

Delft University of Technology

Robustimizer
A graphical user interface application for efficient uncertainty quantification, robust
optimization, and reliability-based optimization of processes and designs
Nejadseyfi, Omid

DOI
10.1016/j.softx.2025.102077
Publication date
2025
Document Version
Final published version
Published in
SoftwareX

Citation (APA)
Nejadseyfi, O. (2025). Robustimizer: A graphical user interface application for efficient uncertainty
quantification, robust optimization, and reliability-based optimization of processes and designs. SoftwareX,
30, Article 102077. https://doi.org/10.1016/j.softx.2025.102077

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.softx.2025.102077
https://doi.org/10.1016/j.softx.2025.102077

SoftwareX 30 (2025) 102077

A
2
n

O

R
q
p
O
C
M

A

K
U
R
R
S

C

1

e
v
a
a
m
t
p
o

h
R

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

obustimizer: A graphical user interface application for efficient uncertainty
uantification, robust optimization, and reliability-based optimization of
rocesses and designs
mid Nejadseyfi
omputational Design and Mechanics, Precision and Microsystems Engineering Department, Mechanical Engineering Faculty, Delft University of Technology,
ekelweg 2, 2628 CD, Delft, The Netherlands

R T I C L E I N F O

eywords:
ncertainty quantification
obust optimization
eliability-based optimization
urrogate model

A B S T R A C T

The primary goal of this work is to provide easy-to-use and cutting-edge optimization software designed to
handle uncertainties, intended for use in research and education. Robustimizer offers efficient uncertainty
quantification through exact analytic formulas using specific surrogate models, such as Gaussian Processes.
Moreover, it supports integration with other software packages, and automatic updating of initial design
space through exploration–exploitation techniques, among other features. This software has proven its value
in sustainable manufacturing, where optimizing processes to reduce environmental impact while managing
uncertainties is critical. In this article, the Robustimizer graphical user interface is introduced as a domain-
independent optimization tool for surrogate-model-based robust and reliability-based design or process
optimization.
ode metadata

Current code version V2024.1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00586
Permanent link to Reproducible Capsule N/A
Legal Code License GPL 3
Code versioning system used git
Software code languages, tools, and services used MATLAB
Compilation requirements, operating environments & dependencies MATLAB App Designer
If available Link to developer documentation/manual https://github.com/onejadseyfi/Robustimizer/tree/main/documentation
Support email for questions info@robustimizer.com
. Motivation and significance

One-stage processes are common across many disciplines, including
ngineering, physics, biology and economics. These processes can be
iewed as input–output systems. For example, in power generation,
djusting input variables such as fuel type, temperature, and pressure
ffects the efficiency and output capacity of the plant. Similarly, in
anufacturing and design engineering, modifying parameters related

o material properties, dimensions, and tolerances can significantly im-
act the functionality and durability of a product. Due to the presence
f numerous input variables, design or process optimization methods

E-mail address: o.nejadseyfi@tudelft.nl.

are typically employed to obtain optimal output and meet requirements
or constraints.

In practice, some input variables are easy to control and are referred
to as design variables. However, some input variables are either un-
controllable or very expensive to control. Such variables, which are
stochastic in nature, are referred to as noise or uncertain variables.
When uncertain variables are present, the response is no longer deter-
ministic. Both robust and reliability-based design optimization methods
address optimization in the presence of uncertainties.

Computer models or costly experiments are often used for opti-
mizing designs or processes. The presence of uncertainties introduces
vailable online 15 February 2025
352-7110/© 2025 The Author. Published by Elsevier B.V. This is an open access
c/4.0/).

ttps://doi.org/10.1016/j.softx.2025.102077
eceived 3 November 2024; Received in revised form 26 January 2025; Accepted 2
article under the CC BY-NC license (http://creativecommons.org/licenses/by-

8 January 2025

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00586
https://github.com/onejadseyfi/Robustimizer/tree/main/documentation
mailto:info@robustimizer.com
mailto:o.nejadseyfi@tudelft.nl
https://doi.org/10.1016/j.softx.2025.102077
https://doi.org/10.1016/j.softx.2025.102077
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

