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1. Introduction

The purpose of this paper is to introduce and analyse a class of nonlinear kinetic 
equations with density dependent collision rates. These equations are of particular inter
est because they can be used to derive the porous medium and fast diffusion equations. 
Our class of equations includes those with quadratic nonlinearity that resembles the 
nonlinearity found in physical gas kinetic models such as the Boltzmann equation.

The porous medium and fast diffusion equations exhibit rich mathematical structures 
and have been extensively studied. They admit a natural class of Lyapunov functions 
(such as p-entropies) and display a variety of complex dynamical behaviours. Depending 
on the parameter regime and initial data, solutions to these equations may exhibit finite 
speed of propagation, non-uniqueness, or even finite-time extinction, all of which pose 
significant analytical challenges.

The class of equations that we study is as follows,

∂tf(t, x, v) + v · ∇xf(t, x, v) = ραf (t, x) (ρf (t, x)ℳ(v) − f(t, x, v)) (1.1)

where f := f(t, x, v) ≥ 0, (t, x, v) ∈ (0,+∞]×Td×Rd, d ≥ 1, ρf (t, x) :=
∫︁
Rd f(t, x, v) dv

is the spatial density, α ∈ R and ℳ(v) = (2π)−d/2 exp(−|v|2/2) is a Gaussian function 
(or the normalised Maxwellian distribution with 0 mean velocity, unit temperature and 
the Boltzmann constant). Here, Td denotes the d−dimensional unit torus.

Equation (1.1) models an ensemble of particles each of which has a position x and 
velocity v. The unknown f is the probability density of a ``typical particle'' in this 
ensemble over phase space. The dynamics described by (1.1) are as follows. A particle will 
travel in a straight line with its current velocity until a random time. At this random time, 
a collision occurs and the particles velocity changes to one drawn from the distribution 
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with density ℳ(v) independently from everything else. The rate at which collisions 
happen is ραf (t, x). This means that the probability of a collision occurring is dependent 
on the number of particles in the vicinity of the colliding particle. The most natural 
choice of α in (1.1) would be α = 1. In this case, the rate at which ``collisions'' happen is 
proportional to the number of particles available to be ``collided'' with. The probability 
of a collision occurring is higher when the spatial density is high.

We consider a diffusive scaling (t, x, v) ↦→
(︁
ε2t, εx, v

)︁
, where ε > 0 is a given constant 

which can be taken as the dimensionless mean free path of particles. Denoting the new 
unknown as fε, Equation (1.1) then becomes,

∂tfε(t, x, v) + 1
ε 
v · ∇xfε(t, x, v) = 1 

ε2 ρ
α
fε(t, x) (ρfε(t, x)ℳ(v) − fε(t, x, v))

fε(0, x, v) = fε,in(x, v).
(1.2)

Under the diffusive scaling, the particles undergo frequent collisions, and over a long 
timescale the macroscopic behaviour emerges. One of the goals of this article is to derive 
rigorously an equation describing this macroscopic behaviour.

The main results of this article are summarised as follows. We prove

(i) Global well-posedness of (1.2) and propagation of Maxwellian bounds.
This result relies on the maximum principle which implies that if the initial datum 
lies between a constant times Maxwellians, then the corresponding solutions also 
satisfy this property.

(ii) Quantitative convergence to equilibrium (hypocoercivity) result as t → ∞ for (1.2). 
Here, we use the L2-hypocoercivity methods due to Dolbeault, Mouhot and 
Schmeiser introduced in [21] for mass-conserving linear kinetic equations. We adapt 
this technique to the nonlinear setting.

(iii) Quantitative diffusive limit of (1.2) as ε → 0 to the porous medium or fast diffusion 
equations.
Combining relative entropy and hypocoercivity methods, we show that solutions of 
Equation (1.2) as ε → 0 are functions of the form ρ(t, x)ℳ(v) where ρ(t, x) solves 
the following nonlinear diffusion equation:

{︄
∂tρ(t, x) = ∇x ·

(︁
ρ−α(t, x)∇xρ(t, x)

)︁
,

ρ(0, x) = ρin(x).
(1.3)

This article forms one of very few works deriving the porous medium or fast diffusion 
equations from kinetic equations rigorously. To the best of our knowledge, this is the 
only work which treats the full range of possible α. The limit equations (1.3) are well 
studied and appear in many modelling applications in various physical, biological, and 
engineering contexts. Understanding their emergence from the kinetic level is key to 
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explaining how their exotic behaviour emerges at the macroscopic level from underlying 
microscopic processes.

Outline of paper In the remainder of this section, we compare our class of equations with 
similar kinetic models including the BGK equation and run and tumble equations. We 
give a summary of the limit equations (1.3) and some of their interesting mathematical 
properties. Subsequently, we give our motivations for the present paper and we finish 
Section 1 with the state of the art. In Section 2.1, we present our main results followed 
by some preliminary results. In Section 3, we prove that the Cauchy problem (1.2) with 
initial data bounded from above and below by a constant Maxwellian is well-posed. We 
show the propagation of the Maxwellian bounds for all times. In Section 4, we establish 
the exponential relaxation to equilibrium in time using the hypocoercivity technique 
developed in [21]. Lastly, in Section 5, we quantify the rate of the diffusive asymptotics 
by combining a study of the finite-time asymptotics (Section 5.2) with the uniform 
in ε convergence to equilibrium of the solutions to both the kinetic and the parabolic 
equations over long times (Section 5.1).

1.1. The models

The kinetic equations Nonlinear kinetic equations of the form (1.1) can be considered 
as toy models for the Boltzmann equation as they have a kinetic structure, Maxwellian 
local equilibria and density dependent collision rates.

A natural comparison arises between the equations studied here and the BGK equa
tions, which can be written as

∂tf(t, x, v) + v · ∇xf(t, x, v) = λ(ρf (t, x))
(︁
ρf (t, x)ℳuf (t,x),Tf (t,x)(v) − f(t, x, v)

)︁
,

(1.4)

where ℳu,T (v) = (2πT )−d/2 exp(|v − u|2/2T ) is the Maxwellian velocity distribution. 
The hydrodynamic quantities momentum uf , and temperature Tf are defined via

ρf (t, x)uf (t, x) =
∫︂

f(t, x, v)v dv,

ρf (t, x)(Tf (t, x) + |uf (t, x)|2) =
∫︂

f(t, x, v)|v|2 dv.

The BGK equation (1.4) was introduced in [8] to serve as a computationally efficient 
alternative to the full Boltzmann equation while maintaining essential physical proper
ties such as conservation of hydrodynamic quantities. In Equation (1.4), the collision 
operator, the right hand side of (1.4), conserves mass, momentum and kinetic energy. 
Our toy model (1.1) simplifies (1.4) radically to an equation whose collision operator 
conserves only mass. Equation (1.4) was shown to be well posed in [32] in the case λ = 1
and the result can be straightforwardly extended to the case where λ is bounded above 
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and below. The original BGK equation in [8] has λ(ρ) = ρ. This makes the mathematical 
analysis more challenging. In this case, to the best of our knowledge, well-posedness is 
still an open problem, which is also discussed in [11,12]. In more recent mathematical 
literature, it is common to only consider λ a constant, for simplicity taken generally as 
λ = 1.

Compared to the original BGK equation, the class of equations that we consider are 
more straightforward to study. There are two fundamental reasons for this. Firstly, the 
form of the collision operator means that we expect a maximum principle to hold for this 
class of equations. This allows us to control the nonlinearity. Secondly, the fact that we 
only have one collision invariant means that we can obtain, in the limit, a hydrodynamic 
equation which only depends on mass.

