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A B S T R A C T

The post-pandemic world still faces ongoing COVID-19 infections, although international travel has returned to 
pre-pandemic conditions. Wastewater-based epidemiology (WBE) is considered an efficient tool for the 
population-wide surveillance of COVID-19 infections during the pandemic. However, the performance of WBE in 
post-pandemic era with travel restrictions lifted remains unknown. Utilizing weekly county-level wastewater 
surveillance data from June 2021-November 2022 for 222 counties in 49 states (covering 104 million people) in 
the United States of America, we retrospectively evaluated the correlations between SARS-CoV-2 RNA (CRNA) and 
reported cases, as well as the impacts of international air travel, demographics, socioeconomic aspects, test 
accessibility, epidemiological, and environmental factors on reported cases under the corresponding CRNA. The 
lifting of travel restrictions in June 2022, shifted the correlation between CRNA and COVID-19 incidence in the 
following 7-day and 14-day from 0.70 (IQR: 0.30–0.88) in June 2021-May 2022 (pandemic) to 0.01 (IQR: 
-0.31–0.36) in June-November 2022 (post-pandemic), and from 0.74 (IQR: 0.31–0.90) to -0.01 (IQR: 
-0.38–0.45), respectively. Besides, after lifting the travel restrictions, under the same CRNA, the reported case 
numbers were impacted by many factors, including the variations of international passengers, test accessibility, 
Omicron prevalence, ratio of population aged between 18 and 65, minority vulnerability, and healthcare system. 
This highlights the importance of demographics, infection testing, variants and socioeconomic status on the 
accuracy and implication of WBE to monitor COVID-19 infection status in post-pandemic era. Our findings 
facilitate the public health authorities to dynamically adjust their WBE-based tools/strategies to the local con-
texts to achieve optimal community surveillance.

1. Introduction

COVID-19 remains a global health threat, despite being no longer 
declared a global health emergency since May 2023 by World Health 
Organization (WHO) (Harris, 2023). Although most countries have 
returned to pre-outbreak lifestyles, COVID-19 has caused 1431,900 re-
ported cases and 31,230 deaths globally from January to April in 2024 
(WHO, 2024). Accurate case monitoring is crucial for governments and 
public health authorities to track infection status and dynamically adjust 
the COVID-19 policies on restrictions and social activities 

(Arvisais-Anhalt et al., 2021). However, in post-pandemic world, 
COVID-19 testing requirements have become optional for individuals, 
and public willingness to test gradually declines and shifts from clinical 
testing to self-testing (Silk et al., 2023; Walensky, 2022). Therefore, 
more countries intend to rely on wastewater-based epidemiology (WBE) 
as an alternative in monitoring and predicting community infections for 
public health sectors (Silk et al., 2023).

The overall concept of WBE relies on the shedding of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA from COVID-19 
patients (e.g., feces, sputum, and urine) to sewers and its wastewater 
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concentration (CRNA) (Li et al., 2021; Pan et al., 2020). In theory, CRNA 
can be used to reflect or estimate the COVID-19 incidences (cases) 
within the community, assuming comparable shedding loads between 
individuals (Bibby et al., 2021; Polo et al., 2020). However, viral 
shedding load varied significantly between patients, primarily influ-
enced by individual hygiene practices (such as disposal habits for bodily 
fluids like sputum and saliva), age demographics, racial factors, and 
past/current health conditions, etc. (Li et al., 2022; Noor and Islam, 
2020). Thus, WBE-based surveillance or early-warning for COVID-19 
incidence largely depends on the observed correlation between CRNA 
and reported cases/incidences in a certain wastewater catchment 
(Medema et al., 2020; Polo et al., 2020). This correlation serves as a 
correction/conversion factor for estimating the incidences from a new 
wastewater sample (Polo et al., 2020). Thus, a strong correlation be-
tween CRNA and reported cases/incidences is crucial for the application 
and accuracy of WBE in estimating/monitoring COVID-19 incidences in 
the community.

WBE had provided valuable early-warning and surveillance on 
COVID-19 community infections, during the pandemic when interna-
tional travel was restricted. Promising correlations between CRNA and 
reported cases/incidences (CRNA-Incidence correlation) have been 
widely reported during pandemic times, ranging from 0.82 to 0.9 
(Hillary et al., 2021; Jiang et al., 2022; Prado et al., 2021; Sanjuán and 
Domingo-Calap, 2021). In post-pandemic times, the lifestyle and travel 
conditions have changed notably compared with the pandemic period. 
For instance, the monthly number of total air passengers in the United 
States of America (USA) increased from 12 M before June 2022, to 18 M 
in May and June 2022 due to the easing of travel restrictions. Several 
studies have observed reduced CRNA-Incidence correlations in certain 
wastewater catchments in post-pandemic times (de Freitas Bueno et al., 
2022; McManus et al., 2023; Varkila et al., 2023). However, such ob-
servations are limited to a few catchments in a short time period (a few 
weeks), with limited insight into the reasons behind. To date, the tem-
poral variations (before and after lifting travel restrictions) in CRNA-In-
cidence correlations across a vast geographical area encompassing 
numerous wastewater catchments with diverse catchment characteris-
tics (e.g., demographics, socioeconomic, environmental, etc.) are still 
unclear. Also, the impact of these catchment characteristics on the 
CRNA-incidence correlation remains unexplored.

This study aims to investigate the variations in the CRNA-incidence 
correlation before and after the lifting of travel restrictions (a critical 
indicator of the end of the pandemic emergency status). We retrospec-
tively collected county-level weekly CRNA data, along with correspond-
ing COVID-19 incidence in 222 counties (Table S1) across 49 states in 
USA (Fig. 1a) from June 2021 to November 2022. These counties in total 
cover 104 M population, and the data collection periods include both the 
pandemic period (June 2021-May 2022) and post-pandemic period 
(June-November 2022, after lifting the travel restriction). We also 
collected data on 37 explanatory factors (Table S2), including de-
mographics (5 factors), socioeconomic (9 factors), epidemiological (15 
factors), environmental conditions (3 factors), test accessibility (3 fac-
tors), and international air travel data (2 factors) for the examined 
counties. The impacts of these factors on the reported COVID-19 inci-
dence under the corresponding CRNA were evaluated through random 
forest models. The results of this study will provide a comprehensive 
insight into the variations and impacting factors of the CRNA-incidence 
correlations in the post-pandemic era, facilitating public health au-
thorities and policymakers to dynamically interpret and improve the 
WBE performance based on the local conditions.

