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 A B S T R A C T

Numerical simulations are commonly used to predict resin flow in fibrous reinforcements but exhibit a trade-off 
between accuracy and computational cost. As an alternative, machine learning (ML) based models pose as a 
potential tool to accelerate or replace such costly simulations. This work proposes an open-source image-based 
deep learning framework to estimate the permeability of unidirectional microstructures in arbitrarily sized 
domains. This presents a scalable step towards estimating the permeability of large meso-domains. First, we 
present two robust and accurate surrogate models capable of predicting microstructure velocity and pressure 
fields with varying physical dimensions, fiber diameter, and volume fraction. These predictions achieve 5% 
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error on the training set and 8% error on unseen microstructures. Secondly, based on those predicted flow 
fields, we infer the permeability of the microstructures with respectively 4% and 6% deviation for the training 
and validation sets. Third, opposed to previous works limited to microstructures with a fixed aspect ratio, we 
propose a so-called sliding window procedure, based on physics-based principles to predict the resin velocity 
and pressure field in microstructures with different aspect ratios. The method is validated against high-fidelity 
numerical simulations, and its predictive performance and computational efficiency are confirmed with 𝜇-CT 
scans of real microstructures. Finally, the presented code and surrogate model are open-sourced to promote 
further exploration by the scientific community.
1. Introduction

Resin transfer molding (RTM) [1] accounts for a significant propor-
tion of industrial fiber-reinforced polymer composites (FRPCs) produc-
tion since it allows for high-quality parts and short cycle times [2–4]. 
Although RTM is well-established, the factors influencing part quality, 
mainly related to process and material variability, are not compre-
hensively understood. This includes the competition between micro-
scopic and macroscopic flows [5], compaction behavior [6], preform 
permeability [7], or polymerization [8].

Notably, the dual-scale pore distribution originating from textile 
architectures can lead to intra-tow microvoids when viscous forces 
dominate the flow. As the fiber tows have a lower permeability than 
the space between them, the resin may flow faster in the inter-tow 
regions and trap air in the intra-tow regions [5,9,10]. Since voids 
directly influence the mechanical performance of composite parts [11], 
understanding the micro-, meso-, and macro-permeability is required to 
optimize processing conditions for part quality and low cycle times.

Numerous experimental methods have been devised to characterize 
the permeability of FRPCs (see Dei Sommi et al. [12] for an overview). 
These approaches are often labor-intensive, time-consuming, and
wasteful; hence, expensive. Numerical approaches, such as the finite 
element method (FEM) [13–15], the finite volume method (FVM), 
or the lattice Boltzmann method [16] have been applied to FRPCs 
and address some of the drawbacks mentioned earlier, notably by 
reducing the human effort and the waste. The resin flow is usually 
modeled at the microscale by a laminar Stokes flow, given the high 
fluid viscosity and low velocity, resulting in a low Reynolds number. 
However, as the simulation scale increases, capturing the intricacies of 
the microscale geometry while maintaining a reasonable computation 
cost becomes challenging. Therefore, the numerical models typically 
rely on assumptions and approximations that introduce errors and 
variability. For instance, Syerko et al. [17] recently carried out an 
international benchmark exercise to estimate the numerical permeabil-
ity of a 523 × 507 × 65 µm3 volume extracted through X-ray computed 
tomography. A significant scatter, with a coefficient of variation of 
about 20%, was reported over 50 contributions. Worse, running times 
remained substantial and ranged from about a couple of hours to more 
than a hundred hours for individual simulations. This work illustrated 
the need for more efficient methods.

On the other hand, machine learning (ML) surrogates offer compu-
tational efficiency at the inference stage. In addition, neural networks 
are considered universal function approximators in the sense that there 
exist neural architectures with appropriate width, depth, or activation 
functions that can approximate any continuous function in a compact 
space to any desired degree of accuracy [18,19]. This property makes 
ML surrogates especially appealing for tackling high-dimensional and 
complex problems where traditional numerical methods might struggle. 
Various works have applied ML to porous media in geosciences. They 
include using 2D and 3D convolutional neural networks (CNNs) to 
predict bulk properties such as the permeability of rock samples [20,
21], or more refined information such as velocity or pressure fields in 
rocks [22,23].

As FRPCs typically exhibit a highly anisotropic pore network, ML 
applications have often been restricted to the prediction of homog-
enized quantities, such as the permeability tensor [24–26], or the 
2 
macroscale filling pattern [27]. These approaches simplify the complex 
flow dynamics as they assume homogeneity and cannot provide in-
sight in cases of microstructural inhomogeneity as encountered in yarn 
boundaries of textiles. They also inadequately reflect boundary effects 
by not capturing the impact of no-slip boundary conditions on fluid 
flow near solid surfaces. In contrast, refined details of the evolution of 
the velocity and pressure field at the microscale enable more accurate 
flow modeling at larger scales. They can provide a better understanding 
of the effect of factors such as microstructural variability or high and 
low fiber volume fraction areas on the manufacturing process.

Therefore, we propose a 2D convolutional neural network, with an 
attention mechanism, to predict the steady-state resin flow velocity and 
pressure fields in fibrous microstructures. The U-Net architecture [28], 
initially proposed for segmentation tasks in biomedical images, inspires 
this work. U-Net has already been used with success in various deep-
learning models designed for computer vision tasks, including image 
denoising [29], image inpainting, and notably image generation [30]. 
We designed two separate models to adapt U-Net to our purpose. The 
first is trained to predict the velocity field in square domains repre-
senting fiber-reinforced microstructures. The second is optimized to 
predict the pressure field. As will be detailed in subsequent sections, the 
obtained surrogates capture microscale flow features with satisfactory 
accuracy. Additionally, the results can be aggregated as flow rate and a 
pressure drop to evaluate the domain permeability by applying Darcy’s 
law [31]. This approach outperforms known implementations of ML for 
predicting permeability in FRPCs.

Previous approaches trained neural networks to predict 2D flow 
fields over square domains or 3D fields in cuboid domains [22,23]. 
At inference time, they also restricted their model application to such 
types of domains. We go beyond that restriction by extending the use 
of the trained models to larger rectangular domains. We assume that 
the flow phenomenon observed on a square domain is guided by the 
same physics principles as the flow occurring on a larger rectangular 
domain. Hence, the knowledge learned by the neural network on 
square domains should be transferable to rectangular domains, as the 
typical images or micrographs used for characterization purposes have 
rectangular shapes instead of square ones. We took inspiration from 
the sliding window technique [32], typically used in computer science 
to write efficient algorithms and process sequential data, to predict the 
velocity and pressure fields of rectangular microstructures.

