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1. Introduction

The purpose of this paper is to introduce and analyse a class of nonlinear kinetic
equations with density dependent collision rates. These equations are of particular inter-
est because they can be used to derive the porous medium and fast diffusion equations.
Our class of equations includes those with quadratic nonlinearity that resembles the
nonlinearity found in physical gas kinetic models such as the Boltzmann equation.

The porous medium and fast diffusion equations exhibit rich mathematical structures
and have been extensively studied. They admit a natural class of Lyapunov functions
(such as p-entropies) and display a variety of complex dynamical behaviours. Depending
on the parameter regime and initial data, solutions to these equations may exhibit finite
speed of propagation, non-uniqueness, or even finite-time extinction, all of which pose
significant analytical challenges.

The class of equations that we study is as follows,

Of(t,z,v) +v- Vo f(t,z,v) = p§(t,x) (pst,x)M(v) — f(t,z,0)) (1.1)

where f:= f(t,z,v) >0, (t,x,v) € (0,400] x T*xR?, d > 1, ps(t,z) := [ga [(t,x,v)dv
is the spatial density, a € R and M(v) = (27)~#2 exp(—|v|?/2) is a Gaussmn function
(or the normalised Maxwellian distribution with 0 mean velocity, unit temperature and
the Boltzmann constant). Here, T denotes the d—dimensional unit torus.

Equation (1.1) models an ensemble of particles each of which has a position x and
velocity v. The unknown f is the probability density of a “typical particle” in this
ensemble over phase space. The dynamics described by (1.1) are as follows. A particle will
travel in a straight line with its current velocity until a random time. At this random time,
a collision occurs and the particles velocity changes to one drawn from the distribution
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with density M(v) independently from everything else. The rate at which collisions
happen is Py (t, ). This means that the probability of a collision occurring is dependent
on the number of particles in the vicinity of the colliding particle. The most natural
choice of « in (1.1) would be a = 1. In this case, the rate at which “collisions” happen is
proportional to the number of particles available to be “collided” with. The probability
of a collision occurring is higher when the spatial density is high.

We consider a diffusive scaling (¢, z,v) — (th, er, v), where € > 0 is a given constant
which can be taken as the dimensionless mean free path of particles. Denoting the new
unknown as f., Equation (1.1) then becomes,

Oufut,,0) + 0 Ve fulty2,0) = 50 (6:2) (o5, (1, 0)M() — fo(t,,0)

fe(0,2,v) = fein(z,0).

(1.2)

Under the diffusive scaling, the particles undergo frequent collisions, and over a long
timescale the macroscopic behaviour emerges. One of the goals of this article is to derive
rigorously an equation describing this macroscopic behaviour.

The main results of this article are summarised as follows. We prove

(i) Global well-posedness of (1.2) and propagation of Maxwellian bounds.

This result relies on the maximum principle which implies that if the initial datum
lies between a constant times Maxwellians, then the corresponding solutions also
satisfy this property.

(ii) Quantitative convergence to equilibrium (hypocoercivity) result as t — oo for (1.2).
Here, we use the LZ-hypocoercivity methods due to Dolbeault, Mouhot and
Schmeiser introduced in [21] for mass-conserving linear kinetic equations. We adapt
this technique to the nonlinear setting.

(iii) Quantitative diffusive limit of (1.2) as ¢ — 0 to the porous medium or fast diffusion
equations.

Combining relative entropy and hypocoercivity methods, we show that solutions of
Equation (1.2) as € — 0 are functions of the form p(t, x)M(v) where p(t, z) solves

the following nonlinear diffusion equation:
op(t,x) =V, - (pia(t,x)vxp(t,l‘)) ) (1.3)

p(0,2) = pin(z). .

This article forms one of very few works deriving the porous medium or fast diffusion
equations from kinetic equations rigorously. To the best of our knowledge, this is the
only work which treats the full range of possible «. The limit equations (1.3) are well

studied and appear in many modelling applications in various physical, biological, and
engineering contexts. Understanding their emergence from the kinetic level is key to
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explaining how their exotic behaviour emerges at the macroscopic level from underlying
microscopic processes.

Outline of paper In the remainder of this section, we compare our class of equations with
similar kinetic models including the BGK equation and run and tumble equations. We
give a summary of the limit equations (1.3) and some of their interesting mathematical
properties. Subsequently, we give our motivations for the present paper and we finish
Section 1 with the state of the art. In Section 2.1, we present our main results followed
by some preliminary results. In Section 3, we prove that the Cauchy problem (1.2) with
initial data bounded from above and below by a constant Maxwellian is well-posed. We
show the propagation of the Maxwellian bounds for all times. In Section 4, we establish
the exponential relaxation to equilibrium in time using the hypocoercivity technique
developed in [21]. Lastly, in Section 5, we quantify the rate of the diffusive asymptotics
5.2) with the uniform

in € convergence to equilibrium of the solutions to both the kinetic and the parabolic

by combining a study of the finite-time asymptotics (Section
equations over long times (Section 5.1).
1.1. The models

The kinetic equations Nonlinear kinetic equations of the form (1.1) can be considered
as toy models for the Boltzmann equation as they have a kinetic structure, Maxwellian
local equilibria and density dependent collision rates.

A natural comparison arises between the equations studied here and the BGK equa-
tions, which can be written as

atf(tax7v) +v- vmf(ta ZL’,’U) = )\(pf(t,$)) (pf(t7x)MUf(t,a;),Tf(t,J;) (U) - f(ta 1'77))) )
(1.4)

where M, r(v) = (2nT)~%?exp(|v — u|?/2T) is the Maxwellian velocity distribution.
The hydrodynamic quantities momentum wuy, and temperature Ty are defined via

pf(t,x)uf(t,x):/f(t,x,v)vdv,
o (b 2)(Ty (1, ) + Jug (£, 2)[2) = / £tz 0)of? dv.