2. Materials and methods

2.1. Wastewater surveillance and COVID-19 case data of USA counties

Considering the progress of the vaccination and experience in the 
sample analysis and the analytical method consistency of data from 

different counties/states, the vaccination progress and experience in 
response to COVID-19, the weekly SARS-CoV-2 concentrations in 
wastewater (CRNA) at county-level from June 2021 to November 2022 
were collected from Biobot database (biobot.io/data) and used in this 
study. The Biobot Nationwide Wastewater Monitoring Network provides 
the largest publicly accessible dataset on COVID-19 community sur-
veillance with over 200 participating locations, which covers 30 % of the 
USA population (Analytics, 2021). The sampling details, analytical 
protocol, and data processing were specifically described in Duvallet 
et al. (2022). Overall, county-level weekly CRNA for 222 counties in 49 
states in the USA was included in the surveillance data (a total of 7540 
data points). The daily clinical confirmed cases of COVID-19 identified 
by testing were obtained from USA Fact (https://usafacts.org/visualiz 
ations/coronavirus-covid-19-spread-map/). The population size of 
included counties was collected from USA census database (USA Census 
Bureau).

2.2. Correlation between reported cases and CRNA

Wastewater surveillance was found to be able to estimate the weekly, 
15-day-rolling, and future COVID-19 cases of wastewater samples in 
previous studies (Jiang et al., 2022; Kennedy et al., 2021; Li et al., 
2023b). Thus, weekly new, 15-day-rolling and future COVID-19 cases 
(confirmed in the following 2–14 days) of wastewater samples were 
further calculated based on the daily clinical confirmed cases in each 
county (Table S3). Considering the potential temporal changes in the 
community (i.e., vaccination rollout, variants, etc.), the data points in 
each county were divided into several subsets over the time period of 5 
weeks. This is in line with the application of WBE, where the correlation 
observed in historical data is used to prove instructions for estimating 
the infection status from the current sample (Hillary et al., 2021; 
Sanjuán and Domingo-Calap, 2021; Trottier et al., 2020). The correla-
tions for each subset of data were determined through Spearman’s 
correlation test using R (Version 4.2.2, http://www.R-project.org/).

2.3. Demographic, CCVI, test accessibility, epidemiological, 
environmental, and international air travel data of the USA counties

A total of 37 factors (5 in demographic, 9 in CCVI and socioeco-
nomic, 15 in epidemiological, 3 in test accessibility, 3 in environmental, 
and 2 in international air travel) conditions were included in this study 
(Table S2). The demographic factors included the ratio of population 
aged below 5, ratio of population aged between 5 and 17, ratio of 
population aged between 18 and 65 and ratio of population aged over 
65.

For COVID-19 management and response, COVID-19 Community 
Vulnerability Index (CCVI) was established by Surgo Foundation and 
used by Centers for Disease Control in USA (Tipirneni et al., 2022). CCVI 
reflects the socioeconomic status and provides a comprehensive 
assessment of demographic vulnerability at county level via 40 measures 
from census data, covering 7 factors including: i) socioeconomic status; 
ii) minority status and language, iii) housing type, transportation, 
household composition, and disability (‘household & transportation’ 
hereafter), iv) epidemiological risk, v) healthcare system, vi) high risk 
environment, and vii) population density (Smittenaar et al., 2021). The 
CCVI overall vulnerability and other 7 theme indices were scored 
ranging from 0 to 1, with a higher score representing higher vulnera-
bility of certain aspect in this county.

Test accessibility factors include test sites per 100k, distance to test 
sites and positive ratio of testing. Epidemiological factors included the 
ratios of vaccination recipients in first dose, second dose and booster, the 
ratio of population infected with different SARS-CoV-2 variants, Shan-
non and Inverse Simpson diversity index of variant in different periods. 
The ratio of population infected with different SARS-CoV-2 variants was 
calculated based on state-level report from the health department 
(Section S2 in the supplementary information), as the quantification of 
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Fig. 1. The comprehensive features of examined 222 USA counties. (a) geographical locations (b) spatial and temporal characteristics of weekly new COVID-19 cases 
in each county (cases/100k population, shown in the logarithm form in the figure). For better visualization, counties were grouped by state (shown in abbreviations), 
with the full list provided in Table S1. (c) age groups, CCVI and test accessibility, and environmental factors (a factor without unit means it is dimensionless).
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different variant sequence reads in wastewater remains challenging 
(Karthikeyan et al., 2022). The variant diversity was calculated at state 
level based on the report from the health department (Section S2 in the 
supplementary information). Inverse Simpson diversity index (equals to 
1/Simpson diversity index) was calculated using R.

Environmental factors include precipitation, air temperature, and 
wastewater temperature. In order to evaluate the impact of test re-
strictions cancellation for international air passenger in June 2022, the 
inbound passenger (i.e., passenger entering USA) and total international 
passenger (sum of inbound passenger and outbound passenger) were 
included.

The specific details of data source and data calculation for each 
factor were shown in Section S1 and Section S2 in the supplementary 
information. The statistical analysis (maximum, minimum, mean, me-
dian, and interquartile range (IQR)) of each factor was implemented 
using R. The data visualization was also conducted using R.

