
 
 

Delft University of Technology

Improving beamforming by optimization of acoustic array microphone positions

Malgoezar, Anwar; Snellen, Mirjam; Sijtsma, Pieter; Simons, Dick

Publication date
2016
Document Version
Final published version
Published in
6th Berlin Beamforming Conference

Citation (APA)
Malgoezar, A., Snellen, M., Sijtsma, P., & Simons, D. (2016). Improving beamforming by optimization of
acoustic array microphone positions. In 6th Berlin Beamforming Conference: Berlin, Germany

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.



BeBeC-2016-S5

IMPROVING BEAMFORMING BY OPTIMIZATION OF
ACOUSTIC ARRAY MICROPHONE POSITIONS

Anwar Malgoezar1, Mirjam Snellen1, Pieter Sijtsma1,2 and Dick Simons1

1Delft University of Technology, Faculty of Aerospace Engineering
Kluyverweg 1, 2629 HS, Delft, The Netherlands

2PSA3 Advanced AeroAcoustics
Prinses Margrietlaan 13, 8091 AV, Wezep, The Netherlands

Abstract

Assigning proper positions to microphones within arrays is essential in order to reduce
or eliminate side- and grating lobes in 2D beamform images. In this paper an objective
function is derived providing a measure for the presence of artificial sources. Using the
global optimization method Differential Evolution an optimized microphone configuration
is obtained by minimization of this objective function. Results show that optimizing the
microphone locations can significantly enhance the array performance. In a large part of
the scan region surrounding the true source location, no side- or grating lobes are present,
meaning that the source can be unambiguously located. From the optimization it is also
found that the optimized array configuration shows the microphones distributed at almost
constant distance. A linear relation is found which shows that the distance decreases with
increasing frequency. This knowledge is important information for the design of an optimal
microphone configuration.

1. INTRODUCTION

When applying beamforming for imaging acoustic sources, the resulting image identifies the
source locations as areas with high sound levels. However, often high levels are also found at
locations with no sound source present. We can divide these spurious sources in two groups:
side lobes and grating lobes. Grating lobes have levels equal to that of the actual source position.
They result from complete constructive interference. For line arrays, for example, they are the
result of having inter-microphone distances larger than half the wavelength of the signal of
interest. Side lobes are considered as all other areas in the image with high levels, resulting
from partial constructive interference.
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Due to the nature of an acoustic microphone array it inherently exhibits the appearance of side
lobes in the resulting image after beamforming. There are several ways to reduce the presence
of grating lobes and side lobes, one more practical and easier to perform than the other. The
impractical choices are to use an infinitesimal small distance between microphones to eliminate
grating lobes for all frequencies. The other is the use of an infinite amount of microphones
to reduce (but not eliminate) the levels of the side lobes, which in turn requires a microphone
array of infinite dimension. Alternatively, weighting can be applied. However, this effectively
decreases the array aperture and thus the array resolution. Because we are working with a finite
amount of microphones we need to look for other solutions.

One way to eliminate side lobes is to apply dedicated beamforming techniques such as
adaptive beamforming[1] and functional beamforming[2–4], or deconvolution methods such
as CLEAN-PSF, CLEAN-SC[5] and DAMAS[6–8]. These methods start their deconvolution
algorithm with source maps obtained by the well-known sum-and-delay beamforming, or, con-
ventional beamforming. Although deconvolution methods work well in certain situations, the
quality of the results depends strongly on the quality of the initial source map.

The other approach is to minimize side lobes through array design. Previous work[9–11]
shows that careful selection of the microphone locations and array aperture can reduce side
lobe levels.

In this work we focus on optimizing the array configuration. As a first step, an objective
function is selected which is a measure for the presence of artificial sources. By minimizing
this function an optimal microphone distribution is obtained, providing minimal appearance
of side lobes. The unknowns are the microphone positions. In order to allow optimization
for the large number of unknowns, use is made of Differential Evolution (DE) as the global
optimization method. DE is a variant of the well-known genetic algorithm (GA)[12]. Previous
work in the field of geo-acoustics[13] showed promising results using the DE method for global
optimization problems. As with GA, also DE has a number of setting parameters that need to
be chosen well in order to obtain optimal DE performance, i.e., a high probability of locating
the optimum at a minimum number of forward calculations. For the geo-acoustic inversion
problem[13] an optimal DE setting was derived. However, for the problem considered in this
contribution the number of parameters is much larger, requiring an additional effort to find those
values for the DE setting parameters that provide good DE performance also for the application
at hand. Given this optimal setting, the optimization is readily extended to other objective
functions.

