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ABSTRACT

Numerical simulations are commonly used to predict resin flow in fibrous reinforcements but exhibit a trade-off
between accuracy and computational cost. As an alternative, machine learning (ML) based models pose as a
potential tool to accelerate or replace such costly simulations. This work proposes an open-source image-based
deep learning framework to estimate the permeability of unidirectional microstructures in arbitrarily sized
domains. This presents a scalable step towards estimating the permeability of large meso-domains. First, we
present two robust and accurate surrogate models capable of predicting microstructure velocity and pressure
fields with varying physical dimensions, fiber diameter, and volume fraction. These predictions achieve 5%
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error on the training set and 8% error on unseen microstructures. Secondly, based on those predicted flow

fields, we infer the permeability of the microstructures with respectively 4% and 6% deviation for the training
and validation sets. Third, opposed to previous works limited to microstructures with a fixed aspect ratio, we
propose a so-called sliding window procedure, based on physics-based principles to predict the resin velocity
and pressure field in microstructures with different aspect ratios. The method is validated against high-fidelity
numerical simulations, and its predictive performance and computational efficiency are confirmed with x-CT
scans of real microstructures. Finally, the presented code and surrogate model are open-sourced to promote
further exploration by the scientific community.

1. Introduction

Resin transfer molding (RTM) [1] accounts for a significant propor-
tion of industrial fiber-reinforced polymer composites (FRPCs) produc-
tion since it allows for high-quality parts and short cycle times [2-4].
Although RTM is well-established, the factors influencing part quality,
mainly related to process and material variability, are not compre-
hensively understood. This includes the competition between micro-
scopic and macroscopic flows [5], compaction behavior [6], preform
permeability [7], or polymerization [8].

Notably, the dual-scale pore distribution originating from textile
architectures can lead to intra-tow microvoids when viscous forces
dominate the flow. As the fiber tows have a lower permeability than
the space between them, the resin may flow faster in the inter-tow
regions and trap air in the intra-tow regions [5,9,10]. Since voids
directly influence the mechanical performance of composite parts [11],
understanding the micro-, meso-, and macro-permeability is required to
optimize processing conditions for part quality and low cycle times.

Numerous experimental methods have been devised to characterize
the permeability of FRPCs (see Dei Sommi et al. [12] for an overview).
These approaches are often labor-intensive, time-consuming, and
wasteful; hence, expensive. Numerical approaches, such as the finite
element method (FEM) [13-15], the finite volume method (FVM),
or the lattice Boltzmann method [16] have been applied to FRPCs
and address some of the drawbacks mentioned earlier, notably by
reducing the human effort and the waste. The resin flow is usually
modeled at the microscale by a laminar Stokes flow, given the high
fluid viscosity and low velocity, resulting in a low Reynolds number.
However, as the simulation scale increases, capturing the intricacies of
the microscale geometry while maintaining a reasonable computation
cost becomes challenging. Therefore, the numerical models typically
rely on assumptions and approximations that introduce errors and
variability. For instance, Syerko et al. [17] recently carried out an
international benchmark exercise to estimate the numerical permeabil-
ity of a 523 x 507 x 65um® volume extracted through X-ray computed
tomography. A significant scatter, with a coefficient of variation of
about 20%, was reported over 50 contributions. Worse, running times
remained substantial and ranged from about a couple of hours to more
than a hundred hours for individual simulations. This work illustrated
the need for more efficient methods.

On the other hand, machine learning (ML) surrogates offer compu-
tational efficiency at the inference stage. In addition, neural networks
are considered universal function approximators in the sense that there
exist neural architectures with appropriate width, depth, or activation
functions that can approximate any continuous function in a compact
space to any desired degree of accuracy [18,19]. This property makes
ML surrogates especially appealing for tackling high-dimensional and
complex problems where traditional numerical methods might struggle.
Various works have applied ML to porous media in geosciences. They
include using 2D and 3D convolutional neural networks (CNNs) to
predict bulk properties such as the permeability of rock samples [20,
21], or more refined information such as velocity or pressure fields in
rocks [22,23].

As FRPCs typically exhibit a highly anisotropic pore network, ML
applications have often been restricted to the prediction of homog-
enized quantities, such as the permeability tensor [24-26], or the

macroscale filling pattern [27]. These approaches simplify the complex
flow dynamics as they assume homogeneity and cannot provide in-
sight in cases of microstructural inhomogeneity as encountered in yarn
boundaries of textiles. They also inadequately reflect boundary effects
by not capturing the impact of no-slip boundary conditions on fluid
flow near solid surfaces. In contrast, refined details of the evolution of
the velocity and pressure field at the microscale enable more accurate
flow modeling at larger scales. They can provide a better understanding
of the effect of factors such as microstructural variability or high and
low fiber volume fraction areas on the manufacturing process.

Therefore, we propose a 2D convolutional neural network, with an
attention mechanism, to predict the steady-state resin flow velocity and
pressure fields in fibrous microstructures. The U-Net architecture [28],
initially proposed for segmentation tasks in biomedical images, inspires
this work. U-Net has already been used with success in various deep-
learning models designed for computer vision tasks, including image
denoising [29], image inpainting, and notably image generation [30].
We designed two separate models to adapt U-Net to our purpose. The
first is trained to predict the velocity field in square domains repre-
senting fiber-reinforced microstructures. The second is optimized to
predict the pressure field. As will be detailed in subsequent sections, the
obtained surrogates capture microscale flow features with satisfactory
accuracy. Additionally, the results can be aggregated as flow rate and a
pressure drop to evaluate the domain permeability by applying Darcy’s
law [31]. This approach outperforms known implementations of ML for
predicting permeability in FRPCs.