2.4. Random forest modeling

Random forest model was used to identify the importance of studied 
factors (a total of 37 input factors in Table S2) and their contributions to 
clinical confirmed cases (i.e., following 7-day confirmed case and 
following 14-day confirmed case) through R (version 4.2.0). Random 
forest is a non-parametric machine learning approach that allows 
modelling the relationship between target and potential explanatory 
factors (Breiman, 2001; Ho, 1998). Random forest model does not 
require a prior hypothesis in terms of the statistical distribution of the 
data, which makes it feasible to explore more refined connections, 
particularly the non-linear relationship between target and explanatory 
factors (Ali et al., 2012; Li et al., 2023a). The included data were 
randomly divided into three parts, which were the training set (ac-
counting for 70 %), the validation set (accounting for 15 %) and test sets 
(accounting for 15 %). The training set was used to train the random 
forest model, then the validation set was used as a conjunction to opti-
mize the model structure, and the test sets were used to assess the pre-
diction capability of model on unseen data. The basic construction of 
random forest models and the model evaluation strategy were depicted 
in SI section S3.

2.5. Significance and contribution of explanatory factors

The significance contribution of explanatory factors (input) on 
following 7-day case (output) and following 14-day case (output) was 
estimated via rfPermute package in R (version 4.2.2), which was ach-
ieved by calculating percentage increase in mean squared error (% 
IncMSE) with relevant P values via 5-fold cross-validation with 5 rep-
licates (Archer and Archer, 2016). Partial dependence analysis, 
commonly used alongside machine learning models such as random 
forests, evaluates the significance of explanatory factors and illustrates 
the variation trends in the output as input variables (i.e., explanatory 
factors) change. This approach effectively demonstrates the relationship 
between a subset of input variables and the predicted output of a model, 
providing critical insights into how specific factors influence the WBE 
data (i.e., CRNA) (Cheng et al., 2019). Partial dependence analysis is 
achieved by marginalizing the model output over the entire possible 
distribution of input variables, including the value 0 (Cheng et al., 2019; 
Molnar, 2020). Partial dependence analysis estimates the marginal ef-
fect of a single feature by averaging the model’s predictions over the 
distribution of all other features (Molnar, 2020). Thus, partial depen-
dence result reflects relative trends in the model output rather than 
actual observed values. The partial dependence function for regression, 
and the differences between permutation and partial dependence were 
described in detail in SI Section S4. The permutation analysis by rfPer-
mutate package was firstly to find out all significant factors (P < 0.05), 
then the partial dependence analysis was used to illustrate how the 
significant factor affects the target variable. To quantify the impact on 

the CRNA-Incidence correlation, partial dependence analyses were con-
ducted for each identified significant factor (P < 0.05). The following 
7-day and following 14-day cases were used as target variables (output) 
with CRNA and significant factor as two predictor variables in partial 
dependence analysis. Due to the variable evaluation differences between 
permutation and partial dependence analysis, some factors would be 
identified as significant factor with high %IncMSE in permutation while 
showed no obvious impact on the variations of target variable. These 
factors would be excluded in partial dependence discussions. Only the 
factors simultaneously showing significance (P < 0.05) in permutation 
analysis and showing notable impact on target variable during partial 
dependence, would be included in the discussions of partial dependence 
analysis.

3. Results

3.1. COVID-19 status, demographic, socioeconomic, epidemiological, 
environmental, test accessibility conditions and international air travel of 
examined counties

The 222 counties (Table S1) across 49 states in USA with population 
size ranged from 0.01 to 10 M, covering 104 M populations (Fig. 1a). 
During the study period (June 2021-November 2022), the weekly new 
cases ranged from 0 to 271,299 cases (IQR: 49–222) with clear regional 
variations (Fig. 1b). The weekly new cases of examined counties began 
to increase since June 2021 and peaked in January 2022 with 2 infection 
waves observed (December 2021-Feburary 2022 and May 2022-July 
2022) (Fig. 1b). During the study period, CRNA ranged from 0.3 to 
8833.1 copies/mL (IQR: 221.7–910.8) and also peaked in January 2022 
(Fig. S1).

The demographic status of examined counties was represented by 
population ratios of different age groups (Fig. 1c). Population aged be-
tween 18 and 65 (years old, omitted hereafter) was the dominant group 
among examined counties with a population ratio of 0.44–0.74 (IQR: 
0.59–0.62). The range of ratio for population aged below 5 was 
0.03–0.08 (IQR: 0.05–0.06), between 5 and 17 was 0.11–0.24 (IQR: 
0.14–0.18), and over 65 was 0.10–0.40 (IQR: 0.15–0.20).

For better adaptation and transferability to other regions, CCVI was 
used to reflect the socioeconomic and partial epidemiological status of 
the examined counties. These counties had an overall vulnerability of 
0.47 (IQR: 0.25–0.72), CCVI in socioeconomic status of 0.42 (IQR: 
0.23–0.67), minority status and language of 0.71 (IQR: 0.47–0.87), 
household & transportation of 0.45 (IQR: 0.23–0.63), epidemiological 
risk of 0.22 (IQR: 0.11–0.42), healthcare system of 0.36 (IQR: 
0.14–0.61), high risk environments of 0.46 (IQR: 0.28–0.64) and pop-
ulation density of 0.86 (IQR: 0.66–0.95) (Fig. 1c).

The epidemiological factors include vaccination factors, COVID-19 
variants, and variant diversity (Table S2). The ratio of vaccination re-
cipients among the total population increased from 0.58 (IQR: 
0.51–0.65) in June 2021 to 0.77 (IQR: 0.62–0.88) in November 2022 for 
the first dose, from 0.51 (IQR: 0.43–0.56) to 0.67 (IQR: 0.54–0.75) for 
the second dose, and from 0.34 (IQR: 0.32–0.36) to 0.54 (IQR: 
0.45–0.57) for booster (Fig. S2). Clear regional and temporal differences 
in vaccination recipient ratios were observed among counties (Figs. S3- 
S5). The major variants of SARS-CoV-2 shifted from Alpha to Delta after 
June 2021, then to Omicron after January 2022, with 18 subvariants of 
Delta and Omicron (lineages) being examined (Figs. S6), and clear 
regional and temporal variations were observed (Figs. S7-S9). The 
variant diversity was reflected through Shannon index of 0.74 (IQR: 
0.55–0.93) and Inverse Simpson index of 1.79 (IQR: 1.35–2.10) in these 
counties, which changed along with geographic regions and time 
(Figs. S10-S11). These 2 diversity indices all peaked in June 2021, which 
was consistent with the period in which most variants coexisted 
(Fig. S6a).