To some extent, one may regard any rectangular domain as a 
sequence of (potentially overlapping) square domains, given that the 
flow occurs in laminar conditions. The method is implemented with 
physics-based constraints to ensure conservation of mass and pressure 
continuity. Herein, we validate the proposed algorithm through com-
parison with numerical simulations on rectangular domains with high 
aspect ratios, and further assess its prediction accuracy as well as the 
computation time through comparison with the results reported in the 
permeability exercise [17] using the computed tomography images of 
a unidirectional microstructure.

To sum up, this work’s main contributions are (i) proposition of 
two machine learning models whose loss functions and neural network 
architectures are tailored to and optimized for predicting the resin 
velocity and pressure field in square fiber-reinforced microstructures, 
and (ii) introduction and validation of a sliding window technique for 
both of the flow and pressure fields in rectangular domains. These are 
further explained in the rest of the manuscript, which is structured 
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Fig. 1. A visual representation of the U-Net architecture. Individual blocks are symbolized to highlight the information flow for inferring the flow field (top 
right) around a black circular fiber (top left).
as follows. Section 2 provides details of the baseline U-Net model’s 
architecture and the added attention mechanism. Section 3 explains the 
microstructure generation and flow simulations performed in Open-
FOAM to generate the database, while Section 4 describes the training 
process of the models. Section 5 and Section 6 present the results for 
square and rectangular domains, respectively, while detailing the sliding 
window method, and Section 7 compares the results with the recent 
benchmark exercise.

2. Model architecture

The U-Net architecture is an image-to-image network that leverages 
an encoding-decoding approach, referred to by the U symbol. The input 
data, e.g., a biological tissue image in the original U-Net paper [28], is 
encoded into a lower-dimensional latent space. The latent space is then 
decoded through a symmetric process to reconstruct the desired output, 
e.g., segmented cells in the tissue image. The model is trained following 
an end-to-end supervised learning procedure to yield accurate predic-
tions. In this work, we implement a similar architecture adapted to 
perform a pixel-wise regression on the velocity and pressure fields in 
a 2D fibrous microstructure subjected to a viscous flow, as highlighted 
in Fig.  1.

2.1. Building blocks

The building blocks of our U-Net are (i) convolution blocks, (ii)
attention blocks, (iii) down-sampling blocks, (iv) up-sampling blocks, and 
(v) skip connections. They are combined to form the encoder and decoder
part of the model. We detail hereafter these building blocks.

(i) Convolution block: Each convolution block is a sequence consist-
ing of a convolution layer [33], a group normalization [34] layer, and 
a Sigmoid Linear Unit (SiLU) activation layer [35]. The convolution 
layer is the core building block of any convolutional neural network. It 
applies a convolution operation to its input through weight matrices, 
known as kernels. Limiting ourselves to square kernels, the size 𝑘 ×
𝑘 of each determines the extent of the field it captures. Its stride 𝑠
determines the number of pixels by which the kernel shifts during the 
convolution operations. We use a stride 𝑠 = 1 in these convolution 
layers. Meanwhile, the number of individual kernels determines the 
number of separate channels resulting from the convolution.
We utilize group normalization instead of batch normalization, in 
contrast to the original U-Net paper [28]. Group normalization scales 
3 
values across the feature dimension, unlike batch normalization, which 
does so across the batch dimension. This characteristic makes group 
training independent of batch size [34] as well as more stable. More-
over, contrary to classification problems as in [28], the absolute scale of 
features is especially critical in regression problems because the model 
predicts continuous values directly tied to the input data’s scale. This 
makes group normalization all the more suitable and also explains why 
it is preferred in the state-of-the-art diffusion models [30]. We set the 
number of groups equal to 1, effectively making the group normaliza-
tion equal to layer normalization [36]. Finally, a SiLU activation layer 
follows normalization. SiLU is defined as 
SiLU(𝑥) = 𝑥 ∗ 𝜎(𝑥), where 𝜎(𝑥) = 1

1 + 𝑒−𝑥
(1)

This smooth and non-monotonic activation function can capture more 
complex patterns and relationships in data compared to, for instance, 
Leaky ReLU [37,38], which is monotonic and less expressive.
(ii) Attention block: Attention mechanism in modern machine learn-
ing was first introduced in a recurrent neural network architecture [39] 
for machine translation. It later gained popularity with the transformer 
architecture [40] and has also been included in diffusion models [29]. 
We utilize an attention block composed of layer normalization [36] 
followed by a multi-headed attention layer [40]. To be more specific, 
we use 8 attention heads. We perform self-attention in the sense that 
the queries, keys, and values passed to the multi-headed attention layer 
are identical. The attention values computed through the latter layer are 
added to its initial input to yield the output of the attention block.
(iii) Down-sampling block: The purpose of the down-sampling block 
is to reduce the size of its input arrays and thereby gain more global 
insights. This is usually attained via a pooling operation that aggregates 
information into a reduced dimension. In our case, the down-sampling 
block consists first of a max-pooling layer [33]. It is implemented with 
a 2 × 2 kernel and a stride 𝑠 = 2. This choice reduces the size of 
the arrays by half. We then follow the max-pooling layer with group 
normalization and a SiLU activation layer.
(iv) Up-sampling block: The up-sampling block accomplishes the op-
posite of the down-sampling block by expanding information into 
higher dimensions. In the simplest form, up-sampling can be attained 
via nearest neighbor or bilinear interpolation. We instead opt for a 
transposed convolutional layer [41] because of its greater flexibility 
with its trainable parameters. This layer is implemented with a 2 × 2
kernel and a stride 𝑠 = 2, a choice that doubles the size of the input 
arrays. It is also followed by group normalization and a SiLU activation 
layer.
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(v) Skip connections: Skip connections are devised to facilitate the 
training of deep neural network architectures. They mitigate the is-
sue of vanishing gradients in deep model architectures by providing 
alternative paths for gradients to flow during back-propagation. Their 
use also results in deep models that are easier to optimize because of 
well-conditioned gradients [42].