In Section 2 conventional beamforming is explained. Section 3.1 presents the objective func-
tion used in this work. In Section 3.2 a short description of DE is given and the DE setting
parameters are selected. The results of optimizing the microphone positions are presented in
Section 4. Here, the optimized array performance is assessed by beamforming over several
configurations and frequencies. Also, a measure for the optimized configuration is presented.
Conclusions of the work are given in Section 5.

2. CONVENTIONAL BEAMFORMING

A single microphone provides the acoustic level resulting from all sources. Using multiple mi-
crophones, i.e., an acoustic array, allows for imaging also the individual noise sources. The most
classical technique for finding the acoustic sources is delay-and-sum beamforming, which we

2



5th Berlin Beamforming Conference 2016 Malgoezar et al.

denote by conventional beamforming. In the next sections both the time domain and frequency
domain beamforming methods are explained.

2.1. Time domain beamforming

When a source emits an acoustic signal in space, it is expected that the signal, without obstruc-
tion, arrives at the array with a certain time delay due to the distance it must travel. Time domain
beamforming uses the delayed signals measured at various positions in space. These positions
in our case are the microphones on the array.

By eliminating the delays and summing the signals resulting from all microphones for all
potential source locations, a so-called source map is obtained. This process is known as beam-
forming. The beamformer output signal is given by[14]

1
N

N

∑
n=1

wn pn,meas (t +∆tn) , (1)

where N is the total amount of microphones in the array, n an individual microphone, wn the
weight applied to the signal of microphone n, e.g. correcting for transmission losses, pn,meas the
pressure measured at microphone n and ∆tn the time delay between microphone n and the scan
point.

Assuming the source to be an acoustic monopole, the expression for the received signal is

A
r

e−iω(t−∆t), (2)

where ∆t is the time delay between the source and receiver, separated by a distance r, and A the
pressure amplitude for r = 1 m. The exponential containing the time delay, eiω∆t , is the phase
shift at position r of the signal with frequency ω . For obtaining the amplitude of the source
from Eq. (1) the weights are selected according to Eq. (2) as

wn =
rn

r0
, (3)

where r0 is chosen to be a reference distance and rn the distance of the scan point to microphone
n. For convenience we select r0 = 1 m.

2.2. Frequency domain beamforming

By going from the time domain to the frequency domain, beamforming can be performed per
frequency. From Eq. (1) and Eq. (3) for a single microphone n

rn

r0
pn,meas (t +∆tn) , (4)

we get for the Fourier transform
rn

r0
Pn,meas(ω)eiω∆tn, (5)

with Pn,meas(ω) the Fourier transform of the measured pressure pn,meas(t).
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We can then beamform similarly as with the time domain

1
N

N

∑
n=1

rn

r0
Pn,meas(ω)eiω∆tn, (6)

for the frequency ω . Where in the time domain we would beamform for all frequencies in one
go, in the frequency domain beamforming is done per frequency.

An alternative approach often taken towards frequency domain beamforming, leading to a
somewhat different expression, is as follows. We define the measurement vector Pmeas, con-
taining the measurements Pn,meas(ω). The model for our measurements is P0(ω)g, with g the
steering vector containing the transfer functions gn(ω) for all microphones n. gn(ω) is[15]

gn(ω) =
r0

rn
e−iω∆tn, (7)

and P0(ω) the source spectrum (to be estimated). We thus have

Pmodel = P0(ω)g, (8)

P0(ω) is estimated by minimizing the difference between Pmodel and Pmeas(ω). This can solved
in the least-squares sense by minimizing

‖Pmeas−P0(ω)g‖2, (9)

for which the solution is[16]

P̂0(ω) =
g∗Pmeas

g∗g
. (10)

For plane waves Eq. (10) is the same as Eq. (6). However for spherical waves they differ in the
normalization. Eq. (10) is used in deriving the aperture function in the next section. It gives
an estimate for the source spectrum at a certain point in space. By evaluating Eq. (10) for each
potential source location the beamform map is obtained.