The test accessibility also showed temporal and regional variations 
(Fig. 1c, Figs. S12-S13). Positive ratio of testing remained low with 
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medians < 0.10 (IQR: 0.06–0.15) for most of the time, but peaked in 
January 2022 (0.30, IQR: 0.22–0.34) and June-July 2022 (0.17, IQR: 
0.15–0.22). For most counties, the distance to test sites was 3.2 miles 
(IQR: 1.9–3.3), while the test sites per 100,000 people (100k) was 8 
(IQR:6–9) (Fig. 1c and Fig. S13). Examined counties showed obvious 
seasonal variations for environmental factors (i.e., low temperature in 
winter and high temperature in summer) in air temperature and 
wastewater temperature, which medians were 18.1 ◦C (IQR: 13.2–20.2 
◦C) and 21.2 ◦C (IQR: 19.3–22.9 ◦C), respectively (Fig. 1c, Figs. S14- 
S15).

As for international air travel, inbound passenger and total interna-
tional passenger of examined states ranged from 0 to 2.87 M (IQR: 
0.08–0.45 M) and 0–5.70 M (IQR: 0.15–0.89 M), respectively. Similar 
temporal and regional differences were observed in inbound passenger 
and total international passenger, showing increasing trends over time 
with a peak in June-August 2022 and majorly arriving in the same states 
(e.g., CA, FL and TX) (Figs. S16-S17). These variations were likely 
associated with the recovering international tourism and business ac-
tivities, particularly after the lifting of test restriction and regional 
aviation differences (Flaherty et al., 2022).

3.2. Correlations between CRNA and incidence of examined counties 
during pandemic and post-pandemic periods

The CRNA-incidence correlation coefficients were calculated every 5 
weeks for a certain county under various leading times (2–14 d, weekly 
average, and 15-d-rolling average). Compared with other incidences, we 
observed higher correlations between CRNA and following 7-day cases 
(Rf7) and following 14-day cases (Rf14) among examined counties 
(Result S1, Fig. S18). This was consistent with the observations in pre-
vious studies (Jiang et al., 2022) and attributable to the viral incubation 
time and time lag between symptom onsite and testing (Badr et al., 
2020). Thus, Rf7 and Rf14 were selected for the following correlation 
analysis.

The USA government lifted the restrictions on negative testing re-
sults for international passengers before boarding a flight to USA after 
June 2022 (Bart et al., 2023), meaning that even positive visitors can 
freely enter USA. The report of USA department of transportation (DOT) 
showed that monthly average air passenger after June 2022 increased to 
18 M which was close to the pre-pandemic levels (20 M) (Statistics, 
2023). Thus, the periods before and after June 2022 resembled the 
pandemic period and post-pandemic period, respectively. Clear tempo-
ral and regional differences were observed for Rf7 and Rf14 among 
examined counties during two time periods (Fig. 2). Before June 2022, 
Rf7 was 0.70 (IQR 0.30–0.88) and Rf14 was 0.74 (IQR 0.31–0.90) 
(Fig. 2a-b), suggesting the good predictability of WBE for COVID-19 
cases in following 7-day and 14-day during the pandemic period. After 
June 2022, the Rf7 and Rf14 reduced to 0.01 (IQR: − 0.31–0.36) and 
− 0.01 (IQR: − 0.38–0.45), respectively. In particular, 61 % and 59 % of 
examined counties showed negative correlations for Rf7 (− 0.20, IQR: 
− 0.41–− 0.01) and Rf14 (− 0.26, IQR: − 0.44–− 0.13) after June 2022, 
and 24 counties even showed strong negative correlations of Rf7 and Rf14 
(R<− 0.5) (Fig. 2c-d). Such decreases in correlation coefficients in 
post-pandemic times also showed clear regional differences within these 
counties. For instance, California had the largest changes in the number 
of international passengers before and after the lifting of travel re-
strictions, where the Rf7 decreased from 0.61 (IQR: 0.31–0.87) before 
June 2022 to − 0.05 (IQR: − 0.21–0.29) after June 2022, and Rf14 from 
0.71 (IQR: 0.30–0.88) before June 2022 to − 0.01 (IQR: − 0.29–0.39) 
after June 2022. This suggested the potential contributions of interna-
tional air travel. The variations in Rf7 and Rf14 before and after June 
2022 were also observed in the same county. For example, in East Baton 
Rouge Parish in Louisiana, the Rf7 (0.79) was lower than Rf14 (0.84) 
before June 2022 while the Rf7 (0.53) was higher than Rf14 (0.31) after 
June 2022.

3.3. Contribution of explanatory factors for reported cases

Random forest models for describing the reported cases in following 
7-day and 14-day (cases/per 100k population) under the corresponding 
CRNA, and demographic, CCVI, epidemiological, environmental factors, 
test accessibility, and international air travel (a total of 37 input factors, 
Table S2) were established for the time periods before (pandemic) and 
after June 2022 (post-pandemic) separately. The models achieved good 
fitting performance with R (correlation between reported cases and 
predicted cases) ranging from 0.93 to 0.98, and root mean square error 
(RMSE) ranging from 98.6 to 131 (Table S4), suggesting that the 
explanatory factors reasonably captured the changes of reported cases in 
these time periods.