2.2. Encoder

The contracting path of the model or encoder consists of a sequence 
of convolution blocks and down-sampling blocks. By reference to Fig. 
1, we may differentiate between various levels of the encoder based on 
the height and width of the arrays. Focusing on a particular level 𝑖, 
there are two convolution blocks. The first convolution block changes 
the number of channels from 𝑐𝑖−1 (that of the previous level) to 𝑐𝑖 (that 
of the current level). An exception is the starting level 𝑖 = 0, in which 
the convolution block maps the number of channels from the training 
data to 𝑐0. The second convolution block keeps the number of channels 
at 𝑐𝑖.

We further enhanced the two models (one for velocity and one for 
pressure) by adding an attention block after the two convolution blocks 
at specific levels (See Supplementary Material, Table 1). Adding the 
attention block in the model designed for velocity prediction showed 
that its inclusion improved accuracy, thus all results presented herein 
are generated with the model that included the attention. The same 
exercise of adding an attention mechanism did not yield a significant 
improvement on the model trained for pressure prediction. This remark 
is, however, not conclusive; a different implementation of the attention 
block might show otherwise.

Finally, a down-sampling block reduces the height and width of the 
arrays by half for the following level 𝑖 + 1.

2.3. Decoder

The expanding path of the model or decoder is constituted by 
upsampling blocks and convolution blocks. At each level 𝑖, we use two 
convolution blocks. The first convolution block maps the number of 
channels from 2𝑐𝑖 to 𝑐𝑖. The input to this block consists of the concatena-
tion of two parts. One half originates from the lower level 𝑖+1. This data 
is provided by an up-sampling block that doubles the height and width 
of the arrays from that lower level. The other half is provided by a skip 
connection, which allows access to the output of the last convolution 
block (or attention block) from the same level 𝑖 on the decoder side. 
The second convolution block keeps the number of channels at 𝑐𝑖. 
An attention block optionally follows afterward. Upon reaching the 
decoder’s end at level 𝑖 = 0, a final convolution maps the number of 
channels from 𝑐0 to the number of channels in the target training data.

3. Dataset

3.1. Microstructures

To generate microstructures mimicking the transverse sections of 
unidirectional fiber bundles, we considered a parameter space deter-
mined by three variables: (i) the microstructure domain size 𝐷 ∈
{𝑥 = 50 + 25𝑘 ∣ 𝑘 = 0, 1,… , 6} µm, (ii) the nominal fiber diameter
𝑑𝑓 ∈ {7, 10, 15} µm, (iii) the total fiber volume fraction 𝑣𝑓 ∈ {𝑥 =
0.2 + 0.1𝑘 ∣ 𝑘 = 0, 1,… , 4}. These variables result in a parameter grid 
space containing 7 × 3 × 5 points, totaling 105 different combinations.

The process to generate a microstructure defined by a point in 
that space is as follows. We first lay out a square domain based on 
the domain size 𝐷. Then, fibers are randomly generated until the 
target volume fraction 𝑣𝑓  is reached. The individual fiber diameters 
are assigned by assuming a normal distribution centered at a nominal
fiber diameter 𝑑𝑓  with a coefficient of variation of 5%, a value typical 
of what is reported in the literature [43]. The fibers are then arranged 
4 
within the domain using a rigid-body simulator [44] that ensures no 
overlap. Additionally, we enforce periodicity on all four borders of 
the microstructure domain. There exists an uncountably large number 
of fiber configurations based on the same descriptors. We choose to 
generate 50 microstructures per point in the parameter space, result-
ing in 105 × 50 = 5250 microstructures. Fig.  2 shows examples of 
such microstructures. We additionally provide in the Supplementary 
Material (Fig. A1) post-factum statistics about the fiber volume fraction 
in the microstructures. With the topology of the microstructures thus 
defined, we then discretized each into a mesh, excluding the fiber 
regions because of our subsequent step of modeling the resin flow 
around the fibers as a fluid flow in a porous medium.

3.2. Flow simulations

Our goal is to solve the transverse flow in fibrous microstructures. 
This problem requires solving the Navier–Stokes equations [45], enforc-
ing mass continuity (Eq.  (2)) and momentum conservation (Eq.  (3)). 

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝒖) = 0 (2)

𝜌( 𝜕𝒖
𝜕𝑡

+ 𝒖 ⋅ ∇𝒖) = −∇𝑝 + ∇ ⋅ 𝝉 + 𝒇 (3)

Where 𝜌 denotes the fluid density, and 𝒖 the fluid velocity, 𝑝 the fluid 
pressure, and 𝒇 body forces. 𝝉 denotes the deviatoric stress tensor. 
Assuming an incompressible steady-state flow, and considering body 
forces on the fluid to be negligible, the Navier–Stokes equations are 
simplified to Eqs.  (4) and (5). 
∇ ⋅ 𝒖 = 0 (4)

𝜌(𝒖 ⋅ ∇𝒖) = −∇𝑝 + 𝜇∇2𝒖 (5)

Where 𝜇 is the fluid viscosity. To solve these equations, we selected
OpenFOAM [46], a well-known open-source software for computational 
fluid dynamics that is based on the finite volume method. Within it, 
we utilized simpleFoam, a steady-state solver for incompressible flow 
that employs the SIMPLE (Semi-Implicit Method for Pressure Linked 
Equations) algorithm [47].

We assumed the fluid flowing between the fibers to be epoxy resin 
having a density 𝜌 of 1250 × 103 kg ⋅ m−3 and dynamic viscosity 𝜇
of 5 × 10−1 Pa ⋅ s. The flow is considered to be velocity-driven. The 
inlet velocity is set to 𝒖𝑖𝑛𝑙𝑒𝑡 = (1 × 10−4, 0)m s−1 and is perpendicular 
to the inlet boundary, ensuring laminar flow conditions. The outlet 
pressure is set to 0 Pa. The no-slip condition is enforced at the fiber 
boundaries. Taking advantage of the periodicity of the microstructures, 
cyclic boundary conditions are enforced on the remaining sides (Sup-
plementary Material, Fig. A3). For each microstructure, we performed 
one simulation with flow in the horizontal direction, and the other with 
flow in the vertical direction (see Supplementary Material), resulting in 
10 500 results. More information about the approach used to generate 
the microstructures and simulations can be found in [48]. This includes 
a validation of the numerical framework comparing the resulting per-
meability in microstructures with perfect quadratic fiber distribution 
(estimated through Darcy’s law [31]) against Gebart’s equations [49].

