2501 5465 1.634   189 ± 2         172 10 
 
 

Table 4.2: Some SSS M-series mode-I SIF’s; a comparison of DIC estimated- and    
              theoretical calculated values. 
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 Figure 4.57: Typical subspace displacement fields {ª�, ªK} including rigid body     
                  motions; M-series in max. load condition (notch Fig. 4.37; image 2001).  
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The crack tip (Fig. 4.56 and 4.57) is still located in the notch affected region;   {(�/g^) < 0.1}. The plastic zone may provide information concerning the type of 
crack growth behaviour (either monotonic or non-monotonic), i.e. may serve as 
elastoplasticity measure; indicate the coefficient � value. Rather than a 1st order 
crack tip plastic zone size estimate (Irwin, 1957), �� = (�,Us�/�K)2/(20) along the (� = 0)-axis, size and shape can be obtained using the decomposed displacement 
field amplitudes and Von Mises’ stress:  
 

 �ìí = √���2 + �KK2 − ��� ⋅ �KK + 3ï�K2 (4.44) 

 
with stress components (Malíková and Veselý, 2014) 
 

 

��� = ∑�(�2−1)
�

{( Ý�√20)(�2) [{2 + (�2) + (−1)�} cos {� (�2 − 1)}  −
                                             (�2 − 1) cos {� (�2 − 3)}] −
               ( à�√20)(�2) [{2 + (�2) − (−1)�} sin {� (�2 − 1)}   −
                                                (�2 − 1) sin {� (�2 − 3)}]}

 

 

 

 

�KK = ∑�(�2−1)
�

{( Ý�√20)(�2) [{2 − (�2) − (−1)�} cos {� (�2 − 1)} +
                                             (�2 − 1) cos {� (�2 − 3)}] −
                ( à�√20)(�2) [{2 − (�2) + (−1)�} sin {� (�2 − 1)} +
                                                 (�2 − 1) sin {� (�2 − 3)}]}

 

 

 

 

ï�K = ∑�(�2−1)
�

{( Ý�√20)(�2) [− {(�2) + (−1)�} sin {� (�2 − 1)}  +
                                          (�2 − 1) sin {� (�2 − 3)}] +
               ( à�√20)(�2) [− {(�2) − (−1)�} cos {� (�2 − 1)}   +
                                              (�2 − 1) cos {� (�2 − 3)}]}
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 Figure 4.58: Typical plastic zone size and shape; M-series in maximum load          
                   condition (notch field Fig. 4.35; image 1001), ∆¥� = 5000 [N]. 

 
For �ìí  exceeding the yield strength �K = 228  [MPa], the (plane stress) plastic 
zone size turns out to be one order of magnitude smaller compared to the crack 
length (Fig. 4.56). Assuming � = 0.33 [-], the plastic zone will be about 9 times 
smaller in case of plane strain (Janssen et al., 2002). Considering Ý1 = � only, the 
shape is obviously symmetric; adding Ý2 already includes more detail. Since the 
crack tip is still inside the notch affected region, the notch axis is still governing 
(Fig. 3.9); �� is non-zero, introducing non-symmetry. 

The T-stress (Ý2), a non-singular term acting parallel to the crack plane, affects 
the plastic zone size and shape (Fig. 4.58; Larsson and Carlsson, 1973) as well as 
crack path stability (Cottorell and Rice, 1980). If directionally stable, the T-stress 
is negative; positive if unstable. For image 1001, Ý2 = −26 [MPa]. 

 

4.4.7 Time series analysis 

The notch- and far field region for each individual image (Paragraph 4.4.5 and 
4.4.6) contain spatial information only. The temporal solution correlates the crack 
tip location �(�) at a particular number of cycles and the SIF �(�), providing a 
crack growth relation (d�/d�) = I(�(�)). Both parameters (Fig. 4.57) however 
contain some noise, show some error. Suitable generic functions have been selected 
(because of derivative accuracy) and curve fitting is applied to obtain filtered {�(�),�(�)} data. 
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 Figure 4.59: Typical a) crack length and b) SIF development in welded SSS; M-    
                  series in maximum load condition, ∆¥� = 5000 [N]. 

a) 

b) 
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Although the analysis did not involve any time constraints, the crack length data is 
monotonically increasing (�f+1 > �f) as it should be (Fig. 4.59a) and is expected to 
return in the derivative; crack growth rate (d�/d�) in the notch- and far field 
stable crack growth regions {I, II}. Different filter functions have been investigated, 
but results are similar. The SIF (Fig. 4.59b) shows principally monotonically 
increasing behaviour as well. Stress intensity errors become significant for (� > 2) 
and a new reference image taken halfway the test might solve this issue; an 
alternative solution could be a X-FEM based displacement field decomposition 
(Roux, Réthoré and Hild 2009). 

For ∆�� = ��,Us� ⋅ (1 − ��), crack driving force estimates ∆� have been 
obtained. The crack growth characteristic shows obviously anomalous (notch 
affected) two-stage behaviour (Fig. 4.60). Raw data has been used rather than 
curve fitting based {�,�,Us�}  values, since the exponential functions dominate 
the solution introducing bi-linear crack growth on log-log scale. Applying the TS 
concept, slope � ~ 3.7 [-]; a realistic value in the customary range (3, 4). Coefficient �3 ~ 10 [-] suggests significant plasticity as reflected in the non-monotonic crack 
growth. Since the considered SSS is a welded one, the self-equilibrating residual 
stress is likely tensile in the notch affected region. The lasering process adopted to 
create an initial flaw may have contributed as well. The BSS concept 
elastoplasticity coefficient (� = 2) however seems insufficient.  

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.60: Typical welded SSS large/long crack growth- and two-stage single      
                   slope presentation; M-series, ∆¥� = 5000 [N]. 
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4.5 Conclusions 

The crack growth rate of micro-cracks emanating at notches show elastoplastic 
wake field affected anomalies, i.e. monotonically increasing or non-monotonic 
behaviour beyond the material threshold. Modifying Paris’ equation, a two-stage 
micro- and macro-crack growth law similarity is proposed to include both the weld 
notch- and far field characteristic contributions, elastoplasticity as well as remote 
mechanical- and thermal residual mean stress effects.  

Investigated SSS experimental data sets suggest that non-monotonicity is 
predominantly related to a plane stress condition (i.e. thin specimen or DIC  
surface measurement obtained results). For {WM, HAZ} plane strain crack growth 
data showing monotonically increasing behaviour beyond the material threshold, 
the (self-equilibrating) residual stress might be compressive. Although the hull 
structure welded joint condition is typically plane strain, suggesting crack growth 
might be monotonically increasing, a significant (tensile) residual stress may keep 
the crack growth rate non-monotonic.  
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5 
Welded Joint Fatigue Resistance 
 
 

Only two things are infinite: the universe and human 

stupidity, and I am not sure about the former. 

Albert Einstein (1879-1955, physicist) 

 

5.1 Introduction 

The (as) weld(ed) geometry in each cross-section along the (curved) weld seam is 
anything but simple. Joint parameters are principally random and affect the fatigue 
resistance, emphasising the importance of statistics in correlating the loading or 
structural response and life time of {SSS, LSS} fatigue resistance data; independent 
(deterministic)- and dependent (stochastic) variables. 

Although a structural response parameter � does not include explicit fatigue 
damage process information, it is typically adopted as fatigue resistance criterion 
since � controls crack development related {micro, meso, macro}-plasticity. Using a 
global approach, principally the nominal stress range �� and type of joint are 
explicitly taken into account, meaning model complexity is limited and required 
effort is low at the price of substantial inaccuracy; considerable life time uncertainty. 
Changing the approach to a local one, e.g. �� → {��, ��} meaning the nominal 
stress range turns into respectively the structural hot spot- or effective notch stress 
range, explicitly reflects local geometry and loading information and generally 
speaking accuracy increases. However, required effort and model complexity increase 
at the same time.  

Response parameters {��, ��, ��} are intact geometry, crack initiation, related. 
For a growth dominated process, a (local) crack damaged geometry parameter 
should be employed. Considering both initiation and growth, i.e. micro- and macro-
crack growth in case of arc-welded joints in hull structures, the total stress concept 
(Chapter 2) has been introduced using the stress intensity (Chapter 3) as governing 
parameter to establish the weld notch governing and far field dominated crack 
growth contributions (Chapter 4). 
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Outline 
The total stress range �	  will be defined first and its properties investigated 
(Paragraph 5.2). Single- and dual slope fatigue resistance formulations will be 

considered to be able to cover both medium- and high cycle fatigue (Paragraph 5.3). 
Regression analysis will be adopted to estimate model parameters, a likelihood 
approach in particular to deal with both complete- and right-censored data; failures 
and run-outs. Artificial fatigue test data of DS T-joints is investigated to determine 
the �	  parameter quality. As-welded SSS CA data has been used to establish a 
family of (damage tolerant engineering) joint �	 -
  fatigue resistance design curves 
(Paragraph 5.4) to be able to estimate the fatigue life time 
  of welded joints 
(production quality is average) knowing the joint geometry and far field structural 
response. In order to demonstrate welded joint similarity, FSS representative CA LSS 
data has been examined to verify a SSS data scatter band fit (Paragraph 5.5). Since 
CA {SSS, LSS} fatigue resistance is principally used to estimate a VA FSS value 
adopting the Palmgren-Miner hypothesis, last but not least a scatter band fit is 
investigated for some VA SSS data (Paragraph 5.6) to obtain reliable fatigue damage 

estimates of some frame-stiffener connections in the slamming zone (Paragraph 5.7). 
 

5.2 Total stress parameter 

Straightforward integration of the Paris’ equation based two-stage region {I, II} 
crack growth model (Eq. 4.7) yields a (Basquin type) single slope fatigue   
resistance relation; log(
) = � − � ⋅ log(�	 ). The total stress range �	 , an 
equivalent structural response parameter, incorporates for weld toe notches the 
effective structural stress range ∆��/(1 − ��)1−� (Eq. 4.17 and 4.19) and a notch 
crack growth integral ��  including the size effects: 

 

 �	 = ∆��
� (′)2−#2# ⋅ ��(��, $,�) 1# ⋅ (1 − ��)1−� (5.1) 

 

 
with 
 

 �� = ∫
⎣⎢
⎢⎢
⎡ 1

{+� ( -� (′))}� ⋅ {+0 ( -� (′))}# ⋅ ( -� (′))
#2

⎦⎥
⎥⎥
⎤

 d ( -� (′))
( 5678(′))

( 5:78(′))
    

 
To calculate �� , boundary values are required: an initial- and final crack length {-<, -0}. The initial crack length is an important one because of LEFM 
assumptions, i.e. the integrand denominator contains the (-/� (′))#/2 factor thanks 
to the crack tip stress distribution square root asymptotic behaviour, meaning the 
introduction of a lower bound singularity. Adaptive Gauss-Kronrod quadrature for 
example is a suitable numerical integration scheme. The upper bound is typically 
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the plate thickness for a through-thickness crack, i.e. {-0 = � , -0 = � /2} for 
{SEN, DEN} HS type {A,�} (non-) symmetry configurations; (� (′) = � ) and (� (′) = � /2) respectively, and an artificial one for HS type B: -0 = � ′; (� (′) =� ′). The integration variable - is turned into a dimensionless one (-/� (′)), 
introducing � (2−#)/2# in the �	  dominator; basically a size or scale parameter 
(Paragraph 2.8.3), reduced to a thickness (i.e. crack path length) related one. 

Similar to the effective notch stress concept intact geometry parameter D� 
(Paragraph 2.11), its crack damaged equivalent can be defined as well (Sonsino et 
al., 1999): -� = -<(E, �) + -0 . Defect size -<(E, �) is principally expected to be 
independent of weld material volume; i.e. values are similar no matter �  
introducing a size effect. However, the relative effective defect size -� turns out to 
be approximately constant (Sonsino et al., 1999) – although not mentioned; (-�/� ) ≈ 4.0 ⋅ 10−2 [-] for aluminium welded joints. The relative defect size (-</� ), 
obtained using the characteristic fatigue strength of weld reinforcement removed 
aluminium butt joints (average � = 10), has a similar value (Atzori et al., 2008). 
The BSS concept on the other hand adopted a constant relative defect size (-</� ) = 1.0 ⋅ 10−3

 [-] as it corresponds to asymptotic ��1/# behaviour (Dong and 
Hong, 2004); an engineering solution rather than physics based.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1: Typical defect size dependent notch crack growth integral behaviour     
                (ideal fillet weld notch angle); �LM = 0, �� = 0, � = 3.0 [-]. 
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The notch crack growth integral ��  is proportional to the fatigue life time 
 , 
meaning ��1/# is inversely proportional to �	  (Eq. 5.1). For (-</� ) → 0,  ��1/# 
behaviour is typically divergent in case $ = {−3.0, −2.0, −1.0} and � = 3.0 
(Figure 5.1); the crack growth rate (d-/d$) is monotonically increasing, either 
structural threshold or notch compressive residual stress induced (elastic or even 
plastic). A special case: if no ��O component is involved and $ = −2.0, (d-/d$) ∝ - 
according to the (generalised) F&D model (Paragraph 4.2). If $ = 0, only region-II 
long crack growth is observed and ��1/# is still sensitive to (-</� ), no matter its 
value. As soon as $ increases, e.g. $ = 1.0 if the total weld notch stress is elastic, (d-/d$) starts to show non-monotonic behaviour. For $ > 1 notch plasticity 
becomes involved and ��1/# behaves asymptotically, converges, as noticed before 
(Maddox and Webber, 1978; Dong and Hong, 2004). The BSS concept assumes first 
order crack tip plasticity (�R ∝ ST2), i.e. $ = 2.0 and shows in comparison to the 
TS concept a smaller asymptotic value because of the weld notch stress bi-
linearisation and UV� formulation. Values are different compared to the published 
ones (e.g. Dong and Hong, 2004) because of a different slope � and (W#/2) is 
included in the fatigue strength constant log(�). In case $ = � = 3.0 (involving 
the Paris equation), micro- and macro-crack growth behaviour is assumed to be 
similar and convergence is already obtained for (-</� ) → 1.0 ⋅ 10−3. 

The elapsed part of fatigue life time 
  to obtain a typical crack size - = 0.1 
[mm] at weld toe notches is estimated to be ~30 [%] (Lassen and Recho, 2009). 
Assuming ��O is significant (e.g. $ = 2.0), (-</� ) = X(10−4) and � = 10 [mm], the 
notch crack growth integral ratio {��1/#(10−4) − ��1/#(10−2)}/��1/#(10−4) can 
be used to obtain that information and is in the same range. Although LEFM is 
generally assumed to be not applicable for - < 0.1 [mm], micro-crack growth is 
even considered to be part of the initiation period, a reasonable estimate obtained 
using a crack damaged loading and geometry parameter (Fig. 5.1) is believed to be 
no coincidence for welded joints: (micro-)crack growth dominates 
 . 

Convergence seems to be primarily a matter of the dominant singularity; the 
notch component +�� or the (sharp) crack tip related one (-/� )#/2. If +�� is 
governing, asymptotic behaviour is observed. For (D > 0), (-/� )#/2 dominates by 
definition since the notch singularity has disappeared, meaning no convergence for (-</� ) → 0 at all (Fig. 5.2). However, D controls the ��1/# slope. For (-</� ) → 0 
it becomes equal no matter $. Increasing notch radius D, the difference in ��1/# for 
varying $ reduces. A similar effect is achieved using an intact geometry parameter, 
the effective notch radius, reducing the local fatigue strength scatter (Morgenstern 
et al., 2006a, 2006b). Although welded joints may have different elastoplasticity 
coefficients, the fatigue resistance scatter can still be limited if an appropriate 
(optimised) D value is adopted; a material related parameter. The BSS result hardly 
changes because of the �� bi-linearisation, i.e. the approximate zone 2 stress 
gradient effect is included at the price of losing zone 1 peak stress information. Keep 
in mind that ��1/# is D sensitive (Fig. 5.3). If (d-/d$) is monotonically increasing, �	  will increase for increasing D and seems paradoxical from fatigue resistance 
perspective; if non-monotonic, �	  decreases meaning an increased fatigue resistance 
as expected since for increasing D at constant $ the zone 2 stress gradient decreases. 
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Figure 5.2: Typical defect size dependent notch crack growth integral behaviour     
                (ideal fillet weld notch angle); D = {0.5, 1.0}, �� = 0, � = 3.0 [-]. 

 

a) 

b) 



238 Chapter 5. Welded Joint Fatigue Resistance 

 

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
0

10
1

10
2

; [ mm ]

I N
(1

/
m

)

SEN, 2, = (5/4):, (ai/tp) = 0.001 [ - ]

 

 

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
0

10
1

10
2

; [ mm ]

I N
(1

/
m

)

n = —2.0

n = +0.0

n = +2.0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.3: Typical notch radius dependent crack growth integral behaviour (ideal  
               fillet weld notch angle); �LM = 0, �� = 0, slope � = 3.0 [-]. 

 
Weld load carrying coefficient �LM controls the zone 2 (notch) stress gradient and 
may vary from �LM → 0 for NLC joints up to structural stress order of magnitude (�LM > 10−1) for heavy LC ones (Paragraph 2.6). Although no linear �LM − �	  
relation exists, a significant �LM value would significantly increase the fatigue 
strength in case ($ < 0), but seems artificial (Fig. 5.4a). If notch/crack tip 
elastoplasticity is encountered ($ > 0), e.g. (�R ∝ ST2), the fatigue strength may 
reduce up to 30 [%] for increasing �LM; the BSS concept NLC assumption 
(�7 = 0.1� , Paragraph 2.6.1) becomes non-conservative. 

Comparing the fatigue strength for different far field stress distributions, 
differences will be at maximum for the extreme zone 3 gradient values �� ={−∞, 1}, as shown for load- and displacement controlled {LC, DC} conditions (Fig. 
5.4b); i.e. respectively the remote mechanical- or (equilibrium equivalent) thermal 
residual stress is decisive. The proposed BSS polynomial ��1/#(��) approximation 
for � = 3.6 (Dong et al., 2002; Dong, Hong and De Jesus, 2007) – 6th order seems 
exaggerated – is only valid for (0 ≤ �� ≤ 1); a 1 DoF SEN based notch crack 
growth integral formulation for all weld (toe) notches. Obviously zone 3 far field 
stress gradient effects are negligible, for the same reason ��1/# is hardly sensitive 
to any (-0/� ) outside the notch affected region. However, �LM(��)  changes at the 
same time, meaning the fatigue strength is still affected because of a zone 2 stress 
gradient modification.  
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Figure 5.4: Typical a) �LM (�� = 0) dependent- and b) �� (�LM = 0) dependent crack 
              growth integral behaviour (ideal fillet weld notch angle); � = 3.0 [-]. 

a) 

b) 
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Principally �	  benefits from DC conditions in comparison to LC; ~15 [%], simply 
an offset. Approaching the DC pure bending load case, ��1/# predominantly 
increases because of a domain singularity. The stress intensity becomes negative 
(Paragraph 3.8, Eq. 3.30) either for {�� = 1, (-/� ) = (W/4)} or the other way 
around, meaning crack arrest. Because of low final crack length sensitivity, (-0/� ) 
has been reduced to plot the full ��1/#(��) range (Fig. 5.4b).   