The class of equations (1.1) also falls into a large class of kinetic transport equations, 
called the run and tumble equations in mathematical biology. The run and tumble equa
tions, introduced in [1,35], are used in modelling the movement of bacteria that respond 
to chemical gradients. The collision rate λ in (1.4) corresponds to the tumbling rate of 
bacteria. Although, it is common to assume λ to be a constant to ease the mathematical 
analysis, in physically more relevant cases λ depends on the gradient of the chemoattrac
tant density function which solves a Poisson-type equation [30]. On the other hand, the 
run and tumble equation differs from similar kinetic equations (1.1) in various ways, such 
as the confinement mechanism and non-explicit equilibrium solutions [39]. Under some 
conditions on the initial mass, it may exhibit finite time extinction of solutions [10], sim
ilar to its diffusive limit, Keller-Segel equation. See also [23,24] for recent hypocoercivity 
results on various run and tumble equations.

We can also compare Equation (1.1) to a similar class of kinetic Fokker-Planck type 
equations which are given by

∂tf(t, x, v) + v · ∇xf(t, x, v) = ραf (t, x)∇v · (∇vf(t, x, v) + vf(t, x, v)) . (1.5)

This equation shares some similarities with the Landau equation which is a model for 
plasma dynamics. Equations of this type have been studied in [2,27] as part of the 
program to utilise De Giorgi methods in kinetic theory.

The limit equations Equation (1.3) is known as the porous medium equation when 
α < 0 and as the fast diffusion equation when α ∈ (0, 1]. The case where α = 0 is 
the heat equation. In the case of solutions with finite mass on the whole space, these 
equations behave very differently in different parameter regimes. We briefly review these 
different behaviours as they form part of the motivation for the present and future works.

For the fast diffusion equation, when α ∈ (0, 2/d), we expect the equation to be well 
posed and for the solutions to become smooth instantaneously. If α > 2/d then the 
diffusive effect is so large so that the equation effectively loses mass instantaneously and, 
thus, is ill-posed. In the critical case when α = 2/d, the equation has non-unique solutions 
and extinction of solutions in finite time. We refer the reader to the lecture notes [19] for 
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all these facts and detailed explanations. An interesting case is in dimension d = 2 with 
the critical value α = 1. In this case, the equation is known as the logarithmic diffusion 
equation and given by

∂tρ(t, x) = Δx log(ρ(t, x)).

The solutions to the logarithmic diffusion equation exhibit extinction in finite time, 
and tend to resemble these self-similar forms near extinction. A good reference for the 
behaviour of the logarithmic diffusion equation is [38].

The porous medium equation is well-posed for any α < 0. However, the solutions 
will not be smooth. In fact if the initial data is compactly supported then this will be 
propagated by the equation. The solutions are then smooth inside the support and Hölder 
continuous at the boundary of the support [36]. The literature about the porous medium 
equation is huge and varied. A key reference is [37]. Only slightly less has been written 
about the fast diffusion equation, one could start with [36] and references therein. Much 
recent work has been done on the connection to stability of functional inequalities, see, 
for example [9].

Formal diffusive limit In the subsequent sections, we justify the diffusive limit rigor
ously. Here, in order to better understand how this comes about we perform a formal 
analysis of the diffusive limit by a Hilbert series expansion. That is, forgetting issues 
of convergence of the series, we assume that we can expand the solution fε as a formal 
power series in ε over the ring of test functions. In this purely formal expansion, each 
coefficient corresponds to the effect of an order of ε on the solution. It turns out that 
only effects up to order one in ε have an effect on our solution in this case.

We thus write fε = f0 +εf1 +𝒪(ε2) where f0, f1 ∈ C∞
c (Td×Rd). Here, f0 is the part 

of the solution that is independent of ε, and f1 corresponds to the first order effects in ε. 
Integrating this expansion in space, we have ρfε = ρ0 +ερ1 +𝒪(ε2) where ρi :=

∫︁
Td fi dx

for i = {0, 1}. Substituting these expansions into (1.2) and letting ε → 0 we immediately 
find f0 = ℳρ0.

Assuming the boundedness from below of ρ0, we now expand the power law as a 
binomial series to obtain

ραfε = ρα0

(︂
1 + ε

ρ1

ρ0
+ O(ε2)

)︂α

= ρα0 + αερα−1
0 ρ1 + 𝒪(ε2).

Thus, the order ε terms in (1.2) give

v · ∇xf0 = ρα0
(︁
ℳρ1 − f1

)︁
+ αρα−1

0 ρ1
(︁
ℳρ0 − f0

)︁
= ρα0

(︁
ℳρ1 − f1

)︁
,

so we find that f1 = ℳρ1 − vℳ · ρ−α
0 ∇xρ0. Turning now to the local density of fε, we 

integrate (1.2) in velocity and substitute in our formal asymptotic expansions as well as 
our expressions for f0 and f1 to reach
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∂tρ0 = −∇x ·
∫︂
Rd

vf1 dv = −∇x ·
(︂
ρ1

∫︂
Rd

vℳ dv−ρ−α
0 ∇xρ0

∫︂
Rd

|v|2ℳ dv
)︂

= ∇x ·
(︁
ρ−α
0 ∇xρ0

)︁
.

Thus, we formally conclude that as ε → 0, fε tends to a Maxwellian distribution times 
a density function solving a non-linear diffusion equation, i.e.,

f0 = ℳρ0, ∂tρ0 = ∇x ·
(︁
ρ−α
0 ∇xρ0

)︁
.

1.2. Motivations and open questions

The goal of our current paper is to give a full study of Equation (1.1) in terms of 
well-posedness, long-time behaviour and diffusive limit. Despite having a superlinear 
term, we show that this equation is extremely tractable and well behaved. Moreover, 
it provides a derivation of the porous medium and fast diffusion equations. While our 
equation does not directly come from a biological model, it is close to those used in many 
biological contexts. The passage from kinetic equations to the porous medium or fast 
diffusion equations is not a well-studied area and our main motivation is to contribute 
to this.

We are also strongly motivated by the potential next steps:

• Hydrodynamic limits in the whole space. We would like to study the same hydrody
namic limit and long time behaviour when the equation is posed in the whole space. 
The main technical challenge here is that for the physical finite mass solutions we will 
lose the uniform lower bound. We are particularly interested in the critical parameter 
regime where the limit equation is badly behaved. In particular, in dimension d = 2, 
the most physical nonlinearity of α = 1 will produce a limit equation whose solutions 
are not unique and will become extinct in finite time. We expect the equations to be 
well-behaved at the level of kinetic equations. For this reason, we are interested to 
study the emergence of pathological behaviour in the limit.

• Derivation of cross diffusion equations. We have formal calculations which show a 
similar class of run and tumble type equations may converge towards cross-diffusion 
equations. We are not aware of any results linking kinetic equations to cross diffu
sions in this way. Here the mathematical challenge becomes much greater. We do 
not only lose lower bounds, we also lose smoothness of solutions to the limit equa
tions.

• Conditional results for the quadratic BGK equation. A more tenuous motivation is 
to study equations which are similar to the full BGK equation with quadratic non
linearity. The equations studied here are much simpler. However, we have some hope 
that they might provide some clues to the BGK equation in conditional regimes.

• Linking long-time behaviour for the kinetic and limit equations. Lastly, we would 
like to understand how hypocoercivity results for kinetic equations are influenced 
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by their hydrodynamic limits. The fast diffusion equation is an example of a non
linear equation with a nice entropy structure. Therefore, kinetic equations with this 
diffusive limit are well adapted to exploring this question.

1.3. State of the art

Obtaining heuristically macroscopic PDEs as hydrodynamic limits of kinetic equations 
is a subject of many works. However, we are aware of only a small number of articles 
studying this with rigorous limiting arguments. We summarise the articles that are closer 
to ours.