SoftwareX 30 (2025) 102077Omid Nejadseyfi
challenges in optimization. One major challenge is predicting the ef-
fects of uncertain input on the uncertainty of the response (uncertainty
quantification). Furthermore, optimization under uncertainty becomes
even more challenging when the process is nonlinear, when only partial
knowledge of the uncertainty is available, and when correlations exist
among the variables. Optimizing a process or design under uncertainty
using computer models requires numerous evaluations, and these mod-
els are typically computationally expensive. Experimental approaches
for optimization are also very costly. Often, an approximate model
known as a surrogate model, is built from the limited number of
computer simulations or experiments. Once the surrogate model is
constructed, assessing the response for an unsimulated or unmeasured
point becomes more cost-effective than running simulations or perform-
ing experiments. The surrogate model can then be used to represent
the approximate relationship between input and output, and to perform
uncertainty quantification and optimization.

Despite their potential, robust and reliability-based optimization
remain limited to specific research areas. One of the main reasons
hindering the practical application of these techniques is that existing
resources are not easy to use. Additionally, building a surrogate model
and using approximation techniques, such as Monte Carlo simulations
for uncertainty quantification, are computationally demanding. By de-
veloping a graphical user interface an easy-to-use and cutting-edge
optimization software is provided with the convenience of a self-guided
interface. Additionally, the focus is on improving the efficiency and
accuracy of uncertainty quantification through surrogate models by
implementing analytic formulations [1].

The main focus of Robustimizer is on one-stage processes, a different
class of problems than those addressed, for instance, in ROME (Robust
Optimization Made Easy) [2], RSOME (Robust Stochastic Optimization
Made Easy) [3], and ROmodel [4]. ROME, RSOME, and ROmodel
include a decision variable that can be adjusted once uncertainty is
revealed, and are sometimes referred to as distributionally robust opti-
mization. These methods are common in control engineering, with their
formulation focusing on the expected value or the mean of a response.
However, Robustimizer is applicable to one-shot problems, where there
is no intermediate decision variable to adjust (sometimes referred to
as offline quality control). This approach is rooted in Taguchi robust
design [5], which aims to identify the input variables for which the
objective function is least sensitive to given uncertainties. Moreover,
Robustimizer focuses on surrogate-model-based uncertainty quantifica-
tion, where expensive model evaluations are replaced by a surrogate
model. Additionally, Robustimizer provides analytical expressions for
uncertainty quantification, robustness calculation, and reliability es-
timation. For this purpose, not only the mean but also higher-order
moments, such as standard deviation and skewness, are considered.
Lastly, all these features are incorporated into an easy-to-use user
interface (UI), which is not offered by existing tools.

In the following sections, Robustimizer’s potential as a valuable
tool for diverse research and educational applications is highlighted.
While it has already been employed to enhance sustainability in the
manufacturing sector [6], its versatility opens up new avenues for
optimizing processes and designs, leading to greater efficiency and
effectiveness across various domains.

2. Software description

2.1. Software architecture

The architecture of the Robustimizer software is primarily based
on the clean architecture principles [7]. The application is divided into
several layers, each with its own responsibilities and dependencies
as shown in the onion diagram of Fig. 1. The layers are designed
to be loosely coupled, allowing for flexibility, testability, and ease of
maintenance. The user interface (UI) layer is responsible for presenting
information to the user and handling user interactions. The main UI is
2

Fig. 1. Various layers in Robustimizer software.

created using MATLAB App Designer. The UI layer communicates with
the use cases layer to perform the necessary operations in response to
user input. The use cases layer contains the application’s logic and use
cases. It orchestrates the interactions between the data model and the
calculations performed in the kernel, as well as providing validation
and error handling for the application’s functionalities. The inner layer
which is the domain layer, contains the data model representing the
structure and relationships of the application’s data, as well as the ker-
nel calculations and algorithms. It must be noted that the dependencies
between the layers are unidirectional, with each layer depending only
on the layers inside it. This allows for a clear separation of concerns and
makes it easier to test and maintain the application. In particular, the
use cases layer is designed to be independent of the UI layer, allowing it
to be tested in isolation. The attentive reader may have noticed that the
interface adapters layer from the original clean architecture diagram [7]
is not explicitly depicted here. This simplified approach is intentionally
used, where the UI layer directly interacts with the use cases layer.