Previous approaches trained neural networks to predict 2D flow
fields over square domains or 3D fields in cuboid domains [22,23].
At inference time, they also restricted their model application to such
types of domains. We go beyond that restriction by extending the use
of the trained models to larger rectangular domains. We assume that
the flow phenomenon observed on a square domain is guided by the
same physics principles as the flow occurring on a larger rectangular
domain. Hence, the knowledge learned by the neural network on
square domains should be transferable to rectangular domains, as the
typical images or micrographs used for characterization purposes have
rectangular shapes instead of square ones. We took inspiration from
the sliding window technique [32], typically used in computer science
to write efficient algorithms and process sequential data, to predict the
velocity and pressure fields of rectangular microstructures.

To some extent, one may regard any rectangular domain as a
sequence of (potentially overlapping) square domains, given that the
flow occurs in laminar conditions. The method is implemented with
physics-based constraints to ensure conservation of mass and pressure
continuity. Herein, we validate the proposed algorithm through com-
parison with numerical simulations on rectangular domains with high
aspect ratios, and further assess its prediction accuracy as well as the
computation time through comparison with the results reported in the
permeability exercise [17] using the computed tomography images of
a unidirectional microstructure.

To sum up, this work’s main contributions are (i) proposition of
two machine learning models whose loss functions and neural network
architectures are tailored to and optimized for predicting the resin
velocity and pressure field in square fiber-reinforced microstructures,
and (ii) introduction and validation of a sliding window technique for
both of the flow and pressure fields in rectangular domains. These are
further explained in the rest of the manuscript, which is structured
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Fig. 1. A visual representation of the U-Net architecture. Individual blocks are symbolized to highlight the information flow for inferring the flow field (top

right) around a black circular fiber (top left).

as follows. Section 2 provides details of the baseline U-Net model’s
architecture and the added attention mechanism. Section 3 explains the
microstructure generation and flow simulations performed in Open-
FOAM to generate the database, while Section 4 describes the training
process of the models. Section 5 and Section 6 present the results for
square and rectangular domains, respectively, while detailing the sliding
window method, and Section 7 compares the results with the recent
benchmark exercise.

2. Model architecture

The U-Net architecture is an image-to-image network that leverages
an encoding-decoding approach, referred to by the U symbol. The input
data, e.g., a biological tissue image in the original U-Net paper [28], is
encoded into a lower-dimensional latent space. The latent space is then
decoded through a symmetric process to reconstruct the desired output,
e.g., segmented cells in the tissue image. The model is trained following
an end-to-end supervised learning procedure to yield accurate predic-
tions. In this work, we implement a similar architecture adapted to
perform a pixel-wise regression on the velocity and pressure fields in
a 2D fibrous microstructure subjected to a viscous flow, as highlighted
in Fig. 1.

2.1. Building blocks

The building blocks of our U-Net are (i) convolution blocks, (ii)
attention blocks, (iii) down-sampling blocks, (iv) up-sampling blocks, and
(v) skip connections. They are combined to form the encoder and decoder
part of the model. We detail hereafter these building blocks.

(i) Convolution block: Each convolution block is a sequence consist-
ing of a convolution layer [33], a group normalization [34] layer, and
a Sigmoid Linear Unit (SiLU) activation layer [35]. The convolution
layer is the core building block of any convolutional neural network. It
applies a convolution operation to its input through weight matrices,
known as kernels. Limiting ourselves to square kernels, the size k x
k of each determines the extent of the field it captures. Its stride s
determines the number of pixels by which the kernel shifts during the
convolution operations. We use a stride s = 1 in these convolution
layers. Meanwhile, the number of individual kernels determines the
number of separate channels resulting from the convolution.

We utilize group normalization instead of batch normalization, in
contrast to the original U-Net paper [28]. Group normalization scales

values across the feature dimension, unlike batch normalization, which
does so across the batch dimension. This characteristic makes group
training independent of batch size [34] as well as more stable. More-
over, contrary to classification problems as in [28], the absolute scale of
features is especially critical in regression problems because the model
predicts continuous values directly tied to the input data’s scale. This
makes group normalization all the more suitable and also explains why
it is preferred in the state-of-the-art diffusion models [30]. We set the
number of groups equal to 1, effectively making the group normaliza-
tion equal to layer normalization [36]. Finally, a SiLU activation layer
follows normalization. SiLU is defined as

(€8]

SiLU(x) = x * 6(x), where o(x) =

1+e>
This smooth and non-monotonic activation function can capture more
complex patterns and relationships in data compared to, for instance,
Leaky ReLU [37,38], which is monotonic and less expressive.
(ii) Attention block: Attention mechanism in modern machine learn-
ing was first introduced in a recurrent neural network architecture [39]
for machine translation. It later gained popularity with the transformer
architecture [40] and has also been included in diffusion models [29].
We utilize an attention block composed of layer normalization [36]
followed by a multi-headed attention layer [40]. To be more specific,
we use 8 attention heads. We perform self-attention in the sense that
the queries, keys, and values passed to the multi-headed attention layer
are identical. The attention values computed through the latter layer are
added to its initial input to yield the output of the attention block.
(iii) Down-sampling block: The purpose of the down-sampling block
is to reduce the size of its input arrays and thereby gain more global
insights. This is usually attained via a pooling operation that aggregates
information into a reduced dimension. In our case, the down-sampling
block consists first of a max-pooling layer [33]. It is implemented with
a 2 x 2 kernel and a stride s = 2. This choice reduces the size of
the arrays by half. We then follow the max-pooling layer with group
normalization and a SiLU activation layer.
(iv) Up-sampling block: The up-sampling block accomplishes the op-
posite of the down-sampling block by expanding information into
higher dimensions. In the simplest form, up-sampling can be attained
via nearest neighbor or bilinear interpolation. We instead opt for a
transposed convolutional layer [41] because of its greater flexibility
with its trainable parameters. This layer is implemented with a 2 x 2
kernel and a stride s = 2, a choice that doubles the size of the input
arrays. It is also followed by group normalization and a SiLU activation
layer.
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(v) Skip connections: Skip connections are devised to facilitate the
training of deep neural network architectures. They mitigate the is-
sue of vanishing gradients in deep model architectures by providing
alternative paths for gradients to flow during back-propagation. Their
use also results in deep models that are easier to optimize because of
well-conditioned gradients [42].