3.3. Post-processing

We post-processed the simulation data into equivalent multi-
dimensional arrays. Each sample in the dataset  = {(𝐌𝑠,𝐔𝑠,𝐏𝑠) ∣
𝑠 = 1,… , 𝑁} is a triplet consisting of the microstructure tensor 𝐌𝑠 ∈
R1×ℎ×𝑤, the velocity tensor 𝐔𝑠 ∈ R2×ℎ×𝑤, and the pressure tensor 
𝐏𝑠 ∈ R1×ℎ×𝑤. 𝑁 refers to the number of samples in the dataset, while 
ℎ,𝑤 refer to the height and width of the images expected by the neural 
network model (in our particular case, ℎ = 𝑤 = 256). 𝐌𝑠 is a binary 
array with 1 in fluid regions and 0 otherwise. 𝐔𝑠 stores the 𝑥 and 𝑦
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Fig. 2. Sample space used to generate the microstructures. They vary in domain size, fiber diameter, and fiber volume fraction.
Table 1
Features in the input channels and predictions at the output channels for each 
model.
 Input channels Output channels
 Velocity model ∙  microstructure ∙  x-velocity

∙  y-velocity
 

 Pressure model ∙  microstructure ×fiber volume fraction
∙  1/microstructure length

∙  pressure  

components of the velocity field in two different channels. A single 
channel stores the pressure values in 𝐏𝑠.

We note that we later train the model with the assumption that 
the inlet is located at the left border, i.e., the main flow direction is 
horizontal. Hence, before using simulation results with the inlet located 
at the bottom (Supplementary Material, Fig. A2b), we performed a 
90◦-clockwise rotation of the arrays. In the case of the velocity field, 
this rotation additionally entailed ensuring consistency of the channel 
order and value signs. The entire process, from geometry definition 
to numerical simulations and post-processing, was fully automated 
through a Python [50] script.

4. Training

4.1. Model definition

We designed two decoupled surrogate models, which we refer to as
velocity model and pressure model, aimed at predicting the velocity and 
pressure fields, respectively. We decoupled velocity and pressure for 
two reasons. First, the proposed surrogate architecture does not inher-
ently capture the relationship between these fields. While it could be 
modified to do so, state-of-the-art ML models in fluid dynamics [51,52] 
typically do not enforce a physics-informed coupling between the fields. 
Given the distinct characteristics of velocity and pressure, specialized 
decoupled surrogates are expected to perform better. Second, decou-
pling reduces the memory footprint during training, enabling deeper 
networks within the available computational budget. The velocity model
takes as input the binary image of microstructures and predicts the 
corresponding velocity field (Table  1). The pressure model has two 
input channels. The first channel expects the microstructure image 
multiplied by its fiber volume fraction. The second channel expects a 
constant matrix whose value is the inverse of the microstructure length 
(Table  1). The pressure model outputs a single channel corresponding 
to the pressure field. The input features previously mentioned were 
5 
strategically chosen after considering the velocity-driven nature of the 
simulations in conjunction with insights gained from Darcy’s law [31].

A hyperparameter optimization revealed that a model with a depth 
of 7 and a kernel size of 3 is a good choice for our case. Further tests 
showed that using attention mechanisms was beneficial for velocity 
prediction but unnecessary for pressure prediction. This lack of need 
for attention in the pressure model is, however, inconclusive; it could 
be due to our current implementation of attention. We provide an 
extended explanation of model design choices in the Supplementary 
Material (Section B). These hyperparameter choices resulted in the
velocity model and pressure model having respectively 5.53 × 108 and 
4.97×108 trainable parameters. These numbers might seem high, but we 
note, for reference, that the U-Net in the popular text-to-image Stable 
Diffusion model has 8.60 × 108 parameters [30,53].

4.2. Cost function

Training a machine learning model is achieved by fine-tuning its 
trainable parameters 𝜽, typically through gradient descent [54]. Gradi-
ent descent requires a cost function quantifying the deviations of the 
model predictions from specific targets. The goal of gradient descent 
is then to minimize this cost. In our case, we want to minimize the 
discrepancy between the surrogate model (velocity or pressure) field 
predictions 𝒀̃  and reference values 𝒀  in the dataset. Let vec ∶ R𝑐×ℎ×𝑤 →

R𝑐ℎ𝑤 be a function that collapses a three-dimensional tensor into a 
vector. We define the (relative) error 𝜖𝑠 of a sample 𝑠 as Eq.  (6). 

𝜖𝑠 =
‖vec(𝒀 𝑠 − 𝒀̃ 𝑠)‖1

‖vec(𝒀 𝑠)‖1
(6)

where ‖...‖1 denotes the 𝐿1-norm of a vector. We then introduce Eq.  (7) 
as the cost function 𝐽 (𝜽) which averages the individual sample errors. 

𝐽 (𝜽) = 1
𝑁

𝑁
∑

𝑠=1
𝜖𝑠 (7)

where 𝑁 stands for the number of data samples.

4.3. Model training

We utilized the PyTorch library [55] for model implementation 
and leveraged its automatic differentiation capabilities for model train-
ing. Our compute platform is a workstation equipped with an NVIDIA®
Quadro RTX™ 6000 graphics processing unit (GPU), with 24GB of 
memory and featuring 16.3TFLOPS of single-precision floating point 
performance.
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(a) Average loss evolution for the velocity model

  
(b) Average loss evolution for the pressure model

 

Fig. 3. Learning curve of the best surrogate models trained for (a) velocity and (b) pressure field prediction.
Table 2
Five-fold cross-validation: the accuracy of the models is similar across 
different splits of the dataset.

Velocity (training/validation) Pressure (training/validation)
Fold 1 4.86 × 10−2/6.94 × 10−2 5.22 × 10−2/9.11 × 10−2

Fold 2 4.81 × 10−2/7.07 × 10−2 4.76 × 10−2/8.04 × 10−2

Fold 3 4.77 × 10−2/6.96 × 10−2 5.07 × 10−2/8.44 × 10−2

Fold 4 4.94 × 10−2/7.34 × 10−2 4.94 × 10−2/8.28 × 10−2

Fold 5 4.95 × 10−2/7.07 × 10−2 5.27 × 10−2/8.41 × 10−2

Average 4.87 × 10−2/7.08 × 10−2 5.05 × 10−2/8.46 × 10−2
Before training, we partitioned the dataset into two parts: 80% used 
as the training set and 20% used as the validation set. Training was 
continued for 100 epochs for both the velocity and pressure models, using 
a learning rate of 1 × 10−4 and a batch size equal to 20. The training 
of both models lasted approximately 12 h. Fig.  3 shows the evolution 
of the loss during the training process. The average error (Eq.  (7)) on 
the predicted velocity fields decreased to 4.84×10−2 and 7.21×10−2 for 
the training and validation sets, respectively. In the case of pressure, it 
decreased to 5.08 × 10−2 and 7.92 × 10−2.