The BGK equation (1.4) was introduced in [8] to serve as a computationally efficient
alternative to the full Boltzmann equation while maintaining essential physical proper-
ties such as conservation of hydrodynamic quantities. In Equation (1.4), the collision
operator, the right hand side of (1.4), conserves mass, momentum and kinetic energy.
Our toy model (1.1) simplifies (1.4) radically to an equation whose collision operator
conserves only mass. Equation (1.4) was shown to be well posed in [32] in the case A =1
and the result can be straightforwardly extended to the case where A is bounded above
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and below. The original BGK equation in [8] has A(p) = p. This makes the mathematical
analysis more challenging. In this case, to the best of our knowledge, well-posedness is
still an open problem, which is also discussed in [11,12]. In more recent mathematical
literature, it is common to only consider A a constant, for simplicity taken generally as
A=1.

Compared to the original BGK equation, the class of equations that we consider are
more straightforward to study. There are two fundamental reasons for this. Firstly, the
form of the collision operator means that we expect a maximum principle to hold for this
class of equations. This allows us to control the nonlinearity. Secondly, the fact that we
only have one collision invariant means that we can obtain, in the limit, a hydrodynamic
equation which only depends on mass.

The class of equations (1.1) also falls into a large class of kinetic transport equations,
called the run and tumble equations in mathematical biology. The run and tumble equa-
tions, introduced in [1,35], are used in modelling the movement of bacteria that respond
to chemical gradients. The collision rate X in (1.4) corresponds to the tumbling rate of
bacteria. Although, it is common to assume A to be a constant to ease the mathematical
analysis, in physically more relevant cases A depends on the gradient of the chemoattrac-
tant density function which solves a Poisson-type equation [30]. On the other hand, the
run and tumble equation differs from similar kinetic equations (1.1) in various ways, such
as the confinement mechanism and non-explicit equilibrium solutions [39]. Under some
conditions on the initial mass, it may exhibit finite time extinction of solutions [10], sim-
ilar to its diffusive limit, Keller-Segel equation. See also [23,24] for recent hypocoercivity
results on various run and tumble equations.

We can also compare Equation (1.1) to a similar class of kinetic Fokker-Planck type
equations which are given by

8tf(tax7v) +uv- fo(t,x,v) = p?(t, z)vv ' (vvf(t’ 'T7U) + ’Uf(t,ﬂj,’t})) : (15)

This equation shares some similarities with the Landau equation which is a model for
plasma dynamics. Equations of this type have been studied in [2,27] as part of the
program to utilise De Giorgi methods in kinetic theory.

The limit equations Equation (1.3) is known as the porous medium equation when
a < 0 and as the fast diffusion equation when a € (0,1]. The case where o = 0 is
the heat equation. In the case of solutions with finite mass on the whole space, these
equations behave very differently in different parameter regimes. We briefly review these
different behaviours as they form part of the motivation for the present and future works.

For the fast diffusion equation, when « € (0,2/d), we expect the equation to be well
posed and for the solutions to become smooth instantaneously. If a > 2/d then the
diffusive effect is so large so that the equation effectively loses mass instantaneously and,
thus, is ill-posed. In the critical case when o« = 2/d, the equation has non-unique solutions
and extinction of solutions in finite time. We refer the reader to the lecture notes [19] for
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all these facts and detailed explanations. An interesting case is in dimension d = 2 with
the critical value o = 1. In this case, the equation is known as the logarithmic diffusion
equation and given by

atp(t’ 33) =A, IOg(p(t7 33))

The solutions to the logarithmic diffusion equation exhibit extinction in finite time,
and tend to resemble these self-similar forms near extinction. A good reference for the
behaviour of the logarithmic diffusion equation is [38].

The porous medium equation is well-posed for any a < 0. However, the solutions
will not be smooth. In fact if the initial data is compactly supported then this will be
propagated by the equation. The solutions are then smooth inside the support and Hélder
continuous at the boundary of the support [36]. The literature about the porous medium
equation is huge and varied. A key reference is [37]. Only slightly less has been written
about the fast diffusion equation, one could start with [36] and references therein. Much
recent work has been done on the connection to stability of functional inequalities, see,
for example [9)].

Formal diffusive limit In the subsequent sections, we justify the diffusive limit rigor-
ously. Here, in order to better understand how this comes about we perform a formal
analysis of the diffusive limit by a Hilbert series expansion. That is, forgetting issues
of convergence of the series, we assume that we can expand the solution f. as a formal
power series in € over the ring of test functions. In this purely formal expansion, each
coefficient corresponds to the effect of an order of € on the solution. It turns out that
only effects up to order one in ¢ have an effect on our solution in this case.

We thus write f. = fo+¢ef1 +O(g?) where fy, f1 € C2°(T? x R?). Here, fo is the part
of the solution that is independent of £, and f; corresponds to the first order effects in €.
Integrating this expansion in space, we have py. = po+ep1 +O(e?) where p; := [, fi dx
for i = {0,1}. Substituting these expansions into (1.2) and letting & — 0 we immediately
find fo = ./\/lpo.

Assuming the boundedness from below of pg, we now expand the power law as a
binomial series to obtain

[e3%

o =i (1400 0() = ot +asp™ o+ OF).
Thus, the order € terms in (1.2) give
_ L« a—1 . «
v-Vafo=p5(Mp1— fi) +apl  p1(Mpo — fo) = p (Mp1 — f1),
so we find that f; = Mpy — oM - pg*Vypo. Turning now to the local density of f., we

integrate (1.2) in velocity and substitute in our formal asymptotic expansions as well as
our expressions for fy and f; to reach
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Oipo = —Vw-/vfl dv = —VI-(pl/v/\/l dv—paan;po/\vPM dv) = Vx~(pgavao).
R4 R4 R4

Thus, we formally conclude that as e — 0, f. tends to a Maxwellian distribution times
a density function solving a non-linear diffusion equation, i.e.,

fo=Mpo,  dpo=Vau-(pg“Vapo)-
1.2. Motivations and open questions

The goal of our current paper is to give a full study of Equation (1.1) in terms of
well-posedness, long-time behaviour and diffusive limit. Despite having a superlinear
term, we show that this equation is extremely tractable and well behaved. Moreover,
it provides a derivation of the porous medium and fast diffusion equations. While our
equation does not directly come from a biological model, it is close to those used in many
biological contexts. The passage from kinetic equations to the porous medium or fast
diffusion equations is not a well-studied area and our main motivation is to contribute
to this.