3. THE OPTIMIZATION PROBLEM

3.1. The objective function

For the derivation of the objective function the assumption is made that the array is in the far
field, such that the distance between the array and the source is large enough to assume the
incoming signals to be plane waves. In this case we are in the far field and only interested in the
direction of the sound. We can describe the pressure signal as

p(~xn) = ei~k·~xn, (11)

where~xn is the vector connecting the scan point and the n-th microphone and~k the wave vector
which should satisfy

ω2

c2 −~k ·~k = 0. (12)
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In Eq. (12) c is the sound speed.
Considering a source with unit amplitude and wave vector ~k0, the pressure received at the

microphones of the array are

Pmeas =

 e~k0·~x1

...
e~k0·~xN

 . (13)

The steering vector towards a scan point in direction~k is

g =

 e~k·~x1

...
e~k·~xN

 , (14)

where ~k0 and~k both satisfy Eq. (12) i.e. correspond to the same frequency. We obtain

g∗g =
(

e−i~k·~x1ei~k·~x1 + · · ·+ e−i~k·~xN ei~k·~xN
)
= N, (15)

and
g∗Pmeas =

(
e−i~k·~x1e+i~k0·~x1 + · · ·+ e−i~k·~xN ei~k0·~xN

)
, (16)

such that Eq. (10) becomes

P̂0(ω) =
1
N

N

∑
n=1

ei(~k0−~k)·~xn. (17)

Eq. (17) can be seen as an aperture smoothing function W ,

W
(
~k0−~k

)
. (18)

To eliminate side lobes the aperture function should satisfy

W
(
~k0−~k

)
=

{
1 if~k = ~k0

0 if~k 6= ~k0
. (19)

Using only a finite number of microphones N makes this impossible.
If we consider plane wave beamforming with a planar microphone array in z = 0, we get

(~k0−~k) ·~xn = (k0,x− kx)xn +(k0,y− ky)yn, (20)

and for the aperture function

W (kx,ky) =
1
N

N

∑
n=1

ei[(k0,x−kx)xn+(k0,y−ky)yn], (21)

from where we see that beamforming results are shift-invariant with respect to the wave numbers
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kx and ky. In other words, an incoming wave with wave numbers kx = k0,x and ky = k0,y gives
the same results as with kx = 0 and ky = 0, but shifted by (kx,ky) = (k0,x,k0,y). We can therefore
write

W (kx,ky) =
1
N

N

∑
n=1

e−i(kxxn+kyyn). (22)

Now, to minimize side lobes the following objective, or energy, function is defined

J(~x1, · · · , ~xN) =
∫
Ω

|W (kx,ky)|2dkxdky =
1

N2

∫∫
Ω

∣∣∣∣∣ N

∑
n=1

e−i(kxxn+kyyn)

∣∣∣∣∣
2

dkxdky, (23)

where J is the function to be minimized, i.e. the aperture function squared, conform Sijtsma[16].
The power of 2 is used for ease of implementation and computational considerations. The
domain Ω contains all scan directions of interest. In order to minimize the side lobes, the
domain will be chosen such that it includes all scan directions of interest, but excludes the main
lobe.

We can rewrite Eq. (23) as

J(~x1, · · · , ~xN) =
πk
N2

(
Nk
[
sin2(φmax)− sin2(φmin)

]
+4

N−1

∑
m=1

N

∑
n=m+1

sin(φmax)J1[ksin(φmax)dmn]− sin(φmin)J1[ksin(φmin)dmn]

dmn

)
,

(24)

where dmn is the distance between microphone m and n, k = |~k| and J1 is the first order Bessel
function of the first kind. The derivation of Eq. (24) can be found in the Appendix. The angles
φ are elevation angles as can be seen in Figure 1; φmin and φmax determine the domain Ω.

Suitable integration bounds

In order to minimize the side lobes while excluding the main lobe, the integration boundaries
φmin and φmax need to be selected carefully. The problem of beamforming with an array of
microphones is somewhat similar to the descriptions of the best focused spot of light that a
perfect lens with a circular aperture can make, limited by the diffraction of light. Whereas in
optics the lens ’applies’ the phase shift, in acoustic beamforming this would be the microphones.
We are going to use this analogy to obtain practical choices for φmin and φmax. Like in optics
we expect the signal resulting from beamforming to have the behaviour of a Bessel function.
To clarify this, assume an infinite amount of microphones on a circular array with radius R. We
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Array plane z
~k0

y

y

x
x

Scan plane

~k

φmin

φmax

φ
θ

Figure 1: Relation between the wavevector~k, polar angle φ and azimuthal angle θ . The area
of integration is shown in red. In practice the inner radius will be much closer to the
origin.

then have for the aperture function Eq. (22)

W (kx,ky)∼
1

πR2

∫∫
Ω

e−i(kxx+kyy)dxdy (25)

=
1

πR2

R∫
0

2π∫
0

re−irksin(φ)dθdr (26)

=
2J1 (kRsin(φ))

kRsin(φ)
, (27)

with r =
√

x2 + y2 and using similar coordinate transformations and steps as deriving the ob-
jective function in the Appendix. Eq. (27) squared is known as the Airy pattern and can be seen
in Figure 2. Using this expression we define our lower boundary φmin to exclude the main lobe
which occurs at the first zero crossing of Eq. (27). For a Bessel function of the first order this
corresponds to J1(u) = 0, or u≈ 3.83. Thus

kRsin(φmin) = 3.83. (28)

For small angles φ we find
φmin = 1.22

c
D f

, (29)

with D = 2R the diameter of the circular array. Eq. (29) is known as the Rayleigh criterion and
is known as the angular resolution of an imaging device for the given frequency f .