4.4. Cross-validation

The error metrics reported above show a great performance of the 
pressure and velocity models. However, model hyperparameters can 
sometimes be specific to the choice of the training set and not offer 
the same level of performance if the dataset were split differently. 
To assess the robustness of the models with respect to the data, we 
performed a cross-validation [56]. The core idea of cross-validation is 
to partition the dataset into complementary subsets, train the model 
on some parts, and evaluate it on the remaining parts. The process 
is repeated several times to get a robust estimate of the model’s 
performance. We leveraged the scikit-learn [57] Python package 
to perform a five-fold cross-validation of the model. In each training 
instance, four of the five subsets are chosen as the training set. The 
remaining 20% of the data is then used as the validation set. This is 
repeated five times. Table  2 shows the resulting training and validation 
errors after tuning the models over 100 epochs for each fold of the 
dataset. Different folds result in varying error values. However, the 
variations are minimal. This error proximity shows that the model 
hyperparameters are not biased towards a specific subset of the data. 
The average training/validation loss is 4.87 × 10−2/7.08 × 10−2 for the
velocity model and 5.05 × 10−2/8.46 × 10−2 for the pressure model.
6 
5. Results

5.1. Velocity prediction

We now focus our attention on the velocity model (Fig.  3a) and 
investigate its performance on individual samples. Fig.  4a shows the 
histogram of individual errors calculated using Eq.  (6) in the training 
and validation sets. The average values were reported earlier in Sec-
tion 4.3. The median errors are 4.45 × 10−2/6.93 × 10−2 for the training 
and validation sets. For illustration purposes, we plot the predictions 
for the median case in the validation set (Fig.  5a), which we recall that 
the model did not encounter during training. Visually, the predictions 
for both the 𝑥- and 𝑦-components of the velocity field are almost indis-
tinguishable. Looking at the field of absolute errors, most error values 
in the domain are within the low end of the spectrum. Beyond looking 
accurate, the model predictions should be physically consistent. For 
our problem, the flow rate between the inlet and outlet should remain 
constant. Fig.  5b shows the volumetric flow rate 𝑄 inferred by taking 
line integrals of the velocity field along the length of the microstructure. 
The flow rate evaluated from the model prediction closely follows the 
reference. We note that the minor fluctuations observed in the reference 
line are due to pixel discretization.

In addition to the median case, knowing how the model performs at 
its best and worst is beneficial. This knowledge is especially valuable 
for uncertainty quantification and helps assess the confidence level 
to attach to the model when deployed to real-world scenarios. The 
best and worst cases in the validation set have errors of 1.47 × 10−2

and 2.287 × 10−1. The corresponding predictions are provided in the 
Supplementary Material (Section C). A relative error of about 20% 
sounds bad, but the number itself is misleading. The values in the 
velocity field span multiple orders of magnitude, but the error metric 
(Eq.  (6)) penalizes them all equally. However, the larger values matter 
the most when computing the flow rate. Looking at the velocity field 
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Fig. 4. Histogram of the individual errors in (a) velocity and (b) pressure field prediction for microstructures in the training and validation set.
Fig. 5. (a) Resin velocity field for the microstructure with median error in the validation set. (b) Comparison between the calculated average flow rate along the 
microstructure length against the reference.
prediction for the worst case, the pattern is close to the reference, and 
the estimated flow rate is just slightly overestimated (Supplementary 
Material, Fig. C4).

5.2. Pressure prediction

Let us now consider the individual predictions of the pressure model. 
Fig.  4b shows a histogram of the relative errors on the predicted 
pressure fields. The median cases for the training and validation sets 
have errors of 3.81 × 10−2 and 6.34 × 10−2. We plot in Fig.  6 the 
predicted pressure field for the median case in the validation set. We 
observe the accuracy of the model in capturing the correct pattern. 
The plot of the absolute difference is also revealing. The maximum 
deviation is an order of magnitude lower than the maximum pressure 
value. We additionally plot the average pressure along the length of 
the microstructure in Fig.  6b. There, one can notice a close agreement 
between the two pressure profiles.

Furthermore, we report the best and worst predictions for the 
model. The lowest and highest errors observed in the validation set are 
9.2×10−3 and 8.349×10−1. We provide the corresponding pressure fields 
in the Supplementary Material (Section C). Interestingly, the surrogate 
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model is capable of being 99% accurate with the task of predicting 
256 × 256px2. Even in the worst case, the predicted pressure field has 
an overall pattern similar to the reference. The mistake of the model is 
in overestimating the pressure values, which are still the correct order 
of magnitude (Supplementary Material, Fig. C6).

5.3. Transverse permeability

Previous works [24,26] had trained surrogate models to predict 
microstructure permeability directly. Here, we infer the transverse 
permeability of the microstructures from the predicted velocity and 
pressure fields by using Darcy’s law [31]. Darcy’s law (Eq.  (8)) re-
lates the volumetric flow rate 𝑄 through a porous medium and the 
corresponding pressure drop 𝛥𝑝. 

𝑄 = − 𝑘𝐴
𝜇𝐿

𝛥𝑝 (8)

where 𝐴 represents the cross-sectional area of the medium. 𝐿 is the dis-
tance traveled by the fluid with viscosity 𝜇, 𝑘 denotes the permeability 
of the medium.