In a series of papers [5--7], Bardos, Golse, Perthame and Sentis study the Rosseland 
approximation for the radiative transfer equation which is a nonlinear kinetic transport 
equation similar to (1.1). This equation models the transport of photons in a starlike 
medium. The term corresponding to the collision rate λ(ρ) := ρα in (1.1) is the opacity 
of the medium σ(T ) at the internal energy T . In [5--7], the authors derive the so-called 
Rosseland equation as a hydrodynamic limit of the radiative transfer equation. The 
Rosseland equation is a degenerate parabolic equation similar to (1.3) with α = 1 and 
a constant boundary value. Particularly [7] covers partially the case corresponding to 
−1 < α < 0 in (1.1) without requiring the monotonicity of σ. They employ Schauder’s 
fixed point argument, some compactness results and energy estimates to prove the well
posedness of the kinetic equation.

In [20], Dolbeault, Markovich, Oelz and Schmeiser study a different type of kinetic 
transport equation with a nonlinear relaxation term towards a generalised local Gibbs 
state. The equation is posed in (x, v) ∈ (R3 × R3) with a given confining potential. In 
the diffusive limit, they obtain drift-diffusion equations with a nonlinear diffusion term 
of porous medium type, corresponding to the case −2

3 < α < 1 in (1.3). The drift 
term arises from the confining potential. They prove the existence and uniqueness of the 
solutions of the kinetic equation for initial data bounded by equilibrium distributions. 
The diffusion limit is obtained by using a div-curl lemma based compactness argument; 
thus, is not quantitative.

More recently, Anceschi and Zhu, in [2], study the Cauchy problem and diffusion 
asymptotics of a nonlinear kinetic Fokker-Planck type equation (1.5) where α ∈ [0, 1], 
and (x, v) ∈ Td × Rd. They prove well-posedness and propagation of Maxwellian lower 
bounds of the solutions by using some results based on De Giorgi-Nash-Moser theory 
and the Harnack inequality. They derive quantitative diffusion asymptotics by combining 
entropic hypocoercivity, relative ϕ-entropy, and barrier function methods. In this paper, 
we will follow their broad strategy for showing the quantitative diffusive limit. The key 
difference to our work is that the kinetic Fokker-Planck equation has smooth solutions.

Hydrodynamic limits in kinetic theory Hydrodynamic limits make up a large area of 
active research in kinetic theory, thanks to its connection to Hilbert’s sixth problem 
entitled ``Mathematical Treatment of the Axioms of Physics'' which concerns develop
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ing rigorously the limiting processes connecting the atomistic description of the matter 
with the laws of motion of continua. Therefore, the most classical problem in this area 
is justifying the limit from the Boltzmann equation to either Euler or Navier-Stokes 
equations. Breakthrough results are due to Bardos, Golse and Levermore in [3,4] and 
then due to Golse and Saint-Raymond in [25]. For a good review in this direction we 
refer the reader to [34]. In [33], Saint-Raymond provided a complete derivation of the 
Navier–Stokes--Fourier equations from a BGK equation (1.4) when λ is a constant. A ma
jor obstacle in resolving Hilbert’s sixth problem was the long-time justification of the 
Boltzmann equation. Recent works of Deng, Hani and Ma establish a Boltzmann-Grad 
derivation valid up to the lifespan of smooth Boltzmann solutions in [17], and build
ing on this and existing hydrodynamic-limit results, derive the compressible Euler and 
incompressible Navier–Stokes--Fourier systems on Td, d = {2, 3} in [18]. These results 
represent the current state of the art on Hilbert’s sixth problem.

Hydrodynamic and diffusive limits are also an important area of study in kinetic 
theory applied to mathematical biology. Here, the limit equation is often related to 
a nonlinear diffusion equation. Various limits from run and tumble equations under 
different scalings, including the Keller-Segel equation were shown in [15,26,31]. Moreover, 
interesting recent works about the phase-transition phenomena occurring in the Vicsek
BGK type kinetic equations where the collision operator models the alignment of agents 
under stochastic perturbations include [16,28]. See also, for example [22], for limits from 
kinetic equations to higher order equations such as Cahn-Hilliard equation.

Particle approximations to the porous medium or fast diffusion equations In contrast 
to the derivation from kinetic equations, there are a large number of works deriving the 
porous medium and fast diffusion equations directly from interacting stochastic parti
cle systems. These studies are driven by both the motivation to understand how such 
systems might emerge in biological phenomena and to develop numerical methods for 
these equations. Deriving diffusion equations from particle approximations remains a 
very active area of research dating back to [29] which is one of the first works in this 
area. A recent paper [14] contains an up to date set of references. An important research 
direction is the ‘blob-method’ which uses these ideas for building numerical methods, 
see [13].

2. Preliminary and main results

2.1. Main results

We present our main results with three theorems. In what follows, we denote the 

weighted L2 norm of a function f as ∥f∥L2
x,v(ℳ−1) :=

(︁∫︁
Td

∫︁
Rd |f(t, x, v)|2ℳ−1(v) dv dx

)︁ 1
2 .

Theorem 2.1 (Well-posedness, propagation of bounds). Let ε > 0, A > 1, α ∈ R, and 
suppose that fε,in(x, v) ∈ L1(Td × Rd) satisfy A−1ℳ(v) ≤ fε,in(x, v) ≤ Aℳ(v). 



10 J. Evans et al. / Journal of Functional Analysis 290 (2026) 111376 

Then problem (1.2) with initial data fε,in admits a unique weak solution fε(t, x, v) ∈
C([0,∞);L1(Td ×Rd)). Moreover, fε(t, x, v) satisfies A−1ℳ(v) ≤ fε(t, x, v) ≤ Aℳ(v).

Theorem 2.2 (Long-time behaviour). Let ε > 0, A > 1, α ∈ R, and let fε(t, x, v) be the 
solution to (1.2) with ∥fε∥L1

x,v
= 1. Suppose that ρfε(t, x) =

∫︁
Rd fε(t, x, v) dv satisfies 

A−1 ≤ ρfε(t, x) ≤ A for all (t, x) ∈ [0,∞) × Td. Then, there exists ε0 > 0 such that for 
all ε ∈ (0, ε0), t ≥ 0, we have

∥fε(t, x, v) −ℳ(v)∥2
L2

x,v(ℳ−1) ≤ 3e−γt∥fε,in(x, v) −ℳ(v)∥2
L2

x,v(ℳ−1), (2.1)

where

γ = 1 
8Aα(2 + A2α) .

Theorem 2.3 (Diffusion asymptotics). Let A > 1 and ε ∈ (0,min{ε0,
1
2}) with ε0 given 

by Theorem 2.2. Consider a sequence of functions {fε,in} ⊂ L1(Td × Rd) satisfying 
A−1ℳ(v) ≤ fε,in(x, v) ≤ Aℳ(v) and let fε(t, x, v) be the solution of (1.2) with initial 
data fε,in(x, v). Let ρin(x) ∈ C2(Td) satisfy A−1 ≤ ρin(x) ≤ A and ρ̃(t, x) be the solution 
of (1.3) with initial data ρin(x). If there exists some constant ε′ ∈ (0, 1

2 ) such that

∥fε,in(x, v) − ρin(x)ℳ(v)∥L2
x,v(ℳ−1) ≤ ε′,

then there exist constants C, γ > 0 depending only on α,A, ∥ρin∥C2 , d such that

∥fε(t, x, v) − ρ̃(t, x)ℳ(v)∥L∞(R+;L2
x,v(ℳ−1)) ≤ C(ε + ε′)γ .

Remark 2.4. The condition on the initial data simply requires that the initial data for 
the kinetic equation and the diffusion equation remain close in the limit ε → 0. Taking 
ε′ := ε, this is equivalent to a more classical well-preparedness condition on the initial 
data.

2.2. Preliminary results on hydrodynamic quantities

We introduce the hydrodynamic quantities, spatial density ρε, flux jε and energy Eε.

ρε(t, x) :=
∫︂

fε(t, x, v) dv,

jε(t, x) :=
∫︂

fε(t, x, v)v dv,

Eε(t, x) :=
∫︂

fε(t, x, v)(v ⊗ v − I) dv.