Taking far field 3D effects (-/a = 1/4) into account (Fig. 5.5), i.e. comparing a 
single edge- and semi-elliptical formulation, �	  reduces (and 
  increases). Since �LM remains unaffected (Paragraph 3.5.1); a notch affected zone contribution, ��1/#(�LM) is shifting only. Depending on type of crack growth behaviour, {SEN, 
DEN} symmetry w.r.t. (� /2) shows opposite effects. In case of an elastic structural 
notch response or (welding induced) compressive notch stress ($ < 0), �	  reduces 
significantly for increasing �LM. For tensile elastoplastic notch behaviour ($ > 0),  �	  
increases and convergence is observed for (�LM ≥ 0.1); plasticity itself dominates.  

A crack developing at one side only – a non-symmetry case w.r.t. (� /2) – shows 
hardly any zone 3 far field stress gradient affects, no matter semi-elliptical 3D 
contributions (Fig. 5.6). Like for a DC structural response, the semi-elliptical crack 
requires the final crack length to be reduced because of crack arrest if bending 
becomes dominant. For symmetry on the other hand, �� contributes significantly 
because of the symmetry condition affecting the zone 2 stress gradient at the same 
time. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: Typical (1st order) �LM- and crack type dependent crack growth integral 
               behaviour (ideal fillet weld notch angle); �� = 0,  � = 3.0 [-]. 
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Figure 5.6: Typical ��- and crack type dependent crack growth integral behaviour   
               (ideal fillet weld notch angle); �LM = 0,  � = 3.0 [-]. 

 
To be able to deal with weld root notches as well, the total stress formulation �	  
(Eq. 5.1) needs to be generalised. The weld reinforcement explicitly contributes to 
the fatigue resistance {+�(+�O, +��), +0(+0M)} and crack length - turns into a 
fictitious one; (-� + -). In case of symmetry (Fig. 2.35), c = (c /2). For weld toe 
notches, c → � (′). 

 

 
�	 = ∆��

(� (′)
c   )

1# ⋅ c 2−#2# ⋅ ��(��, $,�) 1# ⋅ (1 − ��)1−�
 (5.2) 

 

 

 
Although less dominant in comparison to the weld toe notch case (Fig. 5.1), the ��1/# defect size dependency still holds (Fig. 5.7a). Both the notch- and crack tip 
induced singularity contribute for a weld toe; the notch component is in control for 
a weld root since the crack length has become fictitious (-� + -), i.e. no square root 
singular term. Note: the large scatter as quite often observed in weld root fatigue 
resistance data is predominantly because of the -� distribution. Comparing ��1/# 
for the {SEN, CN} geometry (Fig. 5.1 and 5.7a), the CN load-bearing cross-section 
is twice as large explaining why ��1/# is twice as small. If (D > 0), no singularity is 
involved at all and convergence is achieved no matter $ (Fig. 5.7b). 
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Figure 5.7: Typical defect size dependent notch crack growth integral behaviour     
                (weld root notch in DS cruciform joint); �� = 0, � = 3.0 [-]. 

 

a) 

b) 
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Figure 5.8: Typical D dependent notch crack growth integral behaviour (weld root   
               notch in DS cruciform joint); �� = 0, � = 3.0 [-]. 

 
Notch radius sensitivity is rather low (Fig. 5.8) in comparison to the weld toe notch 
case and limited to monotonically increasing crack growth behaviour. The fatigue 
resistance of weld root notches however shows a considerable degree of �� 
dependency (Fig. 5.9), principally because of the far field membrane stress 
component �#. Far field bending remains bending in the weld root cross-section, 
i.e. (�� = �L) → �LO. In case of far field membrane loading, bending becomes 
involved as well; (�� = �#) → (�#O, �LO), meaning  �	  significantly increases for 
constant �� and decreasing  ��. 

Although the ∆�� and ��1/# contributions to �	  are equally important, the 
range of {MCF, HCF} ∆�� values generally speaking exceeds the ��1/#  related 
one, meaning the (effective) structural stress range is still the governing fatigue 
resistance parameter like for the global and local concepts. 

The total stress parameter �	  is in fact an equivalent one, i.e. its unit is        
not simply [MPa] or similar because of the involved Paris based crack growth law: 
the � dimension, [mm/(cycle ⋅ MPa√mm)#], ensures life time unit consistency    
in [cycles]. 
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Figure 5.9: Typical zone 3 stress gradient dependent notch crack growth integral    
                behaviour  (weld root notch in DS cruciform joint); � = 3.0 [-]. 

 

5.3 Fatigue resistance statistics 

Correlating a structural response parameter � and life time 
  in a particular 
{MCF, HCF} life time range, typically a(n approximately) log-log linear 
dependency is observed and a Basquin type of relation is naturally adopted: 

 
 log(
) =  � − � ⋅ log(�)  (5.3) 

 
One way to estimate the single slope curve parameters {�,�}; scaling factor � and 
slope � (respectively the fatigue strength and damage mechanism parameter), is 
using (linear) regression: 

 
 log(
) =  � − � ⋅ log(�) + �n  (5.4) 

 
An independent variable, predictor log(�), is related to the dependent one; 
response log(
). The Least Squares approach, minimising the sum of the square 
residuals n~
(0, 1), is a very popular concept to obtain the best parameter 
estimates. However, fatigue resistance data sets typically contain failures (complete 
data) as well as run-outs (right-censored data), that cannot be dealt with and a 
Likelihood approach (Dekking et al., 2005) will be employed.  
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A {�p|rp} distribution assumption, i.e. probability density function (PDF) s(E, �) and corresponding cumulative distribution function (CDF) t(E, �), is 
required. Successful application of the basic life time distributions is based on 
probalistic arguments and empirical success. The 2-parameter (mean E and 
standard deviation �, respectively location- and scale parameter) Lognormal 
distribution contains a lower bound log(
 = 0) = 1; a physical requirement and is 
flexible (explaining empirical success). 

 

 s =  1�√2W ⋅ exp [− {log(
) − E}2
2�2 ]  (5.5) 

 

 t = 12 [1 + erf {log(
) − E√2� }]  (5.6) 

 

with 
 

 E =  � − � ⋅ log(�)   
 

The failure rate (s/t) however can be non-monotonic as it should be monotonically 
increasing, since early failures are excluded; probability of failure should increase 
over time considering {MCF, HCF}. The 2-parameter Weibull (extreme value) 
distribution, a {location, scale} rather than {shape, scale} formulation fits perfectly 
fatigue phenomena; after all, the weakest link in the structure defines life time 
  to 
failure. Its failure rate is monotonic by definition; the lower bound requirement and 
flexibility are maintained.  

 

 s =  1� ⋅ exp [{log(
) − E}� − exp [{log(
) − E}� ]]  (5.7) 

 

 t =  exp [−exp [{log(
) − E}� ]]  (5.8) 

 

Considering a random sample {
p1,
p2,
p3,…} at � = �p  statistically distributed 
according to s(
|�p; �) with � = {�,�, �}, for single observation {
p<|�p}, a 
sample failure with probability density s(
p<|�p; �), ℓ(�;
p<|�p) is a likelihood 
measure for � corresponding to {
p<|�p}, i.e. ℓ(�;
p<|�p) = s(
p<|�p; �). Assuming 
all observations are independent, the sample likelihood � includes a joint 
probability density: 

 

 �(�;
p|�p) =  ∏s(
p<|�p; �)�
<=1

 (5.9) 

 

with 
 

 � = {�,�, �}   
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From engineering perspective: regarding the likelihood, {
p|�p} is fixed and � 
variable; for the probability density the other way around. Provided an 
experimental data set including both failures and run-outs, the likelihood becomes: 

 

 �(�;
|�) =  ∏{s(
p|�p; �)}��{1 − t(
p|�p; �)}1−��
�

p=1
  (5.10) 

 

with 
 

 �p = 1   
 
in case of failures; for run-outs 
 

 �p = 0   
 

The PDF interval of a failure is infinitesimally small at 
 = 
p. A run-out however 
contains only partial information. Some (unknown) part of the fatigue life time is 
dissipated and failure would appear at the interval 
 = (
p,∞), the PDF right 
tail, i.e. (1-CDF). The likelihood will be turned into a log-likelihood formulation, 
valid since log(⋅) is a monotonically increasing function, for convenience because of 
the {PDF, CDF} exp(⋅) functions: 

 

 

ℒ(�;
|�) = log{�(�;
|�)}
= ∑ℒp(�;
p|�p)�

p=1

   (5.11) 
 
 
 

 

with 
 

 ℒp(�;
p|�p) = �p ⋅ log{s(
p|�p; �)} + (1 − �p) ⋅ log{1 − t(
p|�p; �)}   

 
The maximum (log-)likelihood (maximum joint probability), an optimisation 
problem, needs to be solved for to obtain the most likely � for the considered fatigue 
resistance data set, the parameter maximum likelihood estimates (MLE’s) �:̂ 

 

 max� {ℒ(�;
|�)}   (5.12) 
 

Using different {PDF, CDF} assumptions, the best fit is obtained for the smallest max{ℒ}, i.e. the smallest residual, provided the number of model parameters � is 
the same. However, if � differs from one distribution to another or � includes extra 
information – more parameters means generally speaking a better fit – Akaike’s 
Information Criterion (AIC) should be adopted to take � into account (Pascual and 
Meeker, 1999). Increasing � principally increases AIC since max{ℒ} is negative. 

 
 AIC = −2[max{ℒ(�;
|�)} − �]  (5.13) 
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One way to estimate MLE precision is using the (normalised) parameter profile 

likelihood (PL), obtained maximising �(�1, ��;
|�) relative to �(�)̂: 
 

 �O(�1) = max��
{�(�1, ��;
|�)

�(�;̂
|�) }   (5.14) 

 
A highly probable value is obtained for �O(�1) → 1; a very unlikely one for �O(�1) → 0. In between, a confidence interval (CI) can be defined. Since the central 
limit theorem holds, log{�(�;
|�)} = ∑log{�p(�;
p|�p)}, the MLE’s are 
asymptotically normal distributed. Normal approximate parameter confidence 
bounds (CB’s) can be determined using the Fisher matrix, but accurate results 
require a relative large sample size. In general (i.e. no matter sample size) the 
likelihood ratio test can be adopted, since log{�O(�1)2} is asymptotically chi-
squared distributed. One parameter at the time is considered, meaning the number 
of degrees of freedom (nDoF) � = 1; required confidence level a� = 1 − �. 

 

 −2 ⋅ log{�O(�1)} ≤ �2V;1−�   (5.15) 

 
The �|���|a� fatigue resistance quantile/percentile corresponding to a required 
reliability or probability of survival- and confidence level, includes the mean E ̂and 
a {��, a�} related correction term: 

 
 log(
) = Ê + Φ(1 − ��)�  (5.16) 

 
with 
 

 Ê =  � ̂− �̂ ⋅ log(�)   

 
Standard(!) CDF Φ(1 − ��) controls the reliability level. Standard deviation � the 
confidence level. Parameter likelihood �O(�) can be used to determine the (upper) 
CB at predefined a�; if not provided or unknown, MLE �̂ can be adopted. The 
confidence level is curve wise implemented, useful for design. Depending on the 
fatigue resistance data distribution, a point wise quantile/percentile may be 
preferred. However, to obtain a life time dependent parameter likelihood a 
reparameterisation is required. Using the fatigue strength parameter seems obvious; � = log(
p<) + � ⋅ log(�p) − Φ(1 − ��)�. At each stress level �p the parameter 
likelihood is determined. Using the likelihood ratio test, the point wise 
quantile/percentile lower and upper CB’s are obtained. 

 

 �O(
p<|�p) = max��
{�(
p<|�p, ��;
|�)

�(�;̂
|�) }   (5.17) 

 
with 
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 �� = {�, �}  
 

The MLE �̂ is in fact a sample value and needs a correction to be valid for the 
population. In case the Lognormal distribution is adopted, n~logN(0, 1) and the 
bias corrected estimate simply becomes: 

 

 � = √ $$ − � ⋅ �   (5.18) 

 

Data vector length $ is corrected for the common nDoF, i.e. � = 2|� = {�,�, �}. 
Adopting a Weibull distribution, the residual n~W(0, 1)  is the 63rd percentile with 
expected value ¥(n) = −¦ (Euler constant) and standard deviation §¨(n) = W/√6. 
Unbiased parameter estimates require the regression model (and likelihood �) to be 
modified including a mean and standard deviation correction (Sarkani et al., 2007) 
to obtain a biased corrected residual n©~W(√6/W ⋅ ¦,√6/W) with ¥(n©) = 0 and §¨(n©) = 1:  

 

 log(
) =  � − � ⋅ log(�) +
√6W ⋅ ¦ +

√6W ⋅ �n©  (5.19) 

 

Specifying the structural response parameter �, e.g. � = �� in case the nominal 
stress range is adopted, � = {�,�, �} remains unchanged. Using the effective 
structural stress � = ��/(1 − ��)1−�, the load ratio coefficient is incorporated as 
well: � = {�,�, ¦, �}. The total stress � = �	  requires at least the elastoplasticity 
coefficient to be added; � = {�,�, $, ¦, �}. Possible extensions include the effective 
defect size or -notch radius. 

Correlating the {MCF, HCF} range at the same time, a transition in fatigue 
damage mechanism (i.e. growth dominant turns into initiation controlled), a slope 
change, has to be taken into account, introducing a dual slope formulation: 

 

 

log(
) = � − �1 ⋅ log(�) −
{(�1�2) − 1} ⋅ log[1 + exp{log(�) − log(�©)}−#2 ]

   
(5.20) 

 

If the HCF slope (�1 → ∞), the dual slope formulation (Eq. 5.20) will turn into a 
(random) fatigue limit model. From physical (i.e. material and loading) point of 
view the existence of a fatigue limit �∞, infinite life time, can be questioned (e.g. 
Bathias et al., 2001; Wang and Zheng, 2010; Pyttel et al., 2011; Cremer et al., 
2013) as it is principally a right-censored data based hypothesis; insufficient HCF 
test data. Perfect or self-healing materials do not exist (yet), meaning the (micro-
structural) weakest link will cause fatigue induced failure at last. The only criterion 
is sufficient testing time. If the loading is stochastic, somewhere in time a peak load 
will pass and breaks through �∞ (or equivalent: stress intensity threshold ∆S7ℎ, 
critical defect size -0; Paragraph 4.2), starting a crack to initiate/grow.  
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From statistical point of view however a fatigue limit model can still be meaningful: 
 

 log(
) =  � − � ⋅ log(� − �∞(E, �))  (5.21) 
 

The fatigue limit �∞(E, �) however is considered to be a stochastic variable 
(Pascual and Meeker, 1999) rather than a constant (Xiong and Shenoi, 2011) 
because of random micro-structural material parameters like grain- size and 
orientation, number of dislocations and inclusions. 

The scatter range index (Radaj, Sonsino and Fricke, 2006) related to �� = 0.10 
and �� = 0.90 probability levels of survival will be adopted as data quality measure. 
In terms of the structural response parameter: 

 

 ±² = �³10�³90   (5.22) 

 
For welded joints, ±² = 1: 1.5 is a characteristic value in case of good workmanship. 
A confidence level a� is not explicitly considered, meaning the quantiles/percentiles 
should be formulated using the parameter MLE’s. For a single slope fatigue 
resistance curve, the index becomes in terms of fatigue life time: ±� = ±²#. 

 

5.4 Small scale specimen CA fatigue resistance 

Fatigue assessment concepts using an intact geometry parameter like the nominal-, 
structural hot spot- or effective notch stress {��, ��, ��} typically introduce a 
number of FAT classes, reflecting the SSS fatigue strength at 
 = 2 ⋅ 106 [cycles], 
to define the fatigue resistance curve(s). The slope, a fatigue damage mechanism 
measure, is the same for all. Adding (local) structural response information to a 
global geometry based parameter (i.e. the criterion application generalises at the 
same time), the number of FAT classes reduces ultimately up to one, like established 
for the effective notch (reference) stress concept. However, the curve parameters are 
data related estimates, meaning the variety in loading, geometry and quality 
defines the life time accuracy and limits the range of application, which – for the 
record – seems limited for the proposed �� FAT class (Sonsino, 2009). 

To reduce estimated life time uncertainty, a joint (family of) fatigue resistance 
curve(s) will be established using the total stress �	 , an equivalent structural 
response parameter like the BSS ∆��, using aluminium CA SSS artificial T-joint- 
and AW data series. 

 

5.4.1 Artificial T-joint data 

Crack growth behaviour at weld toe notches in aluminium arc-welded joint 
geometries is identified (Paragraph 4.4) up to (- = � ), meaning SSS fatigue 
resistance data is available at the same time and allows to verify (average) crack 
growth model parameter values.  
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The non-welded BM data is limited to the MCF range and a single slope 
formulation (Eq. 5.3) is adopted. Although the nominal stress concept, i.e. �� =(∆t/A), provides limited fatigue damage information – notch induced crack growth 
anomalies may affect scaling factor � and slope � – zone 3 far field stress gradient 
effects; in fact zone 2 contributions (Paragraph 5.2), can be observed (Fig. 5.10). At 
each stress level � = �p, from the left to the right (�� = −0.6) → (�� = 0.0) →(�� = 0.4), ��(�/� ) changes from monotonically increasing to non-monotonic, 
meaning the notch affected zone size decreases (Paragraph 2.6) and 
  increases. 

The Normal 
(E, �)- rather than Weibull distribution ·(E, �) provides the best 
fit (Table 5.1). Eurocode 9 BM slope � = 7 is obviously crack initiation dominated 
and the data slope � = 4.13 turns out to be closer to the Eurocode 9 AW joint 
value � = 3.4, suggesting crack growth dominates the welded joint fatigue life time 
indeed. The (point wise R95C95 lower CB estimated, extrapolated) fatigue strength 
at 
 = 2 ⋅ 106 is comparable to the Eurocode 9 welded joint value as well; FAT36.  

 
 

distr. �  �   � ±²  max{ℒ} AIC 
(E, �) 13.27 4.13 0.23 1:1.40 -35.48 76.97 ·(E, �) 13.33 4.17 0.27 1:1.43 -37.83 81.66 
 
 

Table 5.1: Parameter estimates DS T-joint crack growth specimen (non-welded, ��). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.10: DS T-joint crack growth specimen nominal stress concept based fatigue 
                resistance ~
(E, �); non-welded data series �� = {50, 75, 105}. 
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Material effects are limited as already confirmed for some crack growth data sets 
(e.g. Fig. 4.27), ��O is of the self-equilibrium type and the scatter index is close to a 
typical as-welded joint data series value (±² ≈ 1: 1.5), suggesting the initial crack size 

distribution -<~·(E, �), including location- and scale parameter, is a realistic one. 
However, the differences in life time 
  for the applied structural bending stress 

ratios �� are not as large as expected. Since at 9 specimens (for each type of far 
field stress distribution 1 specimen at each load level) the actual far field strain 
distribution has been measured – using 1 strain gauge (SG) at the top and 1 at the 
bottom to capture both the membrane- and bending component (Fig. 5.11) – the 
obtained time series have been compared to the target values. Assuming ¥ = 70 
[GPa] and ¹ = 0.33 [-], the SG M-series (�� = 0.0) revealed that �#<� has never 
been reached, i.e. is approximately three times as high as the target value, meaning 
the effective stress range is smaller and load ratio �� has increased (Table 5.2).  