The volumetric flow rate 𝑄 is obtained by integrating the velocity 
field over the mesh at the inlet. The cross-sectional area 𝐴 is calculated 
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Fig. 6. (a) Pressure field for the microstructure with median error in the validation set. (b) Comparison between the computed average pressure along the 
microstructure length against the reference.
as the inlet length multiplied by the cell thickness (0.25 µm in the 
numerical simulations). The distance 𝐿 is the physical length of the 
microstructures. Given the boundary condition of outlet pressure equal 
to 0 in the simulations, the pressure drop 𝛥𝑝 is simply the weighted-
average pressure at the microstructure inlet. Fig.  7a and Fig.  7b show 
the histogram of errors on the predicted inlet flow rate and pressure 
drop for microstructures in the training and validation sets. Using 
Eq. (8), we then calculated the permeability of all microstructures. The 
values cover a wide range, and the predictions match closely the targets 
(Fig.  7c). Fig.  7d shows the cumulative distribution function (CDF) of 
the relative errors on the predicted permeability values. The average 
error is only 4.40% on the training set and 6.85% on the validation 
set. Moreover, 90% of the predictions performed on the training and 
validation exhibit less than 10% and 14% error, respectively. This 
is significantly better than the results we reported in our previous 
work [24] on using machine learning to directly predict the perme-
ability of fibrous microstructures. Here, we achieve not simply better 
permeability accuracy, but do so with the added benefit of valuable 
and explainable details about the microstructures’ velocity and pressure 
fields.

6. Extension to larger 2D domains

The surrogate models have performed very well on their intended 
task of predicting the velocity and pressure fields from 256 × 256px2
microstructure images. However, a restriction to square images induces 
a practical limitation, as most images (e.g., micrographs of typical 
woven or non-crimp fabrics) used for flow characterization purposes 
are not bound to square shapes and typically exhibit high aspect ratios. 
It is thus worth asking the following question. Is it possible to use the 
same surrogate models for prediction on microstructures with a high 
aspect ratio? After all, the flow phenomenon observed on a square 
domain is the same, in terms of the physical fundamentals, if a bigger, 
rectangular domain is considered. If the surrogate models appropriately 
learned the underlying physics of the problem at hand, extrapolation to 
larger microstructures should be feasible.

We propose a sliding window procedure, illustrated in Fig.  8, to 
extrapolate model predictions to rectangular domains. The sliding win-
dow technique [32] is an algorithmic approach used to efficiently 
solve problems in computer science by capturing a subset of the data 
through a window, performing an operation with it, and then repeating 
the process after moving the window in a stepwise fashion. For our 
purpose, we consider the size of the moving window to match the one 
expected by the surrogate models, namely 256 × 256px2. At each step, 
the subdomain captured by the window is passed to the surrogate mod-
els, which then predict the corresponding velocity and pressure fields. 
This approach immediately raises concerns regarding the violation of 
the assumptions based on which the models were fine-tuned, such as 
inlet/outlet conditions or the (lack of) periodicity at the boundaries 
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that merits investigation. In the following sub-sections, we first present 
a first-order approach to implementing the sliding window technique 
through a moving average of model predictions. This strategy resulted 
in a couple of issues. We then formalize our problem and provide a 
scheme that incorporates a weak enforcement [58] of physics principles 
in the sliding window procedure (Algorithm 1).

6.1. First-order approach

Let us consider a 256×1024px2 image of a microstructure (physical 
dimensions: 150 × 600 µm2). We recall that the maximum physical 
dimension encountered in our dataset (Fig.  2) is 200 µm. Moreover, the 
microstructure has a nominal fiber diameter of 10 µm and fiber volume 
fraction of 0.5. Unlike the training data, the individual fiber diameters 
follow a half-normal distribution with a minimum equal to the nominal 
fiber diameter, thus yielding much larger variability in the diameters 
in the microstructure. The simplest way to make, for instance, velocity 
predictions on this rectangular domain is to partition it into four 
256×256px2 subdomains. Starting from one end of the microstructure, 
one moves the sliding window with a step size 𝛥𝑡 = 256px, passes 
the four subdomains to the surrogate models, and then patches the 
predictions together. However, this approach led to discontinuities at 
the patch interfaces when we tried it, for instance, with the velocity 
model (Supplementary Material, Fig. D2). These jumps can be explained 
by the fact that the actual conditions at the entrance of the subdomains 
are not that of 𝒖𝑖𝑛𝑙𝑒𝑡 = (1 × 10−4, 0)m s−1, as learned from the training 
data by the surrogate model. The flow at the patch interfaces will 
have nonzero 𝑦-velocity components, while the model assumes zero 
𝑦-velocity at the inlet.

We then experimented with the use of step sizes 𝛥𝑡 < 256px for the 
sliding window, such that overlap occurs between the consecutively 
captured subdomains. Because of the overlaps, an averaging scheme 
is needed. We used a simple moving average based on the repetition 
of a given pixel in different windows. In other words, we calculated 
the velocity value at a pixel as the average of predictions originating 
from windows that hovered over this location. This approach smoothed 
the velocity profile with decreasing 𝛥𝑡, thus mitigating the issue of 
discontinuity. But different tests showed that this was accompanied 
by an amplification of errors both in the velocity field and inferred 
flow rate (see Supplementary Material). The reduction in the step size 
increases the number of occurrences of each pixel being close to the
inlet or outlet of a window where the model’s biases lead to erroneous 
velocity values. Thus, a physics-aware scheme is needed.

6.2. Problem formulation

A trained neural network model is a mathematical function 𝒙 ↦ 𝒚̃(𝒙)
whose output is most reliable when its input variables fall within the 
sample space based on which it was trained. Moreover, the inputs must 
satisfy the assumptions associated with that sample space. For our case, 
we may formalize these requirements as follows.
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Fig. 7. Histogram of errors for the (a) inlet flow rate and (b) pressure drop. (c) Comparison between permeability predictions using Darcy’s law and target values. 
(d) Plot of the cumulative distribution function of the relative errors on permeability.
Fig. 8. Sliding window procedure for inference on a rectangular domain. The surrogate models make predictions on subdomains captured by a sliding window. 
Those predictions are then post-processed to yield the final results.
C1. The input microstructure 𝒙 represented in the square image is 
periodic.

C2. The flow is velocity-driven, with inlet velocity 𝒖𝑖𝑛𝑙𝑒𝑡 = (1 ×
10−4, 0)m s−1.