Fig. 2 illustrates the step-by-step workflow in Robustimizer, which
is linked to the tabs in the main window. The UI of Robustimizer con-
sists of six tabs. The user begins to formulate the robust optimization
problem and proceeds in the following order:

• Tab 1 initiating the problem by defining design variables, noise
variables and responses.

• Tab 2 creating design of experiments (DOE) and importing the
results of model evaluation

• Tab 3 surrogate modeling and validating.
• Tab 4 defining optimization settings, algorithms, uncertainty

quantification method, objective function and reliability con-
straints.

• Tab 5 robust optimization
• Tab 6 enhancing the surrogate model by exploration and exploita-

tion
While using the application, the user receives guidance through pop-up
windows, context-sensitive help, and error-based assistance.

2.2. Software functionalities

In the following sections, a concise summary of the software’s
functionalities is presented. The reader is referred to the online doc-
umentation for detailed information.

2.2.1. Initializing problem
Robust optimization begins by defining the number of design vari-

ables, noise variables, and responses. The user specifies the number
of design variables, their names, and the upper and lower bounds.
For the independent noise variables, the user enters the number of

SoftwareX 30 (2025) 102077Omid Nejadseyfi
Fig. 2. Flowchart of robust optimization using Robustimizer.
noise variables, their names, and the corresponding mean and standard
deviation. Robustimizer not only supports independent noise variables
but also performs principal component analysis (PCA) on correlated
noise data imported from measurements. In the case of correlated noise
data, rather than filling in the statistics in the table, the input data must
be provided by the user as a tab-separated text file, where the number
of tabs corresponds to the number of noise variables. The number of
rows indicates the number of data points.

The correlations among noise variables are then evaluated using
covariance PCA [8]. The purpose of PCA is to achieve an uncorrelated
subspace, potentially reduce the parameter space and avoid sampling of
physically-unlikely parameter combinations when the DOE is created.

Robustimizer requires a single output as the main response. If
additional responses are present, the user can either combine them
(e.g. weighted sum) to form a single output or treat them as constraints
during optimization.

2.2.2. Making a DOE and model evaluation
In this tab the user creates a DOE and imports the results of the

model evaluation. Robustimizer supports not only standard methods,
such as Latin hypercube sampling (LHS) or factorial design, but also
offers the flexibility to import user-defined DOEs as a text file. In this
case, a tab-separated file must be provided, where the number of rows
corresponds to the number of DOE points and the number of columns
corresponds to the total number of variables.

The model (sometimes referred to as a black-box function) is then
evaluated at each DOE point. The response can come from a com-
puter simulation, an analytical model evaluation, or an experimental
measurement.

Process responses can be imported into the application using two
different methods. First, the response can be evaluated outside Robus-
timizer and imported via a tab-separated text file. Alternatively, an
executable can be selected that reads the DOE points from a text file
named in.txt, evaluates the model, and writes the response to another
text file named out.txt. This feature offers a significant advantage, as
it not only allows the automatic import of process model simulation
results into the software but also enables the iterative addition of new
DOE points during later optimization stages.

2.2.3. Surrogate modeling
Gaussian Processes (GPs) are widely used for surrogate modeling

and are therefore implemented in Robustimizer to describe the response
of the process model. The DACE toolbox is used for this purpose, and
readers are referred to [9] for more information. Using the Surrogate
Model tab in Robustimizer, the user fits, plots, and validates the sur-
rogate model. Validation techniques help ensure that the surrogate
models accurately represent the underlying system or process. Robus-
timizer supports leave-one-out cross-validation (LOOCV), in which one
data point is left out while the surrogate model is trained on the
3

remaining data points. This process is repeated for each data point in
the dataset, and the results are averaged to provide the final accuracy
estimate.