We are also strongly motivated by the potential next steps:

o Hydrodynamic limits in the whole space. We would like to study the same hydrody-
namic limit and long time behaviour when the equation is posed in the whole space.
The main technical challenge here is that for the physical finite mass solutions we will
lose the uniform lower bound. We are particularly interested in the critical parameter
regime where the limit equation is badly behaved. In particular, in dimension d = 2,
the most physical nonlinearity of e = 1 will produce a limit equation whose solutions
are not unique and will become extinct in finite time. We expect the equations to be
well-behaved at the level of kinetic equations. For this reason, we are interested to
study the emergence of pathological behaviour in the limit.

e Derivation of cross diffusion equations. We have formal calculations which show a
similar class of run and tumble type equations may converge towards cross-diffusion
equations. We are not aware of any results linking kinetic equations to cross diffu-
sions in this way. Here the mathematical challenge becomes much greater. We do
not only lose lower bounds, we also lose smoothness of solutions to the limit equa-
tions.

¢ Conditional results for the quadratic BGK equation. A more tenuous motivation is
to study equations which are similar to the full BGK equation with quadratic non-
linearity. The equations studied here are much simpler. However, we have some hope
that they might provide some clues to the BGK equation in conditional regimes.

e Linking long-time behaviour for the kinetic and limit equations. Lastly, we would
like to understand how hypocoercivity results for kinetic equations are influenced
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by their hydrodynamic limits. The fast diffusion equation is an example of a non-
linear equation with a nice entropy structure. Therefore, kinetic equations with this
diffusive limit are well adapted to exploring this question.

1.8. State of the art

Obtaining heuristically macroscopic PDEs as hydrodynamic limits of kinetic equations
is a subject of many works. However, we are aware of only a small number of articles
studying this with rigorous limiting arguments. We summarise the articles that are closer
to ours.

In a series of papers [5-7], Bardos, Golse, Perthame and Sentis study the Rosseland
approximation for the radiative transfer equation which is a nonlinear kinetic transport
equation similar to (1.1). This equation models the transport of photons in a starlike
medium. The term corresponding to the collision rate A(p) := p® in (1.1) is the opacity
of the medium o(7T') at the internal energy T'. In [5-7], the authors derive the so-called
Rosseland equation as a hydrodynamic limit of the radiative transfer equation. The
Rosseland equation is a degenerate parabolic equation similar to (1.3) with o = 1 and
a constant boundary value. Particularly [7] covers partially the case corresponding to
—1 < a<0in (1.1) without requiring the monotonicity of o. They employ Schauder’s
fixed point argument, some compactness results and energy estimates to prove the well-
posedness of the kinetic equation.

In [20], Dolbeault, Markovich, Oelz and Schmeiser study a different type of kinetic
transport equation with a nonlinear relaxation term towards a generalised local Gibbs
state. The equation is posed in (z,v) € (R?® x R3) with a given confining potential. In
the diffusive limit, they obtain drift-diffusion equations with a nonlinear diffusion term
of porous medium type, corresponding to the case —% < a < 1 in (1.3). The drift
term arises from the confining potential. They prove the existence and uniqueness of the
solutions of the kinetic equation for initial data bounded by equilibrium distributions.
The diffusion limit is obtained by using a div-curl lemma based compactness argument;
thus, is not quantitative.

More recently, Anceschi and Zhu, in [2], study the Cauchy problem and diffusion
asymptotics of a nonlinear kinetic Fokker-Planck type equation (1.5) where o € [0, 1],
and (z,v) € T? x R?. They prove well-posedness and propagation of Maxwellian lower
bounds of the solutions by using some results based on De Giorgi-Nash-Moser theory
and the Harnack inequality. They derive quantitative diffusion asymptotics by combining
entropic hypocoercivity, relative ¢-entropy, and barrier function methods. In this paper,
we will follow their broad strategy for showing the quantitative diffusive limit. The key
difference to our work is that the kinetic Fokker-Planck equation has smooth solutions.

Hydrodynamic limits in kinetic theory Hydrodynamic limits make up a large area of
active research in kinetic theory, thanks to its connection to Hilbert’s sixth problem
entitled “Mathematical Treatment of the Axioms of Physics” which concerns develop-
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ing rigorously the limiting processes connecting the atomistic description of the matter
with the laws of motion of continua. Therefore, the most classical problem in this area
is justifying the limit from the Boltzmann equation to either Euler or Navier-Stokes
equations. Breakthrough results are due to Bardos, Golse and Levermore in [3,4] and
then due to Golse and Saint-Raymond in [25]. For a good review in this direction we
refer the reader to [34]. In [33], Saint-Raymond provided a complete derivation of the
Navier—Stokes—Fourier equations from a BGK equation (1.4) when A is a constant. A ma-
jor obstacle in resolving Hilbert’s sixth problem was the long-time justification of the
Boltzmann equation. Recent works of Deng, Hani and Ma establish a Boltzmann-Grad
derivation valid up to the lifespan of smooth Boltzmann solutions in [17], and build-
ing on this and existing hydrodynamic-limit results, derive the compressible Euler and
incompressible Navier—Stokes—Fourier systems on T?, d = {2,3} in [18]. These results
represent the current state of the art on Hilbert’s sixth problem.

Hydrodynamic and diffusive limits are also an important area of study in kinetic
theory applied to mathematical biology. Here, the limit equation is often related to
a nonlinear diffusion equation. Various limits from run and tumble equations under
different scalings, including the Keller-Segel equation were shown in [15,26,31]. Moreover,
interesting recent works about the phase-transition phenomena occurring in the Vicsek-
BGK type kinetic equations where the collision operator models the alignment of agents
under stochastic perturbations include [16,28]. See also, for example [22], for limits from
kinetic equations to higher order equations such as Cahn-Hilliard equation.