2.2. Encoder

The contracting path of the model or encoder consists of a sequence
of convolution blocks and down-sampling blocks. By reference to Fig.
1, we may differentiate between various levels of the encoder based on
the height and width of the arrays. Focusing on a particular level i,
there are two convolution blocks. The first convolution block changes
the number of channels from ¢;_; (that of the previous level) to ¢; (that
of the current level). An exception is the starting level i = 0, in which
the convolution block maps the number of channels from the training
data to c,. The second convolution block keeps the number of channels
at ¢;.

We further enhanced the two models (one for velocity and one for
pressure) by adding an attention block after the two convolution blocks
at specific levels (See Supplementary Material, Table 1). Adding the
attention block in the model designed for velocity prediction showed
that its inclusion improved accuracy, thus all results presented herein
are generated with the model that included the attention. The same
exercise of adding an attention mechanism did not yield a significant
improvement on the model trained for pressure prediction. This remark
is, however, not conclusive; a different implementation of the attention
block might show otherwise.

Finally, a down-sampling block reduces the height and width of the
arrays by half for the following level i + 1.

2.3. Decoder

The expanding path of the model or decoder is constituted by
upsampling blocks and convolution blocks. At each level i, we use two
convolution blocks. The first convolution block maps the number of
channels from 2¢; to ¢;. The input to this block consists of the concatena-
tion of two parts. One half originates from the lower level i+1. This data
is provided by an up-sampling block that doubles the height and width
of the arrays from that lower level. The other half is provided by a skip
connection, which allows access to the output of the last convolution
block (or attention block) from the same level i on the decoder side.
The second convolution block keeps the number of channels at c;.
An attention block optionally follows afterward. Upon reaching the
decoder’s end at level i = 0, a final convolution maps the number of
channels from ¢, to the number of channels in the target training data.

3. Dataset
3.1. Microstructures

To generate microstructures mimicking the transverse sections of
unidirectional fiber bundles, we considered a parameter space deter-
mined by three variables: (i) the microstructure domain size D €
{x = 50+25k | Kk =0,1,...,6} pm, (ii) the nominal fiber diameter
d; € {7,10,15} pm, (iii) the total fiber volume fraction v r € {x =
02+ 0.1k | k =0,1,...,4}. These variables result in a parameter grid
space containing 7 X 3 x 5 points, totaling 105 different combinations.

The process to generate a microstructure defined by a point in
that space is as follows. We first lay out a square domain based on
the domain size D. Then, fibers are randomly generated until the
target volume fraction v, is reached. The individual fiber diameters
are assigned by assuming a normal distribution centered at a nominal
fiber diameter d, with a coefficient of variation of 5%, a value typical
of what is reported in the literature [43]. The fibers are then arranged

Composites Part A 200 (2026) 109337

within the domain using a rigid-body simulator [44] that ensures no
overlap. Additionally, we enforce periodicity on all four borders of
the microstructure domain. There exists an uncountably large number
of fiber configurations based on the same descriptors. We choose to
generate 50 microstructures per point in the parameter space, result-
ing in 105 x 50 = 5250 microstructures. Fig. 2 shows examples of
such microstructures. We additionally provide in the Supplementary
Material (Fig. A1) post-factum statistics about the fiber volume fraction
in the microstructures. With the topology of the microstructures thus
defined, we then discretized each into a mesh, excluding the fiber
regions because of our subsequent step of modeling the resin flow
around the fibers as a fluid flow in a porous medium.

3.2. Flow simulations
Our goal is to solve the transverse flow in fibrous microstructures.

This problem requires solving the Navier-Stokes equations [45], enforc-
ing mass continuity (Eq. (2)) and momentum conservation (Eq. (3)).

dap _
E+V-(pu)—0 2
p(g—':+u-Vu)=—Vp+V~t+f 3)

Where p denotes the fluid density, and u the fluid velocity, p the fluid
pressure, and f body forces. ¢ denotes the deviatoric stress tensor.
Assuming an incompressible steady-state flow, and considering body
forces on the fluid to be negligible, the Navier-Stokes equations are
simplified to Egs. (4) and (5).

V-u=0 ()]

p(u-Vu)=—-Vp+ uviu %)

Where x is the fluid viscosity. To solve these equations, we selected
OpenF0AM [46], a well-known open-source software for computational
fluid dynamics that is based on the finite volume method. Within it,
we utilized simpleFoam, a steady-state solver for incompressible flow
that employs the SIMPLE (Semi-Implicit Method for Pressure Linked
Equations) algorithm [47].