2.2.4. Optimization settings
The optimization method, uncertainty quantification approach, ob-

jective function, and reliability constraints can be adjusted in this tab,
with the relevant input fields being enabled or disabled accordingly.
Two uncertainty quantification methods are available in Robustimizer.
The analytical method is the default option, as it provides a more
accurate and faster evaluation of uncertainties. However, Monte Carlo
sampling is also available, allowing the user to specify sample sizes as
needed or import user-defined samples.

The objective function to minimize can be selected in different ways
under the Objective Function for Main Response panel. For non-normally
distributed responses, the accuracy of the predictions can be improved
by accounting for the skewness [10]. If there are constraints, the user
can adjust each constraint separately. For non-normally distributed
constraint responses, it is also possible to improve reliability predictions
by considering the skewness of the response.

2.2.5. Robust optimization
After providing necessary input in the previous steps, the user

proceeds with robust optimization. By pressing the Perform optimization
button, the optimization starts, and once the results are generated, they
are shown in the text box. To visualize the scatter of each response at
the predicted optimum and to calculate the response statistics, the user
performs a Monte Carlo analysis at the optimum under the Visualize
scatter on optimum panel.

2.2.6. Exploration and exploitation
Surrogate model optima may not align with the true optimum due

to sparse sampling around the predicted optimum or underexplored
regions from the initial DOE design. To improve accuracy, Robustimizer
uses the expected improvement method [11,12] as a default option,
which balances local and global search for new infill points.

Adding new infill points is performed either manually or automati-
cally. If the user defines an executable in the second tab, the automatic
option is recommended. In this case, by specifying the number of new
DOE points, Robustimizer automatically finds the best point, adds it to
the existing DOE, runs the executable, extracts the results, fits a new
surrogate model, finds the robust optimum, and repeats this procedure.
The new DOE point and the optimization results are displayed in the
text boxes after each step.

SoftwareX 30 (2025) 102077Omid Nejadseyfi
Fig. 3. Illustrative example using Robustimizer (Tabs 1 and 2).
3. Illustrative examples

3.1. Mathematical function

In this example, two mathematical expressions are used as the
process model. This example serves merely as an illustrative case. It is
important to note that the underlying input-output relationships in real-
world scenarios are often unknown and that is the main reason to build
a surrogate model. The modified Griewank test function in Eq. (1) is
used as the main response and the Robustimizer test function in Eq. (2)
is used as the constraint response. Both functions have six inputs with
4

four of these inputs considered as design variables and two as uncor-
related noise variables. An executable file is provided in the repository
that evaluates both functions with specific inputs. The ranges of design
variables and the statistics of the noise variables are listed in Tables 1
and 2, respectively.

𝑓 (𝑥) = 𝛽1

(𝑑
∑

𝑖=1

𝑥2𝑖
4000

−
𝑑
∏

𝑖=1
cos(

𝑥𝑖
√

𝑖
) + 1

)

+ 𝛽2 (1)

𝑔(𝑥) = (𝑥1𝑥4 + 1
𝑥2 +

1
𝑥3+

0.1
𝑥4+0.5

)2 − 2 cos(𝜋 𝑥2(𝑥5 + 0.95𝑥6)) + 0.3
𝑒(3𝑥6+0.2𝑥1) (2)

SoftwareX 30 (2025) 102077Omid Nejadseyfi

b
t
t

s

s
o

R

a
f

m
f

o
e

t
t
d

s
i

s

l
w

c

a

d

Table 1
Ranges of design variables.

Variable Lower bound Upper bound

Design Var. 1 (𝑥1) 0 1
Design Var. 2 (𝑥2) 0 1
Design Var. 3 (𝑥3) 0 1
Design Var. 4 (𝑥4) 0 1

Table 2
Statistics of noise variables.