Particle approximations to the porous medium or fast diffusion equations In contrast
to the derivation from kinetic equations, there are a large number of works deriving the
porous medium and fast diffusion equations directly from interacting stochastic parti-
cle systems. These studies are driven by both the motivation to understand how such
systems might emerge in biological phenomena and to develop numerical methods for
these equations. Deriving diffusion equations from particle approximations remains a
very active area of research dating back to [29] which is one of the first works in this
area. A recent paper [14] contains an up to date set of references. An important research
direction is the ‘blob-method’ which uses these ideas for building numerical methods,
see [13].

2. Preliminary and main results
2.1. Main results

We present our main results with three theorems. In what follows, we denote the
1
weighted L? norm of a function f as || f|| 22 (m-1) = (Jpa Jga |F(E 2, 0)PM T (v) dvda) 2.

@,v

Theorem 2.1 (Well-posedness, propagation of bounds). Let ¢ > 0,A > 1,a € R, and
suppose that fein(z,v) € LYT? x R?) satisfy A*M((v) < fom(z,v) < AM(v).
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Then problem (1.2) with initial data fein admits a unique weak solution f.(t,z,v) €
C([0,00); LY(T4 x RY)). Moreover, f-(t,x,v) satisfies A~ M(v) < fo(t,z,v) < AM(v).

Theorem 2.2 (Long-time behaviour). Let ¢ > 0,A > 1, € R, and let f-(t,z,v) be the
solution to (1.2) with ||fcllz: = 1. Suppose that py, (t,x) = [ga fo(t,x,v)dv satisfies
At < ps (t,x) < A for all (t,m) € [0,00) x T9. Then, there exists g > 0 such that for
all e € (0,e0),t > 0, we have

1ot 2, 0) = M3y < 3¢ fean(@v) = M@I3s oy (21)

where

1

Y= SA(X(2+A2Q)

Theorem 2.3 (Diffusion asymptotics). Let A > 1 and ¢ € (0,min{eo, 3}) with ¢ given
by Theorem 2.2. Consider a sequence of functions {f-in} C LY(T¢ x RY) satisfying
AT IM©W) < foin(z,v) < AM(v) and let f-(t,z,v) be the solution of (1.2) with initial
data f- in(x,v). Let pin(x) € C?(T?) satisfy A™1 < pin(x) < A and p(t,x) be the solution
of (1.3) with initial data pin(x). If there exists some constant &' € (0, %) such that

Hfs,in(xa 'U) - pin(m)M(v)Hszv(M_l) < 5/7

then there exist constants C,~v > 0 depending only on «, A, ||pi|c2,d such that

Ife(t, 2, v) = At )M (V)| 2, (mm1)) < Cle+€)7.

x,v

Remark 2.4. The condition on the initial data simply requires that the initial data for

the kinetic equation and the diffusion equation remain close in the limit € — 0. Taking

¢’ := g, this is equivalent to a more classical well-preparedness condition on the initial

data.
2.2. Preliminary results on hydrodynamic quantities

We introduce the hydrodynamic quantities, spatial density p., flux j. and energy E..

pe(t, ) :z/fa(t,x,v)dv,
Je(t, ) ::/fs(t,x,v)vdv, (2.2)

E.(t,x) :z/fa(t,:c,v)(U@v—I)dv.
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Next, we prove two results which will be needed in the subsequent sections. In the rest
of the paper, whenever convenient, we omit denoting the variable dependencies to keep
the notation simple.

Lemma 2.5. Let fo i, € LY (T4 x R?) and let f. be the solution of (1.2) associated with
the initial data fein. Let pe, je, Ec be the associated density, flur and energy as defined
in (2.2) and take arbitrary 8 € R. Then we have

2 2 2
lje| < /(% - ) Mdv and |E.| < /(/{; - ) Mdv
R4 R4

Proof. We prove the result only for j. and the result for E. follows in a similar way. We
have

2 2

ljel? = /(%) Mdv | = /<%— )UMdU
Rd Rd
§/|’U|2Mdv-/<%—ﬁ)2/\4dv
Rd

Rd

- ) s

R4
where the inequality above follows from Jensen’s and Cauchy-Schwarz inequalities. O

Lemma 2.6. Let f. be the solution to (1.2) and pe, je, E- be the hydrodynamic quantities
associated to fe as defined in (2.2). Then,

1 .
Oype = *gvac *Jes (2'3)
. 1 1 1 ..
at]s ==V, - E. - _vmps — 5 Pele- (24)
13 19 19

Proof. This follows by integrating Equation (1.2). O

We finish this section with two remarks justifying the diffusive limit formally by
looking at an argument from the moments.

Remark 2.7. From Equations (2.3) and (2.4), we also have
8t(5vw ) (ps_a.76>) =—aVy- (pe_a_lje(vz ) .75)) — Vg (P;avm : Ee)

—a 1 .
- Vg (ps VIPE) - gvz *Je-



12 J. Evans et al. / Journal of Functional Analysis 290 (2026) 111376

From which, it further follows that

Or(pe — V- (p-%je)) = aVy - (P;ailjs(vm “Je)) +Vau - (pz "V - Ee)
+V,- (p;avxpe)'

Thus, another way to understand the diffusive limit is to assume that as € — 0 then
V- (p=“j<) remains bounded and aV, - (p7* 715 (Vy - jo)) + Va - (p7*Vy - E2) — 0.

Remark 2.8. Similarly from equations (2.3), (2.4), we can see that we expect —1p%j. —
Vepe — 0, as t — oo.

3. Well-posedness

In this section, we study the Cauchy problem (1.2) and show that it is well posed. To
show the well-posedness of (1.2), we first study a simpler Cauchy problem

onf+v-Vaof =Xps)(psrM = f),

3.1
f(tzo):fina ( )

fort € Ry,z € T%v € R and A : R, — R,. We assume that A is a C' function
satisfying the following bounds,

inf A(2), sup|X'(2)|, sup|(2A(2))| < +o0, where [I:=[A"" A], (3.2)
z€l z€l zel

for some A > 1.
Next, we prove the well-posedness of (3.1) by means of a fixed point argument.