Clear shifts in the explanatory factors and their importance (reflected 
by the increase in mean-squared-error MSE, %) for reported cases under 
the corresponding CRNA were observed before and after June 2022 
(Fig. 3). Before June 2022, positive testing ratio and CRNA were found as 
the most important factors (P < 0.01) for following 7-day cases with a % 
IncMSE of 23 %, followed by the variant ratio of Omicron and Delta (% 
IncMSE: 20 %, P < 0.01), and other CCVI, demographic, and interna-
tional air travel factors with %IncMSE ranging from 8.7 to 14.8 % and 
significance (P < 0.05) (Fig. 3a). Similarly, positive testing ratio, CRNA, 
and variant ratio of Omicron and Delta were found as the most impor-
tant factors (%IncMSE: 18–20 %) for following 14-day cases, followed 
by other 7 important factors, including demographic, CCVI, interna-
tional air travel and test accessibility factors with importance (% 
IncMSE: 8.8–13.9 %) before June 2022 (Fig. 3c). After June 2022, 
although positive testing ratio, CRNA, and variant ratio of Omicron and 
Delta were found as factors with significant contributions, their impor-
tance was much lower, with %IncMSE ranging from 6.8 to 14.2 % 
(Fig. 3b and d). Furthermore, other factors including international air 
travel, minority and demographic factors also showed significant con-
tributions of 7.7–11.3 % for following 7-day and 14-day cases after June 
2022. The detailed contributions of these significant factors are shown 
and discussed in the following sections.

In addition, 14 and 13 factors were found insignificant (P > 0.05) for 
following 7-day and 14-day cases, including all environmental factors, 
epidemiological factors (excluding ratios of Omicron and Delta), CCVI 
factors (excluding healthcare system and minority status), and popula-
tion ratios aged between 5 and 17 and below 5 (Fig. 3). This indicated 
that their impacts on reported cases were limited in comparison to sig-
nificant factors, thus were not investigated in the following sections.

3.3.1. Impact of international passenger on reported cases under the 
corresponding CRNA

Inbound passenger and total international passenger were all iden-
tified as significant factors (P < 0.05) before and after June 2022. The 
inbound passenger exhibited high importance for following 7-day and 
14-day cases with %IncMSE of 10.3–11.3 % before June 2002 and 
7.1–10.3 % after June 2022 (Fig. 3). Also, total international passenger 
showed high importance for following 7-day and 14-day cases with % 
IncMSE of 8.7–10.1 % before June 2002 and 6.9–8.7 % after June 2022 
(Fig. 3). The increases of inbound passenger and total international 
passenger clearly increased the number of cases in the following 7-day 
and 14-day under the same CRNA (Fig. 4). Such effect was more 
obvious when the inbound passenger exceeded 0.7 M and total inter-
national passenger exceeded 1.7 M during pandemic period (before June 
2022) (Fig. 4a-b and e-f), and when the inbound passenger exceeded 1.5 
M and total international passenger exceeded 2.8 M in the post- 
pandemic period (after June 2022) (Fig. 4c-d and g-h). This is likely 
due to the imported infections from international passengers, who tested 
positive in a short period after landing, but their viral shedding may not 
have been captured by the wastewater sampling (7 or 14 days ago). 
During the pandemic, although negative tests and proof of full vacci-
nation were required (Bart et al., 2023), imported infection from in-
ternational travel was commonly observed (Ahmed et al., 2022; Farkas 
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Fig. 2. The temporal variations of the correlation between CRNA and incidence in following 7-day (Rf7) and following 14-day (Rf14). The temporal variations of (a) 
overall Rf7, (b) overall Rf14, (c) county-level Rf7 and (d) county-level Rf14 (white-colored cells reflect missing values).
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et al., 2023), potentially due to the long incubation period of COVID-19 
or false negative results (Arevalo-Rodriguez et al., 2020; Badr et al., 
2020). Such imported infections would be more severe in post-pandemic 
period. The inbound passenger data inherently contains fewer data 
points at higher ranges (Fig. S16), limiting the model’s ability to learn 
relevant patterns and make accurate predictions (Molnar, 2020). This 

likely leads to the block of higher new infections observed 
middle-numbers of inbound passengers in Fig. 4b. Also, inbound pas-
senger showed slightly higher correlations with following 7-day cases (R 
= 0.30, P < 0.001) and 14-day cases (R = 0.32, P < 0.001) compared to 
total international passengers (R = 0.22, P < 0.001 and R = 0.25, P <
0.001, respectively). This is consistent with the higher contribution of 

Fig. 3. The factor contribution to the percentage increase in mean squared error (%IncMSE) on following 7-day and 14-day cases before and after June 2022 (a) 
following 7-day case before June 2022 (b) following 7-day case after June 2022 (c) following 14-day case before June 2022 and (d) following 14-day case after June 
2022. Symbol * means 0.01<P < 0.05 and ** means P < 0.01.
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inbound passenger than total international passenger (Fig. 3). This dif-
ference is likely because total international passengers include outbound 
passenger as well. Inbound passengers are more likely to contribute to 
community transmission compared to outbound passengers (Russell 
et al., 2021).

3.3.2. Impact of test accessibility factors on reported cases under the 
corresponding CRNA

For test accessibility factors, positive ratio of testing was identified as 
the most significant factor (P < 0.01) with high %IncMSE for following 
7-day cases (22.9 % before June 2022 and 8.3 % after June 2022) and 
following 14-day cases (19.8 % before June 2022 and 14.2 % after June 
2022) (Fig. 3). Under the same CRNA, higher positive ratio of testing 
increased more following 7-day and following 14-day cases and such 
increases were more obvious when the positive ratio of testing exceeded 
0.25 before and after June 2022 (Fig. S19a-b and e-f). Contrastingly, 
under the same CRNA, test sites per 100k showed limited change on 
following 7-day and 14-day cases before June 2022, while it obviously 
increased following 7-day and 14-day after June 2022 when the test sites 
per 100k exceeded 30 (Fig. S19c-d and g-h). This indicated that in post- 
pandemic times, a better test accessibility would help to report/record 
more COVID-19 infections among the ‘true infections’ (reflected by 
CRNA).