Variable Mean Standard deviation

Noise Var. 1 (𝑥5) 0.5 0.1666
Noise Var. 2 (𝑥6) 0.5 0.1666

This data can be entered in the first tab of Robustimizer as shown in
Fig. 3. In the second tab, a DOE is generated by pressing the create DOE
utton with the selected options. Then the executable file is selected
o evaluate the responses on the DOE points (Fig. 3). In the third tab,
he surrogate model is fitted, visualized, and validated as shown in

Fig. 4. The responses are plotted as a function of only two variables,
with the remaining variables set to nominal values. The user can adjust
the plot using interactive buttons on the plot, as well as sliders and
the drop-down menu in the Plot surrogate model panel. After fitting
the surrogate model, the user specifies the settings shown in Fig. 4.
Robustimizer offers various robust formulations and reliability-based
constraint calculations [13–15]. In this example the following robust
optimization problem with a reliability-based constraint is solved:
minimize

𝐱
𝜇f (𝐱) + 3𝜎f (𝐱)

ubject t o 𝜇g(𝐱) + 3𝜎g(𝐱) ≤ 1

𝐥𝐛 < 𝐱 < 𝐮𝐛

(3)

in which 𝐱 is the vector of design variables as shown in Table 1. After
electing relevant settings, the user proceeds with solving the robust
ptimization problem in Tab 5 which is shown in Fig. 5. The results of

the robust optimal design points are displayed in this tab. Uncertainty
quantification which is an essential ingredient in robust optimization
is performed and the statistical moments are displayed alongside the
histograms of the response probability distribution as shown in Fig. 5.

Furthermore, the user can optionally improve the surrogate model
by adaptively adding extra DOE points in the last tab as shown in Fig. 5.
In this case the required number of new DOE points is entered, and

obustimizer automatically repeats the robust optimization steps.

3.2. Linking robustimizer to finite element analysis packages

Many renowned commercial and open-source software tools, such
as Abaqus, Ansys, COMSOL, and Altair HyperWorks for finite element
nalysis (FEA), OpenFOAM, Fluent, and STAR-CCM+ for computational
luid dynamics (CFD), and LAMMPS for molecular dynamics simula-

tions, can be run from the command line. These tools allow users to
modify and process simulation files without opening their respective
UIs, making them ideal for automation and batch processing workflows
such as those implemented using Robustimizer. This example shows
the procedure to link Robustimizer with the commercial FEA package
COMSOL Multiphysics.

3.2.1. Problem description
As an illustrative example, Fig. 6-a shows a bracket made of Alu-

inum 6061-T6 with a given ellipsoidal service hole. The bracket is
ixed at the top edge, and a distributed load of 𝐹 is applied in the
−𝑌 direction as shown in Fig. 6-b. The designer can optimize the
location of the center of the ellipsoid, 𝑥, to minimize the deflection
f the bracket, 𝛿, while ensuring that the stress in the bracket does not
xceed the yield stress, such that 𝑆 < 𝑆 . However, in practical
5

max 𝑌
scenarios, uncertainties are often associated with several parameters.
In this example, two sources of uncertainty are considered: one related
o the use case and the other to manufacturing. During the use of
he bracket, the applied load may deviate slightly from its nominal
irection, with a standard deviation of 𝜎𝜃1 = 2 degrees. Additionally,

during manufacturing, misalignment may cause the ellipsoid to be
lightly rotated, with a standard deviation of 𝜎𝜃2 = 1 degree, as shown
n Fig. 6-c. Under these conditions, the robust optimization problem is

defined as:

minimize
𝑥

𝜇𝛿(𝑥) + 3𝜎𝛿(𝑥)
ubject t o 𝜇Smax

(𝑥) + 3𝜎Smax
(𝑥) ≤ 𝑆𝑌

16 < 𝑥 < 24 [mm]

𝜃1 ∼ (0, 2) [deg]
𝜃2 ∼ (0, 1) [deg]

(4)

3.2.2. Prepare FE analysis via an executable file
To solve the optimization problem, the maximum stress and deflec-

tion must be obtained for every DOE point. In this section, instead of the
cumbersome process of manually changing parameters in the simula-
tion software and importing the results using a text file, Robustimizer is
inked to COMSOL Multiphysics using an executable file. The following
orkflow is used to create this executable file.

• Open and read the contents of a file named in.txt, which contains
the DOE points saved in a tab-separated format. The number of
rows corresponds to the number of DOE points, and the number
of columns corresponds to the total number of design and noise
variables.