Proposition 3.1. Let A > 1, fi, € LY (T? x R?) satisfy A=*M < fi, < AM, and
assume X € CY(Ry) satisfies (3.2). Then, the problem (3.1) has a unique weak solution
f€C(0,400); LN(T? x RY)), and f satisfies AT'M < f < AM.

Proof. Let T > 0 and define the space V := {¢ € C([0,T]; L}(T¢ x R%)) : A7IM <
¢ < AM} with norm |[|¢[|y := supg<;<r ||4(t, -, -)|[z1. For f € V, define T'(f) = g as the
solution of the linear transport problem

g +v-Vaeg = XNps)(prM —g),
g(t = 0) = fina

obtained via the method of characteristics. We first show that I' maps V into V. Set
r = AM — g; then r solves
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O +v - Var + Npp)r = Mpg) (A= pp)M,
r(t =0) = AM — fin.

By the method of characteristics we may explicitly solve for r and use r(t = 0) > 0,
ps < A to show that r > 0, and so g < AM. Similarly, taking r = g — A~ M, we find
that A='M < gandso g € V.

Let us now show that I' is a contraction on V. To this end, we let fi, fo € V, set
91 =T(f1),92 =T(f2) and w = g1 — g2. Then w satisfies

Orw +v - Vew = Xpg, ) pp M = Mg ) g1 — Mpg,)p M+ Mpy,) g2
= (Apr)en — Megp)ps) M = g2(Mps,) — Mpg,)) — Mpg )w.

Collecting all terms involving w on the left-hand-side, we find

Ow +v-Vaw+ Npp)w = (pp, Mpp) = ppAps)) M = g2(Mps) = Mpy,)) = S.
Multiplying by sgn(w) and integrating in 2 and v we find that, for Ag:=inf,cj4-1 a7 |A(2)],

d
E”w(t’ ) ')HL1 + )‘OHw(tv ) ')HL1 < ||S(t, ) ')HLl'

Using the fact that g» € V and so is bounded from above by AM, we find
15, - )l < HMHoo(Slér;l(Z/\(Z))'\ +ASEII>IX(Z)I)||J“1(@‘,‘) = fa(t, )l

= CHfl(t’ ) ) - f2(t7 * ')”Ll'

Thus, using w(t = 0) = 0, by Gronwall’s lemma we find that

t
c -
[w(t, -, )z < C/efAO(tfs)llfl(S, 50) = fa(s, o )llprds < )\*0(1 — e |1 = fallv,
0

and so we conclude that
c —XoT
IT(f1) —=T(f)lv < )\—0(1_6 ML= fallv-

Therefore, for T sufficiently small, I" is indeed a contraction on V and Banach’s fixed
point theorem gives the existence of a unique fixed point g of I' in V. It can be easily
seen that g is a solution of (3.1) on [0, 7] and so has constant L' norm in time.

As T depends only on A and A, and the fixed point g satisfies the same bounds as
fin, We may iterate this process to extend ¢ to all finite times. Since ¢ has constant L'
norm and is uniformly bounded from above and below for all times we conclude that
g € C([0,00); LY(T4 x R?)) with A7IM < g < AM as claimed. O
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With this, the well-posedness of (1.2) immediately follows.

Proof of Theorem 2.1. Set A(z) = 2. Clearly, such A satisfies (3.2) for all @ € R
and so we may use Proposition 3.1 to obtain the existence of a unique solution
f € O([0,400); LY(T? x R?)) of the unscaled equation (1.1). Defining f.(t,z,v) :=
f(e%t,ex,v) as the parabolic rescaling of f it follows that f. is the unique solution of
(1.2). O

4. Long-time behaviour

In this section, we show that the solution to Equation (1.2) converges to equilibrium
as t — oo, in the space L2 ,(M™! { Jra Jra M dvdz < oo} We achieve

this by adapting the hypoeoerc1v1ty technlques developed in [21]. Particularly, we have
to pay attention to ensure that the nonlinear terms do not cause us problems.

4.1. L?-hypocoercivity a la Dolbeault-Mouhot-Schmeiser

For our theorem in this section, we need some straightforward technical results. We
collect them in the lemma below.

We consider u(z), z € T? and define its Fourier transform (k) := [, u(x)e ™ dx.
We also define the operator (I — A,)~! for # € T4 by F((I — A,) tu(z)) =

1 ~
gz ).

Lemma 4.1. The following estimates hold for (I — A,)™1

1= A2, ull3e < ull3e. (4.1)
I = An) 00 ull3a < llu—all3a < [lul3.. (4.2)
I = A)~2V,ulls > Cllu — a2, (4.3)

where U := [1,u(x)dz and C = 472 /(1 + 47?).

Proof. Notice that the operator (I — A,)~! commutes with taking derivatives of u in
x, ie., Vo((I —Ax)tu) = (I — A,) " 1V,u. Tt is also positive and self adjoint and so
has a square root which is given by .Z ((I — A,)~'/?u) = W

theorem, we have Hu||Lz = ZkeZd |@(k)|. Moreover, for the zero-th Fourier mode, i.e.,

4. By Plancherel

k =0, we have that 4(0 de x) dx = u. This means

lu—alfs = > |ak)* < Y Jatk)* = [ulf.

keZ k#£0 kezZ?