3.3.3. Impact of epidemiological factors on reported cases under the 
corresponding CRNA

Variant ratios of Omicron and Delta were the most significant 
epidemiological factors (P < 0.01) with high %IncMSE ranging from 
18.7 to 20.0 % for following 7-day and 14-day cases before June 2022 
(Fig. 3a and c). Under the same CRNA, a higher ratio of Delta variant was 
associated with lower cases in following 7-day and 14-day while higher 
ratio of Omicron variant increased following 7-day and 14-day cases 
before June 2022 (Fig. 5). Such changes were more obvious when the 
ratio of Delta and Omicron exceeded 0.37 and 0.62, respectively (Fig. 5a 
and e). This is likely due to the lower viral shedding loads of Omicron 
variants than Delta variants and the progression of the vaccination along 
with the increasing dominance of Omicron variants (Figs. S3-S6). Con-
trastingly, only Omicron variant ratio was significant (P < 0.01) for 
following 14-day cases with %IncMSE of 7.7 % after June 2022 (Fig. 3). 
This is consistent with the observed variant shift, where Omicron vari-
ants became dominant with a ratio over 0.99 after June 2022 (Fig. S6). 
The ratios of Delta variant and Omicron variant inherently contains 
fewer data points at higher ranges and lower rangers (Fig. S8–9), 
respectively, limiting the model’s ability to learn relevant patterns and 
make accurate predictions to illustrate the transition from Delta variant 
to Omicron variant during the pandemic.

3.3.4. Impact of demographics on reported cases under the corresponding 
CRNA

The ratios of population aged between 18 and 65 and aged over 65 
were significant (P < 0.01) with %IncMSE ranging from 10.2 to 12.6 % 
for the reported cases before June 2022 (Fig. 3a and c), while the ratio of 
population age between 18 and 65 had %IncMSE ranging from 5.0 to 7.7 
% after June 2022 (P < 0.05) (Fig. 3b and d). Under the same CRNA, the 
increase of population ratio between 18 and 65 showed limited impact 
on the reported cases, until population ratio between 18 and 65 was 
above 0.48, where it notably reduced the reported cases in the following 
7 days and 14 days before and after June 2022 (Fig. S20a-b and e-f). 

Contrastingly, the population aged over 65 showed limited impact on 
reported cases while increased the reported cases until its ratio exceeded 
0.37 before and after June 2022 (Fig. S20c-d and g-h).

3.3.5. Impact of CCVI factors on reported cases under the corresponding 
CRNA

For CCVI factors, the vulnerability in healthcare system and minority 
status and language were significant factors (P < 0.05) with %IncMSE 
ranging from 9.1 to 12.4 % before June 2022 (Fig. 3a and c), while 
minority status and language showed significance with the second 
highest %IncMSE of 11.3 % for following 14-day cases after June 2022 
(Fig. 3b and d). Under the same CRNA, the following 7-day and 14-day 
cases slightly increased when the minority status and language excee-
ded 0.80 before June 2022, while this increase became notable after 
June 2022 (Fig. 6a-b and e-f), indicating that counties with higher 
vulnerability of minority status and language would have more reported 
cases under the same CRNA, especially in post-pandemic times. Con-
trastingly, under the same CRNA, following 7-day and 14-day cases 
showed minor variations with the changes in healthcare system 
vulnerability before June 2022, but they notably decreased after June 
2022 when the healthcare system vulnerability exceeded 0.83 (Fig. 6c- 
d and g-h). Such decreases suggested that counties with more vulnerable 
healthcare system reported fewer cases than those with better health-
care systems, especially in post-pandemic times.

4. Discussions

To the best of our knowledge, this is the first study to comprehen-
sively explore the impacts of demographic, socioeconomic, epidemio-
logical, environmental, test accessibility, and international air travel 
factors on the reported cases under the corresponding CRNA. In the post- 
pandemic era, COVID-19 is no longer classified as a global health 
emergency, and most travel restrictions have been lifted (Harris, 2023). 
As public vigilance towards COVID-19 decreases and expanding test 
accessibility becomes less feasible due to the high economic burden (US 
$46,640 for only PCR testing cost in a 1000-population community) 
(Purba et al., 2024), WBE surveillance is expected to play an increas-
ingly important role in monitoring and predicting community in-
fections. Traditionally, WBE-based surveillance relies on the 
close-to-linear relationship (i.e., strong positive correlations) between 
the CRNA and reported cases to reflect or predict infections within the 
community (Polo et al., 2020). However, our study found that this 
correlation reduced significantly during post-pandemic period in com-
parison to the pandemic period. The CRNA-Incidence correlation was 
0.70 (IQR: 0.30–0.88) and 0.74 (IQR: 0.31–0.90) in pandemic period for 
cases in the following 7 days and 14 days, respectively. However, this 
correlation reduced to 0.01 (IQR: − 0.31–0.36) and − 0.01 (IQR: 
− 0.38–0.45) in post-pandemic period, for cases in the following 7 days 
and 14 days, respectively (Fig. 2a-b). These findings suggest that the 
traditional use of the CRNA-Incidence correlation faces challenges in the 
post-pandemic period, where a direct linear relationship cannot be 
established between CRNA and reported incidence, indicating the po-
tential influence of other factors.