For the maximum angle φmax we select a value based on the desired angular field-of-view
(FOV) of 60◦ or φmax = 30◦.
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Figure 2: Surface plot of the Airy pattern.

Interpretation of the objective function

In the ideal case, the value of the objective function should yield zero by excluding the origin
in the integration. However, due to the nature of an acoustic array, side lobes are inevitable and
therefore values of zero for optimized configurations are not feasible. Therefore we consider
two exemplary configurations accompanied with a beamformed image of a point source located
at the origin. The frequency of the point source is f = 2000 Hz with an SPL of 100 dB. The
source is positioned in the far field at a distance of 35 m. One configuration exhibits relatively
high side lobe levels in the Ω-minimization region while the other has lower levels. The micro-
phone configuration, the corresponding beamformed image and an intersection of the beamform
output at y = 0 can be seen in Figure 3. The boundaries corresponding to φmin and φmax are indi-
cated by two concentric circles in the beamform images. Dashed lines indicate these boundaries
in the plots showing the intersection. The radii of the circles are, using Eq (29) and a FOV of
60◦, 3.68 and 20.21 m. Within this range it is seen that for the configuration corresponding to
J = 43.5 relatively high side lobe levels are present compared to the configuration of J = 8.48.
Outside the optimization region, i.e. r > 20.21 m, it is seen that the occurrence and levels of the
side lobes are of the same order.
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Figure 3: Comparison of side lobes between two configurations with corresponding value of
J = 42.02 for (a), (c), (e) and J = 8.48 for (b), (d), (f).
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3.2. The optimization method

Problems related to optimizing an objective function, possibly being nonlinear and non-
differentiable over continuous space, can be solved using global optimization methods. In this
section we explain the global optimization method differential evolution (DE) used in our prob-
lem.

Differential evolution (DE) is a method that optimizes a problem by iteratively trying to im-
prove candidate solutions with regard to a given measure of quality and was introduced by Storn
and Price[17, 18]. It can be classified as a metaheuristic method making few or no assumptions
about the problem being optimized and can search very large spaces of candidate solutions.
However, this metaheuristic method does not guarantee an optimal solution is ever found.

DE is used for multidimensional real-valued functions and does not require the user to calcu-
late the gradient of the problem being optimized, which in turn implies that DE does not require
the optimization problem to be differentiable.

DE starts with an initial population of randomly chosen parameter value combinations. The
population consists of q members each containing trial values for the unknown parameters.
In this problem this equals 64 values corresponding to the (x,y)-coordinates of the 32 micro-
phones. The parameter value combinations are improved each generation over a maximum
amount of successive generations NG. At each generation l, members of the partner population
are created from the original population members ml,i as

pl,i = ml,r1 +F
(
ml,r2−ml,r3

)
, (30)

with i= 1 · · ·q. Indices r1,r2,r3 ∈ {1,2, · · · ,q} are integer, differ from each other and are chosen
at random. F is a scalar multiplication factor between 0 and 1. A higher value of F indicates an
increased difference between original parameter vector ml,i and those contained in the partner
population pl,i.

The next step is to calculate its descendant dl,i by applying crossover to ml,i and pl,i with a
probability pc. For each parameter j of dl,i we get

dl,i j =

{
pl,i j if [U (0,1)] j ≤ pc

ml,i j if [U (0,1)] j > pc
, (31)

with [U (0,1)] j the j-th evaluation of a uniform distribution with values between 0 and 1. Set-
ting the value of pc high means that more values are replaced by those of the partner population,
while a low value of pc results in generations that differ only slightly regardless of the value of
F .

To create the new generation l+1 from the previous generation l, the member ml,i is replaced
by dl,i only if it yields a smaller value for the objective function

ml+1,i =

{
dl,i if J(dl,i)< J(ml,i)

ml,i if J(dl,i)≥ J(ml,i)
. (32)

Doing this for all members i in the population we obtain the next generation l+1. This process
is repeated for NG generations.