 

 
 
 
 
 
 
 
 
 
 

 

      Figure 5.11: DS T-joint crack growth specimen SG’s at top and bottom. 
 
 �� = 50    

M-series 
�#5º top 

[MPa] 
�#<� top 
[MPa] 

∆�# 
[MPa] 

∆�L 
[MPa] 

target (non-lin.) 56 (57) 6 ( 6) 50 0 (1) 

measured 00 (53) 0 (15) 37 0 (1) 

 �� = 75    
M-series 

�#5º top 
[MPa] 

�#<� top 
[MPa] 

∆�# 
[MPa] 

∆�L 
[MPa] 

target (non-lin.) 83 (86) 8 ( 8) 75 0 (3) 

measured 00 (80) 0 (23) 56 0 (1) 

 �� = 105  
M-series 

�#5º top 
[MPa] 

�#<� top 
[MPa] 

∆�# 
[MPa] 

∆�L 
[MPa] 

target (non-lin.) 117 (122) 12 (12) 105 0 (5) 

measured 000 (114) 00 (32)  76 0 (7) 
 
 

  Table 5.2: SG M-series characteristics, average load ratio at top: �� = 0.28 [-] 
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Although the normal force measured- and target values are in agreement, accuracy 
issues may have been introduced because the operated MTS fatigue testing machine 
capacity is 100 [kN] and the minimum load condition is  ≤ 1 [%] of the load cell 
range. Analysing (static) DIC displacement fields, i.e. photos at t#<� condition, the 
(cyclic) SG results have been confirmed; �� = �#|t#<� shows a high level of scatter 
at the same time. Geometric non-linear behaviour introduced bending.  

The {MBN, MBM} series �� values are significantly smaller as supposed to be 
(Table 5.3 and 5.4), i.e. almost vanished: ��~{−0.1,+0.1}. Specimen fixtures 
including sleeve bearings have been used aiming for frictionless hinges to ensure the 
required normal force and bending moment to operate in the weld toe cross-section 
no matter in-plane fixture misalignments. However, (Coulomb) friction induced 
counteracting bending still has been identified; the ∆�L measured- and target value 
ratio is about ~0.15. The load ratios are different at top and bottom and the former 
value has been selected as governing one, assuming the major part of the fatigue 
life is spent in the notch affected micro-crack region. 

To establish {��, ��} induced far field stress consequences, the effective structural 
stress �� = ��/(1 − ��)1−� (Paragraph 4.2.4) will be adopted (Fig. 5.12). A 
considerable � reduction has been observed. The maximum stress fatigue     
damage contribution turns out to be at least as much as the stress range; the load 
ratio coefficient ¦ MLE is slightly below the geometric mean. In comparison to   
the �� based parameter MLE’s, slope � remains principally unaffected as it should 
be, since the damage mechanism does not change. The Weibull distribution 
provides the better fit (Table 5.5), although the initial crack size is not explicitly 
considered yet.  

 

 
 �� = 50    

MBN-series 
�#5º top 

[MPa] 
�#<� top 
[MPa] 

∆�# 
[MPa] 

2�L 
[MPa] 

target (non-lin.) 35 (40) 3 ( 4) 50 -19 (-14) 

measured 00 (44) 0 (10) 36 000 (0-2) 

 �� = 75    
MBN-series 

�#5º top 
[MPa] 

�#<� top 
[MPa] 

∆�# 
[MPa] 

2�L 
[MPa] 

target (non-lin.) 52 (62) 5 ( 5) 75 -28 (-18) 

measured 00 (69) 0 (17) 55 -00 (0-3) 

 �� = 105  
MBN-series 

�#5º top 
[MPa] 

�#<� top 
[MPa] 

∆�# 
[MPa] 

2�L 
[MPa] 

target (non-lin.) 73 ( 93) 7 ( 8) 105 -39 (-21) 

measured 00 (104) 0 (25)  76 -00 (0-3) 
 
 

Table 5.3: SG MBN-series characteristics, average load ratio at top: �� = 0.23 [-] 
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 �� = 50    
MBM-series 

�#5º top 
[MPa] 

�#<� top 
[MPa] 

∆�# 
[MPa] 

∆�L 
[MPa] 

target (non-lin.) 93 (88) 8 (10) 50 33 (28) 

measured 00 (65) 0 (24) 40 00 (03) 

 �� = 75    
MBM-series 

�#5º top 
[MPa] 

�#<� top 
[MPa] 

∆�# 
[MPa] 

∆�L 
[MPa] 

target (non-lin.) 139 (127) 13 (13) 75 50 (39) 

measured 000 ( 93) 00 (33) 54 00 (06) 

 �� = 105  
MBM-series 

�#5º top 
[MPa] 

�#<� top 
[MPa] 

∆�# 
[MPa] 

∆�L 
[MPa] 

target (non-lin.) 194 (175) 18 (20) 105 70 (50) 

measured 000 (132) 00 (46) 076 00 (10) 
 
 

Table 5.4: SG MBM-series characteristics, average load ratio at top: �� = 0.36 [-] 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.12: DS T-joint crack growth specimen effective structural stress concept    
                 based fatigue resistance ~·(E, �); non-welded data series. 
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distr. �  �   ¦ � ±²  max{ℒ} AIC 
(E, �) 12.67 3.88 0.40 0.15 1:1.25 -14.04 36.08 ·(E, �) 12.71 3.87 0.31 0.14 1:1.23 -11.91 31.83 

 
 

Table 5.5: Parameter estimates DS T-joint crack growth specimen (non-welded, ��). 
 
Last but not least, the total stress parameter �	  is adopted; the initial crack size -< 
is explicitly taken into account and the average notch/crack tip elastoplasticity 
coefficient $ – principally a specimen loading and geometry specific parameter – is 
determined. Solving  max{ℒ} does principally not involve constraint equations, but 
parameter constraints, e.g. 0 ≤ � ≤ 1, have been applied. The obtained scatter  
level is very small (Fig. 5.13) and ±² indicates the life time uncertainty has become 
below a factor 2; other structural response parameters are insufficient in this 
respect (i.e. local information is required). Crack growth behaviour is non-
monotonic in average;  $� = $ + �/2 ~ 5, likely a plane stress-, far field load level- 
and local laser heating induced contribution as already observed for a crack growth 
time series analysis (Paragraph 4.4.7). Because of -<~·(E, �), ·(�;
|�p) would 
make sense, but a slightly better fit is obtained using the Normal distribution 
(Table 5.6).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.13: DS T-joint crack growth specimen total stress concept based fatigue    
                 resistance ~
(E, �); non-welded data series. 
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distr. �  �   $ ¦ � ±²  max{ℒ} AIC 
(E, �) 12.61 3.89 3.31 0.36 0.11 1:1.18 -0.47 10.93 ·(E, �) 12.70 3.88 3.59 0.26 0.12 1:1.18 -0.79 11.58 

 
 

Table 5.6: Parameter estimates DS T-joint crack growth specimen (non-welded, �	 ). 
 

The identified peak stress importance (¦ < 0.5) makes sense, in particular if the 
cyclic remote mechanical load component is governing (i.e. the quasi-constant 
residual stress contribution is negligible). After all, the peak stress (SCF) is 
responsible for the weld toe notch fatigue damage sensitivity. 

Parameter profile likelihoods (Fig. 5.14 to 5.18) show a unique max{ℒ} solution; 
a global maximum is obtained. The resistance curve parameter {�,�, �} CB’s 
indicate the confidence level is relatively high compared to the total stress 
parameter coefficient {$, ¦} values. Elastoplasticity coefficient $ is loading and 
geometry dependent, specimen specific, meaning the MLE is an average one. Load 
ratio coefficient ¦ basically controls the scatter level, i.e. �, as observed in the 
correlation matrix Ρ (Table 5.7). Using the inverse of the (negative) Hessian ½(�)̂ = ¾2ℒ(�)̂/(¾�¾̂�′̂) as estimator of the asymptotic(ally Normal distributed) 
(co)variance matrix ¿ = (−½)−1, the scaled (co)variance- or correlation matrix Ρ, 
 D<p = ¿<p/(√¿<<√¿pp), is obtained. Parameters {�,�} are highly correlated as it 
should be, since a changing slope affects the fatigue strength;  $ dependency is 
significant. The �	  parameter correlation D�,� is limited. Elastoplasticity coefficient $ hardly affects the standard deviation �, suggesting it might be similar for all 
MCF data. The relatively large D�,Â value shows that structural stress effectivity 
dominates the fatigue resistance scatter. 

Initial crack size -< is prescribed and $ incorporates elastoplasticity, suggesting 
an average effective parameter estimate -� is out of question. An average effective 
notch radius D� – even though the stress gradient is taken into account and D0  
(Paragraph 2.11) becomes obsolete – however is only useful if (at least) different (type 
of) welded joint geometries are involved. Solving max{ℒ} for a range of D� values 
rather than D� incorporated in parameter vector � because of the high {$, D�} 
correlation (both control notch elastoplasticity), for the non-welded crack growth 
specimen data a monotonically increasing function AIC(D�) is obtained (Fig. 5.19). 

 
 Ρ �  �   $ ¦ � �  1.00 0.88  0.61 -0.05 -0.02 �   1.00  0.34  0.31  0.04 $     1.00  0.13 -0.01 ¦      1.00  0.12 �       1.00 
 

 

Table 5.7: Correlation matrix DS T-joint crack growth specimen (non-welded, �	 ). 
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 Figure 5.14: � relative parameter profile likelihood (non-welded specimen, �	 ). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5.15: � relative parameter profile likelihood (non-welded specimen, �	 ). 
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 Figure 5.16: $ relative parameter profile likelihood (non-welded specimen, �	 ). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5.17: ¦ relative parameter profile likelihood (non-welded specimen, �	 ). 
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  Figure 5.18: � relative parameter profile likelihood (non-welded specimen, �	 ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5.19: Akaike Information Criterion AIC(D�) for non-welded specimen; �	 . 
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Similarly, the welded DS T-joint crack growth specimen data series have been 
analysed. In comparison to the non-welded results (Fig. 5.10), the �� data scatter 
(Fig. 5.20) has increased, likely a HAZ (micro-structure) material effect; defect size -< is predefined. The Normal distribution still provides the better data fit (Table 
5.8). The (estimated) FATigue class however has not changed as explained (Fig. 
5.10 and 5.20); FAT36, although {�,�} are different. Applied loading is slightly 
smaller and {��,#<�,
} approaches the HCF range, i.e. the data scatter will 
typically increase and � starts to change.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.20: DS T-joint crack growth specimen nominal stress concept based fatigue 
                resistance ~
(E, �); welded data series �� = {45, 65, 85}. 

 
 
 
 

distr. �  �   � ±²  max{ℒ} AIC 
(E, �) 14.59 4.89 0.30 1:1.43 -47.52 101.0 ·(E, �) 15.69 5.51 0.34 1:1.41 -50.49 107.0 
 
 

 Table 5.8: Parameter estimates DS T-joint crack growth specimen (welded, ��). 
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Assuming the far field stress distributions are similar to the non-welded series – no 
SG data is available and the test setup is the same – the membrane and bending 
amplitude have been scaled according to tº and the single-slope �	  based fatigue 
resistance (Fig. 5.21, Table 5.9) has been obtained. The changing data slope for 
decreasing �	  has become visible. The load ratio coefficient (¦ = 0.85) is in agreement 
with the common assumption that ∆� dominates the welded joint fatigue damage 
process because of the high (quasi-static, self-equilibrating) tensile residual (notch) 
stress, meaning the remote mechanical loading induced �#5º is basically irrelevant. 

Using a single slope formulation in case of {MCF, HCF} data provides average 
fatigue strength- and damage mechanism information only. For a dual slope model, 
the welded data �1 value should become close to the non-welded data � like 
observed (Fig. 5.22, Table 5.10) since the fatigue damage mechanism should be the 
same: �1 ≈ � ≈ 4. The AIC value has just slightly decreased (Table 5.9 and 5.10). 
Because of  the limited HCF data, the �2 slope uncertainty is large (Fig. 5.23). 
The transition location (Fig. 5.24), i.e. position of slope change; �©|
~2 ⋅ 106 is a 
typically assumed one. For decreasing load ratio effects (Fig. 4.10) notch affected 
micro-crack growth becomes less pronounced (Fig. 4.8) – as the correlation 
coefficient D�,� confirms (Table. 5.11) – and the elastoplasticity coefficient has 
reduced to ($ = 1.76). Whether a coincidence or not, it is close to the crack growth 
test data based BSS value ($ = 2). The transition- and structural stress effectivity 
parameters {�2, �©, ¦} define the fatigue resistance scatter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.21: DS T-joint crack growth specimen total stress concept based fatigue    
                 resistance, 1-slope ~
(E, �); welded data series. 
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distr. �  �   $ ¦ � ±²  max{ℒ} AIC 
(E, �) 13.32 4.68 1.96 0.85 0.18 1:1.26 -24.66 59.31 ·(E, �) 13.81 5.07 1.98 0.95 0.26 1:1.32 -33.56 77.12 

 
 

Table 5.9: Parameter MLE’s DS T-joint crack growth specimen (welded, 1-slope �	 ). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.22: DS T-joint crack growth specimen total stress concept based fatigue    
                 resistance, 2-slope ~
(E, �); welded data series. 

 
 
 
 
 
distr. �  �1  �2 �© $ ¦ � ±²  AIC 
(E, �) 12.52 4.25 12.1 26 1.76 0.96 0.17 1:1.27 56.33 ·(E, �) 11.89 4.02 7.81 29 0.55 1.00 0.25 1:1.41 77.25 

 
 

Table 5.10: Parameter MLE’s DS T-joint crack growth specimen (welded, 2-slope �	 ). 
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Figure 5.23: �2 relative parameter profile likelihood (welded specimen, 2-slope �	 ). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.24: �© relative parameter profile likelihood (welded specimen, 2-slope �	 ). 
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 Ρ �  �1  �2 �© $ ¦ � �  1.00 0.99 -0.26 -0.14 -0.11 -0.21 -0.09 �1   1.00 -0.37 -0.02 -0.20 -0.08  0.03 �2    1.00 -0.68  0.35 -0.71 -0.75 �©     1.00 -0.11  0.97  0.93 $       1.00 -0.19 -0.28 ¦        1.00  0.93 �         1.00 
 
 

Table 5.11:Correlation matrix DS T-joint crack growth specimen (welded, 2-slope �	 ). 
 

Comparing the fatigue resistance curve parameter estimates (Table 5.6 and 5.10) 
for {non-welded, welded} geometry and loading controlled artificial T-joints, the 
fatigue strength �- and damage mechanism parameters {�,�1} are similar; only 
scatter parameter � has increased for the welded series. 

The slope {�,�1} for the considered crack damaged specimens has been 
observed way below the commonly adopted BM value (�~7, Eurocode 9) and 
comparable to the (AW, HAZ) joint value (�~4, Eurocode 9) suggesting crack 
growth is governing indeed. However, comparing the {BM, HAZ, WM} fatigue 
resistance of intact plane geometry (S7 = 0)- and notched (S7 = 11.2) specimens 
(Morgenstern, 2006b), a similar change in slope is observed. The fatigue (initiation 
and growth) damage mechanism seems predominantly be a matter of notch/crack 
tip elastoplasticity (for decreasing defect size the notch (singularity) becomes 
governing; Paragraph 5.2) rather than a material effect. After all, the BSS steel- 
and TS aluminium slope are comparable as well (Paragraph 5.4.2). The fatigue 
strength log(�) is much more material sensitive in that respect. The D�,Â 
correlation has increased since {MCF, HCF} is involved and notch/crack tip 
elastoplasticity changes for decreasing load level. 
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5.4.2 As-welded joint data 

The relatively complicated AW joint geometry parameters like {ÃM, ℎM, D, -<} are 
principally random and production quality dependent at the same time, i.e. may 
vary from one fatigue resistance data set to another. Reinvestigating multiple CA 
Aluminium {5xxx, 6xxx} SSS series (5 ≤ � ≤ 25) available in literature, the 
average quality (mode-I) TS fatigue resistance statistics will be obtained in order to 
establish a design curve. 

Both weld toe- and weld root induced failures (Ribeiro, 1993; Van Straalen et 
al., 1994a, 1994b, 1994c, 1994d; Hirt and Smith, 1995; Maddox, 1995; Matsuoka et 
al, 1995; Sharp, Nordmark and Menzemer, 1996; Haagensen et al., 1998; 
Meneghetti, 1999; Brandt et al., 2000; Daniels, 2001; Aukes, 2004; Strik and 
Dijkstra, 2004; Mann, 2006; Morgenstern, 2006a, 2006b; Sidhom et al., 2007; Ye and 
Moan, 2007; Tveiten and Fjeldstad, 2009; Coughlin and Walbridge, 2012; Morinaga 
et al., 2014) are classified (Paragraph 2.2.) and processed. Obviously, fatigue is a 
matter of time in different ways. 

Far field stress parameters {��, ��} are calculated exploiting FEA, the idealised 
specimen geometry and applied nominal loading. The SSS structural response is 
defined as load controlled since no neighbour structural members are involved and 
the displacement controlled residual stress is assumed to be of the self-equilibrating 
type. Strain gauge based far field stress information has been incorporated if 
available, meaning any welding deformations induced secondary order bending is 
implicitly included up to some extent only. 

 
Load ratio effects 
The SSS data remote mechanical load ratio spectrum is relatively wide, i.e. in 
between (−1.0 ≤ �� ≤ 0.75). For increasing ��, increasing mean stress �O, the   
stress amplitude should decrease to avoid exceedance of the material ultimate 
strength (� < �Å�), suggesting � = s(�O/�Å�); the yield strength �R� controls 
elastoplasticity. Welded joint fatigue test results typically suggest a non-linear mean 
stress dependency and an exponential relation has been proposed (Kwofie, 2001): 

 

 � = �O−1 ⋅ exp {−�( �O�Å�)}  (5.23) 

 
Fatigue strength coefficient �O−1 corresponds to the fully reversed load case (�� = −1.0) and the (inverse) Basquin type of relation for any non-zero �O becomes: 

 

 � = �O−1 ⋅ exp {−�( �O�Å�)} ⋅ 
O−1− 1#  (5.24) 

 
Assuming slope � is �O-invariant, � (Eq. 5.24) at (�� = −1.0) turns into: 

 

 �O−1 = �O−1 ⋅ 
O−1− 1#  (5.25) 
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and quotient (�/�O−1) denotes 
 

 ( ��O−1) = exp {−�( �O�Å�)}. (5.26) 

 
Using a Maclaurin series expansion, a 1st order approximation is obtained: 

 

 ( ��O−1) = {1 − �( �O�Å�)},  (5.27) 

 
basically a generalised formulation of several empirical mean stress models 

developed over time (Kwofie, 2001; Lobato da Silva et al., 2010). 
 