The rest follows by direct computation. Then, we have
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2
—An2kk;
192 _ i 4 L2 2
(I = Ay) 7103, 4 ull7e = Z m < Z [a(k)[” = [lullz2,
kezd keZd
2mik; ?
I = A0) " Onulfs = Y |ssmma)] < >0 lak))?
e 1+ 472 |k|
kezZ? kEZ k#0
= |lu—all7z <|lullz:,
I— A2 42, = A k[ B2 >c A2 = Cllu — all2
I( z) aullfs = > 1Jr4772|k|2| k)" = > lak)? = Cllu—al7s,
kezZ? kEZ k#0

where C' = 472 /(1 +47?). O

Proof of Theorem 2.2. To prove the theorem, we adapt the proof in L? hypocoercivity
n [21]. We are able to apply it fairly directly in the nonlinear setting by using the
upper and lower bounds on p. We present it in a slightly different form and make some
simplifications.

The strategy of showing hypocoercivity in [21] involves creating a new norm which is
equivalent to the weighted L? norm. This is done by adding a small bounded perturbation
to the L? norm which depends only on the hydrodynamic quantities. On this perturbed
norm we are able to construct a Gronwall argument.

First we look at the dissipation of the L? norm. Occasionally we use the shorter
notations f.(v) = f-(¢,z,v) or f-(t) = fo(t, z,v). We first note that,

dt// dvdx—2/ fa_ 8tf5dvdx:2//%6tf5dvdx,

Td R4 Td R4

where the second term vanishes due to the conservation of mass. We then have,

%//70?E '—MM)2 dvdz

Td R4

=——// (v-Vof)dvde + — / /{4 pe(p-M — f.)dvdz

Td R4 s
=L [ e TR aae S o [ [ (#so - 2oge)) dodus

TR Td RdRd

T/d pERdR[ < E 1; (v)>>2 * /{/122(22) - ij%) M(u)M(v) dudv dz

p//(MZ 1;))>2/\/l(u)/\/l(v)dudvdx.

Td Rd R4
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If we write g. := f. — p.M, then [ g.dv = 0. So, we have

i//dedx

)
=—§T/d 0 R/ R/ (20 G+ 0 ) = 200000 ) dudvas
;/p?/iidvdx

Td Rd
:_é/pg/%ﬂdvdx
Td Rd
<~ Sl EOIE: (44)

where (I —1I)f := f — pM.

In order to construct the perturbation term, we use the hydrodynamic quantities
defined in (2.2). We recall the equations on the hydrodynamic quantities (given earlier
by Lemma 2.6) below, so that we can follow the subsequent computations with ease.

1 .
é91&,05 = _gvm *Jes

. 1 1 1,
Otje = —=Vy Ee — =Vype — =2 Je.
€ € €

We then take a fairly standard perturbation term, now classical in hypocoercivity theory:

d . _
T Jer(I = Ay) 1Vmp€dx

Td

1 1
- /js (1= 80) 7'V (Ve - o) da — - /Vf CB(I = Ag) 7 'Vape do
Td Td

1 1
- E/pr€~(I—Ax)_1Vmpde— E—Z/p?js (I = A) " 'WVepeda
T4 Td

<

™ | =

(Igellzz (T = A) " Ve (Vo - ) lrz + 1 Bellzz (T = As) ™ Vipellr2)
Lo ) 1 )
+ ?Hps | Lo ||.75HL32c (I —Ag) lvacPEHLg - EH(I —Ay) 1/2vmp5”%§

Now using Lemma 4.1 and Young’s inequality we estimate the above quantity further

as,
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d ) _
E/]a'(]_Aw) 1vae dx
Td

1 _
< 2 (ellg + 1R + e = s )

1 102 lzoe ) e
QHJW< el + e 2l ) = Zlee = el

1 1 2 1 2 12 1 2 12
= (O~ 3)lIpe = 2l + TN + TlelEs + Sl e e 3

1 _ 1
< —llpe = el + @+ 1) 1T =L s, (45)

for ¢ < 1 where the last inequality follows from applying Lemma 2.5 with f = p. and

then integrating in space. To ease notation, we also bounded the constant appearing in
Lemma 4.1 from below, C' = 472 /(1 + 472) > 3/4.

Then, using (4.4) and (4.5), we obtain

d € ) _
T IIfe — MH%@J}(M%) + Ao (2 + A%) /Js (I = Ay) ' Vape dz
Td
11 1
I1-1I)f. 2 1 —lpe — P32, (4.
~ S I - e — ppeg eI - Al @40

| /\

For ¢ sufficiently small, we have
€ . . -1
AO‘(2—|-A2O‘) /JE ’ (I_Aaf) Vepedr < Aa(2+A2a) H]EHLin(I_ Ax) preHLg
Td
< Ac (2—|—A20‘)Hf€ M”%iv(/\/l—l)
1
< 5lIf *M||2Lg’v(/vt—1),

with the second equality following from Lemma 2.5 with 8

= 1. Consequently for ¢
sufficiently small, we obtain

d € . _
n (er = M| T2y + Ao 1 A% /Ja (I = Ay) ' Vape dx)

Td
1 ) L
<~ e g aza) T =T0LIL: amn) + llpe = pellzs)
1

_ _ 2
- 4Aa(2+A2a)||f€ M||L£,U(M71)
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1 2 15 ) .
S “gAa(2 5 Aazay | e s -t [ Je- (I - A oPe
= 8A%(2 4 A29) 1fe = MliZz ,(ama >+Aa(2+A2a) /J ( )" Vapedz
’]I‘d

So by Gronwall’s lemma, we have

9 . _
[ fe(t) — M”ig’v(M—l) + m /js(t) (I —Ay) 1prs(t) dx
Ta
_ € . _
< e I(0) = MIT vy + Ae(2 1 A%) /JE(O) (I = Ay) 'Vape(0)dz |,

Td

from which (2.1) follows. O
5. Diffusive asymptotics

In this section, we quantify the rate of the diffusive asymptotics by combining a study
of the finite-time asymptotics with the uniform in e convergence to equilibrium of both
the kinetic and the parabolic solutions over long times. The long time asymptotics follow
from the exponential relaxation to equilibrium of both the kinetic and the parabolic
solutions, while the finite-time asymptotics require a delicate study of the relative entropy
between the solutions.

Let us begin by quickly summarising the long time asymptotics.

5.1. Long-time asymptotics

We first state well-posedness and regularity result on the solution to the nonlinear
diffusion equation.