We assumed the fluid flowing between the fibers to be epoxy resin
having a density p of 1250 x 10°kg - m™® and dynamic viscosity u
of 5x 10! Pa - s. The flow is considered to be velocity-driven. The
inlet velocity is set to u;,,, = (1 x 107*,0)m s~! and is perpendicular
to the inlet boundary, ensuring laminar flow conditions. The outlet
pressure is set to 0Pa. The no-slip condition is enforced at the fiber
boundaries. Taking advantage of the periodicity of the microstructures,
cyclic boundary conditions are enforced on the remaining sides (Sup-
plementary Material, Fig. A3). For each microstructure, we performed
one simulation with flow in the horizontal direction, and the other with
flow in the vertical direction (see Supplementary Material), resulting in
10500 results. More information about the approach used to generate
the microstructures and simulations can be found in [48]. This includes
a validation of the numerical framework comparing the resulting per-
meability in microstructures with perfect quadratic fiber distribution
(estimated through Darcy’s law [31]) against Gebart’s equations [49].

3.3. Post-processing

We post-processed the simulation data into equivalent multi-
dimensional arrays. Each sample in the dataset D = {(M*, U, P%) |
s =1,...,N} is a triplet consisting of the microstructure tensor M* €
R>Pw the velocity tensor U € R> @ and the pressure tensor
P’ € R N refers to the number of samples in the dataset, while
h, w refer to the height and width of the images expected by the neural
network model (in our particular case, h = w = 256). M* is a binary
array with 1 in fluid regions and 0 otherwise. U* stores the x and y
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Fig. 2. Sample space used to generate the microstructures. They vary in domain size, fiber diameter, and fiber volume fraction.

Table 1
Features in the input channels and predictions at the output channels for each
model.

Input channels Output channels

Velocity model « microstructure « x-velocity

« y-velocity

Pressure model « microstructure xfiber volume fraction
« 1/microstructure length

* pressure

components of the velocity field in two different channels. A single
channel stores the pressure values in P°.

We note that we later train the model with the assumption that
the inlet is located at the left border, i.e., the main flow direction is
horizontal. Hence, before using simulation results with the inlet located
at the bottom (Supplementary Material, Fig. A2b), we performed a
90°-clockwise rotation of the arrays. In the case of the velocity field,
this rotation additionally entailed ensuring consistency of the channel
order and value signs. The entire process, from geometry definition
to numerical simulations and post-processing, was fully automated
through a Python [50] script.

4. Training
4.1. Model definition

We designed two decoupled surrogate models, which we refer to as
velocity model and pressure model, aimed at predicting the velocity and
pressure fields, respectively. We decoupled velocity and pressure for
two reasons. First, the proposed surrogate architecture does not inher-
ently capture the relationship between these fields. While it could be
modified to do so, state-of-the-art ML models in fluid dynamics [51,52]
typically do not enforce a physics-informed coupling between the fields.
Given the distinct characteristics of velocity and pressure, specialized
decoupled surrogates are expected to perform better. Second, decou-
pling reduces the memory footprint during training, enabling deeper
networks within the available computational budget. The velocity model
takes as input the binary image of microstructures and predicts the
corresponding velocity field (Table 1). The pressure model has two
input channels. The first channel expects the microstructure image
multiplied by its fiber volume fraction. The second channel expects a
constant matrix whose value is the inverse of the microstructure length
(Table 1). The pressure model outputs a single channel corresponding
to the pressure field. The input features previously mentioned were

strategically chosen after considering the velocity-driven nature of the
simulations in conjunction with insights gained from Darcy’s law [31].

A hyperparameter optimization revealed that a model with a depth
of 7 and a kernel size of 3 is a good choice for our case. Further tests
showed that using attention mechanisms was beneficial for velocity
prediction but unnecessary for pressure prediction. This lack of need
for attention in the pressure model is, however, inconclusive; it could
be due to our current implementation of attention. We provide an
extended explanation of model design choices in the Supplementary
Material (Section B). These hyperparameter choices resulted in the
velocity model and pressure model having respectively 5.53 x 10® and
4.97x 108 trainable parameters. These numbers might seem high, but we
note, for reference, that the U-Net in the popular text-to-image Stable
Diffusion model has 8.60 x 10® parameters [30,53].

4.2. Cost function

Training a machine learning model is achieved by fine-tuning its
trainable parameters 0, typically through gradient descent [54]. Gradi-
ent descent requires a cost function quantifying the deviations of the
model predictions from specific targets. The goal of gradient descent
is then to minimize this cost. In our case, we want to minimize the
discrepancy between the surrogate model (velocity or pressure) field
predictions Y and reference values Y in the dataset. Let vec : R™>w
R be a function that collapses a three-dimensional tensor into a
vector. We define the (relative) error ¢* of a sample s as Eq. (6).

o Iveer — ¥, ©
Ivec(Y )l

where ||...||; denotes the L'-norm of a vector. We then introduce Eq. (7)

as the cost function J(0) which averages the individual sample errors.

N

J(0) = % Ye @

s=1

where N stands for the number of data samples.
4.3. Model training

We utilized the PyTorch library [55] for model implementation
and leveraged its automatic differentiation capabilities for model train-
ing. Our compute platform is a workstation equipped with an NVIDIA®
Quadro RTX™ 6000 graphics processing unit (GPU), with 24 GB of
memory and featuring 16.3 TFLOPS of single-precision floating point
performance.
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Fig. 3. Learning curve of the best surrogate models trained for (a) velocity and (b) pressure field prediction.

Table 2

Five-fold cross-validation: the accuracy of the models is similar across

different splits of the dataset.