(2.2)
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Next, we prove two results which will be needed in the subsequent sections. In the rest 
of the paper, whenever convenient, we omit denoting the variable dependencies to keep 
the notation simple.

Lemma 2.5. Let fε,in ∈ L1(Td × Rd) and let fε be the solution of (1.2) associated with 
the initial data fε,in. Let ρε, jε, Eε be the associated density, flux and energy as defined 
in (2.2) and take arbitrary β ∈ R. Then we have

|jε| ≤

⎛
⎝ ∫︂

Rd

(︃
fε
ℳ − β

)︃2

ℳ dv

⎞
⎠

1
2

and |Eε| ≤

⎛
⎝ ∫︂

Rd

(︃
fε
ℳ − β

)︃2

ℳ dv

⎞
⎠

1
2

.

Proof. We prove the result only for jε and the result for Eε follows in a similar way. We 
have

|jε|2 =

⎛
⎝ ∫︂

Rd

(︃
fε
ℳ

)︃
vℳ dv

⎞
⎠

2

=

⎛
⎝ ∫︂

Rd

(︃
fε
ℳ − β

)︃
vℳ dv

⎞
⎠

2

≤
∫︂
Rd

|v|2ℳ dv ·
∫︂
Rd

(︃
fε
ℳ − β

)︃2

ℳ dv

=
∫︂
Rd

(︃
fε
ℳ − β

)︃2

ℳ dv,

where the inequality above follows from Jensen’s and Cauchy-Schwarz inequalities. □
Lemma 2.6. Let fε be the solution to (1.2) and ρε, jε, Eε be the hydrodynamic quantities 
associated to fε as defined in (2.2). Then,

∂tρε = −1
ε 
∇x · jε, (2.3)

∂tjε = −1
ε 
∇x · Eε −

1
ε 
∇xρε −

1 
ε2 ρ

α
ε jε. (2.4)

Proof. This follows by integrating Equation (1.2). □
We finish this section with two remarks justifying the diffusive limit formally by 

looking at an argument from the moments.

Remark 2.7. From Equations (2.3) and (2.4), we also have

∂t(ε∇x · (ρ−α
ε jε)) = −α∇x · (ρ−α−1

ε jε(∇x · jε)) −∇x · (ρ−α
ε ∇x · Eε)

−∇x · (ρ−α
ε ∇xρε) −

1
ε 
∇x · jε.
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From which, it further follows that

∂t(ρε − ε∇x · (ρ−α
ε jε)) = α∇x · (ρ−α−1

ε jε(∇x · jε)) + ∇x · (ρ−α
ε ∇x · Eε)

+ ∇x · (ρ−α
ε ∇xρε).

Thus, another way to understand the diffusive limit is to assume that as ε → 0 then 
∇x · (ρ−α

ε jε) remains bounded and α∇x · (ρ−α−1
ε jε(∇x · jε)) + ∇x · (ρ−α

ε ∇x · Eε) → 0.

Remark 2.8. Similarly from equations (2.3), (2.4), we can see that we expect −1
ε ρ

α
ε jε −

∇xρε → 0, as t → ∞.

3. Well-posedness

In this section, we study the Cauchy problem (1.2) and show that it is well posed. To 
show the well-posedness of (1.2), we first study a simpler Cauchy problem

∂tf + v · ∇xf = λ(ρf )
(︁
ρfℳ− f

)︁
,

f(t = 0) = fin,
(3.1)

for t ∈ R+, x ∈ Td, v ∈ Rd and λ : R+ → R+. We assume that λ is a C1 function 
satisfying the following bounds,

inf 
z∈I

λ(z), sup
z∈I 

⃓⃓
λ′(z)

⃓⃓
, sup

z∈I 

⃓⃓
(zλ(z))′

⃓⃓
< +∞, where I := [A−1, A], (3.2)

for some A > 1.
Next, we prove the well-posedness of (3.1) by means of a fixed point argument.

Proposition 3.1. Let A > 1, fin ∈ L1(Td × Rd) satisfy A−1ℳ ≤ fin ≤ Aℳ, and 
assume λ ∈ C1(R+) satisfies (3.2). Then, the problem (3.1) has a unique weak solution 
f ∈ C([0,+∞);L1(Td ×Rd)), and f satisfies A−1ℳ ≤ f ≤ Aℳ.

Proof. Let T > 0 and define the space 𝒱 := {ϕ ∈ C([0, T ];L1(Td × Rd)) : A−1ℳ ≤
ϕ ≤ Aℳ} with norm ∥ϕ∥𝒱 := sup0≤t≤T ∥ϕ(t, ·, ·)∥L1 . For f ∈ 𝒱, define Γ(f) = g as the 
solution of the linear transport problem

∂tg + v · ∇xg = λ(ρf )(ρfℳ− g),

g(t = 0) = fin,

obtained via the method of characteristics. We first show that Γ maps 𝒱 into 𝒱. Set 
r = Aℳ− g; then r solves
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∂tr + v · ∇xr + λ(ρf )r = λ(ρf )(A− ρf )ℳ,

r(t = 0) = Aℳ− fin.

By the method of characteristics we may explicitly solve for r and use r(t = 0) ≥ 0, 
ρf ≤ A to show that r ≥ 0, and so g ≤ Aℳ. Similarly, taking r = g − A−1ℳ, we find 
that A−1ℳ ≤ g and so g ∈ 𝒱.

Let us now show that Γ is a contraction on 𝒱. To this end, we let f1, f2 ∈ 𝒱, set 
g1 = Γ(f1), g2 = Γ(f2) and w = g1 − g2. Then w satisfies

∂tw + v · ∇xw = λ(ρf1)ρf1ℳ− λ(ρf1)g1 − λ(ρf2)ρf2ℳ + λ(ρf2)g2

= (λ(ρf1)ρf1 − λ(ρf2)ρf2)ℳ− g2
(︁
λ(ρf1) − λ(ρf2)

)︁
− λ(ρf1)w.

Collecting all terms involving w on the left-hand-side, we find

∂tw + v · ∇xw + λ(ρf1)w =
(︁
ρf1λ(ρf1) − ρf2λ(ρf2)

)︁
ℳ− g2

(︁
λ(ρf1) − λ(ρf2)

)︁
:= S.

Multiplying by sgn(w) and integrating in x and v we find that, for λ0 :=infz∈[A−1,A] |λ(z)|,

d 
dt∥w(t, ·, ·)∥L1 + λ0∥w(t, ·, ·)∥L1 ≤ ∥S(t, ·, ·)∥L1 .

Using the fact that g2 ∈ 𝒱 and so is bounded from above by Aℳ, we find

∥S(t, ·, ·)∥L1 ≤ ∥ℳ∥∞
(︁
sup
z∈I 

|(zλ(z))′| + A sup
z∈I 

|λ′(z)|
)︁
∥f1(t, ·, ·) − f2(t, ·, ·)∥L1

:= C∥f1(t, ·, ·) − f2(t, ·, ·)∥L1 .

Thus, using w(t = 0) = 0, by Grönwall’s lemma we find that

∥w(t, ·, ·)∥L1 ≤ C

t ∫︂
0 

e−λ0(t−s)∥f1(s, ·, ·) − f2(s, ·, ·)∥L1 ds ≤ C

λ0

(︁
1 − e−λ0t

)︁
∥f1 − f2∥𝒱 ,

and so we conclude that

∥Γ(f1) − Γ(f2)∥𝒱 ≤ C

λ0

(︁
1 − e−λ0T

)︁
∥f1 − f2∥𝒱 .

Therefore, for T sufficiently small, Γ is indeed a contraction on 𝒱 and Banach’s fixed 
point theorem gives the existence of a unique fixed point g of Γ in 𝒱. It can be easily 
seen that g is a solution of (3.1) on [0, T ] and so has constant L1 norm in time.