Lemma 5.1. Let A > 1 and pi, € C¥(T9) for k > 0 with A~ < pi, < A. Then there
exists a unique classical solution p € C>((0,00) x T4) N C*(]0,00) x T?) of the problem
(1.3) with initial data pi,, and p satisfies A1 < p < A.

Notice that Equation (1.3) is uniformly parabolic away from zero and +oo, so the
classical theory applies for initial data uniformly bounded from above and below. We
then have well-posedness and a strong maximum principle and Lemma 5.1 follows. We
refer the reader to [37] for a review of the theory of the nonlinear diffusion equation.

We are now ready to state the long-time asymptotics. We obtain this result combining
the hypocoercivity result for (1.2) provided by Theorem 2.2 and the exponential relax-
ation to equilibrium of the solution to the parabolic equation (1.3) on the torus due to
the Poincaré inequality.
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Proposition 5.2. Let f- i, € L'(T% x R?) and f. be the solution of Equation (1.2) with
initial data f.i, for e € (0,e0) with g > 0 given by Theorem 2.2. Let pi, € C?(T49)
satisfy A=Y < pin < A and p be the solution of (1.3) with initial data pi,. Then there
exist positive constants C,vy > 0 depending only on a, A,d such that for any t > 0 we
have

Ife = pMllLz ,(pm-1) < Ce

Proof. First, we set 1 = [, pa fe.indzdv = [}, pin dz and note that the masses of p
and of f. are conserved in time.
Then, we have

1d,. ) ) . e
5l — Uz = /(p— 1)oypda = /pﬁtpdsv = /sz -(p™Vap) dz,
Td Td Td

where the second inequality follows from the conservation of mass. Integrating by parts,
we then find

1d

3 5ilp— Lz == [ 572190 do < ~CIV.pl3 = ~CIVL(3-DIE; < ~Clo-1l:.

Td

for some C' > 0 depending only on a, A where the last inequality follows from Poincaré
inequality and C' only depends on «, A, d. Then, Gronwall’s lemma yields

17 = 1llzz < e pm — 1Lz

Then thanks to Theorem 2.2, there exists C’ > 0 depending only on «, A such that

Ife = Mllzz ,(m-1) < I fellzz,(m-) < e fen — 1| 2 (M—1Y5

x,v x,v

and so we find that

Ife = pMllzz ,(m-1) < IIfe = Mlizz vy + 115 = Lllzz

<e ,

~

for some v > 0 depending only on o, A and d. O

Thus, we may control the distance between the solution to the kinetic equation (1.2)
and the solution to the parabolic equation (1.3) in the long-time by the sum of their
respective exponential rates of convergence to equilibrium.
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5.2. Finite-time asymptotics

Let us now consider the finite-time diffusive asymptotics. In order to simplify the
exposition we work with the rescaled solution h. := f./M which solves
1 1,
Othe + —v -V, he = —5Pe (PE - hE)a
€ € (5.1)
h(t = 0) = hin = fa,in/M~

The main result of this subsection is the following.

Proposition 5.3. Let pin € C*(T?) and hiy € L (T x R?) both be valued in [A™", A]
for A > 1, and take e € (0,min{eg, 1}) with o given by Theorem 2.2. Let h. be the
solution of (5.1) with initial data hiy, and p the solution of (1.3) with initial data piy.
Then, there exist constants C,C’" > 0 depending only on «, A, ||pin||cz such that for all
t > 0, the following estimate holds,

1
||h’ IO”L2 (M) (thn plnH%i,v(M) +Cl€(1+t2)) (52)

This result relies on the uniform bounds from above and below of the densities p., p
and the regularity of the limit equation to write a Gréonwall argument on the distance
|fe = PMllLz  (m-1). In order to bound the remaining terms by e, we then use the
quantified rate of convergence to zero of the time integrated norms of the flux and the
energy. This rate is uniform in e on finite times and follows from Theorem 2.2 and
Lemma 2.5.

Proof. We begin by calculating the dissipation of the relative entropy,

1d 5 . s e~
§E||h€_p||%§7v(,/\/l) = //heathaMdde_/(8tpep+peatp) dx—i—/patpdx
TdRe Td Td
// 5,05 E—h)/\/ldvder/ T Jsﬂdx
TdRd

- /pevw : (ﬁiavwﬁ) dr + /ﬁvm : (ﬁiavwﬁ) dz
d

Td
1, 2 1. <
:—//8—2p5 (he = pe) Mdvdx—/gjs-vxpdx
Td R4 T4
+/ﬁiavxps'vxﬁdz_/ﬁiﬂvxﬁﬁdx
Td Td

IN

1 ) ~_ _
= [ SotliP o [ 59 s

Td Td
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1. . o .
- gja : Va:pdx + p va:pa : Vmpd$7
Td Td

where on the last line we applied Lemma 2.5.
Now, by Remark 2.8, we expect formally that as ¢ — 0 we will have

1.
_gp?js = Vgpe = 0. (5.3)

Furthermore, we can see that

1 . .
_EP?]E — Vape = €0je + Vg - E.