Velocity (training/validation)

Pressure (training/validation)

5.22x1072/9.11 x 1072

4.76 x 1072/8.04 x 1072

5.07x 1072/8.44 x 1072

4.94x1072/8.28 x 1072

5.27x 1072/8.41 x 1072

Fold 1 4.86 % 1072/6.94 x 1072
Fold 2 4.81x1072/7.07 x 1072
Fold 3 4.77x 1072/6.96 x 1072
Fold 4 4.94x1072/7.34 x 1072
Fold 5 4.95x1072/7.07 x 102
Average 4.87x 1072/7.08 x 1072

5.05% 1072/8.46 x 1072

Before training, we partitioned the dataset into two parts: 80% used
as the training set and 20% used as the validation set. Training was
continued for 100 epochs for both the velocity and pressure models, using
a learning rate of 1 x 10~ and a batch size equal to 20. The training
of both models lasted approximately 12h. Fig. 3 shows the evolution
of the loss during the training process. The average error (Eq. (7)) on
the predicted velocity fields decreased to 4.84 x 10~2 and 7.21x 102 for
the training and validation sets, respectively. In the case of pressure, it
decreased to 5.08 x 1072 and 7.92 x 1072,

4.4. Cross-validation

The error metrics reported above show a great performance of the
pressure and velocity models. However, model hyperparameters can
sometimes be specific to the choice of the training set and not offer
the same level of performance if the dataset were split differently.
To assess the robustness of the models with respect to the data, we
performed a cross-validation [56]. The core idea of cross-validation is
to partition the dataset into complementary subsets, train the model
on some parts, and evaluate it on the remaining parts. The process
is repeated several times to get a robust estimate of the model’s
performance. We leveraged the scikit-learn [57] Python package
to perform a five-fold cross-validation of the model. In each training
instance, four of the five subsets are chosen as the training set. The
remaining 20% of the data is then used as the validation set. This is
repeated five times. Table 2 shows the resulting training and validation
errors after tuning the models over 100 epochs for each fold of the
dataset. Different folds result in varying error values. However, the
variations are minimal. This error proximity shows that the model
hyperparameters are not biased towards a specific subset of the data.
The average training/validation loss is 4.87 x 1072/7.08 x 1072 for the
velocity model and 5.05 x 1072/8.46 x 1072 for the pressure model.

5. Results
5.1. Velocity prediction

We now focus our attention on the velocity model (Fig. 3a) and
investigate its performance on individual samples. Fig. 4a shows the
histogram of individual errors calculated using Eq. (6) in the training
and validation sets. The average values were reported earlier in Sec-
tion 4.3. The median errors are 4.45 x 1072/6.93 x 1072 for the training
and validation sets. For illustration purposes, we plot the predictions
for the median case in the validation set (Fig. 5a), which we recall that
the model did not encounter during training. Visually, the predictions
for both the x- and y-components of the velocity field are almost indis-
tinguishable. Looking at the field of absolute errors, most error values
in the domain are within the low end of the spectrum. Beyond looking
accurate, the model predictions should be physically consistent. For
our problem, the flow rate between the inlet and outlet should remain
constant. Fig. 5b shows the volumetric flow rate Q inferred by taking
line integrals of the velocity field along the length of the microstructure.
The flow rate evaluated from the model prediction closely follows the
reference. We note that the minor fluctuations observed in the reference
line are due to pixel discretization.

In addition to the median case, knowing how the model performs at
its best and worst is beneficial. This knowledge is especially valuable
for uncertainty quantification and helps assess the confidence level
to attach to the model when deployed to real-world scenarios. The
best and worst cases in the validation set have errors of 1.47 x 1072
and 2.287 x 10~!. The corresponding predictions are provided in the
Supplementary Material (Section C). A relative error of about 20%
sounds bad, but the number itself is misleading. The values in the
velocity field span multiple orders of magnitude, but the error metric
(Eq. (6)) penalizes them all equally. However, the larger values matter
the most when computing the flow rate. Looking at the velocity field
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Fig. 4. Histogram of the individual errors in (a) velocity and (b) pressure field prediction for microstructures in the training and validation set.
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Fig. 5. (a) Resin velocity field for the microstructure with median error in the validation set. (b) Comparison between the calculated average flow rate along the

microstructure length against the reference.

prediction for the worst case, the pattern is close to the reference, and
the estimated flow rate is just slightly overestimated (Supplementary
Material, Fig. C4).

5.2. Pressure prediction

Let us now consider the individual predictions of the pressure model.
Fig. 4b shows a histogram of the relative errors on the predicted
pressure fields. The median cases for the training and validation sets
have errors of 3.81 x 1072 and 6.34 x 10~2. We plot in Fig. 6 the
predicted pressure field for the median case in the validation set. We
observe the accuracy of the model in capturing the correct pattern.
The plot of the absolute difference is also revealing. The maximum
deviation is an order of magnitude lower than the maximum pressure
value. We additionally plot the average pressure along the length of
the microstructure in Fig. 6b. There, one can notice a close agreement
between the two pressure profiles.

Furthermore, we report the best and worst predictions for the
model. The lowest and highest errors observed in the validation set are
9.2x1073 and 8.349x10~!. We provide the corresponding pressure fields
in the Supplementary Material (Section C). Interestingly, the surrogate

model is capable of being 99% accurate with the task of predicting
256 x 256 px>. Even in the worst case, the predicted pressure field has
an overall pattern similar to the reference. The mistake of the model is
in overestimating the pressure values, which are still the correct order
of magnitude (Supplementary Material, Fig. C6).