1. For (� = 1), the Goodman relation (Dowling, 2007) is obtained: 
 

 ( ��O−1) = {1 − ( �O�Å�)}  (5.28) 

 
In case both mean stress and stress amplitude are relatively small;  (�/�O−1) → 1 and (�O/�Å�) → 0, the material behaviour is linear elastic. 
 

2. For (� = �Å�/�R�), using the yield stress rather than ultimate strength, the 
more conservative Soderberg relation (Herzberg, 1995) appears: 

 

 ( ��O−1) = {1 − ( �O�R�)}  (5.29) 

 
3. For (� = �O/�Å�), the Gerber relation (Dowling, 2007) is acquired: 
 

 ( ��O−1) = {1 − ( �O�Å�)
2}  (5.30) 

 
If plasticity cannot be neglected, i.e. (�/�O−1) as well as (�O/�Å�) increase, 
mean stress effects become non-linear. 

 
Exponential mean stress models have been developed in order to prevent for 
inaccurate fatigue lifetime estimates in case of relatively low � and high �O, e.g. 
welded joints operating in the {MCF, HCF} region experiencing both a remote 
mechanical- and thermal residual mean stress contribution. The proposed 
formulation (Kwofie, 2001; Eq. 5.26) is a generalised one: 
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1. For (� = −{�Å�/(2 ⋅ �O)} ⋅ ln{(1 − ��)/2}), a geometric mean of the stress 
cycle defining components {∆�, �#5º} is assumed (Smith, Watson and 
Topper, 1970; Paragraph 4.2.4): 

 

 ( ��O−1) = (1 − ��2 )12  (5.31) 

 
2. For (� = −{�Å�/(¦ ⋅ �O)} ⋅ ln{(1 − ��)/2}), fitting parameter ¦ substitutes the 

square root (Eq. 5.31); a load ratio coefficient (Walker, 1970; Paragraph 4.2.4):  
 

 ( ��O−1) = (1 − ��2 )�  (5.32) 

 
In the notch affected region, elastoplasticity coefficient $′ may take the total mean 
stress, i.e. remote mechanical and thermal residual contribution, into account (Eq. 
4.19); the effective far field stress includes a remote mechanical component only, 
assuming either the residual stress is of the self-equilibrating type or any 
equilibrium equivalent part is incorporated in log(�′). However, for varying remote 
mechanical load level, the relative residual stress contribution may be different and 
a smooth mean stress transition from the (displacement controlled) residual stress 
(at yield magnitude) governing in the notch affected region to (load controlled) 
remote mechanical dominated in the far field region can be achieved using a crack 
length dependent total load ratio, i.e. �� → ��	  (Eq. 4.19). For weld toe notches: 

 

 

��	 = ST,#<� + STO
ST,#5º + STO

��	  = ��,#<�+�+0 + ( �R��#5º) +�O
��,#5º+�+0 + ( �R��#5º) +�O

 = +� {2�� ( ��1 − ��)+0 + ( �R��#5º)} − ( �R��#5º)
+� {2�� ( 11 − ��)+0 + ( �R��#5º)} − ( �R��#5º)

  (5.33) 
 
 
 
 
 
 
 
 

 

 
Both numerator and denominator have been divided by 

√W-. Remote mechanical- 
and thermal residual stress distribution similarity (Paragraph 2.10 and 3.8) means +�O = (+� − 1); if any, the equilibrium equivalent residual stress part – 
incorporated in log(�′) – is assumed to be similar for all AW joints.  

Provided a far field stress at some level, the thermal residual contribution 
becomes increasingly important for decreasing ��, as shown for an ideal fillet weld 
SEN geometry in a far field membrane loading condition (Fig. 5.25). Concerning 
high-speed craft, welded joints typically experience (repeated) impact loading, 
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meaning ��	 → ��. Increasing �� at constant remote mechanical load ratio,  ��	 → �� as well (Fig. 5.26). On the other hand, increases (�R�/�#5º) like for 
decreasing �� (MCF → HCF), the more important ��	  becomes. Yield stress 
sensitivity turns out to be relatively small and a typical value �R� = 150 [MPa] has 
been adopted; a monotonic value rather than a cyclic one since it reflects a quasi-
constant mean stress. 

Although the thermal residual stress contribution may seem small – realise the 
remote mechanical induced notch stress is already quite high – it is still very 
important since the major part of fatigue life time is spent in the notch affected 
region. If ��	 (�/� → 0) > 0, load ratio coefficient (¦ = �) anyway. For stress 
relieved SSS’s; (�R�/�#5º) = 0 and {¦ = �|�� ≥ 0, ¦ = 0|�� < 0}. In case ��O turns 
out to be compressive in the notch affected region (Paragraph 2.10), (�R� = −�R�) 
and {¦ = �|�� ≥ 0, ¦ = 0|�� < 0}.  

Post-welding procedures like ultrasonic impact treatment (UIT) aim to improve 
the fatigue resistance, reducing the defect size and turning the highly tensile 
welding induced residual notch stress into a compressive one. A (technique 
dependent) improvement ratio �<, governing in the notch affected micro-crack 
region, may be introduced to incorporate the fatigue strength consequences (den 
Besten and Huijsmans, 2011). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                    Figure 5.25: Total load ratio for different ��, (�� = 0). 
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                   Figure 5.26: Total load ratio for different ��, (�� = 0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 5.27: PP DS butt joint (loc. 5) total load ratio for different ��, (�� = 0).  
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 Figure 5.28: PP DS butt joint (loc. 5) total load ratio for different ��, (�� = 0).  
 
The total load ratio for weld root notches becomes: 

 

 ��	 = 2�� ( ��1 − ��)+0 + ( �R��#5º) (+� − 1)
2�� ( 11 − ��)+0 + ( �R��#5º) (+� − 1)  (5.34) 

 
As shown for a PP DS butt joint geometry (Fig. 5.27 and 5.28), ��	  behaviour is 
similar to the weld toe notch case, although typically more pronounced. Since ��	 = s(-/� (′)), the total stress (Eq. 5.2) needs to be modified as well: 

 

 
�	 = ∆��

(� (′)
c   )

1# ⋅ c 2−#2# ⋅ ��(��, ��, $,�, ¦) 1#
 (5.35) 

 

 

 

with 
 

 �� = ∫ s�  d ( -� (′))
( 5678(′))

( 5:78(′))
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and 
 

 
s� = 1

{+� ( -� (′))}� ⋅ {+0 ( -� (′)) ⋅ (1 − ��	 )1−�}# ⋅ ( -� (′))
#2  

 

 
Medium cycle fatigue resistance 
Investigating MCF data first, a single slope �	 -
  formulation (Eq. 5.3) will be 
adopted. The governing fatigue damage mechanism induced slope change, i.e. 
design curve based (MCF-HCF) transition, is assumed to be at 
 ≈ 5 ⋅ 106 
(Eurocode 9, 2007); all failures |
 > 5 ⋅ 106 will be excluded for the moment as well 
as censored data (typically potential failures in the HCF region). Based on a 
preliminary analysis, 3 data points have been identified as outliers, have been 
excluded; 772 test results are taken into account. 

Although welded joints (theoretically) may contain multiple geometrically 
similar weld toe notches because of symmetry; notch redundancy is implicitly 
included in the fatigue resistance data (scatter), typically 1 location is governing 
and from far field perspective a single edge type of crack – predominantly affecting +0  – is assumed to develop anyway. A quasi-2D SEC formulation (Eq. 3.6 and 3.7) 
is considered for HS’s type � along the weld seam; weld end type B develops a 
SEC by definition. However, because of 3D effects (e.g. Fig. 2.65) a semi-elliptical 
one (Eq. 3.10 and 3.11) is adopted for HS’s type A. The type of crack developing at 
weld root notches (limited to HS type �) is assumed to be in agreement with the 
involved (non-) symmetry conditions. For a SEN geometry (e.g. PP SS butt joints) 
a slightly modified SEC formulation (Eq. 3.8) is required. In case of CC’s 
developing at CN’s, symmetry with respect to (� /2) is maintained to prevent for 
far field stress definition issues (Paragraph 2.7). The +� formulation – quasi-2D for 
any hot spot – controls the notch affected zone size and includes (non-)symmetry as 
well. 

Fillet- and groove weld geometries are assumed to be ideal, unambiguously 
defined using {ÃM, ℎM}. Since the (average) actual notch radius is typically not 
available, a worst case scenario value is adopted (D = 0); a conservative assumption.  

Defect- or initial crack size -< is typically unknown and includes a statistical 
component -<(E, �). Since �	  explicitly includes an elastoplasticity coefficient $, 
the fictitious one -0  i.e. effective value -� is irrelevant. 
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Figure 5.29: SSS total stress concept based MCF resistance data, 1-slope ~
(E, �). 
 (-</� ) ℒ ±²  (-</� ) ℒ ±² 

  2 ⋅ 10−3 -841.0 1:1.671    2 ⋅ 10−3 -903.3 1:1.844 

  4 ⋅ 10−3 -822.1 1:1.622    4 ⋅ 10−3 -889.0 1:1.783 

  5 ⋅ 10−3 -819.6 1:1.613    5 ⋅ 10−3 -887.3 1:1.769 

  6 ⋅ 10−3 -819.6 1:1.608    6 ⋅ 10−3 -887.8 1:1.762 

  7 ⋅ 10−3 -821.3 1:1.607    7 ⋅ 10−3 -889.9 1:1.759 

  8 ⋅ 10−3 -824.3 1:1.608    8 ⋅ 10−3 -893.1 1:1.761 10 ⋅ 10−3 -833.0 1:1.615  10 ⋅ 10−3 -901.7 1:1.770 

 
 

Table 5.12: Likelihood and scatter range index for varying (-</� ) in case of           
                a) 
(E, �) and b) ·(E, �). 
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Increasing (-</� ) will shift �	  down. Its sensitivity for weld root notches is 
relatively small in comparison to weld toe notches (Fig. 5.1 and 5.7), meaning up to 
some extent the weld toe induced failures shift toward the weld root induced ones 
(centre marked symbols; Fig. 5.29). For a converged value, i.e.  (-</� → 0), the 
notch induced (elastoplastic) response is in control and a crack initiation parameter 
could be a better choice. Adopting (-</� ) = �, incorporating an average weld 
volume effect (Paragraph 2.8.3) only, the relative crack acuity is taken into account. 
Total stress �	  (Eq. 5.35) contains the absolute crack acuity (- = -< → � ), i.e. 
plate thickness scaling, as well. The single slope MCF resistance ‘Signac1’ (Fig. 
5.29) shows for both a Normal and Weibull distribution assumption a mean or most 
likely value, (-</� ) ≈ 6 ⋅ 10−3 (Table 5.12). The fatigue data life time scatter 
parameter � includes the defect size scatter. Correlating defect size and weld seam 
length using an extreme value distribution ¥¿ (-O) would eliminate weld volume 

effects. The Normal distribution 
(E, �) provides the better fit, i.e. maximum data 
joint probability density. In case (� = 8); a common value in high-speed craft, (-< = 0.05 ~ 0.1) seems realistic (Paragraph 2.11, 4.4.1 and 5.4.1). The order of 
magnitude is similar to a scanning electron microscopy (SEM) measured most 
probable value (-< = -O = 0.03) as well (Menzemer, 1992). For comparison: if the 
fatigue damage parameter would require a fictitious defect size, (-0/� ) = � provides 
a most likely value as well (Sonsino et al., 1999): for � = {5, 25}, -0 = {0.20, 0.96}, 
although (-0/� ) ≈ 4 ⋅ 10−2 ≈ � seems not noticed. Note: X(-0/� ) > X(-O/� ). 

Using a most likely defect size, however, is in contrast to the BSS adopted 
converged value (Dong and Hong, 2004). Weld toe- and weld root induced failures are 
separately considered (Hong, 2010), even though the slopes � are similar (suggesting 
the damage mechanism is the same) and differences in {HAZ, WM} material 
behaviour are typically small (Paragraph 4.3). The weld root induced fatigue 
damage is simply considered to be smaller for similar ��(O) in weld toe- and weld 
root cross-section; an observation rather than a physical explanation seems sufficient.  

The parameter profile likelihoods (Fig. 5.30 to 5.34) and (two-sided) CB’s show 
the parameter confidence is quite high. Fatigue strength parameter � (Fig. 5.30), 
basically a quality indicator, seems to provide an excellent opportunity to compare 
its value to the ones obtained for other data sets. However, caution is required since � is highly correlated (Table 5.13) to the slope and elastoplasticity coefficient {�,$}. For example, � (as well as �) turns out to be surprisingly close to the 
artificial non-welded T-joint data series value (Table 5.6), though, $ is different 
meaning any conclusion is incorrect in that respect. 

 
 
 
 
 
 
 
 
 

1 Pointillism artist, 1863-1935 
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 Ρ � � $ ¦ � � 1.00 0.98 0.59 -0.11 -0.04 �  1.00 0.42 -0.10 -0.06 $   1.00  0.07  0.03 ¦     1.00  0.01 �      1.00 
 

 
              Table 5.13: Correlation matrix MCF as-welded joint fatigue. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 5.30: � relative parameter profile likelihood (AW MCF �	  resistance). 
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  Figure 5.31: � relative parameter profile likelihood (AW MCF �	  resistance). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 5.32: $ relative parameter profile likelihood (AW MCF �	  resistance). 
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   Figure 5.33: ¦ relative parameter profile likelihood (AW MCF �	  resistance). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 5.34: � relative parameter profile likelihood (AW MCF �	  resistance). 
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The relevant nominal stress concept based Eurocode 9 (mode-I) slope is typically (� = 3.4); for FP butt joints however (� = 4.3) is adopted, suggesting the damage 
mechanism is different. Since the weld notch angle is principally a matter of fatigue 
strength, only a larger defect size – decreasing the (
</
Í) growth ratio – would 
be a reasonable (but unverified) explanation. The MCF AW data slope � (Fig. 
5.31) turns out to be right in the middle and is comparable to the artificial T-joint 
data values (� ~ 4) as well (Paragraph 5.4.1). The D#,� correlation turns out to be 
significant (Table 5.13). Increasing the (cyclic) notch and/or crack tip plasticity 
increases $, increases the (
</
Í) ratio (because of decreasing 
Í) and hence � at 
the same time (and vice versa).  

Considering the (non-)welded artificial T-joint data and AW series, the 
average(!) elastoplasticity coefficient $ (Fig. 5.32) seems to show some tendency. 
For increasing mean stress in the notch affected region, $ reduces, suggesting the 
maximum stress dominates the stress range contribution (i.e. the quasi-static 
component – a residual stress contribution in particular – rather than the cyclic 
remote mechanical one is governing; Paragraph 4.2.4). Load ratio coefficient ¦ (Fig. 
5.33) on the other hand shows the stress range is in charge in the far field 
dominated region; (0.5 < ¦ ≤ 1.0). Since ($ ~ 1), half the BSS value (Dong and 
Hong, 2004), $� = ($ + �/2) > 1.0 (Eq. 4.7) meaning plasticity is still involved and 
crack growth behaviour is non-monotonic. Even though the welded joint hot spot 
condition is typically plane strain (Paragraph 4.2.3), mean stress in the notch 
affected region is large in comparison to the far field component explaining why 
non-monotonicity is even pronounced (Fig. 4.10); $� ≈ 2.7. 

At first glance, standard deviation MLE � (Fig. 5.34), another quality indicator, 
may seem fairly high, although the average welded joint quality typically decreases 
(increasing �) if an increased number of data sets is involved; an advantage from 
design perspective. At the same time, the fatigue resistance scatter band seems 
relatively constant in the MCF life time range (Fig. 5.29), suggesting convergence. 
Except the design curves, Eurocode 9 does not provide any data (scatter) 
information. Although not explicitly mentioned, likely the data investigated to 
establish the European Recommendations for Aluminium Alloy Structures 
(ERAAS) is involved, as well as some more recent test results (Jaccard, Kosteas 
and Ondra, 1995); both SSS and built-up beams (LSS), aiming for welded joint 
similarity (Paragraph 2.11 and 5.5).  

The ERAAS (LSS) fatigue strength scatter parameter �� for different type of 
specimen is in the range �� = (0.04, 0.10) based on a nominal stress concept (Kosteas 
and Ondra, 1995). Since (�|
)- and (
|�) regression is not the same, �� cannot be 
translated to a life time value. An average slope may be used to obtain an estimate 
only; (� = 4) has been proposed (Eurocode 9, 2007) meaning � = �� = (0.45, 0.56), 
a glaring contradiction in comparison to the only mentioned Eurocode 9 value (� = 0.18). The mean standard deviation of the other test results (mode-I, ~1000 
specimens; Jaccard, Kosteas and Ondra, 1995) turns out to be (� ≈ 0.32), knowing (�� ≥ 0). For the record: this data is partly included in the TS concept based 
analysis as well, e.g. (Hirt and Smith, 1995; Van Straalen et al, 1994). Keeping in 
mind an �	 -
  quantile represents a family of mode-I governing welded joint 
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curves, i.e. FAT class uncertainties because a joint would not fit into the available 
prescribed ones do not exist, the TS � MLE is considered to be a realistic one. In 
particular if compared to the �� related data scatter (Fig. 5.35; legend Fig. 5.29). 
Scatter index ±² = 1: 1.6 slightly exceeds the characteristic value ±² = 1: 1.5 as 
obtained in case of good workmanship, limiting analysis results to (�� ≥ 0) data 
(Sonsino, 2007; Kranz and Sonsino, 2010); for decreasing remote mechanical load 
ratio, (�� < 0) in particular, the scatter increases. 

The family of �	 -
  curves is typically a tension-tension (T-T) fatigue resistance 
relation, meaning that except the predominant tensile residual (notch) stress, the 
remote mechanical loading induced maximum stress is tensile as well: �#5º =∆��/(1 − ��) > 0 for �� = (−∞, 1). The R99C95 quantile (Fig. 5.29) may serve as 
MCF design curve. Life time uncertainty is about a factor 6; ±3, explaining why 
  
should be assessed in terms of order of magnitude rather than actual numbers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                           Figure 5.35: SSS �� MCF resistance data. 

 
The International Institute of Welding (IIW) defines the (MCF-HCF) transition at 
 = 1 ⋅ 107 cycles (Hobbacher, 2009b), increasing the number of involved test results 
up to 805. In comparison to the Eurocode transition based results, � has slightly 
increased (Fig. 5.36, Table 5.14) – including censored data hardly affects the result – 
and turns out to be way beyond the IIW value (� = 3). Since the data slope tends 
to change for 
 > 1 ⋅ 106, life time estimates close to the MCF upper bound will be 
(too) conservative. Although the residuals show no drift (Fig. 5.37), i.e. n(E) ≈ 0, 
some trend may be observed: approaching the {LCF, HCF} regions the error increases 
because of slope deviations. The residuals distribution (Fig. 5.38) is approximately 
symmetric and bell-shaped, suggesting the n~
(E, �) assumption is valid. 
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   Figure 5.36: SSS �	  MCF resistance data (IIW definition), 1-slope ~
(E, �). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     Figure 5.37: AW joints MCF life time residual plot. 