C3. The outlet pressure is zero.
9 
Any violation of conditions C1, C2 or C3 leads to larger uncertainty 
in the precision of the model predictions. From an uncertainty quantifi-
cation viewpoint, we may relate any model prediction 𝒚̃(𝒙) to its true 
value 𝒚(𝒙) through the equality 
𝒚(𝒙) = 𝒚̃(𝒙) + 𝝐 (9)
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Algorithm 1: Sliding Window Procedure
Input : ML model  ; microstructure image 𝐈 ∈ R𝐶×𝐻×𝑊 ; sliding 

window size 𝑤; step size 𝑠
Output: flow field 𝐅
1) Fragment microstructure image 𝑰 into sub-areas 𝒂 = {𝑎𝑖} using 
the window size 𝑤 and step size 𝑠. Compute the associated 
weights 𝒘 = {𝑤𝑖};

2) Predict the flow field 𝑓𝑖 on each sub-area 𝑎𝑖 with the ML model 
;

3) Post-process the model outputs 𝒇 = {𝑓𝑖} to produce the final 
flow field 𝑭  (with Algorithm 2 or 3).

Algorithm 2: Velocity Correction
Input : 𝒇 = {𝑓𝑖}: velocity fields for sub-areas; 𝒘 = {𝑤𝑖}: weights 

for sub-areas
Output: 𝐅: aggregated velocity field for large area
1) Compute weighted average of 𝒇 using weights 𝒘 to obtain 𝐅;
2) Adjust velocity values in 𝐅 based on its inlet flow rate.

Algorithm 3: Pressure Correction
Input : 𝒇 = {𝑓𝑖}: pressure fields for sub-areas; 𝒘 = {𝑤𝑖}: weights 

for sub-areas
Output: 𝐅: aggregated pressure field for large area
1) Moving from outlet to inlet, sequentially shift the pressure field 
𝑓𝑖 for each sub-area;
2) Compute weighted average of 𝒇 using weights 𝒘 to obtain 𝐅.

in which 𝝐 denotes the inaccuracy in the prediction. This error 𝝐 has 
been minimized during training (Eq. (7)). Hence, we may approximate 
the relation as 
𝒚(𝒙) ≈ 𝒚̃(𝒙) (10)

However, looking at a snapshot of the moving window (Fig.  8) within 
the larger domain, the captured sub-domain is not guaranteed to be 
periodic (C1 violated). The flow profile along the left border of the 
window will most likely not satisfy 𝒖𝑖𝑛𝑙𝑒𝑡 = (1 × 10−4, 0)m s−1 (C2
violated). Assuming that the outlet pressure of the large domain is 0, 
the average pressure must progressively increase from right to left, 
resulting in a positive pressure value just on the right side of the 
window. Thus, C3 is violated for the right side of the window. Hence, 
we must introduce a discrepancy function 𝜹(𝒙) to account for the model 
inadequacy due to the violation of conditions C1, C2, and C3, such that 

𝒚(𝒙) ≈ 𝒚̃(𝒙) + 𝜹(𝒙) (11)

To correct this bias, we simply have to subtract 
𝜹(𝒙) ∶= 𝒚(𝒙) − 𝒚̃(𝒙) (12)

from the model prediction. This rectification is, in principle, possible if 
the true value 𝒚(𝒙) is known. However, in practice, the true (velocity 
or pressure) values are unknown beforehand when a neural network is 
being used as a replacement for numerical simulations. Nevertheless, 
this obstacle can be circumvented as we will later show in the following 
subsections. Besides, we recall that the momentum equation (Eq. (5)) 
states that pressure and velocity are linked, with pressure acting as a 
constraint on velocity. This connection implies that modifications to the 
velocity field should be done in relation to the pressure field. However, 
we had trained two independent surrogates to predict velocity and 
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pressure. For simplicity, we decoupled velocity and pressure when im-
plementing the correction scheme in that these fields are independently 
updated.

6.3. Velocity correction

The continuity equation (Eq. (4)) states that the divergence of the 
velocity field should be zero everywhere. Stated differently, the flow 
rate should be constant from inlet to outlet in our case. Previous 
attempts at computing a moving average of the velocity field with the 
first-order approach (Section 6.1) showed different departures from the 
reference flow rate as the step size 𝛥𝑡 varied. But, in all cases, the inlet 
flow rate consistently remained accurate. Error statistics of the inlet 
flow rate further support that (Fig.  7a). This particularly high accuracy 
can be attributed to the simulations being velocity-driven. It is thus easy 
for the model to predict quasi-constant values near the inlet. From this 
observation, we may use the predicted inlet flow rate as a proxy for 
the true flow rate value. Alternatively, one could simply hand-calculate 
(thanks to the simulations being velocity-driven) the true flow rate 
from the microstructure size and inlet volume fraction. Nevertheless, 
we stick to using the predicted inlet flow rate as a reference to correct 
for flow rate fluctuations in other regions of the microstructures.

Concretely, we proceed as follows. After estimating the velocity 
field for the whole rectangular domain by the first-order approach, 
we calculate the flow rate at each vertical section. At this stage, there 
exists a mismatch between the predicted and true flow rates (Eq. (11)). 
Taking the inlet flow rate as a substitute for the true value, we quantify 
the flow rate mismatch along the length of the microstructure through a 
series of coefficients obtained by division with respect to the inlet value. 
We then use these coefficients as scaling factors to adjust the velocity 
values at the corresponding sections. This procedure is summarized 
in Algorithm 2 and detailed on our GitHub repository. Results in the 
Supplementary Material (Fig. D3) show the drastic reduction in error 
made possible by this correction scheme. Visualization of the final 
velocity predictions and the corresponding flow rate are provided in 
Fig.  9b,c,e.

6.4. Pressure correction

The first-order approach, implemented for pressure prediction on 
the rectangular domain, also led to unrealistic pressure fields. We 
observed discontinuities in the predictions, with values differing by 
large margins from the reference (Supplementary Material, Fig. E1). 
Multiple factors play a role, with the violation of condition C3 being the 
most obvious one. Condition C3 is violated because the model output 
for any subdomain captured by the window assumes that pressure is 0
at the right of that subdomain (Fig.  8). This is physically incongruent 
if we also consider the pressure to be 0 at the outlet of the larger 
rectangular domain. As such, we need a device that ensures that the 
average pressure value at the outlet of any subdomain is congruent with 
the overall pressure evolution in the context of the entire domain.