To explore the reasons behind the dramatic reduction in the CRNA- 
Incidence correlation during the post-pandemic period, we further 
examined the contributions of demographics, test accessibility, epide-
miological factors, environmental factors, international air travel, and 
CRNA to reported cases before and after the pandemic. During the 

Fig. 4. The partial dependence of inbound passenger and total international passenger along with the CRNA on following 7-day and 14-day cases before and after 
June 2022. Partial dependence of inbound passenger and CRNA on: (a-b) following 7-day cases (cases/per 100k population, the same hereafter) before and after June 
2022; Total international passenger and CRNA on: (c-d) following 7-day cases before and after June 2022; Inbound passenger and CRNA on: (e-f) following 14-day cases 
before and after June 2022; Total international passenger and CRNA on: (g-h) following 14-day cases before and after June 2022. The test restriction of COVID-19 
before boarding a flight to the USA was lifted in June 2022. The darker and lighter ticks along the axes indicate more data points and fewer data points in this value 
range, respectively.
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pandemic, CRNA was found to be one of the most important factors (P <
0.001) for reported cases in both the following 7 days (%IncMSE: 22.6 
%) and 14 days (%IncMSE: 18.1 %) (Fig. 3a and c). However, in the post- 
pandemic period, CRNA became less important (P > 0.05) for reported 
cases in both the following 7 days (%IncMSE: 3.2 %) and 14 days (% 
IncMSE: 5.7 %) (Fig. 3b and d). Meanwhile, factors such as the positive 
testing ratio, inbound passengers, total international passengers, Omi-
cron variant ratio, minority population, and the ratio of the population 
aged 18 to 65 remained significant (P < 0.05) in relation to reported 
cases, contributing 8.7–22.9 % to %IncMSE individually in the post- 
pandemic period. This aligns with the reduced CRNA-Incidence correla-
tions in the post-pandemic period, suggesting that additional factors 
should be considered when applying WBE and using CRNA-Incidence 
correlations for COVID-19 community surveillance.

In post-pandemic period, we observed that CRNA-Incidence correla-
tion shifted from 0.70 (IQR: 0.30–0.88) to 0.01 (IQR: − 0.31–0.36) for 
cases in the following 7 days and 0.74 (IQR: 0.31–0.90) to − 0.01 (IQR: 
− 0.38–0.45) in the following 14 days, respectively (Fig. 2a-b). 
Furthermore, compared with pandemic period, CRNA became less 
important (P > 0.05) to reported cases in both following 7-day (% 
IncMSE: 3.2 %) and 14-day (%IncMSE: 5.7 %) in post-pandemic period 
(Fig. 3b and d). Meanwhile, positive ratio of testing, inbound passenger, 
total international passenger, Omicron variant ratio, minority, and ratio 
of population aged between 18 and 65 remained as significant factors (P 
< 0.05) to reported cases with a contribution of 8.7–22.9 % in %IncMSE 
individually in the post-pandemic period. This indicated that reported 
cases could not be well reflected by CRNA in post-pandemic period, while 
socioeconomic, international air travel, epidemiological and de-
mographic factors introduced more noise in the CRNA-Incidence corre-
lation and WBE application.

In post-pandemic era (after June 2022), international travel has 
returned to its pre-pandemic status. The model analysis further revealed 
that an increase in international passenger increased future reported 
cases under the same CRNA, particularly after June 2022 (Fig. 4). This is 
likely caused by the imported infections from positive international 
passengers, which led to more reported cases under the same CRNA 
(captured a few days before their landing). After June 2022, negative 
test result before boarding a flight to USA is not required for interna-
tional passengers, meaning that even infected passengers can fly to USA 
(Bart et al., 2023). The USA DOT report indicated that monthly air 
passenger numbers increased to 18 M after June 2022, nearing 
pre-pandemic levels (20 M) (Statistics, 2023). Meanwhile, pre-departure 
testing decreased by 80 % within three months of lifting test restrictions, 
and the positive test ratio among inbound passengers increased by 52 % 
(Bart et al., 2023). The viral shedding of infected international passen-
gers was not captured by the wastewater sampling before landing, 
eventually leading to higher reported cases than the infections reflected 
by CRNA.

In post-pandemic period, a higher ratio of Omicron infection led to 
higher reported cases compared to the Delta infection in the following 7- 
day and 14-day under the same CRNA (Fig. 5). This is likely related to the 
lower viral shedding in Omicron-infected patients than in Delta-infected 
patients and the progression of vaccination along with the increased 
dominance of Omicron variants. Viral shedding in Delta-infected in-
dividuals was 52 % higher than in Omicron-infected individuals in nasal 
secretions (Martins et al., 2022). This implies that data on circulating 
variants is important for estimating COVID-19 community infection 
through WBE. In particular, the frequency of COVID-19 variant changes 

is expected to increase in the future (Carabelli et al., 2023). However, 
current variant monitoring primarily relies on clinical reports from pa-
tients, which can face delays of weeks due to factors like symptom onset 
and the availability of analytical facilities (Mercer and Salit, 2021; 
Robishaw et al., 2021). Recently, a few countries, such as Canada and 
Ireland, have implemented wastewater surveillance for COVID-19 var-
iants of concern (Hasing et al., 2023; Reynolds et al., 2022). This 
approach could serve as a valuable supplement for predicting COVID-19 
cases in communities through WBE. Also, the increased dominance of 
Omicron coincided with the progression of vaccination (Fig. S3-S6). 
Omicron variants have become dominant since January 2022, when the 
first-dose vaccination, second-dose vaccination and booster vaccination 
coverage reached 73.3 % (IQR: 60.9–84.3 %), 71.8 % (IQR: 63.3–95.0 
%), and 44.8 % (IQR: 40.0–50.3 %), respectively (Fig. S3-S5). The 
contribution of vaccination coverage on the reported incidences was not 
significant (P > 0.05, %IncMSE range of 4.7–12.8 %) (Fig. 3), viral load 
tested in individuals in Switzerland was revealed to be lower in fully 
vaccinated/booster-vaccinated individuals than in unvaccinated in-
dividuals for both Omicron and Delta infections (Puhach et al., 2022). 
Therefore, it is also important to consider vaccination coverage when 
utilizing WBE.