HdB 
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              Figure 5.38: AW joints MCF (log) life time residual distribution. 

 
parameter MLE 0.95 LB 0.95 UB � 12.50 12.25 12.73 �  3.87  3.73  3.99 $  0.90  0.66  1.14 ¦  0.73  0.69  0.77 �  0.31  0.30  0.33 

 
 

        Table 5.14: MCF resistance ~
(E, �) parameter MLE’s and 0.95 CB’s. 

 
The standard deviation and scatter index remain principally unaffected. However, � = 0.31 seems in comparison to the IIW value (Hobbacher, 2009b; � = 0.25) quite 
large. Even though the aluminium welded joint fatigue resistance scatter typically 
exceeds the steel one, IIW has adopted the same � – and slope(!) – for both 
materials, considering material effects to be predominantly a matter of fatigue 
strength; the crack growth dominated damage mechanism is the same. The involved 
data sets are unknown. Fatigue resistance data scatter for steel welded joints 
according to {IIW, Battelle} – BSS weld toe induced failures only –  share the 
same � (Dong, Hong and De Jesus, 2007); root induced ones (Hong, 2010) typically 
show an increased scatter (� = 0.28). A similar � would be expected for the {IIW, 
TS} aluminium welded joint fatigue resistance as well, since the {BSS, TS} 
concepts are modelled along the same lines up to some extent. 
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Figure 5.39: BSS �� MCF resistance (load control); weld toe induced failures only. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.40: TS �	  MCF resistance; weld toe induced failures only. 

HdB 
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An actual {BSS, TS} weld toe induced failure resistance comparison (Fig. 5.39 and 
5.40) shows however the same scatter estimate; � = 0.31, although the BSS fit 
shows some more outliers. The large number of data points in the scatter band core 
ensures � is hardly affected. Comparing TS based (design) life time estimates 
  to 
the BSS obtained ones means that in some cases it will be better, in some others 
worse, but in average the same. The fatigue strength parameter � is quite different, 
predominantly because of different notch crack growth integral ��  formulation and 
elastoplasticity coefficient $. The BSS polynomial (��)1/# approximation (Dong, 
Hong and De Jesus, 2007) is based on � = 3.6; close to the MLE value. The 
effective BSS �� (Dong and Hong et al., 2010) involves the geometric mean 
contribution of {∆��+, ��,#5º}. 

Performing a quality check, a fair comparison of (some) joint specific {IIW, TS} 
FAT classes would require a nominal stress based re-analysis of the involved data. 
However, the IIW design values will be adopted to get a first estimate (Table 5.15). 
The TS FAT class is established at 25 [MPa] for 
 = 2 ⋅ 106 cycles (Fig. 5.36). 
Using the �	  formulation (Eq. 5.35), the SSS joint specific FAT class can be 
calculated; ∆�� = ∆�� if not specified and assumed to be a membrane component (�� = 0). A worst case notch radius value has been selected (D = 0).  

Generally speaking, the IIW FAT classes are slightly conservative in comparison 
to the TS ones as might be expected, although it seems in contradiction to the � 
values. The involved �� value might be a partial explanation, since IIW typically 
translates the design curves to an (�� = 0.5) level; �	  includes an explicit 
contribution (Eq. 5.34). A {(1 − 0.5)/(1 − 0.1)}1−� correction would increase the 
IIW FAT class ~15 [%] and the values approach the TS level, i.e. are in the same 
range as it should be, since the selected joint dimensions fit quite well the SSS 
dimensions as involved to establish the {IIW, TS} fatigue strength. 

Weld reinforcement criteria and misalignment assumptions define the DS butt 
joint (weld toe induced failure) IIW FAT class at 32 [MPa]; slightly below the TS 
value. In case of weld root induced failure, the nominal stress is translated to the 
weld throat section value, ignoring any weld reinforcement contribution. The IIW 
does not define a notch length upper bound and an engineering value has been 
selected. The TS fatigue strength exceeds the IIW FAT class. 

 
 

type �L(′)  �©  Ã© ÃM ℎM -� IIW TS 

butt joint DS (toe)  8.0 8.0 - 10.0 1.5 0.0 32 38 

butt joint DS (root)  8.0 8.0 - 10.0 1.5 1.0 12 16 

cruciform joint DS (toe)  8.0 8.0 -  8.0 8.0 0.0 28 37 

cruciform joint DS (root)  8.0 8.0 -  8.0 8.0 2.0 12 18 

cover plate  SS (toe)  8.0 8.0 120.0  8.0 8.0 - 25 37 

attachment SS (toe)  8.0 8.0 120.0  8.0 8.0 - 25 30 

gusset plate (toe) 40.0 8.0 120.0  8.0 8.0 - 18 23 
 
 

  Table 5.15: Welded joint specific {TS, IIW} FAT class comparison; (�� = 0.1). 
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According to IIW, a DS cruciform joint (weld toe induced failure) shows typically a 
lower FAT class in comparison to a DS butt joint – a matter of allowed 
misalignments; the TS fatigue strength has decreased just slightly. To compare the 
weld root FAT classes the TS based nominal stress is translated to the fillet weld 
throat value. IIW does not provide any -� restrictions. 

In comparison to the cruciform joint, the IIW SS cover plate fatigue strength 
has decreased. Although the cover plate length Ã© typically exceeds the cruciform 
joint plate thickness �©, �LM effects are typically small (Fig. 5.4), explaining why 
the TS FAT class has hardly changed. 

The SS attachment contains a weld end (HS type A), meaning a semi-elliptical 
crack type is involved because of 3D effects. Aspect ratio (-/a) is assumed to be 
similar to �L/(�©/2 + ÃM). Since ∆�� ≠ ∆��, a structural- to nominal stress 
conversion is involved. The IIW fatigue strength seems conservative, like for a 
gusset plate (HS type B). 

 
Medium- and high cycle fatigue resistance 
In order to correlate {MCF, HCF} data, a continuous dual slope formulation (Eq. 
5.20) is adopted rather than a piecewise linear one to ensure a smooth transition. 
Analysis results (Fig. 5.41; legend Fig. 5.29, Table 5.16, 5.17 and 5.18) based on 
911 complete and censored fatigue tests – after all, fatigue induced failure is an 
emergency – show the 
(E, �) distribution overall still provides the better fit. The {�,�1,�2, �©} correlation is obvious. 

The MCF slope has increased. Although the MCF data distribution is relatively 
constant and (�1 ~ 4) still, at 
 = 2 ⋅ 106; the characteristic fatigue strength related 
value, typically a data concentration is observed that may affect the overall MCF 
resistance fit. The HCF slope �2 is in between the Eurocode 9 and IIW value, 
respectively (�2 = �1 + 2) and (�2 = 22) based on 10 [%] fatigue resistance 
decrease per decade. However, its uncertainty is quite large (Fig. 5.42) since HCF 
data is limited and predominantly censored. The R99C95 quantile slope change in 
terms of life time is below any commonly defined {MCF, HCF} transition value,  
i.e. 
© = 5 ⋅ 106 (Eurocode 9, 2007) or 
© = 1 ⋅ 107

 (IIW recommendations: 
Hobbacher, 2009b), but quite close to the characteristic fatigue strength related 
one, 
© ≈ 2 ⋅ 106 cycles.  
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         Figure 5.41: SSS �	  {MCF, HCF} resistance data; 2-slope ~
(E, �). 
 
 
distr. �  �1  �2 �© $ ¦ � ±²  max{ℒ} 
(E, �) 13.59 4.42 10.32 29 1.22 0.69 0.43 1:1.76 -1234 ·(E, �) 14.28 4.84 13.30 33 1.46 0.67 0.57 1:1.93 -1359 
 
 

         Table 5.16: Parameter MLE’s {MCF, HCF} resistance data; 2-slope. 

 
 Ρ �  �1  �2 �© $ ¦ � �  1.00 0.98 0.08 -0.31  0.63 -0.09  0.08 �1   1.00 0.10 -0.31  0.50 -0.07  0.08 �2   1.00 -0.37 -0.04  0.01  0.06 �©     1.00  0.00  0.00  0.04 $       1.00  0.03  0.01 ¦        1.00 -0.01 �         1.00 
 
 

     Table 5.17: Correlation matrix {MCF, HCF} resistance; 2-slope ~
(E, �). 

HdB 
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parameter MLE 0.95 LB 0.95 UB � 13.59 13.27 13.92 �1  4.42  4.25  4.59 �2 10.32 - - �© 29.00 25.00 35.00 $  1.22  0.91  1.53 ¦  0.69  0.64  0.73 �  0.43  0.41  0.45 

 
 

  Table 5.18: {MCF, HCF} resistance ~
(E, �) parameter MLE’s and 0.95 CB’s. 

 
For a decreasing remote mechanical load range, i.e. MCF → HCF, the notch and/or 
crack tip elastoplasticity is hardly affected because of the highly tensile thermal 
residual stress; ($ ~ 1) remains approximately unchanged. Only �2 pretends to 
take care of the increasing (
</
Í) ratio, as a comparison of the D#1,� and D#2,� 
correlation coefficients confirms. 

Load ratio coefficient ¦ has turned out to be an independent parameter (Table 
5.17). The quasi-constant residual stress (in the notch affected region) is for all SSS 
approximately the same (at yield stress level) and the fatigue resistance mean stress 
effect as incorporated using Walker’s model is approximately exponential indeed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.42: �2 relative parameter profile likelihood ({MCF, HCF} data, 2-slope). 
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The data scatter parameter � has significantly increased, predominantly because of 
the HCF censored data induced uncertainty. Note the HCF data life time scatter X(102) as shown (Fig. 5.41) is fictitious in that respect, since the locations in 
  
domain are based on the number of cycles up to the test stop rather than fatigue 
induced failure. A separate MCF- and HCF resistance analysis is considered to be 
no option. Even if a most likely transition location would be estimated using a 
connectivity constraint, the different �’s introduce a quantile transition jump 
anyhow. Using a single level regression analysis, the MCF resistance uncertainty 
pays for an {MCF, HCF} formulation since only 1 residual term is involved. 
Though, if on the other hand application of the MCF � in the HCF region 
(Morgenstern et al., 2006b; Sonsino, 2007) is supposed to be an alternative – 
meaning HCF life time estimates will be non-conservative – the {MCF, HCF} 
approach might be preferred, at least from high-speed craft design perspective. 

 
The {MCF, HCF} slope change might be related to a �	  LB; a micro-structural 
barrier, a threshold, likely random because of the stochastic nature of grain size 
and orientation, number of dislocations and inclusions and welding induced defect 
size, introducing the random fatigue limit (RFL) model (Eq. 5.21). The (
</
Í) 
naturally increases up to lim²Ò →²∞(
</
Í) → ∞. The {MCF, HCF} data scatter 
is naturally separated. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 5.43: SSS �	  {MCF, HCF} resistance data (RFL ~{
(E, �),·(E, �)}. 

HdB 

N(µ,σ) 

W(µ,σ) 
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  distr. �∞distr. �  �1  �∞,Ô �∞,Â $ ¦ � max{ℒ} 
(E, �) 
(E, �) 12.19 3.80   5.77 2.79 0.88 0.71 0.27 -1140 
(E, �) ·(E, �) 12.17 3.80   9.75 2.77 0.89 0.70 0.25  -667 ·(E, �) 
(E, �) 11.90 3.65   8.20 2.37 0.47 0.70 0.61 -1165 ·(E, �) ·(E, �) 11.89 3.67 12.07 2.37 0.43 0.69 0.61 -1151 
 
 

     Table 5.19: Parameter MLE’s {MCF, HCF} resistance data; RFL model. 

 
 Ρ �  �  �∞,Ô �∞,Â $ ¦ � �  1.00 0.97 -0.64  0.58  0.57  0.05  0.45 �   1.00 -0.52  0.45  0.47  0.05  0.37 �∞,Ô    1.00 -0.91 -0.15 -0.15 -0.60 �∞,Â     1.00  0.20  0.14  0.46 $       1.00  0.04  0.11 ¦        1.00  0.04 �         1.00 
 
 

Table 5.20: Correlation matrix {MCF, HCF} resistance; RFL ~{
(E, �),·(E, �)}. 
 
A 
(E, �) life time- and ·(E, �) fatigue limit distribution assumption provides the 
best data fit (Fig. 5.43; legend Fig. 5.29, Table 5.19 and 5.20; Fig 5.44 to 5.50). 
Fatigue strength parameter � and slope � as well as the elastoplasticity- and load 
ratio coefficient {$, ¦} are close to the separate MCF resistance analysis results 
(Fig. 5.29). The life time data scatter parameter has reduced to (� = 0.25), 
suggesting the MCF UB is below 
© = 5 ⋅ 106 (Fig. 5.29) or 
© = 1 ⋅ 107 (Fig. 5.36) 
as already identified (Fig. 5.39). Scatter index ±² has become �	  dependent and 
cannot be unambiguously determined for comparison with other models; � is 
considered to be sufficient in that respect.  

The fatigue limit mean and standard deviation {�∞,Ô = 9.75, �∞,Â = 2.77} in 
terms of shape and scale parameters {� = 3.98, Õ = 10.20} suggests a slightly 
skewed distribution (Fig. 5.43). The (�∞ − �) sensitivity is quite high (Table 5.20). 
Note the R99C95 {MCF, HCF} RFL quantile is approximately a single slope curve 
up to 
 = 1 ⋅ 109 cycles; a common assumption for fatigue resistance of aluminium 
alloys.  

Comparing the dual slope- and RFL max(ℒ); because of the same number of 
parameters Akaike’s criterion does not provide additional information, the RFL 
model seems to be a better choice, predominantly because of the HCF slope �2 
uncertainty. 
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   Figure 5.44: � relative parameter profile likelihood (AW RFL �	  resistance). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 5.45: � relative parameter profile likelihood (AW RFL �	  resistance). 
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  Figure 5.46: �∞Ô relative parameter profile likelihood (AW RFL �	  resistance). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 5.47: �∞Â relative parameter profile likelihood (AW RFL �	  resistance). 
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   Figure 5.48: $ relative parameter profile likelihood (AW RFL �	  resistance). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 5.49: ¦ relative parameter profile likelihood (AW RFL �	  resistance). 
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   Figure 5.50: � relative parameter profile likelihood (AW RFL �	  resistance). 
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5.5 Large scale specimen CA fatigue resistance 

Since SSS test data is typically used to establish the fatigue resistance, FSS 
representative (one-bay) LSS data should fit the SSS data scatter band in order to 
demonstrate welded joint similarity (Paragraph 5.5.1), meaning the fatigue damage 
is the same (Paragraph 2.11). The classification {SSS, LSS, FSS} is not related to 
welded joint dimensions as well up to what extent neighbour structural members 
are involved (SSS include the welded joint only; LSS include some neighbour 
structural members as identified in stiffened panels, frames and trusses). The 

remote-mechanical stress is principally not affected, but the displacement controlled 
thermal residual stress in LSS however may introduce an equilibrium equivalent 
part, (slightly) affecting the total load ratio ��	 . Special attention will be paid to 
fatigue data of three-bay stiffened panels exposed to repeated space-averaged 
pressure (den Besten and Kaminski, 2013; Paragraph 5.5.2). In contrast to a  
tensile remote far field stress, typical for {SSS, one-bay LSS} hot spots, a 
compressive one is introduced at fatigue sensitive locations like a frame-stiffener 
connection, affecting the fatigue resistance as already shown for a frame/truss 
structure related tubular welded joint (Mann, 2006). 

 

5.5.1 One-bay {frame, plate-stiffener, stiffened panel} data 

Fatigue sensitive locations in high-speed craft hull structures typically include 
frame corner- and frame-stiffener connections, with- or without bracket. Conducting 
LSS fatigue resistance experiments, typically a corner bending (Irving et al., 2005; 
Fig. 5.51) and three (Tveiten et al., 1999 and 2007; Sears et al., 2000; Polezhayeva 
et al., 2001; Fig. 5.52 and 5.53)- or four-point bending (De Vries et al., 2000; Ye et 
al., 2007; Fig. 5.54) setup is adopted using one-bay {frame, plate-stiffener, stiffened 
panel} structures.  

The welded joint connecting the soft toe bracket to the frame corner (Fig. 5.51a) 
is classified as weld end (HS type A). To estimate the (non-symmetric) local weld 
geometry induced bending a SS cover plate geometry is involved. The cover plate 
height �© equals the weld height ℎM; the bracket length is defined as cover plate 
length Ã©. The FE model incorporates the (global) bracket induced load carrying 
effectiveness. Far field stress parameters {��, ��} include the 3D effects (Paragraph 
2.9); the semi-elliptical crack ratio (-/a) = � /(�© + 2ÃM). In nested bracket 
configuration, the frame corner (Fig. 5.51b) contains a SS butt joint (HS type �). 

Welding a frame/bulkhead stiffener to a (side) shell/deck stiffener flange 
introduces a governing HS type B (Fig. 5.52a); � ′ equals the stiffener web height. 
For a slightly different configuration (Fig. 5.52b); the brackets and frame/bulkhead 
stiffener (Fig. 5.52a) serve the same purpose here, the frame – T-stiffener 
connection, a DS T-joint, is dominant. In case of a continuous weld at mid-flange 
position a HS type � is governing; for a discontinuous one, i.e. welding the stiffener 
flange only partially, a HS type B is in charge again (� ′ equals half the flange 
width). 
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Figure 5.51: Corner bending setup (Irving et al., 2005) for a deck frame corner with 
                 soft toe- and nested bracket. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.52: Three-point bending setup for frame – T-stiffener connections (Sears et 
                 al., 2000; Polezhayeva et al., 2001). 
 
Frame – bulb stiffener connections are analysed as HS’s type �, even if a bracket is 
involved (Fig. 5.53a) because of the small stiffener flange width; stresses are 
averaged along flange width direction. In case of a bracket, the SS cover plate is 
still used to estimate the weld geometry induced bending stress at the weld end 
(HS type A). If a plate-stiffener combination in between frames is subjected to 
(space-averaged) pressure loading, brackets typically reduce the effective span 
meaning the stress level decreases. Replacing a straight bracket by a curved one 
reduces the SCF at the weld toe; the governing hot spot (at the price of another 
BM hot spot in the curvature). However, for three-point bending the fatigue 
resistance for straight and curved brackets is similar. The frame – T-stiffener 
connection (Fig. 5.53b), a DS T-joint, contains a governing HS type � as well. 
 

  

  a)    b)  

  a)    b)  
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Figure 5.53: Three-point bending setup for frame – {bulb, T-} stiffener connections 
                 (Tveiten et al., 1999; 2007). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.54: Four-point bending setup for a) stiffener scallop (De Vries et al., 2000) 
                 and b) frame – box stiffener connection (Ye et al., 2007). 
 