• Assign the parameters in each row to the corresponding parame-
ters in the simulation software.

• Run the simulation for one DOE point, extract the results, and
proceed to the next DOE point.

• After completing all simulations, write the results to a tab-
separated file named out.txt, where the number of columns corre-
sponds to the number of responses defined in Tab 1.

• Compile the script into an executable file with the .exe extension.

• Test the executable independently of Robustimizer by placing a
test input file named in.txt in the same folder. Run the executable
file from the command line, wait for the simulations to complete,
and verify that the out.txt file is generated. This procedure must
be tested in two cases, one with multiple entry rows and another
with a single entry row (one DOE point).

Although each commercial or open-source software has its own unique
requirements, the overall workflow remains consistent. To create the
script and provide the executable to Robustimizer, Python is used
to follow the procedure outlined above. To run COMSOL simulations
within this Python script, the following command is used:

comsolbatch -inputfile RobustBracket.mph -pname 𝑥𝑐 𝑒𝑛𝑡𝑒𝑟, 𝜃1, 𝜃2 -plist ...
‘‘DOE𝑖1 [mm]’’, ‘‘DOE𝑖2 [deg]’’, ‘‘DOE𝑖3 [deg]’’ -methodcall method-

all1 -nosave in which DOE𝑖1 to DOE𝑖3 are the values that are read
from the in.txt file. Finally, the script is compiled into an executable
using PyInstaller. More details and tutorials can be found in the online
repository.

To run the comsolbatch command, certain considerations must be
ddressed. In this example, the bracket is parametrically modeled

in COMSOL. An evaluation group is created to write the maximum
isplacement and stress to a temporary file after each simulation. A
method is then created using the Application Builder of COMSOL and is
added to the Global Definitions. The following lines are required in the
method to run the study and evaluate the results:

model.study(‘‘std1’’).run();
model.result().evaluationGroup(‘‘eg1’’).run();

SoftwareX 30 (2025) 102077Omid Nejadseyfi
Fig. 4. Illustrative example using Robustimizer (Tabs 3 and 4).
Additionally, for writing to disk via a method, the security settings
in COMSOL preferences must allow file system access for all files.

3.2.3. Running robustimizer
After providing the input in Tab 1 of Robustimizer, the user gen-

erates a DOE with 20 points using LHS. In the second tab, the user
provides the executable file created in the previous section and clicks
the Run script and import results button. Robustimizer then waits for the
6

file out.txt to appear in the same folder and imports all results at once
into the corresponding table. The next steps are similar to the previous
example. A supplementary video is provided for the interested readers
to explain the step by step process. Starting with a DOE of 20 points
and automatically adding 2 additional points in Tab 6, the expected
improvement falls below 0.5%, and the robust optimum is determined
to be at 𝑥 = 19.5 [mm] while the deterministic optimum is at 𝑥 = 18.7
[mm].

SoftwareX 30 (2025) 102077Omid Nejadseyfi
Fig. 5. Illustrative example using Robustimizer (Tabs 5 and 6).
4. Impact

Robustimizer offers a new tool for studying stochastic systems and
processes in many disciplines. It has demonstrated its capability to
reduce manufacturing waste and contribute to sustainable, zero-defect
manufacturing, not only in conventional forming processes but also in
additive manufacturing [6,16]. However, its application is not limited
to manufacturing. Its capabilities extend to fields such as biotech-
nology, environmental sustainability, and health informatics, among
others [17–21]. Investigating how different types of uncertainties affect
7

optimization strategies in these fields could open new horizons in both
science and technology.

The software significantly advances the pursuit of existing research
questions by offering more efficient and accurate algorithms [1] for
solving optimization problems under uncertainty while providing a
user-friendly interface that simplifies experimentation with different
scenarios and parameters. Robustimizer enables detailed analysis and
evaluation of optimization results to assess their robustness and re-
liability. Integration with user-defined data and communication with
external software help researchers incorporate the software into current

SoftwareX 30 (2025) 102077Omid Nejadseyfi
Fig. 6. Dimensions of the bracket (a), the nominal (deterministic) condition (b), and a scenario in which loading and orientation of the hole vary slightly from the nominal case
(c).
projects and expand their research.
Additionally, it is important to highlight that there are currently no

easy-to-use tools that offer comprehensive and standardized methods
for conducting optimization under uncertainty. This gap underscores
the distinctive value of Robustimizer, which enables users to perform
robust optimization more effectively and efficiently.