The so-called setting parameters for DE are
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• Population size q,

• Multiplication factor F ,

• Crossover probability pc,

• Number of generations NG.

These settings which are problem specific must be selected to maximize the probability to locate
the global optimum. Next we will try to find the optimal settings.

Finding the optimal settings: number of forward generations and population size

As it is not known beforehand for which combination of setting parameters DE performs best,
several tests are carried out to determine the number of generations, population size, multipli-
cation factor and crossover probability.

First the optimal setting for the amount of generations and population size are determined.
Hereafter the multiplication factor and crossover probability are selected.

To determine the optimal value for the amount of generations and population sizes, the mul-
tiplication factor and crossover probability were set to F = 0.7 and pc = 0.6 in accordance with
Snellen[13] for the same DE implementation.

A Monte Carlo simulation is performed for population sizes q of 64, 96 and 128, where for
each setting 10 independent DE runs are carried out. The result of the energy as a function
of generation for the various runs for each population size can be seen in Figure 4. A large
variation at 4000 generations can be seen for all population sizes. At 4000 generations the
larger population size, q = 128, does not outperform q = 64. Eight out of the ten runs for
q = 128 have an energy value between 16 and 18, while for q = 64 at least half of the ten runs
have a value below 16. To further compare between the different population sizes we look at
the amount of forward calculations qNG. For the three figures in Figure 4 the vertical dashed
line indicates the generation for which the number of forward calculations amounts to 256000.

From this it can be seen that a value for q = 128 does not on average produce lower values
for the energy. This motivates us to use a population size of q = 64. While the variation is
slightly larger for q = 64, the chance to arrive at a lower value for the energy is significantly
larger. The same holds when comparing to q = 96. Although no full convergence has yet been
achieved for q = 64 at 4000 generations, we will not increase the amount of generations due to
computational constraints. To this end we set the amount of generations to NG = 4000 with a
population size of q = 64.

Finding the optimal settings: multiplication factor and crossover probability

Having decided on the value for the population size and the amount of generations, two settings
remain to be determined. In order to find suitable values for the multiplication factor F and
cross over probability pc, the DE performance is assessed for values for pc between 0.2 and 1
and F between 0 and 1 with steps of 0.1. For each combination 10 independent runs are done
and the average value for the energy value J is determined. The results are shown in Figure 5.
From Figure 5 low values of the energy can be seen in the region for pc = 0.9 and F = 0.2 to
F = 0.8. Based on this figure, the best combination to use for DE is found as pc = 0.9 and
F = 0.5.
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Figure 4: The value of the objective function J as a function of the amount of generations NG
for 10 independent runs with F = 0.7, pc = 0.6 for (a) q = 64, (b) q = 96 and (c)
q = 128.

4. RESULTS

Optimizing the objective function J of Eq. (24) resulted in various microphone array configura-
tions having low energy values. In Figure 6 several configurations are shown at various stages
of an optimization run.

First it can be seen that the configuration for generation 333 becomes more compact com-
pared to the initial configuration by having some microphones closer together. This results in
an energy decrease of J = 23.57 to J = 15.86. From generation 333 and on it can be seen that,
while roughly retaining the dimensions of the compact microphone geometry, the microphone
positions get more evenly distributed within this geometry, which roughly resembles a circular
disc. We can see this happen from generation 333 to 666 with a decrease of J = 15.86 to J = 9.6.
While the configuration at generation 666 and 1500 are very similar, an additional significant
decrease of energy can be achieved by going from J = 9.6 to J = 3.96 by DE through slightly
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Figure 5: Map of the energy J as a function of pc and F for q = 64 and NG = 4000.

adjusting the microphones and achieving an even more regular pattern. This indicates that the
minimum energy corresponds to a specific distance between a microphone and its neighbours.
Figure 7 shows the histogram of all distances between the microphones and their closest neigh-
bour for the array configurations of Figure 6. From these histograms it can be seen that towards
the final generation these distances tend to fall within the range of 0.16 to 0.28 m. The his-
tograms confirm the formation of a more compact configuration as the variance of the distance
decreases, as well as the mean.