As T depends only on λ and A, and the fixed point g satisfies the same bounds as 
fin, we may iterate this process to extend g to all finite times. Since g has constant L1

norm and is uniformly bounded from above and below for all times we conclude that 
g ∈ C([0,∞);L1(Td ×Rd)) with A−1ℳ ≤ g ≤ Aℳ as claimed. □
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With this, the well-posedness of (1.2) immediately follows.

Proof of Theorem 2.1. Set λ(z) = zα. Clearly, such λ satisfies (3.2) for all α ∈ R

and so we may use Proposition 3.1 to obtain the existence of a unique solution 
f ∈ C([0,+∞);L1(Td × Rd)) of the unscaled equation (1.1). Defining fε(t, x, v) :=
f(ε2t, εx, v) as the parabolic rescaling of f it follows that fε is the unique solution of 
(1.2). □
4. Long-time behaviour

In this section, we show that the solution to Equation (1.2) converges to equilibrium 

as t → ∞, in the space L2
x,v(ℳ−1) :=

{︂
g : 

∫︁
Td

∫︁
Rd

|g(t,x,v)|2
ℳ(v) dv dx < ∞

}︂
. We achieve 

this by adapting the hypocoercivity techniques developed in [21]. Particularly, we have 
to pay attention to ensure that the nonlinear terms do not cause us problems.

4.1. L2-hypocoercivity à la Dolbeault-Mouhot-Schmeiser

For our theorem in this section, we need some straightforward technical results. We 
collect them in the lemma below.

We consider u(x), x ∈ Td and define its Fourier transform û(k) :=
∫︁
Td u(x)e−2πikx dx. 

We also define the operator (I − Δx)−1 for x ∈ Td by F ((I − Δx)−1u(x)) :=
1 

1+4π2|k|2 û(k).

Lemma 4.1. The following estimates hold for (I − Δx)−1:

∥(I − Δx)−1∂2
xi,xj

u∥2
L2

x
≤ ∥u∥2

L2
x
, (4.1)

∥(I − Δx)−1∂xi
u∥2

L2
x
≤ ∥u− ū∥2

L2
x
≤ ∥u∥2

L2
x
, (4.2)

∥(I − Δx)−1/2∇xu∥2
L2

x
≥ C∥u− ū∥2

L2
x
, (4.3)

where ū :=
∫︁
Td u(x) dx and C = 4π2/(1 + 4π2).

Proof. Notice that the operator (I − Δx)−1 commutes with taking derivatives of u in 
x, i.e., ∇x((I − Δx)−1u) = (I − Δx)−1∇xu. It is also positive and self adjoint and so 
has a square root which is given by F ((I − Δx)−1/2u) = 1 

(1+4π2|k|2)1/2 û. By Plancherel 
theorem, we have ∥u∥2

L2
x

=
∑︁

k∈Zd |û(k)|. Moreover, for the zero-th Fourier mode, i.e., 
k = 0, we have that û(0) =

∫︁
Td u(x) dx = ū. This means

∥u− ū∥2
L2

x
=

∑︂
k∈Zd,k ̸=0

|û(k)|2 ≤
∑︂
k∈Zd

|û(k)|2 = ∥u∥2
L2

x
.

The rest follows by direct computation. Then, we have
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∥(I − Δx)−1∂2
xi,xj

u∥2
L2

x
=

∑︂
k∈Zd

⃓⃓⃓
⃓ −4π2kikj
1 + 4π2|k|2 û(k)

⃓⃓⃓
⃓
2

≤
∑︂
k∈Zd

|û(k)|2 = ∥u∥2
L2

x
,

∥(I − Δx)−1∂xi
u∥2

L2
x

=
∑︂
k∈Zd

⃓⃓⃓
⃓ 2πiki
1 + 4π2|k|2 û(k)

⃓⃓⃓
⃓
2

≤
∑︂

k∈Zd,k ̸=0

|û(k)|2

= ∥u− ū∥2
L2

x
≤ ∥u∥2

L2
x
,

∥(I − Δx)−1/2∇xu∥2
L2

x
=

∑︂
k∈Zd

4π2|k|2
1 + 4π2|k|2 |û(k)|2 ≥ C

∑︂
k∈Zd,k ̸=0

|û(k)|2 = C∥u− ū∥2
L2

x
,

where C = 4π2/(1 + 4π2). □
Proof of Theorem 2.2. To prove the theorem, we adapt the proof in L2 hypocoercivity 
in [21]. We are able to apply it fairly directly in the nonlinear setting by using the 
upper and lower bounds on ρ. We present it in a slightly different form and make some 
simplifications.

The strategy of showing hypocoercivity in [21] involves creating a new norm which is 
equivalent to the weighted L2 norm. This is done by adding a small bounded perturbation 
to the L2 norm which depends only on the hydrodynamic quantities. On this perturbed 
norm we are able to construct a Grönwall argument.

First we look at the dissipation of the L2 norm. Occasionally we use the shorter 
notations fε(v) = fε(t, x, v) or fε(t) = fε(t, x, v). We first note that,

d 
dt

∫︂
Td

∫︂
Rd

(fε −ℳ)2

ℳ 
dv dx = 2

∫︂
Td

∫︂
Rd

fε −ℳ
ℳ 

∂tfε dv dx = 2
∫︂
Td

∫︂
Rd

fε
ℳ∂tfε dv dx,

where the second term vanishes due to the conservation of mass. We then have,

d 
dt

∫︂
Td

∫︂
Rd

(fε −ℳ)2

ℳ 
dv dx

= −2
ε 

∫︂
Td

∫︂
Rd

fε
ℳ (v · ∇xfε) dv dx + 2 

ε2

∫︂
Td

∫︂
Rd

fε
ℳραε (ρεℳ− fε) dv dx

= −1
ε 

∫︂
Td

∫︂
Rd

v · ∇x(f2
ε )

ℳ 
dv dx + 2 

ε2

∫︂
Td

ραε

∫︂
Rd

∫︂
Rd

(︃
fε(u)fε(v) − f2

ε (v)ℳ(u)
ℳ(v) 

)︃
dv du dx

= − 1 
ε2

∫︂
Td

ραε

∫︂
Rd

∫︂
Rd

(︄(︃
fε(u) 
ℳ(u) − fε(v) 

ℳ(v)

)︃2

+ f2
ε (u) 

ℳ2(u) − f2
ε (v) 

ℳ2(v)

)︄
ℳ(u)ℳ(v) du dv dx

= − 1 
ε2

∫︂
Td

ραε

∫︂
Rd

∫︂
Rd

(︃
fε(u) 
ℳ(u) − fε(v) 

ℳ(v)

)︃2

ℳ(u)ℳ(v) du dv dx.
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If we write gε := fε − ρεℳ, then 
∫︁
gε dv = 0. So, we have

d 
dt

∫︂
Td

∫︂
Rd

(fε −ℳ)2

ℳ 
dv dx

= − 1 
ε2

∫︂
Td

ραε

∫︂
Rd

∫︂
Rd

(︃
g2
ε(u)ℳ(v) 

ℳ(u) + g2
ε(v)

ℳ(u)
ℳ(v) − 2gε(v)gε(u)

)︃
du dv dx

= − 2 
ε2

∫︂
Td

ραε

∫︂
Rd

g2
ε

ℳ dv dx

= − 2 
ε2

∫︂
Td

ραε

∫︂
Rd

((I − Π)fε)2

ℳ 
dv dx

≤ − 2 
ε2

1 
Aα

∥(I − Π)fε(t)∥2
L2

x,v(ℳ−1), (4.4)

where (I − Π)f := f − ρℳ.
In order to construct the perturbation term, we use the hydrodynamic quantities 

defined in (2.2). We recall the equations on the hydrodynamic quantities (given earlier 
by Lemma 2.6) below, so that we can follow the subsequent computations with ease.