Since a stiffener scallop weld end (Fig. 5.54a; HS type A) is typically a welding 
start/stop location (start over stop or stop over start, affecting the local geometry), 
its fatigue resistance has been investigated (De Vries et al., 2000). Nice feature: the 
through-thickness weld notch stress distribution is non-monotonic. Aiming for 
constant bending over some length along the plate-stiffener combination, a four-
point bending setup has been adopted. A frame – box stiffener connection has been 
tested in 3 configurations (Ye et al., 2007): watertight (welding round about, HS 
type �), tight (welded along the inclined plates only, HS type B) and open (Fig. 
5.54b, HS type A). The open configuration requires the 1st principal stress as mode-
I component. 

 
 
 
 

  a)    b)  

  a)    b)  
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     Figure 5.55: LSS data fitting the MCF SSS fatigue resistance scatterband. 

 
The remote mechanical loading induced welded joint maximum far field stress �#5º = ∆��/(1 − ��) is tensile for all tests and seems at least to be a worst case 
scenario, e.g. space-averaged (water) pressure – a realistic type of hull bottom 
structure loading – introduces a compressive one. Principally, {SSS, LSS} data 
includes tensile remote mechanical- and tensile thermal residual stress, meaning the �	 -
  fatigue resistance relation is a (T-T) curve. The LSS fatigue data perfectly fit 
the SSS (T-T) joint �	 -
  curve data scatter band (Fig. 5.55; legend Fig. 5.29), i.e. 
the fatigue resistance is similar. Equilibrium equivalent residual stress contributions 
affecting ��	  are limited. 

 

5.5.2 Three-bay stiffened panel data 

Applying a repeated (impact type of) space averaged pressure loading; ∆� ≈ 1       
[bar] and �� ≈ 0.1 [-], to a three-bay stiffened panel (Fig. 5.56) to include realistic 
deformation restraints (i.e. residual stress distributions) as well as remote 
mechanical loading, a series of 3 LSS fatigue tests are conducted at the TNO Delft 
Structural Dynamics Laboratory (Drummen, Schiere and Tuitman, 2013). The two 
frames including web (200x6) and flange (50x6), the attachment (100x50x5) as well 
as the (stepped) base plate are produced using Al5083H321 material; all three 
HP80x3 stiffeners are Al6082 material extrusions.  

 
 

HdB 
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                       Figure 5.56: LSS layout and fatigue test setup 
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To control the number of fatigue sensitive locations, focus is on the middle stiffened 
panel bay; weld toes outside are grinded. The 2 frame-stiffener connections (1 
redundant) at the middle-plate stiffener bay (loc. 1 �  and loc. 4 �) – the remote 
mechanical far field stress is compressive – include weld toe notches and will be 
governing. Halfway the span, an attachment has been welded on top of the stiffener 
to add 2 stiffener-attachment connections, weld toe notches (loc. 2 � and loc. 3 �) 
with a remote mechanical tensile far field stress for comparison.   
 
Boundary conditions 
For an accurate fatigue design life parameter estimate �	  of stiffened panel hot 
spots, the involved boundary conditions (BC’s) are considered to be very 
important. The LSS’s are mounted to the lab floor using bolts and strips (60x20); 
the strips are meant to distribute the bolt point loads along the panel boundaries 
(Fig. 5.56). 

The observed panel deformations clearly showed some degree of BC rotational 
stiffness �O, likely in between zero along the bolt row centre line and infinity over 
the strip, i.e. in between simply supported (SS) and clamped (CL) BC’s. Although 
strain gauges (SG’s) have been used to measure the structural response of the 
middle stiffened panel bay, to obtain BC estimates of the (overall) three-bay panel 
the SG signals are insufficient and the out-of-plane base plate displacement range ∆¨Ö has been measured using lasers for LSS 3 (Fig. 5.57) only, assuming the BC’s 
are similar for all 3 specimens. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 Figure 5.57: Laser displacement rang measurement setup. 
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Figure 5.58: Model boundary conditions, a) SS along line, b) CL over strip,           
                   c) artificial increase of strip element thickness to simulate �O(0,∞). 

 
To include �O(0,∞) in a shell/plate FE model, it seems straight forward to use 
torsional springs along the bolt row centre line. For �O → ∞ however, the stiffness 
matrix becomes ill-conditioned and the BC strips are still not fully constrained. 
Applying master-slave connections or linear springs over the strip width may solve 
this issue. Anyhow, spring elements predominantly include 2D behaviour and the 
solution adopted is to artificially increase the actual element thickness of the BC 
strip with SS BC’s along the bolt row centre lines (Fig. 5.58); the �O lower bound, 
if required up to approximately clamped BC’s; the �O upper bound, varying both 
bending and torsional stiffness to include 3D effects as well. 

Using the out-of-plane base plate displacement range laser measurement grid 
table (9x4) and a relatively coarse meshed FE model, the total relative 
displacement error n× has been minimised employing 2 optimisation variables: the 
BC strip thickness at the long- and short sides {�ØÙ�, �ØÙ�}; a choice from design 
perspective. The obtained relative displacement range error (Fig. 5.59) for an 
applied pressure range ∆� = 0.88 [bar] seems random; its mean is close to zero. The 
minimum objective n× = 1.46 [-], i.e. the average error at each grid point is less 
than 5 [%], reduces only if the number of �ØÙ< variables is increased. The optimum 
BC strip thicknesses {�ØÙ� ≈ 50, �ØÙ� ≈ 210} intuitively make sense: the long side 
value is quite close to the sum of the actual base plate- and BC strip thickness; the 
short side value is significantly larger because of the involved (local) symmetry 
conditions and LSS panel aspect ratio. 

 
 
 
 
 
 

a) 

b) 

c) 
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Figure 5.59: FE model out-of-plane displacements relative to laser measurements. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                      Figure 5.60: Displacement range along Ú = −120. 
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                       Figure 5.61: Displacement range along Ú = 120. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                         Figure 5.62: Displacement range along Û = 0. 
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                     Figure 5.63: Displacement range along Û = −300. 
 
The out-of-plane base plate displacement range for both measurement- and model 
results, shown for 4 slices (Fig. 5.60, 5.61, 5.62 and 5.63), is in between the SS line 
and CL strip BC extremes indeed (except an individual outlier at the boundary).  

Note that the {�ØÙ�, �ØÙ�} values are related to the applied panel pressure range. 
Since ∆� is measured at the bellow, it has been assumed that both values are 
equal. The SG measurement results may provide proof.  

 
Strain response 
Main purpose of the SG measurements is to obtain strain (drop and growth) 
information concerning the development of through thickness cracks at the hot 
spots and to measure the global structural response at some locations (Fig. 5.64). 
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                Figure 5.64: SG locations for a) LSS 1 and b) LSS {2, 3}. 

 
The mean micro-strain range ∆En value of the time series up to a number of cycles $ = 5 ⋅ 104, a MCF lifetime range value before significant through-thickness crack 
induced stiffness loss; engineering judgement, has been used to obtain intact 
geometry ∆En values. Using the same FE model (Fig. 5.65) as involved for the 
displacement error optimisation, FE and SG global response data is compared for 
all LSS’s (Table 5.21, 5.22 and 5.23).  
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     Figure 5.65: Relatively coarse meshed FE model, element size ~25 [mm]. 

 
Since the middle plate-stiffener combination in the frames behaves like a two-sided 
CL beam, SG’s {1, 5, 6, 7, 8| LSS 1} and {1, 9,11,12|LSS 2, LSS 3} do not provide 
additional information in comparison to SG {2| LSS 1} and {6| LSS 2, LSS 3} or 
involves local information not included in the relatively coarse meshed FE model. 

  
 

SG nr. FE ∆En SG ∆En rel. error 

2 296  317   – 0.071 
3 806 769   + 0.048 

4 792 685   + 0.156 

9 705 833   – 0.154 
 
 

                Table 5.21: LSS 1 SG and FE strain, ∆� = 0.90 [bar]. 
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SG nr. FE ∆En SG ∆En rel. error 

  2 740   762 – 0.029 

  3 752   836 – 0.100 

  6 995 1197 – 0.169 

13 615   731 – 0.159 
 
 

                Table 5.22: LSS 2 SG and FE strain, ∆� = 0.84 [bar]. 
 
 

SG nr. FE ∆En SG ∆En rel. error 

2  775  728   – 0.109 

3  788  850 + 0.065 

4 1042 1170 – 0.073 

9  644  704 – 0.085 
 
 

                Table 5.23: LSS 3 SG and FE strain, ∆� = 0.88 [bar]. 
 

In general the strain is underestimated, meaning no or at most a very limited 
pressure loss in between bellow and panel. The influence of BC’s to the FE ∆En 
values is limited as well because of the LSS panel stiffness hierarchy. The frame 
stiffness defines the plate-stiffener combination BC’s, i.e. the strain on top of the 
stiffeners at SG {2, 3, 4; 2, 3, 6} for the different LSS’s, and different {�ØÙ�, �ØÙ�} 
values hardly affect the results. In fact, only the strain at the global response SG 
{9; 13} locations can be influenced within a few per cent. An optimisation using a 
weighted objective of the relative displacement- and strain error, e.g. sÞ = (4/40) ⋅n× + (36/40) ⋅ n�, even with increased or reduced panel pressure turns out not to 
improve the result, justifying the separate displacement based BC analysis. Since 
the FE model dimensions are according to drawing specifications; a design 
approach, the LSS strain error is accepted ‘as built’ representing a realistic hull 
bottom structure including production tolerances.  

 
Fatigue life time parameter estimate 
The SG time series for all LSS’s have been investigated for the development of 
through-thickness cracks at the governing weld toe notches, HS locations {1, 2, 3, 
4}, to identify the corresponding fatigue life time, i.e. number of cycles 
  until a 
through-thickness crack. Since the test (pressure) frequency is set to 0.5 [Hz], data 
is sampled at 10 [Hz] for LSS 1 and at 5 [Hz] for LSS {2, 3}, the strain time series n(�) are (FFT) low pass filtered first and translated to {n#<�, n#5º}– and strain 
range ∆En data related to number of cycles $. Respectively a median and 
sophisticated moving average (mean) Savitzky-Golay filter have been applied to 
remove spikes and digital image correlation measurement (Drummen, Schiere and 
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Tuitman, 2013) induced interruptions to smoothen the data. Finally, piece-wise 
linear approximations are obtained in order to identify the through-thickness crack 
induced strain drops and -growths as show for LSS 2 (Fig. 5.66). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                         Figure 5.66a: Filtered SG data LSS 2. 
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                         Figure 5.66b: Filtered SG data LSS 2. 
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                         Figure 5.66c: Filtered SG data LSS 2. 

 
At $ ~ 0.7 ⋅ 105 cycles a crack gradually starts to grow at loc. 4 � (SG 1), a 

frame-stiffener connection. Its size becomes through-(flange)thickness at 
 ≈ 1.47 ⋅105 cycles. The corresponding strain drop of about 30 [%] is in agreement with FE 
estimates. Crack growth appears to slow down, likely because the residual stress at 
that location becomes compressive as well. Other SG signals remain unaffected 
because the frame still imposes the displacement constraints, i.e. a compressive far 
field stress. Meanwhile, a rapid crack growth at loc. 2 � (SG 6), a stiffener-
attachment connection, can be identified and continues until the stiffener is 
completely cracked. Although a through-thickness crack corresponds approximately 
to a 75 [%] strain drop according to FE calculations, the through-thickness crack is 
set at 
 ≈ 1.55 ⋅ 105 cycles. At the same time, the strain significantly drops at loc. 
3 (SG 9) as well. The middle plate-stiffener combination becomes unable to carry 
the pressure loading because of the stiffness loss and its neighbours take over since 
a stiffened panel is a parallel system: SG {1, 11, 12} values at the frame-stiffener 
connections increase to a greater extent in comparison to SG {2, 3} halfway the 
stiffener span. A third through-thickness crack has been identified at loc. 1 � (SG 
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12) at 
 ≈ 2.35 ⋅ 105 cycles. The strain at SG 11 reduces as well, though 
unexpected based on the remote mechanical far field stress only. The frame 
structural response (SG 13) is insensitive to any crack induced stiffness loss. Note 
that some signals show saw-tooth shaped behaviour because of leakage and refilling 
issues; keeping the pressure level constant proved to be a challenge.  

 
For LSS {1, 3} similar results have been obtained (Appendix B). The weld toe 

notch fatigue life time summary (Table 5.24) shows a reasonable level of scatter 
(factor 3). 

 
 

loc. LSS 1 LSS 2 LSS 3 

  1  �  1.10 ⋅ 105  2.35 ⋅ 105 0.50 ⋅ 105 
  2 �  1.79 ⋅ 105  - 2.36 ⋅ 105 
  3 � -  1.55 ⋅ 105 - 

  4 �  1.10 ⋅ 105  1.47 ⋅ 105 0.50 ⋅ 105 
 
 

                Table 5.24: Through-thickness cracks fatigue life time 
 . 

 
Although the LSS’s are overloaded in the first few cycles to simulate shake 

down, the residual stress is still tensile at the frame-stiffener connection since the 
crack is open in unloaded condition; a crack at the stiffener-attachment connection 
is open in loaded condition (Fig. 5.67). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 Figure 5.67: Cracks in LSS 1 at a) loc. 1 and b) loc. 2. 

a) b) 
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The total stress design parameter �	  requires a welded joint far field stress for all 4 
notch locations and will be calculated using FE nodal forces (Fig. 5.68). The weld 
toe at the stiffener-attachment connections is identified as a hot spot type A. Since 
the weld end covers the total flange width (Fig. 5.67), average {��, ��} values have 
been calculated like for the weld toe frame-stiffener connections; hot spots type �, 
rather than applying a virtual node method (Dong, 2005). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.68: FE stress in Û-direction and involved nodal forces to calculate {��, ��} 
                for a) stiffener-attachment and b) frame-stiffener connection. 
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All remote mechanical loading induced through-thickness weld toe notch stress 
distributions ��(�/� ) are monotonic and either fully compressive or fully tensile 
(Table 5.25). 

 
 ∆� = 0.90 [bar]  LSS 1  

loc. 
 

�� 
[MPa] 

�� 
[-] 

∆�� 
[MPa] 

1  �  –84 0.51     168 

2 � +44 0.31   88 

3 � +43 0.31   86 

4 �  –93 0.48 186 
 
 

                            

 
 
 ∆� = 0.84 [bar]  LSS 2  

loc. 
 

�� 
[MPa] 

�� 
[-] 

∆�� 
[MPa] 

1  �  –78 0.51     156 

2 � +41 0.31   82 

3 � +40 0.31   80 

4 �  –87 0.48 174 
 
 

                            

 
 
 ∆� = 0.88 [bar]  LSS 3  

loc. 
 

�� 
[MPa] 

�� 
[-] 

∆�� 
[MPa] 

1  �  –82 0.51     164 

2 � +43 0.31   86 

3 � +42 0.31   84 

4 �  –91 0.48 182 
 
 

                           Table 5.25: Welded joint far field stress. 
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The obtained �	 -
  curve is typically a SSS tension-tension (T-T) fatigue 
resistance relation, meaning that except the predominant tensile residual (notch) 
stress, the remote mechanical loading induced maximum stress is tensile as well: �#5º = ∆��/(1 − ��) > 0 for �� ∈ (−∞, 1). In case of full compression (�#5º < 0) 
however, �� ∈ (1,∞) and a tension-compression (T-C) correction should be applied 
since the involved modified Walker model is based on the assumption that only the 
tensile part of the stress cycle contributes to fatigue damage meaning �� ∈ (−∞, 1). 
Still using the (T-T) curve, it is proposed to define an equivalent remote 
mechanical load ratio ��,�á using the tensile case value (��7 = 1/��) of the fully 
compressive cycle (��7 ≥ 0) and a relative one ��O for translation to compression 
(Fig. 5.69): 

 

 

��O = �#<�,O�#5º,O

= −
⎩{⎨
{⎧1 + 112 + 2( ��71 − ��7)⎭}⎬

}⎫
  

(5.36) 
 
 

 
 

 
Provided {��7, ��O}, the equivalent remote mechanical load ratio becomes:  

 

 ��,�á = 1 − (1 − ��O)(1 − ��7) (5.37) 

 
For (��7 = 0) corresponding to (�� = −∞): ��,�á = ��O = −3. In case (��7 > 0) →  (��,�á < −3). However, the equivalent load ratio to be used if �� ∈ (1,∞) suggests 
its effect is similar to the tensile case �� = ��,�á ∈ (−∞, 1); a model peculiarity. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                     Figure 5.69: Relative load ratio effect for ��7 ≥ 0. 

�#5º,O tensile 
residual 
stress 

�#<�,O 
� 

$ 0 
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Since the ¦ MLE is relatively high, the effective stress will hardly change if (��,�á = −3) is adopted no matter �� ∈ (1,∞); for consistency the same value is 
defined as lower bound if �� ∈ (−∞, 1) as shown (Fig. 5.70). The total stress 
parameter (Eq. 5.35) turns into: 

 

 
�	 = ∆��

(� (′)
c   )

1# ⋅ c 2−#2# ⋅ ��(��, ��,�á, $,�, ¦) 1#
 (5.38) 

 

 

 
The far field load reduction factor in case of (T-C) correction; s# = 1/(1 − ��,�á)1−� ≈ 0.66 [-], is close to s# = 0.6 [-] as proposed in a classification note 
as lower bound (DNV, 2010); the only reference available in this respect, although 
related to steel base material rather than welded aluminium.  

Adopting respectively a DS cruciform joint {�L = 9.7, �© = 6.0, ÃM = ℎM =4.2, D = 0} and SS attachment {�L = 9.7, �© = 6.0, Ã© = 100, ÃM = ℎM = 4.2, D = 0} 
geometry for the frame-stiffener and stiffener-attachment connections, finally the 
total stress design life parameters �	  can be obtained for the governing hot spots 
(Fig. 5.71). 

The derived family of �	 -
  welded joint fatigue resistance curves is damage 
tolerant, rather than fail safe philosophy based, since (micro-)cracks/defects are 
assumed to exist in an hull structure stiffened (curved) panel assembly; a parallel 
system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                              Figure 5.70: Far field reduction factor. 
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 Figure 5.71: Stiffened panel data fitting the SSS fatigue resistance scatterband. 

 

5.6 Small scale specimen VA fatigue resistance 

Ocean/sea wave induced loading is highly stochastic; random, meaning the hull 
structural response shows VA- rather than CA behaviour. Assuming sequence effects 
are – on average – insignificant (i.e. crack growth {acceleration, deceleration} is 
balanced) and frequency related contributions are negligible, the Palmgren-Miner 
hypothesis is adopted to estimate (linearly) the fatigue damage: ∑($/
)< ≤ ê. 