4.1. Beamforming with the ideal configuration

For the results presented in the previous section, the frequency selected for optimization was
2000 Hz. Beamforming using the optimized microphone configuration should result in side
lobes that are significantly reduced in the optimization region defined in Section 3.1. To demon-
strate this and to investigate how the beamforming behaviour is for other frequencies we will
beamform for three different frequencies, i.e. lower than 2000 Hz, equal to 2000 Hz and larger
than 2000 Hz using the optimal configuration obtained in the previous section. To do this a
100 dB monopole sound source is simulated at the origin at a distance of 35 m. The result
of beamforming is shown in Figure 8 for the frequencies 1500, 2000 and 3000 Hz, where the
white circles indicate the optimization boundaries corresponding to φmin and φmax. We can see
in Figure 8b that beamforming at the frequency for which the array was optimized (2000 Hz)
results in a source map with no side lobes visible in the region of interest and side lobes which
are above 80 dB, residing just outside the outer boundary. The main lobe resides just inside
the inner boundary indicating that the optimum microphone configuration provides an aperture
close to the array diameter. This is confirmed by Figure 6d. We can conclude that beamforming
at the frequency for which the microphone configuration was optimized results in side lobes
being reduced for the directions of interest.

For the lower frequency (1500 Hz) see Figure 8a, we see that the inner boundary lies inside

13



5th Berlin Beamforming Conference 2016 Malgoezar et al.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x [m]

y
[m

]

J = 23.57, Generation 1

(a)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x [m]
y
[m

]

J = 15.86, Generation 333

(b)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x [m]

y
[m

]

J = 9.6, Generation 666

(c)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x [m]

y
[m

]

J = 3.96, Generation 1500

(d)

Figure 6: Microphone configurations obtained using F = 0.2 and pc = 0.8 for several values of
J (a) J = 23.57, (b) J = 15.86, (c) J = 9.6 and (d) J = 3.96.

the main lobe. This is expected according to Eq. (29) indicating that lower frequencies result in
a wider main lobe while a higher frequencies result in a smaller main lobe. The latter is seen in
Figure 8c. Considering the performance of the optimized array at φmax Figure 8a indicates for
lower frequencies good performance for the FOV of interest but also for larger values of φ . In
contrast, for higher frequencies the FOV is reduced as side lobes start to appear for values of φ

smaller than φmax.
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Figure 7: Histograms of the closest-neighbour-distances of the corresponding configurations in
Figure 6, (a) J = 23.57, (b) J = 15.86, (c) J = 9.6 and (d) J = 3.96.

4.2. Minimum side lobe array design

As a next step the optimization was carried out for frequencies from 1000 Hz to 10000 Hz
in 1000 Hz steps. Figure 9 shows the optimized arrays for 2000, 4000 and 6000 Hz, respec-
tively. It can be seen that the separation distance between microphones gets smaller for higher
frequencies.

We can also see the energy J getting larger for higher frequencies. This is due to including
part of the main lobe. The main lobe size is selected by the lower bound according to Eq. (29).
The angle φmin will correspond to the main lobe only if the full size of the array, D, is used.
Microphone distributions that span only a part of the array, such as seen in Figure 9, will result
in larger main lobes. Inclusion of the main lobe will result in a microphone configuration
optimized as a compromise between minimum side lobes and small main beamwidth. This is
exemplified in Figure 10 and explains why for f = 4000 Hz and f = 8000 Hz the configuration
is not as compact as it could be. An outlier or two for the microphones or a not-as-compact
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Figure 8: Beamforming with the microphone configuration given in Figure 6d for a simulated
source signal at the origin at frequency (a) f = 1500 Hz, (b) f = 2000 Hz and (c)
f = 3000 Hz.

configuration can somewhat restrict the further increase of the main lobe width.
Figure 11 shows the histograms for the configurations seen in Figure 9 for the closest-

neighbour-distances. Also from the histograms it is clear that the mean of distances decreases
with increasing frequency.

To illustrate this more explicitly Figure 12 presents the relation between the mean of the
closest neighbour distance versus the frequency and wavelength. An approximate linear relation
between the distance and the wavelength can be seen. A least squares linear fit for the mean
values results in

d = 1.38λ , (33)
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Figure 9: Microphone configurations after optimization for frequencies (a) f = 2000 Hz, (b)
f = 4000 Hz and (c) f = 6000 Hz.

−10 −5 0 5 10
0

1

x

W
2

 

 

Actual beam
Array beam

Figure 10: Cross-section of Figure 2 through (0,0) of Airy pattern for the maximum array aper-
ture (array beam) and aperture typically encountered during the optimization (ac-
tual beam). Actual beams are always larger or equal to the array beam.
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Figure 11: Histograms of closest-neighbour-distance of (a) f = 2000 Hz, (b) f = 4000 Hz and
(c) f = 6000 Hz.

for the relation between the closest-neighbour distance d and the wavelength λ , a practical
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Figure 12: Relation between the closest-neighbour-distance versus the wavelength.

formula which can help in array design.
In order to assess whether the relation found in Eq. (33) can be used to design a microphone

configuration, a configuration is constructed by having as many neighbours as possible to have
this particular distance.