∂tρε = −1
ε 
∇x · jε,

∂tjε = −1
ε 
∇x · Eε −

1
ε 
∇xρε −

1 
ε2 ρ

α
ε jε.

We then take a fairly standard perturbation term, now classical in hypocoercivity theory:

d 
dt

∫︂
Td

jε·(I − Δx)−1∇xρε dx

= −1
ε 

∫︂
Td

jε · (I − Δx)−1∇x(∇x · jε) dx− 1
ε 

∫︂
Td

∇x ·Eε(I − Δx)−1∇xρε dx

− 1
ε 

∫︂
Td

∇xρε · (I − Δx)−1∇xρε dx− 1 
ε2

∫︂
Td

ραε jε · (I − Δx)−1∇xρε dx

≤ 1
ε 

(︁
∥jε∥L2

x
∥(I − Δx)−1∇x (∇x · jε) ∥L2

x
+ ∥Eε∥L2

x
∥(I − Δx)−1∇2

xρε∥L2
x

)︁
+ 1 

ε2 ∥ρ
α
ε ∥L∞∥jε∥L2

x
∥(I − Δx)−1∇xρε∥L2

x
− 1

ε 
∥(I − Δx)−1/2∇xρε∥2

L2
x

Now using Lemma 4.1 and Young’s inequality we estimate the above quantity further 
as,
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d 
dt

∫︂
Td

jε·(I − Δx)−1∇xρε dx

≤ 1
ε 

(︃
∥jε∥2

L2
x

+ ∥Eε∥2
L2

x
+ 1

4∥ρε − ρ̄ε∥2
L2

x

)︃

+ 1 
ε2 ∥ρ

α
ε ∥L∞

(︃
∥ραε ∥L∞

ε 
∥jε∥2

L2
x

+ ε 
4∥ραε ∥L∞

∥ρε − ρ̄ε∥2
L2

x

)︃
− C

ε 
∥ρε − ρ̄ε∥2

L2
x

= −1
ε 

(︁
C − 1

2
)︁
∥ρε − ρ̄ε∥2

L2
x

+ 1
ε 
∥Eε∥2

L2
x

+ 1
ε 
∥jε∥2

L2
x

+ 1 
ε3 ∥ρ

α
ε ∥2

L∞∥jε∥2
L2

x

≤ − 1 
4ε∥ρε − ρ̄ε∥2

L2
x

+ 1 
ε3 (2 + ∥ραε ∥2

L∞)∥(I − Π)fε∥2
L2

x,v(ℳ−1), (4.5)

for ε ≤ 1 where the last inequality follows from applying Lemma 2.5 with β = ρε and 
then integrating in space. To ease notation, we also bounded the constant appearing in 
Lemma 4.1 from below, C = 4π2/(1 + 4π2) > 3/4.

Then, using (4.4) and (4.5), we obtain

d 
dt

⎛
⎝∥fε −ℳ∥2

L2
x,v(ℳ−1) + ε 

Aα(2 + A2α)

∫︂
Td

jε · (I − Δx)−1∇xρε dx

⎞
⎠

≤ − 1 
ε2

1 
Aα

∥(I − Π)fε∥2
L2

x,v(ℳ−1) −
1 

4Aα(2 + A2α)∥ρε − ρ̄ε∥2
L2

x
. (4.6)

For ε sufficiently small, we have

ε 
Aα(2 + A2α)

∫︂
Td

jε · (I − Δx)−1∇xρε dx ≤ ε 
Aα(2 + A2α)∥jε∥L2

x
∥(I − Δx)−1∇xρε∥L2

x

≤ ε 
Aα(2 + A2α)∥fε −ℳ∥2

L2
x,v(ℳ−1)

≤ 1
2∥fε −ℳ∥2

L2
x,v(ℳ−1),

with the second equality following from Lemma 2.5 with β = 1. Consequently for ε
sufficiently small, we obtain

d 
dt

(︂
∥fε −ℳ∥2

L2(ℳ−1) + ε 
Aα(2 + A2α)

∫︂
Td

jε · (I − Δx)−1∇xρε dx
)︂

≤ − 1 
4Aα(2 + A2α)

(︁
∥(I − Π)fε∥2

L2
x,v(ℳ−1) + ∥ρε − ρ̄ε∥2

L2
x

)︁

= − 1 
4Aα(2 + A2α)∥fε −ℳ∥2

L2
x,v(ℳ−1)
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≤ − 1 
8Aα(2 + A2α)

⎛
⎝∥fε −ℳ∥2

L2
x,v(ℳ−1)+ 

ε 
Aα(2 + A2α)

∫︂
Td

jε · (I − Δx)−1∇xρε dx

⎞
⎠.

So by Grönwall’s lemma, we have

∥fε(t) −ℳ∥2
L2

x,v(ℳ−1) + ε 
Aα(2 + A2α)

∫︂
Td

jε(t) · (I − Δx)−1∇xρε(t) dx

≤ e−γt

⎛
⎝∥fε(0) −ℳ∥2

L2
x,v(ℳ−1) + ε 

Aα(2 + A2α)

∫︂
Td

jε(0) · (I − Δx)−1∇xρε(0) dx

⎞
⎠ , 

from which (2.1) follows. □
5. Diffusive asymptotics

In this section, we quantify the rate of the diffusive asymptotics by combining a study 
of the finite-time asymptotics with the uniform in ε convergence to equilibrium of both 
the kinetic and the parabolic solutions over long times. The long time asymptotics follow 
from the exponential relaxation to equilibrium of both the kinetic and the parabolic 
solutions, while the finite-time asymptotics require a delicate study of the relative entropy 
between the solutions.

Let us begin by quickly summarising the long time asymptotics.

5.1. Long-time asymptotics

We first state well-posedness and regularity result on the solution to the nonlinear 
diffusion equation.

Lemma 5.1. Let A > 1 and ρin ∈ Ck(Td) for k ≥ 0 with A−1 ≤ ρin ≤ A. Then there 
exists a unique classical solution ρ̃ ∈ C∞((0,∞)×Td)∩Ck([0,∞)×Td) of the problem 
(1.3) with initial data ρin, and ρ̃ satisfies A−1 ≤ ρ̃ ≤ A.

Notice that Equation (1.3) is uniformly parabolic away from zero and +∞, so the 
classical theory applies for initial data uniformly bounded from above and below. We 
then have well-posedness and a strong maximum principle and Lemma 5.1 follows. We 
refer the reader to [37] for a review of the theory of the nonlinear diffusion equation.

We are now ready to state the long-time asymptotics. We obtain this result combining 
the hypocoercivity result for (1.2) provided by Theorem 2.2 and the exponential relax
ation to equilibrium of the solution to the parabolic equation (1.3) on the torus due to 
the Poincaré inequality.
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Proposition 5.2. Let fε,in ∈ L1(Td × Rd) and fε be the solution of Equation (1.2) with 
initial data fε,in for ε ∈ (0, ε0) with ε0 > 0 given by Theorem 2.2. Let ρin ∈ C2(Td)
satisfy A−1 ≤ ρin ≤ A and ρ̃ be the solution of (1.3) with initial data ρin. Then there 
exist positive constants C, γ > 0 depending only on α,A, d such that for any t ≥ 0 we 
have

∥fε − ρ̃ℳ∥L2
x,v(ℳ−1) ≤ Ce−γt.

Proof. First, we set 1 =
∫︁
Td×Rd fε,in dx dv =

∫︁
Td ρin dx and note that the masses of ρ̃

and of fε are conserved in time.
Then, we have

1
2

d 
dt∥ρ̃− 1∥2

L2
x

=
∫︂
Td

(ρ̃− 1)∂tρ̃ dx =
∫︂
Td

ρ̃∂tρ̃ dx =
∫︂
Td

ρ̃∇x ·
(︁
ρ̃−α∇xρ̃

)︁
dx,

where the second inequality follows from the conservation of mass. Integrating by parts, 
we then find

1
2

d 
dt∥ρ̃−1∥2

L2
x

= −
∫︂
Td

ρ̃−α|∇xρ̃|2 dx ≤ −C∥∇xρ̃∥2
L2

x
= −C∥∇x(ρ̃−1)∥2

L2
x
≤ −C̃∥ρ̃−1∥2

L2
x
,

for some C > 0 depending only on α,A where the last inequality follows from Poincaré 
inequality and C̃ only depends on α,A, d. Then, Grönwall’s lemma yields

∥ρ̃− 1∥L2
x
≤ e−2C̃t∥ρin − 1∥L2

x
.