Despite its many advanced features, there is still significant po-
tential for expanding Robustimizer. Future developments will focus
on incorporating other types of surrogate models such as radial basis
function networks, and neural networks [22,23], facilitating integration
with existing simulation packages, enabling inverse robust optimiza-
tion [24], and expanding methods for exploration and exploitation.

5. Conclusions

In this work Robustimizer, a general-purpose application for op-
timization under uncertainty, is introduced. The major features of
Robustimizer are communicating with external software through user-
defined executable, efficient and accurate uncertainty quantification
using analytical methods for both robust optimization and reliability
calculations, and automated updating of the surrogate model. More-
over, it is capable of accounting for higher-order moments of both the
objective function and constraints to achieve more accurate measures
for robustness and reliability. Robustimizer also considers correlations
between noise variables and accepts tailored inputs from users for
creating DOE or conducting Monte Carlo analysis. These functionalities
are discussed, and two examples are presented to demonstrate its
capabilities in solving problems involving uncertainty.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The author would like to greatly thank Xander Burgerhout for
providing invaluable insights, thoughtful feedback, and exceptional
programming support.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.softx.2025.102077.
8

References

[1] Nejadseyfi O, Geijselaers HJM, van den Boogaard AH. Robust optimiza-
tion based on analytical evaluation of uncertainty propagation. Eng Optim
2018;51(9):1581–603.

[2] Goh J, Sim M. Robust optimization made easy with ROME. Oper Res
2011;59(4):973–85.

[3] Chen Z, Xiong P. RSOME in Python: An open-source package for robust stochastic
optimization made easy. INFORMS J Comput 2023;35(4):717–24.

[4] Wiebe J, Misener R. Romodel: modeling robust optimization problems in pyomo.
Optim Eng 2022;23(4):1873–94.

[5] Dellino G, Kleijnen JP, Meloni C. Robust optimization in simulation: Taguchi
and response surface methodology. Int J Prod Econ 2010;125(1):52–9.

[6] Nejadseyfi O, Geijselaers H, Atzema E, Abspoel M, van den Boogaard A.
Accounting for non-normal distribution of input variables and their correlations
in robust optimization. Optim Eng 2022;23(4):1803–29.

[7] Martin RC. Clean architecture:A craftsman’s guide to software structure and
design. 2017.

[8] Wiebenga J, Atzema E, An Y, Vegter H, van den Boogaard AH. Effect of material
scatter on the plastic behavior and stretchability in sheet metal forming. J Mater
Process Technol 2014;214(2):238–52.

[9] Lophaven SN, Nielsen HB, Søndergaard J, et al. DACE: a Matlab kriging toolbox.
vol. 2, Citeseer; 2002.

[10] Nejadseyfi O, Geijselaers HJ, van den Boogaard AH. Evaluation and assessment
of non-normal output during robust optimization. Struct Multidiscip Optim
2019;59:2063–76.

[11] Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive
black-box functions. J Global Optim 1998;13:455–92.

[12] ur Rehman S, Langelaar M, van Keulen F. Efficient kriging-based robust
optimization of unconstrained problems. J Comput Sci 2014;5(6):872–81.

[13] Koch PN, Yang R-J, Gu L. Design for six sigma through robust optimization.
Struct Multidiscip Optim 2004;26:235–48.

[14] Fang J, Sun G, Qiu N, Kim NH, Li Q. On design optimization for struc-
tural crashworthiness and its state of the art. Struct Multidiscip Optim
2017;55:1091–119.

[15] Meng D, Yang H, Yang S, Zhang Y, Jesus AMD, Correia J, Fazeres-Ferradosa T,
Macek W, Branco R, Zhu S-P. Kriging-assisted hybrid reliability design and
optimization of offshore wind turbine support structure based on a portfolio
allocation strategy. Ocean Eng 2024;295:116842.