In general, ê is considered to be load spectrum dependent (Fricke, 1997); a 
relatively large(r) contribution of small amplitude cycles increases fatigue life time 
 . A commonly recommended design value ê ≤ 0.5 (Kueppers and Sonsino, 2006) 
is typically based on a Gassner blocked program sequence with Gaussian-like 
loading distributions applied to SSS (Sonsino, 2004); ê ≤ 1.0 may provide non-
conservative life time estimates. Applying WASH(W) wave load spectrum based time 
series to aluminium as-welded SSS, though, life times proved to be conservative for ê ≤ 1.0 using the corresponding CA fatigue resistance curve (Tveiten, 1999).  

Variable amplitude data available in literature typically shows the spectrum 
only. However, the time series should be available to generate a rain flow matrix (or 
equivalent) providing the $<(∆��|��, ��) distribution; principally a rain flow cube $<(∆��, ��, ��) if loading varies in both time and space like the FSS hull pressure 
distribution. Membrane and bending contributions are assumed to be proportional. 
Some DS cruciform joint data (Coughlin and Walbridge, 2012) for 2 different type of 

HdB 
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characteristic VA time series (Fig. 5.72 and 5.73), yielding the corresponding rain 
flow matrices (Fig. 5.74 and 5.75) and spectra (Fig. 5.76 and 5.77), is investigated. 
Amplitudes have been scaled to obtain the fatigue resistance at a range of life 
times; �� is constant since the spatial loading distribution does not change.  

The RFL model (Eq. 5.21) will be adopted to address the VA fatigue resistance 
since the time series include {MCF, HCF} characteristic contributions, i.e. the 
large- as well as small amplitude contributions and corresponding resistance 
uncertainty needs to be taken into account. However, a possible design curve like 
the R99C95 quantile behaves approximately like a single slope formulation (Fig. 
5.41) because of the HCF resistance uncertainty (meaning �1 ≈ �2), i.e. natural  
filtering of (noise induced) small amplitude (high frequency) content is out of 
question and a significant fatigue damage contribution may be expected in that 
respect. Assuming a CA fatigue limit �∞ (threshold, micro-structural barrier) – if it 
exists – should be neglected (extrapolating the curve) in VA loading conditions 
since �∞ will be violated at some point in time, may seem to provide effectively the 
same result. A sequence effect based argument like this, though, is invalid if the 
Palmgren-Miner hypothesis is adopted. A single slope formulation sec, either based 
on MCF- or {MCF, HCF} data, is assumed to be too conservative anyway. To 
judge RFL model performance, let time be the interpreter…  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.72: Characteristic time series 1 (Coughlin et al., 2012); s = {8, 28} [Hz]. 
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Figure 5.73: Characteristic time series 2 (Coughlin et al., 2012); s = {8, 28} [Hz]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.74: Rain flow matrix characteristic time series 1 (100 cycles). 
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Figure 5.75: Rain flow matrix characteristic time series 2 (100 cycles). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.76: Structural stress spectrum characteristic time series 1. 
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Figure 5.77: Structural stress spectrum characteristic time series 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.78: Damage matrix SSS 01 (characteristic time series 1; median curve). 
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Figure 5.79: Damage matrix SSS 15 (characteristic time series 2; median curve). 

 
Test data requires the definition of an equivalent total stress parameter: 

 

 �	,�á = {∑[$< ⋅ {�	,< − �∞(E, �)}#]
 }
1# + �∞(E, �)  (5.39) 

 

with 
 

 
�	,< = ∆��,<

(� (′)
c   )

1# ⋅ c 2−#2# ⋅ ��(��,<, ��,�á,<, $,�, ¦) 1#
  

 

 

 
Comparing the rain flow- and damage matrix (Fig. {5.74, 5.75} and {5.78, 5.79}) 
for a particular SSS in characteristic time series {1, 2} loading condition, the 
large(r) stress range cycles typically dominate the total fatigue damage – no matter �� – since differences between number of cycles for all bins is just 1 order of 
magnitude X(101). Generally speaking, ê<(∆��<, ��<) > êp(∆��p, ��p) for (∆��p >∆��<) only if X($</$p) ≥ X([{∆��p/(1 − ��p)1−�} − {∆��</(1 − ��<)1−�}]#).   

Although the involved VA SSS fatigue resistance data is limited, a CA SSS 
scatter band fit is obtained (Fig. 5.80; legend Fig. 5.29) and the average VA 
damage with respect to the CA median (ê ≈ 1.0) suggests a design(!) criterion ê ≤ 1.0 is sufficient for the proposed R99C95 quantile. 
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Figure 5.80: VA SSS data fitting the CA SSS fatigue resistance scatterband. 

 

5.7 Full scale structure VA fatigue damage estimate 

The FSS response of a Damen Stan Patrol 1204 (Fig. 1.1) has been measured in 
several trials at the North Sea (Drummen, Schiere and Tuitman, 2013; Schiere and 
Drummen, 2014). Some SG’s on top of the stiffener flange halfway the span in the 
bottom slamming zone (Fig. 5.81) in between frame 7 and 9 (access issues 
prevented for instrumentation up to frame 10) have been used to get an idea of the 
(governing) local plate-stiffener bending response; any global longitudinal hull 
girder contribution is assumed to be negligible because of the relatively small     
hull girder length. For a (20 minutes) run at constant speed in head waves of the 
2nd trial; ¿� ~ 15 [knots] and wave height ½� ~ 1 [m], the far field structural 
response and (hourly) fatigue damage estimate of a frame-stiffener connection; a 
hot spot location (Paragraph 5.5), will be investigated.  

To correlate the structural response at the stiffener flange halfway the span ��ℎ 
to the frame-stiffener connection far field- or structural stress �� and establish the 
transfer function, the required spatial and temporal hull pressure distribution may 
be estimated using the measured undisturbed incoming wave and simulation software 
like FASTship (Delft University of Technology) and applied to a 3D FE model. The 
still water pressure distribution is an engineering alternative. As a first step, however, 
the plate-stiffener combinations will be assumed to be in fully space-averaged pressure 
loading condition and fully clamped in between the frames because of symmetry 
and structural hierarchy, meaning �� = −2��ℎ; a conservative assumption. Measured 

HdB 
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 �� information is not available, but the stiffener flange thickness is relatively small 
in comparison to the stiffener height, suggesting �� ≈ �#.  

Data has been sampled at s� = 1000 [Hz] to ensure that bottom slamming 
events are fully captured. Discrete Fourier transformation (DFT) provides amplitude 
spectra and revealed that signal power is typically in the 0 – 20 [Hz] frequency band 
(even though an impact- or impulse excitation contains all frequencies), as shown 
for SG 11 (Fig. 5.82). Because of limited natural damage filtering of noise induced 
small amplitude high frequency content, filter parameters should be carefully defined.  

The 1st dry natural frequency is identified at s×1 ~ 180 [Hz]; a stiffener tripping 
mode. The relevant plate-stiffener bending mode is established at s×2 ~ 480 [Hz], 
close to the Nyquist-frequency (s�/2). Including a simplified added mass 
contribution; �5 = (W/2)DM§�2 ~ 15 [kg/m] versus the structural mass �� = ~ 5 
[kg/m], reduces the natural frequency to sM2 ~ 240 [Hz] but is still way beyond 20 
[Hz]. Natural mode excitation is not observed in the amplitude spectrum. 

The cut-off frequency is set at s© = 20 [Hz]. Still > 98 [%] signal power is 
maintained and impact induced response amplitudes – period is ~0.2 [s] – are hardly 
affected as shown for a time series interval of SG 11 (Fig. 5.83). Besides, the involved 
frequencies are well within the considered fatigue testing frequency range; local 
heating or strain rate contributions as can be expected in resonance tests, s ~ X(kHz), may affect the fatigue damage process and should be taken into account.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.81: Strain gauge locations and numbers. 

14 12 

11 

18 

13 5 7 

1 2 
3 

4 

6 8 

15 16 
17 

fr8 – fr9 

fr7 

fr8 

fr9 

sl
am

m
in
g 
zo
n
e 

fr10 



320 Chapter 5. Welded Joint Fatigue Resistance 

 

 0  2  4  6  8 10 12 14 16 18 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

f [Hz]

|<
s|

[M
P
a
]

single-sided unit amplitude spectrum

 0  2  4  6  8 10 12 14 16 18 20
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

f [Hz]

|<
s|

[M
P
a
]

420 421 422 423 424 425 426 427 428 429 430
-25

-20

-15

-10

-5

 0

 5

10

15

20

25

t [s]

<
s

[M
P
a
]

time series interval

 

 

420 421 422 423 424 425 426 427 428 429 430
-25

-20

-15

-10

-5

 0

 5

10

15

20

25

t [s]

<
s

[M
P
a
]

unfiltered

filtered

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.82: SG 11 unfiltered �� DFT amplitude spectrum. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.83: SG 11 �� time series interval. 
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Figure 5.84: SG 11 filtered �� time series. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.85: SG 11 filtered �� spectrum. 
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Time series observations confirmed impact induced repeated loading (�� ~ 0.0) 
introducing a (remote mechanical) compressive far field stress ��(�) at the frame-
stiffener connections. Because of the relatively large structural stiffness and high 
speed, the overall response contains predominantly low amplitude high frequency 
content as shown for SG 11 (Fig. 5.84 and 5.85). Mean encounter period ±� ~ 4 [s]. 
Note that filtering reduced the number of cycles up to ~10 [%] of the measured 
signal; 1 order of magnitude, practically 0-5 ∆�� bin content only. 

Rain flow counting typically shows that the vast majority of $ is stored in the 
bin extremes, i.e. the smallest ∆�� either fully compressive or highly tensile like 
shown for SG 11 (Fig. 5.86). Basically, the (∆��|�� = −2.9) cycles are related to the 
impact event itself; (∆��|�� = 0.9) cycles are observed in between impact events. 
The frame-stiffener rain flow matrix composition is different from the SSS ones 
(Fig. 5.74 and 5.75), i.e. is quite pronounced and L-shaped. 

However, the direct impact induced fatigue damage still dominates as shown for 
SG 11 (Fig. 5.87) since X($<|{∆��,<, ��,<}/$p|{∆��,p, ��,p}) does not compensate a 
smaller total stress �	  with a (significantly) larger number of cycles. The structural 
response ��(�) at frame 7-8 is smaller – in extremis for SG {3, 4, 17, 18} because of 
the reduced plate-stiffener span – if compared to ��(�) in the actual bottom 
slamming zone at frame 8-9 and pays off in relatively low hourly fatigue damage 
estimates êℎ (Fig. 5.88 and 5.89). Since the considered run is conducted in (near) 
head waves, (weak) port side – starboard symmetry is identified, although in terms 
of damage frame 7-8 shows the opposite of frame 8-9: respectively star board and 
port side is governing.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.86: Rain flow matrix SG 11, (∆��, ��) view. 
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Figure 5.87: Damage matrix SG 11, (∆��, ��) view. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.88: Hourly fatigue damage estimate frame-stiffener connections fr. 7-8. 
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Figure 5.89: Hourly fatigue damage estimate frame-stiffener connections fr. 8-9. 

 
The hourly damage estimate êℎ reduced up to 30 [%] relative to the unfiltered 
signal because of filtered low amplitude high frequency content. Governing damage 
at frame 7-8 is observed at frame-stiffener connections nearest the slamming zone; 
SG {15, 1}. Frame 8-9 damage estimates êℎ based on SG {6, 13} as well as SG 11 
up to some extend are relatively large in comparison to the values obtained for the 
neighbour plate-stiffener combinations; eventually up to a factor ~2. Looking at the 
rain flow- and damage matrices, basically 2 compositions have been identified. For 
SG {6, 11, 13} the actual impact related cycles (∆��|�� = −2.9) dominate êℎ; the 
damage related to cycles in between the wave slamming events – typically small(er) 
amplitude high frequency content – dominate for SG {5, 7, 12, 14}. The SG 12 rain 
flow- and damage matrix are shown for convenience (Fig. 5.90 and 5.91). The L-
shape shows some relaxation, i.e. more amplitude variations are identified. 
Important observation in that respect: the signal mean stress for SG {6, 11, 13} is 
slightly smaller if compared to the SG {5, 7, 12, 14} values, respectively close to 
zero and slightly tensile, meaning larger êℎ contributions from a few bins only (�� → −3) in contrast to smaller contributions from multiple bins in the (−3 ≤ �� ≤−1) range. Whether a matter of sensor zeroing or physics does not need to be 
decided yet; simulation results may help in that respect. Average signal sensitivity 
for (∆��, ��) → 0 is quite obvious anyway. 
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Figure 5.90: Rain flow matrix SG 12, (∆��, ��) view. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.91: Damage matrix SG 12, (∆��, ��) view. 
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To be able to compare measurement and simulation êℎ estimates, wave spectral 
JONSWAP parameters have been established first using the undisturbed incoming 
wave. Adopting FASTship, a 2.5D strip theory based high speed craft seakeeping 
code, ~200 minutes simulation time (10 times trial run time) is generated in 15 
realisations; wave component phase angles are random. The wave relative impact 
velocity ¿<(�), body submergence ë(�) as well as wedge dead rise angle ìM are input 
for the strip wise applied modified Logvinovich impact model (MLM; Korobkin and 
Malenica, 2005). The strip wise obtained MLM impact force t<(�) is converted into 
space averaged pressure distributions, rather than the water entry characteristic 
one, using the wetted area AM(ìM, ë, �) and applied to a 3D FE model to calculate 
the quasi-static structural response (Bosman, 2008; Drummen, Schiere and 
Tuitman, 2013). Note the FASTship- and MLM impact force can be different, just 
like the water pile up affected AM.  

A fair comparison requires the structural stress at the frame-stiffener connection 
to be estimated using �� = −2��ℎ. The SG11 simulation time series ��(�) and ∆�� 
spectrum (Fig. 5.92 and 5.93) show in comparison to the measurement results (Fig. 
5.84 and 5.85) typically larger (impact induced) values – the total number of cycles ∑$< is similar – as confirmed in the rain flow matrix (Fig. 5.94), meaning the 
damage estimates are larger as well (Fig. 5.95). The L-shaped damage profile is 
even more pronounced if compared to the measured equivalent (Fig. 5.87). Hardly 
any (∆��|�� → 1) content is identified and the direct impact induced contributions 
dominate. Note that quite a substantial part is in the (CA) HCF range; resistance 
uncertainty is very high. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.92: �� simulation time series based on SG 11 position (realisation 1). 
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Figure 5.93: �� simulation spectrum based on SG 11 position (realisation 1). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.94: Rain flow matrix SG 11 position, (∆��, ��) view (sim. realisation 1). 
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Figure 5.95: Damage matrix SG 11 position, (∆��, ��) view (sim. realisation 1). 

 
Looking at the frame 8-9 mean hourly fatigue damage simulation estimates (Fig. 
5.96), from the centre line up to SG {12, 5} the (mean) slamming zone explains the 
observed êℎ values. Frame-stiffener connections related to SG {13, 6} in the centre 
of the slamming zone are confirmed to be fatigue damage governing. Beyond, 
however, SG 11 throws a spanner in the works. The occasional/extreme impact 
events introduce a few large amplitude cycles in between a relatively low amplitude 
high frequency content contributing significantly to êℎ, in contrast to continuous 
wave dominated fatigue damage as typically observed for displacement ships. 
Simulation typically overestimates êℎ about a factor 2, except close to the 
slamming zone boundaries (regions of relatively low response levels); êℎ is 
comparable to ��(�) measurement based estimates. The small level of non-symmetry 
observed in simulation results, e.g. SG {13, 6} is a consequence of mesh 
irregularities. Since bottom slamming is a non-linear phenomenon, simulation 
uncertainties are significant. 

Differences in damage matrix composition, like observed for measurement based êℎ, do not appear in simulations. Still pronounced L-shapes are obtained as shown 
for SG 12 (Fig. 5.97) although the amplitude level is relatively small. Direct impact 
induced contributions are still governing like for all other locations. Apparently the 
time series mean value is important indeed and affects the composition. Because of 
the small tensile mean, the measured ��(�) based damage is overestimated. 
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Figure 5.96: Hourly fatigue damage estimates frame-stiffener connections fr. 8-9. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.97: Damage matrix SG 12 position, (∆��, ��) view (sim. realisation 1). 
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The wave simulation induced êℎ uncertainty is about a factor 2.5 (using E + 3�), 
quite close to the MCF fatigue resistance value of 3 (R99Cxx – R50Cxx ≈ 3�). 

Note the same level of hourly fatigue damage estimates is obtained for structural 
details in deck structures of large steel container ships (hull girder length of a 
completely different order of magnitude in comparison to high speed craft and the 
hull shape is a displacement- rather than planing one) including both the 
continuous wave induced (high amplitude) low frequency- and whipping/springing 
induced (low amplitude) high frequency content (e.g. Drummen et al., 2008; 
Tuitman, 2010; Li and Ringsberg, 2011). The rain flow matrix composition, by the 
way, is comparable to the VA SSS test characteristic time series 2. 

 

5.8 Conclusions 

To estimate hull structure longevity, arc-welded joint fatigue life times, in an early 
design stage, the total stress concept has been developed using the equivalent stress 
parameter �	  to balance accuracy, effort and model complexity. Including local 
geometry- and far field stress information a welded joint (family of) �	 -
  curve 
formulation(s) has been established. 

Investigating artificial T-joint MCF resistance data, �	  shows the fatigue life 
time uncertainty can be reduced up to a factor 2; (±² ≈ 1: 1.2). For a combined a 
number of series AW joint test results available in literature, reducing the 
(production) quality level to an average one, the MCF life time uncertainty 
bandwidth increases up to a factor 6, i.e. (±² ≈ 1: 1.6). In the hull structure (HCF) 
design region uncertainty is significant, predominantly because of lacking complete 
data. SSS (T-T) CA fatigue resistance relation parameters have been established. 

Aiming for weld notch stress distribution-, weld notch stress intensity-, weld 
{notch affected micro, far field dominated macro} crack growth- as well as crack 
path similarities, the total stress concept proved {SSS, LSS, FSS} welded joint 
fatigue resistance similarity as well. Full scale structure representative large scale 
specimen CA- as well as SSS VA data fit the CA small scale data scatter band. In 
case of (fully) compressive far field stress, a proposed (T-C) correction using a 
relative load ratio should be adopted. 

Hourly fatigue damage estimates êℎ, as obtained for some frame-stiffener 
connections in the slamming zone of an aluminium high-speed craft using the FSS 
response as measured for several trials at the North Sea, show the wave (loading) 
statistics induced êℎ uncertainty is about a factor 2.5 comparing the measured- 
and simulation structural response based values; quite close to the MCF fatigue 
design resistance value of 3 (R99Cxx – R50Cxx). 