Then thanks to Theorem 2.2, there exists C ′ > 0 depending only on α,A such that

∥fε −ℳ∥L2
x,v(ℳ−1) ≤ ∥fε∥L2

x,v(ℳ−1) ≤ e−C′t∥fε,in − 1∥L2
x,v(ℳ−1),

and so we find that

∥fε − ρ̃ℳ∥L2
x,v(ℳ−1) ≤ ∥fε −ℳ∥L2

x,v(ℳ−1) + ∥ρ̃− 1∥L2
x

≲ e−γt,

for some γ > 0 depending only on α,A and d. □
Thus, we may control the distance between the solution to the kinetic equation (1.2)

and the solution to the parabolic equation (1.3) in the long-time by the sum of their 
respective exponential rates of convergence to equilibrium.
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5.2. Finite-time asymptotics

Let us now consider the finite-time diffusive asymptotics. In order to simplify the 
exposition we work with the rescaled solution hε := fε/ℳ which solves

∂thε + 1
ε 
v · ∇xhε = 1 

ε2 ρ
α
ε (ρε − hε) ,

h(t = 0) = hin := fε,in/ℳ.

(5.1)

The main result of this subsection is the following.

Proposition 5.3. Let ρin ∈ C2(Td) and hin ∈ L1
x,v(Td × Rd) both be valued in [A−1, A]

for A > 1, and take ε ∈ (0,min{ε0, 1}) with ε0 given by Theorem 2.2. Let hε be the 
solution of (5.1) with initial data hin and ρ̃ the solution of (1.3) with initial data ρin. 
Then, there exist constants C,C ′ > 0 depending only on α,A, ∥ρin∥C2 such that for all 
t ≥ 0, the following estimate holds,

∥hε − ρ̃∥2
L2

x,v(ℳ) ≤ eCt
(︂
∥hin − ρin∥2

L2
x,v(ℳ) + C ′ε

(︁
1 + t

1
2
)︁)︂

. (5.2)

This result relies on the uniform bounds from above and below of the densities ρε, ρ̃
and the regularity of the limit equation to write a Grönwall argument on the distance 
∥fε − ρ̃ℳ∥L2

x,v(ℳ−1). In order to bound the remaining terms by ε, we then use the 
quantified rate of convergence to zero of the time integrated norms of the flux and the 
energy. This rate is uniform in ε on finite times and follows from Theorem 2.2 and 
Lemma 2.5.

Proof. We begin by calculating the dissipation of the relative entropy,

1
2

d 
dt∥hε − ρ̃∥2

L2
x,v(ℳ) =

∫︂
Td

∫︂
Rd

hε∂thεℳ dv dx−
∫︂
Td

(︁
∂tρερ̃ + ρε∂tρ̃

)︁
dx +

∫︂
Td

ρ̃∂tρ̃ dx

=
∫︂
Td

∫︂
Rd

1 
ε2hερ

α
ε

(︁
ρε − hε

)︁
ℳ dv dx +

∫︂
Td

1
ε 
∇x · jερ̃ dx

−
∫︂
Td

ρε∇x ·
(︁
ρ̃−α∇xρ̃

)︁
dx +

∫︂
Td

ρ̃∇x ·
(︁
ρ̃−α∇xρ̃

)︁
dx

= −
∫︂
Td

∫︂
Rd

1 
ε2 ρ

α
ε

(︁
hε − ρε

)︁2ℳ dv dx−
∫︂
Td

1
ε 
jε · ∇xρ̃ dx

+
∫︂
Td

ρ̃−α∇xρε · ∇xρ̃ dx−
∫︂
Td

ρ̃−α|∇xρ̃|2 dx

≤ −
∫︂
Td

1 
ε2 ρ

α
ε |jε|2 dx−

∫︂
Td

ρ̃−α|∇xρ̃|2 dx
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−
∫︂
Td

1
ε 
jε · ∇xρ̃ dx +

∫︂
Td

ρ̃−α∇xρε · ∇xρ̃ dx,

where on the last line we applied Lemma 2.5.
Now, by Remark 2.8, we expect formally that as ε → 0 we will have

−1
ε 
ραε jε −∇xρε → 0. (5.3)

Furthermore, we can see that

−1
ε 
ραε jε −∇xρε = ε∂tjε + ∇x · Eε.

This means that (5.3) does in fact hold in H−1
t,x ([0, T ] × Td) as it follows from the 

convergence of jε, Eε to zero in L2([0, T ] × Td). We give a detailed proof of this later 
on. We aim to exploit this fact by rearranging the dissipation of the relative entropy. 
First, we complete the square with the two negative dissipation terms. To this end, we 
define

Qε := 1
ε 
ρ

α
2 
ε jε + ρ̃−

α
2 ∇xρ̃, and Rε := ∇xρε + ε−1ραε jε

Then we have,

1
2

d 
dt∥hε − ρ̃∥2

L2
x,v(ℳ) ≤ −

∫︂
Td

|Qε|2 dx−
∫︂
Td

(︃
1 − 2

(︂ρε
ρ̃

)︂α
2 
)︃

1
ε 
jε · ∇xρ̃ dx

+
∫︂
Td

ρ̃−α∇xρε · ∇xρ̃dx

= −
∫︂
Td

|Qε|2 dx−
∫︂
Td

(︃
1 − 2

(︂ρε
ρ̃

)︂α
2 +

(︂ρε
ρ̃

)︂α
)︃

1
ε 
jε · ∇xρ̃ dx

+
∫︂
Td

(︂
∇xρε + 1

ε 
ραε jε

)︂
· ρ̃−α∇xρ̃ dx

= −
∫︂
Td

|Qε|2 dx−
∫︂
Td

(︃
1 −

(︂ρε
ρ̃

)︂α
2 
)︃2 1

ε 
jε · ∇xρ̃dx

+
∫︂
Td

Rε · ρ̃−α∇xρ̃dx.

In order to deal with the remaining ε−1 term we rewrite ε−1jε = ρ
−α

2 
ε Qε − (ρερ̃)−

α
2 ∇xρ̃

and substitute in to find
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1
2

d 
dt∥hε − ρ̃∥2

L2
x,v(ℳ) ≤ −

∫︂
Td

|Qε|2 dx−
∫︂
Td

(︃
1 −

(︂ρε
ρ̃

)︂α
2 
)︃2

ρ
−α

2 
ε ∇xρ̃ ·Qε dx

+
∫︂
Td

(︃
1 −

(︂ρε
ρ̃

)︂α
2 
)︃2

(ρερ̃)−
α
2 |∇xρ̃|2 dx +

∫︂
Td

Rε · ρ̃−α∇xρ̃dx

≤
∫︂
Td

Rε · ρ̃−α∇xρ̃ dx + 1
4

∫︂
Td

(︃
1 −

(︂ρε
ρ̃

)︂α
2 
)︃4

ρ−α
ε |∇xρ̃|2 dx

+
∫︂
Td

(︃
1 −

(︂ρε
ρ̃

)︂α
2 
)︃2

(ρερ̃)−
α
2 |∇xρ̃|2 dx

≤
∫︂
Td

Rε · ρ̃−α∇xρ̃ dx + 1
4

∫︂
Td

(︃
1 −

(︂ρε
ρ̃

)︂α
)︃2

ρ−α
ε |∇xρ̃|2 dx

+
∫︂
Td

(︃
1 −

(︂ρε
ρ̃

)︂α
2 
)︃2

(ρερ̃)−
α
2 |∇xρ̃|2 dx

:=
∫︂
Td

Rε · ρ̃−α∇xρ̃ dx + I1 + I2. (5.4)

In the above calculation, we first applied Young’s inequality to deal with the Qε terms, 
followed by the inequality |f 1

2 − g
1
2 | ≤ |f − g| 12 for all f, g ≥ 0.