[16] Nejadseyfi O. Sustainable manufacturing via robust optimization and tailored
scatter. In: 9th European congress on computational methods in applied sciences
and engineering. 2024.

[17] Meng D, Yang S, De Jesus AM, Fazeres-Ferradosa T, Zhu S-P. A novel hybrid
adaptive kriging and water cycle algorithm for reliability-based design and
optimization strategy: Application in offshore wind turbine monopile. Comput
Methods Appl Mech Engrg 2023;412:116083.

[18] Meng D, Yang S, de Jesus AM, Zhu S-P. A novel kriging-model-assisted reliability-
based multidisciplinary design optimization strategy and its application in the
offshore wind turbine tower. Renew Energy 2023;203:407–20.

[19] Darvazeh SS, Mooseloo FM, Gholian-Jouybari F, Amiri M, Bonakdari H,
Hajiaghaei-Keshteli M. Data-driven robust optimization to design an integrated
sustainable forest biomass-to-electricity network under disjunctive uncertainties.
Appl Energy 2024;356:122404.

[20] Zhang X. A review of the robust optimization process and advances with Monte
Carlo in the proton therapy management of head and neck tumors. Int J Part
Ther 2021;8(1):14–24.

https://doi.org/10.1016/j.softx.2025.102077
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb1
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb1
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb1
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb1
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb1
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb2
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb2
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb2
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb3
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb3
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb3
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb4
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb4
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb4
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb5
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb5
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb5
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb6
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb6
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb6
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb6
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb6
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb7
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb7
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb7
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb8
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb8
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb8
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb8
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb8
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb9
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb9
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb9
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb10
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb10
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb10
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb10
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb10
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb11
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb11
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb11
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb12
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb12
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb12
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb13
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb13
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb13
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb14
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb14
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb14
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb14
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb14
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb15
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb15
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb15
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb15
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb15
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb15
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb15
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb16
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb16
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb16
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb16
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb16
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb17
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb17
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb17
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb17
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb17
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb17
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb17
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb18
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb18
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb18
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb18
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb18
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb19
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb19
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb19
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb19
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb19
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb19
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb19
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb20
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb20
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb20
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb20
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb20

SoftwareX 30 (2025) 102077Omid Nejadseyfi
[21] Pham T, Hoang T, Tran X, Fetni S, Duchêne L, Tran HS, Habraken A. A frame-
work for the robust optimization under uncertainty in additive manufacturing.
J Manuf Process 2023;103:53–63.

[22] Alizadeh R, Allen JK, Mistree F. Managing computational complexity using
surrogate models: a critical review. Res Eng Des 2020;31(3):275–98.
9

[23] Yang B, Cheng C, Wang X, Bai S, Long K. Robust reliability-based topology
optimization for stress-constrained continuum structures using polynomial chaos
expansion. Struct Multidiscip Optim 2023;66(4):88.

[24] Nejadseyfi O, Geijselaers H, Atzema E, Abspoel M, Van Den Boogaard A. From
specified product tolerance to acceptable material and process scatter: an inverse
robust optimization approach. Int J Mater Form 2020;13:467–78.

http://refhub.elsevier.com/S2352-7110(25)00044-5/sb21
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb21
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb21
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb21
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb21
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb22
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb22
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb22
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb23
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb23
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb23
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb23
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb23
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb24
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb24
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb24
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb24
http://refhub.elsevier.com/S2352-7110(25)00044-5/sb24

	Robustimizer: A graphical user interface application for efficient uncertainty quantification, robust optimization, and reliability-based optimization of processes and designs
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Initializing problem
	Making a DOE and model evaluation
	Surrogate modeling
	Optimization settings
	Robust optimization
	Exploration and exploitation

	Illustrative examples
	Mathematical function
	Linking Robustimizer to Finite Element Analysis packages
	Problem description
	Prepare FE analysis via an executable file
	Running Robustimizer

	Impact
	Conclusions
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References