The configuration was made as a hexagonal pattern by setting three microphones at the ver-
tices of an equilateral triangle and extending this pattern from the origin, ending at the amount
of 32. The edges of the equilateral triangle correspond to the closest-neighbour distance. The
result can be seen in Figure 13a. The distance was set according to Eq. (33) to d = 0.2346 m at
the optimization frequency of 2000 Hz. This configuration is such that maximally 6 and at min-
imum 2 neighbours are at this situated distance. This configuration results in an energy value of
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Figure 13: (a) A hexagonal configuration created using the relation in Eq. (33) and (b) a corre-
sponding beamform image using the configuration.

J = 7.47, which is a low value relative to a random configuration and comparable to the value
obtained in the full inversion, see Figure 9a. As a further illustration of the performance of the
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configuration seen in Figure 13a the corresponding beamform image is shown in Figure 13b.
Good performance with low side lobe levels is seen. However, due to the regular pattern of
the hexagonal configuration, side lobes are now visible inside the optimization region. This
indicates the need for small deviations for the fixed differences.

5. CONCLUSIONS

In this paper we present a method for optimizing the microphone configurations. The objective
function is selected such that it provides a measure for the presence of side- and grating lobes.
Minimization of this objective function provides microphone locations, such that no side- and
grating lobes are present in a scan region of interest. This region corresponds to the full azimuth
and elevation angles φmin and φmax. The angle φmin corresponds to the width of the main lobe,
whereas φmax corresponds to the maximum elevation angle of interest. For this research, a value
of 30 degrees was selected. Low values of the objective function indicates hardly any grating
and side lobes present in the region of interest.

For finding the minimum of the objective function use is made of the differential evolution
(DE) optimization method. An optimal setting for DE was selected to maximize the probabili-
ties of locating the optimal solution at a minimum number of forward calculations. Optimized
array configurations were found using DE which confirmed the desired performance, i.e. low
side lobes inside the region of interest.

It is found that the optimized array configuration shows a regular behaviour with the mi-
crophones distributed at almost constant distances. From inversions for different frequencies
it is found that these distances decrease with frequency and show almost linear behaviour with
wavelength. Arrays with microphones positioned based on this linear behaviour show improved
performance compared to a random array. Still, the regular pattern gives rise to side lobes that
are not present for the microphone configuration obtained through the DE optimization. This in-
dicates the need for small variations of the microphone distances around the distance prescribed
by the linear fit.
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A. The objective function

The integrand of Eq. (23) can be written as∣∣∣∣∣ N

∑
n=1

e−i(kxxn+kyyn)

∣∣∣∣∣
2

=
N

∑
m=1

N

∑
n=1

e−i(kxxm+kyym)ei(kxxn+kyyn)

=
N

∑
m=1

N

∑
n=1

e−i[kx(xm−xn)+ky(ym−yn)].

(34)

It is convenient to transform the integration to spherical coordinates using

kx = kcos(θ)sin(φ)
ky = ksin(θ)sin(φ)

, (35)

where the relation can be seen in Figure 1. The change in coordinates (kx,ky) to (θ ,φ) requires
the change of ’surface’ element dkxdkx to dθdφ . We can get this from the Jacobian using

J =

[
∂kx
∂θ

∂kx
∂φ

∂ky
∂θ

∂ky
∂φ

]
=

[
ksin(θ)sin(φ) −kcos(θ)cos(φ)
−kcos(θ)sin(φ) −ksin(θ)cos(φ)

]
, (36)

and the change in surface element for the integral according to

dkxdky = |det(J)|dθdφ = k2cos(φ)sin(φ)dθdφ (37)

Using Eq. (34) and the coordinate transformation given by Eqs. (35), Eq. (23) becomes

J(~x1, · · · , ~xN) =
1

N2

N

∑
m=1

N

∑
n=1

φmax∫
φmin

2π∫
0

k2cos(φ)sin(φ)e−iksin(φ)[(xm−xn)cos(θ)+(ym−yn)sin(θ)]dθdφ .

(38)
Integration takes place over all angles, 0≤ θ ≤ 2π , this means that the addition of any constant
angle β will not change the result of the integration, i.e.