Case under-reporting is another major challenge for WBE surveil-
lance in estimating infections in post-pandemic era. Generally, case 
under-reporting is unavoidable for infectious disease surveillance 
(Milanesi and De Nicolao, 2023) as the testing largely relies on indi-
vidual willingness. The reported cases reflect only a portion of the ‘true’ 
infections (McManus et al., 2023). Theoretically, if a consistent pro-
portion of actual infections is identified by clinical testing over time, 
reported COVID-19 cases could align closely with the ‘true infections’ 
and corresponding CRNA. However, our study observed that fewer cases 
were reported in counties with more vulnerable healthcare systems and 
fewer test sites under the same CRNA (Fig. 6 and Fig. S19). This is likely 
attributed to the insufficient test accessibility and lower testing will-
ingness in these counties, consistent with previous findings that testing 
rates and resident willingness are positively correlated with testing 
availability (Hendricks et al., 2023). Such observations are also reflected 
by the impacts of populations aged between 18 and 65 and minority 
vulnerability in our study. An increase of populations aged between 18 
and 65 decreased the reported cases under the same CRNA (Fig. S20). 
This age group comprises the primary workforce and student popula-
tion, and a positive test result could disrupt their work or education 
schedules and even lead to job loss due to mandatory 5-day isolation 
(Capasso et al., 2022; Walensky, 2021), resulting in a lower willingness 
to testing. In comparison, increase in the ratio of elderly people among 
population increased the reported cases under the same CRNA (Fig. S20). 
Elderly people are more likely to experience severe symptoms due to 
underlying disease, which increased their likelihood and awareness of 
seeking COVID-19 testing (Lu et al., 2022). In addition, increases in 
minority vulnerability increased the reported cases under the same 
CRNA, particularly in following 14-day. Previous studies revealed that 
ethnic minorities worked and lived in environments exposed to higher 
infection risk due to socioeconomic disadvantage, high reliance on 
public transportation, and crowded households (Goldman et al., 2021; 
Tai et al., 2021). Thus, they are more likely to experience severe 
symptoms, which increases their likelihood of seeking COVID-19 testing 
in following 14-day.

This study provides a retrospective analysis of the CRNA-incidence 
correlation in WBE applications across 222 counties in the USA, 

Fig. 5. The partial dependence of the variant ratio of Delta and Omicron along with the CRNA on following 7-day and 14-day cases before and after June 2022. Partial 
dependence results of Delta variant ratio and CRNA on: (a-b) following 7-day (cases/per 100k population, the same hereafter) cases before and after June 2022; 
Omicron variant ratio and CRNA on: (c-d) following 7-day cases before and after June 2022; Ratio of Delta variant ratio and CRNA on: (e-f) following 14-day cases 
before and after June 2022; Omicron variant ratio and CRNA and CRNA on: (g-h) following 14-day cases before and after June 2022. The test restriction of COVID-19 
before boarding a flight to the USA was lifted in June 2022. The darker and lighter ticks along the axes indicate more data points and fewer data points in this value 
range, respectively.

X. Li et al.                                                                                                                                                                                                                                        Water Research 274 (2025) 123114 

11 



(caption on next page)

X. Li et al.                                                                                                                                                                                                                                        Water Research 274 (2025) 123114 

12 



highlighting the importance for public health sectors to consider factors 
such as international travel, variant mutations, test accessibility, and the 
distribution of age and minority groups when utilizing WBE models for 
COVID-19 surveillance. Potential application of machine-learning or 
multi-factor linear models, rather than relying solely on CRNA-incidence 
correlation can help with this. A recent study conducted in the United 
Kingdom has revealed that multi-factor model showed more accurate 
COVID-19 case prediction after considering the factors of wastewater 
sampling, sample processing, and catchment population and facilities 
(Pellett et al., 2024). Furthermore, correction factors can be introduced 
when applying WBE for estimating community infections in regions with 
high population mobility, less test accessibility, or higher distribution of 
age and minority groups.

There are several limitations in this study. Since the county-level 
aviation data is unavailable, we use the state-level international pas-
senger data from international airport statistics to represent the holistic 
international passenger for all studied counties in the same state to 
investigate the impact of international air travel. However, this some-
times might not be appropriate to some remote counties with limited 
international passengers (e.g., counties in South Dakota). Thus, future 
studies are encouraged to use county-level data to directly study the 
impacts of international passengers when statistical reports are available 
in the county/state’s transportation department. The R and RMSE ach-
ieved in our models after June 2022 were both lower than those ach-
ieved before June 2022. This suggests the potential contributions of 
other factors that were not included in the model and require future 
investigations. Also, we only considered international passenger from 
air travel due to the data availability, while some international pas-
sengers might enter USA by road/water transportation (e.g., road entry 
in USA/Canada border) (Gurbuz et al., 2023). Future studies are rec-
ommended to incorporate these passengers with air passengers to obtain 
a comprehensive exploration of international passenger impacts on 
WBE.

5. Conclusions

This study for the first time comprehensively investigated variations 
of CRNA-Incidence correlation and the impacts of demographic, socio-
economic, epidemiological, environmental, test accessibility, and in-
ternational air travel factors on the reported cases under the 
corresponding CRNA in 222 USA counties during the pandemic period 
(June 2021-May 2022) and post-pandemic period (June-November 
2022). This leads to the following key findings: 

• The lifting of travel restrictions in June 2022 notably reduced the 
CRNA-Incidence correlations in following 7-day from 0.70 (IQR 
0.30–0.88) to 0.01 (IQR: − 0.31–0.36) and in following 14-day from 
0.74 (IQR 0.31–0.90) to − 0.01 (IQR: − 0.38–0.45).

• Socioeconomic, international air travel, epidemiological and de-
mographic factors played major roles in the variations of reported 
cases in the in following 7-day and 14-day under the corresponding 
CRNA in the post-pandemic period (after lifting travel restrictions).

• Socioeconomic, international air travel, epidemiological and de-
mographic factors also introduced more noise for COVID-19 inci-
dence monitoring through WBE, due to imported infections, visitor 
mobility, variant mutation, and case under-reporting.

• Our findings will facilitate the global health departments to 
dynamically update their WBE models based on local context, 

improving the feasibility and certainty when using WBE for infection 
surveillance.
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