5.3. Transverse permeability

Previous works [24,26] had trained surrogate models to predict
microstructure permeability directly. Here, we infer the transverse
permeability of the microstructures from the predicted velocity and
pressure fields by using Darcy’s law [31]. Darcy’s law (Eq. (8)) re-
lates the volumetric flow rate Q through a porous medium and the
corresponding pressure drop 4p.

Q:——Ap (8)

where A represents the cross-sectional area of the medium. L is the dis-
tance traveled by the fluid with viscosity u, k denotes the permeability
of the medium.

The volumetric flow rate Q is obtained by integrating the velocity
field over the mesh at the inlet. The cross-sectional area A is calculated
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Fig. 6. (a) Pressure field for the microstructure with median error in the validation set. (b) Comparison between the computed average pressure along the

microstructure length against the reference.

as the inlet length multiplied by the cell thickness (0.25pum in the
numerical simulations). The distance L is the physical length of the
microstructures. Given the boundary condition of outlet pressure equal
to 0 in the simulations, the pressure drop 4p is simply the weighted-
average pressure at the microstructure inlet. Fig. 7a and Fig. 7b show
the histogram of errors on the predicted inlet flow rate and pressure
drop for microstructures in the training and validation sets. Using
Eq. (8), we then calculated the permeability of all microstructures. The
values cover a wide range, and the predictions match closely the targets
(Fig. 7c). Fig. 7d shows the cumulative distribution function (CDF) of
the relative errors on the predicted permeability values. The average
error is only 4.40% on the training set and 6.85% on the validation
set. Moreover, 90% of the predictions performed on the training and
validation exhibit less than 10% and 14% error, respectively. This
is significantly better than the results we reported in our previous
work [24] on using machine learning to directly predict the perme-
ability of fibrous microstructures. Here, we achieve not simply better
permeability accuracy, but do so with the added benefit of valuable
and explainable details about the microstructures’ velocity and pressure
fields.

6. Extension to larger 2D domains

The surrogate models have performed very well on their intended
task of predicting the velocity and pressure fields from 256 x 256 px>
microstructure images. However, a restriction to square images induces
a practical limitation, as most images (e.g., micrographs of typical
woven or non-crimp fabrics) used for flow characterization purposes
are not bound to square shapes and typically exhibit high aspect ratios.
It is thus worth asking the following question. Is it possible to use the
same surrogate models for prediction on microstructures with a high
aspect ratio? After all, the flow phenomenon observed on a square
domain is the same, in terms of the physical fundamentals, if a bigger,
rectangular domain is considered. If the surrogate models appropriately
learned the underlying physics of the problem at hand, extrapolation to
larger microstructures should be feasible.

We propose a sliding window procedure, illustrated in Fig. 8, to
extrapolate model predictions to rectangular domains. The sliding win-
dow technique [32] is an algorithmic approach used to efficiently
solve problems in computer science by capturing a subset of the data
through a window, performing an operation with it, and then repeating
the process after moving the window in a stepwise fashion. For our
purpose, we consider the size of the moving window to match the one
expected by the surrogate models, namely 256 x 256 px>. At each step,
the subdomain captured by the window is passed to the surrogate mod-
els, which then predict the corresponding velocity and pressure fields.
This approach immediately raises concerns regarding the violation of
the assumptions based on which the models were fine-tuned, such as
inlet/outlet conditions or the (lack of) periodicity at the boundaries

that merits investigation. In the following sub-sections, we first present
a first-order approach to implementing the sliding window technique
through a moving average of model predictions. This strategy resulted
in a couple of issues. We then formalize our problem and provide a
scheme that incorporates a weak enforcement [58] of physics principles
in the sliding window procedure (Algorithm 1).

6.1. First-order approach

Let us consider a 256 x 1024 px? image of a microstructure (physical
dimensions: 150 x 600um?). We recall that the maximum physical
dimension encountered in our dataset (Fig. 2) is 200 um. Moreover, the
microstructure has a nominal fiber diameter of 10 um and fiber volume
fraction of 0.5. Unlike the training data, the individual fiber diameters
follow a half-normal distribution with a minimum equal to the nominal
fiber diameter, thus yielding much larger variability in the diameters
in the microstructure. The simplest way to make, for instance, velocity
predictions on this rectangular domain is to partition it into four
256 x 256 px? subdomains. Starting from one end of the microstructure,
one moves the sliding window with a step size At = 256 px, passes
the four subdomains to the surrogate models, and then patches the
predictions together. However, this approach led to discontinuities at
the patch interfaces when we tried it, for instance, with the velocity
model (Supplementary Material, Fig. D2). These jumps can be explained
by the fact that the actual conditions at the entrance of the subdomains
are not that of u,,,, = (1 x 107,0)m s~!, as learned from the training
data by the surrogate model. The flow at the patch interfaces will
have nonzero y-velocity components, while the model assumes zero
y-velocity at the inlet.

We then experimented with the use of step sizes Ar < 256 px for the
sliding window, such that overlap occurs between the consecutively
captured subdomains. Because of the overlaps, an averaging scheme
is needed. We used a simple moving average based on the repetition
of a given pixel in different windows. In other words, we calculated
the velocity value at a pixel as the average of predictions originating
from windows that hovered over this location. This approach smoothed
the velocity profile with decreasing 4r, thus mitigating the issue of
discontinuity. But different tests showed that this was accompanied
by an amplification of errors both in the velocity field and inferred
flow rate (see Supplementary Material). The reduction in the step size
increases the number of occurrences of each pixel being close to the
inlet or outlet of a window where the model’s biases lead to erroneous
velocity values. Thus, a physics-aware scheme is needed.