This means that (5.3) does in fact hold in H[;([O,T] x T4) as it follows from the
convergence of j., E. to zero in L?([0,T] x T%). We give a detailed proof of this later
on. We aim to exploit this fact by rearranging the dissipation of the relative entropy.
First, we complete the square with the two negative dissipation terms. To this end, we
define

1 a . e L
Q- = gpezje +p 2V,p, and R.:=Vgp.+¢ 1p€j€
Then we have,
1d N P SN T )
Slhe = Al o S—/|Q5|2dx—/<1_2(§> )gk,vxm
Td Td

+ /p*“vmps Vepda
’]l‘d

-/ @Par- [(1-2(%)

Td

w2
+
P
|b
™
—
Q
N
| =
S
™
<
8
™
o,
&

1w\ we
+ /(V;cpe + gp?]e) -p*Vepdx
’]I‘d
$\°1
/|Q6|2dx/(1 (p—f> ) —Je - Vepdx
P €
Td Td

—l—/RE-ﬁ_aVzﬁdx.
Td

In order to deal with the remaining e ! term we rewrite e 1j. = pQ%QE —(pep)"2Vap
and substitute in to find
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1d <112 2 Pe\ 2 P ao
a 12 - 2 < - 5 - -\ = 62 xl €
saillne = o <= [10Par [(1=(%)") 5 V.0 Qeao
T4 Td
pe\ )
+/<1— (%) ) (p€ﬁ>‘f|vmﬁ|2dx+/RE-ﬁ—“vzﬁdx
Td Td

1 AN
S/Ra.ﬁavwﬁdx—i——/(l—(ﬁ;) ) p;a|Vwﬁ|2dx
4 p

T4 T
pey 5\
+/(1— (;) ) (p-h) "% |Vl de
Td
~—a ~ 1 Pe\“ ? —a ~12
< | R p V$pdx+1 1—(?) Pz “|Vpl” de
Td Td
p-\ 5
(= 55V, 52
+/<1 <ﬁ) > (pp)” 2 |Vap|” dx
Td
Z:/Rg-ﬁ_avxﬁd$+ll+12. (54)

Td

In the above calculation, we first applied Young’s inequality to deal with the Q). terms,
followed by the inequality |f% — g%| <|f- g\% for all f,g > 0.

We now wish to bound the integrals Iy, I> in terms of the distance [|pe — pl|rz us-
ing the uniform in € and time bounds on p., p, as well as the regularity of the limit
equation.

We begin by bounding the first integral term I;. Holder’s inequality gives us

h< Mool [(1- (%)) ars - (%)

Td

2

12’ (5.5)

with the constant depending only on A, « and ||piy||c2 thanks to Lemma 5.1. We now
apply Taylor’s theorem to the function f(z) = 2% at a = 1 to write 2® = 1 4+ a(z —
1) + h(z)(z — 1) for some smooth h : R — R with lim,_; h(z) = 0. Thus, for any
compact interval I we have |1 — 2%| < |1 — z| for all z € I with the constant depending
only on a,|I|. Thanks to the uniform bounds on p.,p we may apply this to (5.5) to
find

nsfi-%
p

9 2
; S/(pe—ﬁ)2d$=/</(he—ﬁ)Mdv> de < lhe = 722 o
.~

Td R4
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where we again used the uniform bounds on p. Then, the final inequality follows from
Jensen’s inequality. We can bound I in a similar way with a constant depending on the
same quantities.

Plugging these estimates back in to (5.4) and using Gronwall’s lemma, we find that
for any 7" > 0 we have

t

e *ﬁ”QLgm(M) < e | || hin *pinHQLgm(M) Jr2/e*CS/Rs - pTYVypdards ], (5.6)
0 T4

for some C' > 0 depending only on «, A, ||pin||c2, and so in order to conclude, it remains
only to bound the final term.

Note that, using the definition j. in (2.2), we may express R, in terms of derivatives
of hydrodynamic quantities, i.e., R. = —V - E. — €0;j.. Thanks to the smoothness in
time and space of the limiting equation we may use p~*V,p as a test function onto
which we pass the derivatives appearing in R.. Thus, integrating by parts and applying
Holder’s inequality we have

t
//e_CSRE POV pdrds

0 T4

t
://(e_CSEE Ve (pVap) + €je ~8S(e_csﬁ_avxﬁ))dxds
0 Td

e / (e7C%5ut) -5 (V1) — e (0) - 5 (0)V2p(0) ) da
Td

< va(ﬁ—"vwﬁ)H%//Ead:cds

0 Td

t
+a(0||ﬁ*avxﬁllm+Hat(ﬁfavxﬁ)nm)//|jg|da;ds
0 Td

+ 2¢([p™*Vapll Lo, el oo vy 1)

t t
f,s//|j€|dxds+//|E€|dxds+s

0 Td 0 Td

< (1‘f‘*5>/t/(/(hs—/)5)2/\/ldv)%dacds—&-s7

0 Td Rd
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where we used Lemma 2.5 to reach the final inequality. Finally, we use Jensen’s inequality
once more to bound the remaining integral by

//(/ - pe) Mdv) dxds<t2</||h PsHLz (M)ds)z.

0 Td Rd

Lastly, we have from the proof of Theorem 2.2,

|| eHLgu(M)<——Hh = pellrz ,(m),

and so we have that

/ Ihe(s) = pe()22 . wpds S 2 () . ay S 2

Hence,

t
//e*CSRE-ﬁ*avmﬁdsdzgt%(wﬁ)+s§s(1+t%),
0 Td

for € € (0,1). Plugging this back into (5.6) we have the result. O

With this result, we are ready to show the global in time diffusive asymptotics. Recall
that in the following we take 0 < e,¢' < %,
and €’ is a bound on the distance between the initial data for the kinetic and parabolic

equations, i.e. [[fein — pinMlL2  (pm-1) < €

where ¢ denotes our scaling parameter

Proof of Theorem 2.3. Let T' > 0. By Proposition 5.3 there exist constants C,C’ > 0
such that for all 0 < ¢ < T we have

Ife — ﬁMH%% -y < T ((e’)2 +C'e(1+ T%)) Se“T(e+e) (1 + T%).

We could optimise our choice of T' > 0 but for simplicity we choose T' = —klog(e + €’)
with K := % With this choice of T we find

1 = 2MIZs sy S (e + €)% (14 (—nlog(e +<) )

(1 + (e + 6')%(—/~elog(5 +€l))%>

wle

<(e+¢)

e

< (e+¢€)T,
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where we used the boundedness of x2 logz on (0,1) to bound the log(e 4 ¢') term
appearing on the right-hand-side by a power law. Regarding the long-time asymptotics,
thanks to Proposition 5.2 there exists C' > 0 such that for all ¢ > T we have

162 - MLz, vy S €T = (e 0%,
with C depending on «, A and d and this completes the proof. O
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