 
 
 
 
 
 
 



   331 

 

 

A 
Weld Notch Stress Equations 

 

 
V-shaped notch stress components including notch radius 

 
Weld toe formulation: 

 

 

��� (�′′�� ) = −�� [� {(�′′�� )��−1 ��[(�� + 1) cos{(�� + 1)�} −
                                        ��(�� − 3) cos{(�� − 1)�}] +
                            (�′′�� )"�−1 (�0��)��−"� ��

(2&' )   
4 {(2&' ) − 1} ⋅

                                               [-�1 cos{(.� + 1)�}   +
                                       -�2(.� − 3) cos{(.� − 1)�}]} +

 

                     2 {(�′′�� )�3−1 �2[(�2 + 1) sin{(�2 + 1)�} − 
                                         �2(�2 − 3)sin{(�2 − 1)�}] +
                           (�′′�� )"3−1 (�0��)�3−"3 �2 14(.2 − 1) ⋅
                                              [-21 sin{(.2 + 1)�} +

                                      -22(.2 − 3) sin{(.2 − 1)�}]}]

 

(A.1) 
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�77 (�′′�� ) = �� [� {(�′′�� )��−1 ��(�� + 1)[cos{(�� + 1)�} −
                                                �� cos{(�� − 1)�}] +
                           (�′′�� )"�−1 (�0��)��−"� ��

(2&' )   
4 {(2&' ) − 1} ⋅

                                              [-�1 cos{(.� + 1)�}   +
                                     -�2(.� + 1) cos{(.� − 1)�}]} +

 

                    2 {(�′′�� )�3−1 �2(�2 + 1)[sin{(�2 + 1)�} − 
                                                  �2sin{(�2 − 1)�}] +
                         (�′′�� )"3−1 (�0��)�3−"3 �2 14(.2 − 1) ⋅
                                             [-21 sin{(.2 + 1)�} +

                                   -22(.2 + 1) sin{(.2 − 1)�}]}]

 

(A.2) 
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��7 (�′′�� ) = �� [� {(�′′�� )��−1 ��[(�� + 1)sin{(�� + 1)�} −
                                       �� (�� − 1)sin{(�� − 1)�}] +
                           (�′′�� )"�−1 (�0��)��−"� ��

(2&' )   
4 {(2&' ) − 1} ⋅

                                               [-�1 sin{(.� + 1)�}   +
                                      -�2(.� − 1) sin{(.� − 1)�}]} −

 

                   2 {(�′′�� )�3−1 �2[(�2 + 1)cos{(�2 + 1)�} − 
                                     �2(�2 − 1)cos{(�2 − 1)�}] +
                        (�′′�� )"3−1 (�0��)�3−"3 �2 14(.2 − 1) ⋅
                                             [-21 cos{(.2 + 1)�} +

                                   -22(.2 − 1) cos{(.2 − 1)�}]}]

 

(A.3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
The (first) eigenvalues {.�, .2} can be implicitly solved for using: 

 

 
-�1 cos{(.� + 1)&} + -�2 (.� + 1)cos{(.� − 1)&} = 0
-21 cos{(.2 + 1)&} + -22 (.2 − 1)cos{(.2 − 1)&} = 0 (A.4) 

 
with 
 

 

-�1 =          {��(�� − 3) − (�� + 1)}{(.� − 1)2 − (.� + 1)
(2&' ) } + (.� − 3)<�

-�2 =          {��(�� − 3) − (�� + 1)}{1 − (2&' ) (.� + 1)
(2&' ) }   − <�

  

 

 

-21 = {�2(�2 − 1) − (�2 + 1)}(.2 − 1){2 − (2&' ) (.2 − 3)
(2&' ) }  − (.2 − 1)<2

-22 =             {�2(�2 − 1) − (�2 + 1)}{(2&' ) (.2 + 1) − 2
(2&' ) }  + <2
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and 
 

 

<� = (�� + 1)2 − ��(�� − 1)2           + 1
(2&' ) (�� − 1)(�� + 1)

<2 = (�2 + 1)2 − �2(�2 − 3)(�2 − 1) + 2
(2&' ) {�2(�2 − 1) − (�2 + 1)}  

 
The system of equations to be solved for a non-symmetry case: 

 

 [=11 =12=21 =22
]{�2} = {@1@2

} (A.5) 

 
with 
 

 

=11 = ��(�� + 1)[cos{(�� + 1)�} − ��cos{(�� − 1)�}]@��
∫ +

        (�0��)��−"� ��
(2&' )   

4 {(2&' ) − 1} ⋅
                     [-�1 cos{(.� + 1)�} + -�2(.� + 1) cos{(.� − 1)�}]@"�

∫
  

 

 

=12 = �2(�2 + 1)[sin{(�2 + 1)�} − �2sin{(�2 − 1)�}]@�3
∫ +

        (�0��)�3−"3 �2 1   4(.2 − 1) ⋅
                     [-21 sin{(.2 + 1)�} + -22(.2 + 1) sin{(.2 − 1)�}]@"3

∫
  

 

 

=21 = ��(�� + 1)[cos{(�� + 1)�} − ��cos{(�� − 1)�}]C��
∫ +

        (�0��)��−"� ��
(2&' )   

4 {(2&' ) − 1} ⋅
                     [-�1 cos{(.� + 1)�} + -�2(.� + 1) cos{(.� − 1)�}]C"�

∫
  

 

 

=22 = �2(�2 + 1)[sin{(�2 + 1)�} − �2sin{(�2 − 1)�}]C�3
∫ +

        (�0��)�3−"3 �2 1   4(.2 − 1) ⋅
                     [-21 sin{(.2 + 1)�} + -22(.2 + 1) sin{(.2 − 1)�}]C"3

∫
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@1  = 1
@2  = 12 − =DE6   

 
and 
 

 

@G∫  = ∫ {( ���)
2 + 2cos(�)(�0��)( ���) + (�0��)2}

G−12 I ( ���)
1

0
CG∫ = ∫ ( ���){( ���)

2 + 2cos(�)(�0��)( ���) + (�0��)2}
G−12 I ( ���)

1
0

  

 
The system of equations to be solved for a symmetry case: 

 

 [=11 =12=21 =22=31 =32
] {�2} = {@1@2@3

} (A.6) 

 
with 
 

 

=11 = ��(�� + 1)[cos{(�� + 1)�} − ��cos{(�� − 1)�}]@��
∫ +

        (�0��)��−"� ��
(2&' )   

4 {(2&' ) − 1} ⋅
                     [-�1 cos{(.� + 1)�} + -�2(.� + 1) cos{(.� − 1)�}]@"�

∫
  

 

 

=12 = �2(�2 + 1)[sin{(�2 + 1)�} − �2sin{(�2 − 1)�}]@�3
∫ +

        (�0��)�3−"3 �2 1   4(.2 − 1) ⋅
                     [-21 sin{(.2 + 1)�} + -22(.2 + 1) sin{(.2 − 1)�}]@"3

∫
  

 

 

=21 = ��(�� + 1)[cos{(�� + 1)�} − ��cos{(�� − 1)�}]C��
∫ +

        (�0��)��−"� ��
(2&' )   

4 {(2&' ) − 1} ⋅
                     [-�1 cos{(.� + 1)�} + -�2(.� + 1) cos{(.� − 1)�}]C"�

∫
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=22 = �2(�2 + 1)[sin{(�2 + 1)�} − �2sin{(�2 − 1)�}]C�3
∫ +

        (�0��)�3−"3 �2 1   4(.2 − 1) ⋅
                     [-21 sin{(.2 + 1)�} + -22(.2 + 1) sin{(.2 − 1)�}]C"3

∫
  

 

 

=31 = ��(�� + 1)[cos{(�� + 1)�} − ��cos{(�� − 1)�}]M�� +
        (�0��)��−"� ��

(2&' )   
4 {(2&' ) − 1} ⋅

                     [-�1 cos{(.� + 1)�} + -�2(.� + 1) cos{(.� − 1)�}]M"�

  

 

 

=32 = �2(�2 + 1)[sin{(�2 + 1)�} − �2sin{(�2 − 1)�}]M�3 +
        (�0��)�3−"3 �2 1   4(.2 − 1) ⋅
                     [-21 sin{(.2 + 1)�} + -22(.2 + 1) sin{(.2 − 1)�}]M"3

  

 

 

@1  = 12
@2  = 18 − =DE24
@3  = −4=DE

  

 
and 
 

 

@G∫  = ∫        {( ���)
2 + 2cos(�)(�0��)( ���) + (�0��)2}

G−12 I ( ���)
12

0
CG∫ = ∫ ( ���){( ���)

2 + 2cos(�)(�0��)( ���) + (�0��)2}
G−12 I ( ���)

12
0

  

 

 

MG     =  (P − 12 ){(12)
2 + 2cos(�)(�0��)(12) + (�0��)2}

G−32 ⋅
                    {     1 + 2cos(�)(�0�D)}

  

 
 
Note that a least squares solution is obtained. 
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Weld root formulation: 
 

 

��� (�′′��′) = −��� [∑1U {(�′′��′)
�V−1 �U[(�U + 1) cos{(�U + 1)�} −W

U=1
                                               �U(�U − 3) cos{(�U − 1)�}] +
                                    (�′′��′)

"V−1 (�0��′)
�V−"V �U2 ⋅

                                                      [-1U cos{(.U + 1)�}   +
                                             -2U(.U − 3) cos{(.U − 1)�}]} +

 

                            3U {(�′′��′)
�V−1 �U[(�U + 1) sin{(�U + 1)�} − 

                                                �U(�2 − 3)sin{(�U − 1)�}] +
                                  (�′′��′)

"V−1 (�0��′)
�V−"V �U 14(.U − 1) ⋅

                                                  [-1U sin{(.U + 1)�} +
                                           -2U(.U − 3) sin{(.U − 1)�}]}]

 

(A.7) 
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�77 (�′′��′) = ��� ∑[1U {(�′′��′)
�V−1 �U(�U + 1)[cos{(�U + 1)�} −W

U=1
                                                       �U cos{(�U − 1)�}] +
                                   (�′′��′)

"V−1 (�0��′)
�V−"V �U2 ⋅

                                                     [-1U cos{(.U + 1)�}   +
                                            -2U(.U + 1) cos{(.U − 1)�}]} +

 

                           3U {(�′′��′)
�V−1 �U(�U + 1)[sin{(�U + 1)�} − 

                                                         �Usin{(�U − 1)�}] +
                                (�′′��′)

"V−1 (�0��′)
�V−"V �U 14(.U − 1) ⋅

                                                  [-1U sin{(.U + 1)�} +
                                          -2U(.U + 1) sin{(.U − 1)�}]}]

 

(A.8) 
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��7 (�′′��′) = ��� ∑[1U {(�′′��′)
�V−1 �U[(�U + 1)sin{(�U + 1)�} −W

U=1
                                              �U (�U − 1)sin{(�U − 1)�}] +
                           (�′′��′)

"V−1 (�0��′)
�V−"V �U2 ⋅

                                               [-1U sin{(.U + 1)�}   +
                                      -2U(.U − 1) sin{(.U − 1)�}]} −

 

                   3U {(�′′��′)
�V−1 �U[(�U + 1)cos{(�U + 1)�} − 

                                      �U(�U − 1)cos{(�U − 1)�}] +
                        (�′′��′)

"V−1 (�0��′)
�V−"V �U 14(.U − 1) ⋅

                                             [-1U cos{(.U + 1)�} +
                                   -2U(.U − 1) cos{(.U − 1)�}]}]

 

(A.9) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Along the bisector, � = 0 meaning ��7 = 0. Eigenvalues .U and corresponding 
coefficients {-1U, -2U, <1} can be obtained using: 

 

 .U = �U{(�U − 1)2 − 2} − (�U + 1)2
�U(�U − 3) − (�U + 1) − 1 (A.10) 

 
with 
 

 
-1U = {�U(�U − 3) − (�U + 1)}{(.U − 1)2 − (.U + 1)2 } + (.U − 3)<U
-2U = {�U(�U − 3) − (�U + 1)}{        1 − 2(.U + 1)2 } −          <U

  

 
and 
 

    <U = (�U + 1)2 − �U(�U − 1)2 + (�U − 1)(�U + 1)2   
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The system of equations to be solved for (� = 0): 
 

 [=11 ⋯ =15⋮ ⋱ ⋮=51 ⋯ =55
] {1⋮5

} = {@1⋮@5
} (A.11) 

 

with:  
 

 =1U = �U(�U + 1)(1 − �U)@�V
∫     + (�0��′)

�V−"V (�U/2){-1U + -2U(.U + 1)}@"V
∫   

 

 =2U = �U(�U + 1)(1 − �U)C�V
∫ + (�0��′)

�V−"V (�U/2){-1U + -2U(.U + 1)}C"V
∫   

 

 =3U = �U(�U + 1)(1 − �U)]�V
1   + (�0��′)

�V−"V (�U/2){-1U + -2U(.U + 1)}]"V
1   

 

 =4U = �U(�U + 1)(1 − �U)]�V
2   + (�0��′)

�V−"V (�U/2){-1U + -2U(.U + 1)}]"V
2   

 

 =5U = �U(�U + 1)(1 − �U)]�V
3   + (�0��′)

�V−"V (�U/2){-1U + -2U(.U + 1)}]"V
3   

 

 

@1 = 1 − ���
@2 = 1 − ���2 − ���6
@3 = �W�1���
@4 = �W�2���
@5 = �W�3���

  

 

and 

 

@G∫  = ∫         {(�′′��′)
2 + 2(�0��′)(�′′��′) + (�0��′)

2}
G−12 I (�′′��′)

1
0

CG∫ = ∫ ( ���′){(�′′��′)
2 + 2(�0��′)(�′′��′) + (�0��′)

2}
G−12 I (�′′�� )1

0

  

 

 ]GW    = {(�W��′)
2 + 2(�0��′)(�W��′) + (�0��′)

2}
G−12   
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Figure B.1a: Filtered SG data three-bay LSS 1. 
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Figure B.1b: Filtered SG data three-bay LSS 1. 
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Figure B.1c: Filtered SG data three-bay LSS 1. 
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Figure B.2a: Filtered SG data three-bay LSS 3. 
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Figure B.2b: Filtered SG data three-bay LSS 3. 



346 Appendix B. Large Scale Specimen Data 

 

0.0 0.5 1.0 1.5 2.0 2.5
1000

1500

2000

2500

3000
SG12 time series LSS3

n
.105 [ cycles ]

"
7
0
[
-
]

 

 

0.0 0.5 1.0 1.5 2.0 2.5
1000

1500

2000

2500

3000
SG12 time series LSS3

n
.105 [ cycles ]

"
7
0
[
-
]

-ltered signal

piecewise appr.

0.0 0.5 1.0 1.5 2.0 2.5
  0

500

1000

1500

2000
SG13 time series LSS3

n
.105 [ cycles ]

"
7
0
[
-
]

 

 

0.0 0.5 1.0 1.5 2.0 2.5
  0

500

1000

1500

2000
SG13 time series LSS3

n
.105 [ cycles ]

"
7
0
[
-
]

-ltered signal

piecewise appr.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B.2c: Filtered SG data three-bay LSS 3. 
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Review 
 

The total stress concept welded joint fatigue design parameter ��  is a line (i.e. 
{plate, shell} thickness �� related) equivalent point criterion. Correlation to life 
time �  provides a joint �� -�  curve to estimate (hull) structure longevity. The 
weld notch stress distribution-, weld notch stress intensity- and even weld notch 
affected crack growth as well as crack path similarities may be qualified as 
modelling assumptions, but the TS concept proves at least {SSS, LSS, FSS} welded 
joint fatigue resistance similarity. Translating the total stress FAT class to 
dedicated SSS nominal stress based ones, a comparison to IIW shows values in the 
same range in favour of TS. 

 
The Battelle structural stress concept involves a line equivalent point criterion 

as well; ��. The MCF {TS, BSS} fatigue resistance data scatter turns out to be the 
same, showing that different parameters defined at the same scale (although ��   
includes more detail) provide similar accuracy levels. However, in terms of 
modelling ��  may solve some �� issues. Because of the developed semi-analytical 
remote mechanical loading induced weld notch stress formulations, bi-linear 
approximations are not required meaning the actual rather than compromised zone 
1 peak stress and zone {2, 3} stress gradients are included. A weld load carrying 
stress related transition point assumption is prevented for as well, although a FE 
beam model based ��	 value may be considered as a disadvantage too. In case of 
symmetry with respect to (��/2) the welded joint far field stress definition can be 
maintained preventing for a double standard in scaling parameter assumption and 
no solid FE modelling is needed to capture the structural field stress distribution. 
For the same reason the BSS concept based weld {toe, root} induced failures have 
to be dealt with separately, i.e. involve different fatigue resistance curves. 
Translating the intact geometry related notch stress distribution to a crack 
damaged equivalent, the SIF � is finite for (� → 0) by definition; the BSS 
singularity seems artificial since higher order terms of Williams’ asymptotic solution 
do not contain singularities. The TS two-stage crack growth model allows for 
elastoplasticity induced monotonically increasing- as well as non-monotonic 
behaviour rather than non-monotonic only including a fixed elastoplasticity 
coefficient (� = 2) based on crack growth data series rather than as-welded joint 
fatigue resistance data. Crack growth model integration provides for the {TS, BSS} 
concepts a single slope fatigue resistance relation. The majority of the available 
data is MCF related; for the BSS concept only (SEC) failures seem to be considered 
and run-outs are ignored. In the actual (hull) structure (HCF) design region data is 
limited and typically censored, meaning uncertainty is significant and at least 
complete data is required to improve life time estimates. At the same time crack 
initiation may become dominant because of decreasing load level, meaning the 
resistance curve should include a slope change like the RFL model as adopted for 
the TS concept. All TS model parameter estimates are obtained using regression 
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analysis of as-welded joint fatigue resistance data to ensure {SSS, LSS, FSS} 
similarity in that respect. Statistics itself have no physical meaning, but the model 
parameters do. The MCF {TS aluminium, BSS steel} slopes � ~ {3.8, 3.6}  are 
comparable; rather governing damage mechanism (crack growth) than material 
dependent. The TS elastoplasticity coefficient estimate (� ~ 1) is half the BSS 
value (claimed to be the same value for different materials). Although �� includes 
the geometric mean contribution of {∆#�, #�,%&'}, i.e. ) = 0.5, the range slightly 
dominates () ~ 0.7); at least for aluminium. 

 
The parameter ��  involves the {intact, crack damaged} geometry fatigue 

sensitivity parameters {,, �} and the corresponding effective values may include a 
real-, fictitious- and statistical part. Since the stress gradient as well as (average) 
notch and/or crack tip elastoplasticity is explicitly taken into account, the fictitious 
parts have become obsolete. The (average) real defect size (�-/��) is estimated 
optimising the fatigue resistance residual. The real notch radius involves a worst 
case assumption (, = 0). The statistical components (distribution) – not 
incorporated yet – should be determined using direct measurements and can be 
used to include weld volume effects and to deal with different weld qualities. 

 
The total stress concept may be extended to a total life concept, including both 

crack initiation and growth. To correlate an intact- and crack damaged geometry 
parameter in a two-stage two-parameter concept, the {micro-structural support, 
micro-crack} length should be involved since the fatigue sensitivity parameters  
{,∗, �0} share the same purpose; are similar. Another option might be to adopt a 
two-stage one-parameter concept and develop a load level dependent 
elastoplasticity coefficient �(�); for decreasing �, � should decrease turning crack 
growth behaviour from non-monotonic into monotonically increasing.  
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