6.2. Problem formulation

A trained neural network model is a mathematical function x — y(x)
whose output is most reliable when its input variables fall within the
sample space based on which it was trained. Moreover, the inputs must
satisfy the assumptions associated with that sample space. For our case,
we may formalize these requirements as follows.
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periodic. in the precision of the model predictions. From an uncertainty quantifi-
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Algorithm 1: Sliding Window Procedure

Input : ML model M ; microstructure image I € RE*H#>*W: sliding
window size w; step size s
Output: flow field F

1) Fragment microstructure image I into sub-areas a = {q;} using
the window size w and step size s. Compute the associated
weights w = {w;};

2) Predict the flow field f; on each sub-area a; with the ML model
M;

3) Post-process the model outputs f = { f;} to produce the final
flow field F (with Algorithm 2 or 3).

Algorithm 2: Velocity Correction

Input : f = {f;}: velocity fields for sub-areas; w = {w);}: weights

for sub-areas
Output: F: aggregated velocity field for large area

1) Compute weighted average of f using weights w to obtain F;

2) Adjust velocity values in F based on its inlet flow rate.

Algorithm 3: Pressure Correction

Input : f = {f;}: pressure fields for sub-areas; w = {w;}: weights
for sub-areas

Output: F: aggregated pressure field for large area

1) Moving from outlet to inlet, sequentially shift the pressure field
f; for each sub-area;

2) Compute weighted average of f using weights w to obtain F.

in which e denotes the inaccuracy in the prediction. This error e has
been minimized during training (Eq. (7)). Hence, we may approximate
the relation as

y(x) = y(x) (10

However, looking at a snapshot of the moving window (Fig. 8) within
the larger domain, the captured sub-domain is not guaranteed to be
periodic (C1 violated). The flow profile along the left border of the
window will most likely not satisfy u;,,, = (1 x 107*,0)m s~! (C2
violated). Assuming that the outlet pressure of the large domain is 0,
the average pressure must progressively increase from right to left,
resulting in a positive pressure value just on the right side of the
window. Thus, C3 is violated for the right side of the window. Hence,
we must introduce a discrepancy function &(x) to account for the model
inadequacy due to the violation of conditions C1, C2, and C3, such that

y(x) ~ y(x) + 6(x) an
To correct this bias, we simply have to subtract
6(x) 1= y(x) — y(x) (12)

from the model prediction. This rectification is, in principle, possible if
the true value y(x) is known. However, in practice, the true (velocity
or pressure) values are unknown beforehand when a neural network is
being used as a replacement for numerical simulations. Nevertheless,
this obstacle can be circumvented as we will later show in the following
subsections. Besides, we recall that the momentum equation (Eq. (5))
states that pressure and velocity are linked, with pressure acting as a
constraint on velocity. This connection implies that modifications to the
velocity field should be done in relation to the pressure field. However,
we had trained two independent surrogates to predict velocity and

10
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pressure. For simplicity, we decoupled velocity and pressure when im-
plementing the correction scheme in that these fields are independently
updated.

6.3. Velocity correction

The continuity equation (Eq. (4)) states that the divergence of the
velocity field should be zero everywhere. Stated differently, the flow
rate should be constant from inlet to outlet in our case. Previous
attempts at computing a moving average of the velocity field with the
first-order approach (Section 6.1) showed different departures from the
reference flow rate as the step size Ar varied. But, in all cases, the inlet
flow rate consistently remained accurate. Error statistics of the inlet
flow rate further support that (Fig. 7a). This particularly high accuracy
can be attributed to the simulations being velocity-driven. It is thus easy
for the model to predict quasi-constant values near the inlet. From this
observation, we may use the predicted inlet flow rate as a proxy for
the true flow rate value. Alternatively, one could simply hand-calculate
(thanks to the simulations being velocity-driven) the true flow rate
from the microstructure size and inlet volume fraction. Nevertheless,
we stick to using the predicted inlet flow rate as a reference to correct
for flow rate fluctuations in other regions of the microstructures.

Concretely, we proceed as follows. After estimating the velocity
field for the whole rectangular domain by the first-order approach,
we calculate the flow rate at each vertical section. At this stage, there
exists a mismatch between the predicted and true flow rates (Eq. (11)).
Taking the inlet flow rate as a substitute for the true value, we quantify
the flow rate mismatch along the length of the microstructure through a
series of coefficients obtained by division with respect to the inlet value.
We then use these coefficients as scaling factors to adjust the velocity
values at the corresponding sections. This procedure is summarized
in Algorithm 2 and detailed on our GitHub repository. Results in the
Supplementary Material (Fig. D3) show the drastic reduction in error
made possible by this correction scheme. Visualization of the final
velocity predictions and the corresponding flow rate are provided in
Fig. 9b,c,e.

6.4. Pressure correction

The first-order approach, implemented for pressure prediction on
the rectangular domain, also led to unrealistic pressure fields. We
observed discontinuities in the predictions, with values differing by
large margins from the reference (Supplementary Material, Fig. E1).
Multiple factors play a role, with the violation of condition C3 being the
most obvious one. Condition C3 is violated because the model output
for any subdomain captured by the window assumes that pressure is 0
at the right of that subdomain (Fig. 8). This is physically incongruent
if we also consider the pressure to be 0 at the outlet of the larger
rectangular domain. As such, we need a device that ensures that the
average pressure value at the outlet of any subdomain is congruent with
the overall pressure evolution in the context of the entire domain.