We now wish to bound the integrals I1, I2 in terms of the distance ∥ρε − ρ̃∥L2
x

us
ing the uniform in ε and time bounds on ρε, ρ̃, as well as the regularity of the limit 
equation.

We begin by bounding the first integral term I1. Hölder’s inequality gives us

I1 ≤ 1
4
⃦⃦
ρ−α
ε |∇xρ̃|2

⃦⃦
L∞

t,x

∫︂
Td

(︃
1 −

(︂ρε
ρ̃

)︂α
)︃2

dx ≲
⃦⃦⃦
1 −

(︂ρε
ρ̃

)︂α⃦⃦⃦2

L2
x

, (5.5)

with the constant depending only on A,α and ∥ρin∥C2 thanks to Lemma 5.1. We now 
apply Taylor’s theorem to the function f(z) = zα at a = 1 to write zα = 1 + α(z −
1) + h(z)(z − 1) for some smooth h : R → R with limz→1 h(z) = 0. Thus, for any 
compact interval I we have |1 − zα| ≲ |1 − z| for all z ∈ I with the constant depending 
only on α, |I|. Thanks to the uniform bounds on ρε, ρ̃ we may apply this to (5.5) to 
find

I1 ≲
⃦⃦⃦
1 − ρε

ρ̃

⃦⃦⃦2

L2
x

≲
∫︂
Td

(︁
ρε − ρ̃

)︁2 dx =
∫︂
Td

(︃∫︂
Rd

(︁
hε − ρ̃

)︁
ℳ dv

)︃2

dx ≤ ∥hε − ρ̃∥2
L2

x,v(ℳ),
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where we again used the uniform bounds on ρ̃. Then, the final inequality follows from 
Jensen’s inequality. We can bound I2 in a similar way with a constant depending on the 
same quantities.

Plugging these estimates back in to (5.4) and using Grönwall’s lemma, we find that 
for any T > 0 we have

∥hε − ρ̃∥2
L2

x,v(ℳ) ≤ eCt

⎛
⎝∥hin − ρin∥2

L2
x,v(ℳ) + 2

t ∫︂
0 

e−Cs

∫︂
Td

Rε · ρ̃−α∇xρ̃ dx ds

⎞
⎠ , (5.6)

for some C > 0 depending only on α,A, ∥ρin∥C2 , and so in order to conclude, it remains 
only to bound the final term.

Note that, using the definition jε in (2.2), we may express Rε in terms of derivatives 
of hydrodynamic quantities, i.e., Rε = −∇x · Eε − ε∂tjε. Thanks to the smoothness in 
time and space of the limiting equation we may use ρ̃−α∇xρ̃ as a test function onto 
which we pass the derivatives appearing in Rε. Thus, integrating by parts and applying 
Hölder’s inequality we have

t ∫︂
0 

∫︂
Td

e−CsRε · ρ̃−α∇xρ̃ dx ds

=
t ∫︂

0 

∫︂
Td

(︂
e−CsEε : ∇x

(︁
ρ̃−α∇xρ̃

)︁
+ εjε · ∂s

(︁
e−Csρ̃−α∇xρ̃

)︁)︂
dx ds

− ε

∫︂
Td

(︂
e−Ctjε(t) · ρ̃−α(t)∇xρ̃(t) − jε(0) · ρ̃−α(0)∇xρ̃(0)

)︂
dx

≤
⃦⃦⃦
∇x

(︁
ρ̃−α∇xρ̃

)︁⃦⃦⃦
L∞

t,x

t ∫︂
0 

∫︂
Td

|Eε| dx ds

+ ε
(︂
C∥ρ̃−α∇xρ̃∥L∞

t,x
+
⃦⃦
∂t
(︁
ρ̃−α∇xρ̃

)︁⃦⃦
L∞

t,x

)︂ t ∫︂
0 

∫︂
Td

|jε| dx ds

+ 2ε∥ρ̃−α∇xρ̃∥L∞
t,x

∥jε∥L∞(R+;L1
x)

≲ ε

t ∫︂
0 

∫︂
Td

|jε| dx ds +
t ∫︂

0 

∫︂
Td

|Eε| dx ds + ε

≤ (1 + ε)
t ∫︂

0 

∫︂
Td

(︃∫︂
Rd

(︁
hε − ρε

)︁2ℳ dv
)︃ 1

2

dx ds + ε,
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where we used Lemma 2.5 to reach the final inequality. Finally, we use Jensen’s inequality 
once more to bound the remaining integral by

t ∫︂
0 

∫︂
Td

(︃∫︂
Rd

(︁
hε − ρε

)︁2ℳ dv
)︃ 1

2

dx ds ≤ t
1
2

(︃ t ∫︂
0 

∥hε − ρε∥2
L2

x,v(ℳ) ds
)︃ 1

2

.

Lastly, we have from the proof of Theorem 2.2,

d 
dt∥hε∥L2

x,v(ℳ) ≲ − 1 
ε2 ∥hε − ρε∥L2

x,v(ℳ),

and so we have that

t ∫︂
0 

∥hε(s) − ρε(s)∥2
L2

x,v(ℳ)ds ≲ ε2∥hε(0)∥2
L2

x,v(ℳ) ≲ ε2.

Hence,

t ∫︂
0 

∫︂
Td

e−CsRε · ρ̃−α∇xρ̃ds dx ≲ t
1
2
(︁
ε + ε2)︁ + ε ≲ ε

(︁
1 + t

1
2
)︁
,

for ε ∈ (0, 1). Plugging this back into (5.6) we have the result. □
With this result, we are ready to show the global in time diffusive asymptotics. Recall 

that in the following we take 0 < ε, ε′ < 1
2 , where ε denotes our scaling parameter 

and ε′ is a bound on the distance between the initial data for the kinetic and parabolic 
equations, i.e. ∥fε,in − ρinℳ∥L2

x,v(ℳ−1) ≤ ε′.

Proof of Theorem 2.3. Let T > 0. By Proposition 5.3 there exist constants C,C ′ > 0
such that for all 0 ≤ t ≤ T we have

∥fε − ρ̃ℳ∥2
L2

x,v(ℳ−1) ≤ eCT
(︂
(ε′)2 + C ′ε

(︁
1 + T

1
2
)︁)︂

≲ eCT
(︁
ε + ε′

)︁(︂
1 + T

1
2

)︂
.

We could optimise our choice of T > 0 but for simplicity we choose T = −κ log(ε + ε′)
with κ := 1 

2C . With this choice of T we find

∥fε − ρ̃ℳ∥2
L2

x,v(ℳ−1) ≲ (ε + ε′) 1
2

(︂
1 + (−κ log

(︁
ε + ε′)

)︁ 1
2
)︂

≤ (ε + ε′) 1
4

(︂
1 + (ε + ε′) 1

4 (−κ log
(︁
ε + ε′)

)︁ 1
2
)︂

≲ (ε + ε′) 1
4 ,
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where we used the boundedness of x 1
2 log x on (0, 1) to bound the log(ε + ε′) term 

appearing on the right-hand-side by a power law. Regarding the long-time asymptotics, 
thanks to Proposition 5.2 there exists C̃ > 0 such that for all t ≥ T we have

∥fε − ρ̃ℳ∥L2
x,v(ℳ−1) ≲ e−C̃T = (ε + ε′)C̃κ,

with C̃ depending on α,A and d and this completes the proof. □
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