2π∫
0

f (θ)dθ =

2π∫
0

f (θ +β )dθ . (39)

Applying this to Eq. (38) results in

J(~x1, · · · , ~xN)=
1

N2

N

∑
m=1

N

∑
n=1

φmax∫
φmin

2π∫
0

k2cos(φ)sin(φ)e−iksin(φ)[(xm−xn)cos(θ+β )+(ym−yn)sin(θ+β )]dθdφ .

(40)
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To obtain a solution we will use for the constant angle β

tan(β ) =
ym− yn

xm− xn
. (41)

In Figure 14 we can see the relation between the angle β and the distance dmn between two

xm− xn

ym− yn

β

dmn

Figure 14: Relation between the angle ϕ and the sides of the triangle.

microphones n and m. From this figure we get

xm− xn = dmncos(β )
ym− yn = dmnsin(β ),

(42)

with
dmn =

√
(xm− xn)

2 +(ym− yn)
2. (43)

The exponent of the integrand in Eq. (40) can be rewritten as

(xm−xn)cos(θ +β )+(ym− yn)sin(θ +β )

= dmn [cos(β )cos(θ +β )+ sin(β )sin(θ +β )]

= dmncos(θ),
(44)

which simplifies Eq. (40) to

J(~x1, · · · , ~xN) =
1

N2

N

∑
m=1

N

∑
n=1

φmax∫
φmin

k2cos(φ)sin(φ)
2π∫
0

e−iksin(φ)dmncos(θ)dθdφ . (45)

The inner integral over θ can be written as

2π∫
0

e−iksin(φ)dmncos(θ)dθ =

2π∫
0

cos [−ksin(φ)dmncos(θ)]dθ + i
2π∫
0

sin [ksin(φ)dmncos(θ)]dθ ,

(46)
where the integrand of the imaginary part is an odd function with period 2π which results in
the integral being zero. For the integral containing the cosine, it can be graphically seen as the
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integrand to be a periodic function with frequency 2θ . This results in

2π∫
0

e−iksin(φ)dmncos(θ)dθ = 2
π∫

0

cos [ksin(φ)dmncos(θ)]dθ (47)

The integral on the right-hand side of Eq. (47) is known as the Bessel function of the first
kind with zero order, i.e.

∫
π

0 cos(ksin(φ)dmncos(θ))dθ = πJ0(ksin(φ)dmn). Using the Bessel
function we can write the objective function as

J(~x1, · · · , ~xN) =
2π

N2

N

∑
m=1

N

∑
n=1

φmax∫
φmin

k2cos(φ)sin(φ)J0 (ksin(φ)dmn)dφ . (48)

For the case m = n, dmn = 0 so J0(0) = 1. Using this given information we can split up the
summation as

J(~x1, · · · , ~xN) =
π

N2

 N

∑
n=1

φmax∫
φmin

2k2cos(φ)sin(φ)dφ +2
N

∑
m=1

N

∑
n=1
n6=m

φmax∫
φmin

k2cos(φ)sin(φ)J0 (ksin(φ)dmn)dφ

 .
(49)

Using d(sin2
φ) = 2cos(φ)sin(φ)dφ the first part on the right-hand side is

N

∑
n=1

φmax∫
φmin

k2d(sin2
φ) =

N

∑
n=1

[
k2sin2

φ
]φmax

φmin
= Nk2 [sin2(φmax)− sin2(φmin)

]
. (50)

The second part can be solved using the substitution u = ksin(φ)dmn,du = kcos(φ)dmndφ to get

φmax∫
φmin

k2cos(φ)sin(φ)J0 (ksin(φ)dmn)dφ =
1

d2
mn

ksin(φmax)dmn∫
ksin(φmin)dmn

uJ0 (u)du, (51)

which can be related to the derivative of J1(u) as[19]

ksin(φmax)dmn∫
ksin(φmin)dmn

uJ0 (u)du =

ksin(φmax)dmn∫
ksin(φmin)dmn

d
du

[uJ1(u)]du

= ksin(φmax)dmnJ1[ksin(φmax)dmn]− ksin(φmin)dmnJ1[ksin(φmin)dmn]

. (52)

Using Eq. (50), Eq. (51) and Eq. (52) in Eq. (49) and the fact dmn = dnm we get for the
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objective function

J(~x1, · · · , ~xN) =
πk
N2

(
Nk
[
sin2(φmax)− sin2(φmin)

]
+4

N−1

∑
m=1

N

∑
n=m+1

sin(φmax)J1[ksin(φmax)dmn]− sin(φmin)J1[ksin(φmin)dmn]

dmn

)
,

(53)

where we notice the summation boundary changed reducing the amount of calculations for J by
half.
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