With this consideration in mind, we purposefully move the sliding
window from right to left in the case of pressure prediction. This choice
of direction is to enable tracking of the pressure evolution from the
rectangular domain’s outlet. At each step, we evaluate the pressure
field and also calculate the average pressure per vertical section. Then,
before moving on to the next step, we shift the entire pressure field
by a scalar. This scalar is determined by the average pressure value
calculated during the preceding step at the vertical section on the
window’s inlet. This procedure is outlined in Algorithm 3 and also
detailed on our GitHub repository. The results in the Supplementary
Material (Fig. E2) demonstrate its effectiveness. Fig. 9.d and .f show the
resulting pressure field as well as the evolution of the average pressure.
Interestingly, we observe a close agreement between predictions and
targets. The maximum difference in the prediction of the pressure field
is an order of magnitude lower than the maximum observable pressure.
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et al. [17].

7. Benchmark against literature data

Beyond comparison with numerically generated data, the added
value of a proposed method lies in its successful application to real
data. Syerko et al. [17] performed an international virtual perme-
ability benchmark exercise in which the data consisted of scans of a
glass fiber reinforced composite sample extracted by X-ray computed
microtomography. Fig. 10 shows a 3D view of the 973 consecutive
2D scan slices, with a resolution of 124 x 1003 px®. This endeavor
resulted in the participants providing permeability estimations based
on 2D/3D numerical simulations run under various assumptions. In Fig.
11 we report the results for transverse permeability, extracted from the
supplementary data accompanying that paper [17].

We undertook the task of evaluating our sliding window approach
on these micrograph scans and comparing how its results stand in
comparison with those reported in the benchmark. We recall that our
surrogate models expect square 256 X 256 px*> images. However, each
scan slice has a resolution of 124 x 1003 px?, which would result in 124x
124 px* sub-domains if we were to fragment it into squares. As a result,
this endeavor presents challenges. First, the data were experimentally
acquired rather than numerically generated and were not present in
the training set. Consequently, they may exhibit characteristics distinct
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from the synthetic data. For instance, the experimental data contain
low-fiber-density regions typical of multi-scale fibrous microstructures,
which our current microstructural generator does not explicitly pro-
duce, although this could be addressed in future work. Additionally, the
experimental microstructure was obtained via image-based extraction
methods, whose parameter choices can influence the results [59] and
introduce features absent in the training data. Finally, the experimental
data have lower resolution compared to the training set.

To accommodate the surrogate models’ requirements, we used bilin-
ear interpolation to upscale the scan slices from 124 x 1003 px? to 256 X
2070 px2. Fig. 10 shows the predicted velocity and pressure fields for se-
lected slices. The flow field patterns all look realistic. Next, we utilized
Darcy’s law to infer the permeability of each 2D slice from the predicted
fields. The computed permeability values are plotted in the inset shown
within Fig. 11. We observe the variation of permeability along the
depth of the volume. Then, we use an electric circuit analogy to infer
the transverse permeability of the 3D domain from the individual 2D
permeability values. We note that this circuit analogy has previously
been used in other works [24,60,61]. Concretely, we consider the 2D
slices to be resistances in parallel, as we are interested in flow behavior
in the x-direction and compute the arithmetic mean of the individual
permeabilities. The equivalent permeability is 7.82 x 10714 m? (Fig. 11)
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Fig. 12. Run time for predicting the permeability of the micrograph scan using
our framework compared with the results of the participants in the benchmark
by Syerko et al. [17].

and falls well within the range of values deemed inliers by the authors
of the benchmark [17]. More interestingly, our prediction stands right
next to the values reported by participants #2 and #6 who performed
2D simulations (see supplementary data from Syerko et al. [17]). But
beyond that, the computational efficiency of our framework further sets
it apart (Fig. 12). Evaluating the permeability of the scans required only
3 min, while the participants in the benchmark [17] reported run times
up to 136 h. The reduction in computational time spans several orders
of magnitude, highlighting the significant benefit of our approach.

8. Conclusions

In this work, we introduced two surrogate machine learning mod-
els to predict the velocity and pressure fields in fiber-reinforced mi-
crostructures that vary in domain size, fiber diameter, and fiber volume
fraction. The reported error statistics and examples showed the robust-
ness of the trained surrogate models, even when they were performing
at their worst. In addition, we used Darcy’s law to infer microstruc-
ture permeability from the field predictions by the surrogates. These
permeability predictions are achieved with an accuracy that surpasses
previous works.

Beyond the mere evaluation of model performance on square do-
mains (a constraint originating from convolutional neural networks),
we introduced a sliding window method to extend model inference to
rectangular domains. We implemented physical flow constraints in this
framework, without modifying the loss functions, as such a modifica-
tion would potentially lead to the requirement of a more populated
database and increased computational cost to train models.

The sliding window procedure was introduced for two-dimensional
microstructures. It will be further extended to 2D mesostructures of
fiber bundles in our future work, in which case, a more clever parti-
tioning method might be needed. An example could be a quad-tree de-
composition of the image [62] based on regional fiber volume fraction
to process fiber-free and fiber-packed regions separately. Moreover,
we foresee the development of an extended method for efficient 3D
flow prediction of complex microstructures such as those investigated
by Gomarasca et al. [63] by stacking 2D predictions from the surro-
gate models and applying local corrections based on the surrounding
topology.

Comparison with numerical simulations and a test against a bench-
mark exercise showed its reliability and good prediction accuracy.
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Moreover, this approach is significantly faster than numerical simula-
tions explored in the said benchmark, and reduces the computational
time from multiple hours to a few minutes. Our source codes for the
surrogate models and the proposed sliding window method are publicly
released, thus further lowering the effort to estimate the permeability
of fibrous microstructures.
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