With this consideration in mind, we purposefully move the sliding 
window from right to left in the case of pressure prediction. This choice 
of direction is to enable tracking of the pressure evolution from the 
rectangular domain’s outlet. At each step, we evaluate the pressure 
field and also calculate the average pressure per vertical section. Then, 
before moving on to the next step, we shift the entire pressure field 
by a scalar. This scalar is determined by the average pressure value 
calculated during the preceding step at the vertical section on the 
window’s inlet. This procedure is outlined in Algorithm 3 and also 
detailed on our GitHub repository. The results in the Supplementary 
Material (Fig. E2) demonstrate its effectiveness. Fig.  9.d and .f show the 
resulting pressure field as well as the evolution of the average pressure. 
Interestingly, we observe a close agreement between predictions and 
targets. The maximum difference in the prediction of the pressure field 
is an order of magnitude lower than the maximum observable pressure.
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(a) Microstructure with aspect ratio equal to 4

 

 
(b) x-component of the predicted velocity field

  
(c) y-component of the predicted velocity field

 

 
(d) Predicted pressure field

 

 
(e) Flow rate along the length of the microstructure

  
(f) Evolution of the average pressure

 

Fig. 9. (a) Microstructure with an aspect ratio equal to 4. (b) x- and (c) y-component of the predicted velocity field. (d) Pressure field prediction. (e) Flow rate 
and (f) average pressure predicted for the rectangular domain.
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Fig. 10. Flowchart of the steps taken to predict flow fields on the micrograph scans from Syerko et al. [17].
Fig. 11. Permeability prediction for a real micrograph using our sliding window procedure, compared against results from numerical simulations reported in Syerko 
et al. [17].
7. Benchmark against literature data

Beyond comparison with numerically generated data, the added 
value of a proposed method lies in its successful application to real 
data. Syerko et al. [17] performed an international virtual perme-
ability benchmark exercise in which the data consisted of scans of a 
glass fiber reinforced composite sample extracted by X-ray computed 
microtomography. Fig.  10 shows a 3D view of the 973 consecutive 
2D scan slices, with a resolution of 124 × 1003px2. This endeavor 
resulted in the participants providing permeability estimations based 
on 2D/3D numerical simulations run under various assumptions. In Fig. 
11 we report the results for transverse permeability, extracted from the 
supplementary data accompanying that paper [17].

We undertook the task of evaluating our sliding window approach 
on these micrograph scans and comparing how its results stand in 
comparison with those reported in the benchmark. We recall that our 
surrogate models expect square 256 × 256px2 images. However, each 
scan slice has a resolution of 124×1003px2, which would result in 124×
124px2 sub-domains if we were to fragment it into squares. As a result, 
this endeavor presents challenges. First, the data were experimentally 
acquired rather than numerically generated and were not present in 
the training set. Consequently, they may exhibit characteristics distinct 
12 
from the synthetic data. For instance, the experimental data contain 
low-fiber-density regions typical of multi-scale fibrous microstructures, 
which our current microstructural generator does not explicitly pro-
duce, although this could be addressed in future work. Additionally, the 
experimental microstructure was obtained via image-based extraction 
methods, whose parameter choices can influence the results [59] and 
introduce features absent in the training data. Finally, the experimental 
data have lower resolution compared to the training set.

To accommodate the surrogate models’ requirements, we used bilin-
ear interpolation to upscale the scan slices from 124× 1003px2 to 256×
2070px2. Fig.  10 shows the predicted velocity and pressure fields for se-
lected slices. The flow field patterns all look realistic. Next, we utilized 
Darcy’s law to infer the permeability of each 2D slice from the predicted 
fields. The computed permeability values are plotted in the inset shown 
within Fig.  11. We observe the variation of permeability along the 
depth of the volume. Then, we use an electric circuit analogy to infer 
the transverse permeability of the 3D domain from the individual 2D 
permeability values. We note that this circuit analogy has previously 
been used in other works [24,60,61]. Concretely, we consider the 2D 
slices to be resistances in parallel, as we are interested in flow behavior 
in the 𝑥-direction and compute the arithmetic mean of the individual 
permeabilities. The equivalent permeability is 7.82 × 10−14 m2 (Fig.  11) 



J.G. Jean et al. Composites Part A 200 (2026) 109337 
Fig. 12. Run time for predicting the permeability of the micrograph scan using 
our framework compared with the results of the participants in the benchmark 
by Syerko et al. [17].

and falls well within the range of values deemed inliers by the authors 
of the benchmark [17]. More interestingly, our prediction stands right 
next to the values reported by participants #2 and #6 who performed 
2D simulations (see supplementary data from Syerko et al. [17]). But 
beyond that, the computational efficiency of our framework further sets 
it apart (Fig.  12). Evaluating the permeability of the scans required only 
3min, while the participants in the benchmark [17] reported run times 
up to 136 h. The reduction in computational time spans several orders 
of magnitude, highlighting the significant benefit of our approach.

8. Conclusions

In this work, we introduced two surrogate machine learning mod-
els to predict the velocity and pressure fields in fiber-reinforced mi-
crostructures that vary in domain size, fiber diameter, and fiber volume 
fraction. The reported error statistics and examples showed the robust-
ness of the trained surrogate models, even when they were performing 
at their worst. In addition, we used Darcy’s law to infer microstruc-
ture permeability from the field predictions by the surrogates. These 
permeability predictions are achieved with an accuracy that surpasses 
previous works.

Beyond the mere evaluation of model performance on square do-
mains (a constraint originating from convolutional neural networks), 
we introduced a sliding window method to extend model inference to 
rectangular domains. We implemented physical flow constraints in this 
framework, without modifying the loss functions, as such a modifica-
tion would potentially lead to the requirement of a more populated 
database and increased computational cost to train models.

The sliding window procedure was introduced for two-dimensional 
microstructures. It will be further extended to 2D mesostructures of 
fiber bundles in our future work, in which case, a more clever parti-
tioning method might be needed. An example could be a quad-tree de-
composition of the image [62] based on regional fiber volume fraction 
to process fiber-free and fiber-packed regions separately. Moreover, 
we foresee the development of an extended method for efficient 3D 
flow prediction of complex microstructures such as those investigated 
by Gomarasca et al. [63] by stacking 2D predictions from the surro-
gate models and applying local corrections based on the surrounding 
topology.

Comparison with numerical simulations and a test against a bench-
mark exercise showed its reliability and good prediction accuracy. 
13 
Moreover, this approach is significantly faster than numerical simula-
tions explored in the said benchmark, and reduces the computational 
time from multiple hours to a few minutes. Our source codes for the 
surrogate models and the proposed sliding window method are publicly 
released, thus further lowering the effort to estimate the permeability 
of fibrous microstructures.
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